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1 Resume

1.1 English

In this thesis we consider usage of two-level systems as memory for photons. The technique
called controlled and reversible inhomogeneous broadening (CRIB) is treated analytically where
it’s possible and perturbatively when it’s not. We combine ideas from earlier implementations
of CRIB with a new idea of only turning on broadening when the whole light pulse is absorbed.
Thus we introduce stages that have no broadening before and after stages that have broadening.

For the non-broadened stages we take equations that were originally developed for a three-
level system and adopt it for our needs. We show that there’re specific modes of electric field
that have better storage efficiency than others even before any broadening has taken place.
For the broadened stages we take the same initial transformation of the equations as in the
non-broadened case but since an exact analytic solution to the resulting equations cannot be
found we make a perturbative approximation. We only look at a specific form of broadening
distribution – a Gaussian – since it’s convenient to work with while still being non-trivial.

In the end we arrive at expression of efficiency and show that loss in the broadening stages
becomes smaller as broadening is increased. Thus if we assume that we store one of the optimal
modes in our memory it works practically with 100 % efficiency. This efficiency goes down when
we introduce one particular source of loss – addition of non-reversible broadening.

1.2 Dansk

Emnet af dette bachelorprojekt er kvantehukommelse for fotoner i to-niveau systemer. En teknik
kaldet “controlled and reversible inhomogeneous broadening” (CRIB) er behandlet analytisk,
hvor det er muligt, og perturbativt, hvor det er ikke muligt. Vi kombinerer ideer fra tidligere
realiseringer af CRIB med en ny ide, som g̊ar ud p̊a at sl̊a forbredningen til efter hele lyspulsen
er blevet absorberet. Derfor introducerer vi trin, som ikke har nogen forbredning, før og efter
trin, som har forbredning.

For de ikke forbredede trin tager vi ligninger, som blev oprindeligt brugt til at beskrive et
tre-niveau system og modificerer, s̊a det passer med vores system. Vi viser, at der er bestemte
modes af lys, der har en bedre lagringseffektivitet end andre, og den forskel indtræder før enhver
forbredning har sket. For de forbredede trin tager vi den samme transformation af ligninger
som i det ikke forbredede tilfælde, men siden den eksakte analytiske løsning kunne ikke blive
fundet, blev vi nødt til at lave en pertubativ approksimation. Vi kigger kun p̊a en bestemt form
af fordelingsfunktionen for forbredning, en Gaussfordeling, siden den er nem at h̊andtere og
samtidig en af de ikke trivielle.

Til sidst kommer vi frem til et udtryk for effektivitet og viser, at tab i trin med forbredning
bliver mindre jo mere forbredt bliver de. P̊a den måde, hvis vi antager, at vi gemmer en af
de optimale modes i hukommelsen, s̊a virker den praktisk talt med 100 % effektivitet. Denne
effektivitet bliver dog mindre, hvis vi tager med p̊avirkning af den ikke reversible forbredning i
modellen.
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2 Introduction

To make quantum computing practically realisable it’s of great importance to be able to store
state of photons for extended periods of time. Many different practical implementations of
quantum memory have been proposed. A lot of challenges here stem from the fact that there’re
two conceptually different things that have to accomplished at once. First of all light has to
be able to easily leave its “footprint” in the memory. When talking about atoms that requires
them to transition easily between states. However, this also means that those atoms will just
as easily transition back to their original state whereby loosing stored information. Hence the
other component of a good memory is a way to fix the aquired state for as long as possible and
then release it on demand.

One way to do it is to have a Λ-type system with two levels that couple strongly to incoming
light and a third level that has much longer lifetime than the excited state (metastable). If one
manages to transfer superposition of ground and excited state to superposition of ground and
the metastable state on storage and reverse this process on retrieval then the memory has
effectively the desired properties. Analysis of that approach can be found in [1].

The main motivation for the technique that is analysed in this thesis is a wish for a simpler
system. We want to only have 2 levels instead of 3. The mechanism that makes sure that state
of the atoms stays the way it was is called controlled and reversible inhomogeneous broadening
(CRIB) as can be found in [3]. It may be viewed as a destructive interference effect. If those two-
level atoms were left on their own they would radiate their excitation back as soon as possible.
But if we broaden the transition of different atoms by different amount (hence “inhomogeneous”)
we effectively archieve partial destructive interference between the radiated waves and thus
prevent any significant intensity from escaping the ensemble. At the same time atoms become
more and more dephased. To retrieve the stored information they need to be rephased first,
and this is done by reversing the broadening.

The question now is when to turn on inhomogeneous broadening. In [3] it is done at in
the very beginning of the storage process. Then in the middle of desired storage time interval
the broadening is reversed. (See Fig. 1 (a)) With this setup the maximal efficiency of forward
retrieval reached 54 %. Qualitatively the difficulty of reaching full efficiency can be understood
as a consequence of broadening being the very mechanism whose purpose was prevent atoms
from radiating and here we have it on at all times. Also without any additional sources of loss
it can be shown that broadening introduces effective attenuation of field intensity – introducing
non-zero optical depth into the model. And in fact the quoted maximal efficiency occurs at
very specific value of optical depth while at optical depths 0 and ∞ the efficiency is 0.

The solution seems to be to have broadening turned off on retrieval. This naturally means
that broadening on storage should also be turned on after some time and not at the very
beginning. (See Fig. 1 (b)) What we set out to do in this thesis is to take a hybrid approach
combining ideas from [1] and [3]. What was taken from [1] is description of the system with
broadening turned off. Even though it describes a 3 level system the equations could be adopted
quite easily to our 2 level case. While not much besides a general idea could be taken from [3]
and original approach had to be developed.

This thesis is structured as follows. In section 3 the model is introduced. It may be argued
that a lot of the careful quantum optics considerations in there are unnecessary for the goal of
the thesis and serve only as motivation for writing down final equations of motion (10), (11) for
non-broadened case and (13), (14) when broadening is on. However, in that section one can also
find conventions and definitions of rescaled variables that are used in all subsequent sections.
Section 4 contains a high-level overview of operation of memory and that is elaborated upon in
sections 5 and 6. Finally in section 7 a particular source of loss is considered.
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Figure 1: This is a diagram of CRIB based memory operation. Diagram “a” depicts what
can be found in [3] while diagram “b” is the approach used in this thesis. (A more detailed
description of different stages can be found in Section 4.)

3 Model

Our system consists of N two-level atoms coupled to a quantised electric field. We treat every-
thing in one dimension so the electric field is only dependent on the spatial coordinate z, and
atoms are assumed to be confined in a finite length L along the z-axis. The transverse extent
of the ensemble is assumed to be the same as the cross-section of the incoming light pulse.

The two levels of the atom with index n are denoted as |g⟩n and |e⟩n for ground and excited
state. The ground state energy is taken to be 0. The frequency of the atomic transition is
initially assumed to be the same for all atoms and is called ωeg.

Keeping ourselves to the Schrödinger picture for now will make operators time-independent.
As usual we split the electric field in two parts:

ÊS(z) = Ê(+)
S (z) + Ê(−)

S (z)

where Ê(−)
S =

(
Ê(+)
S

)†
. Assuming that the field describes a pulse propagating in the forward

direction and has a narrow bandwidth around central frequency ωL we express Ê(+)
S (z) as integral

over continuum of creation operators â(ω)

Ê(+)
S (z) = i

∫ ∞

0
E0(ω)eiωz/câ(ω) dω ≈ iE0(ωL)

∫ ∞

0
eiωz/câ(ω) dω

Where E0(ω) =
√

~ω/(4πcϵ0A) and creation operators have commutation relation[
â(ω), â†(ω′)

]
= δ(ω − ω′).
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Our system is then described by Hamiltonian

Ĥ = ĤL + ĤA + Ĥint

where

ĤL = ~
∫ ∞

0
ωâ†(ω)â(ω) dω,

ĤA = ~ωeg

N∑
n=1

|e⟩n⟨e|n,

Ĥint = −℘
N∑

n=1

(
Ê(+)
S (z) + Ê(−)

S (z)
) (

|e⟩n⟨g|n + |g⟩n⟨e|n
)
.

Here ℘ is the dipole strength.
Now we transform into the interaction picture using

Ĥ0 = ĤL + ~ωL

N∑
n=1

|e⟩n⟨e|n.

From this we define unitary operator Û0 = exp(−iH0t/~) and seek solutions of the Schrödinger

equation in the form |ψ′⟩ = Û †
0 |ψ⟩. Using the fact that the Schrödinger equation is satisfied for

|ψ⟩ one can show that for |ψ′⟩ the effective Hamiltonian is

Ĥ ′ = Û †
0ĤÛ0 − i~Û †

0

dÛ0

dt
= Û †

0ĤÛ0 − ĤL − ~ωL

N∑
n=1

|e⟩n⟨e|n.

Since ĤA and ĤL commute with Û0 we need only consider how Û0 acts on Ĥint. For any
operator Â we have that Û †

0ÂÛ0 is the solution of the Heisenberg equation d
dt Â = i

~ [Ĥ0, Â] so

to calculate Û †
0ĤÛ0 we consider commutators

i

~

[
ĤL, Ê(+)

S (z)
]
=
i

~

[
~
∫ ∞

0
ω′â†(ω′)â(ω′) dω′, iE0(ωL)

∫ ∞

0
eiωz/câ(ω) dω

]
= −E0(ωL)

∫ ∞

0

∫ ∞

0
ω′eiωz/c

[
â(ω′)†, â(ω)

]
â(ω′) dω′ dω

= E0(ωL)

∫ ∞

0
ωeiωz/câ(ω) dω ≈ E0(ωL)ωL

∫ ∞

0
eiωz/câ(ω) dω = −iωLÊ(+)

S (z)

(here we used the assumption of narrow bandwidth of the field again) and

i

~

~ωL

N∑
m=1

|e⟩m⟨e|m, |e⟩n⟨g|n

 = iωL

N∑
m=1

(
|e⟩m⟨e|m|e⟩n⟨g|n − |e⟩n⟨g|n|e⟩m⟨e|m

)
= iωL|e⟩n⟨g|n.

Hence

Ê(+)
I (z, t) = Ê(+)

S (z)e−iωLt,

|e⟩n⟨g|n(t) = |e⟩n⟨g|neiωLt.
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We can get time evolution of Ê(−)
I (z, t) and |g⟩n⟨e|n by Hermitian conjugation. If we now expand

the two parethenses in Ĥint then we end up with terms either having no time dependence (when
exponentials cancel) or those having exp(±2ωLt) time dependence. Making the rotating wave
approximation we drop the latter ones. Our final effective Hamiltonian which is approximately
time-independent then becomes

Ĥ ′ = ~(ωeg − ωL)

N∑
n=1

|e⟩n⟨e|n − ℘

N∑
n=1

(
Ê(+)
S (z)|e⟩n⟨g|n + Ê(−)

S (z)|g⟩n⟨e|n
)
. (1)

If we let δz = L/K where K is a positive integer then we can define operators that only act
on atoms in the interval [k(δz), (k + 1)(δz)]:

P̂k,ij =

√
N

Nk

Nk∑
n=1

|i⟩n⟨j|n

where both i and j can be either g or e and if we assume that atoms are distributed uniformly
throughout the whole length L we have that Nk = N(δz)/L = N/K.

Commutation relation is then

[
P̂k,ij , P̂k′,i′j′

]
=

N

NkNk′

Nk∑
m=1

Nk′∑
n=1

[
|i⟩m⟨j|m, |i′⟩n⟨j′|n

]
= N

δkk′

N2
k

Nk∑
n=1

(
δji′ |i⟩n⟨j′|n − δj′i|i′⟩n⟨j|n

)
=

√
N
δkk′

Nk

(
δji′P̂k,ij′ − δj′iP̂k,i′j

)
.

(2)

Using these operators and defining ∆0 = ωeg − ωL Hamiltonian (1) can be written as

Ĥ ′ = ∆0

√
N

L
(δz)

K−1∑
k=0

P̂k,ee + ℘

√
N

L
(δz)

K−1∑
k=0

(
Ê(+)
S (z)P̂k,eg + Ê(−)

S (z)P̂k,ge

)
. (3)

If K is chosen sufficiently big such that P̂k,ij can be considered a function P̂ij(z) then√
N(δkk′/Nk) in the commutator (2) will get replaced by (L/

√
N)δ(z− z′) and Hamiltonian (3)

becomes

Ĥ ′ =

√
N

L

∫ L

0

(
∆0P̂ee(z)− ℘

(
Ê(+)
S (z)P̂eg(z) + Ê(−)

S (z)P̂ge(z)
))

dz. (4)

We are interested in removing fast oscillations and thus rather work with a slowly varying

(both in time and space) version of E(+)
I (z, t). We also want to work with dimensionless quan-

tities and thus using g0 =
√

~ωL/(2ϵ0V ) (where V is product of length of the ensemble L and
quantisation area A) define

Ê(z, t) =
1

g0
exp(iωLt− iωLz/c)Ê(+)

I (z, t) =

√
L

2πc

∫ ∞

0
â(ω)ei(ω−ωL)z/cei(ω−ωL)t dω (5)

≈ 1

g0
exp(−ωLz/c)Ê(+)

S (z, t) (6)

Since we assumed that our field had a small bandwidth around ωL and was propagating in
forward direction the states corresponding to creation and destruction operators with negative
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frequencies can be assumed to be in vacuum state. This allows us to extend lower range of
integration in (5) to −∞ and write Ê in terms of Fourier transform of â(ω):

â(t) =

∫ ∞

−∞
â(ω)e−iωt dω

that has commutator [
â(t), â†(t′)

]
=

∫ ∞

−∞
e−iω(t−t′) dω = 2πδ(t− t′).

And so

Ê(z, t) =

√
L

2πc
â(t− z/c) (7)

so it has commutator[
Ê(z, t), Ê†(z′, t)

]
=

L

2πc
2πδ

(
(z − z′)/c

)
= Lδ(z − z′). (8)

With such a definition the expectation value ⟨Ê†(z, t)Ê(z, t)⟩ is number of photons present
in the field up to a dimensionless constant.

To find dynamics of operator (5) we first consider how it entered the interation picture. To
that end we look at

i

~

[
ĤL, ÊS(z)e−iωLz/c

]
= E0(ωL)

∫ ∞

0
ωei(ω−ωL)z/câ(ω) dω

= −iE0(ωL)

(
c

∫ ∞

0
i
ω − ωL

c
ei(ω−ωL)z/câ(ω) dω + iωL

∫ ∞

0
ei(ω−ωL)z/câ(ω) dω

)
= −c ∂

∂z

(
Ê(+)
S (z)e−iωLz/c

)
− iωL

(
Ê(+)
S (z)e−iωLz/c

)
.

Now adding contribution due to Ĥ ′ as given in (4) results in equation

∂

∂t

(
Ê(+)
I (z, t)e−iωLz/c

)
= −c ∂

∂z

(
Ê(+)
I (z, t)e−iωLz/c

)
− iωL

(
Ê(+)
I (z, t)e−iωLz/c

)
+
i

~

[
Ĥ ′, Ê(+)

I (z, t)e−iωLz/c
]

which upon rearranging and using definition (5) becomes(
∂

∂t
+ c

∂

∂z

)
Ê(z, t) =

i

~

[
Ĥ ′, Ê(z, t)

]
. (9)

Using approximation (6) and commutator (8) the right hand side of (9) is

i

~

[
Ĥ ′, Ê(z, t)

]
= i

√
Ng0
L~

∫ L

0
℘
[
Ê(z, t), Ê†(z, t)

]
e−iωLz

′/cP̂ge(z) dz
′ = iβP̂ (z)

where we defined P̂ (z) = e−iωLz/cP̂ge(z) and β =
√
Ng0℘/~. Equation (9) can now be written

as (
∂

∂t
+ c

∂

∂z

)
Ê(z, t) = iβP̂ (z, t). (10)
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Assuming most of the population is in the ground state such that in our normalisation it means
that Pee(z) =

√
N and Pgg(z) = 0 time dependence of P̂ is given by

i

~

[
Ĥ ′, P̂ge(z)

]
=
i

~

√
N

L

∫ L

0

(
i~∆0

[
P̂ee(z

′), P̂ge(z)
]
− ℘Ê(+)

S (z′)
[
P̂eg(z

′), P̂ge(z)
])

dz′

= i

∫ L

0
δ(z − z′)

(
−∆0P̂ge(z)−

℘

~
Ê(+)
S (z′)

(
P̂ee(z

′)− P̂gg(z
′)
))

dz′

= −i∆0P̂ge(z)− i
℘

~
Ê(+)
S (z)

(
P̂ee(z)− P̂gg(z)

)
≈ −i∆0P̂ge(z) + i

℘
√
N

~
Ê(+)
S (z)

which implies

∂

∂t
P̂ (z, t) = −i∆0P̂ (z, t) + iβÊ(z, t). (11)

We shall also need to deal with the situation when atoms are inhomogeneously broadened
with distribution which we call G. In anticipation of making our equations of motion dimen-
sionless we note that 1/µ where µ = Lβ2/c turns out to be the natural time scale of our system
and thus we want to work with detunings ∆̃ = ∆/µ and ∆̃0 = ∆0/µ. Our G then satisfies∫∞
−∞G(∆̃′) d∆̃′ = 1 and thus is dimensionless.

Generalisation to this broadened case is then straightforward. We introduce operators that
only act on spatial interval [k(δz), (k + 1)(δz)] and detuning interval [∆̃0 +m(δ∆̃), ∆̃0 + (m+
1)(δ∆̃)]:

Ŝkm,ij =

√
N

Nkm

Nkm∑
n=1

|i⟩n⟨j|n

where Nkm = NG
(
m(δ∆̃)

)
(δ∆̃)(δz)/L. Again we make (δ∆̃) and (δz) small to consider S to

be a function of ∆̃ and z. With these operators the analog to Hamiltonian (4) becomes

Ĥ ′ =

∫ ∞

−∞

√
NG(∆̃)

L

∫ L

0

(
~µ(∆̃0 + ∆̃)Ŝee(z)

−℘
(
Ê(+)
S (z)Ŝeg(z, ∆̃) + Ê(−)

S (z)Ŝge(z, ∆̃)
))

dz d∆̃.

(12)

Defining σ̂(z, t, ∆̃) = e−iωLz/cŜge(z, t, ∆̃) equations of motion (10) and (11) become(
∂

∂t
+ c

∂

∂z

)
Ê(z, t) = iβ

∫ ∞

−∞
G(∆̃′)σ̂(z, t, ∆̃′) d∆̃′ (13)

and

∂

∂t
σ̂(z, t, ∆̃) = −iµ(∆̃0 + ∆̃)σ̂(z, t, ∆̃) + iβÊ(z, t). (14)

To describe reversal of detunings we can replace ∆̃ by −∆̃ in (13) and (14).
We want to use all the derived equations of motion to calculate efficiencies, i.e. ηE =

⟨Ê†(z, t)Ê(z, t)⟩ or ηP = ⟨P̂ †(z, t)P̂ (z, t)⟩. We assume that a photon with mode function Φ
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comes in the atomic ensemble and excites polarisation in the atomic ensemble with mode func-
tion Θ. Formally we can define creation operators for these modes as

ĉΦ =

∫ ∞

0
Φ∗(t)Ê(z = z0, t) dt

ĉΘ =

∫ L

0
Θ∗(z, t)P̂ (z, t) dz

If we assume that the state in expression for ηE is |1⟩ = ĉ†Φ|0⟩ then ηE =
∫∞
0

∣∣Φ(t)∣∣2 dt and
simliarly for P and σ. Thus we can consider equations (10), (11), (13) and (14) as equations
of these mode functions and simply drop hats. We’ll also assume that mode functions are
normalised, i.e.

∫ L
0 |P (z)|2 dz = 1 and

∫∞
0 |E(z = z0, t)|2 dt = 1. When after manipulations

(say after storage and retrieval) with these mode functions we calculate these integrals and
find that they are not normalised it’s to be interpreted as probability leaking into other modes.
We shall also continue calling P the “polarisation operator” occasionally even though it’s not
an operator anymore. Also we shall talk about “light pulses” and “photons” interchangibly
when referring to electric field as the derived equations can just as well describe classical and
quantum light. Provided classical light is weak so assumption of most of the population being
in the ground state is satisfied we can just take expectation values of equations of motion with
a coherent state and get equations for functions instead.

4 Principle of operation

In stage 1 light comes in the atomic ensemble and excites atoms. We shall assume that stage 1
is just long enough for light to be absorbed by the atomic ensemble. In stage 2 inhomogeneous
broadening is introduced to prevent atoms from radiating their excitation as electric field again.
In stage 3 inhomogeneous broadening is reversed to make the atomic ensemble evolve back to
its state in the beginning of stage 2. In stage 4 inhomogeneous broadening is turned off and
light is radiated in forward direction.

Significant part of description of stage 1 and 4 can be treated in analytic way as was shown
in [1]. In this thesis some elaboration is given on the equations compared to the mentioned
article. Stages 2 and 3 are made more complicated by the having inhomogeneous broadening
and thus only perturbative treatment of those is given.

We assume that all the stages don’t have any decay. At later point a particular decay
mechanism in stage 2 and 3 will be considered.

5 Stage 1 and 4

We consider (10), (11) as equations of mode functions and change variables to z̃ = z/L and
τ = µ(t− z/c). Since

c
∂

∂z
E(z̃, τ) = c

(
∂E

∂z̃

∂z̃

∂z
+
∂E

∂τ

∂τ

∂z

)
=
c

L

∂E

∂z̃
− µ

∂E

∂τ

∂

∂t
E(z̃, τ) =

∂E

∂z̃

∂z̃

∂t
+
∂E

∂τ

∂τ

∂t
= µ

∂E

∂τ
∂

∂t
P (z̃, τ) =

∂P

∂z̃

∂z̃

∂t
+
∂P

∂τ

∂τ

∂t
= µ

∂P

∂τ

these equations become

∂

∂z̃
E(z̃, τ) = i

µ

β
P (z̃, τ) (15)
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and

µ

β

∂

∂τ
P (z̃, τ) = −i∆0

µ

µ

β
P (z̃, τ) + iE(z̃, τ). (16)

Absorbing µ/β into definition of P we end up with completely dimensionless equations

∂

∂z̃
E(z̃, τ) = iP (z̃, τ) (17)

and

∂

∂τ
P (z̃, τ) = −i∆̃0P (z̃, τ) + iE(z̃, τ). (18)

Here it’d be apropriate to discuss how stages 2 and 3 are related to 1 and 4. We’ve just
changed time variable to combination of time and spatial variable. This means that when we
say that stage 1 – for instance – had duration of τ1 then this actually means that stage 2 began
at different real times in the ensemble of atoms and broadening was turned on gradually starting
from z = 0 and propagating with speed of light towards z = L. Effects of turning broadening
in some other way was not investigated in this thesis since the one mentioned was the most
natural. In the sequel τn will denote duration of stage n understood in the sense above.

If we define Ein(τ) = E(z̃ = 0, τ) and Laplace transform in space (z̃ → u) equations (17),
(18) we get

−Ein(τ) + uĒ(u, τ) = iP̄ (u, τ) (19)

and

∂

∂τ
P̄ (u, τ) = −i∆̃0P̄ (u, τ) + iĒ(u, τ). (20)

Expressing Ē(u, τ) in terms of P̄ (u, τ) using (19) and substituting into (20) we get

∂

∂t
P̄ (u, τ) +

(
i∆̃0 +

1

u

)
P̄ (u, τ) = i

Ein(τ)

u
(21)

In stage 1 we assume that there’re no excitations of atoms, i.e. P (z, t = z/c) = P (z̃, τ =
0) = 0. This expresses the fact that at time t = z/c the light pulse has just reached atoms at
the position z. Solving (21) under this initial condition gives

P̄ (u, τ) = i

∫ τ

0
exp

(
−
(
i∆̃0 +

1

u

)
(τ − τ ′)

)
Ein(τ

′)

u
dτ ′.

Taking inverse Laplace transform (u→ z̃) we arrive at

P (z̃, τ) = i

∫ τ

0
exp

(
−i∆̃0(τ − τ ′)

)
J0

(
2
√

(τ − τ ′)z̃
)
Ein(τ

′) dτ ′ (22)

where J0 is Bessel function of the first kind of order 0.
This is the final polarisation operator for stage 1. Turning now to stage 4 we need to solve

equations (19) and (20) under assumption that Ein(τ) = 0 and P (z̃, τ = 0) = P3(z̃). Equation
(21) now has solution

P̄ (u, τ) = exp

(
−
(
i∆̃0 +

1

u

)
τ

)
P̄3(u)

9



and inserting this into (19) we get

Ē(u, τ) = i exp(−i∆̃0τ)
1

u
exp

(
−1

u
τ

)
P̄3(u).

We take inverse Laplace transform (u→ z̃) using convolution theorem. Defining Eout = E(z̃ =
1, τ) we arrive at

Eout(τ) = ie−i∆̃0τ

∫ 1

0
J0

(
2
√
τz′
)
P3(1− z′) dz′. (23)

The question now is when and in what sense equations (22) and (23) can be considered
inverses of each other. First of all one useful property of (23) is that it preserves inner products.
For any functions f and g defined on (0, 1) their inner product in L2 Hilbert space sense is

⟨f |g⟩ =
∫ 1

0
f∗(z̃)g(z̃) dz̃.

We can define retrieval operator by

R(f)(τ) = ie−i∆̃0τ

∫ 1

0
J0

(
2
√
τ(1− z′)

)
f(z′) dz′.

such that (23) can be written Eout(τ) = R(P3)(τ) with suitable substitution. Then property of
R can be stated symbolically as

⟨R(f)|R(g)⟩ = ⟨f |g⟩ (24)

where inner product on the left hand side is to be understood as integration from 0 to ∞. This
can be proved by using (48) from Appendix A. We have

⟨R(f)|R(g)⟩ =
∫ ∞

0
R(f)∗(τ)R(g)(τ) dτ

=

∫ ∞

0

∫ 1

0
J0

(
2
√
τ(1− z′)

)
f∗(z′) dz′

∫ 1

0
J0

(
2
√
τ(1− z′′)

)
g(z′′) dz′′ dτ

=

∫ 1

0

∫ 1

0
δ
(
(1− z′)− (1− z′′)

)
f(z′)g(z′′) dz′′ dz′ =

∫ 1

0
f∗(z′)g(z′) dz′

= ⟨f |g⟩.

In particular it means that efficiency of the retrieved electric field is the same as efficiency of
the polarisation operator:

ηE = ⟨R(P )|R(P )⟩ = ⟨P |P ⟩ = ηP .

The significance of this result it two-fold. First of all it means that stage 4 has no loss and if
stage 2 and 3 were not there then all losses if any would be caused by stage 1. Second is that
when we begin to consider effects of stage 2 and 3 it’s only nessesary to calculate efficiency of
polarisation operator in the end of stage 3 since we know that efficiency of the retrieved field
would be exactly the same.

We need to stress the fact that even though the result just derived is very useful in simplifying
arguments in the current model we must remember that it only holds for the case without decay.
The way decay was included in the model of [1] would in our model result in addition of factors

10



of e−Γ̃τ (for some rescaled decay rate Γ̃ = Γ/µ) in (22) and (23). Then instead of the expression
(48) from Appendix A we would need to consider integral∫ ∞

0
e−Γ̃tJ0(2

√
z′τ)J0(2

√
z′′τ) dτ

which doesn’t seem to be as easily tractable. Numerical optimisation of the process of storage
and forward retrieval as can be found in [1] then showed that the best mode of P (i.e. the one
that has maximal efficiency) converged towards P (z̃) =

√
30z̃(1 − z̃) as decay rate went to 0.

Since in our model we effectively work in this limit we should be able to reproduce this. In fact
it seems that any polarisation operator mode can be retrieved and then stored optimally.

To show that we consider process of storage. We see that here the concept of time reversal
comes naturally from the equations. When we shall say in the following that we store a particular
input field Ein it needs to be understood that we store a time reversed copy of it. In terms of
our equations it will mean that we integrate Ein(τ − τ ′) instead of Ein(τ

′) in expression (22).
Then making substitution x = τ − τ ′ that equation will become

P (z̃, τ) = i

∫ τ

0
exp

(
i∆̃0x

)
J0

(
2
√
z̃x
)
Ein(x) dx (25)

We also need to consider what happens in the limit when τ → ∞ and call this process storage
with infinite storage time. Making upper limit ∞ is rather unphysical and would be made
impossible by having decay included in the model but it’s nevertheless a useful tool to explore
boundaries of the current model.

Assume that stage 2 and 3 are not there and assume further that in the beginning of stage 4
we have some polarisation operator P0. If we retrieve it and then store it on resonance (∆̃0 = 0)
with infinite storage time we get (again using (48) from Appendix A)

P (z̃) = −
∫ ∞

0
J0

(
2
√
xz̃
)∫ 1

0
J0

(
2
√
xz′
)
P0(1− z′) dz′ dx = −P0(1− z̃)

This means that efficiency η =
∫ 1
0 |P (z̃)|2 dz̃ of this process is equal to 1.

Now we know that if we take any mode that was already stored in the memory, read it out
and then read the resulting field back in again – we end up with practically the same thing that
we started with – up to mirroring about z̃-axis or around point z̃ = 1/2. What is left to be
determined is whether the opposite process will work without any losses. Namely if we start
with arbitrary field, store it and then retrieve it again. Our intuition suggests that given that
the fields of travelling waves could not be satisfactorily described with infinite sums of discrete
creation operators and needed continuum wave formalism instead their space is much too large
to be mapped onto an ensemble of atoms with a finite spatial extent. What we’re after is to
find a convincing counterexample.

Consider Ein =
√
2e−τ . Storing it with infinite storage time and with ∆̃0 = 0 we get

P (z̃) =
√
2i

∫ ∞

0
J0

(
2
√
z̃x
)
Ein(x) dx =

√
2ie−z.

Already here we see that efficiency of storage
∫ 1
0 |P (z̃)|2 dz̃ = 1− e−2 < 1 and that means that

this input field couldn’t be mapped onto state of atoms in its entirety even in the limit of infinite
storage time. For completeness we can calculate electric field that would have been retrieved
from this mode using (23). Plot of it can be found in Fig. 2.

The conclusion of this section is that there exist particular modes of electric field that can
be stored (in stage 1) with 100 % efficiency. They can all be generated by taking some mode of
polarisation operator and then finding output field. On the other hand not all input fields can
be stored and efficiency of storage has to be determined on case by case basis.
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Figure 2: Plot of exponential input mode Ein(τ) =
√
2e−τ (dashed) and corresponding output

mode (solid).

6 Stage 2 and 3

We look at the equations (13) and (14). Making the same change of variables as in Section 5
and absorbing a factor of µ/β into σ our equations become

∂

∂z̃
E(z̃, τ) = i

∫ ∞

−∞
G(∆̃′)σ(z̃, τ, ∆̃′) d∆̃′ (26)

and

∂

∂τ
σ(z̃, τ, ∆̃) = −i(∆̃0 + ∆̃)σ(z̃, τ, ∆̃) + iE(z̃, τ). (27)

We assume that the electric field got completely absorbed in stage 1 and so Ein(τ) = 0
for stage 2 and 3. Even under this assumption some field will be radiated in stage 2 due to
imperfections of our memory so this assumption is less true for stage 3 but for simplicity of
having only to consider evolution of σ in these two stages we assume that anyway.

Taking the Laplace transform (z̃ → u) of (26) and (27) we get

uĒ(u, τ) = i

∫ ∞

−∞
G(∆̃′)σ̄(u, τ,∆′) d∆′ (28)

and

∂

∂τ
σ̄(u, τ, ∆̃) = −i(∆̃0 + ∆̃)σ̄(u, τ, ∆̃) + iĒ(u, τ). (29)
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When we insert Ē(u, τ) from (28) into (29) we arrive at the equation

∂

∂τ
σ̄(u, τ, ∆̃) = −i(∆̃0 + ∆̃)σ̄(u, τ, ∆̃)− 1

u

∫ ∞

−∞
G(∆̃′)σ̄(u, τ, ∆̃′) d∆̃′. (30)

This is the analog of equation (21) in case of broadening. We can now control contribution of
the term containing 1/u of the right hand side by integrating it with distribution G. We also
see that in a sense we have a system of infinitely many coupled differential equations (one for
each ∆̃) and this is unfortunate if we want an exact solution. We note, however, that it’s us
who brought this problem upon our heads when we made operator σ̂ depend on a real variable
∆̃ instead of an index of an interval of detunings. If we didn’t do that step we’d end up with at
most N equations – one for each atom. In that form it would be much more suited for finding
numerical solution.

Now we turn to the initial conditions. For σ in stage 2 the initial condition is that σ̄(u, τ =
0, ∆̃) should be proportional to P̄ (u, τ = τ1). Since they both have the same normalisation they
are actually equal. For stage 4 the initial condition is

P̄ (u, τ = 0) =

∫ ∞

−∞
G(∆̃′)σ̄(u, τ = τ3,−∆̃′) d∆̃′.

(The −∆̃ in the argument is used to remind that σ in stage 3 has reversed broadening compared
to stage 2.)

To get any further analysis we assume a specific form of G. Defining γ̃ = γ/µ we choose

G(∆̃) =
1√
2πγ̃2

exp

(
− ∆̃2

2γ̃2

)
, (31)

i.e. a Gaussian and try to find an approximative solution for equation (30). First of all to get
some intuitive feeling for it suppose for a moment that the second term on right hand side of
(30) is equal to 0. Then time dependence of σ̄(u, τ, ∆̃) is a simple complex exponential one. If
we assume (30) to describe evolution in stage 2 then evolution in stage 3 is given by the same
equation with ∆̃ replaced by −∆̃. After these two stages the initial value of σ̄, i.e. σ̄(u, τ = 0, ∆̃)

will get multiplied by a factor of exp
(
−i∆̃0(τ2 + τ3)− i∆̃(τ2 − τ3)

)
. We don’t want to have

dependence on ∆̃ in the final value since the initial condition for stage 4 is

P (z̃, τ = 0) ∝
∫ ∞

−∞
G(∆̃′) exp(i∆̃′(τ2 − τ3)) d∆̃

′ = exp

(
−1

2
(τ2 − τ3)

2γ2
)

and will be less than 1 unless τ2 = τ3. So in order for the first term in equation (30) to not
incur any losses we need stage 2 and stage 3 to have the same duration.

We want to consider effect of the second term on the right hand side of (30) as a perturbation.
Introducing

σS(z̃, τ, ∆̃) = ei(∆̃0+∆̃)τσ(z̃, τ, ∆̃) (32)

equation (30) can be rewritten as

∂

∂τ
σ̄S(u, τ, ∆̃) = −1

u
ei∆̃τ

∫ ∞

−∞
G(∆̃′)σ̄S(u, τ, ∆̃

′)e−i∆̃′τ d∆̃′. (33)

Doing perturbative approximation we replace σS in the integrand by its value in τ = 0:

∂

∂τ
σ̄S(u, τ, ∆̃) ≈ −1

u
ei∆̃τ

∫ ∞

−∞
G(∆̃′)σ̄S(u, τ = 0, ∆̃′)e−i∆̃′τ d∆̃′. (34)
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For the case of stage 2 we have that σ̄S(u, τ = 0, ∆̃) = σ̄(u, τ = 0, ∆̃) = P̄ (u, τ = τ1) is
actually independent of ∆̃. Hence we take σ̄S(u, τ = 0, ∆̃) out of the integral and defining
P1(z̃) = σS(z̃, τ = 0, ∆̃) we can write solution to (34) as

σ̄S(u, τ, ∆̃) =

(
1− 1

u

∫ τ

0
ei∆̃τ ′

∫ ∞

−∞
G(∆̃′)e−i∆̃′τ ′ d∆̃′ dτ ′

)
P̄1(u)

Using the specific form of our G from equation (31) and definition of σS in (32) we arrive at

σ̄(u, τ, ∆̃) = e−i(∆̃0+∆̃)τ

(
1− 1

u

∫ τ

0
exp

(
−1

2
γ2τ ′2 + i∆̃τ ′

)
dτ ′

)
P̄1(u) (35)

At this point it’s best to take a shortcut. We could do a full perturbative treatment of stage
3 by obtaining equation (33) for σ̄S(u, τ,−∆̃) and solving that. This is done in Appendix C in
full detail. It turns out that in the limit where τ2 (and consequently also τ3) is big the result is
the same as if we completely disregarded 1/u term in the equation (30). I.e. making changes
for reversed broadening we assume that stage 3 is described by equation

∂

∂τ
σ̄(u, τ,−∆̃) = −i(∆̃0 − ∆̃)σ̄(u, τ,−∆̃) (36)

which solving under initial condition σ̄(u, τ = 0,−∆̃) = σ̄(u, τ = τ2, ∆̃), assuming that τ3 = τ2
and using expression (35) gives in the end of stage 3 the following expression:

σ̄(u, τ = τ2,−∆̃) = e−i2∆̃0τ2

(
1− 1

u

∫ τ2

0
exp

(
−1

2
γ2τ ′2 + i∆̃τ ′

)
dτ ′

)
P̄1(u). (37)

From (37) we can find P̄ (u, τ = τ2) =
∫∞
−∞G(∆̃′)σ̄(u, τ = τ2,−∆̃′) d∆̃′ and take inverse Laplace

transform using convolution theorem. Then expression for P in the end of stage 3 in terms of
what is was in the end of stage 1 is given by

P3(z̃) = e−i2∆̃0τ2P1(z̃)− e−i2∆̃0τ2

∫ z̃

0
P1(z

′) dz′
∫ τ2

0
e−γ̃2τ ′2 dτ ′. (38)

Compared to (51) in Appendix C it only has two last terms. But when we take limit τ2 → ∞
they both give the same:

∣∣P (z̃, τ = τ2)
∣∣2 → ∣∣∣∣∣P1(z̃)−

√
π

2γ̃

∫ z̃

0
P1(z

′) dz′

∣∣∣∣∣
2

.

Assuming that stage 1 didn’t have any losses the efficiency of storage is given by

η =

∫ 1

0

∣∣P (z̃, τ = τ2)
∣∣2 dz̃

= 1−
√
π

γ̃

∫ 1

0
P1(z̃)

∫ z̃

0
P1(z

′) dz′ dz̃ +
π

4γ̃2

∫ 1

0

(∫ z̃

0
P1(z

′) dz′

)2

dz̃.

(39)

It’s clear that this result is not valid for γ̃ → 0. In that limit we effectively have no broadening
and thus a more apropriate description would’ve been using equation (22) for P of stage 4 for
which perturbative assumption may be not satisfied. On the other hand when γ̃ → ∞ the
efficiency goes to 1 as we have hoped.

14



0 2 4 6 8 10
γ/µ

0.0

0.2

0.4

0.6

0.8

1.0

η

Figure 3: This is a plot of storage efficiency η as function of γ̃ = γ/µ for P (z̃) = 1. Solid line
has only linear contribution while dashed line also has quadratic contribution. Both curves are
clearly not valid as expressions for efficiency for γ̃ below 1.

As shown in Appendix B term linear in 1/γ̃ can be maximised (so that η is minimised) by
taking P constant, i.e. P (z̃) = 1 and then∫ 1

0
P1(z̃)

∫ z̃

0
P1(z

′) dz′ dz̃ =

∫ 1

0
z̃ dz̃ =

1

2
.

Strictly speaking what we show there is that it has a stationary point for this form. But we
can see that this term will be smaller for any other form of P . Moreover by taking P1(z̃) =√
2 cos(πz̃) we get ∫ 1

0
P1(z̃)

∫ z̃

0
P1(z

′) dz′ dz̃ =
2

π

∫ 1

0
cos(πz̃) sin(πz̃) dz̃ = 0

while ∫ 1

0

(∫ z̃

0
P1(z

′) dz′

)2

dz̃ =
2

π2

∫ 1

0
sin2(πz̃) dz̃ =

1

π2

and thus term linear in 1/γ̃ vanishes but the term quadratic in 1/γ̃ does not and we end up with
efficiency greater than 1 for all values of γ̃. This serves as a motivation to drop the quadratic
term as it’s not valid for at least some P ’s. Impact of this decision for constant P can be judged
from Figure 3.

We conclude this section by noting that by discussion in Section 5 electric field after retrieval
has the same efficiency as the efficiency of polarisation operator.
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7 Additional sources of loss

The only reason that our memory works practically with 100 % efficiency when broadening is
chosen large enough is because we don’t really have any sources of loss. One obvious gener-
alisation is to have some part of broadening that is not reversed. If this kind of broadening
is present and cannot be neglected as we did in all the previous derivations then it’s caused
by intrinsic properties of the atomic ensemble and will affect all four stages. However, in the
framework we’ve developed it’s hard to find an analytic solution to equations of motion when
broadening is present in the model. This is why we needed to resort to perturbation theory for
stage 2 and 3. This approach wouldn’t work for stage 1 and 4 – at least in the current form –
because there P and E do change a lot contrary to the pertubative assumption.

Thus we imagine that this non-reversible broadening is turned on in the beginning of stage
2 and is turned off as soon as stage 3 ends. It effectively means that ∆̃0 in equations (26) and
(27) is now distributed with some density function G0. To keep things concrete let’s assume
that it’s a Gaussian of the same form as G that we looked at (cf. (31)) with width γ̃0 = γ0/µ.
Hence stages 2 and 3 are now described by equations

∂

∂z̃
E(z̃, τ) = i

∫ ∞

−∞

∫ ∞

−∞
G0(∆̃

′
0)G(∆̃

′)σ(z̃, τ, ∆̃′
0, ∆̃

′) d∆̃′
0 d∆̃

′ (40)

and
∂

∂τ
σ(z̃, τ, ∆̃) = −i(∆̃0 + ∆̃)σ(z̃, τ, ∆̃) + iE(z̃, τ). (41)

Going through the same calculations as in equations (30) through (37) for this case then
calculating P (u, τ2) =

∫∞
0

∫∞
0 G0(∆̃

′
0)G(∆̃

′)σ(u, τ, ∆̃′
0, ∆̃

′) d∆̃′
0 d∆̃

′ and taking inverse Laplace
transform we get

P (z̃, τ2) = e−2γ̃2
0τ

2
2P1(z̃)−

∫ z̃

0
P1(z

′) dz′
∫ τ2

0
e−

1
2
γ̃2
0(τ

′−2τ2)2e−
1
2
γ̃2τ ′2e−

1
2
(γ̃2

0+γ̃2)τ ′2 dτ ′. (42)

We see that setting γ̃0 = 0 we recover (38) (with ∆̃0 = 0). It also almost as if we actually
took (38) and integrated it with distribution G0 which would have simply added a factor of
e−2γ̃2

0τ
2
2 there. We do have some cross terms in the exponents in (42) and this is not strictly

true, but the general picture is clear though: |P (z̃, τ2)| → 0 as τ2 → 0.
It’s possible to write the integral in the correction part in terms of error functions but this

doesn’t make expression (42) clearer and it’s easier to judge its behaviour from Fig. 4 (b) and
compare it to the case with no intrinsic broadening on Fig. 4 (a).

Now we want to show that distribution G0 is in fact related to optical depth of the atomic
ensemble. The physical process that is to be modeled is simply a light pulse propagating through
the atomic ensemble without any extra broadening and reversing of it ever taking place. For
this we consider equations that look a lot like equations (26) and (27):

∂

∂z̃
E(z̃, τ) = i

∫ ∞

−∞
G0(∆̃

′
0)σ(z̃, τ, ∆̃

′
0) d∆̃

′
0, (43)

∂

∂τ
σ(z̃, τ, ∆̃0) = −i∆̃0σ(z̃, τ, ∆̃0) + iE(z̃, τ). (44)

Now σ describes atoms that were broadened by the intrinsic broadening from 0 to some detuning
∆̃0. If we formally integrate (44) under initial condition σ(z̃, τ = −∞, ∆̃0) = 0 we get

σ(z̃, τ, ∆̃0) = i

∫ τ

−∞
exp(−i∆0(τ − τ ′))E(z̃, τ) dτ ′

= i

∫ ∞

−∞
Θ(τ − τ ′) exp(−i∆0(τ − τ ′))E(z̃, τ) dτ ′

(45)
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Figure 4: Storage efficiency with non-reversible broadening γ̃0 for P̂ (z̃) = 1

where Θ is Heaviside step function. Taking Fourier transform (τ → ω) using convolution
theorem (45) becomes

σ(z̃, ω, ∆̃0) = iẼ(z̃, ω)

(√
π

2
δ(ω − ∆̃0) +

1√
2π

i

ω − ∆̃0

)
. (46)

Inserting (46) into Fourier transform of (43) results in

∂

∂z̃
Ẽ(z̃, ω) = −Ẽ(z̃, ω)

∫ ∞

−∞
G0(∆̃

′
0)

(√
π

2
δ(ω − ∆̃′

0) +
1√
2π

i

ω − ∆̃′
0

)
d∆̃′

0

= −Ẽ(z̃, ω)

(√
π

2
G0(ω)−

i√
2π

∫ ∞

−∞
G0(∆̃

′
0)

1

ω − ∆̃′
0

d∆̃′
0

)
.

From this we see that∣∣∣Ẽ(z̃ = 1, ω)
∣∣∣2 = exp

(
−
√
2πG0(ω)

)∣∣∣Ẽ(z̃ = 0, ω)
∣∣∣2 .

Defining optical depth on resonance from this expression as d0 = 1
2

√
2πG0(0) we have for

Gaussian G0 that

d0 =
1

2γ̃0
=

µ

2γ0
.

Going back to the expression (42) we can rewrite and simplify it somewhat. First of all we
see that the effect of G0 on the correction term is to make it smaller. However the impact on
the leading term is more significant. So at cost of pushing efficiency somewhat lower than it
actually is we can neglect all factors containing γ0 in the correction term and get

P (z̃, τ2) = e−2γ̃2
0τ

2
2P1(z̃)−

∫ z̃

0
P1(z

′) dz′
∫ τ2

0
e−γ̃2τ ′2 dτ ′.

which basically makes it the same as (38) with leading term multiplied by decaying factor.
Keeping only linear term in efficiency as before and expanding the exponential in the leading
term we get for P1(z̃) = 1 that

η = 1− 4γ̃20τ
2
2 −

∫ τ2

0
e−γ̃2τ ′2 dτ ′.
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Expressing the second term via optical depth and taking worst case estimate for the third term
we get

η = 1− τ22
d20

−
√
π

2γ̃
. (47)

On the other hand storage duration τ2 which is of order of 1
γ̃0

and pulse length (duration of
stage 1) τ1 which is of order 1 (both in the rescaled variables wrt µ) have a ratio of order

1

γ̃0
= 2d0

and should be much greater than 1 or else the memory is useless. Thus we see that if we make
efficiency close to 1 by taking big optical depth then we cannot store our pulse for very long
time and vice versa. This is the same conclusion that was reached in [3] when analysing effects
of non-reversible broadening – that there’s a trade off between storage duration and efficiency.

8 Discussion and outlook

There’re plenty possibilities for further analysis. The biggest of them is considering effects of
non-reversible broadening during stage 1 and 4. Alternatively we can consider effects of decay
as found in [1]. It’s not clear whether any new analytic results can be obtained in these cases
or whether one would have to resort to numerical calculations.

Other interesting thing to consider is finite speed of broadening reversal. In this thesis we
assume that broadening switches between ∆̃ and −∆̃ immediately. In reality broadening would
be around 0 for some time and there the system will radiate light causing efficiency to be lower.
Quantifying this effect would then give answer to whether several reversals of broadening instead
of one is of any advantage. One reason for doing several reversals is that it will effectively divide
time spent in stage 2 and 3 by some integer and hence make the perturbative treatment of stage
2 and 3 as presented in this thesis valid for lower values of γ̃.

Finally even though analytic approach of [3] wasn’t used here they seem to claim that their
obtained efficiency of 54 % is the same independent of the mode of the incoming photon. We
found that in our model some difference is present and it would be insightful to track down
difference in assumptions that causes difference in the result.

9 Conclusion

We started with the idea of only applying inhomogeneous broadening for a finite time intervals
and only after the field has already excited the atoms. With this setup we can show that this
CRIB based memory works with efficiency approaching 100 % as broadening is increased. Com-
pared to the previous result of [3] which claimed 54 % this constitutes a clear improvement. We
note that in the course of the derivation of this main result we had to make several idealisations
which could impede practical realisation of this principle. These include usage of specific mode
of the incoming light in the limit of infinite storage time and no other sources of loss than
light escaping the atomic ensemble due to inability of the atomic ensemble to contain all the
information about it in the initial stage. The only other source of loss that we considered was
introduction of non-reversible broadening in the atomic ensemble and it was shown to make
efficiency do down. It should be noted, however, that those cited 54 % in [3] were also obtained
in the case of absent non-reversible broadening. Just as in [3] we concluded that in case of
non-reversible broadening there exists a tradeoff between efficiency and storage duration.
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A Bessel functions

We want to prove the identity∫ ∞

0
J0(2

√
ux)J0(2

√
vx) dx = δ(u− v). (48)

It looks a lot like a known result [2]∫ ∞

0
xJ0(ux)J0(vx) dx =

1

u
δ(u− v).

Making substitution in (48): t = 2
√
x, x = 1

4 t
2, dx = 1

2 t dt we get∫ ∞

0

1

2
tJ0(

√
ut)J0(

√
vt) dt =

1

2
√
u
δ(
√
u−

√
v).

Using substitution y =
√
u, dy = 1

2
√
u
du we have for some function f and interval [c, d] that

contains both
√
v and v that∫ d

c

δ(
√
u−

√
v)

2
√
u

f(u) du =

∫ d

c
δ(y −

√
v)f(y2) dy = f(v) =

∫ d

c
δ(y − v)f(y) dy

and hence that ∫ ∞

0
J0(2

√
ux)J0(2

√
vx) dx =

1

2
√
u
δ(
√
u−

√
v) = δ(u− v).

B Stationary points for storage efficiency

We want to find P that extremised term linear in 1/γ̃ in (39). Defining

f(z̃) =

∫ z̃

0
P (z′) dz′

and assuming that P is real-valued we can recast this problem into standard Euler-Lagrange
language. The functional whose stationary points we’re interested in is

I =

∫ 1

0
F (f, f ′, z̃) dz̃ =

∫ 1

0
f ′(z̃)f(z̃) dz̃

under constraint that

J =

∫ 1

0
G(f, f ′, z̃) =

∫ 1

0
f ′(z̃)2 dz̃ = 1

Euler-Lagrange equation is

∂F

∂f
− d

dz̃

(
∂F

∂f ′

)
+ λ

(
∂G

∂f
− d

dz̃

(
∂G

∂f ′

))
= 0

= f ′(z̃)− d

dz̃

(
f(z̃)

)
− λ

d

dz̃
(2f ′(z̃))

= −2λf ′′(z̃)

and this implies that

P (z̃) = f ′(z̃) = 1.
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C Perturbative treatment of stage 3

As was already mentioned stage 3 can be described by equation (30) with ∆̃ replaced by −∆̃.
Doing the same substitution in definition of σS in (32) we get the equation

∂

∂τ
σ̄S(u, τ,−∆̃) = −1

u
e−i∆̃τ

∫ ∞

−∞
G(∆̃′)σS(u, τ,−∆̃′)ei∆̃

′τ d∆̃′ (49)

to which doing the perturbative approximation we can write the formal solution as

σ̄S(u, τ,−∆̃) =− 1

u

∫ τ

0
e−i∆τ ′

∫ ∞

−∞
G(∆̃′)σS(u, τ = 0,−∆̃′)ei∆̃

′τ ′ d∆̃′ dτ ′

+ σ̄S(u, τ = 0,−∆̃)

(50)

Since broadening got reversed between stage 2 and stage 3 we have that the initial condition is
given by

σ̄S(u, τ = 0,−∆̃) = σ̄(u, τ = 0,−∆̃) = σ̄(u, τ = τ2, ∆̃).

Hence using the solution we obtained in (35) and inserting it into (50) we get

σ̄S(u, τ,−∆̃)

= −1

u
P̄1(u)

∫ τ

0
e−i∆̃τ ′

∫ ∞

−∞
G(∆̃′)e−i∆̃0τ2ei∆̃

′(τ ′−τ2) d∆̃′ dτ ′

+
1

u2
P̄1(u)

∫ τ

0
e−i∆̃τ ′

∫ ∞

−∞
G(∆̃′)

∫ τ2

0
e−i∆̃0τ2e−

1
2
γ̃2τ ′′2+i∆̃′(τ ′′+τ ′−τ2) dτ ′′ d∆̃′ dτ ′

+ P̄1(u)e
−i(∆̃0+∆̃)τ2

− 1

u
P̄1(u)e

−i(∆̃0+∆̃)τ2

∫ τ2

0
e−

1
2
γ̃2τ ′2+i∆̃τ ′ dτ ′.

Our plan of action from now on is to evaluate all the ∆̃ integrals first as those are easy. Now
we can write expression for σ̄(u, τ,−∆̃) = e−i(∆̃0−∆̃)τ σ̄S(u, τ,−∆̃) and assuming that τ3 = τ2
we get in the end of stage 3

σ̄(u, τ = τ2,−∆̃)

= −1

u
P̄1(u)e

−i2∆̃0τ2

∫ τ2

0
e−i∆̃(τ ′−τ2)e−

1
2
γ̃2(τ ′−τ2)2 dτ ′

+
1

u2
P̄1(u)e

−i2∆̃0τ2

∫ τ2

0
e−i∆̃(τ ′−τ2)

∫ τ2

0
e−

1
2
γ̃2τ ′′2e−

1
2
γ̃2(τ ′′+τ ′−τ2)2 dτ ′′ dτ ′

+ P̄1(u)e
−i2∆̃0τ2

− 1

u
P̄1(u)e

−i2∆̃0τ2

∫ τ2

0
e−

1
2
γ̃2τ ′2+i∆̃τ ′ dτ ′.
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Now we find P̄ (u, τ = τ2) =
∫∞
−∞G(∆̃′)σ̄(u, τ = τ2,−∆̃′) d∆̃′ and take inverse Laplace transform

using convolution theorem:

P (z̃, τ = τ2)

= −e−i2∆̃0τ2

∫ z̃

0
P1(z

′) dz′
∫ τ2

0
e−γ̃2(τ ′−τ2)2 dτ ′

+ e−i2∆̃0τ2

∫ z̃

0
(1− z′)P1(z

′) dz′
∫ τ2

0

∫ τ2

0
e−

1
2
γ̃2((τ ′−τ2)2+τ ′′2+(τ ′′+τ ′−τ2)2) dτ ′′ dτ ′

+ e−i2∆̃0τ2P1(z̃)

− e−i2∆̃0τ2

∫ z̃

0
P1(z

′) dz′
∫ τ2

0
e−γ̃2τ ′2 dτ ′.

(51)
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