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Abstract

Knowing the conductivity tensor of a metal can be of great interest in characterizing
the material for any practical use. The characterization process would be eased if one could
find an analytical expression for the conductivity tensor or some general behaviour of the
conductivity from knowing just the Fermi surface of the metal.The aim of this thesis is
to calculate the conductivity tensor of normal metals under different conditions by use of
the semiclassical Boltzmann equation. First, the Boltzmann equation will be solved in the
free electron model for the three cases: no magnetic field, a transverse magnetic field, and
a high magnetic field present in accordance with the Drude model [1] and the Hall effect
[3, 5].

Next, expressions are found for the conductivity tensor for an arbitrary Fermi surface
in both the zero-field and low-field limit of an applied magnetic field B, writing out these
explicitly to second order in B by the method of Jones & Zener [2]. These will then be
applied to the tight-binding model, where it will also be examined if the total curvature
of the Fermi surface has some relation to the Hall conductivity. We will find that there
seems to be no connection between the two.

The last part of the thesis will concentrate on solving the Boltzmann equation for a
simple 2D Fermi surface being circular-shaped, like in the free electron model, but with
some additional distortion described by a harmonic function weighted with some small
factor. This is relying on the method of Smith & Højgaard [3] and will yield a conductivity
tensor to exact order in B. The method will then be applied to a specific Fermi surface
from the tight-binding model.
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1 Introduction

In the semiclassical description of electrons as a gas of electron wave packets, the Boltzmann
equation can be used to calculate the conductivity by solving for the distribution function.
The characterization of a metal by its Fermi surface in reciprocal space is very useful for this
purpose since, as we will see in this thesis, knowing the distribution function at the Fermi
energy is sufficient to calculate the conductivity tensor.
This we will use to first derive the conductivity tensor in the free electron model for the three
cases: no magnetic field, a transverse magnetic field, and a high magnetic field present. Then
we will continue to the more general case of an arbitrary Fermi surface and find expressions
for the conductivity tensor in zero magnetic field and in the limit of a low magnetic field,
using the method of Jones & Zener [2]. Applying this to the tight-binding model, we will find
the conductivity tensor up to second order in the magnetic field as a function of the chemical
potential, which in our case determines the shape of the Fermi surface. With the importance of
the Fermi surface in mind, one might get the impression that the shape of this constant-energy
contour has an influence on the conductivity. In this thesis we will investigate whether the low-
field Hall conductivity in the tight-binding model depends on the total curvature of the Fermi
surface. Furthermore, we will solve the Boltzmann equation for closed orbits on a simple 2D
Fermi surface, parametrized by the length of the wave vector: k(ε, φ) = k0(ε) + k1(ε) cos(qφ),
φ being the azimuthal angle in (kx, ky)-plane, ε the energy of the electron, and q ∈ N. This
we will do without making any approximations in the magnetic field, following the method of
Smith & Højgaard [3]. Using this approach, we will discover that we can find the conductivity
tensor just from knowing the shape of the Fermi surface without having to know the energy
function ε(k). Finally, we will apply this method to a specific Fermi surface in the tight-binding
model to find the conductivity to exact order in the magnetic field and compare the high-field
limit of this result with the high-field Hall effect.

2 The Boltzmann equation

The central equation throughout this thesis will be the semiclassical Boltzmann equation, which
therefore deserves a short introduction. The derivation of the equation can be seen in App. A
and we take as a starting point:

∂f

∂t
+ ṙ · ∂f

∂r
+ k̇ · ∂f

∂k
=
(∂f
∂t

)
coll

.

Here f denotes the non-equilibrium distribution function, r is the position vector and k the

wave vector of the electron wave packet1,
(
∂f
∂t

)
coll

is the collision integral, and dot denotes the

derivative with respect to time t. The equilibrium distribution function, f0, is the Fermi-Dirac
distribution function (Eq. A.1, App. A). In the case of a stationary, homogeneous distribution
function (that is, ∂f

∂t = ∂f
∂r = 0), we have:

k̇ · ∂f
∂k

=
−e
~

(E + v ×B) · ∂f
∂k

=
(∂f
∂t

)
coll

, (2.1)

where k̇ is written in terms of the Lorentz force on an electron with charge −e and velocity v, in
an electric field E and a magnetic field B. Next, we introduce the relaxation time approximation
[1, p. 371] (RTA), which says that the collision integral is related to the difference in the

1In accordance with the semiclassical approach
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distribution function from equilibrium, g = f − f0, and the mean time, τ , between collisions,
in the following way: (∂f

∂t

)
coll

= −g
τ
. (2.2)

Presuming that |E| is small so that the response to it is linear [1, p. 365]: g ∝ E, the E-term
in Eq. 2.1 can be rewritten as:

−e
~

E · ∂f
∂k

=
−e
~

E · ∂f
∂ε

∂ε

∂k
= −eE · v∂f0

∂ε
.

In the second equality, we have used that g ∝ E to linearise in the electric field since f0 is
independent of E. Throughout this thesis, we will only be working with a constant small
electric field. Thus, the stationary, homogeneous Boltzmann equation, in the RTA (Eq. 2.2),
reads:

−eE · v∂f0

∂ε
− e

~
(v ×B) · ∂f

∂k
=
−g
τ
. (2.3)

Solving the Boltzmann equation for f , one can calculate the electric current density in a d-
dimensional system:

j =
−2e

(2π)d

∫
ddk vf(k). (2.4)

The factor of 2 in the nominator is to include spin. Since the current in thermal equilibrium
is zero, we are free to use g = f − f0 instead of f . All calculations in this thesis are done for
two-dimensional systems. Once we have found jµ, the current density in the µ̂-direction due to
an electric field in the ν̂-direction, we also know the conductivity tensor σµν .

3 The free electron model

We start by finding the conductivity tensor in Sommerfeld’s free electron model [2, p. 62-65]
where the valence electrons are considered as free, independent particles with wave functions
and corresponding energies:

ψi(r) = eiki·r , εki =
~2k2

i

2m
. (3.1)

The model completely ignores electron-electron and electron-phonon interactions. In this sec-
tion, we will use the Boltzmann equation in the form of Eq. 2.3 to find the conductivity from
the current density (Eq. 2.4) in three different cases: no magnetic field, a transverse magnetic
field, and a high magnetic field present.

3.1 Conductivity in zero magnetic field in the free electron model

In the case of an electric field E and zero magnetic field (B = 0), the stationary, homogeneous
Boltzmann equation in the RTA reads:

eE · v
(
− ∂f0

∂ε

)
= −g

τ
.

With this, we can calculate the current density, pursuing from Eq. 2.4:

j =
−2e

(2π)2

∫
d2k vg(k) =

e2τ

2π2

∫
d2k v(E · v)

(
− ∂f0

∂ε

)
=
e2τ

2π2

∫
dε

∮
dk‖

1

~v
v(E · v)

(
− ∂f0

∂ε

)
≈ e2τ

2π2

∮
kF

dk‖
1

~v
v(E · v). (3.2)
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In the last equality we have used that
(
− ∂f0

∂ε

)
is almost a delta function around εf , so that the

integral becomes a line integral over only the ks at the Fermi surface, with a length kF . For
the change of variables from (kx, ky) to (ε, k‖) see Sec. 4, Eqs. 4.2 to 4.4.
Now we are able to find the components of the conductivity tensor, starting with the element2

σ
(0)
xx :

σ(0)
xxEx =

e2τ

2π2

∮
kF

dk‖
1

~v
vx(Evx).

Using the free electron model (Eq. 3.1), v = 1
~
∂εk
∂k = ~k

m , we get the result:

σ(0)
xxEx =

e2τ

2π2
E

∮
kF

dk‖
1

~~k
m

(~kx
m

)2

=
e2τ

2π2m
E

∫ 2π

0

dφkF
k2
F cos

2(φ)

kF
=

e2τ

2π2m
Ek2

Fπ.

Here we have changed the integration variable to be instead the azimuthal angle φ in the
(kx, ky)-plane and employed that kF is a constant in the free electron model. In the calculation

of σ
(0)
yy , the only difference is that the integral is now over sin2(φ) instead of cos2(φ) and so

σ
(0)
yy = σ

(0)
xx . Regarding the off-diagonal terms, they both vanish since they contain the integral∫ 2π

0
dφ cos(φ) sin(φ) = 0. Hence, the conductivity tensor is:

σ
(0)
αβ =

e2τk2
F

2πm

[
1 0
0 1

]
.

Since we are looking at a 2D material, the number of states, N , is:

N = 2
πk2

F

( 2π
L )2

=
1

2π
k2
FL

2 ⇔ k2
F= 2πn, (3.3)

where L is the length of the system, n is the electron concentration, and a factor of 2 arises
from spin [5]. This means we can rewrite the conductivity as:

σ
(0)
αβ =

e2nτ

m

[
1 0
0 1

]
, (3.4)

which is the well-known Drude model [1, p. 7].

3.2 Conductivity in a constant, transverse magnetic field in the free
electron model

Now we look at the situation with both an electric field E and a constant, transverse magnetic
field B = Bẑ:

−ev ·E∂f0

∂ε
− e

~
v ×B · ∂f

∂k
=
−g
τ
. (3.5)

This Boltzmann equation is linearised in E but not in B as v ×B · ∂f0∂k = v ×B · v~∂f0∂ε = 0.
This also implies that we are free to write instead:

ev ·E∂f0

∂ε
=
g

τ
+
eB

~

(
vx

∂g

∂ky
− vy

∂g

∂kx

)
, (3.6)

2The superscript on σ is to be consistent with the notation later on by indicating that this is independent of
B and hence to zeroth order in B.
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where in the v×B term we have replaced ∂f
∂k with ∂g

∂k since adding−v×B· ∂f0∂k is just adding zero.

If we assume free particles (v = ~k
m ) and start by considering an E-field along the x̂-direction,

we can make the ansatz [3, p. 105] that the solution to g is of the form: g = akx + bky. By
insertion into Eq. 3.6, it is seen that this is indeed a solution provided a and b have certain
values:

e~
m
kxE

∂f0

∂ε
=

1

τ
(akx + bky) +

eB

m
(kxb− kya)⇔

1

τ
(τη − a− τωcb)kx +

(
ωca−

b

τ

)
ky = 0.

Here ωc = eB
m and η = e~E

m
∂f0
∂ε . Since this must hold for all kx and ky, the coefficients in front

of these must be zero independently, and so we get that:

b = τωca , a =
τ

1 + (τωc)2
η =

τ

1 + (τωc)2

e~E
m

∂f0

∂ε
.

We can now to find the conductivity tensor that includes the effects of a non-zero B-field,
starting with σxx:

σBxxEx =
−2e

(2π)2

∫
d2k vxg =

−e
2π2

∫
d2k

~kx
m

a(kx + ωcτky)

=
e~

2π2m

τ

1 + (ωcτ)2

e~E
m

∫
d2k

(
− ∂f0

∂ε

)
k2
x

=
e2~2τE

2π2m2

1

1 + (ωcτ)2

∫
dε

∮
dk‖

1

~v
k2
x

(
− ∂f0

∂ε

)
(3.7)

=
e2~2τE

2π2m2

1

1 + (ωcτ)2

∮
kF

dk‖
1

~~k
m

k2
x

=
e2τE

2π2m

1

1 + (ωcτ)2

∫ 2π

0

dφkF
k2
F cos2(φ)

kF
=

e2τ

2πm
k2
F

1

1 + (ωcτ)2
E.

The reason why the kxky term in the integrand has been left out already in the second line, is
that it is an odd function in φ and therefore the integral would just be zero. Using k2

F = 2πn
from Eq. 3.3 we can write the conductivity as:

σBxx =
e2nτ

m

1

1 + (ωcτ)2
.

For σByx the only difference is that is has an additional factor ωcτ since the integral is now on
the form:

∫
d2kωcτak

2
y. If we instead try with an E-field in the ŷ-direction and again guess on

the solution: g = ckx + dky, we get the conditions for the coefficients:

e~
m
kyE

∂f0

∂ε
=

1

τ
(ckx + dky) +

eB

m
(kxd− kyc) =⇒

c = −ωcτd , d =
τ

1 + (ωcτ)2
η = a.

So for σBiy we have:

σBiyEy =
−e~

2π2m

∫
d2k ki(−bkx + aky),

4



which means σBxy = −σByx and σByy = σBxx. Hence, the conductivity tensor in the free electron
model, with a transverse B-field through the material, is:

σBαβ =
e2nτ

m

[ 1
1+(ωcτ)2

−ωcτ
1+(ωcτ)2

ωcτ
1+(ωcτ)2

1
1+(ωcτ)2

]
. (3.8)

The change from the conductivity tensor in the Drude model (Eq. 3.4) to that in Eq. 3.8, in
which the conductivity depends on B, is due to the Hall effect.

3.3 High-field Hall effect

When the period, T , of the cyclotron orbit of the electron is much smaller than τ it is possible
to neglect the collision effects on the distribution function [3, p. 119]. Then, with an E-field in
the x̂-direction and a B-field in the ẑ-direction, the Boltzmann equation 3.5 becomes:

−eEvx
∂f0

∂ε
− eB

~

(
vy

∂g

∂kx
− vx

∂g

∂ky

)
= 0.

A solution [3, p. 119] to g is g = aky if a = E~
B

∂f0
∂ε . This yields a current density in the

ŷ-direction:

jy = −2e

∫
d2k

(2π)2

∂ε

∂ky
ky
∂f0

∂ε

E

B
=
−2eE

B

∫
d2k

(2π)2
ky
∂f0

∂ky
.

Assuming that the Fermi surface is only inside the first Brillouin zone3, partial integration with
respect to ky yields:

jy =
−2eE

B

(∫
dkx

zero as f0 = 0 at the edge of FBZ︷ ︸︸ ︷[ 1

(2π)2
kyf0

]
FBZ

−
∫
FBZ

d2k

(2π)2

∂ky
∂ky

f0

)

=
2eE

B

∫
FBZ

d2k

(2π)2
f0 =

eE

B

∫ ∞
0

dε ρ(ε)f0 =
en

B
E,

where ρ(ε) is the density of states, including spin states. Hence, σyx = en
B in the high-field limit.

This is a general result which does not only apply to the free electron model and is derived in
App. F. For E = Eŷ, the solution to g is g = bkx with b = −a = −E~

B
∂f0
∂ε so that σxy = −σyx.

Regarding the diagonal terms, they are zero as they are integrals of the type:∫
FBZ

dki ki

∫
FBZ

dkj
∂f0

∂kj
=

∫
FBZ

dki ki

[
f0(kj)

]kj=π/a
kj=−π/a

= 0.

Having T � τ corresponds to letting ωcτ → ∞ or equivalently B → ∞. Implying this on the
conductivity tensor in Eq. 3.8 indeed yields −σxy = σyx = en

B and σxx = σyy = 0.

4 Conductivity in zero magnetic field for an arbitrary
Fermi surface

Now that we know how to handle the free electron model, we continue with more complicated
Fermi surfaces. We still have the general expression for the current density in absence of a

3That is, −π/a < kxF , k
y
F > π/a (FBZ), with a being the lattice constant.
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magnetic field:

ji =
e2τ

2π2

∫
d2k

(
− ∂f0

∂ε

)
vivjEj . (4.1)

As in Eqs. 3.2 and 3.7, we want to change the integration variables from (kx, ky) to (ε, k‖).
This, we show how to do with a general function h(ε):∫

dkx

∫
dky h(ε) =

∫
dω

∫
dkx

∫
dky δ(ω − ε)h(ω). (4.2)

We use the rewriting of a δ-function:

δ(f(x)) =
∑
i

δ(x− xi)∣∣∣∂f∂x ∣∣∣
x=xi

=⇒

δ(ω − ε) =
∑
i

δ(k− ki)∣∣∣ ∂ε∂k ∣∣∣
k=ki

=
∑
i

δ(k− ki)

~v(ki)
. (4.3)

Here ki(ε) are the roots of (ω − ε) that is, the wave vectors with corresponding energy ε = ω.
By inserting Eq. 4.3 into Eq. 4.2 and setting ω ≡ ε, one gets:∫

dkx

∫
dky h(ε) =

∫
dε

∫
dkx

∫
dky h(ε)

∑
i

δ(k− ki)

~v(ki)

=

∫
dε

∮
dk‖

1

~v
h(ε). (4.4)

In the last line we have used that, since ki(ε) are the wave vectors corresponding to the energy
ε = ω, the δ-function, for every ε, picks out only the ks with that particular energy, that is,
only the k‖s at that energy contour.
So we are ready to rewrite Eq. 4.1 in terms of the new variables:

ji =
e2τ

2π2

∫
dε

∮
dk‖

1

~v

(
− ∂f0

∂ε

)
vivjEj =

e2τ

2π2

∮
kF

dk‖
1

~v
vivjEj

=⇒ σ
(0)
ij =

e2τ

2π2~3

∮
kF

dk‖
1

v

∂ε

∂ki

∂ε

∂kj
, (4.5)

employing
(
− ∂f0

∂ε

)
≈ δ(ε − εf ). Furthermore, if the Fermi surface is symmetric around the

ki-axis, where i = x, y, components σ
(0)
ij with i 6= j will be zero due to the anti-symmetry of the

function ∂ε
∂kj

and we get a δij .
4 This zero-field result is also called the longitudinal conductivity

[4].

5 Conductivity in a constant, transverse, weak magnetic
field for an arbitrary Fermi surface

Putting on a constant B-field, the Boltzmann equation reads, as in Eq. 2.3:

−e
~

(E + v ×B) · ∇kf(k) =
−g(k)

τ
=⇒

4This can be realized by letting the axis of symmetry be eg. the kx-axis and recognize that for every v
underneath the kx-axis there is a corresponding v′ above the kx-axis with vx = v′x and vy = −v′y .
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−eE · v
(∂f0

∂ε

)
− e

~
v ×B · ∇kg(k) =

−g(k)

τ
, (5.1)

where we have linearised in E and used −v × B · ∇kf0(k) = 0. This we will now solve using
the method of Jones & Zener [2, p. 501][4]. Introducing the operator Q:

Q =
−eτ
~2

(∇kε)×B · ∇k,

and inserting this into Eq. 5.1, one gets:

(1 +Q)g(k) =
−eτ
~

E · (∇kε)
(
− ∂f0

∂ε

)
︸ ︷︷ ︸

g0(k)

.

Writing g(k) as a geometric row:

g(k) =
g0(k)

1 +Q
=

∞∑
n=0

(−Q)ng0(k) = g0 −Qg0 +Q2g0 −Q3g0 + . . . ,

the current density can be written:

j = −2e

∫
d2k

(2π)2

1

~
(∇kε)g(k)

=
−e

2π2~

∞∑
n=0

∫
d2k (∇kε)

(eτ
~2

(∇kε)×B · ∇k

)n(−eτ
~

E · (∇kε)
(
− ∂f0

∂ε

))
=

e2τ

2π2~2

∫
d2k (∇kε)E · (∇kε)

(
− ∂f0

∂ε

)
+

e3τ2

2π2~4

∫
d2k (∇kε)

(
(∇kε)×B · ∇k

)(
E · (∇kε)

(
− ∂f0

∂ε

))
+ . . . , (5.2)

where only terms up to first order in B are written explicitly. The current density can also be
written in tensor notation:

jα =
e2τ

2π2~2

∫
d2k

(
− ∂f0

∂ε

) ∂ε

∂kα

∂ε

∂kβ
Eβ

+
e3τ2

2π2~4

∫
d2k

(
− ∂f0

∂ε

) ∂ε

∂kα
εµδγ

∂ε

∂kδ
BγEβ

∂

∂kµ

( ∂ε

∂kβ

)
+ . . .

= σ
(0)
αβEβ + σ

(1)
αβγBγEβ + . . .

It is seen that σ
(0)
αβ is just the zeroth-order conductivity found in Eq. 4.5. For small B-

fields, we can approximate the magnetoconductivity: σBαβ ' σ
(1)
αβγBγ . If we take B ‖ ẑ, the

magnetoconductivity is:

σBαβ '
e3τ2B

2π2~2

∫
d2k

(
− ∂f0

∂ε

)
vαεµδzvδ

∂2ε

∂kµ∂kβ

=
e3τ2B

2π2

∫
dε

∮
dk‖

1

~v

(
− ∂f0

∂ε

)
vαεµδzvδm

−1
µβ

=
e3τ2B

2π2~

∮
kF

dk‖
1

v
vαεµδzvδm

−1
µβ

=
e3τ2B

2π2~

∮
kF

dk‖
1

v
vαm

−1
βµεµδvδ. (5.3)
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Here, m−1
βµ is the inverse mass tensor and εµδ is the Levi-Cività symbol where we have suppressed

the z-component in the last line since this is unnecessary as we are only letting µ and δ be x
and y. If the Fermi surface has a symmetry axis along the kx or ky-axis, the corresponding

σ
(1)
ii = σ

(0)
iizBz, where i = x or i = y respectively, will be zero. This is due to the anti-symmetric

functions in the integral:

σ
(1)
ii ∼

∮
kF

dk‖
1

v

∂ε

∂ki

( ∂2ε

∂k2
i

∂ε

∂kj
− ∂2ε

∂ki∂kj

∂ε

∂ki

)
, i 6= j

If the Fermi surface is symmetric about both the kx and the ky-axis, the diagonal terms are
both zero. The off-diagonal elements are called the Hall conductivity [4].

5.1 Magnetoconductivity to second order in B

Improving our expression for the conductivity, we can continue by looking at the term of second
order in B in Eq. 5.2:

j(O(B2)) =
−e

2π2~

∫
d2k(∇kε)

(eτ
~2

(∇kε)×B · ∇k

)2(−eτ
~

E · (∇kε)
(
− ∂f0

∂ε

))
.

We can write this in tensor notation as:

jα(O(B2)) =
e4τ3

2π2~6

∫
d2k

(
− ∂f0

∂ε

) ∂ε

∂kα

(
εζηγ

∂ε

∂kη
Bγ

∂

∂kζ

)(
ελνδ

∂ε

∂kν
Bδ

∂

∂kλ

)(
Eβ

∂ε

∂kβ

)
=

e4τ3

2π2~6
BγBδEβ

∫
d2k

(
− ∂f0

∂ε

) ∂ε

∂kα

(
εζηγ

∂ε

∂kη

∂

∂kζ

)(
ελνδ

∂ε

∂kν

∂2ε

∂kλ∂kβ

)
.

Letting as usual B ‖ ẑ:

σ
(2)
αβ =

e4τ3B2

2π2~6

∫
d2k

(
− ∂f0

∂ε

) ∂ε

∂kα
εζηελν

∂ε

∂kη

( ∂2ε

∂kζ∂kν

∂2ε

∂kλ∂kβ
+

∂ε

∂kν

∂3ε

∂kζ∂kλ∂kβ

)
=
e4τ3B2

2π2~2

∮
kF

dk‖
1

v
vαvηεζηελν

(
~m−1

ζνm
−1
λβ + vν

∂

∂kζ
m−1
λβ

)
. (5.4)

As in Eq. 5.3 we have suppressed the z-index on the Levi-Cività symbols, letting all indices be
only x or y.

Having an E-field in a direction making an angle θ with the k̂x-direction as illustrated in
Fig. 1, the current density in an angle Θ reads:

jΘ = E cos(Θ)(σxx cos(θ) + σxy sin(θ)) + E sin(Θ)(σyx cos(θ) + σyy sin(θ)). (5.5)

To second order in B, σij can be replaced by the expressions found in this and the previous
two sections.

6 The tight-binding model

We now want to apply the results of Secs. 4 and 5 to the tight-binding model [5, p. 235] in
which the energy is given by:

εk = −2t(cos(akx) + cos(aky)), (6.1)
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Figure 1: Sketch of a Fermi surface in k-space together with a vector E, representing the electric
field, which makes an angle θ with the k̂x-vector. Introducing also a magnetic field B in the
ẑ-direction, the current density j in an angle Θ is given by Eq. 5.5.

where t is the overlap energy, assumed to be equal in the x̂ and ŷ-direction, and a is the lattice
spacing. A contour plot of the energy for (kx, ky) ∈ [−π, π], a = t = 1 is shown in Fig. 2.
The contours correspond to Fermi surfaces at different values of the chemical potential µ which
is equal to the Fermi energy as we are working at temperatures TkB � εF , where kB is the
Boltzmann constant and εF is the Fermi energy. Fig. 2 shows that as the chemical potential is
increased, the Fermi surfaces evolve from being approximately circular, like in the free electron
model, into becoming square-like (the Fermi surface is a perfect square at µ = 0), before
developing into shapes that enable hole-like orbits in the presence of a magnetic field. However,
the Fermi surface always possesses C4-symmetry, which simplifies the zeroth-order (Eq. 4.5)
and first-order (Eq. 5.3) conductivity to the longitudinal and Hall conductivity respectively.

6.1 Longitudinal conductivity for the tight-binding model

Using Eq. 4.5 with the energy function given in Eq. 6.1, the longitudinal conductivity (or
equivalently, the conductivity in absence of an external magnetic field) is:

σ
(0)
ii =

e2τta

π2~2

∮
kF

dk‖
sin2(aki)√

sin2(akx) + sin2(aky)
.

Expressing the ks at the Fermi surface with energy µ as: kx = kF (µ, φ) cos(φ) and ky =
kF (µ, φ) sin(φ), the conductivity becomes:

σ
(0)
ii (µ) =

e2τta

π2~2

∫ 2π

0

dφkF (µ, φ)
sin2(aki)√

sin2(akF (µ, φ) cos(φ)) + sin2(akF (µ, φ) sin(φ))
. (6.2)

In Fig. 3 the integral in Eq. 6.2 is plotted as a function of the chemical potential for both σ
(0)
xx

and σ
(0)
yy which coincide as one would expect due to the equivalence of the x̂ and ŷ-direction.
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Figure 2: Energy contour plot for the tight-binding model εk = −2t(cos(akx)+cos(aky)) in the
range (kx, ky) ∈ [−π, π] with a = t = 1.

The longitudinal conductivities grows with increasing chemical potential µ which is no surprise
since the Fermi surface becomes larger as µ→ 0−, meaning a larger electron number density.

6.2 Hall conductivity for the tight-binding model

As mentioned, the Fermi surfaces have fourfold symmetry and so the magnetoconductivity
contains no diagonal terms to first order in B. The off-diagonal terms, ie. the Hall conductivity
components, are:

σHyx =
e3τ2B

2π2~

∮
kF

dk‖
1

v
vym

−1
xµ εµδvδ

=
e3τ2B

2π2~

∮
kF

dk‖
1

v
vy(m−1

xx εxyvy +m−1
xy εyxvx)

=
e3τ2B

2π2~4

∮
kF

dk‖
~√

( ∂ε
∂kx

)2 + ( ∂ε
∂ky

)2

1

~
∂ε

∂ky

( ∂2ε

∂k2
x

∂ε

∂ky
− ∂2ε

∂kx∂ky

∂ε

∂kx

)
.

∂ε

∂ki
= 2ta sin(aki) ,

∂2ε

∂ki∂kj
= 0, i 6= j ,

∂2ε

∂k2
i

= 2ta2 cos(aki) =⇒

σHyx =
e3τ2B

2π2~4

∮
kF

dk‖
2ta sin(aky)

2ta
√

sin2(akx) + sin2(aky)
2ta2 cos(akx)2ta sin(aky)

=
e3τ2B

π2~4
2t2a3

∮
kF

dk‖
sin2(aky) cos(akx)√
sin2(akx) + sin2(aky)

. (6.3)
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Figure 3: The integral in the expression for: the longitudinal conductivities σ
(0)
xx and σ

(0)
yy

(orange and red (coincide)), the Hall conductivities σHyx and −σHxy (purple and green (coincide)),

and the second-order conductivities σ
(2)
xx and σ

(2)
yy (brown and blue (coincide)), all plotted as

functions of the chemical potential µ for the tight-binding model. The conductivities are only

plotted for µ < 0 since for µ > 0, we just have σ
(0)
ii (µ) = σ

(0)
ii (−µ), σ

(1)
ij (µ) = −σ(1)

ij (−µ), and

σ
(2)
ii (µ) = σ

(2)
ii (−µ) as shown in App. B.

Similarly, the xy-component is:

σHxy =
−e3τ2B

π2~4
2t2a3

∮
kF

dk‖
sin2(akx) cos(aky)√
sin2(akx) + sin2(aky)

. (6.4)

The integral in Eq. 6.3 is plotted together with the integral in Eq. 6.4 times (−1) in Fig.3,
both as functions of µ, where they are seen to coincide. The opposite sign arises from the
handedness of the electrons orbiting the Fermi surface. Another thing worth noticing is that
σHyx → 0 as µ→ 0, which indicate that as the corners of the Fermi surface become more distinct,
the electrons, when moving around on the energy contour, meet a larger resistance which goes
towards infinity when the Fermi surface is a square. The calculation of second-order terms is

done in App. C and shows that only σ
(2)
xx and σ

(2)
yy are non-zero. These are also plotted in Fig.

3 and are seen to coincide as well.

6.3 Curvature of the Fermi surface

From Fig. 2 it appears that as µ → 0−, some parts of the Fermi surface become more curved
while other parts are straightened out. Since the Hall conductivity to first order in B contains
the mass tensor, which expresses the curvature of the Fermi surface, one might get the idea
that energy contours with a high total curvature have a larger σHαβ than contours with a low
total curvature. To get a more precise measure of ”total curvature”, we first look at the general
expression for curvature: For a curve which can be parametrized by the arch length l and has
a tangent vector T, the curvature in a point P on the curve is:

κP =
∣∣∣∂T̂

∂l

∣∣∣
P
.

This is a very intuitive expression for the curvature, κ, since it states that κ is given by the
rate of change of the unit tangent vector T̂ along the curve parametrized by l. In the case of
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Figure 4: Sketch to explain the infinitesi-
mals dl, dφ, and dk. As the angle dφ → 0,
the vector dk (green) approaches the tan-
gent vector T (blue) and |dk| = dl. Thus,
the small line segment dl will be: dl =
kdφ

cos(θ) , where θ is the angle between the k-

vector and the velocity vector v. Courtesy
of M. F. Olsen.

T

v

d

d

k

dk

k

k’

the Fermi surface, which is parametrized by the Fermi vector kF (µ, φ), an infinitesimal part

of the arch length is: dl = kF (µ,φ)
cos(θ) dφ, θ being the angle between k and v (see Fig. 4), which

means the curvature is:

κ =
∣∣∣∂T̂

∂l

∣∣∣ =
∣∣∣∂T̂

∂φ

∂φ

∂l

∣∣∣ =
cos(θ)

kF (µ, φ)

∣∣∣∂T̂

∂φ

∣∣∣.
As v = 1

~
∂ε
∂k , the velocity vector is always perpendicular to the Fermi surface and so the unit

tangent vector must be:

T̂ =
1

v

(
−vy
vx

)
.

It is then possible to numerically find the function κ(µ, φ) which for µ = −0.5 is plotted in Fig.
9 in App. D in agreement with Fig. 2. Now we can define the measure of ”total curvature” as
the integral:

κ(µ) =

∫ 2π

0

dφκ(µ, φ).

This is plotted in Fig. 5 together with the ratio κ(µ)/A(µ) of κ to the area, A, of the Fermi
surface. This ratio is of some relevance in that with growing µ, the Fermi surface gets larger,
meaning a larger area, which leads to a higher number density of conduction electrons. From
Fig. 5, it appears that the total curvature of the Fermi surface is largest at a low chemical
potential. Comparing this with the Hall conductivities σHyx(µ) and −σHxy(µ) in Fig. 3 (green
graph), there seems to be no connection between the curvature of the Fermi surface and the
Hall conductivity, at least not for the tight-binding model.
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Figure 5: The total curvature of the Fermi surface in the tight-binding model as a function of
the chemical potential µ in ratio to 1 (blue graph) an to the area of the Fermi surface A(µ)
(orange graph).

7 Solving the Boltzmann equation for closed orbits on a
simple 2D Fermi surface

The results for the conductivity tensor in the tight-binding model in Fig. 3, Sec. 6 were
accomplished because we knew the energy function ε(kx, ky). However, putting on a transverse
magnetic field, we could only solve the Boltzmann equation by approximating a small B-field.
The purpose of this section is to try and find a solution to the Boltzmann equation for an
electron in a periodic potential, moving in both an electric field and a homogeneous magnetic
field, and in this way be able to write an expression for the conductivity, without having to
make the approximation of small |B|. The method is the one explained in Smith & Højgaard [3,
p. 123-134]. To describe the motion of an electron in 2D, we introduce the modified Boltzmann
equation:

~
dk

dt̃
= −ev ×B. (7.1)

with coordinates (ε, t̃). The t̃ is a parametrization of constant energy curves in k-space and is
also the physical time if the only force experienced by the electron is the magnetic force. Taking
the length of the vectors on both sides and integrating, we get:

~|dk| = ~dl = e| − v ×B|dt̃ =⇒

~
eB

∮
dl

1

v
=

∫ T

0

dt̃ = T =
2π

ωc
, (7.2)

where B is assumed as usual to point in the ẑ-direction, perpendicular to the Fermi surface,
T is the period of the electron orbit, and l is the length travelled by the electron along the
energy contour, see Fig. 4. The part of the originally formulated Boltzmann equation (Eq.
2.3), involving the B-field, can be expressed in terms of this t̃:

∂f

∂t̃
=
∂f

∂k

∂k

∂t̃
=
−e
~

v ×B · ∂f
∂k

.

Hence, the stationary, homogeneous Boltzmann equation in the RTA reads:

−eE · v∂f0

∂ε
+
∂f

∂t̃
=
−g
τ
. (7.3)

Since we now have the Boltzmann equation formulated in terms of t̃, we will need to make a
change of variables in the expression for the current density, that is, from variables (kx, ky) to
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(ε, t̃): ∫ ∫
dkxdky =

∫ ∮
dεdl

1

~v
=

∫ ∫
dε

1

~
eB

~
dt̃.

The first equality follows from Eq. 4.4 and the second from Eq. 7.2. The current density is
then:

j =
−e
2π2

eB

~2

∫ ∫
dεdt̃vg, (7.4)

where the integration limits depend on whether the orbit is closed or open.

Considering two adjacent, closed orbits with energies ε and ε+ ∆ε, where ∆ε = ~v∆k, the
difference in the area covered in k-space is:

∆A =

∮
dl∆k =

∆ε

~

∮
dl

1

v
=

∆ε

~
2π

ωc

eB

~
= ∆ε

2πeB

~2ωc
, (7.5)

where we have used Eq. 7.2. Since for Bloch electrons [3, p. 124], ∆ε = εn+1 − εn = ~ωc, we
have that: A(εn+1)−A(εn) = 2πeB

~ . Applying Eq. 7.5 we write the cyclotron mass as:

mc =
eB

ωc
=

~2

2π

∂A

∂ε
. (7.6)

7.1 A solution to the Boltzmann equation

The constant-energy contours in a simple 2D model can be parametrized by k(ε, φ) = k0(ε) +
k1(ε)Y (φ) where k0(ε) is a perfect circular surface and Y (φ) is a function of the azimuthal angle
in the (kx, ky)-plane, weighted by k1(ε). As a measure of the distortion of the energy contours

relative to circles, we introduce the constants: β = k1(εF )
k0(εF ) and γ =

k′1(εF )
k′0(εF ) where prime denotes

the derivative with respect to energy. We choose for Y (φ) the harmonic function Y (φ) = cos(4φ)
so that the Fermi surface possesses C4-symmetry and write: k(εF , φ) = k0(εF )(1 + β cos(4φ)).
With this parametrization, we want to find the distribution function from Eq. 7.3, using that
we can replace f with g in the term concerning the magnetic field:

−eE · v∂f0

∂ε
+
∂g

∂t̃
=
−g
τ

=⇒(
ωc

∂

∂φ̃
+

1

τ

)
g = eE · v∂f0

∂ε
. (7.7)

In the second line, we have introduced the variable φ̃ defined by dφ̃
dt̃

= ωc. Finding the relation

between φ and φ̃ and writing v(εF ) in terms of φ, will enable us to solve the Boltzmann equation
at the Fermi level which is what we need to find the conductivity tensor. The first step involves
the identity:

∂k

∂kx
=
∂k

∂ε

∂ε

∂kx
+
∂k

∂φ

∂φ

∂kx
. (7.8)

By inserting:

∂k

∂kx
=

∂

∂kx

√
k2
x + k2

y =
kx
k
,

∂φ

∂kx
=

∂

∂kx
arctan

(ky
kx

)
=
−ky
k2

,
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we can use Eq. 7.8 to write the velocity at the Fermi level5 as:

kx
k

=
∂k

∂ε

∂ε

∂kx
− ∂k

∂φ

ky
k2

= (k′0 + k′1 cos(4φ))
∂ε

∂kx
+ k14 sin(4φ)

ky
k2

=⇒

∂ε

∂kx

∣∣∣
εF

=
1

k′0(1 + γ cos(4φ))

(
cos(φ)− k04β sin(4φ)

sin(φ)

k

)
.

Since 1
k = 1

k0(1+β cos(4φ)) ≈
1
k0

(1− β cos(4φ)) we can for ∂ε
∂kx

∣∣∣
εF

to linear order in β set 1
k ≈

1
k0

:

∂ε

∂kx

∣∣∣
εF

=
1

k′0(1 + γ cos(4φ))

(
1− 4β tan(φ) sin(4φ)

)
cos(φ). (7.9)

Similarly for vy(εF ):

ky
k

= (k′0 + k′1 cos(4φ))
∂ε

∂ky
− k14 sin(4φ)

kx
k2

=⇒

∂ε

∂ky

∣∣∣
εF

=
1

k′0(1 + γ cos(4φ))

(
1 + 4β cot(φ) sin(4φ)

)
sin(φ). (7.10)

To find the relation between φ̃ and φ, we will need the following expression for the mass,
m0 = eB

ωc
, at the Fermi level. From 7.6 we know that:

m0 =
~2

2π

∂A

∂ε

∣∣∣
εF

=
~2

2π

[ ∂
∂ε

∫ 2π

0

dφ

∫ k0

0

dk̃0 k̃0(1 + β cos(4φ))
]∣∣∣
εF

=
~2

2π

[ ∂
∂ε

(1

2
k2

0

(
2π +

β

4
sin(4φ)

∣∣∣2π
0

))]∣∣∣
εF

= ~2k′0k0|εF . (7.11)

Using the definition of φ̃ together with Eq. 7.2, we get that at the Fermi level: dφ̃ = ωc dt̃ =
ωc

~
eB

1
v dl = ~ dl

m0v
. Fig. 4 shows that dl cos(θ) = k dφ =⇒ dl = vk

v·kk dφ, allowing us to write:

dφ̃

dφ
=

~dl

m0v

vk

v · k
k

1

dl
=

~
m0

k2

v · k
.

Applying Eqs. 7.9 and 7.10:

v · k = vxkx + vyky

=
k

~

[ (1− 4β tan(φ) sin(4φ)) cos2(φ)

k′0(1 + γ cos(4φ))
+

(1 + 4β cot(φ) sin(4φ)) sin2(φ)

k′0(1 + γ cos(4φ))

]
=

1

~
k

k′0(1 + γ cos(4φ))
=⇒ (7.12)

dφ̃

dφ
=

~
~2k′0k0

k2~k′0(1 + γ cos(4φ))

k
=

k

k0
(1+γ cos(4φ)) = (1+β cos(4φ))(1+γ cos(4φ)). (7.13)

Now we are ready to tackle the Boltzmann equation in the form of Eq. 7.7, starting with an
E-field in the x̂-direction: (

ωc
∂φ

∂φ̃

∂

∂φ
+

1

τ

)
g =

eE

~
∂f0

∂ε

∂ε

∂kx
. (7.14)

5As we are only working at the Fermi level, we will from now on just write k = k0(1 + β cos(φ)) without
specifying that this only applies at εF .
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Due to the term ∂f0
∂ε we will as usual get a δ(ε− εF ) in the computation of the current density.

Hence, we can restrict ourselves to using only ∂ε
∂kx

∣∣∣
εF

. Writing this as a Fourier series with

coefficients λm′ and employing Eq. 7.13, we get:(
ωc

∂

∂φ
+

1

τ
(1+β cos(4φ))(1+γ cos(4φ))

)
g =

eE

~
∂f0

∂ε︸ ︷︷ ︸
Ẽ

(1+β cos(4φ))(1+γ cos(4φ))
∑
m′

λm′eim
′φ.

It seems that we can find a solution for g at the Fermi level as a Fourier series, g(φ) =
∑
n gneinφ:(

ωc
∂

∂φ
+
∑
k

lkeikφ
)∑

n

gneinφ = Ẽ
∑
m

r(x)
m eimφ. (7.15)

Here we have written 1
τ (1 + β cos(4φ))(1 + γ cos(4φ)) as a Fourier series with l0 = 2+βγ

2τ , l±4 =
β+γ
2τ , l±8 = βγ

4τ and absorbed (1+β cos(4φ))(1+γ cos(4φ)) on the RHS into the sum which runs

from m = −9 to m = 9 with r
(x)
m = 0 for m even. Rewriting the LHS, we get a set of linear

equations: ∑
n

iωcngneinφ +
∑
k,n

lkgnei(n+k)φ = Ẽ
∑
m

r(x)
m eimφ.

To compare exponents, we change the indices on the LHS: n→ m in the first sum and k → m−n
in the second one:∑

m

iωcmgmeimφ +
∑
m

(∑
n

lm−ngn

)
eimφ = Ẽ

∑
m

r(x)
m eimφ =⇒

iωcmgm +
∑
n

lm−ngn =
∑
n

(
iωcmδmn + lm−n

)
︸ ︷︷ ︸

Amn

gn = Ẽr(x)
m .

From eg. Eq. 7.15, we see that the Fourier series of g must consist of terms gneinφ with
n = −9, ..., 9 and gn = 0 for n even. Hence, A being a 19 × 19-matrix and g = (g−9, ..., g9),

r(x) = (r
(x)
−9 , ..., r

(x)
9 ) being vectors of length 19, we can write the solution to the Boltzmann

equation for this simple Fermi surface with E = Ex̂, very compressed as:

g(x)(φ) = g · e, g = ẼA−1r(x), e =


e−i9φ

e−i8φ

...
ei9φ

 .

For an E-field in the ŷ-direction, we will have the exact same equations only with a different

r(y):
∑
m

r(y)
m eimφ = (1 + β cos(4φ))(1 + γ cos(4φ))

∑
m′

ξm′eim
′φ.

7.2 Conductivity for the simple 2D Fermi surface

We are now fully equipped to work out the current density from Eq. 7.4, allowing ourselves to
express v and g only as how they look at the Fermi energy with reference to the δ(ε− εF ) that

16



will appear:

jµ =
−e2B

2π2~2

∫ ∫
dεdt̃ vµg

(ν)

=
−e2B

2π2~2

1

~ωc

∫ ∫
dεdφ

dφ̃

dφ
Ẽ
(∑
m′

ζm′eim
′φ
)

(A−1r(ν)) · e

=
e3BE

2π2~4ωc

∫
dε
(−∂f0

∂ε

)∫
dφ (1 + β cos(4φ))(1 + γ cos(4φ))

(∑
m′

ζm′eim
′φ
)

(A−1r(ν)) · e

=
e3BE

2π2~4ωc

∫ 2π

0

dφ
(∑

m

r(µ)
m eimφ

)
(A−1r(ν)) · e.

Here ζm′ can be either λm′ or ξm′ depending on the direction µ = x, y of the current density.
This integral we can solve using:∫ 2π

0

dφ ei(m+n)φ = 2πδ−nm =⇒

jµν =
e3BE

π~4ωc
(A−1r(ν)) · r̃(µ),

where we have introduced the vector: r̃(x) = (r
(x)
9 , ..., r

(x)
−9 ). This means the conductivity tensor

components are:

σµν =
e3B

π~4ωc
(A−1r(ν)) · r̃(µ). (7.16)

With the help of the computer program Wolfram Mathematica, Eq. 7.16 can be solved to
second order in β and γ and to first order in βγ:

σxx(β, γ) = σyy(β, γ) = σ0

[ 1

1 + α2
+

1 + 13α2

2(1 + α2)(1 + 34α2 + 225α4)
γ2

+
−1 + 57α2 + 349α4 + 675α6

2(1 + α2)(1 + 34α2 + 225α4)
γβ +

16 + 319α2 + 675α4

2(1 + α2)(1 + 9α2)(1 + 25α2)
β2
]
.

(7.17)

σyx(β, γ) = −σxy(β, γ) = σ0

[ α

1 + α2
+

3α+ 15α3

2(1 + α2)(1 + 34α2 + 225α4)
γ2

− 4(4α+ 61α3 + 105α5)

(1 + 2α2 + α4)(1 + 34α2 + 225α4)
γβ +

16α− 131α3 + 225α5

2(1 + α2)(1 + 9α2)(1 + 25α2)
β2
]
.

(7.18)

Here α = ωcτ , and the factor σ0 in front of the parentheses is:

e3B

π~4ωc

τ

2k′20
=

e3τB

2π~4ωc

~4k2
0

m2
0

=
e3τBk2

0

2πm2
0

m0

eB
=
k2

0

2π

e2τ

m0
=
n0e

2τ

m0
= σ0,

where we have invoked Eq. 7.11 and introduced n0 = k2
0/2π, the electron concentration for the

non-distorted Fermi surface. The actual electron concentration is: n = 1
2π2 4

∫ π/2
0

dφk2(φ)/2 =
k20
π2

∫ π/2
0

dφ (1 + β cos(4φ))2 = n0(1 + β2/2). Eqs. 7.17 and 7.18 are plotted as functions of β, γ
in Fig. 6, which shows that the longitudinal conductivity grows with increasing γ and β. The
transverse, on the other hand, becomes larger with increasing β but decreases with γ. Also, the
values of β and γ have a larger effect on the longitudinal conductivity than on the transverse
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σxx(β,γ) = σyy(β,γ)

σyx(β,γ) = -σxy(β,γ)

Figure 6: The longitudinal (orange) and transverse (blue) conductivity as functions of β and
γ with σ0 = 1, α = 2 for the Fermi surface described by k(εF ) = k0(εF )(1 + β cos(4φ)). The
values of β and γ shows to have a larger influence on the longitudinal conductivity than on the
transverse.

which is slightly surprising as σyx(β, γ) exactly describes the electron transport on the Fermi
surface which is modulated by the very same β and γ.

Going through the calculations with an E-field in an arbitrary direction, making an angle θ
with the kx-axis, one simply gets that:

σµθ = σµx cos(θ) + σµy sin(θ).

If one instead chooses a harmonic function Y (φ) = cos(qφ) with q ∈ N, the conductivity
will still be in the form of Eq. 7.16, only now the components of r will range from rm=−2q−1 to
rm=2q+1) with non-zero components for m = ±2q± 1,±q± 1,±1 (similarly for r̃ only arranged
in the opposite order) and e = (e−2q−1, . . . , e2q+1). The Fourier coefficients lk will still be:
l0 = 2+βγ

2τ , l±q = β+γ
2τ , l±2q = βγ

4τ .

If we had made all the calculations with γ =
k′1(εF )
k′0(εF ) = 0 we would have got expressions σxx(β)

and σyx(β) which are shown in App. E. Taking the high-field limit of σyx(β) as is done in Eq.
E.7, one gets σyx(β) ' ne

B just like in the high-field expansion in App. F and the high-field Hall
effect in the free electron model Sec. 3.3.

7.3 Applying the method to the tight-binding model

The method presented in the previous sections has the advantage that we do not need to make
any approximations in the magnetic field. The disadvantage is that we have no information
about the energy function ε(k) or even k(ε) which we could do without as we were only doing
calculations at εF . However, the mass tensor remains unknown as it requires either both the
first and second derivatives of ε(k) with respect to k or the first and second derivatives of k(ε, φ)
with respect to both ε and φ, depending on whether we are given ε(k, φ) or k(ε, φ).
To get around this, we now try and create a test function k(ε, φ), with known k0(ε) and k1(ε),
which at a certain energy looks like a specific Fermi surface in the tight-binding model, for
which we know the energy function. This way, we can find the conductivity for this chemical
potential in the tight-binding model to exact order in B while still knowing the mass tensor from
either the test function or the energy function of the tight-binding model. In Fig. 7 the Fermi
surface for the tight binding-model at the chemical potential µ = −1 is plotted together with
a test function k(ε, φ) = c(ε+ bε2 cos(4φ)) with c = 20, b = 0.5 for ε = 0.1. As they practically
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k0(0.1) + k1(0.1) cos(4ϕ)

-1 = -2t(cos(akx) + cos(aky))

Figure 7: The Fermi surface for the test function k(ε, φ) = c(ε + bε2 cos(4φ)) with c = 20, b =
0.5 for ε = 0.1 (blue), plotted together with the Fermi surface for the tight-binding model
εk = −2t(cos(akx) + cos(aky)) with t = a = 1 and the chemical potential µ = −1 (orange).
The two Fermi surfaces coincide completely.

coincide completely, it seems only fair that the test function can be used to calculate σxx and
σyx from Eqs. 7.17 and 7.18 for a system described by the tight-binding model with a chemical
potential µ = −1.

Having k′0(ε) = c and k′1(ε) = 2cbε so that β = be|εF=0.1 = 0.05 and γ = 2bε|εF=0.1 = 0.1,
Eqs. 7.17 and 7.18 become:

σxx =
e3Bτ

2π~4ωc

1

202

[ 1

1 + α2
+

1 + 13α2

2(1 + α2)(1 + 34α2 + 225α4)
0.01

+
−1 + 57α2 + 349α4 + 675α6

2(1 + α2)(1 + 34α2 + 225α4)
0.005 +

16 + 319α2 + 675α4

2(1 + α2)(1 + 9α2)(1 + 25α2)
0.0025

]
.

σyx =
e3Bτ

2π~4ωc

1

202

[ α

1 + α2
+

3α+ 15α3

2(1 + α2)(1 + 34α2 + 225α4)
0.01

− 4(4α+ 61α3 + 105α5)

(1 + 2α2 + α4)(1 + 34α2 + 225α4)
0.005 +

16α− 131α3 + 225α5

2(1 + α2)(1 + 9α2)(1 + 25α2)
0.0025

]
.

(7.19)

Expanding σyx to order B−1, ie. considering the high-field limit, we get:

σyx '
e2τm0

2π~4

1

c2
1

α
(1 + β2/2) =

e

2πB

1

c2
m2

0

~4
(1 + β2/2) =

e

2πB
· 4.025,

where m0 = ~2

2π
∂A
∂ε

∣∣∣
εF

and A is the area of the Fermi surface: A =
∫ 2π

0
dφ 1

2 (cε+ cbε2 cos(4φ))2.

We can compare this result with that of the high-field expansion in Eq. F, App. F:

σyx =
en

B
=

e

2π2B
A =

e

2πB
c2ε2(1 +

b2ε2

2
) =

e

2πB
· 4.005.

Indeed we see that the high-field limit of Eq. 7.19 is in accordance with the usual high-field
Hall effect, also mentioned in Sec. 3.3.
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8 Conclusion

Throughout this thesis, we have thoroughly exploited the Boltzmann equation to find the
conductivity tensor in several different cases. First, we worked within the free electron model to
find the Drude and Hall conductivity tensors together with the high-field Hall effect σyx = en

B .
Handling a more general case, we then also found expressions for the conductivity in zero
magnetic field for an arbitrary Fermi surface and used the method of Jones & Zener [2, p. 501] to
find the conductivity tensor in a constant, transverse, weak magnetic field for an arbitrary Fermi
surface to second order in B, all in agreement with Paaske and Khveshchenko [4]. Applying
this to the tight-binding model, we got the results in Fig. 3 for the conductivity tensors as

functions of the chemical potential: σ
(n)
ij (µ) where i, j = x, y and n = 0, 1, 2 is the order of

the magnetic field B. Motivated by the inverse mass term m−1
µν in the expression for the Hall

conductivity σHxy, we then investigated whether the total curvature of the Fermi surface has an
influence on the Hall conductivity for tight-binding model. Comparing the functions κ(µ) and
σHxy(µ), there seemed to be no connection between the two.
Afterwards, we turned to a different approach for solving the Boltzmann equation, which relied
on the method of Smith & Højgaard [3]. Here we introduced the modified Boltzmann equation
~dk

dt̃
= −ev×B with t̃ parametrizing curves of constant energy in k-space. Having also constant-

energy contours described by the function k(ε, φ) = k0(ε) + k1(ε) cos(qφ) with φ the azimuthal
angle in the (kx, ky)-plane and q ∈ N, it was possible to solve the Boltzmann equation for

g = f − f0 leading to a conductivity tensor: σµν = e3B
π~4ωc

(A−1r(ν)) · r̃(µ). Here A−1 is a matrix

of dimension 4q + 3 and r(ν), r̃(µ) are vectors of length 4q + 3, all consisting of the coefficients
of known Fourier series, as presented in Sec. 7.1. This led to the conductivity tensor elements

σµν(β, γ) which are functions of β = k1(εF )
k0(εF ) , γ =

k′1(εF )
k′0(εF ) and are plotted for the case q = 4 in

Fig. 6. Finally, we applied the method to the tight-binding model to find the conductivity to
exact order in the magnetic field for the specific case of µ = −1 and saw that the high-field
limit of this was in accordance with the high-field Hall effect.
As a suggestion for further work, it would be interesting to see how widely the method of Smith
& Højgaard in Sec. 7 could be applied to other types of Fermi surfaces than the tight-binding
model. Also, it was slightly surprising that the curvature of the Fermi surface in the tight-
binding model seemingly had nothing to do with the Hall conductivity, seeing that the mass
tensor entered the expression for it. Other methods to investigate whether that result is true
for any model, other than the one presented in this thesis, would indeed be intriguing.
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Appendices

A Derivation of the Boltzmann equation

The derivation of the semiclassical Boltzmann equation assumes that the mean free path6 l of
the electrons in the crystal is much longer than their de Broglie wavelength such that they can
be considered collectively as a semiclassical gas.[1, p. 361] The distribution function in thermal
equilibrium, ie. when kBT � εF , will then be given by the Fermi-Dirac distribution function:

f0 =
1

e(εk−µ)/kBT + 1
. (A.1)

Here, εk is the energy of an electron wave packet with wave vector k, µ is the chemical potential,
kB is the Boltzmann constant, T is the temperature of the electron gas, and εF is the Fermi
energy. Since we consider the electrons as a semiclassical gas, we can write up the continuity
equation in phase space for the non-equilibrium distribution function [3, p. 2] f(r,p, t):

∂f

∂t
+ ∂xµ(vµf) =

(∂f
∂t

)
coll

; ∂xµ = (
∂

∂r
,
∂

∂p
), vµ = (ṙ, ṗ). (A.2)

The right-hand side,
(
∂f
∂t

)
coll

, is the collision integral which is zero in absence of collisions and
otherwise amounts to the difference in the particle number N(r,k, t) due to the difference in
inscattering and outscattering. If r,p obey the Hamilton equations: ṙ = ∂H

∂p , ṗ = −∂H∂r , we
have that in:

∂xµ(vµf) = vµ
∂f

∂xµ
+ f

∂vµ
∂xµ

, (A.3)

the second term on the RHS is equal to zero as:

∂ṗ

∂p
=

∂

∂p

(
− ∂H

∂r

)
= − ∂

∂r
ṙ =⇒ f

∂vµ
∂xµ

= f
∂ṙ

∂r
+ f

∂ṗ

∂p
= 0. (A.4)

Hence, the continuity equation A.2 becomes:

∂f

∂t
+ vµ

∂f

∂xµ
=

∂f

∂t
+ ṙ · ∂f

∂r
+ ṗ · ∂f

∂p
=
(∂f
∂t

)
coll

(A.5)

This is the Boltzmann equation [3].

B The conductivity tensor for ε > 0 in models with energy
functions anti-symmetric around ε = 0

To ease calculations of the conductivity tensor in models with an energy function symmetric

around ε = 0, we show here that σ
(0)
ii (ε) = σ

(0)
ii (−ε), σ(1)

ij (ε) = −σ(1)
ij (−ε), and σ

(2)
ij (ε) =

σ
(2)
ij (−ε). We start by introducing the vector p related to the wave vector k in the following

way:

k =


(π, π)− p in the first quadrant

(−π, π)− p in the second quadrant

(−π,−π)− p in the third quadrant

(π,−π)− p in the fourth quadrant

6That is, the average length travelled by the particles between collisions.
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k p 

-p 

Figure 8: Energy contour plot for the tight-binding model to illustrate the definition of the
vector p which has energy εp = −εk.

Also, εk = −εp, see Fig. 8. Thus dp = −dk, meaning that:

∂εk
∂kα

=
∂εk
∂pα

∂pα
∂kα

= −∂εp
∂pα

(−1) =
∂εp
∂pα

∂2εk
∂kα∂kβ

=
∂

∂kα

(∂εp
∂pβ

)
=

∂2εp
∂pα∂pβ

∂pα
∂kα

= − ∂2εp
∂pα∂pβ

∂3εk
∂kα∂kβ∂kγ

=
∂

∂kα

(
− ∂2εp
∂pβ∂pγ

)
= − ∂3εp

∂pα∂pβ∂pγ

∂pα
∂kα

=
∂3εp

∂pα∂pβ∂pγ
,

and so on.

Starting with the longitudinal conductivity tensor, we have:

σ(0)
αα(ε) ∼

∮
kF

dk‖
1

v

( ∂εk
∂kα

)2

=

∫ k‖(φ=π/2)

k‖(φ=0)

dk‖
1

v

( ∂εk
∂kα

)2

+

∫ k‖(φ=π)

k‖(φ=π/2)

. . .+

∫ k‖(φ=3π/2)

k‖(φ=π)

. . .+

∫ k‖(φ=2π)

k‖(φ=3π/2)

. . .

Changing integration variable from k‖ to p‖ yields:

σ(0)
αα(ε) ∼

∫ p‖(φ=0)

p‖(φ=π/2)

(−dp‖)
1

v

(∂εp
∂pα

)2

+

∫ p‖(π/2)

p‖(φ=π)

. . .+

∫ p‖(φ=π)

p‖(φ=3π/2)

. . .+

∫ p‖(φ=3π/2)

p‖(φ=2π)

. . .

=

∫ p‖(φ=0)

p‖(φ=2π)

(−dp‖)
1

v

(∂εp
∂pα

)2

=

∫ p‖(φ=2π)

p‖(φ=0)

dp‖
1

v

(∂εp
∂pα

)2

=⇒

σ(0)
αα(ε) = σ(0)

αα(−ε).

The change of limits on the integrals when going from dk‖ to dp‖ as the integration variable,
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can be realized by considering Fig. 8. Similarly for the Hall conductivity:

σHαβ(ε) ∼
∫ k‖(φ=2π)

k‖(φ=0)

dk‖
∂εk
∂kα

εαβ
∂2εk
∂kβ∂kµ

εµδ
∂εk
∂kδ

1

v
+

∫ k‖(φ=π)

k‖(φ=π/2)

. . .+

∫ k‖(φ=3π/2)

k‖(φ=π)

. . .+

∫ 2π

3π/2

. . .

=

∫ p‖(φ=0)

p‖(φ=π/2)

(−dp‖)
∂εp
∂pα

εαβ

( −∂2εp
∂pβ∂pµ

)
εµδ

∂εp
∂pδ

1

v
+

∫ p‖(π/2)

p‖(φ=π)

. . .+

∫ p‖(φ=π)

p‖(φ=3π/2)

. . .+

∫ p‖(φ=3π/2)

p‖(φ=2π)

. . .

Proceeding the same way as for the longitudinal conductivity, we get:

σHαβ(ε) = −σHαβ(−ε).

This result is no surprise, as we know from the Lorentz force that electrons on a Fermi surface
enclosing states of higher energy (ε > 0), cycles in the opposite sense (clockwise) of the electrons
on a surface enclosing states of lower energy (ε < 0), when exposed to an external B-field in
the ẑ-direction. Finally, for the second-order conductivity:

σ
(2)
αβ (ε) ∼

∫ k‖(φ=π/2)

k‖(φ=0)

dk‖
1

v

∂εk
∂kα

∂εk
kη

εζηελν

( ∂2εk
∂kζ∂kν

∂2εk
∂kλ∂kβ

+
∂εk
∂kν

∂3εk
∂kζ∂kλ∂kβ

)
+ . . .

=

∫ p‖(φ=0)

p‖(φ=π/2)

(−dp‖)
1

v

∂εp
∂pα

∂εp
pη

εζηελν

( ∂2εp
∂pζ∂pν

∂2εp
∂pλ∂pβ

+
∂εp
∂pν

∂3εp
∂pζ∂pλ∂pβ

)
+ . . . =⇒

σ
(2)
αβ (ε) = σ

(2)
αβ (−ε).

C Magnetoconductivity with terms of second order in B

for the tight-binding model

Here, we find σ
(2)
αβ as presented in Eq. 5.4, Sec. 5.1 for the tight-binding model with α, β = x, y

and B small, pointing in the ẑ-direction. Remember that in the tight-binding model:

ε = −2t(cos(akx) + cos(aky)) ,
∂ε

∂ki
= 2ta sin(aki) ,

∂2ε

∂ki∂kj
= 0, i 6= j ,

∂2ε

∂k2
i

= 2ta2 cos(aki) ,
∂3ε

∂k3
i

= −2ta3 sin(aki).

We start with the conductivity tensor element σ
(2)
yx of second order in B due to a magnetic field

in ẑ-direction:

σ(2)
yx =

e4τ3B2

2π2~7

∮
kF

dk‖
1

v

∂ε

∂ky

∂ε

∂kη
εζηελν

( ∂2ε

∂kζ∂kν

∂2ε

∂kλ∂kx
+

∂ε

∂kν

∂3ε

∂kζ∂kλ∂kx

)
=
e4τ3B2

2π2~7

∮
kF

dk‖
1

v

∂ε

∂ky

∂ε

∂kη
εζηεxy

( ∂2ε

∂kζ∂ky

∂2ε

∂k2
x

+
∂ε

∂ky

∂3ε

∂kζ∂k2
x

)
=
e4τ3B2

2π2~7

∮
kF

dk‖
1

v

∂ε

∂ky

(
εxy

∂ε

∂ky

∂ε

∂ky

∂3ε

∂k3
x

+ εyx
∂ε

∂kx

∂2ε

∂k2
y

∂2ε

∂k2
x

)
(C.1)

=
e4τ3B2

2π2~7

∮
kF

dk‖
−24t4a6 sin(aky)

v

(
sin2(aky) sin(akx) + sin(akx) cos(aky) cos(akx)

)
=
−4e4τ3B2t3a5

π2~6

∮
kF

dk‖
sin(aky) sin(akx)√

sin2(akx) + sin2(aky)

(
sin2(aky) + cos(akx) cos(aky)

)
. (C.2)
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Changing integration variable from dk‖ to (dkx,dky) with some transformation factor, one can
see that this is an integral over odd functions in both kx and ky and will therefore be zero. The

same applies to σ
(2)
xy , calculated below by starting from Eq. C.1 and interchanging (x↔ y):

σ(2)
xy =

e4τ3B2

2π2~7

∮
kF

dk‖
1

v

∂ε

∂kx
εyx

(
εyx

∂ε

∂kx

∂ε

∂kx

∂3ε

∂k3
y

+ εxy
∂ε

∂ky

∂2ε

∂k2
x

∂2ε

∂k2
y

)
=
−4e4τ3B2t3a5

π2~6

∮
kF

dk‖
sin(akx) sin(aky)√

sin2(akx) + sin2(aky)

(
sin2(akx) + cos(akx) cos(aky)

)
. (C.3)

On the contrary, σ
(2)
xx and σ

(2)
yy are integrals over even functions in kx and ky and thus yields

non-zero conductivity components:

σ(2)
xx =

−4e4τ3B2t3a5

π2~6

∮
kF

dk‖
sin2(akx)√

sin2(akx) + sin2(aky)

(
sin2(aky) + cos(akx) cos(aky)

)
. (C.4)

σ(2)
yy =

−4e4τ3B2t3a5

π2~6

∮
kF

dk‖
sin2(aky)√

sin2(akx) + sin2(aky)

(
sin2(akx) + cos(akx) cos(aky)

)
. (C.5)

These are plotted as functions of the chemical potential µ in Fig. 3 which reveals that σ
(2)
xx and

σ
(2)
yy coincide as they ought to because of the fourfold symmetry of the Fermi surface.

D Curvature of the Fermi surface in the tight-binding
model

π
2

π 3π
2

2π
ϕ

0.5

1.0

1.5

2.0

2.5

3.0

κ(-0.5,ϕ)

Figure 9: The curvature of the Fermi surface for µ = −0.1 in the tight-binding model, in
agreement with Fig. 2.

One could be led to believe that the main contribution to σH comes from the curved parts
of the Fermi surface, that is, where m−1

βµ is large. This we will investigate by dividing the Fermi

surface up into intervals of φs with eg. κ(µ, φ) > 1
10κmax, calling these {φc(µ)}, and intervals

where κ(µ, φ) < 1
10κmax, which we will call {φs(µ)}. Calculating σHyx(µ) and σHxy(µ) from

Eqs. 6.3 and 6.4 but only integrating over either {φc(µ)} or {φs(µ)} yields the contributions
to the total σHxy(µ) and σHyx(µ) from the two components of the Fermi surface; the curved
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Figure 10: The Hall conductivity components σHxy (Fig. 10a) and σHyx (Fig. 10b), normalized
by the perimeter L(µ) of the Fermi surface, plotted as functions of the chemical potential µ
(green graphs). The blue graphs are the fractions of σH , coming from only integrating over φs
where κ(µ, φ) > 1

10κmax and then normalizing by the arch length Lc(µ). The yellow graphs
are similarly the fractions of σH , coming from only integrating over φs where κ(µ, φ) < 1

10κmax
and are normalized as well by the arch length Ls(µ).

parts and the straight parts respectively. If these are furthermore normalized with respect to
the arch lengths of the Fermi surface that correspond to the intervals {φc(µ)} and {φs(µ)}:

Lc,s(µ) =
∫

[φc,s]
dφ

√
k2(µ, φ) +

(
dk
dφ

)2

, we can compare them with the total Hall conductivity,

normalized by the total perimeter of the Fermi surface. This is shown in Figs. 10a and 10b for
the xy and yx-components respectively. The total conductivity σHxy and σHyx can be regarded
as a mean value from which the curved and straight parts deviate. One can see that for
the xy-component, the curved parts of the Fermi surface contribute more than this average
value whereas the straight parts contribute less. Regarding the yx-component, it has the same
tendency but with a crossing of the graphs around µ = −3. It is difficult to conclude anything
certain from this about whether curved parts of the Fermi surface should contribute more than
the straight parts to the Hall conductivity.

E A solution to the Boltzmann equation with γ = 0

Here we do the calculations equivalent to the ones in Secs. 7.1 and 7.2, only with γ = 0. This
means k′1(εF ) = 0 and so:

kx
k

=
∂k

∂ε

∂ε

∂kx
+
∂k

∂φ

∂φ

∂kx
=
∂k0

∂ε

∂ε

∂kx
+ k04β sin(4φ)

ky
k2

=⇒
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∂ε

∂kx

∣∣∣
εF

=
1

k′0

(
1− 4β tan(φ) sin(4φ)

)
cos(φ), (E.1)

and:
∂ε

∂ky

∣∣∣
εF

=
1

k′0

(
1 + 4β cot(φ) sin(4φ)

)
sin(φ). (E.2)

These can of course be written as Fourier series:

∂ε

∂kx

∣∣∣
εF

=
∑
n

λneinφ, λ1 = λ−1 =
1

2k′0
, λ3 = λ−3 = −λ5 = −λ−5 =

−β
k′0
.

∂ε

∂ky

∣∣∣
εF

=
∑
n

ξneinφ, ξ1 = −ξ−1 =
−i
2k′0

, ξ3 = −ξ−3 = ξ5 = −ξ−5 =
−iβ
k′0

.

Eqs. E.1 and E.2 leads to:

v · k = vxkx + vyky

=
1

~

[ k
k′0

(1− 4β tan(φ) sin(4φ)) cos2(φ) +
k

k′0
(1 + 4β cot(φ) sin(4φ)) sin2(φ)

]
=

1

~
k

k′0
=⇒ (E.3)

dφ̃

dφ
=

~
~2k′0k0

k2~k′0
k

=
k

k0
= 1 + β cos(4φ). (E.4)

This means we will get other coefficients lk (l0 = 1
τ , l4 = l−4 = β

2τ ) than with γ 6= 0, but
otherwise the calculations follow just the same pattern as in Secs. 7.1 and 7.2, resulting in the
conductivities:

σxx(β) = σyy(β) =
e3B

π~4ωc

τ

2k′20

[ 1

1 + (ωcτ)2
+

16 + 319(ωcτ)2 + 675(ωcτ)4

2(1 + (ωcτ)2)(1 + 9(ωcτ)2)(1 + 25(ωcτ)2)
β2
]
.

σyx(β) = −σxy(β) =
e3B

π~4ωc

τ

2k′20

[ (ωcτ)

1 + (ωcτ)2
+

16(ωcτ)− 131(ωcτ)3 + 225(ωcτ)5

2(1 + (ωcτ)2)(1 + 9(ωcτ)2)(1 + 25(ωcτ)2)
β2
]
.

Simplifying with α = ωcτ and:

σ0 =
e3B

π~4ωc

τ

2k′20
,

we can also write this in the form of Smith & Højgaard [3, p. 133]:

σxx(β) = σyy(β) = σ0

[ 1

1 + α2

(
1 +

31

32
β2
)

+
225

64

( 1

1 + 9α2
+

1

1 + 25α2

)
β2
]
. (E.5)

σyx(β) = −σxy(β) = σ0

[ α

1 + α2

(
1 +

31

32
β2
)

+
225

64

( −3α

1 + 9α2
+

5α

1 + 25α2

)
β2
]
. (E.6)

The full solution to σµν contains higher orders of β and is plotted in Fig. 11. The value of
β seems to have a larger effect on the longitudinal than on the transverse conductivity, which
is surprising as σyx(β) exactly describes the electron transport on the Fermi surface which is
modulated by the very same β.

26



0.2 0.4 0.6 0.8 1.0
β

0.15

0.20

0.25

σxx(β) = σyy(β)

σyx(β) = -σxy(β)

Figure 11: Graph showing the longitudinal and transverse conductivity of the Fermi surface
k0(εF )(1 + β cos(4φ)) for β ∈ [0, 1].

Now, we want to see what happens to Eqs. E.5 and E.6 in the limits of either low or high
B, starting with the high-field limit, ωcτ = α → ∞. Then the Hall conductivity in Eq. E.6
becomes:

σyx =
n0e

2τ

m0

[
. . .
]

=
n0eωcτ

B

[
. . .
]

=
n0e

B

[ 1

1/α2 + 1

(
1 +

31

32
β2
)
− 3

1/α2 + 9

225β2

64
+

5

1/α2 + 25

225β2

64

]
' n0e

B

[(
1− 1

α2

)(
1 +

31

32
β2
)
− 1

3

(
1− 1

(3α)2

)225β2

64
+

1

5

(
1− 1

(5α)2

)225β2

64

]
' n0e

B

[
1 + β2

(31

32
− 225

3 · 64
+

225

5 · 64

)]
=
n0e

B
(1 + β2/2) =

ne

B
, (E.7)

which is just what we got in the high-field limit in Sec. 3.3 within the free electron model. In
the low-field limit, ωcτ = α→ 0:

σyx ' σ0

[
α(1− α2)

(
1 +

31

32
β2
)
− 3α(1− (3α)2)

225β2

64
+ 5α(1− (5α)2)

225β2

64

]
' σ0α

[
1 + β2

(31

32
− 3 · 225

64
+

5 · 225

64

)]
= σ0α(1 + 8β2).

The zero-field conductivity, one gets from Eq. E.5 to be: σxx = σyy = σ0

[
1+β2

(
31
32 +2 225

64

)]
=

σ0(1 + 8β2).

F High-field expansion

This section is a review of the high-field expansion in Smith & Højgaard pages 127 to 130 [3].

In high B-fields, the orbit period T will be much shorter than the collision time τ and so
the electron can, with high probability, orbit all the way around the Fermi surface without
being scattered by impurities, phonons, or other electrons. 7 Hence, one would think that
the conductivity in high magnetic fields should reveal something about the shape of the Fermi
surface. Starting from the Boltzmann equation in the form of Eq. 7.3, but without the RTA,

7It is assumed that the Fermi surface is only inside the first Brillouin zone, that is, −π/a < kxF , k
y
F > π/a,

with a being the lattice constant.
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and introducing the operator H and the vector ψ, we have:

−eE · v∂f0

∂ε
+
∂g

∂t̃
=
(∂f
∂t

)
coll

,
(∂f
∂t

)
coll
≡ −Hg , g = eE ·ψ∂f0

∂ε
.

−eE · v∂f0

∂ε
+
∂g

∂t̃
= −Hg =⇒

−eE · v∂f0

∂ε
+ eE · ∂ψ

∂t̃

∂f0

∂ε
= −HeE ·ψ∂f0

∂ε
=⇒

−E · v + E · ∂ψ
∂t̃

= −HE ·ψ =⇒

∂ψ

∂t̃
+Hψ = v. (F.1)

In the last line, we have taken the scalar product with E from the left and used that E is
independent of the collision integral. The conductivity tensor then becomes (from Eq. 7.4):

σij =
e3B

2π2~2

∫
dε
(
− ∂f0

∂ε

)∫
dt̃ viψj =

e3B

2π2~2

∫ TF

0

dt̃ viψj ,

TF marking that the integral is to be calculated at the Fermi energy (not to be confused with
the Fermi temperature). In the high field limit, the dominating term on the LHS of Eq. F.1 is
∂ψ
∂t̃

since t̃ expresses the motion of the electron around the Fermi surface due to the magnetic
field, while H is a formulation of the scattering. We make an expansion of ψ in the variable
B−1: ψ = ψ(0) + ψ(1) + . . ., where (i) denotes the power of B−1. Putting this expansion into
Eq. F.1 yields:

∂

∂t̃
(ψ(0) +ψ(1) + . . .) +H(ψ(0) +ψ(1) + . . .) = v (F.2)

We separate Eq. F.2 into terms with equal powers of B:

∂

∂t̃
ψ(0) = 0 ψ(0) = C(0)

∂

∂t̃
ψ(1) = v −Hψ(0) ψ(1) = C(1) +

∫ t̃

0

dt̃1 (v −HC(0))

∂

∂t̃
ψ(2) = −Hψ(1) ψ(2) = C(2) −

∫ t̃

0

dt̃1Hψ
(1)

...
...

Here the left column is the differential form and the right one the integral form with the C(i)-
vectors containing the integration constants. It is worth noticing that for the closed orbits, the
partial derivatives average to zero due to the condition of periodicity:〈∂ψ

∂t̃

〉
=

1

T

∫ T

0

dt̃
∂ψ

∂t̃
=

1

T
(ψ(T )−ψ(0)) = 0 =⇒

〈v〉 = 〈HC(0)〉

〈0〉 = 〈Hψ(1)〉
...
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Restraining ourselves to consider only closed orbits, and using Eq. 7.1 for expressing the velocity
components, we have:

〈vx〉 =
1

T

∫ T

0

dt̃
~
eB

dky

dt̃
=

~
eB

1

T
(ky(T )− ky(0)) = 0, 〈vy〉 = 0

=⇒ C(0)
x = C(0)

y =⇒ (F.3)

ψ(0) = 0,

ψ(1)
x = C(1)

x +

∫ t̃

0

dt̃1
~
eB

dky

dt̃1
= C(1)

x +
~
eB

ky(t̃),

ψ(1)
y = C(1)

y −
~
eB

kx(t̃).

Here we have chosen our coordinate system such that kx(0) = ky(0) = 0. Since ψ(0) = 0, the
conductivity tensor will be an integral over terms with B−1 or lower powers. Taking first a look
at the diagonal terms, generated by ψ(1):

σ(1)
xx =

e3B

2π2~2

∫ TF

0

dt̃
~
eB

dky

dt̃

(
C(1)
x +

~
eB

ky

)
.

Since: ∫ T

0

dt̃
dky

dt̃
= ky(T )− ky(0) = 0 ,∫ T

0

dt̃
dky

dt̃
ky =

∫ ky(T )

ky(0)

dky ky = 0 ,

we get σ
(1)
xx = 0 which means the dominating part of σxx will be of order B−2 and likewise for

σyy.

The off-diagonal elements, generated by ψ(1), are:

σ(1)
xy =

e3B

2π2~2

∫ TF

0

dt̃ vxψ
(1)
y =

e3B

2π2~2

∫ TF

0

dt̃
~
eB

dky

dt̃

(
C(1)
y −

~
eB

kx

)
=
−e

2π2B

∫ TF

0

dt̃
dky

dt̃
kx =

−e
2π2B

∫ ky(T )

ky(0)

dky kx

=
−e

2π2B
Ae.

Here, we have again used the periodicity of kx and ky in t̃ to see that the C
(1)
y -term disappears.

The Ae in the last line denotes the area of the Fermi surface (which can be parametrized by
kx(ky)), in the case where the perimeter encloses states with energies lower than εF . This leads
to electron-like orbits. As the electron number density is n = Ae

2π2 , we get for the conductivity:

σ(1)
xy =

−en
B

,

which is exactly what we got in Sec. 3.3.
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G The method of Smith & Højgaard for an arbitrary
Fermi surface

Say we were given an arbitrary function k(ε, φ) which describes the contours of constant energy
for some material. Is it then possible, by the method of Smith & Højgaard [3] to solve the
Boltzmann equation for the difference in the distribution function from equilibrium, g = f−f0?
Proceeding like in Sec. 7, we still have the modified Boltzmann equation:(

ωc
∂

∂φ̃
+

1

τ

)
g = eE · v∂f0

∂ε
, (G.1)

and the expression for the cyclotron mass at the Fermi energy:

m0 =
~2

2π

∂A

∂ε

∣∣∣
εF

=
~2

2π

∂

∂ε

(∫ 2π

0

dφ

∫ kF

0

dk k(ε, φ)
)∣∣∣
εF
.

The expressions for the velocity components vx,vy at the Fermi energy are:

∂ε

∂kx

∣∣∣
εF

=
1

k′(ε, φ)|εF

(
cos(φ) +

sin(φ)

k(ε, φ)|εF
∂k

∂φ

∣∣∣
εF

)
∂ε

∂ky

∣∣∣
εF

=
1

k′(ε, φ)|εF

(
sin(φ)− cos(φ)

k(ε, φ)|εF
∂k

∂φ

∣∣∣
εF

)
.

Hence:

v · k =
k|εF
~k′|εF

((
1 +

tan(φ)

k|εF
∂k

∂φ

∣∣∣
εF

)
cos2(φ) +

(
1− cot(φ)

k|εF
∂k

∂φ

∣∣∣
εF

)
sin2(φ)

)
=

k|εF
~k′|εF

.

Since we still have dφ̃
dφ = ~

m0

k2

v·k , this becomes:

dφ̃

dφ
=

~
m0

k2~k′

k

∣∣∣
εF

=
2πkk′|εF

∂
∂ε

( ∫ 2π

0
dφ
∫ kF

0
dk k(ε, φ)

)∣∣∣
εF

.

If we can write the reciprocal of this, dφ

dφ̃
, as a Fourier series, so that Eq. G.1 can be expressed

as: (
ωc

∂

∂φ
+
∑
k

lkeikφ
)∑

n

gneinφ = Ẽ
∑
m

r(ν)
m eimφ,

with ∑
k

lkeikφ =
1

τ

( ∂
∂ε

( ∫ 2π

0
dφ
∫ kF

0
dk k(ε, φ)

)∣∣∣
εF

2πkk′|εF

)
,

and

Ẽ
∑
m

r(ν)
m =

eE

~
∂f0

∂ε

( ∂
∂ε

( ∫ 2π

0
dφ
∫ kF

0
dk k(ε, φ)

)∣∣∣
εF

2πkk′|εF

)∑
m′

ζm′eim
′φ.

Then it is possible to solve for g as a Fourier series and to find σµν like in Sec. 7.2.
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