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Abstract
In this thesis a model for analyzing organic molecules is developed using valence

bond theory. This was done by first considering a simple interaction between two
overlapping electrons and afterwards introducing the Hubbard model. This model
reflects the ability of interacting valence electrons on a lattice to move from site to
site as well as taking into account their on-site repulsion. From this an e�ective
Hamiltonian acting on a certain subspace of the Hilbert space is derived. A picture
formalism for analyzing the bonds between lattice sites is developed that greatly
simplifies the work of finding specific molecule’s ground state energies. Lastly, the
spin density of free radicals is analyzed.
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1 Introduction
The nature of the chemical bond has been widely studied for a long time and since the
beginning of the last century with the formulation of Quantum Mechanics, the study of
matter on the smallest of scales, along with Quantum Chemistry a more qualitative de-
scription of this bond has been given. The introduction of atomic orbitals helped describe
the bonds that atoms form across molecules and the concept of orbital hybridization – a
mixing of di�erent orbitals, such as (mainly) s and p orbitals – made it possible to describe
many types of valence bonds.

When an atom bonds with several other atoms in a molecule, such as methane CH
4

, the
valence electrons of the carbon atom can create hybridized orbitals equal in energy in order
to bond to the four hydrogen atoms in so called bonding orbitals. This demands a small
excitation of one s orbital but the energy to be gained by going into a bonding orbital
strongly outweighs this excitation.

Valence bond theory is one of two theories developed using Quantum Mechanics to de-
scribe chemical bonds. This theory allows us to look at how organic molecules act and
what the representation of a chemical bond is through a Quantum Mechanical perspective.
Chemists have been drawing these molecules and their bonds for years but their funda-
mental property is as much of interests to physicists as well as chemists.
In organic molecules the valence electrons of each atom interact and their wave functions
overlap. This overlap is crucial to valence bond theory as it allows electrons to move
across atoms in the molecule instead of remaining fixed at their constituent atom. This
hopping motivates the Hubbard model, reminiscent of the tight binding model, but one
that also takes into account the electron-electron repulsion of doubly occupied atoms. In
this model each atom is considered as a single orbital which only two electrons can occupy,
as electrons are fermions and therefore obey the Pauli exclusion principle.

Organic molecules can be modelled as simple lattices with sites arranging themselves in
di�erent configurations, so this is very much an issue of relevance in the field of solid-state
physics.

2 Chemical bonds in Quantum Mechanics
The chemical bond that exists between two atoms can be described using the Quantum
Mechanical wave function of the valence electrons of the constituent atoms. The elec-
trons are characterised by their quantum numbers: the principal quantum number n, the
azimuthal quantum number l, the magnetic quantum number m and the spin quantum
number s. n describes the orbital in which the electrons are found, s their spin, l their
rotational angular momentum and m the projection of angular momentum along the ẑ-
axis. In organic molecules the relevant orbitals are s (l = 0) and p (l = 1) orbitals as
well as hybridized versions of the two. The electronic quantum state belonging to l = 1
(i.e. Â

21≠1

, Â
210

and Â
211

) allow for a p
z

orbital and linear combinations allow for p
x

and p
y

orbitals. Carbon, the most important element in organic molecules, will be bound
to di�erent amount of atoms in di�erent molecules – the hybridizations (if there are any)
will vary dependent on the amount of bonds. The electron configuration of Carbon is
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1s22s22p2 with four valence electrons (the 2s and 2p electrons), so the orbitals will be sp,
sp2 and sp3 hybridized, taking the form of asymmetrical dumbbells (the p orbitals alone
are symmetrical dumbbells). For example in methane, where carbon bonds with four Hy-
drogen atoms, one of the 2s electrons is excited and the four unpaired valence electrons
go together to form four sp3 hybridized orbitals equal in energy.

2.1 Bonding and anti-bonding orbitals
The electrons in hybridized orbitals of di�erent atoms can overlap and their single particle
quantum states are the eigenstates the Hamiltonian represented by a 2x2 matrix

h =
5

Á
1

≠t
≠t Á

2

6
(1)

where t is the overlap of the wavefunctions defined as such

t = ≠ È1| H |2Í = ≠ È2| H |1Í (2)

and Á
1

and Á
2

the orbital energies of the two atoms.
The eigenvalues are

Á± = Á
1

+ Á
2

2 ±
Ú1Á

1

≠ Á
2

2

2
2

+ t2

giving rise to so called bonding and antibonding states. The energy decreases and increases
as

Ô
�2 + t2 (� is the half the di�erence between Á

1

and Á
2

) as a function of t of the bonding
and antibonding states respectively, such that the bonding state is the natural ground state
of the system, as it allows the electrons to move across the molecule (e�ectively creating
a larger potential well to move across and thus lowering the kinetic energy).

energy
anti-bonding orbital

bonding orbital

Figure 1: When an overlap of the wavefunctions of two electrons is present they have the
ability to go into one common orbital – one that lowers both of their energies and one that
raises them.

From the Slater determinant we find the total wavefunction of two electrons in the
bonding orbital

� = 1Ô
2

(|ø ¿Í ≠ |¿ øÍ)(u2 |11Í + v2 |22Í + uv{|12Í + |21Í}) (3)
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where |21Í refers to the second electron occupying the first atom and the first electron
occupying the second atom. The consequence of this is that both electrons can be found
on the same atom. In this there is a Coulomb interaction that must be accounted for, which
motivates the introduction of a two electron Hamiltonian that takes this into account:

h
2

=

S

U

|11Í 1Ô
2 (|12Í≠|21Í) |22Í

È11| 2Á
1

+ U ≠Ô
2t 0

1Ô
2 (È12|≠È21|) ≠Ô

2t Á
1

+ Á
2

≠Ô
2t

È22| 0 ≠Ô
2t 2Á

2

+ U

T

V (4)

Á
i

is the energy of an electron on the ith atom and U is the Coulomb interaction. To solve
this analytically we must set Á

1

= Á
2

= Á, giving the eigenstates of the total system as well
as the total ground state energy

E
gs

= 2Á + U

2 ≠
Û3

U

2

4
2

+ 4t2 (5)

|gsÍ = 1
2

Ú
1 ≠ U

2‘
(|11Í + |22Í) + 1

2

Ú
1 + U

2‘
(|12Í ≠ |21Í) (6)

where ‘ =


(U/2)2 + 4t2. From the ground state we find that for U æ Œ the probability
of the electrons being on the same atom goes to zero, and for U æ 0 it goes to 1

2

; for
large electron-electron repulsion we do not expect to find them on the same atom. When
there is no interaction there should be no preference. We note that the eigenstate is a
superposition of two singlet states (|11Í+|22Í is also a singlet state, i.e. S+[|11Í+|22Í] = 0,
since the electrons must have opposite spins to occupy the same atom).

The Hamiltonian in Eq. 4 is not simple to solve analytically but its eigenvalues and
eigenstates can be found using numerical analysis.

3 Numerical analysis of 3x3 Hamiltonian
While we had to set Á

1

= Á
2

= Á to solve the 3 ◊ 3 Hamiltonian of Eq. 4 analytically
we can still analyze it numerically without this restriction. Doing this it is natural to set
the zero point of the energy scale at one of the orbital energies and the coupling constant
t = 1. We can thus analyse the ground state energy and bonding energy of the system
where E

bonding

= E
gs

≠ Á
1

, if we set Á
2

= 0. Then Á
1

measures the detuning of the two
orbitals, allowing us to vary this as well as the interaction U for fixed (normalized) t.

Figure 2 indicates that the binding energy of the two atoms is largest around Á
1

≠
Á

2

= 0, and that the peak around this maximum increases for increasing U – thus for
larger Coulomb repulsion the binding energy increases and the energy to be gained by
forming a bond decreases. The binding energy decreasing for increased detuning seems
to indicate very frequent ionization between atoms and molecules. However, when the
detuning becomes larger the physical picture of one orbital pr. atom becomes unrealistic
as other energy levels on each atom will come into play and thus we cannot expect this
kind of random ionization to occur.
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Figure 2: The binding and ground state energy measured as a function of detuning, for
U = 4t and for U = 0, U = 1t, U = 2t, U = 3t and U = 4t. All energies measured in t.

4 Second quantization and the Hubbard Model
4.1 Creation and annihilation operators
We found that the total state of a two electron system required a 3x3 Hamiltonian (or in
the full basis a 4x4 Hamiltonian). Most interesting molecules contain more than two atoms,
so using the same procedure for larger systems would be rather tedious. It is therefore
useful to introduce the formalism of second quantization. In this formalism we introduce
the annihilation and creation operators c

i‡

and c†
i‡

, that annihilate and create electrons
respectively in the ith orbital (referring to the ith atom) with spin ‡. Accounting for
the antisymmetric nature of electrons the operators obey the following anticommutation
relations

{c
i‡

, c†
j‡

Õ} = ”
ij

”
‡‡

Õ (7a)

{c
i‡

, c
j‡

Õ} = {c†
i‡

, c†
j‡

Õ} = 0 (7b)

where the anticommutator is defined {A, B} © AB + BA. One important consequence of
the anticommutator relations (or rather an important fact reflected by these relations) is
that applying the same creation (or annihilation) operator twice to any state annihilates
it:

(c
i‡

)2 |ÂÍ = (c†
i‡

)2 |ÂÍ = 0

This is a reflection of the Pauli exclusion principle stating that no two fermions can
occupy the same quantum state, i.e. that their set of quantum numbers cannot be identical.
Thus we cannot create a state with two electrons in the same orbital with the same spin
and neither can one exist for us to annihilate in the first place.

These operators can be used to formulate spin states by acting on an empty vacuum
state, such that e.g. |ø ¿Í = c†

1øc†
2¿ |0Í corresponds to a state with spin up and down

electrons on the first and second atom respectively and |ø¿ 0Í = c†
1øc†

1¿ |0Í contains both
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electrons on the first atom. The order in which the operators act in defining the state is
arbitrary but must be consistent.
This formalism motivates the introduction of the Hubbard model, the (reduced, Á

1

= Á
2

=
0) Hamiltonian expressed in matrix form in Eq. 4. The model can be expressed as

H = ≠t
ÿ

<ij>,‡

(c†
i‡

c
j‡

+ c†
j‡

c
i‡

) + U
ÿ

i

n
iøn

i¿ (8)

The first term is the hopping term representing the energy of electrons moving between
neighboring sites equivalent to the tight binding Hamiltonian which does not take electron-
electron interaction into account. n

i‡

= c†
i‡

c
i‡

counts the number of electrons of spin ‡
on the ith atom, such that the second term annihilates the state unless site i is doubly
occupied, in which case it has eigenvalue U - thus the two terms can be (as in most
Hamiltonians) thought of as a kinetic (hopping) term and a potential (Coulomb) term. It
is clear that using the Hubbard model on the basis in which the Hamiltonians in Eqs. 1
and 4 was written (e.g. if |12Í æ |ø¿Í, |21Í æ |¿øÍ, etc.) indeed yields the matrix elements
given (or rather the tight binding model for the one-particle Hamiltonian in Eq. 1).

Note that the Hubbard model could easily incorporate di�erent on-site orbital energies
by including the term

q
i

(n
iø + n

i¿)Á
i

.

4.2 The e�ective Hamiltonian
The Hubbard model in Eq. 8 is very useful for many organic molecules where the bond
being analyzed is between di�erent Carbon atoms. Before moving on to specific examples
of this we introduce the projection operators P and Q, that are idempotent, mutually
orthogonal, and their sum identity

Q = Q2 P = P2 (9a)

QP = 0 P + Q = I (9b)

Q = nøn¿ P = 1 ≠ nøn¿ (9c)

The function of these operators is to project states in a N ◊N Hilbert space into n◊n
and m ◊ m subspaces, in which sites are either singly occupied (P) or doubly occupied
(Q), i.e. states where there is no Coulomb interaction and states where there is Coulomb
interaction. Using the relations in Eq. 9 we obtain an e�ective Hamiltonian H

e�

working
on di�erently projected states |Â

P

Í = P |ÂÍ and |Â
Q

Í = Q |ÂÍ with its own eigenvalues,
H

e�

|Â
P

Í = E |Â
P

Í (in this case acting on the P subspace). The e�ective Hamiltonian
comes directly from the Schrödinger equation H |ÂÍ = E |ÂÍ

PH |ÂÍ = PH(P + Q) |ÂÍ = PHP |Â
P

Í + PHQ |Â
Q

Í = E |Â
P

Í (10a)
QH |ÂÍ = QH(Q + P) |ÂÍ = QHQ |Â

Q

Í + QHP |Â
P

Í = E |Â
Q

Í
∆ |Â

Q

Í = (EI ≠ QHQ)≠1QHP |Â
P

Í (10b)

giving us the e�ective Hamiltonian acting on the P subspace

H(P )

e�

= PHP + PHQ(EI ≠ QHQ)≠1QHP = PHQ 1
E ≠ U

QHP (11)
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PHP = 0 since H brings a P state into the Q subspace and P annihilates it again. We
have also replaced (EI ≠ QHQ)≠1 with the scalar value (E ≠ U)≠1 since Q ensures only
Q states are left, such that QHQ simply gives a factor of U .
Writing the Hubbard Hamiltonian H = T + V, where T is the hopping term and V the
potential term only T can bring a state |Â

P

Í out of the P subspace. Thus the e�ective
Hamiltonian can be rewritten

H
e�

= P
5

1
E ≠ U

T QT
6
P (12)

The e�ective Hamiltonian crucially begins and ends in the P subspace, allowing for
transitions between states in this subspace (such as |ø¿Í æ |¿øÍ) along the way. Utilizing
this and using the formalism of second quantization to write spin operators we reformulate
the e�ective Hamiltonian as follows

Sz = 1
2(c†

øcø ≠ c†
¿c¿), S+ = c†

øc¿, S≠ = c†
¿cø (13)

H
e�

= P
5 ÿ

<ij>

t2

E ≠ U

ÿ

‡‡

Õ

(c†
i‡

c
j‡

c†
j‡

Õc
i‡

Õ + c†
j‡

c
i‡

c†
i‡

Õc
j‡

Õ)
6
P

= P
5 ÿ

<ij>

t2

E ≠ U

ÿ

‡‡

Õ

{”
‡‡

Õ(c†
i‡

c
i‡

Õ + c†
j‡

c
j‡

Õ) ≠ c†
i‡

c
i‡

Õc†
j‡

Õc
j‡

≠ c†
j‡

c
j‡

Õc†
i‡

Õc
i‡

}
6
P

= P
C

ÿ

<ij>

2t2

E ≠ U

3
1
2 ≠ S+

i

S≠
j

≠ S≠
i

S+

j

≠ 2Sz

i

Sz

j

4D
P = ≠ 4t2

E ≠ U

ÿ

<ij>

3
Ŝ

i

· Ŝ
j

≠ 1
4

4

(14)

to take the familiar form of the Heisenberg Hamiltonian for a lattice in the P subspace.
Like the Hubbard Hamiltonian, this is a nearest neighbor model. It is clear that for
the two electron triplet state |tÍ, H

e�

|tÍ = 0. For the two electron singlet state |sÍ =
(|ø¿Í ≠ |¿øÍ)/Ô

2,

H
e�

|sÍ = 4t2

E ≠ U
|sÍ = E |sÍ

Defining the interaction J = ≠4t2/(E ≠ U) we write the Hamiltonian

H
e�

= J
ÿ

<ij>

3
S

i

· S
j

≠ 1
4

4
(15)

It is clear that J > 0 (U > E) and thus the e�ective Hamiltonian has an antiferromag-
netic ground state since opposite spins will minimize S

i

· S
j

≠ 1/4.
As H

e�

|sÍ = ≠J |sÍ, nearest neighbor singlet bonds minimize the energy of a lattice. From
Eq. 10a, H

e�

|Â
P

Í = E |Â
P

Í and noting that H
e�

itself is a function of E (Eq. 14) we
conclude that its eigenvalues must be solved self-consistently to know the precise value
of J . However, knowing that J > 0 is enough to know that we need to look for anti
ferromagnetic coupling and we do not need to know its precise value.

Since the singlet state is the ground state (E
s

= ≠J < E
t

= 0) it is clearly preferable
for two electrons to form a singlet bond and not a triplet bond. Therefore when studying
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organic molecules we will look for the lowest spin state, i.e. the ones with as many nearest
neighbor singlet bonds as possible – in the picture language developed in section 5.1 these
are represented as double bonds.

4.2.1 From Hubbard to He�

In section 2.1 we found the ground state of the two-electron Hubbard model to be a
superposition of two singlet states – one with the electrons occupying separate atoms and
one with them occupying the same atom, i.e., one belonging to the P subspace and one
belonging to the Q subspace. The e�ective Hamiltonian was derived simply by multiplying
both sides of H |ÂÍ = E |ÂÍ with P such that |Â

P

Í, the eigenstates of H
e�

are merely the
parts of the Hubbard Hamiltonian eigenstates belonging to the P subspace. The singlet
|sÍ = (|ø¿Í ≠ |¿øÍ)/Ô

2 is the ground state of the e�ective Hamiltonian so H
e�

|sÍ =
4t2/(E ≠ U) = E |sÍ (Eq. 10a). Solving for E gives

E = U

2 ≠
Û3

U

2

4
2

+ 4t2

giving us the same ground state energy as in Eq. 5 for the Hubbard model.

5 Picture formalism and singlet projection
5.1 Picture formalism
In the preceding section we developed a model to analyze bonds between nearest neighbor
atoms on a lattice. Any organic molecule could be modelled by such a lattice. Carbon is
the building block of organic molecules and di�erent bonds are formed in these molecules.
These bonds can be represented by the skeletal formula [1] or picture formalism, where the
placement of the majority of the atoms is implicit. As an example a chain of four Carbon
atoms can be represented with this formula as seen in figure 3.

1 3
2 4

(a) (b)

(c)

Figure 3: A chain of Carbon atoms with singlet bonds placed between di�erent lattice
sites. The dashed lines represent non-nearest neighbor singlet bonds.

Singlet bonds are represented as double bonds for nearest neighbors and single (some-
times dashed) lines between non nearest neighbor sites, such that the state in figure 3a
has two nearest neighbor singlet bonds between sites 1 and 2 as well as between sites 3
and 4. The state in figure 3b has a nearest neighbor bond between sites 2 and 3 and a non
nearest neighbor bond between sites 1 and 4. Introducing the singlet creation operator

S†
ij

= 1Ô
2

(c†
iøc†

j¿ ≠ c†
i¿c†

jø) (16)
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(a) (b) (c)

Figure 4: We cannot have crossed bonds on our real space lattice. Of the three possible
ways of arranging two bonds onto four sites only the first two are allowed in the above
picture.

we can using these find the quantum states of the configurations above exactly like for
fermionic creation operators – note that not only is S†

ij

= S†
ji

, it is also a bosonic creation
operator, such that when dealing with several singlet bonds the operators commute.

The states in figure 3 are not linearly independent and in fact sum to zero, Â
3a

+Â
3b

+
Â

3c

= 0. Another important linear dependence is seen in figure 5 – both of these can
be shown using the singlet creation operator in Eq. 16, noting that [S†

ij

, c†
kø] = 0. For

example, |3aÍ = S†
12

S†
34

|0Í.

(a) (b) (c)

Figure 5: Like the states in figure 3, the states seen here are linearly dependent, Â
5a

+
Â

5b

+ Â
5c

= 0.

5.2 Singlet projection
Having shown that the e�ective Hamiltonian is the Heisenberg model and knowing that
the energy of a nearest neighbor singlet bond is ≠J , H

e�

|sÍ = ≠J |sÍ, we now have the
tools required to calculate the ground states of molecules of interest. The Hamiltonian is a
nearest neighbor model so all required is to act on each nearest neighbor couple. However
before we proceed any further we must know how the model acts on nearest neighbor
couples that do not form a singlet bond – as an example we can act with S

2

· S
3

≠ 1

4

on
the state in figure 3a:

5
S

2

· S
3

≠ 1
4

6
=

5
S

2

· S
3

≠ 1
4

6
1
2 (|ø¿ø¿Í ≠ |ø¿¿øÍ ≠ |¿øø¿Í + |¿ø¿øÍ)

5
Sz

2

Sz

3

+ 1
2

!
S+

2

S≠
3

+ S≠
2

S+

3

"6
1
2 (|ø¿ø¿Í ≠ |ø¿¿øÍ ≠ |¿øø¿Í + |¿ø¿øÍ)

1
4 (|øø¿¿Í ≠ |ø¿ø¿Í ≠ |¿ø¿øÍ + |¿¿øøÍ) = 1

2 (17)

Evidently acting on a nearest neighbor pairing with the Heisenberg Hamiltonian where
a singlet bond is not present creates one between those sites as well as an additional
bond between the two adjacent sites (in this case site 1 and 4). Introducing the projection
operator p̂

ij

= ≠ !
S

i

· S
j

≠ 1

4

"
that projects any state into one with a double bond between
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sites i and j (i and j are nearest neighbors as the Hamiltonian is a nearest neighbor model),
we can once more rewrite the Hamiltonian as

H = ≠J
ÿ

<ij>

p̂
ij

(18)

where J is the exchange interaction – note that we dropped the subscript on H
e�

since for
all intents and purposes this is the Hamiltonian.
Since two linearly independent singlet states are allowed for four sites, each singlet bond
is unique to a specific state - i.e. S†

23

in Â
3b

and S†
12

in Â
3a

- thus projecting a state into
one with nearest neighbor bond between two sites is the same as projecting the state into
the only allowed state with that exact singlet bond. I.e. p̂

23

is a projection into |3bÍ and
as such can be written

p̂
23

= |3bÍ È3b| (19)
and therefore it is clear from this definition that p̂

23

|3aÍ = ≠ 1

2

|3bÍ. È3b|3aÍ = ≠ 1

2

, as seen
from Eq. 17 where both states are written. Thus p̂

ij

is a projection operator like any
other. It can similarly be shown that acting on the states in figure 5 with the projection
operator p̂

ij

on a state where i or j carries the unpaired spin will create a singlet bond
between i and j and move the unpaired spin to the (now) vacant site:

5
S

1

· S
2

≠ 1
4

6

1

2

3
=

5
S

1

· S
2

≠ 1
4

6
1Ô
2

(|øø¿Í ≠ |ø¿øÍ)

= 1
2
Ô

2
(|ø¿øÍ ≠ |¿øøÍ) = 1

2 ∆ p̂
12

= ≠1
2 (20)

The factor of ≠ 1

2

can more simply be shown by utilizing the linear independences of
both figure 3 and 5. For example, p̂

12

(Â
3a

+ Â
3b

+ Â
3c

) = (1 + 2–)Â
3a

= 0 ∆ – = ≠ 1

2

. In
fact each triangle state is an eigenstate of the Hamiltonian with eigenvalue ≠3J/2. Since
two of these are linearly independent the eigenstates are degenerate.

H = ≠J + 1
2

A
+

B
= ≠3

2J (21)

Most interesting molecules have more than 3 or 4 lattice sites, but the above relations
are still immensely useful and important; only a part of the molecule needs to have the
configurations in figures 3 and 5 – when acting with the projection operator, p̂

ij

on a larger
molecule the non nearest neighbor sites of i and j can essentially be thought of as some
factor of creation operators that commute with the projection operator and as such do not
interfere with it. For a given lattice we look for the lowest spin state but this is di�erent
from an even number of lattice points to an odd number of lattice points. For n electrons
the addition of spin angular momentum yields the following total spin states

total spin, s =
;

0 . . . n

2

for n even
1

2

. . . n

2

for n odd
Each spin state carries some degeneracy (there is a set of linearly independent states

with spin s for n electrons) and the lowest spin state may have multiple configurations.
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The degeneracy can be counted (see figure 6) for low enough numbers of electrons, but for
many particles it becomes tedious and other methods are preferred.

1

2

1

0

3

2

1

2

1

2

2 . . .

1 . . .

1 . . .

0 . . .

1 . . .

0 . . .

n 1 2 3 4 . . .

Figure 6: Adding an electron can either raise or lower (as long as s > 0) the total spin of
the system by 1

2

creating one (if s = 0) or two new states. From this we confirm that for
three electrons two spin- 1

2

doublets exist and for four electrons two singlets exist and thus
the linear dependences from figure 3 and 5 must hold.

6 Ground state of organic molecules
From figure 6 we know the degeneracy of each spin state and thus the size of our basis.
We know how the Hamiltonian acts on basis states so we can now write the matrix rep-
resentation of the Hamiltonian and find the ground state looking for the lowest possible
spin state.

6.1 Benzene
Benzene consists of bonds between six electrons – six spin- 1

2

particles allow for 5 linearly
independent singlet states. The singlet states are represented in the skeletal formula in
figure 7.

Referring to the states in figure 7 (a)-(e) as |AÍ, |BÍ, |cÍ, |dÍ and |eÍ respectively we can
use this basis of singlet states to determine the Hamiltonian in matrix form and find the
eigenvalues and eigenstates. The basis contains two low energy states with three double
bonds (|AÍ and |BÍ) as well as three slightly higher energy states the three Dewar states
(|cÍ, |dÍ and |eÍ). These states contain a singlet bond between non nearest neighbor sites.
It was stated above that the projection operator, p̂

ij

is only relevant to sites i and j and
their nearest neighbors. For example, p̂

16

is a projection into either |AÍ or |cÍ, depending
on how the rest of the molecule the operator is acting on looks. E.g., acting on |BÍ
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1 2

3

45

6

(a) (b) (c) (d) (e)

Figure 7: The five singlet states of Benzene.

p̂
16

= |cÍ Èc|BÍ = ≠1
2 |cÍ = ≠1

2 (22)

since |BÍ and |cÍ have the same singlet bond between sites 3 and 4. As Èc|BÍ = ≠ 1

2

(see
Appendix A) the projection operator indeed yields the correct result . Clearly we do not
need to do rigorous calculations to understand how the Hamiltonian acts on basis states
as the picture formalism is more than adequate.

The Hamiltonian will project |AÍ and |BÍ into themselves (not each other) and into
the three Dewar states (figure 7(c)-(e)) such that

H |AÍ = ≠3J |AÍ + 1
2J(|cÍ + |dÍ + |eÍ), H |BÍ = ≠3J |BÍ + 1

2J(|cÍ + |dÍ + |eÍ) (23a)

H |iÍ = ≠2J |iÍ + J(|AÍ + |BÍ), i = c, d, e (23b)

giving us the 5 ◊ 5 Hamiltonian of the form:

h = J

S

WWWWWWWWWU

≠3 0 1 1 1

0 ≠3 1 1 1
1

2

1

2

≠2 0 0
1

2

1

2

0 ≠2 0
1

2

1

2

0 0 ≠2

T

XXXXXXXXXV

(24)

The first thing to note about this is that the matrix representation of the Hamiltonian
is not hermitian – this is due to the fact that the basis is not orthogonal as we specifically
saw above for |BÍ and |cÍ. If the basis had been orthonormal then all o� diagonal elements
would be zero as |iÍ Èi|jÍ = ”

ij

|iÍ, i.e. the Hamiltonian could not project basis states into
others. Having expressed the Hamiltonian as a matrix, we can now find the eigenvalues
and eigenstates of the Hamiltonian with ease. The ground state energy is

E
gs

= ≠1
2

1
5 +

Ô
13

2
J ¥ ≠4.30J (25)

Not surprisingly it is lower than the lowest energy of the basis states. The ground state
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is:

|gsÍ = ≠2.3028

Q

ca +

R

db + + + (26)

And again, not surprisingly the two low energy states weigh the most.

6.2 Pentagonal lattice
Looking at a similar molecule with five lattice sites instead of six, the lowest spin state is
a spin- 1

2

doublet. With five electrons there are five of these. Each doublet has two double
bonds and the remaining lattice site carries an unpaired electron.

(a) (b) (c) (d) (e)

Figure 8: Five lattice sates arranged periodically with a period of 72¶ with one uncoupled
electron.

Each state in this basis is the previous state rotated 72¶, so naturally the the Hamil-
tonian works similarly for all of them.

H = ≠2J + 1
2J

Q

a + +

R

b

= ≠2J + 1
2J

Q

a + ≠ ≠
R

b (27)

and generally, if |nÍ refers to the state with unpaired spin on the nth site

H |nÍ = ≠2J |nÍ + 1
2 (|n + 2Í + |n ≠ 2Í ≠ |n + 1Í ≠ |n ≠ 1Í) (28)

for cyclical n. Clearly the basis states are not eigenstates of the Hamiltonian. However,
since the valence electrons move in a periodic potential (we can essentially think of it as the
unpaired spin moving around in a periodic potential) it would be appropriate to introduce
Bloch states [2] |kÍ =

q
n

eikn |nÍ, where k = (2fi/5)l (setting the lattice spacing a = 1) is
the electron’s wave number and l is an integer.

H |kÍ =
ÿ

eikn

1
≠ 2J |nÍ + J cos 2k |nÍ ≠ J cos k |nÍ

2
= (≠2J + J cos 2k ≠ J cos k) |kÍ

proving that Bloch states are indeed eigenstates of the Hamiltonian. Since |k| Æ fi,
the five values of k within the Brillouin zone are used (l = ≠2, ≠1, 0, 1, 2) to find the
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eigenvalues of the Hamiltonian which are found to be identical to the ones found from the
5 ◊ 5 Hamiltonian constructed by the basis states in figure 8 using Eq. 28 (see Appendix
B). Thus the ground state energy is found as

E
gs

= ≠1
2

1
4 +

Ô
5
2

J

lowering the energy by (
Ô

5/2)J ¥ 1.18J compared to each basis state. We note that
the ground state is doubly degenerate for k = ±2fi/5. These two values of k correspond to
the unpaired spin moving around the molecule with equal but opposite momentum. Not
all too surprisingly these correspond to the same energy.

6.3 Benzyl
Molecules such as the pentagon and Benzene ring analyzed are not always found on their
own. Benzene especially is often a small but vital part of a larger organic compound so it
makes sense to study a molecule similar to Benzene but with an extra lattice site added
outside one of the corners. This lattice is part of the benzyl group where an extra Carbon
atom takes the place of one of the six Hydrogen atoms of Benzene and thus making room
for more bonds and thereby a larger molecule. This seems like an innocuous change to
the system, but actually makes quite a di�erence. As for odd numbers of electrons, the
lowest spin state is a spin- 1

2

doublet. For seven electrons fourteen possible spin- 1

2

states are
allowed with singlet bonds arranging themselves in all manners of di�erent configurations
and an unpaired spin placing itself at the remaining site. The fourteen doublet states are
sketched below (note that five of them are the familiar Benzene singlets with the unpaired
spin at site 1).

1

2 3

4

56

7

|1Í |2Í |3Í |4Í |5Í

|6Í |7Í |8Í |9Í |10Í

One noticeable thing about the basis is that the unpaired spin (now just symbolized by
an unconnected site and not explicitly by an arrow) is always found on the odd numbered
sites (see |1Í for numeration) and all singlet bonds are between odd and even numbered
sites, not just the nearest neighbor bonds. When acting on the basis states with the
Hamiltonian, half of them are at least once (seemingly) brought out of the Hilbert space
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|11Í |12Í |13Í |14Í

but each of these new states can be shown to be linear combinations of the basis states
using both linear linear dependences reviewed above – an example is provided below. We
see that p̂

72

|9Í creates the state below, which is the linear combination of basis states
given in Eq. 29.

≠2p̂
72

|9Í = = ≠ ≠ ≠ ≠ ≠

(29)
It is quite impressive that using just the two linear independences from figure 3 and

5 any singlet state can be expressed as linear combinations of our fourteen basis states.
Having done this with all supposed out-of-basis states, the Hamiltonian can be expressed
in matrix form (see Appendix C) and the ground state energy can be found as

E
gs

= ≠4.7949J

thus lowering the energy slightly compared to the ground state of Benzene.
As for all lattices with odd-numbered sites there is an uncoupled spin. This motivates
the question of spin density – i.e., what is the spin density of the benzyl ground state
for a specific site? In each basis state one site carries the uncoupled spin, so naturally
Sz

i

|jÍ = 1/2 |jÍ if site i carries the uncoupled spin in |jÍ, but for all other sites |jÍ is not an
eigenstate of Sz

i

. We want to answer the question: where is the spin in the ground state?

7 Ground state spin density
7.1 Benzyl spin density
The ground state is a linear combination of the fourteen basis states and each basis state
carries the uncoupled spin at some fixed site but we want to know the weight with which
each site carries the spin of the ground state, i.e. what is ÈÂ

0

| Sz

j

|Â
0

Í for each site.
To begin with we only need to look at the states in figure 5 which provide a simple

insight into how the spin operator works for larger radicals. For three sites two doublets
and one quadruplet exist (see figure 6) – thus we have three states with total S

z

= 1

2

:

|1/2, 1/2Í(1) = 1Ô
2

(|øø¿Í ≠ |ø¿øÍ) , |1/2, 1/2Í(2) = 1Ô
2

(|¿øøÍ ≠ |øø¿Í) (30a)
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|3/2, 1/2Í = S≠ |øøøÍ = 1Ô
3

(|øø¿Í + |ø¿øÍ + |¿øøÍ) (30b)

We define the (unnormalized) state

|ÂÍ = Sz

2

|1/2, 1/2Í(1) = 1
2
Ô

2
(|øø¿Í + |ø¿øÍ) (31)

which can be written as a linear combination of the states in Eq. 30a and 30b

|ÂÍ = 1Ô
6

|3/2, 1/2Í ≠ 1
6 |1/2, 1/2Í(1) ≠ 1

3 |1/2, 1/2Í(2)

Measuring the spin of a site bound to another thus gives a quadruplet, the same doublet
and another doublet – in the context of the Benzyl lattice studied above, if this other
doublet carries the spin at an even numbered site we can write it as a linear combination
of two allowed states – where the unpaired spin is at odd numbered sites. As not all basis
states are eigenstates of Sz

j

, the spin operators must be represented as matrices in the
basis used for our Hamiltonian.
Calculating the spin density of each site in the ground state could be done with ÈÂ

0

| Sz

i

|Â
0

Í,
but as our basis is not orthogonal we would prefer to calculate it without using the inner
product (even normalizing the eigenstates requires using the inner product). Thus we need
to derive an expression for the ground state expectation value of Sz

j

. This can be done by
considering the spin as a perturbation of the original Hamiltonian (i.e. if a magnetic field
along the ẑ-axis were present).
We define – as a matrix where each is column is an (unnormalized) eigenstate of the
Hamiltonian and — its inverse.

We know that h–
i

= Á
i

–
i

(Á
i

is the eigenvalue corresponding to the ith column, –
i

and
h is the matrix representation of the Hamiltonian in our basis) as well as —

i

h = Á
i

—
i

(an
eigenvalue equation where h acts to the left), where —

i

is the ith

row in —. If we now let
h æ h

0

+ h
1

, where h
1

is the ”perturbation”, i.e. the matrix representation of Sz

j

in the
same basis, and –

i

æ –
(0)

i

+ –
(1)

i

and Á
i

æ Á
(0)

i

+ Á
(1)

i

, then to first order we get

h
0

–
(1)

i

+ h
1

–
(0)

i

= Á
(1)

i

–
(0)

i

+ Á
(0)

i

–
(1)

i

∆ —
i

h
0

–
(1)

i

+ —
i

h
1

–
(0)

i

= Á
(0)

i

—
i

–
(1)

i

+ Á
(1)

i

—
i

–
(0)

i

The first term on each side cancels giving us the expression needed

Á
(1)

i

= ÈÂ
i

| Sz |Â
i

Í = —
i

h
1

–
(0)

i

(32)

Equating how the spin operators act on the 3 site states above with how it acts on our
basis is simple and two examples are given below – one where we measure the spin of an
allowed (odd) site and on a forbidden (even) site.

Sz

1

= ≠1
6 ≠ 1

3 (33)
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Table 1

site spin density
1 0.3254
2 ≠0.1614
3 0.2034
4 ≠0.1278
5 0.1849
6 ≠0.1278
7 0.2034

Sz

2

= ≠1
6 ≠1

3 = ≠1
6 +1

3

Q

ccccccca

+

R

dddddddb

(34)
Knowing how the spin operators work on our basis states, we can write the matrix

representation of Sz

j

(j = 1 . . . 7) and thereby, using Eq. 32, find the spin density of each
site in the Benzyl ground state – the matrix representations are written in Appendix D.
The results are given in table 1 and visualized in figure 12.

Figure 12: The sign of each site’s spin density is here shown with either a red (+) or blue
(-) dot.

While the Hamiltonian in Eq. 15 clearly prefers an antiferromagnetic ground state,
each Benzyl basis state only specifies that individual singlet bonds have opposite spins,
not that every nearest neighbor couple has opposite spins. However these results confirm
the antiferromagnetic coupling – on average, each site carries spin of opposite sign of its
nearest neighbors’ spin. This is possible due to the structure of the lattice – if site 1
had been placed among the rest of the sites, not each site would have opposite signed
neighbors. For this reason it would be practical to return to the pentagonal lattice studied
in section 6.2.

7.2 Pentagonal lattice spin density
The spin operators act on the basis states similarly
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Sz

1

5
1

2

34
= ≠1

6 ≠ 1
3 = ≠1

6 + 1
3

Q

a +

R

b (35)

Sz

2

= ≠1
6 ≠ 1

3 (36)

Eqs. 35 and 36 can be generalized as

Sz

n

|nÍ = 1
2 |nÍ (37a)

Sz

n

|n ± 1Í = 1
6 |n ± 1Í + 1

3 |n û 1Í (37b)

Sz

n

|n ± 2Í = ≠1
6 |n ± 2Í ≠ 1

3 |nÍ (37c)

once again for cyclical n with |nÍ referring to the state with unpaired spin at site n.
We calculate the spin density of each site of the two ground states using Eq. 32 and these
are visualized in 13.

Figure 13: The sign of each site’s spin density in the pentagonal lattice shown as before
for the two ground states.

As suspected each ground state does not have perfect antiferromagnetic coupling. From
the principle of superposition, any linear combination of the two ground states will natu-
rally also be a ground state of the Hamiltonian.

7.2.1 The Jahn-Teller e�ect

The symmetry of a molecule such as the pentagonal lattice can be broken in order to
reduce the energy of the system. The Jahn-Teller e�ect [3] states that any molecule
with a degenerate groundstate will undergo a distortion that removes the degeneracy of
the ground state. This corresponds to reducing the distance between two sites and thus
the interaction J varies from nearest neighbor couple to nearest neighbor couple and the
Hamiltonian becomes perturbed by the term

H Õ = ≠�J cos (n�k + „) = ≠�J cos
3

4fi

5 n + „

4
(38)

where �k = 4fi/5 is the di�erence between the two ground state Bloch waves of the
unperturbed Hamiltonian and „ is a phase factor determining where this perturbation
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0.1 0.2 0.3 0.4
ΔJ

-3.0

-2.5

-2.0

-1.5

-1.0

ε

Figure 14: The perturbation of the eigenvalues of the Hamiltonian as a function of the
parameter �J .

starts. For „ = 0 the perturbation is largest at n = 5 (whereever in the lattice that may
be chosen to be). As seen in figure 14 the two ground state energies increase and decrease
linearly with �J .

J increases quadratically with t (which increases for smaller site-to-site separation) and
for a given �J the linearly decreasing perturbation and quadratically decreasing ≠J will
intersect at which point the minimum energy is found – this value of �J is ”chosen” by the
molecule itself and the ground state is stable but not degenerate. The Jahn-Teller theorem
states exactly this: stability and degeneracy of the ground state are not simultaneously
possible.

8 Conclusion
In this thesis I have developed a model to analyze organic molecules using valence bond
theory and a simple picture language. Having shown that the Hubbard model which acted
on two subspaces of the Hilbert space could be reduced to two e�ective Hamiltonian’s
acting on each subspace, one of which was our primary focus. Using the formalism of
second quantization and a neat method of counting the degeneracy of a spin state for a
specific amount of electrons it was possible to set up two simple linear dependences of lat-
tices with respectively three and four sites that were immensely useful in regards to larger
compounds. The picture formalism gave us the means to understand how the Hamilto-
nian acts on basis states of di�erent lattices and thus finding the ground state energies of
three kinds of organic molecules. Using just a simple triangular lattice with three sites we
understood how the spin operator Sz acts on free radicals allowing us to calculate the spin
density of two of our lattices and understanding the kind of antiferromagnetic coupling
existent in organic molecules.
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Appendices
A Overlap of Benzene States
The quantum representation of the states in figure 7b and 7c are

|BÍ = S†
12

S†
34

S†
56

|0Í
= 1Ô

8
(|ø¿ø¿ø¿Í ≠ |¿ø¿ø¿øÍ + |¿ø¿øø¿Í ≠ |¿øø¿ø¿Í + |¿øø¿¿øÍ ≠ |ø¿¿øø¿Í + |ø¿¿ø¿øÍ ≠ |ø¿ø¿¿øÍ)

(39)

|cÍ = S†
61

S†
34

S†
25

|0Í
= 1Ô

8
(|¿¿ø¿øøÍ ≠ |¿¿¿øøøÍ + |¿ø¿ø¿øÍ ≠ |¿øø¿¿øÍ + |ø¿¿øø¿Í ≠ |ø¿ø¿ø¿Í + |øøø¿¿¿Í ≠ |øø¿ø¿¿Í)

(40)

and indeed Èc|BÍ = ≠ 1

2

B Five-site Hamiltonian
The Hamiltonian matrix representation of the pentagonal lattice system is

h = J

S

WWWWWWWU

≠2 ≠ 1

2

1

2

1

2

≠ 1

2

≠ 1

2

≠2 ≠ 1

2

1

2

1

2

1

2

≠ 1

2

≠2 ≠ 1

2

1

2

1

2

1

2

≠ 1

2

≠2 ≠ 1

2

≠ 1

2

1

2

1

2

≠ 1

2

≠2

T

XXXXXXXV

(41)

In the picture formalism the (unnormalized) ground states can be presented as such

|gs
1

Í = 0.618

Q

a ≠
R

b ≠ + (42)

|gs
2

Í = ≠ ≠ 0.618

Q

a ≠
R

b + (43)

C Benzyl Hamiltonian
Using the basis states for the Benzyl molecule the Hamiltonian can be expressed in matrix
form:
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h = J

S

WWWWWWWWWWWWWWWWWWWWWWWWU

≠3 0 1 1 1 1

2

0 0 ≠ 1

2

0 ≠ 1

2

≠ 1

2

≠ 1

2

1

2

0 ≠3 1 1 1 0 0 0 0 0 0 0 0 1
1

2

1

2

≠2 0 0 0 1

2

≠ 1

2

0 ≠ 1

2

0 0 0 0
1

2

1

2

0 ≠2 0 0 0 0 ≠ 1

2

0 0 0 0 1

2

1

2

1

2

0 0 ≠2 0 0 0 0 0 0 0 ≠ 1

2

1

2

1

2

0 0 0 0 ≠3 1 0 1

2

0 0 1

2

0 1
0 0 1

2

0 0 1

2

≠2 0 0 ≠ 1

2

0 0 0 1

2

0 0 0 0 0 0 1

2

≠5/2 1

2

≠ 1

2

0 1 0 1

2

0 0 0 0 0 1

2

0 1

2

≠5/2 0 ≠ 1

2

0 0 1
0 1

2

0 0 0 0 1

2

≠ 1

2

0 ≠7/2 1 0 1

2

1

2

0 0 0 1

2

0 0 0 0 ≠ 1

2

1

2

≠5/2 0 0 1

2

0 0 0 0 0 0 0 1

2

0 0 0 ≠3/2 ≠ 1

2

1

2

0 0 0 0 1

2

1

2

0 0 0 1

2

0 ≠ 1

2

≠7/2 3/2
0 0 0 0 0 0 0 0 1

2

0 0 0 1

2

≠2

T

XXXXXXXXXXXXXXXXXXXXXXXXV

(44)
and the (unnormalized) ground state is

|Â
0

Í = ≠5.36421 |1Í ≠ 2.84991 |2Í + 2.534 |3Í + 1.01969 |4Í + 0.56151 |5Í
+1.73923 |6Í ≠ 0.182422 |7Í + 1.51431 |8Í ≠ 1.51431 |9Í + 4.25353 |10Í

≠1.69673 |11Í ≠ |12Í ≠ 4.07543 |13Í + |14Í (45)

D Sz Matrix Representation
The basis states are not eigenstates of all Sz operators, so in our calculation of each site’s
spin density we need to derive each site’s spin operator’s matrix representation.
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sz

1

=

S

WWWWWWWWWWWWWWWWWWWWWWWWWWWWWWU

1

2

0 0 0 0 ≠ 1

3

0 0 0 0 0 0 0 0
0 1

2

0 0 0 0 0 ≠ 1

3

0 ≠ 1

3

0 0 0 ≠ 1

3

0 0 1

2

0 0 0 ≠ 1

3

0 0 0 0 0 0 0
0 0 0 1

2

0 0 0 0 ≠ 1

3

0 ≠ 1

3

0 0 0
0 0 0 0 1

2

0 0 0 0 0 0 ≠ 1

3

≠ 1

3

0
0 0 0 0 0 ≠ 1

6

0 0 0 0 0 0 0 0
0 0 0 0 0 0 ≠ 1

6

0 0 0 0 0 0 0
0 0 0 0 0 0 0 ≠ 1

6

0 0 0 0 0 0
0 0 0 0 0 0 0 0 ≠ 1

6

0 0 0 0 0
0 0 0 0 0 0 0 0 0 ≠ 1

6

0 0 0 0
0 0 0 0 0 0 0 0 0 0 ≠ 1

6

0 0 0
0 0 0 0 0 0 0 0 0 0 0 ≠ 1

6

0 0
0 0 0 0 0 0 0 0 0 0 0 0 ≠ 1

6

0
0 0 0 0 0 0 0 0 0 0 0 0 0 ≠ 1

6

T

XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXV

(46)

sz

2

=

S

WWWWWWWWWWWWWWWWWWWWWWWWWWWWWWU

1

3

0 0 0 0 1

3

0 0 ≠ 1

3

0 0 ≠ 1

3

0 0
0 1

3

0 0 0 0 0 ≠ 1

3

0 1

3

0 0 0 ≠ 1

3

0 0 1

3

0 0 0 1

3

≠ 1

3

0 0 0 0 0 0
0 0 0 1

3

0 0 0 0 ≠ 1

3

0 1

3

0 0 0
0 0 0 0 1

3

0 0 0 0 0 0 ≠ 1

3

1

3

≠ 1

3

1

3
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