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Abstract

In this Bachelor’s Thesis we investigate the novel phase of antiferromagnetism
and superconductivity coexistence formed in the heavy fermion and strongly
Pauli limited compound CeCoIn5 at high fields and low temperatures. We
modify the model of nesting induced antiferromagnetism in the supercon-
ducting state developed by Kato et. al. for use in a real space numerical
simulation. This self-consistent simulation is developed using the formalism
of second quantization and the Bogoliubov transformation. We reproduce
the expected phase diagram and find the real space order in the novel phase.
Finally we initialize our system outside the coexistence phase and map out
the local impurity magnetization, including stabilizing a local magnetic order
and detailing the correspondence with the homogeneous field-induced order.
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1. Introduction

Since the discovery of superconductivity by Onnes in 1911 as a sharp drop in the re-
sistance of mercury at a critical temperature (Tc), microscopic theories of the phase
transition have been sought. This was achieved in 1957 by Bardeen, Cooper and Schri-
effer, who showed that pairs of electrons of different spin near the Fermi level become
unstable toward formation of so-called Cooper pairs with the inclusion of a small attrac-
tive interaction. This attractive potential was explained as an interaction with phonons
of the underlying lattice of ions.
This model adequately models many low Tc superconductors yet recent discoveries of
superconductors with higher critical temperatures are outside the scope of BCS theory.
In such ”unconventional” superconductors new pairing mechanism and the interplay of
magnetism is required to understand the transition.

Superconductivity exists in regions of phase space limited by external field strength
and temperature. There are two ways in which an applied magnetic field breaks the
Cooper pairs. The dominant pair breaking effect in most superconductors is orbital
limiting, the formation of a triangular lattice of flux cores of normal state screened by
supercurrents. The superconductivity dies out completely when these flux cores start to
overlap, at the upper critical field Hc2.

The less dominant effect for most superconductors is Pauli limiting, the direct pair
breaking from the spin polarizing Zeeman effect. The energy of the formation of this
paramagnetic state under applied field H is given by EP = 1

2χnH
2 where χn is the

normal state susceptibility. As such the Pauli limiting occurs when this energy equals
the condensation energy of the superconducting state EC = 1

2N(0)∆. Here N(0) is
the density of states at the Fermi level and ∆ is the order parameter associated with
the superconducting state in Landau theory. The Maki parameter α measures the ratio

of these limiting fields, α =
√

2
Horb

c2

HP
c2

, where Hc2 is the limiting field beyond which the

normal state is realised. The Maki parameter is typically much less than unity [6, p. 2].

Pauli limiting becomes dominant in heavy fermions compounds such as CeCoIn5 with
a Maki parameter of α ≈ 4.6 [6, p. 9]. This material consists of alternating layers of
superconducting CeIn3 and less conducting CoIn2, in a quasi-2D structure [6]. The rare
earth atoms such as Ce are characterized by unfilled f orbitals which form localized
magnetic moments [1].

These moments are screened by the conduction electrons effectively forming elastic
scattering centers (Kondo effect). Scattering off these local moments result in an heavily
amplified effective electron mass. The screening interaction of conduction electrons me-
diate an antiferromagnetic tendency between the local moments of the lattice [3, p. 314].
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1. Introduction

In CeCoIn5, which has effectively a lattice of Kondo effect impurities (Kondo lattice),
these heavy fermions close to a magnetic instability seem to form d-wave pairing of
Cooper pairs. This heavy fermion superconductivity is found to coexist with and enable
the transition to an antiferromagnetic state in a high field low temperature region of
phase space. A theory of the physics involved in this phase is given by Y. Kato, C.D.
Batista and I. Vekhter ([4]), who suggest that the magnetic phase results from parallel
pockets of the Zeeman split superconducting state Fermi surface connected by a single
wavevector.

Figure 1.1.: The phase diagram obtained by Y. Kato, C.D. Batista and I. Vekhter in [4]. At high
fields and low temperatures a part of the superconducting phase (SC) includes both
magnetic and superconducting order (Q). Reproduction of this phase diagram will
serve as a benchmark of the model developed in this thesis.

The purpose of this Bachelor’s Thesis is to do a real space self-consistent numerical
simulation in order to investigate the proposed magnetic state in CeCoIn5, including
magnetic impurity effects. To this purpose we first introduce the concepts needed to
describe the interactions in a brief chapter on second quantization. The quasi-2D struc-
ture of CeCoIn5 then enables us to describe the system on a 2D lattice with periodic
boundary conditions in this formalism.

With the standard 2D superconductor established we attempt to replicate the system
described in [4]. This includes constructing the Fermi surface, finding the nesting vectors
corresponding to our system size, and then reproducing the phase diagram seen in figure
1.1. The real space model then enables us to go beyond the induced homogeneous mag-
netization. An inclusion of magnetic impurities will effectively introduce local magnetic
fields, and a main question is then whether these local fields will expand the ordered (Q)
phase of coexistence.

2



2. Second Quantization

2.1. Fermions

In order to write a multi-particle wavefunction for non interacting fermions in the usual
QM notation we need to antisymmetrize a product of single particle wavefunctions.
This is accomplished by the Slater determinant, yielding a antisymmetric superposition
of states. This process is eased with the introduction of second quantization. Since indi-
vidual fermions are indistinguishable we can equally well count the number of particles
in each state and shift the antisymmetrization to the operators [7, p. 68]. We will be
using the position basis where each state corresponds to a site on the lattice. We define
the vacuum as the wavefunction with no particles in any state:

Ψvacuum = |000000...0〉 (2.1)

A state with a particle at site 2 is then simply |010000...0〉. For fermions, the Pauli prin-
ciple translates to the condition that only 0 and 1 particles per state are possible per site.

We then define operators which create or annihilate different states. For fermions
these are written as c†i , cj respectively. Of these, c†i creates a particle at site i and cj
annihilates a particle at site j. We can in this way create any state by applying the
corresponding operators to the vacuum given above.
Demanding that any combination of operators which exchange two particles changes the
sign of the wavefunction we obtain the fermion anticommutation relations [7, p. 128]:

{c†iσ, cjσ̄} = δijδσσ̄ (2.2)

{ciσ, cjσ̄} = {c†iσ, c
†
jσ̄} = 0 (2.3)

Where {a, b} indicates the anticommutator of a, b. This ensures that the final wavefunc-
tion is antisymmetric.

The simplest operator in this formalism is the number, or density, operator niσ =
c†iσciσ. Acting on a state this operator yields 0 if there is no particle at site i. If such
a particle is present, it is annihilated and then recreated. For fermions the eigenvalues
of the operator are then 0 and 1. The number operator acting on a particular site thus
effectively counts the number of particles of a given spin.

2.2. Fourier Transform

The physics relevant to this thesis often have a simple explanation in momentum or k-
space. Instead of using a position basis for the states given above we can equally well
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2. Second Quantization

transform to a momentum basis. This Fourier transform is defined by:

c†lσ =
1

N

∑
l

e−iklc†kσ (2.4)

Note that we use N for the length of the square lattice, which means that N2 is the
number of sites. As transformations involve products of operators, they are simplified
using the orthogonality relation (For a proof hereof, see [5, p. 844])

1

N2

∑
l

ei(k−k
′)l = δkk′ (2.5)

This result is also of use when we investigate the onset of order in external fields. If
the real space order of some quantity is of the form G(r) = A cos(Q · r), the Fourier
transform is:

G(k) =
A

2N2

∑
l

e−ikl(e−iQ·l + eiQ·l) (2.6)

=
A

2
(δ(Q− k) + δ(Q + k)) (2.7)

Demonstrating that the Fourier transform yields peaks at distinct values of k corre-
sponding to the real space ordering vector.
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3. 2D Superconductor

3.1. Real Space Model

We consider a two dimensional square lattice with periodic boundary conditions. This
translates to the condition that a nearest neighbour to the site closest to the right edge of
the lattice is the leftmost site in the same row and so forth. The Hamiltonian describing
our system will be:

H = −t
∑
〈ij〉σ

c†iσcjσ − µ
∑
iσ

c†iσciσ − V
∑
〈ij〉

ni↑nj↓ (3.1)

The first term is a tight binding model of electron hopping with a constant hopping
integral t which will be taken as the fundamental energy unit of the problem. The sum-
mation index 〈ij〉 indicates summing over nearest neighbours only. A chemical potential
is included as the second term above, acting equally on the spins. The third term rep-
resents the nearest neighbour attraction responsible for d-wave superconducting pairing
of electrons of unequal spin.

A mean field transformation of the second term yields a Hamiltonian quadratic in
creation and annihilation operators [2, p. 24].

H = −t
∑
〈ij〉σ

c†iσcjσ − µ
∑
iσ

c†iσciσ + V
∑
iδ

(∆iδc
†
i↑c
†
i+δ↓ + h.c.) + Constant (3.2)

Where δ are vectors to the nearest neighbours, ∆iδ = 〈ci↑ci+δ↓〉 is a mean field quantity
and h.c. indicates the hermitian conjugate. Note that constant terms will be discarded
as no comparisons of the total energy are attempted in this thesis.

3.2. k-Space Model

In order to reproduce the Fermi surface given in [4], the simplest procedure is to trans-
form to k-space. A Fourier transform of the form of eq. 2.4 brings the Hamiltonian to
the form:

H =
∑
kσ

εkc
†
kσckσ −

∑
k

(∆kc
†
k↑c
†
−k↓ + h.c.) (3.3)

Where εk = −2t(cos(kx) + cos(ky))− µ is the band dispersion and
∆d−wave
k = ∆0(cos(kx)−cos(ky)) is the d-wave order parameter. Defining the usual BCS

s-wave order parameter as ∆s−wave
k = ∆0, a Bogoliubov transformation (more on this

later) diagonalizes the Hamiltonian and yields energies on the form Ek = ±
√
ε2k + ∆2

k.
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3. 2D Superconductor

(a) s-wave (b) d-wave

Figure 3.1.: Left: Energy spectrum for the s-wave superconductor, showing a uniform gap. Right:
Energy spectrum for the d-wave superconductor. The gap has nodes at the Fermi
energy. These nodes will prove necessary to the formation of the coexistence (Q)
phase at high fields.

The energy spectra of these different superconductivity pairing symmetries for ∆0/t =
0.7 are plotted in figure 3.1.

The d-wave pairing symmetry results in nodes in the superconductivity gap at the Fermi
surface. Note that as the only lattice size effect in these spectra is the resolution, they
have been computed for N = 160.
Since the d-wave spectrum has energies at the Fermi level, corresponding nodes appear
in the Fermi surface. The symmetry and multiplicity of the four nodes are the result of
Ek being symmetric in ±kx, ±ky.

Figure 3.2.: Fermi surface for a d-wave superconductor, showing a nodal structure.
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4. Magnetic Order

4.1. Fermi Surface and Nesting

With the k-space model in place, we now consider the influence of an external magnetic
field. If we align the field in the spin quantization direction (chosen to be the in-plane
direction (z)), it acts as a Zeeman splitting of the spins. This enters the Hamiltonian as
a spin-dependent chemical potential. Let the Zeeman splitting be given by h = gµBH/2
[4], then the corresponding term is:

HZeeman = −h
N2∑
iσ

σc†iσciσ (4.1)

Where σ = ±1 for ↑, ↓. Adding this to the previous model, the Fermi surface for the
normal and SC phase are readily obtained.

(a) (b)

Figure 4.1.: Left: Fermi Surface for ∆0/t = 0.7, µ/t = 0.68. The normal state surface is shown in
blue and the SC state surface with field induced pockets in red (h/t = 0.7) and green
(h/t = 0.3). The black line is the nesting vector Q = 0.8888(π, π). Right: Energy
spectrum for a d-wave superconductor under applied field h = 0.7. The nodes are
extended by the Zeeman splitting.

As examined previously in figure 3.2, the d-wave superconductivity collapses the nor-
mal state Fermi surface into a nodal structure. Figure 4.1 shows the expansion of these
nodes into pockets under applied field.

To see which particles occupy these pockets we follow the method of Kato et. al. and
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4. Magnetic Order

apply a Bogoliubov transformation. We write the usual electron creation and annihila-
tion as a linear combination of new operators, γk↑ = ukck↑−v∗kc

†
−k↓, γk↓ = ukck↓+v

∗
kc
†
−k↑

where γ are Bogoliubov quasiparticle operators. If we require that this transformation
be unitary, the quasiparticle operators are found to obey fermion anticommutation re-

lations. Writing Ek =
√
ε2k + ∆2

k, this transformation diagonalizes the Hamiltonian [4]:

H =
∑
k

(Ek − h)γ†k↑γk↑ + (Ek + h)γ†−k↓γ−k↓ (4.2)

We see that the Zeeman splitting favours the creation of spin up Bogoliubov quasiparti-
cle pockets. These pockets form pairwise parallel regions on the Fermi surface connected
by the same wave vector. We call these regions nested, with nesting vector Q (plotted in
figure 4.1 in black). We expect any order between these pockets to be modulated with
the nesting vector.

Note that the chemical potential has been changed from the value of µ/t = 0.749 used
in ([4]) to obtain a periodic magnetic order on the lattice. Since we will soon introduce
an antiferromagnetic order modulated by cos(Q · r), the periodic boundary conditions
imply that the lattice size must fulfill (Qx · N) = 2πn to be periodic in (x). The same
argument holds for Qy. To this effect system sizes of N = l · 9, l ∈ N are chosen which
fulfill this criterion for a nesting vector of Q = (0.8888π, 0.8888π), corresponding to a
chemical potential µ/t = 0.68. This chemical potential is found from visual inspection
of the Fermi surface, varying µ to obtain the given Q. By comparison with the Fermi
surface plotted in [4], no dominant effect on the pocket size by the shifted chemical
potential is observed.

4.2. AFM Order

The quasiparticle pockets are found by Kato et. al. to be unstable towards an anti-
ferromagnetic ordering orthogonal to the applied field. This is modelled with a mean
field term, assuming a simple spiral order modulated with the nesting vector, m(r) =
mQ(cos(Q · r), sin(Q · r), 0). We define the magnetization (in units of µB) as m = g〈S〉,
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4. Magnetic Order

with Lande g factor g ≈ 2, and include the following mean field term in the Hamiltonian:

HAFM = −J
∑
i

miSi (4.3)

= −J
2

∑
iσσ̄

mx
i (c†i∗σσ

x
σσ̄ci∗σ̄) + my

i (c
†
i∗σσ

y
σσ̄ci∗σ̄) (4.4)

= −J
2

∑
i

〈c†i↑ci↓ + c†i↓ci↑〉(c
†
i↑ci↓ + c†i↓ci↑) (4.5)

+
1

i
(〈c†i↑ci↓ − c

†
i↓ci↑〉)

1

i
(c†i↑ci↓ − c

†
i↓ci↑) (4.6)

= −J
∑
i

〈c†i↑ci↓〉c
†
i↓ci↑ + 〈c†i↓ci↑〉c

†
i↑ci↓ (4.7)

The spiral order initial conditions are then:

g〈Sxi 〉 = mx ⇔ (4.8)

(〈c†i↑ci↓〉+ 〈c†i↓ci↑〉) = mQ cos(Q · ri) (4.9)

g〈Syi 〉 = my ⇔ (4.10)

1

i
(〈c†i↑ci↓〉 − 〈c

†
i↓ci↑〉) = mQ sin(Q · ri) (4.11)

⇒ (4.12)

〈c†i↑ci↓〉 =
mQ

2
eiQ·ri (4.13)

〈c†i↓ci↑〉 =
mQ

2
e−iQ·ri (4.14)

The combined Hamiltonian listed below and the initial conditions for all mean fields
finishes our description of the model.

H = −t
∑
〈ij〉σ

c†iσcjσ + V
∑
iδ

(∆iδc
†
i↑c
†
i+δ↓ + h.c.)− µ

∑
iσ

c†iσciσ (4.15)

− J
∑
i

(
〈c†i↑ci↓〉c

†
i↓ci↑ + 〈c†i↓ci↑〉c

†
i↑ci↓

)
(4.16)
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5. Numerical Simulation

5.1. Bogoliubov Transformation

The quadratic Hamiltonian can be rewritten in matrix form.

H =
1

2
(c†1↑...c1↓...c

†
1↓...c1↑)


ξ↑ ∆∗ M 0
∆ −ξ↓ 0 −M
M∗ 0 ξ↓ −∆∗

0 −M∗ −∆ −ξ↑



c1↑
c†1↓
c1↓
c†1↑

 (5.1)

Where ξσ describe regions of nearest neighbour interaction t, ∆ is the d-wave super-
conductivity and M = 〈c†↑c↓〉 is the on-site (diagonal) magnetic interaction. Note that

signs are the result of interchanging the operators, e.g. the term Aciσc
†
iσ is equivalent to

−Ac†iσciσ according to the anticommutation relations 2.3.
Writing the operator vectors as c, c† and denoting the matrix by Ξ, we introduce a

unitary transformation U and define new operators γ, γ†:

H = c†Ξc (5.2)

= c†UU †ΞUU †c (5.3)

= γ†U †ΞUγ (5.4)

Where γ = U †c.
This is a Bogoliubov transformation of the old creation and annihilation operators to a
linear combination of quasiparticle operators γ as done previously for the k-space model.
Written out more clearly the transformation assumes the form:

ci↑
c†i↓
ci↓
c†i↑

 =


α1
in α2

in α3
in α4

in

β1
in β2

in β3
in β4

in

ω1
in ω2

in ω3
in ω4

in

u1
in u2

in u3
in u4

in



γn↑
γ†n↓
γn↓
γ†n↑

 (5.5)

Note that i, n range from 1 to N2. The requirement that this transformation be unitary
translates to the condition that the new operators be fermionic, i.e. obey the anticom-
mutation relations given in equation 2.3.

We now demand that this transformation diagonalizes the Hamiltonian and thus ob-
tain an expression for the transformation matrix U . We denote by I the diagonal matrix
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5. Numerical Simulation

of energy eigenstates.

H = γ†U †ΞUγ = γ†Iγ ⇒ (5.6)

U †ΞU = I ⇒ (5.7)

ΞU = UI (5.8)

This defines an eigenvalue equation for U , and the columns of this matrix are thus the
eigenvectors of Ξ.

Since the Bogoliubov quasiparticle operators are fermionic, they obey Fermi-Dirac
statistics. This translates to the condition 〈γ†nγn〉 = f(En), where f(En) = 1

exp(En/kT )+1 .

The mean field quantities are then (see Appendix A):

ni↑ =

4N2∑
n=1

|αin|2f(En), ni↓ =

4N2∑
n=1

|ωin|2f(En) (5.9)

∆iδ =
N2∑
n=1

αiβ
∗
i+δf(−En), 〈c†i↑ci↓〉 =

4N2∑
i=1

uinβ
∗
inf(−En) (5.10)

These form the self-consistent equations needed for the numerical simulation. We now
choose parameters matching the system described in [4]. To model a heavy fermion
compound we find the critical J (Jc) for which the system becomes an antiferromag-
net and choose J < Jc to model a system at the edge of magnetism. In accordance
with [4] we choose J/t = 3.5 (as Jc ≈ 3.6 in our system ), V/t = 3 and choose as our
initial guess for the magnetization m(ri) = mQ(cos Q ·ri, sin Q ·ri, 0) as described above.

5.2. Homogeneous System

Upon initializing the mean field quantities the Hamiltonian is diagonalized and the
mean fields updated (Mathematica script included in Appendix B). This process is then
repeated until the mean fields have stabilized or decayed. We then explore the phase
diagram obtained through the alternate method of energy minimization in [4]. The result
is plotted below, done in steps of ∼ 0.1 in both h and T .
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5. Numerical Simulation

SC

N
Q

0.1 0.2 0.3 0.4 0.5 0.6 0.7
T �t

0.2

0.4

0.6

0.8

h�t

Figure 5.1.: Phase diagram showing a coexistence of superconductivity (SC) and the described
magnetic order in the Q phase. Red dots indicate the superconducting phase, blue
dots surround the phase of coexistence. Note that this has been computed for N = 9
due to time constraints of the computations. Upon increase to N = 18 the phase
diagram appears stable.

The ordered phase is seen to decay outside a small high field low temperature region,
as expected from [4]. With the phase diagram consistent, the real space order can be
studied.

x

y

(a) Real Space

-0.4

-0.2

0

0.2

0.4

-6-4-20246

(c) k Space

0

0.05

0.10

0.15

0.20

-6-4-20246

Figure 5.2.: Left: Arrayplot showing mx for the homogeneous stable system. Right: Fourier
transform in the first Brillioun zone. The stable order is seen upon transformation
to have an ordering vector corresponding to the suggested 0.8888(π, π).

Plotting all components of the magnetization, the my component is seen to decay for
all parameters. According to [4] this is consistent with the easy spin alignment axis
in CeCoIn5 being orthogonal to the plane (the (x) axis in our model).The initial spiral
order thus contorts to align with the easy axis. As this is the case for all parameters the
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5. Numerical Simulation

initial guess for the magnetization is rewritten as m(r) = mQ(cos Q · r, 0, 0), to speed up
computation. The Q-order in mx is plotted in figure 5.2 for kT/t = 0.01 and h/t = 0.7.

The real space ordering is seen to stabilize as the suggested single nesting vector struc-
ture. This is evident in the Fourier transform plot in figure 5.2c, where the expected
peaks at k = Q,−Q are present.

To investigate the competing orders the stabilized real space superconducting order
parameter is relevant. We define the singlet and triplet superconducting order parame-
ters as:

∆
(s)
ij =

1

2
(〈ci↑cj↓〉 − 〈ci↓cj↑〉) =

1

2
(∆ij + ∆ji) (5.11)

∆
(T )
ij =

1

2
(〈ci↑cj↓〉+ 〈ci↓cj↑〉) =

1

2
(∆ij −∆ji) (5.12)

Where j span the four nearest neighbour sites. We define the dx2−y2 order parameter
as:

∆(s,T ) =
1

4
(∆s,T

i(1,0) + ∆s,T
i(−1,0) −∆s,T

i(0,−1) −∆s,T
i(0,1)) (5.13)

Of these, the triplet order parameter is found to be approximately zero corresponding
to the expected singlet superconductivity in CeCoIn5 [4].
The singlet order parameter is plotted in figure 5.3 for the homogeneous system:

x

y

(a) Real Space

0.28

0.30

0.32

0.34

-6-4-20246

(c) k Space

0

0.02

0.04

0.06

-Π

Figure 5.3.: Left: Arrayplot showing ∆s
i for the homogeneous system. The order is maximally

suppressed in regions of maximum amplitude of mx, showing the competing orders.
Right: Fourier transform in the first Brillioun zone of the reduced order parameter
∆s

i −min(∆s
i ). Note that the ordering vector of the small modulation is 2Q, moved

into the first Brillioun zone by a reciprocal lattice vector.

Note that the Fourier transform given in 5.3c is for the reduced order parameter
∆s −min(∆s) to enhance the ordering peaks compared to the Q = 0 peak.
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5. Numerical Simulation

The total electron density has the same modulation (see figure 5.4), a suppression in
the region of highest amplitude of magnetization. As plotted in figure 5.3c this ordering
is modulated with a different ordering vector than Q. Instead, the ordering is approxi-
mately at ±(0.8888−1, 0.8888−1)π corresponding to an ordering vector 2Q moved into
the first Brillioun zone by a reciprocal lattice vector 2π(1, 1). Such an ordering is to be
expected: The density and superconductivity can not depend on the direction chosen for
the magnetization, and the lowest order term coupling the density or superconductivity
order parameter in a Landau expansion of the free energy is then (n,∆)m2 ∼ cos(Q · r)2

which in the Fourier transform yields peaks at ±2Q.

x

y

(a) ni

1.12

1.14

1.16

1.18

1.20

1.22

-6-4-20246

(c) mz

Figure 5.4.: Left: Arrayplot showing 〈n↑ + n↓〉 for the homogeneous system. Right: mz for the
homogeneous system showing the inverse modulation of the density.

Contrary to the prediction in [4] we find a magnetization component mz = n↑ − n↓
modulated like the total density (see figure 5.4). The relative strength of this component
and the effect on the mx order is best visualized as a vector plot of the magnetization
on each site, shown below (A larger plot is available in appendix C.

14



5. Numerical Simulation

(a) Scaled in magnitude (b) Unscaled

Figure 5.5.: Left: Vector plot of the two-dimensional magnetization. Right: The same plot
with constant magnitude showing the direction of vectors more clearly. The mx

component is horizontal, with the mz component vertical.

5.3. Impurity Magnetization

With the homogeneously ordered system stabilized we can begin the study of magnetic
impurities. The Hamiltonian for a local impurity magnetization is found by modelling
the impurity as a fixed spin on a given site. We can then place an impurity aligned with
the field of the form Si∗ = (0, 0, Sziσ), and choose Szi∗↑ = 1:

Hz−Imp = −Jz
∑
σσ

Si∗ · (c†i∗σσ
x
σσ̄ci∗σ̄) (5.14)

= −Jz
∑
σ

σc†i∗σci∗σ (5.15)

Where σ = ±1 for ↑, ↓.
Equally relevant is the study of impurities in the direction of the desired magnetization
component mx. The same argument for Si∗ = (Sxiσ, 0, 0) yields a different term:

Hx−imp = −Jx(c†i∗↑ci∗↓ + h.c.) (5.16)

An example of the local order for one impurity potential is given in figure 5.6 and 5.7.
The ordering is not only present at the expected ±Q peaks but also at the other corners
of the zone. This corresponds to nesting order from both pair of pockets of the Fermi
surface. This is to be expected for impurities as the local order has no predisposition to
any one ordering vector by the surrounding initialized order.
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5. Numerical Simulation

(a) Real Space (c) k Space

Figure 5.6.: Left: Arrayplot showing mx for the (x) impurity with Jx = 0.6 and h = 0.. Right:
Fourier transform in the first Brillioun zone. The order has peaks from all possible
nesting vectors.

(a) Real Space (c) k Space

Figure 5.7.: Left: Arrayplot showing mz for the (z) impurity with Jz = 0.6 and h = 0. Right:
Fourier transform in the first Brillioun zone. The direct magnetization is a very local
response, yielding a combination of orders including at Q.

Inducing the homogeneous Q-order by impurity doping will require mapping out
strength of the local ordering of these different impurity types. The ordering is not
optimally described by the real space amplitude of magnetization but rather by the
strength of the dominant order. A very strong order only at the impurity site is of little
interest as this can’t possibly add up to the homogeneous order with the inclusion of
periodic impurities. The strength is thus best described by the amplitude of the Fourier
transform at the nesting vector Q, which will correspond to the relative strength of the
desired ordering for a given impurity potential. This is plotted for both types of impuri-
ties in figure 5.8. Note that we plot only linear magnetization, as (z) impurities induce
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5. Numerical Simulation

(a) (b)

Figure 5.8.: Left: mz(Q) for an magnetic impurity with spin along (z), for a system size of
N = 18 at h = 0. Right: mx(Q) for an magnetic impurity with spin along x for a
system size of N = 27 also at h = 0. The response is the expected linear mean field
response decaying to an upper limiting ordered magnetization.

only finite mz and (x) impurities induce only finite mx at h = 0.
In the homogeneous system, the high field induced a transverse magnetization. To see
whether it is possible to accomplish the same by using an impurity along the field, we
choose h/t = 0.4 outside the high field phase but include a strong (z) impurity Jz/t = 3.
For simplicity we choose kT/t = 0.01 in order to avoid thermal effects. In addition to the
expected direct mz component expected from the h = 0 case, this stabilizes the desired
finite mx component (see figure 5.9).

(a) Real Space (c) k Space

Figure 5.9.: Left: Arrayplot showing mx for the in-field stabilized strong, Jz/t = 3, (z) impurity.
Right: Fourier transform in the first Brillioun zone.
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6. Discussion

Numerically simulating our model in real space has allowed the study of stabilization
of competing orders and the introduction of impurities. This is accomplished using the
quasi-2D structure of CeCoIn5 which we model on a discrete lattice by including periodic
boundary conditions. This should in theory allow us to use an arbitrarily small system
size as long as it is not shorter than the period of any of the included orders. Yet a larger
system of N = 18 or N = 37 is not only advisable for precision purposes but strictly
necessary when we include strong impurities.
Initializing too strong an impurity for a small system size enables the induced local
order to extend over the right edge of the finite lattice through the periodic boundary
conditions and interacting with the impurity from the left. In the study of single im-
purities and the local order thereof this invalidates the model, hence the need to choose
larger system sizes for some impurities. This is the reason system sizes for impurities
are alternating between N = 18 and N = 27.

Contrary to the prediction in [4] we find a non-zero mz as well as the expected mx

component. As the ordering of this component mirrors the density, superconductivity
and total density it is thought to be connected to the self-consistent method employed
in this thesis. No effect of this non-zero component is found on region in which the
expected Q-phase stabilizes, which suggest that this magnetization component has no
dominant effect on the induced magnetization in mx relevant for the further impurity
study. Figure 5.5 shows how the expected antiferromagnetic order is realised side by
side with the finite mz component.

The homogeneous AFM studied here has been for a single nesting vector connecting
pockets. As detailed in [4] a more general order is one in which we consider the nesting of
both the lower left and upper right (our model), and the lower right and upper left pock-
ets. This corresponds to a magnetization of the form mx = mQ(cos(Q1 ·r)+cos(Q2 ·r)).
As a possible transition from single-Q to double-Q structure in the coexistence phase
seems to be suggested by experiment [4], mapping out the phase diagram for this model
seems quite relevant.

Going beyond the work done here, a logical next step is to map out the induced
magnetization in finite field. We find that a strong impurity in a substantial field induces
the transverse magnetization locally. This proof of concept suggests the homogeneous
order could be induced by a collection of such impurities and the Q phase thus expanded,
a process very relevant to the doping of CeCoIn5 by magnetic impurities.
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7. Conclusion

In summary, we have shown how the nodal structure of the d-wave ordering gap in
CeCoIn5 under magnetic field creates nodal pockets of parallel regions on the Fermi
surface. These nested regions are unstable to the formation of antiferromagnetic order,
illustrating how superconductivity is required for the formation of this order. Through
self-consistent simulation we have reproduced the expected phase diagram for this com-
pound. The coexistence phase in this phase diagram shows the order expected from [4].
Studying the lattice ordering of the self-consistent fields in this homogeneous system, we
have found modulations corresponding to the nesting vector Q, including an unexpected
though non-interfering mz component.

Including impurities along and orthogonal to the field we have seen how the local (x)
component of the magnetization becomes rotationally invariant in contrast to the ho-
mogeneous order. We have mapped out the linear magnetization for impurities at h = 0
and found a linear mean field relation between impurity potential and strength of the
nesting order. Initializing a field below the Q-phase critical field we have induced the mx

magnetization locally using a (z) impurity, in strong correlation with the homogeneous
formation of the Q-phase. Finally, we have described how our study of impurity magne-
tization suggest the possibility of expanding the homogeneous phase through impurity
doping.
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A. Calculation of self-consistent fields

The self-consistent fields are calculated using the Bogoliubov transformation. We note
the distribution 〈γ†nσγnσ〉 = f(En). The anticommutation relations for fermion will allow
us to shift operators, allowing terms to be rewritten:

〈γnσγ†nσ〉 = 1− 〈γ†nσγnσ〉 (A.1)

= 1− f(En) (A.2)

= f(−En) (A.3)

With this in place we now write the self-consistent fields in terms of quasiparticle opera-
tors, then use the conjugate transpose to obtain expressions independent of any sorting
of eigenvalues and eigenvectors, i.e. we require that the fields can be written as a single
sum over n. To pair operators with the corresponding energies we first write out the
condition that the γ operators diagonalize the Hamiltonian:

H =
∑
n

Enγ
†
n↑γn↑ + En+N2γn↓γ

†
n↓ + En+2N2γ†n↓γn↓ + En+3N2γn↑γ

†
n↑ (A.4)

This tells us the energy corresponding to the product of operators, e.g. 〈γn↓γ†n↓〉 =
f(En+N2).

The density operator demonstrates the general method:

ni↑ = 〈c†i↑ci↑〉 (A.5)

= 〈(ci↑)†ci↑〉 (A.6)

= 〈(
N2∑
n=1

α∗inγ
†
n↑ + α∗i,N2+nγn↑ + α∗i,2N2+nγ

†
n↑ + α∗i,3N2+nγn↑) (A.7)

(
N2∑
n=1

αinγn↑ + αi,N2+nγ
†
n↑ + αi,2N2+nγn↑ + αi,3N2+nγ

†
n↑)〉 (A.8)

=

N2∑
n

|α1
in|2f(En) + |α2

in|2f(En+N2) + |α3
in|2f(En+2N2) + |α4

in|2f(En+3N2) (A.9)

=

4N2∑
n=1

|αin|2f(En) (A.10)

The other order parameters are written in the same way, using conjugate transposition
to obtain an expression applicable to a single sum over n.
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B. Mathematica Script

Mathematica is used for the self-consistent calculations.
The script does the following:

1. Initialize self-consistent fields, set parameters

2. Construct Hamiltonian, diagonalize Hamiltonian

3. Update self-consistent fields

4. Print plots of evolution of specific self-consistent fields every few iterations

5. Iterate and go to 2

SetDirectory[NotebookDirectory[]];SetDirectory[NotebookDirectory[]];SetDirectory[NotebookDirectory[]];

i = 0; (*Position lists for real space and k space*)i = 0; (*Position lists for real space and k space*)i = 0; (*Position lists for real space and k space*)

For[iy = 1, iy ≤ Nx, iy++,For[iy = 1, iy ≤ Nx, iy++,For[iy = 1, iy ≤ Nx, iy++,

For[ix = 1, ix ≤ Nx, ix++, i++;For[ix = 1, ix ≤ Nx, ix++, i++;For[ix = 1, ix ≤ Nx, ix++, i++;

xpos[i] = ix;xpos[i] = ix;xpos[i] = ix;

ypos[i] = iy; ]];ypos[i] = iy; ]];ypos[i] = iy; ]];

yposlist = Table[Nx− i, {i, 0,Nx− 1}];yposlist = Table[Nx− i, {i, 0,Nx− 1}];yposlist = Table[Nx− i, {i, 0,Nx− 1}];

xposlist = Table[i, {i, 1,Nx}];xposlist = Table[i, {i, 1,Nx}];xposlist = Table[i, {i, 1,Nx}];

kxList = Table[l ∗ Pi/(Nx/2), {l,−Nx/2,Nx/2}];kxList = Table[l ∗ Pi/(Nx/2), {l,−Nx/2,Nx/2}];kxList = Table[l ∗ Pi/(Nx/2), {l,−Nx/2,Nx/2}];

kyList = kxList;kyList = kxList;kyList = kxList;

(*Parameters*)(*Parameters*)(*Parameters*)

ChemPot0 = 0.68;ChemPot0 = 0.68;ChemPot0 = 0.68;

ChemPot = ChemPot0;ChemPot = ChemPot0;ChemPot = ChemPot0;

ChemLoopMaxIt = 200;ChemLoopMaxIt = 200;ChemLoopMaxIt = 200;

jPot = 3.5 ∗ t;jPot = 3.5 ∗ t;jPot = 3.5 ∗ t;

hPot = 0. ∗ t;hPot = 0. ∗ t;hPot = 0. ∗ t;

mQ = 0. ∗ t;mQ = 0. ∗ t;mQ = 0. ∗ t;

Q = 0.8888 ∗ Pi;Q = 0.8888 ∗ Pi;Q = 0.8888 ∗ Pi;

vPot = 3. ∗ t;vPot = 3. ∗ t;vPot = 3. ∗ t;
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vImp = 2. ∗ t;vImp = 2. ∗ t;vImp = 2. ∗ t;

ImpType = x;ImpType = x;ImpType = x;

ImpSite = If[Mod[Nx, 2] == 1,Ceiling[0.5 ∗Nx∧2−Nx/2],Ceiling[0.5 ∗Nx∧2]; ]ImpSite = If[Mod[Nx, 2] == 1,Ceiling[0.5 ∗Nx∧2−Nx/2],Ceiling[0.5 ∗Nx∧2]; ]ImpSite = If[Mod[Nx, 2] == 1,Ceiling[0.5 ∗Nx∧2−Nx/2],Ceiling[0.5 ∗Nx∧2]; ]

(*Place impurity in the middle of lattice*)(*Place impurity in the middle of lattice*)(*Place impurity in the middle of lattice*)

HLength = (4Nx∧2);HLength = (4Nx∧2);HLength = (4Nx∧2);

inSpinFactorA = 1;inSpinFactorA = 1;inSpinFactorA = 1;

inSpinFactorB = 1;inSpinFactorB = 1;inSpinFactorB = 1;

nTotalCalc = 0.;nTotalCalc = 0.;nTotalCalc = 0.;

kT = 0.01;kT = 0.01;kT = 0.01;

DataOld = “Map2”; (*Import and export data*)DataOld = “Map2”; (*Import and export data*)DataOld = “Map2”; (*Import and export data*)

DataNew = “Map2”;DataNew = “Map2”;DataNew = “Map2”;

dWaveModifier = 1; (*0→ sWave, 1→ dWave*)dWaveModifier = 1; (*0→ sWave, 1→ dWave*)dWaveModifier = 1; (*0→ sWave, 1→ dWave*)

ImportModifier = 1;ImportModifier = 1;ImportModifier = 1;

If[ImportModifier == 1,If[ImportModifier == 1,If[ImportModifier == 1,

DeltaSC = Get[StringJoin[“DeltaSC”,DataOld]];DeltaSC = Get[StringJoin[“DeltaSC”,DataOld]];DeltaSC = Get[StringJoin[“DeltaSC”,DataOld]];

AFMMF = Get[StringJoin[“AFMMF”,DataOld]];AFMMF = Get[StringJoin[“AFMMF”,DataOld]];AFMMF = Get[StringJoin[“AFMMF”,DataOld]];

AFMMF = 0.5 ∗AFMMF;AFMMF = 0.5 ∗AFMMF;AFMMF = 0.5 ∗AFMMF;

nSiteUp = Get[StringJoin[“nSiteUp”,DataOld]];nSiteUp = Get[StringJoin[“nSiteUp”,DataOld]];nSiteUp = Get[StringJoin[“nSiteUp”,DataOld]];

nSiteDown = Get[StringJoin[“nSiteDown”,DataOld]];nSiteDown = Get[StringJoin[“nSiteDown”,DataOld]];nSiteDown = Get[StringJoin[“nSiteDown”,DataOld]];

nTotalCalc = Get[StringJoin[“nTotalCalc”,DataOld]];nTotalCalc = Get[StringJoin[“nTotalCalc”,DataOld]];nTotalCalc = Get[StringJoin[“nTotalCalc”,DataOld]];

DeltaSCCalc = Table[0, {i, 1, 4}, {j, 1,Nx∧2}];DeltaSCCalc = Table[0, {i, 1, 4}, {j, 1,Nx∧2}];DeltaSCCalc = Table[0, {i, 1, 4}, {j, 1,Nx∧2}];

,,,

If[dWaveModifier == 1,If[dWaveModifier == 1,If[dWaveModifier == 1,

DeltaSC = Table[If[i < 3, 0.4,−0.4], {i, 1, 4}, {j, 1,Nx∧2}];DeltaSC = Table[If[i < 3, 0.4,−0.4], {i, 1, 4}, {j, 1,Nx∧2}];DeltaSC = Table[If[i < 3, 0.4,−0.4], {i, 1, 4}, {j, 1,Nx∧2}];

DeltaSCCalc = Table[0, {i, 1, 4}, {j, 1,Nx∧2}];DeltaSCCalc = Table[0, {i, 1, 4}, {j, 1,Nx∧2}];DeltaSCCalc = Table[0, {i, 1, 4}, {j, 1,Nx∧2}];

,,,

DeltaSC = Table[1, {i, 1,Nx∧2}]; DeltaSCCalc = Table[0, {i, 1,Nx∧2}]DeltaSC = Table[1, {i, 1,Nx∧2}]; DeltaSCCalc = Table[0, {i, 1,Nx∧2}]DeltaSC = Table[1, {i, 1,Nx∧2}]; DeltaSCCalc = Table[0, {i, 1,Nx∧2}]

];];];

DeltaSCCalc = Table[0, {i, 1, 4}, {j, 1,Nx∧2}];DeltaSCCalc = Table[0, {i, 1, 4}, {j, 1,Nx∧2}];DeltaSCCalc = Table[0, {i, 1, 4}, {j, 1,Nx∧2}];

AFMMF0 = 0.5 ∗ Table[mQ ∗ Cos[((xpos[i]) ∗Q+ (ypos[i]) ∗Q)], {i, 1,Nx∧2}]; (*updagger down*);AFMMF0 = 0.5 ∗ Table[mQ ∗ Cos[((xpos[i]) ∗Q+ (ypos[i]) ∗Q)], {i, 1,Nx∧2}]; (*updagger down*);AFMMF0 = 0.5 ∗ Table[mQ ∗ Cos[((xpos[i]) ∗Q+ (ypos[i]) ∗Q)], {i, 1,Nx∧2}]; (*updagger down*);

AFMMF = AFMMF0;AFMMF = AFMMF0;AFMMF = AFMMF0;



nSiteUp = 1/2 ∗ Table[If[EvenQ[xpos[i] + ypos[i]], inSpinFactorB, inSpinFactorA], {i,Nx∧2}];nSiteUp = 1/2 ∗ Table[If[EvenQ[xpos[i] + ypos[i]], inSpinFactorB, inSpinFactorA], {i,Nx∧2}];nSiteUp = 1/2 ∗ Table[If[EvenQ[xpos[i] + ypos[i]], inSpinFactorB, inSpinFactorA], {i,Nx∧2}];

nSiteDown = 1/2 ∗ Table[If[EvenQ[xpos[i] + ypos[i]], inSpinFactorA, inSpinFactorB], {i,Nx∧2}];nSiteDown = 1/2 ∗ Table[If[EvenQ[xpos[i] + ypos[i]], inSpinFactorA, inSpinFactorB], {i,Nx∧2}];nSiteDown = 1/2 ∗ Table[If[EvenQ[xpos[i] + ypos[i]], inSpinFactorA, inSpinFactorB], {i,Nx∧2}];

];];];

nSiteUpCalc = Table[0, {i, 1,Nx∧2}]; nSiteDownCalc = Table[0, {i, 1,Nx∧2}];nSiteUpCalc = Table[0, {i, 1,Nx∧2}]; nSiteDownCalc = Table[0, {i, 1,Nx∧2}];nSiteUpCalc = Table[0, {i, 1,Nx∧2}]; nSiteDownCalc = Table[0, {i, 1,Nx∧2}];

AFMMFCalc = Table[0, {i, 1,Nx∧2}];AFMMFCalc = Table[0, {i, 1,Nx∧2}];AFMMFCalc = Table[0, {i, 1,Nx∧2}];

AFMList = {Re[AFMMF[[3]] + Conjugate[AFMMF[[3]]]]}; (*Define inspection lists*)AFMList = {Re[AFMMF[[3]] + Conjugate[AFMMF[[3]]]]}; (*Define inspection lists*)AFMList = {Re[AFMMF[[3]] + Conjugate[AFMMF[[3]]]]}; (*Define inspection lists*)

DeltaSCList = {Re[DeltaSC[[1, 1]]]};DeltaSCList = {Re[DeltaSC[[1, 1]]]};DeltaSCList = {Re[DeltaSC[[1, 1]]]};

AFMListImp = {Re[AFMMF[[ImpSite]] + Conjugate[AFMMF[[ImpSite]]]]};AFMListImp = {Re[AFMMF[[ImpSite]] + Conjugate[AFMMF[[ImpSite]]]]};AFMListImp = {Re[AFMMF[[ImpSite]] + Conjugate[AFMMF[[ImpSite]]]]};

mSiteList = {(nSiteUpCalc[[ImpSite]]− nSiteDownCalc[[ImpSite]])};mSiteList = {(nSiteUpCalc[[ImpSite]]− nSiteDownCalc[[ImpSite]])};mSiteList = {(nSiteUpCalc[[ImpSite]]− nSiteDownCalc[[ImpSite]])};

(*definenearestneighboursunderperiodicboundaryconditions, leftrightupdown*)(*definenearestneighboursunderperiodicboundaryconditions, leftrightupdown*)(*definenearestneighboursunderperiodicboundaryconditions, leftrightupdown*)

NearNeigh[i ]:={NearNeigh[i ]:={NearNeigh[i ]:={

Switch[Mod[i− 1,Nx], 0, i− 1 + Nx, , i− 1],Switch[Mod[i− 1,Nx], 0, i− 1 + Nx, , i− 1],Switch[Mod[i− 1,Nx], 0, i− 1 + Nx, , i− 1],

Switch[Mod[i,Nx], 0, i+ 1−Nx, , i+ 1],Switch[Mod[i,Nx], 0, i+ 1−Nx, , i+ 1],Switch[Mod[i,Nx], 0, i+ 1−Nx, , i+ 1],

Switch[Sign[Nx + 1− i], 1,Nx∧2− (Nx− i), , i−Nx],Switch[Sign[Nx + 1− i], 1,Nx∧2− (Nx− i), , i−Nx],Switch[Sign[Nx + 1− i], 1,Nx∧2− (Nx− i), , i−Nx],

Switch[Sign[i− (Nx− 1) ∗Nx], 1, i− (Nx− 1) ∗Nx, , i+ Nx]Switch[Sign[i− (Nx− 1) ∗Nx], 1, i− (Nx− 1) ∗Nx, , i+ Nx]Switch[Sign[i− (Nx− 1) ∗Nx], 1, i− (Nx− 1) ∗Nx, , i+ Nx]

};};};

i = 1;i = 1;i = 1;

FermiDistLimit[E ]:=1/(Exp[E/kT] + 1);FermiDistLimit[E ]:=1/(Exp[E/kT] + 1);FermiDistLimit[E ]:=1/(Exp[E/kT] + 1);

Print[TableForm[{{J,h, “kT”}, {jPot,hPot, kT}}]];Print[TableForm[{{J,h, “kT”}, {jPot,hPot, kT}}]];Print[TableForm[{{J,h, “kT”}, {jPot,hPot, kT}}]];

a = 1;a = 1;a = 1;

Print[{“ ChemPot ”, “nTotalCalc”}]Print[{“ ChemPot ”, “nTotalCalc”}]Print[{“ ChemPot ”, “nTotalCalc”}]

While[a < ChemLoopMaxIt + 1,While[a < ChemLoopMaxIt + 1,While[a < ChemLoopMaxIt + 1,

H = Table[0, {l, 1,HLength}, {j, 1,HLength}];H = Table[0, {l, 1,HLength}, {j, 1,HLength}];H = Table[0, {l, 1,HLength}, {j, 1,HLength}];

j = 1; i = 1;j = 1; i = 1;j = 1; i = 1;

While[j < Nx∧2 + 1,While[j < Nx∧2 + 1,While[j < Nx∧2 + 1,

H[[i, j]] = −ChemPot− hPot;H[[i, j]] = −ChemPot− hPot;H[[i, j]] = −ChemPot− hPot;

H[[i+ Nx∧2, j + Nx∧2]] = ChemPot− hPot;H[[i+ Nx∧2, j + Nx∧2]] = ChemPot− hPot;H[[i+ Nx∧2, j + Nx∧2]] = ChemPot− hPot;



H[[i+ 2Nx∧2, j + 2Nx∧2]] = −ChemPot + hPot;H[[i+ 2Nx∧2, j + 2Nx∧2]] = −ChemPot + hPot;H[[i+ 2Nx∧2, j + 2Nx∧2]] = −ChemPot + hPot;

H[[i+ 3Nx∧2, j + 3Nx∧2]] = ChemPot + hPot;H[[i+ 3Nx∧2, j + 3Nx∧2]] = ChemPot + hPot;H[[i+ 3Nx∧2, j + 3Nx∧2]] = ChemPot + hPot;

H[[i,NearNeigh[j]]] = −t;H[[i,NearNeigh[j]]] = −t;H[[i,NearNeigh[j]]] = −t;

H[[i+ Nx∧2,Nx∧2 + NearNeigh[j]]] = t;H[[i+ Nx∧2,Nx∧2 + NearNeigh[j]]] = t;H[[i+ Nx∧2,Nx∧2 + NearNeigh[j]]] = t;

H[[i+ 2Nx∧2, 2Nx∧2 + NearNeigh[j]]] = −t;H[[i+ 2Nx∧2, 2Nx∧2 + NearNeigh[j]]] = −t;H[[i+ 2Nx∧2, 2Nx∧2 + NearNeigh[j]]] = −t;

H[[i+ 3Nx∧2, 3Nx∧2 + NearNeigh[j]]] = t;H[[i+ 3Nx∧2, 3Nx∧2 + NearNeigh[j]]] = t;H[[i+ 3Nx∧2, 3Nx∧2 + NearNeigh[j]]] = t;

H[[i, j + 2Nx∧2]] = −jPot ∗AFMMF[[j]];H[[i, j + 2Nx∧2]] = −jPot ∗AFMMF[[j]];H[[i, j + 2Nx∧2]] = −jPot ∗AFMMF[[j]];

H[[i+ Nx∧2, j + 3Nx∧2]] = jPot ∗AFMMF[[j]];H[[i+ Nx∧2, j + 3Nx∧2]] = jPot ∗AFMMF[[j]];H[[i+ Nx∧2, j + 3Nx∧2]] = jPot ∗AFMMF[[j]];

H[[i+ 2Nx∧2, j]] = −jPot ∗ Conjugate[AFMMF[[j]]];H[[i+ 2Nx∧2, j]] = −jPot ∗ Conjugate[AFMMF[[j]]];H[[i+ 2Nx∧2, j]] = −jPot ∗ Conjugate[AFMMF[[j]]];

H[[i+ 3Nx∧2, j + Nx∧2]] = jPot ∗ Conjugate[AFMMF[[j]]];H[[i+ 3Nx∧2, j + Nx∧2]] = jPot ∗ Conjugate[AFMMF[[j]]];H[[i+ 3Nx∧2, j + Nx∧2]] = jPot ∗ Conjugate[AFMMF[[j]]];

H[[NearNeigh[j], j + Nx∧2]] = Conjugate[{DeltaSC[[1, j]],DeltaSC[[2, j]],DeltaSC[[3, j]],DeltaSC[[4, j]]}];H[[NearNeigh[j], j + Nx∧2]] = Conjugate[{DeltaSC[[1, j]],DeltaSC[[2, j]],DeltaSC[[3, j]],DeltaSC[[4, j]]}];H[[NearNeigh[j], j + Nx∧2]] = Conjugate[{DeltaSC[[1, j]],DeltaSC[[2, j]],DeltaSC[[3, j]],DeltaSC[[4, j]]}];

H[[i+ Nx∧2,NearNeigh[j]]] = {DeltaSC[[1, j]],DeltaSC[[2, j]],DeltaSC[[3, j]],DeltaSC[[4, j]]};H[[i+ Nx∧2,NearNeigh[j]]] = {DeltaSC[[1, j]],DeltaSC[[2, j]],DeltaSC[[3, j]],DeltaSC[[4, j]]};H[[i+ Nx∧2,NearNeigh[j]]] = {DeltaSC[[1, j]],DeltaSC[[2, j]],DeltaSC[[3, j]],DeltaSC[[4, j]]};

H[[NearNeigh[i] + 2Nx∧2, 3Nx∧2 + j ]] = −Conjugate[{DeltaSC[[1, j]],DeltaSC[[2, j]],DeltaSC[[3, j]],DeltaSC[[4, j]]}];H[[NearNeigh[i] + 2Nx∧2, 3Nx∧2 + j ]] = −Conjugate[{DeltaSC[[1, j]],DeltaSC[[2, j]],DeltaSC[[3, j]],DeltaSC[[4, j]]}];H[[NearNeigh[i] + 2Nx∧2, 3Nx∧2 + j ]] = −Conjugate[{DeltaSC[[1, j]],DeltaSC[[2, j]],DeltaSC[[3, j]],DeltaSC[[4, j]]}];

H[[i+ 3Nx∧2,NearNeigh[j] + 2Nx∧2]] = −{DeltaSC[[1, j]],DeltaSC[[2, j]],DeltaSC[[3, j]],DeltaSC[[4, j]]};H[[i+ 3Nx∧2,NearNeigh[j] + 2Nx∧2]] = −{DeltaSC[[1, j]],DeltaSC[[2, j]],DeltaSC[[3, j]],DeltaSC[[4, j]]};H[[i+ 3Nx∧2,NearNeigh[j] + 2Nx∧2]] = −{DeltaSC[[1, j]],DeltaSC[[2, j]],DeltaSC[[3, j]],DeltaSC[[4, j]]};

i++; j++];i++; j++];i++; j++];

If[ImpType == x,If[ImpType == x,If[ImpType == x,

H[[ImpSite, ImpSite + 2Nx∧2]] = H[[ImpSite, ImpSite + 2Nx∧2]]− vImp;H[[ImpSite, ImpSite + 2Nx∧2]] = H[[ImpSite, ImpSite + 2Nx∧2]]− vImp;H[[ImpSite, ImpSite + 2Nx∧2]] = H[[ImpSite, ImpSite + 2Nx∧2]]− vImp;

H[[ImpSite + Nx∧2, ImpSite + 3Nx∧2]] = H[[ImpSite + Nx∧2, ImpSite + 3Nx∧2]] + vImp;H[[ImpSite + Nx∧2, ImpSite + 3Nx∧2]] = H[[ImpSite + Nx∧2, ImpSite + 3Nx∧2]] + vImp;H[[ImpSite + Nx∧2, ImpSite + 3Nx∧2]] = H[[ImpSite + Nx∧2, ImpSite + 3Nx∧2]] + vImp;

H[[ImpSite + 2Nx∧2, ImpSite]] = H[[ImpSite + 2Nx∧2, ImpSite]]− vImp;H[[ImpSite + 2Nx∧2, ImpSite]] = H[[ImpSite + 2Nx∧2, ImpSite]]− vImp;H[[ImpSite + 2Nx∧2, ImpSite]] = H[[ImpSite + 2Nx∧2, ImpSite]]− vImp;

H[[ImpSite + 3Nx∧2, ImpSite + Nx∧2]] = H[[ImpSite + 3Nx∧2, ImpSite + Nx∧2]] + vImp;H[[ImpSite + 3Nx∧2, ImpSite + Nx∧2]] = H[[ImpSite + 3Nx∧2, ImpSite + Nx∧2]] + vImp;H[[ImpSite + 3Nx∧2, ImpSite + Nx∧2]] = H[[ImpSite + 3Nx∧2, ImpSite + Nx∧2]] + vImp;

,,,

H[[ImpSite, ImpSite]] = H[[ImpSite, ImpSite]]− vImp;H[[ImpSite, ImpSite]] = H[[ImpSite, ImpSite]]− vImp;H[[ImpSite, ImpSite]] = H[[ImpSite, ImpSite]]− vImp;

H[[ImpSite + Nx∧2, ImpSite + Nx∧2]] = H[[ImpSite + Nx∧2, ImpSite + Nx∧2]]− vImp;H[[ImpSite + Nx∧2, ImpSite + Nx∧2]] = H[[ImpSite + Nx∧2, ImpSite + Nx∧2]]− vImp;H[[ImpSite + Nx∧2, ImpSite + Nx∧2]] = H[[ImpSite + Nx∧2, ImpSite + Nx∧2]]− vImp;

H[[ImpSite + 2Nx∧2, ImpSite + 2Nx∧2]] = H[[ImpSite + 2Nx∧2, ImpSite + 2Nx∧2]] + vImp;H[[ImpSite + 2Nx∧2, ImpSite + 2Nx∧2]] = H[[ImpSite + 2Nx∧2, ImpSite + 2Nx∧2]] + vImp;H[[ImpSite + 2Nx∧2, ImpSite + 2Nx∧2]] = H[[ImpSite + 2Nx∧2, ImpSite + 2Nx∧2]] + vImp;

H[[ImpSite + 3Nx∧2, ImpSite + 3Nx∧2]] = H[[ImpSite + 3Nx∧2, ImpSite + 3Nx∧2]] + vImp; ];H[[ImpSite + 3Nx∧2, ImpSite + 3Nx∧2]] = H[[ImpSite + 3Nx∧2, ImpSite + 3Nx∧2]] + vImp; ];H[[ImpSite + 3Nx∧2, ImpSite + 3Nx∧2]] = H[[ImpSite + 3Nx∧2, ImpSite + 3Nx∧2]] + vImp; ];

H = Chop[H]; EigH = Eigensystem[H];H = Chop[H]; EigH = Eigensystem[H];H = Chop[H]; EigH = Eigensystem[H];



U = Transpose[EigH[[2, 1;;4Nx∧2, 1;;4Nx∧2]]];U = Transpose[EigH[[2, 1;;4Nx∧2, 1;;4Nx∧2]]];U = Transpose[EigH[[2, 1;;4Nx∧2, 1;;4Nx∧2]]];

alpha = U [[1;;Nx∧2, 1;;HLength]];alpha = U [[1;;Nx∧2, 1;;HLength]];alpha = U [[1;;Nx∧2, 1;;HLength]];

beta = U [[Nx∧2 + 1;;2 ∗Nx∧2, 1;;HLength]];beta = U [[Nx∧2 + 1;;2 ∗Nx∧2, 1;;HLength]];beta = U [[Nx∧2 + 1;;2 ∗Nx∧2, 1;;HLength]];

omega = U [[2 ∗Nx∧2 + 1;;3 ∗Nx∧2, 1;;HLength]];omega = U [[2 ∗Nx∧2 + 1;;3 ∗Nx∧2, 1;;HLength]];omega = U [[2 ∗Nx∧2 + 1;;3 ∗Nx∧2, 1;;HLength]];

uvar = U [[3 ∗Nx∧2 + 1;;4 ∗Nx∧2, 1;;HLength]];uvar = U [[3 ∗Nx∧2 + 1;;4 ∗Nx∧2, 1;;HLength]];uvar = U [[3 ∗Nx∧2 + 1;;4 ∗Nx∧2, 1;;HLength]];

nSiteUpCalc = Table[Total[nSiteUpCalc = Table[Total[nSiteUpCalc = Table[Total[

Table[Table[Table[

Abs[alpha[[i, n]]]∧2 ∗ FermiDistLimit[EigH[[1, n]]]Abs[alpha[[i, n]]]∧2 ∗ FermiDistLimit[EigH[[1, n]]]Abs[alpha[[i, n]]]∧2 ∗ FermiDistLimit[EigH[[1, n]]]

, {n, 1, 4Nx∧2}]], {i, 1,Nx∧2}];, {n, 1, 4Nx∧2}]], {i, 1,Nx∧2}];, {n, 1, 4Nx∧2}]], {i, 1,Nx∧2}];

nSiteDownCalc = Table[Total[nSiteDownCalc = Table[Total[nSiteDownCalc = Table[Total[

Table[Table[Table[

Abs[omega[[i, n]]]∧2 ∗ FermiDistLimit[EigH[[1, n]]]Abs[omega[[i, n]]]∧2 ∗ FermiDistLimit[EigH[[1, n]]]Abs[omega[[i, n]]]∧2 ∗ FermiDistLimit[EigH[[1, n]]]

, {n, 1, 4Nx∧2}], {n, 1, 4Nx∧2}], {n, 1, 4Nx∧2}]

], {i, 1,Nx∧2}];], {i, 1,Nx∧2}];], {i, 1,Nx∧2}];

AFMMFCalc = Table[Total[AFMMFCalc = Table[Total[AFMMFCalc = Table[Total[

Table[Table[Table[

uvar[[i, n]] ∗ Conjugate[beta[[i, n]]] ∗ FermiDistLimit[−EigH[[1, n]]]uvar[[i, n]] ∗ Conjugate[beta[[i, n]]] ∗ FermiDistLimit[−EigH[[1, n]]]uvar[[i, n]] ∗ Conjugate[beta[[i, n]]] ∗ FermiDistLimit[−EigH[[1, n]]]

, {n, 1, 4Nx∧2}], {n, 1, 4Nx∧2}], {n, 1, 4Nx∧2}]

], {i, 1,Nx∧2}];], {i, 1,Nx∧2}];], {i, 1,Nx∧2}];

If[dWaveModifier == 1,If[dWaveModifier == 1,If[dWaveModifier == 1,

l = 1;l = 1;l = 1;

While[l < 5,While[l < 5,While[l < 5,

DeltaSCCalc[[l]] = Table[vPot ∗ Total[DeltaSCCalc[[l]] = Table[vPot ∗ Total[DeltaSCCalc[[l]] = Table[vPot ∗ Total[

Table[Table[Table[

alpha[[i, n]] ∗ Conjugate[beta[[NearNeigh[i][[l]], n]]] ∗ FermiDistLimit[−EigH[[1, n]]]alpha[[i, n]] ∗ Conjugate[beta[[NearNeigh[i][[l]], n]]] ∗ FermiDistLimit[−EigH[[1, n]]]alpha[[i, n]] ∗ Conjugate[beta[[NearNeigh[i][[l]], n]]] ∗ FermiDistLimit[−EigH[[1, n]]]



, {n, 1, 4Nx∧2}], {n, 1, 4Nx∧2}], {n, 1, 4Nx∧2}]

], {i, 1,Nx∧2}];], {i, 1,Nx∧2}];], {i, 1,Nx∧2}];

l++],l++],l++],

DeltaSCCalc = Table[vPot ∗ Total[DeltaSCCalc = Table[vPot ∗ Total[DeltaSCCalc = Table[vPot ∗ Total[

Table[alpha[[i, n]] ∗ Conjugate[beta[[i, n]]] ∗ FermiDistLimit[−EigH[[1, n]]]Table[alpha[[i, n]] ∗ Conjugate[beta[[i, n]]] ∗ FermiDistLimit[−EigH[[1, n]]]Table[alpha[[i, n]] ∗ Conjugate[beta[[i, n]]] ∗ FermiDistLimit[−EigH[[1, n]]]

, {n, 1, 4Nx∧2}], {n, 1, 4Nx∧2}], {n, 1, 4Nx∧2}]

], {i, 1,Nx∧2}];], {i, 1,Nx∧2}];], {i, 1,Nx∧2}];

];];];

nSiteCalc = Table[nSiteUpCalc[[i]] + nSiteDownCalc[[i]], {i, 1,Nx∧2}];nSiteCalc = Table[nSiteUpCalc[[i]] + nSiteDownCalc[[i]], {i, 1,Nx∧2}];nSiteCalc = Table[nSiteUpCalc[[i]] + nSiteDownCalc[[i]], {i, 1,Nx∧2}];

nTotalCalc = (1/(Nx∧2))(Total[nSiteUpCalc] + Total[nSiteDownCalc]);nTotalCalc = (1/(Nx∧2))(Total[nSiteUpCalc] + Total[nSiteDownCalc]);nTotalCalc = (1/(Nx∧2))(Total[nSiteUpCalc] + Total[nSiteDownCalc]);

AppendTo[AFMListImp,Re[(AFMMF[[ImpSite]] + Conjugate[AFMMF[[ImpSite]]])]];AppendTo[AFMListImp,Re[(AFMMF[[ImpSite]] + Conjugate[AFMMF[[ImpSite]]])]];AppendTo[AFMListImp,Re[(AFMMF[[ImpSite]] + Conjugate[AFMMF[[ImpSite]]])]];

AppendTo[AFMList,Re[(AFMMF[[3]] + Conjugate[AFMMF[[3]]])]];AppendTo[AFMList,Re[(AFMMF[[3]] + Conjugate[AFMMF[[3]]])]];AppendTo[AFMList,Re[(AFMMF[[3]] + Conjugate[AFMMF[[3]]])]];

AppendTo[DeltaSCList,Re[DeltaSC[[1, 1]]]];AppendTo[DeltaSCList,Re[DeltaSC[[1, 1]]]];AppendTo[DeltaSCList,Re[DeltaSC[[1, 1]]]];

AppendTo[mSiteList, (nSiteUpCalc[[ImpSite]]− nSiteDownCalc[[ImpSite]])];AppendTo[mSiteList, (nSiteUpCalc[[ImpSite]]− nSiteDownCalc[[ImpSite]])];AppendTo[mSiteList, (nSiteUpCalc[[ImpSite]]− nSiteDownCalc[[ImpSite]])];

(*Print inspection lists and initial plots of the order*)(*Print inspection lists and initial plots of the order*)(*Print inspection lists and initial plots of the order*)

If[Mod[a, 10]− 1 == 1,If[Mod[a, 10]− 1 == 1,If[Mod[a, 10]− 1 == 1,

ff = Table[Total[Table[(nSiteUpCalc[[i]]− nSiteDownCalc[[i]]) ∗ Exp[I((kx ∗ (xpos[i]) + ky ∗ (ypos[i])))],ff = Table[Total[Table[(nSiteUpCalc[[i]]− nSiteDownCalc[[i]]) ∗ Exp[I((kx ∗ (xpos[i]) + ky ∗ (ypos[i])))],ff = Table[Total[Table[(nSiteUpCalc[[i]]− nSiteDownCalc[[i]]) ∗ Exp[I((kx ∗ (xpos[i]) + ky ∗ (ypos[i])))],

{i, 1,Nx∧2}]], {kx, kxList}, {ky, kyList}]/(Nx∧2);{i, 1,Nx∧2}]], {kx, kxList}, {ky, kyList}]/(Nx∧2);{i, 1,Nx∧2}]], {kx, kxList}, {ky, kyList}]/(Nx∧2);

bb = Sqrt[Abs[Re[ff]]∧2 + Abs[Im[ff]]∧2];bb = Sqrt[Abs[Re[ff]]∧2 + Abs[Im[ff]]∧2];bb = Sqrt[Abs[Re[ff]]∧2 + Abs[Im[ff]]∧2];

Print[ListDensityPlot[bb,ColorFunction→ “Temperature”,Print[ListDensityPlot[bb,ColorFunction→ “Temperature”,Print[ListDensityPlot[bb,ColorFunction→ “Temperature”,

PlotLegends→ Automatic,PlotRange→ All,Mesh→ False,Frame→ {True,True,None,None},PlotLegends→ Automatic,PlotRange→ All,Mesh→ False,Frame→ {True,True,None,None},PlotLegends→ Automatic,PlotRange→ All,Mesh→ False,Frame→ {True,True,None,None},

FrameTicks→ {{{1, “-π”}, {10, “kx”}, {19, “π”}}, {{1, “-π”}, {10, “ky”}, {19, “π”}},None,None},FrameTicks→ {{{1, “-π”}, {10, “kx”}, {19, “π”}}, {{1, “-π”}, {10, “ky”}, {19, “π”}},None,None},FrameTicks→ {{{1, “-π”}, {10, “kx”}, {19, “π”}}, {{1, “-π”}, {10, “ky”}, {19, “π”}},None,None},

FrameStyle→ Directive[16]]];FrameStyle→ Directive[16]]];FrameStyle→ Directive[16]]];

Print[ListPlot[mSiteList,PlotRange→ {0, 1.3},PlotLabel→ {Mz}]];Print[ListPlot[mSiteList,PlotRange→ {0, 1.3},PlotLabel→ {Mz}]];Print[ListPlot[mSiteList,PlotRange→ {0, 1.3},PlotLabel→ {Mz}]];

Print[ListPlot[{AFMList,Abs[AFMListImp]},PlotRange→ {0, 0.7},Print[ListPlot[{AFMList,Abs[AFMListImp]},PlotRange→ {0, 0.7},Print[ListPlot[{AFMList,Abs[AFMListImp]},PlotRange→ {0, 0.7},

PlotStyle→ {PointSize[Small],PointSize[Medium]}]];PlotStyle→ {PointSize[Small],PointSize[Medium]}]];PlotStyle→ {PointSize[Small],PointSize[Medium]}]];

Print[ListPlot[DeltaSCList,PlotRange→ {0, 0.7}]];Print[ListPlot[DeltaSCList,PlotRange→ {0, 0.7}]];Print[ListPlot[DeltaSCList,PlotRange→ {0, 0.7}]];

Print[ArrayPlot[Table[nSiteUpCalc[[(y − 1) ∗Nx + x]]− nSiteDownCalc[[(y − 1) ∗Nx + x]]Print[ArrayPlot[Table[nSiteUpCalc[[(y − 1) ∗Nx + x]]− nSiteDownCalc[[(y − 1) ∗Nx + x]]Print[ArrayPlot[Table[nSiteUpCalc[[(y − 1) ∗Nx + x]]− nSiteDownCalc[[(y − 1) ∗Nx + x]]

, {y, yposlist}, {x, xposlist}],ColorFunction→ “Temperature”,PlotLegends→ Automatic]]];, {y, yposlist}, {x, xposlist}],ColorFunction→ “Temperature”,PlotLegends→ Automatic]]];, {y, yposlist}, {x, xposlist}],ColorFunction→ “Temperature”,PlotLegends→ Automatic]]];



nSiteUp = 0.4 ∗ nSiteUp + 0.6 ∗ nSiteUpCalc;nSiteUp = 0.4 ∗ nSiteUp + 0.6 ∗ nSiteUpCalc;nSiteUp = 0.4 ∗ nSiteUp + 0.6 ∗ nSiteUpCalc;

nSiteDown = 0.4 ∗ nSiteDown + 0.6 ∗ nSiteDownCalc;nSiteDown = 0.4 ∗ nSiteDown + 0.6 ∗ nSiteDownCalc;nSiteDown = 0.4 ∗ nSiteDown + 0.6 ∗ nSiteDownCalc;

AFMMF = 0.4AFMMF + 0.6AFMMFCalc;AFMMF = 0.4AFMMF + 0.6AFMMFCalc;AFMMF = 0.4AFMMF + 0.6AFMMFCalc;

DeltaSC = 0.4 ∗DeltaSC + 0.6 ∗DeltaSCCalc;DeltaSC = 0.4 ∗DeltaSC + 0.6 ∗DeltaSCCalc;DeltaSC = 0.4 ∗DeltaSC + 0.6 ∗DeltaSCCalc;

If[Mod[a, 10] == 1,If[Mod[a, 10] == 1,If[Mod[a, 10] == 1,

PamSet = {hPot, vImp, kT};PamSet = {hPot, vImp, kT};PamSet = {hPot, vImp, kT};

Save[StringJoin[“nSiteUp”,DataNew],nSiteUp];Save[StringJoin[“nSiteUp”,DataNew],nSiteUp];Save[StringJoin[“nSiteUp”,DataNew],nSiteUp];

Save[StringJoin[“nSiteDown”,DataNew],nSiteDown];Save[StringJoin[“nSiteDown”,DataNew],nSiteDown];Save[StringJoin[“nSiteDown”,DataNew],nSiteDown];

Save[StringJoin[“DeltaSC”,DataNew],DeltaSC];Save[StringJoin[“DeltaSC”,DataNew],DeltaSC];Save[StringJoin[“DeltaSC”,DataNew],DeltaSC];

Save[StringJoin[“AFMMF”,DataNew],AFMMF];Save[StringJoin[“AFMMF”,DataNew],AFMMF];Save[StringJoin[“AFMMF”,DataNew],AFMMF];

Save[StringJoin[“nTotalCalc”,DataNew],nTotalCalc];Save[StringJoin[“nTotalCalc”,DataNew],nTotalCalc];Save[StringJoin[“nTotalCalc”,DataNew],nTotalCalc];

Save[StringJoin[“PamSet”,DataNew],PamSet]; ];Save[StringJoin[“PamSet”,DataNew],PamSet]; ];Save[StringJoin[“PamSet”,DataNew],PamSet]; ];

a++];a++];a++];



C. Magnetization Vector Plot
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