


Abstract

English: After the introduction of the important tools and concepts used in many
body problems, a brief introduction to the BCS-model of superconductivity will be given,
including different properties of a superconductor.

The main part of this thesis is concerned with the effect of (magnetic) impurities in
superconductors, where we will assume that the wave function of the superconducting
system is spherical symmetric, i.e. we deal with s-wave-superconductors, and we assume
that they are Type-I. The results for the impurity state energy as shown by A.I. Rusinov
and P.N. Lebedev in their paper from 1969 [2] as well as the results found by other authors
will be reproduced. The wave function is found and transport through a Josephson
junction of zero length with superconductors with different phase of the gap parameter
∆ on the right/left side is discussed.

Danish: Efter en introduktion af de vigtigste værktøjer og koncepter som bruges i
flerpartikel problemer, gives en kort introduktion til BCS-teorien for superledning. I den
forbindelse gennemg̊as nogle af superlederes egenskaber.

Størstedelen af denne rapport beskæftiger sig med effekten af (magnetiske) urenheder
i superledere. Vi antager at bølge funktionen og de involverede potentialer er sfærisk
symmetriske dvs. vi ser p̊a ”s-wave” superledere, og antager at superlederen er af type
I. Resultaterne for urenheders tilstandsenergi som vist af A.I. Rusinov og P.N. Lebe-
dev i deres artikel fra 1969 [2] samt resultater fra andre autorer vil blive reproduceret.
Bølgefunktionen for disse tilstande bliver bestemt og elektrontransport gennem en Joseph-
son junction af længde 0 diskuteres for superledere med forskellig fase p̊a gab parameteren
∆ for højre/venstre side.

1



Contents

1 Introduction 4
1.1 Tools and concepts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

1.1.1 Second Quantization . . . . . . . . . . . . . . . . . . . . . . . . . 4
1.1.2 Quasi-particles . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
1.1.3 Transformations . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
1.1.4 Mean-field theory . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
1.1.5 Scattering theory: S-matrices and phase shift . . . . . . . . . . . . 7

2 The superconducting system 8
2.1 Microscopic properties . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
2.2 Quantum mechanic description . . . . . . . . . . . . . . . . . . . . . . . . 8

2.2.1 BCS-potential, Coulomb-potential, screening electrons, phonon-
interaction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

2.2.2 BCS ground state and BCS-Hamiltonian . . . . . . . . . . . . . . . 10

3 Impurities in superconductors 14
3.1 Shiba states . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

3.1.1 Excitation energy and wave function for interactions with classical
spin - S-matrix method . . . . . . . . . . . . . . . . . . . . . . . . . 15

3.2 Current through Josephson junction with two (different) superconductors . 19
3.2.1 Junctions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
3.2.2 Subgap states for a SIS-junction . . . . . . . . . . . . . . . . . . . . 20
3.2.3 Supercurrent through impurity/SIS-junction . . . . . . . . . . . . . 23

4 Conclusion and references to the results of others 26

5 Appendices 27

2



Acknowledgement

I want to thank Jens Paaske for the whole process, which made this project possible and
gave me a completely different look on research. Thanks for all the time and effort

spend on this project and all the help given. Even when asking for help late at night an
answer came within minutes!

3



1 Introduction

The main goal of this project is to explore some of the features of superconductors,
the theories and different concepts involved to describe the superconducting state and the
effect of impurities and constrictions. Thermodynamically superconductivity is considered
a second order phase transition, which is seen in many metals, but also in other matter.

The most successful theory in describing the superconducting state, which by no means
is restricted to metals and electric conductivity, but also describes superfluids like super-
cooled Helium, is the theory developed by Bardeen, Cooper and Schrieffer, called the
”BCS-theory of superconductivity”. For this theory they received the Nobel price in 1972
1.

Some of the properties of superconductors are a gap in the conduction band of the size
2∆, a critical temperature Tc, at which the metal changes from a normal metal for T > Tc
to a superconductor for T < Tc. Superconductors are in general affected by external
magnetic fields, who destroy superconductivity when strong enough. They are subject
to the Meissner-Ochsenfeld effect, i.e. they expell all magnetic flux when in the super-
conducting state. Superconductors are divided in two by this effect of magnetic fields,
where the Type-I-superconductors have a critical field strength Hc (temperature depen-
dent) where superconductivity is destroyed, while the Type-II-superconductors (most of
them high-Tc-superconductors

2) have two critical field strength Hc1 and Hc2, where the
superconductivity is destroyed at Hc2 while the magnetic field slowly starts penetrating
the superconductor for a field strength above Hc1 and thereby destroying superconduc-
tivity in the outer regions. This strong influence of magnetic fields on the superconductor
will play a crucial role in this project when we explore the behavior of the superconduct-
ing electrons in the presence of magnetic impurities. These impurities induce excitations
inside the energy gap, as Sakurai ([1]), Shiba ([4]) and Rusinov ([2]) showed theoretically,
after it was discovered experimentally by Abrikosov.

An important discovery was that the energy of the ground state of a superconductor is
lower than that of the normal metal and was found to be due to the pairing of electrons,
called Cooper pairs, through the exchange of phonons. Phonons are quasi-particles, rep-
resenting vibrations in the lattice of the metal. We will explain the concept in section
1.1.2. This theoretical explanation was one of the big successes for the BCS-theory.

We will use the BCS-theory and the tools and concepts presented in section 1.1 to find
the energy and wave function for the bound states induced by a impurity, fx. a different
atom in the pure metal. This is done in a one dimensional case and we will then add a
phase to the right side to represent a different superconductor and will find the energy for
the bound states as function of the phase and will finally calculate the current through
the impurity/barrier.

Different works have been published on these subjects and we will reproduce some of
the results to show that our model is valid.

1.1 Tools and concepts

1.1.1 Second Quantization

A concept that we will use extensively is that of creation- and annihilation operators,
which work on many body wave functions and either add or remove electrons, quasi-
particles or holes. We use the conventions

1http://www.nobelprize.org/nobel prizes/physics/laureates/1972/
2high-Tc superconductors are characterized by a critical temperature Tc well above absolute zero.
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• c†kσ: Creates an electron in state k and spin σ.

• ckσ: Removes an electron in state k and spin σ.

• b†k = c†k↑c
†
−k↓: Creates a Cooper pair in state k.

• bk = ck↑c−k↓: Removes a Cooper pair in state k.

• n†
kσ = c†kσckσ: Checks if there is an electrons in state k and spin σ.

• nkσ = ckσc
†
kσ: Checks if there is a holes in state k and spin σ.

• γ†k: Creates a Bogolon, a quasi particle introduced in section 1.1.3, in state k.

• γk: Removes a Bogolon in state k and spin σ.

The effect of a creation operator c†k on a wave function |Ψ0〉 = |010203 · · · 0k · · · 0N〉 is

c†k|010203 · · ·0k · · · 0N〉 = |010203 · · · 1k · · · 0N〉

and similar for an annihilation operator on a fully filled wave function |Ψ1〉 = |111213 · · ·1k · · ·1N〉

ck|111213 · · ·1k · · · 1N〉 = |111213 · · · 0k · · · 1N〉

Since we deal with fermions the Pauli exclusion principle applies. We define

(
c†kσ

)2
|0kσ〉 = c†kσ|1kσ〉 = 0

(ckσ)
2 |1kσ〉 = ckσ|0kσ〉 = 0

This means that if we try to add an electron in a state that is already occupied, the
system just vanishes.

As it can be seen from the definition of the counting operators n†
k and nk, the creation

and annihilation operators generally do not commute. From the above definition it is easy
to see that c†kck|1k〉 = c†k|0k〉 = |1k〉 is not the same as ckc

†
k|1k〉 = ck · 0 = 0. Generally we

have

[
ckσ, c

†
k′σ′

]
= δkk′δσσ′

[ckσ, ck′σ′ ] = 0
[
c†kσ, c

†
k′σ′

]
= 0

Physically this is easy to understand: The first commutator expresses that the difference
between the electron counting operator n†

kσ = c†kσckσ and the hole counting operator

nkσ = ckσc
†
kσ is 1, i.e. there is either a hole or an electron but not both at the same

time. The two other commutators say that it is not important whether you first add a
hole/electron in state k and then in k′ or first in k′ and then in k. If k = k′ the product
is 0 anyway.

1.1.2 Quasi-particles

Quasi-particles are the representation of different phenomena by a particle. Fx. a sound
wave through a solid, which is a displacement of the atoms, can be modeled as a particle
traveling through the solid. The quasi-particle is a superposition of many particles and
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hence not a particle by itself, but it often makes calculations easier. One example is the
center of mass of two or more objects. The center of mass is not by itself an object,
but by treating it as one, we can calculate its trajectory without having to calculate the
trajectory for each of the objects, which can be rather troublesome or impossible. The
center of mass is a quasi-particle. We will use different quasi-particles in this project but
the most important is the Bogolon, which we introduce now.

1.1.3 Transformations

When working with the Hamiltonian of a superconducting system in the BCS-theory, ex-
pressed in creation/annihilation operators for electrons it turns out that the Hamiltonian
is not diagonal and hence it is hard to determine the eigenenergies for the electrons. We
introduce a transformation that will diagonalize the BCS-Hamiltonian. This transforma-
tion is called Bogoliubov-transformation. We introduce a new quasi-particle, the Bogolon,
which is a combination of an electron and a hole in the ”opposite” state. By ”opposite”
we mean a hole that is in state −k and has spin ↓ for an electron in state k and spin ↑.
The transformation is given by (see also ch. 10 of [6])

(
γk↑
γ†−k↓

)
=

(
u∗k −vk
v∗k uk

)(
ck↑
c†−k↓

)

The coefficients uk, vk will play a crucial role for us. We determine them when introducing
the BCS-theory. To find the inverse transformation and hence get an expression for the
ck’s in terms of the Bogolon-operator γk, we have to invert the matrix. We will use the
formula

A−1 =
1

detA
adjA

The determinant for our matrix is

det

(
u∗k −vk
v∗k uk

)
= |uk|2 + |vk|2

It turns out that we get a useful expression by looking at the commutator
[
γk↑, γ

†
k↑

]
. The

Bogolon is a fermion, so it has to satisfy the anticommutation relations for fermions. We
hence have ((10.9) of [6])

[
γk↑, γ

†
k↑

]
=1

[
γk↑, γ

†
k↑

]
=γk↑γ

†
k↑ + γ†k↑γk↑

=u∗kukck↑c
†
k↑ − u∗kv∗kck↑c−k↓ − vkukc†−k↓c

†
k↑ + vku

∗
kc

†
−k↓c−k↓

+ uku
∗
kc

†
k↑ck↑ − ukvkc†k↑c†−k↓ − v∗ku∗kc−k↓ck↑ + v∗kvkc−k↓c

†
−k↓

=|uk|2
[
ck↑, c

†
k↑

]
− u∗kv∗k [ck↑, c−k↓]− vkuk

[
c†−k↓, c

†
k↑

]
+ |vk|2

[
c†−k↓, c−k↓

]

=|uk|2 + |vk|2

So we have |uk|2 + |vk|2 = 1 and hence we have the inverse transformation

(
ck↑
c†−k↓

)
=

(
uk vk
−v∗k u∗k

)(
γk↑
γ†−k↓

)
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1.1.4 Mean-field theory

When introducing the BCS-theory, we will rewrite the Hamiltonian using mean field
theory. In this approach we assume, that the actual value of the creation/annihilation
operators are close to their mean values. The number of electrons in the superconducting
state is not constant but we assume that the fluctuations are small, which justifies that
the operators are close to their average. We then use

AB = (A− 〈A〉)(B − 〈B〉) + A〈B〉+ 〈A〉B − 〈A〉〈B〉
We note that (A − 〈A〉)(B − 〈B〉) is small since the deviation from the average is small
and hence this factor will be removed and we get

AB = A〈B〉+ 〈A〉B − 〈A〉〈B〉 (1.1)

1.1.5 Scattering theory: S-matrices and phase shift

Scattering theory deals with the effect of potentials on passing particles, fx. an electron
passing an atom. We restrict our considerations to the 1 dimensional case, since we
will deal with spherical symmetric potentials and wave functions and hence only have to
calculate the radial part.

When working with free particles the strategy is to determine the effect of the potential
on the free particle wave function of the form Aeikx+Be−ikx, where the first part represents
a particle moving to the right and the second part a particle moving to the left, both with
wavenumber k. We are interested in the transmission and reflection due to the potential,
so we introduce a wave function for the left and the right side of the potential (which is
supposed to be located around x = 0). Then the amplitudes can be calculated, giving us
the transmission and reflection. This is done by applying continuity requirements:

• Ψ(x) has to be continuous for all x.

• dΨ
dx

has to be continuous for all x, except where the potential is infinite.

When the potential is infinite and has the form V (x) = −αδ(x) then Ψ(x) has to satisfy

dΨR

dx
− dΨL

dx
= −2mα

ℏ2
Ψ(0)

(cf. equation 2.125 in [7]).
Let the left and right wave functions be

ΨL = Aeikx +Be−ikx

ΨR = Feikx +Ge−ikx

then the continuity requirements lead to two equations that can be written on matrix
form

(
B
F

)
=

(
S11 S12

S21 S22

)(
A
G

)

The matrix is called the ”scattering matrix” or short ”S-matrix”. While the S-matrix
tells us the outgoing amplitude in terms of the ingoing, we can also express the right side
amplitude in terms of the left side amplitudes by rewriting the S-matrix. The new matrix
is called the ”transfer matrix” or short ”T-matrix”.

A powerful tool in working with scatterings is the phase shift. When an electron passes
the potential it will experience a change in its phase. When solving for the eigenvalues of
the S-matrix we obtain the phase shift due to the potential.
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2 The superconducting system

As mentioned superconductivity is most widely known for its ability to conduct charges
without resistance for temperatures below a critical temperature Tc. This was discovered
when it became possible to liquefy Helium and thus cool matter down to a few degrees
Kelvin. The resistivity for Mercury was observed to drop almost instantaneously at around
4,1 K. This was the discovery of the first conventional superconductor. But Mercury was
found not to be the only element with this property. Actually 53 of the pure elements in
the periodic table become superconducting under some circumstances (a combination of
temperature, pressure and the absence of a magnetic field). The definition of conventional
superconductivity is that it ”result from an attractive interaction between electrons for
which phonons play a dominant role.” ([6], p. 8).

We will have a brief look on the properties that characterize a superconductor. Some
of these properties will be used to derive and justify approximations for the Hamiltonian
and the behavior in the presence of an impurity. We start with taking a look on the
microscopic properties, like the interaction of electrons through phonons and the origin
of the energy gap.

2.1 Microscopic properties

Microscopic a conventional (Type-I-)superconductor is characterized by the forming of
Cooper pairs, i.e. electrons of opposite spin with energy near the Fermi energy (in k-
space the electrons located near the Fermi surface) interact and create pairs, which are
energetically preferable to the unpaired electrons. The thickness of this shell around the
Fermi surface is of the order of 10−4eV for the most pure elements that become super-
conducting. This is also the order of the energy gap ∆ that is thereby created. The
Cooper pairs are not stable. They will emerge and will be destroyed thus the count of
Cooper pairs is not constant, but the fluctuation is small and we will hence call the aver-
age number of Cooper pairs N and treat it as constant. The electrons that are not paired
(those beneath the Fermi surface in the normal state3) constitute a reservoir from which
the Cooper pairs are created and in which the electrons return when the Cooper pair is
broken. The size of the Cooper pairs, i.e. the average distance between the paired elec-
trons, is called the coherence length and is denoted ξ0. This length emerges when treating
superconductivity in a thermodynamic framework, where superconductivity is viewed as
a phase transition. This is done in the Ginzburg-Landau-theory of superconductivity (see
[10]) which also provides us with other useful relations regarding the critical temperature
Tc and flux quantization. In this project we only use the coherence length when evaluating
Rusinovs result for the radial wave function of the impurity states.

2.2 Quantum mechanic description

We will now derive the BCS-Hamiltonian for the superconducting system, like it is pre-
sented by Mattuck ([5]) and Timm ([6]).

2.2.1 BCS-potential, Coulomb-potential, screening electrons, phonon-interaction

We start with the Hamiltonian, presented by Mattuck, which takes into account different
interactions in the system. By approximations and transformations we will end up with

3The sphere in k-space that is restricted by the Fermi surface is often called the Fermi sea and the
electrons beneath the surface are said to come lie deep down in the Fermi sea.
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the BCS-Hamiltonian in a reduced form, which then will be our starting point for deriving
the effects of impurities on the system.

Mattucks Hamiltonian reads

H = Hfree electron +HCoulomb +Hfree phonon +Helectron−phonon

Hfree electron =
∑

k,σ

ǫkc
†
kσckσ =

∑

k,σ

ǫkn
†
kσ

HCoulomb =
1

2

∑

k,k′,Q,σ,σ′

VQc
†
k′−Q,σ′c

†
k+Q,σckσck′σ′

Hfree phonon =
∑

q

Ωq(B
†
qBq +

1

2
)

Helectron−phonon =
∑

k,k′,q,σ

gq(Bq +B†
−q)c

†
k′σckσ

where B†
q is the phonons creation operator, Ωq is the phonon frequency and gq is a couling

strength for electrons and phonons.
This can be transformed into (also we use the symbol H as the resulting Hamiltonian

in both cases, it must be noted that there are done some approximations along the way
and hence they are not equal).

H = Hquasi−electron +Hshielded Coulomb +Hel−ph−el +Hdressed phonon

Hquasi−electron =
∑

k,σ

ξkc
†
kσckσ =

∑

k,σ

ξknkσ, ξk =
ℏ2k2

2meff
− ǫF

Hdressed phonon =
∑

q

ℏωk(B
†
qBq +

1

2
)

Hshielded Coulomb +Hel−ph−el =
1

2

∑

k,k′,q,σ,σ′

Vkqc†k′−q,σ′c
†
k+q,σckσck′σ′

Here Vkq is the so called ”BCS interaction” and is given by

Vkq =
4πe2

q2 + λ2
+

2ℏωq|Mq|2
(ǫk − ǫk+q)2 − (ℏωq)2

The first term is the shielded Coulomb interaction and the second term is the shielded
interaction between two electrons through the exchange of a phonon.

Mq is the coupling strength between electron and phonon and ℏωq is the energy of the
phonon. For a normal metal the coupling strength is rather weak, but as the metal is
cooled down and the lattice vibration gets more important, Mq gets bigger.

This potential is attractive when the electron-phonon-electron interaction dominates,
since ℏωq is bigger than ǫk − ǫk+q and hence the potential gets negative (=attractive).
This transformation hence show us where the electron-phonon-electron interaction, the
origin of Cooper pairs comes in.

Cooper showed that two electrons in the state k ↑ and −k ↓ would form a bound state
(a pair) which energy is lower than the sum of the unpaired electrons’ energy. When the
electrons near the Fermi surface get paired they lower their energy and leave a gap in the
energy band with a width of 2∆. We will explain ∆ in a moment, when we derive the
BCS-Hamiltonian.
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The point in the BCS theory is, that instead of having a linear combination of all
electron states (like in a normal metal, where the total wave function is given by a Slater
determinant) only the states, where the electrons are paired contribute to the total wave
function. They were then able to write the Hamiltonian in a simple form, that we want
to derive now.

2.2.2 BCS ground state and BCS-Hamiltonian

Our4 strategy is to use the variational principle to determine the BCS ground state and
calculate the coefficients by minimizing the energy. Our trial-wave function is

|ψBCS〉 =
∏

k

(
uk + vkc

†
k↑c

†
−k↓

)
|0〉

We normalize this wave function and get a relation that we already used to determine
the inverse Bogoliubov transform:

1 = 〈ψBCS |ψBCS〉
= 〈0|

∏

k

(u∗k + v∗kck↑c−k↓)
∏

k

(
uk + vkc

†
k↑c

†
−k↓

)
|0〉

= 〈0|
∏

k


|uk|2 + ukv

∗
kck↑c−k↓ + u∗kvkc

†
k↑c

†
−k↓ + |vk|2 (ck↑c−k↓c

†
k↑c

†
−k↓)︸ ︷︷ ︸

=1


 |0〉

=
∏

k

(
|uk|2 + |vk|2

)

We have used that (c†k↑)
∗ = ck↑ and that the creation/annihilation operators alter the

”ket”-vacuum which then is orthogonal to the ”bra” state.
We can now see, what we already saw in section 1.1.3, that |uk|2 + |vk|2 = 1. While

there is no a priori reason to think that this is the case (it could be possible that there
are pairs k1, k2 such that |uk1|2 + |vk1|2 is the reciprocal of |uk2|2 + |vk2|2 which also
would satisfy the above equation), but we end up with reasonable results when choosing
|uk|2 + |vk|2 = 1 which justifies this choice.

We use the variational principle with the Hamiltonian

H =
∑

k,σ

ξkc
†
k,σck,σ + Vint

where Vint is an interaction potential (containing all the interactions that we mentioned
in the last section). We want the interaction to be as simple as possible and hope to be
able to replace it by a constant interaction. We require the potential to satisfy

1. only electrons close to the Fermi surface of the normal metal contribute to the
potential, i.e. |ξk| < ωD where ωD is the Debye frequency.

2. the lowering of the electrons energy relative to the Fermi surface of the normal
metal, and hence the destruction of the Fermi surface, is mainly due to the electron-
phonon-electron interaction which creates the Cooper pairs.

4This derivation of the Hamiltonian was originally done in this way by Bardeen, Cooper and Schrieffer.
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To account for the last requirement, we choose

Vint =
1

N

∑

k,k′

Vk,k′c
†
k↑c

†
k↓ck′↑c−k′↓

where N is the average total particle count. This represents an interaction that takes a
Cooper pair in state k′ and kicks it to state k.

To account for the first requirement, we let Vkk′ be defined by

Vkk′ =

{
−V0 for |ξk|, |ξk′| < ωD

0 otherwise
(2.1)

We want to minimize the energy of the system by varying uk and vk. We hence have
to calculate 〈ψBCS |H|ψBCS〉. This is done in detail by Timm ([6], p. 86) and the result is

〈ψBCS|H|ψBCS〉 = 2
∑

ξk|vk|2 +
1

N

∑

k,k′

Vkk′v
∗
kuku

∗
k′vk′

The energy has to be real and hence the arguments/phases of uk and v∗k have to be equal.
Adding a phase factor eiφk to uk and v∗k has no effect as it vanishes. We can hence choose
uk and vk to be real. Since they have to satisfy u2k+v

2
k = 1 we choose the obvious solution

uk = cos θk

vk = sin θk

and then get (after some calculations, we refer to [6] for details)

〈ψBCS|H|ψBCS〉 =
∑

k

ξk(1− cos 2θk) +
1

4N

∑

k,k′

Vkk′ sin 2θk sin 2θk′

To minimize the energy 〈ψBCS|H|ψBCS〉, we differentiate with respect to θk, equate to 0
and define

sin 2θk =:
∆k√
ξ2k +∆2

k

∆k can then be expressed as

∆k = −
1

2N

∑

k′

Vkk′
∆k′√

ξ2k′ +∆2
k′

This is called the gap equation, since it defines the gap-parameter ∆k for a given potential.
∆ first occured as the order parameter in the Ginzburg-Landau theory, describing the
phase transition from normal to superconducting phase, since ∆ is temperature dependent
and goes to 0 for the temperature approaching the critical temperature Tc. But ∆ also
describes the approximate thickness of the shell around the normal states Fermi surface,
where the electrons will pair up as Cooper pairs and hence also describes the width of the
energy gap.

For our potential (2.1) the solution to the gap equation is obtained by using a varia-
tional ansatz of the same form as Vkk′ with ∆ > 0 instead of −V0. In terms of the density
of states for the Fermi energy in the normal state, D(EF ) = ρF , it is

∆ = ωD sinh

(
1

V0D(EF )

)−1

∼= 2ωD exp

(
− 1

V0D(EF )

)
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where the last expression is valid for V0D(EF )→ 0.
By further exploiting the variational principle one ends up with an expression for the

energy difference between the energy for the BCS wave function and the normal metal

ES − EN
∼= −1

2
ND(EF )∆

2 < 0

This agrees with the observation that the forming of Cooper pairs lowers the energy.
Our last step is now to transform the BCS-Hamiltonian

H =
∑

k,σ

ξkc
†
k,σck,σ +

1

N

∑

k,k′

Vk,k′c
†
k↑c

†
k↓ck′↑c−k′↓

to a form that we will use in the rest of this thesis and is convenient when working with
superconductivity.

We now use equation (1.1) with A = c†k↑c
†
−k↓ and B = c−k↓ck↑. We get

H =
∑

k,σ

ξkc
†
k,σck,σ

+
1

N

∑

k,k′

Vk,k′(c
†
k↑c

†
−k↓〈c−k′↓ck′↑〉+ 〈c†k↑c†−k↓〉c−k′↓ck′↑ − 〈c†k↑c†−k↓〉〈c−k′↓ck′↑〉) (2.2)

The last factor in the parenthesis is a constant, which we will hide in the energy ξk.
By defining

∆∗
k = − 1

N

∑

k′

Vkk′〈c†k↑c†−k↓〉 (2.3)

∆k = − 1

N

∑

k′

Vkk′〈ck↑c−k↓〉 (2.4)

we get

HBCS =
∑

k,σ

ξkc
†
k,σck,σ −

∑

k

(∆kc
†
k↑c

†
−k↓ +∆∗

kc−k↓ck↑) (2.5)

We will assume, where appropriate, that ∆ is real and hence ∆∗
k = ∆k and we use, as

before, ∆k = ∆ for the electrons with energy below the Debye frequency. We end up with
the form

HBCS =
∑

k,σ

ξkc
†
k,σck,σ −∆

∑

k

(c†k↑c
†
−k↓ + c−k↓ck↑) (2.6)

Bogoliubov-de Gennes equation This Hamiltonian can be diagonalized using the
Bogoliubov transform and then reads

Htransf
BCS = E0 +

∑

k,σ

ǫkγ
†
kσγkσ

The Bogoliubov-de Gennes equations (BdG) are the Bogoliubov-transformed version of
the Schrödinger equation Hψ = Eψ and are obtained in the following way:
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We add a constant potential to the Hamiltonian (2.6) by replacing ξk → ξk + U . We
first find the commutator [ck↑, HBCS] and [ck↓, HBCS]:

[ck↑, HBCS] = ck↑HBCS −HBCSck↑

=
∑

k

(ξk + U)ck↑ +∆c†k↓ (2.7)

[ck↓, HBCS] = ck↓HBCS −HBCSck↓

=
∑

k

(ξk + U)ck↓ +∆c†k↑ (2.8)

Using the Bogoliubov transform ck↑ and ck↓ are replaced by γk↑uk−γ†k↓v∗k and γk↓uk+

γ†k↑v
∗
k, respectively.
We can thus rewrite the above commutators. We first transform the left side of the

commutator [ck↑, HBCS]:

[γk↑uk − γk↓v∗k, Htransf
BCS ] =

∑

k

ǫk

(
uk(γk↑γ

†
k↑γk↑ + γk↑γ

†
k↓γk↓ − γ†k↑γk↑γk↑ − γ†k↓γk↓γk↑)

+v∗k(−γ†k↓γ†k↓γk↓ − γ†k↓γ†k↑γk↑ + γ†k↓γk↓γ
†
k↓ + γ†k↑γk↑γ

†
k↓)
)

=
∑

k

ǫk

(
ukγk↑ + ukγk↑γ

†
k↓γk↓ − ukγk↑γ†k↓γk↓

−v∗kγ†k↓γ†k↑γk↑ + v∗kγ
†
k↑γk↑γ

†
k↓

)

=
∑

k

ǫkukγk↑

The right side of (2.7) after transformation reads
∑

k

(ξk + U)
(
γk↑uk − γ†k↓v∗k

)
+∆

(
γ†k↓u

∗
k + γk↑vk

)

By now comparing the coefficients for γk↑ we get the first BdG-equation

ǫkuk = (ξk + U)uk +∆vk

In the same way we can obtain the second equation by solving the other commutator and
comparing the coefficients of γk↓

ǫkvk = −(ξk + U)uk +∆uk

The BCS u- and v-functions Earlier we assumed that the phase of uk and v∗k is the
same and have assumed that they were real. In general they can be written as

uk =

√
1

2
+

ξk

2
√
ξ2k +∆2

k

(2.9)

vk =

√
1

2
− ξk

2
√
ξ2k +∆2

k

(2.10)

For the detailed derivation, that also gives us some useful relations between uk and vk,
we refer to Timm ([6]). It is easily obtained, with ξ2 = E2 −∆2, that

|uk| = |vk| =
√

∆

E
(2.11)

Arg(uk) = −Arg(vk) = arctan

(√
∆− E
∆+ E

)
(2.12)
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In particular this means that uk and vk are each others complex conjugate.

3 Impurities in superconductors

Conventional superconductivity is a result of an unstable lowering of the electrons energy
by forming Cooper pairs through the exchange of phonons. This instability is affected by
external potentials, especially magnetic fields. This makes the superconductor vulnerable
to spin-impurities. The effect of a spin impurity in a superconducting metal is studied
in this section. Our starting point is the article of Rusinov and Lebedev from 1969 ([2]),
which, together with the work of Yu ([3]) and Shiba ([4]) had an important impact on the
field.

3.1 Shiba states

Shiba was one of the first to publish a theoretical paper on the effect of a spin-impurity
on a superconductor, after the initial paper of Yu ([3]) in 1965. Shiba showed that there
exist bound states with an energy located inside the superconductors energy gap, after
there had been some discussion with other researchers who don’t believed that there are
subgap states. Shiba used Green functions and related concepts to show that the bound
state has the energy

EShiba = ±∆
1 − ζ2
1 + ζ2

, ζ =
JS

2
ρπ

where J is the strength of the spin-orbit-coupling, S is the spin and ρ is the density of
states for a normal metal for ǫF .

Short after Rusinov did the same for a more general potential, as Yu had done. He used
a spherical symmetric potential that includes a spin-independent and a spin-dependent
part

V (r) =
2π

m

(
U(r) + J(r)σ~S

)

Both U(r) and J(r) involve δ-functions and hence V (r) is a point potential.
Rusinov expanded this potential in its spherical harmonics and used only the first

coefficient (U0 ± J0S), which is a good approximation since the potential is spherical
symmetric and where the spin matrix is replaces by its eigenvalues ±1.

He then used the Bogoliubov-de Gennes equations to obtain an expression for the BCS
u- and v-functions and by integrating them with respect to the energy ξ he obtained the
expression for the energy E of the subgap states:

E = ±∆ 1 + ρ2F (U
2
0 − (J0S)

2)√
(1 + ρ2F (U

2
0 − (J0S)2))2 + 4(J0S)2

which can be written in terms of the scattering phase shift φ.

E = ±∆cos(φ)

The phase shift is the difference of the electron- and the hole-phase shifts φ+
0 and φ−

0 . The
potential can then be written

(U0 ± J0S) = tanφ±
0

We will show this later. Also we drop the 0-subscript.
The energy of the subgap states/Shiba states as function of the spin potential JS is

plotted in figure 1:
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Figure 1: Subgap energy as function of the spin potential JS. The energy is in units of
∆.

3.1.1 Excitation energy and wave function for interactions with classical spin
- S-matrix method

Our strategy is now to study the scattering (reflection/transmission) by the impurity
potential for incoming electrons and holes to reproduce the above results. We restrict
ourselves to the 1 dimensional case, as the problem is spherical symmetric and we therefore
just have to study the radial behavior. For the 1 dimensional case we have the impurity
at x=0 and have a right and a left side. In the study of superconductors it is convenient
to work with 4-dimensional spinors as wave functions, i.e. a separate wave function for
an electron/hole with spin ↑/↓, respectively. We restrict our calculation to 2-spinors with
an wavefunction for electron- and hole-like-particles, respectively, without introducing a
separate u- and v-function for the spin.

We let our wave function be the sum of wave functions for free electrons with wave
number k+ and holes with wave number k− traveling either left (eikx) or right (e−ikr).
The probability amplitude for each of these 4 cases are labeled ai, bi, ci and di where
i = L,R denoting the coefficients for the left and the right side, respectively. We thus
have the wave function of the form

Ψ(x) =





aL

(
u
v

)
e−ik+x + bL

(
u
v

)
eik+x + cL

(
v
u

)
e−ik−x + dL

(
v
u

)
eik−x x < 0

aR

(
u
v

)
e−ik+x + bR

(
u
v

)
eik+x + cR

(
v
u

)
e−ik−x + dR

(
v
u

)
eik−x x ≥ 0

(3.1)
We have hence chosen that

← →
Electron-like a b
Hole-like c d

Table 1: The convention for the coefficients in (3.1).
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The functions u and v in the spinor

(
u
v

)
are the functions (2.9) and (2.10). We choose

them, since they represent the probability amplitude for the state with the energy E ∼ k
to be electron-like (u) or hole-like (v). As it can be seen from table 1 the first terms
of the left/right side are that for an electron-like particle. The last two terms represent
a hole-like particle. Further the wave functions are separated by the spinor. The first
(upper) term in the spinor is related to the electron-like particle and the second (lower)
term is related to the hole-like particle. In a normal metal we would have

(
u
v

)
=

(
1
0

) (
v
u

)
=

(
0
1

)

The electron-like and the hole-like particle are hence completely separated in a normal
metal. This is due to the fact that the normal metal has a well defined Fermi surface
and hence it is completely determined whether a particle is inside or outside the Fermi
surface. In the superconducting state this is not the case. The analog to the electron in the
normal case is the Bogolon for the superconducting system (the particle that diagonalizes
the Hamiltonian).

We have to make sure that Ψ(x) satisfies the continuity requirements presented in
section 1.1.5. dΨ

dx
is clearly continuous for x < 0 and x > 0. For x = 0 our potential is

infinite (since it is given by a δ-function) and hence has to satisfy

Ψ′
L −Ψ′

R = −2m
ℏ2

(
U + JS 0

0 −(U − JS)

)
Ψ(0)

where m is the electron mass and U ± JS is the first coefficient in the spherical harmonic
expansion of the potential, where the + is used for spin ↑ and - for spin ↓ as before. We
discard the factor 2m

ℏ2 and use it implicit when needed.

When looking for solutions we are not interested in the trivial ~0 solution. We hence
demand the determinant of the resulting 4x4 system to be 0.

Before writing out the 4 equations on matrixform, we take a look on the wave numbers
k±. They are the (positive) solution to the equation

E =

√(
k2

2m
− k2F

2m

)2

+∆2 (3.2)

which is the quasi-particle energy for Cooper pairs relative to the Fermi surface of the
normal state. When solving for k we get 4 solutions:

±kF

√
1±
√
E2 −∆2

µ

where µ = 2m
k2F

is the chemical potential. k+ is the solution where both signs are positive

and k− the solution where the outer sign is positive and the inner sign is negative.
We will later assume that E < ∆ to find that there are bound states induced by

the impurity, the mentioned subgap states or Shiba states. Right now we only assume
that µ ≫ ∆, and we hence can replace k± by kF . This assumption is justified by the
observation that the electrons involved in the superconducting state lie in a thin shell
around the normal metals Fermi surface, with a thickness of about 10−4eV , while kF
normally is of the order of some eV .

When applying the assumption E < ∆ the wave numbers k± will have an imaginary
part and hence the plane waves will decay/grow exponentially. k+ has a positive imaginary
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part and k− a negative one. Using this fact we can rule out 4 of the 8 coefficients (2 on
each side). Fx. (we skip the spinor) bLe

ik+x goes to ∞ for x → −∞ and hence bL = 0.
We hence have

bL = cL = aR = dR = 0 (3.3)

We then have the system of continuity equations in matrixform




u v −u −v
v u −v −u

u(−ikF ) + (U + JS)u v(ikF )− (U + JS)v −u(ikF ) −v(−ikF )
v(−ikF ) + (U − JS)v u(ikF )− (U − JS)u −v(ikF ) −u(−ikF )







aL
dL
bR
cR


 =




0
0
0
0




(3.4)
When equating the determinant of the matrix to 0 and substituting u and v by (2.9) and
(2.10), we get

E2((JS)2 − 4k2F − U2) + (−(JS)2 + 4k2F + U2)∆2 + 4iEJSkF
√
E2 −∆2

E2
= 0

solving for E we get the 4 solutions

E = ±∆

E = ± ((JS)2 − 4k2F − U2)∆√
(JS)4 + 8(JS)2k2F + 16k4F − 2(JS)2U2 + 8k2FU

2 + U4
(3.5)

= ∓∆ α√
1 + α2

(3.6)

where

α =
1 + p2F (U

2 − JS2)

2pFJS

with pF the Fermi momentum. This is the same result that Rusinov found by using the
BdG-equations.

We observe that

α√
1 + α2

≤ 1

Hence the energy is inside the gap. We define

cos(φ) =
α√

1 + α2
(3.7)

and have the desired form
E = ∆cos(φ) (3.8)

We can then confirm that the potential can then be written

(U ± JS) = tanφ± (3.9)

by confirming that (3.8) and (3.9) are consistent and remember that φ = φ+ − φ−. We
absorb pF into the potential and get

α =
1 + tan(φ+) tan(φ−)

tan(φ+)− tan(φ−)
=

1

tan(φ+ − φ−)
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Passing this back into (3.6) we get

E

∆
=

α√
1 + α2

=
1

tan(φ+ − φ−)
√

1 + 1
tan(φ+−φ−)2

=
1√

tan(φ+ − φ−)2 + 1
=

1√
sin(φ+−φ−)2

cos(φ+−φ−)2
+ 1

=
cos(φ+ − φ−)√

sin(φ+ − φ−)2 + cos(φ+ − φ−)2

= cos(φ+ − φ−)

In Ref. [8] Balatsky et al. come up with a solution for the impurity wave function
using the variational principle. The variational ansatz differs from the BCS-system, where
all electrons are paired, by a single, unpaired electron with opposite spin compared to the
impurity and the electron hence screens the impurity. They also give the variational wave
function Ψ−1 which has the form

Ψ−1 = γ†−1

∏

n

(un + vnb
†
n)|0〉 = γ†−1|Ψ0〉

They note that γ†1|Ψ0〉 has much larger energy than the gap and hence is of no interest
for us. This is important, since γ†−1 adds a holelike Bogolon (hence removes an electron)

while γ†1 adds a Bogolon (adds a single electron), hence it justifies that the impurity breaks
an electron pair to get a screening electron instead of attracting a new electron from the
reservoir.

The breaking of a Cooper pair near the impurity can be understood as a local suppres-
sion of the superconducting state by the magnetic impurity. We may then think of it as
being a SNS-junction, which experimentally mainly is obtained by connect two supercon-
ductors of the same or different elements (or compounds) with another metal that is not
superconducting. The normal region between the superconductors can even be modified
with some impurities, giving rise to different effects and properties. We will study our
system in terms of a SNS- and SIS-junction in the next section.

We now remove the assumption that µ≫ ∆ to find the wave function. The normalized
wave function is (see appendix A)

Ψ(x) =
1√
4





(
u
v

)
e−ik+x +

(
v
u

)
eik−x x < 0

(
u
v

)
eik+x +

(
v
u

)
e−ik−x x ≥ 0

(3.10)

When plotting this wave function (figure 2) we see that it has both the form that
characterizes a bound state of a delta potential and it has an oscillatory part. Rusinov
proposed that the wave functions uk↑ and vk↓ have the form

uk↑, vk↓ =
sin(pF r − φ±)

pF r
exp

(
− r

ξ0
| sin(φ)|

)
(3.11)

we can obtain a similar result when substituting the expression for u, v and k± into Ψ(x).
We do this for the left side for both the electron-like and the hole-like part. We note that
k± can be written

k± = kF




X︷ ︸︸ ︷
√

1

2

√√√√
√

1 +
∆2 − E2

µ2
+ 1±i

Y︷ ︸︸ ︷
√

1

2

√√√√
√
1 +

∆2 − E2

µ2
− 1




(3.12)
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Figure 2: The normalized wave functions for an electron and a hole due to the impurity
potential as function of the position.

Using (2.11) and (2.12) with θu := Arg(uk) we get for the electron-like part

Ψe(x) = ue−ik+x + veik−x =

√
∆

E

(
eiθue−i(XkF+iY kF )x + e−iθuei(XkF−iY kF )x

)

=

√
∆

E
eY kFx

(
e−i(XkF x−θu) + ei(XkF x−θu)

)

= 2

√
∆

E
eY kF x cos(XkFx− θu) (3.13)

for x < 0. Similarilty for the hole-like part:

Ψh(x) = 2

√
∆

E
eY kF x cos(XkFx+ θu) (3.14)

This is not Rusinovs result in its exact form but we can tell that the electron wave function
and the hole wave function are phase shifted relative to each other by

φ+ − φ− = 2θu = 2 arctan

(√
∆− E
∆+ E

)

and decays with a decaylength λ with

λ =
1

Y kF
=

√
2µ

k2F (
√
µ2 +∆2 −E2 − µ)

(3.15)

3.2 Current through Josephson junction with two (different)
superconductors

3.2.1 Junctions

In this last section we will leave the case of a bulk superconductor with an impurity
(atom) and study the excitation energies in the case of a SNS5-/SIS6-junction, both for

5A junction with superconductors on both sides and a normal region separating them.
6A superconductor-junction with two superconductors separated by some sort of point-potential.
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the same superconductor on both sides and for the case where the phase of one of the
superconductors is changed by a phase θ. When θ = 0 and the potential separating the
two superconductors is as before given by a spin-dependent part and a δ-function, we
have the results found in the last section. In our case the junction is of 0 length because
of the δ-function, so the junction is more a SIS-junction than a SNS-junction, however
the SNS-junction-model is of some interest.

Some general notes on junctions For two superconductors separated by a tunneling
region (i.e. the distance between the superconductors is short enough for the wave func-
tions to have a non-vanishing overlap), the junction is often called a Josephson junction.
Junctions between two superconductors have some interesting properties, depending on
the setup. For a Josephson junction there are roughly 3 cases to consider:

1. The DC tunneljunction, where there is no potential between the two supercon-
ductors. In this case there is a tunneling current, that flows due to Cooper pairs
tunneling between the two sides. It is of order I = Ic sin(θ). We will reproduce
this current in a moment by applying a phase to the BCS u-function (representing
a phase on the order parameter).

2. If a constant potential is applied over the junction we observe that the current
oscillates. We will not condsider this time dependent effect.

3. When an oscillating current is applied over the junction, a constant potential over
the junction is induced. We are not interested in this effect in this project.

Another effect that is relevant in a SNS-junction is the Andreev reflection. In a super-
conductor all conduction electrons are paired and hence an incoming electron from the
normal metal is either reflected or, when getting paired and continuing in the supercon-
ductor, a hole is reflected in the normal metal. When there are superconductors on both
sides of the normal region (for a SNS-junction) or if the superconductors have a different
phase, fx. by applying a potential between them (in a SIS-junction), an electron can be
reflected multiple times and in the limit where the probability of forming a Cooper pair
goes to zero, the electron is captured inside the normal region, forming a bound state.
An extension to this thesis could be to investigate if an impurity gives rise to Andreev
reflections.

3.2.2 Subgap states for a SIS-junction

We will now add the phase θ to the BCS u-function.

For Ψ(x) =

(
u
v

)
eikx the BdG-equations are satisfied. When adding the phase θ to u

and ∆ the Schrödinger equation reads

E

(
ueiθ

v

)
eikx =

(
− ℏ

2m
d2

dx2 ∆eiθ

∆∗e−iθ ℏ
2m

d2

dx2

)(
ueiθ

v

)
eikx

=

( ℏ
2m
k2ueiθ +∆eiθv

ℏ
2m
k2v +∆∗e−iθueiθ

)
eikx

=

(
ǫFue

iθ +∆eiθv
−ǫF v +∆∗u

)
eikx

This are exactly the BdG-equations.
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The energy for this system is obtained in the exact same way as in the last section.
The continuity equation matrix reads




u v −ueiθ −v
v u −v −ue−iθ

u (−ikF + (U + JS )) v (ikF − (U + JS )) −iueiθkF ivkF

v (−ikF − (U − JS )) u (ikF + (U − JS )) −ivkF iue−iθkF




(3.16)

The spinor

(
v
u

)
is the complexconjugated version of

(
u
v

)
. We hence have complexcon-

jugated the added phase in row 2 and 4.
When equating the determinant to zero and solving for E we get 4 very long expression

for the energy. They are most easily explored in a computer algebra system like Maple.
The energy as function of the phase θ is shown on figure 6.

First we see that the function is 2π-periodic as we would expect. Second we see that
the energy function is converging to a constant line for U →∞, while an increase in the
spin-coupling JS bends the function more and lets the minimum (for E/∆ > 0) move
towards E/∆ = 0 until it crosses this value for JS = U . When increasing JS further
(with fixed U) the levels cross as it can be seen on figure 6(c). Further increment of JS
leads to the energy levels separating again, converging to a constant function.

As it is seen, there are some jumps in the energy functions. The origin of this jumps
could not be completely determined. It doesn’t look like it is a numerical problem or a
random jump, since we can obtain an analytic expression for the energy functions. When
calculating the energy as mentioned above we get the expression

E(θ) = −∆X
2 − 1

X2 + 1
(3.17)

where X is one of the solutions for the polynomial equation

(cos(θ)k2F − k2F )x4 − 4kFJSx
3

+ (2 cos(θ)k2F − 2JS2 + 2U2 + 6k2F )x
2 (3.18)

+ 4kFJSx+ cos(θ)k2F − kF 2 = 0

where we have to solve for x. A contourplot of this equation versus the phase and x for
U = 1, kF = 8 and different values of JS are seen on figure 3. These plots do not have
any discontinuities or zero-crossings for the values were we see the jumps. When equating
the determinant of the system to 0 and solving for the energy while passing in values for
U, kF and JS, we get an expression that has the jumps but has a continuous form. For
kF = 8, JS = 1 and U = 5 we have two positive solutions of the form

1

1241

√
835193 + 347480e−iθ + 347480eiθ

±(9928i)e−iθ
√
16− 45e2iθ + 6e3iθ + 16e4iθ + 6eiθ

they are plotted in figure 4. The jumps occurs at θ = ±π which is necessary for the
energy to be 2π-periodic. But when plotting the same function without using the explicit
expression, as done in figure 6, Maple outputs the energy functions with jumps not at
θ = ±π, but the functions are still 2π-periodic.
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(a) JS = 10 (b) JS = 3 (c) JS = 0 (d) JS = −3 (e) JS = −10

Figure 3: Contourplot for the equation (3.18) with U = 1, kF = 8. The variable x is on
the first axis, the phase θ on the second.

Figure 4: Two solutions for the energy with kF = 8, JS = 1 and U = 5. The jump occurs
at θ = ±π.

It can be observed, when varying the parameters, that the the values of θ where the
jumps occur are dependent on JS and U . Increasing U moves the jumps to the left while
an increase in JS moves them to the right. After all this is more a problem of choosing
a solution, rather than discontinuities in the energy levels.

In [9] (3.8) is rewritten for a SNS-junction in the limit JS → 0 as

E± = ±∆
√

1− T sin(
θ

2
)2 (3.19)

which is valid for a SNS-junction of length shorter than the coherence length ξ0. T is
the transmission coefficient through the junction in limit ∆ → 0 (the normal state) and
depends on the potential U :

T =
1

1 + U2

2k2F

The energy is plotted in figure 5(a) for different values of T .
When solving (3.18) using a formula published by Cardano and derived by Ferrari in

1540, we obtain for JS = 0

X =

√
− cos (θ) k2F − 3k2F +

√
U2 + 4k2F

√
U2 + 2 cos (θ) k2F + 2k2F − U2

kF
√

cos (θ)− 1

passing this into (3.17), we get exactly (3.19).
The above form of the energy formula can also be obtained by starting with the

determinant of (3.16) equated to and simplifying the expression by using (3.7) and the
corresponding equation

sin(φ) =

√
1

1 + α2
(3.20)
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(a) Energy as function of the phase θ for
different values of the transmission coeffi-
cient T .

(b) The supercurrent as function of the phase θ for dif-
ferent values of the transmission coefficient T .

Figure 5: The energy (a) and the corresponding supercurrent (b) for the expression (3.19)

We then get

E2

∆2
=cos(φ)2 − cos(φ) sin(φ) sin

(
θ

2

)2
kF
JS

+
sin(φ)

2


1− cos

(
θ

2

)√
1 +

(
2kF
JS

)2

sin

(
θ

2

)2

+

(
U

JS

)2

tan

(
θ

2

)2



In the limit JS → 0 we have cos(φ)→ 1 and sin(φ)→ 0 since α →∞. We then get the
above formula for the energy.

E2

∆2
= 1− 1

1 +
(

U
2kF

)2
1− cos(θ)

2

= 1− 1

1 +
(

U
2kF

)2 sin
(
θ

2

)2

3.2.3 Supercurrent through impurity/SIS-junction

Finally we will find the current that flows through our junction/quantum dot as function
of the phase θ. The current through a SNS-junction, with the length of the normal region
much smaller than the coherence length ξ0, is

I(θ) =
2e

ℏ
∂E

∂θ
(3.21)

(cf. (22) in [9]) for the occupied bound states. This is a simplification, that we will use
to estimate the effect of the chosen potential on the current. A more general formula,
that includes the effect of the phase dependence of the order parameter ∆ and the density
of states, can be found in the paper of P. Bagwell ([12]). Bagwell splits up the current
in a continuum part and a discrete part. The continuum part is the current due to the
electrons in the conduction bands, i.e. the electrons with energy less than −∆ or greater
than ∆. The discrete part is due to the subgap states. He notes that when the length L
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of the normal region is much smaller than the coherence length, as in our case, then the
contribution from the continuum is neglectable.

We can use the above formula for the current, even if it is derived for a SNS-junction,
because of the impurity inducing a region that can be treated as being normal, due to the
breaking of Cooper pairs near it. The decay of the wave function for the impurity bound
state is of the order of the coherence length.

The current through a normal SIS-junction with a δ-function (Josephson junction)
separating the two superconductors is

I(θ) = Ic sin(θ)

This is in full agreement with (3.21) for our impurity bound state energy, where E =
∆cos(θ).

In figure 7 the current is plotted for the energy functions shown in figure 6. We can
see that they are no longer clean sinus-oscillations but instead have their maximum close
to the energy minimum at θ = ±π but go sharply to zero for θ converging to ±π. For
U → 0, the current has a discontinuity at θ = ±π, where it shifts sign, as seen in figure
5(b) for T = 1

1− 0

k2
F

= 1.
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(a) U = 1, JS = 1, kF = 8, ∆ = 1 (b) U = 1, JS = 5, kF = 8, ∆ = 1

(c) U = 1, JS = 16.2, kF = 8, ∆ = 1 (d) U = 1, JS = 90, kF = 8, ∆ = 1

Figure 6: Energy for the different bound states as function of the phase θ. The jumps are
of no physical relevance.

(a) U = 1, JS = 1, kF = 8, ∆ = 1 (b) U = 1, JS = 5, kF = 8, ∆ = 1

(c) U = 1, JS = 16.2, kF = 8, ∆ = 1 (d) U = 1, JS = 90, kF = 8, ∆ = 1

Figure 7: Supercurrent through the different occupied bound states as function of the phase
θ. The jumps are of no physical relevance.
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4 Conclusion and references to the results of others

We have introduced the BCS-theory of superconductivity and have derived the energy and
the wave function, that was found by Rusinov, in terms of scattering theory where we
reduced our considerations to the one dimensional case with the impurity at x = 0 and a
left and a right side. We then added a phase to right side to study the energy dependence
on this phase and thereby modeling a SIS-junction or a quantum dot. Our method and
results reassemble that of section ”III. JOSEPHSON CURRENT THROUGH A QUAN-
TUM POINT CONTACT” in [12]. Beenakker and Houten include some more details to
the supercurrent by not only taking into account the energy eigenvalue dependence of the
phase but also that for the density of states and the order parameter ∆ versus the phase.
They also argue that adding a constant phase is a good model in the case of a SIS- or
S-QD-S-junction:

”The characterization of the reservoirs by a constant phase is not strictly
correct. The phase of the pair potential has a gradient in the bulk if a current
flows. The gradient is 1/ξ0 when the current density equals the critical current
density in the bulk. In our case the critical current is limited by the point
contact, so that the gradient of the phase in the bulk is much smaller than
1/ξ0 [..]. Since the excitation spectrum is determined by the region within ξ0
from the junction, one can safely neglect this gradient in calculating I(δφ) from
Eq. (2.17).”

We could reproduce several results as special cases, fx. the result for the energy versus
the phase

E± = ±∆
√

1− T sin(
θ

2
)2

as presented in [9].
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5 Appendices

Appendix A - Normalized impurity wave function

We have to find the coefficient aL, dL, bR, cR to find the resulting wave function for our
impurity bound state. We have to solve the system of continuity equations (3.4):




u v −u −v
v u −v −u

u(−ikF ) + (U + JS)u v(ikF )− (U + JS)v −u(ikF ) −v(−ikF )
v(−ikF ) + (U − JS)v u(ikF )− (U − JS)u −v(ikF ) −u(−ikF )







aL
dL
bR
cR


 =




0
0
0
0




Evaluating the first two rows (they lead to the same equation when interchanging u and
v) we get

(aL − bR)u+ (dL − cR)v = 0

and hence

aL = bR

dL = cR

Evaluating the third row we get

((−ikF + U + JS)aL + (−ikF )bR)u+ ((ikF − (U + JS))dL + (ikF )cR)v = 0

By comparing the coefficients for U + JS we have

−aLu+ dLv = 0

This must especially hold for u = v and we hence have

aL = dL = bR = cR

We finally have to normalize the wave function. We do this for the left side by
calculating the inner product and choosing to set aL = dL = bR = cR = 1.

(
(u, v)e−ik+x + (v, u)eik−x

)((u
v

)
e−ik+x +

(
v
u

)
eik−x

)

= (u2 + v2) + 2uve−i(k+−k−)x + 2uvei(k+−k−)x + (v2 + u2)

= 2 + 2
∆

E
cos(k+ − k−) = 4

So we have to multiply the coefficients by 1√
4
and hence have

aL = dL = bR = cR =
1√
4
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