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Abstract

This thesis describes the classical circuitry that is used for microwave reflectometry of single and double
quantum dots. The theory is built up from a simple capacitive coupling between the coaxial cable and
the dots to a more complicated circuit which takes impedance mismatches into account. The full cir-
cuit allows for measurement of the tunneling resistance/capacitance between a single dot and ground or
between two dots, which in principle allows us to create a charge stability diagram. Tunneling between
leads and dots is not included.

For a double dot with one energy level per dot the possible number of electrons is # € {0, 1,2, 3, 4}. The
simplest non-trivial case is # = 1 and # = 3, for which the problem is solved to linear order using linear
response theory, this gives us a way of calculating the interdot current as a convolution of the applied
voltage and a periodic function.
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1 INTRODUCTION

A semiconductor quantum dot (QDot) consists of two semiconducting layers (Hanson et al. 2007) (for
instance GaAs and AlGaAs), doped in such a way that a two-dimensional electron gas accumulates at
the interface between the materials. In the case of AlGaAs one can dope with Si (Hanson et al. 2007) to
introduce the electrons. The fact that the electrons are constrained to the interface causes them to have
some interesting properties that are not seen in metals (three-dimensional electron gases). We can add
metallic “wires” to the surface of AlGaAs and by applying voltages to the wires we can affect the energy
levels of the dots. See Appendix EI for an image, taken from (Laucht et al. po21). The dots can be thought
of as artificial atoms — they can even have different energy levels and can under the right conditions
receive and release electrons.

Usually QDot devices have at least two leads from which electrons can enter or leave the dot; this is
shown in Figure B The electrons enter and leave the dot through a process called tunneling at a race T,
the so-called tunneling rate which can be calculated using Fermi’s Golden Rule, as we will see in Section
@. By changing the electrochemical potential in the leads one can get the electron to hop in and out of

the dot.

by —

——X Up

Left Lead QDot Right Lead

FIGURE 1.1: The left, 1‘ight and dot electrochemical potentials. In this figure an electron with spinup is tunneling from the right
lead onto the dot, which already has an electron with spin down. The tunneling rate is T R

In Figure a we see a tunneling process, where an up electron tunnels from the right lead into the dot,
which is a]teady occupied by a down electron. The tunne]ing rate, Fl,Tl’ depends on the chemical potential
of the relevant lead and the dot, as well as the occupancy of the dot, due to the electrostatic interaction.
Note that generally T = Y + 1% 50 the total rate is the rate from the left lead and from the right lead onto

the dot.

1.1 COULOMB BLOCKADE

This section is based on (Bruus and Flensberg 2016, Chapter 10).

Consider Figure E where a QDot with a single level is located between a left and a right lead. Electrons
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can tunnel from the leads into the dot and vice versa. The following transitions are possible

Tos

|0) ~ [1) (r.1a)
Ty,

[0) ~ |]) (1.1b)
Tray

1)~ 1) (1.10)
Tin

1)~ 1)) (r.1d)

as well as the reverse transitions, where we flip the indices of the rates. The master Equation becomes

P, - (FO,T +T l) Tro Lo 0 b,
N e P = (Pro+ Typ0) 0 Tiug i I
de} To, 0 =(Po+Typ) Trt h

P 0 Ty i = (P + Ty)) Vi

where the final equality only holds in steady state. Let us begin by simplifying the problem and assuming
that there is spin-degeneracy, i.c we cannot tell the difference between |1) and |]). Additionally we
assume that the probabilities are normalised: By + 2P, + P, = 1, this gives us the following expression for
the probabilities:

I‘l,OI‘Z,l 2’]‘_‘0,1]‘_‘2,1 110,11_‘1,2

By = , Po= , b=
Fiolar +To (Fl,z + Zrz,l) Tyolar + 1o (Fl,z + 2F2,1) Tyl + 1o (Fl,z + 2F2,1)

(13)

The current through the dot is the number of electrons that enter the dot from the left (right) lead per
unit time:

Lyy (Fé,lrl,o - ZIJf,oro,l) +Ton (ZI‘izrz,l - Filrl,z)
Fiolar + o (F1,2 + ZFZ,I)

I= _e(FgIPO"' (Ffz_Ff,o)Pl _Filpz) ==

> >

(1.4)

The Coulomb repulsion between electrons creates what is referred to as charging energy, which is a minimal
energy that is required in order for us to force two electrons to be in the same space at the same time.
Additionally the electrons have an energy that is associated with the gate voltage:

E, = En* —eVgn (15)

Assuming the leads are reservoirs in thermal equilibrium, in which case they follow a Fermi-Dirac distri-
bution, the transition rates are given by Fermi’s go]den rule:

Fil,n+1 = I‘SnF (En+1 - En - LU“J) (1.62)
F—;z,n—l =T (1 — ng (En - En—l - M:)) (Iéb)

where s can cither be the left or the right lead and ¢ is the electrochemical potential at the s-th dot (left
or right), which is set by the source-drain voltage, V. The temperature dependence of the Fermi-Dirac
distribution imp]ies that in order to perfbrm precision measurements one needs to decrease the setup’s
temperature. For instance, the centre for Quantum Devices at the Niels Bohr Institute performs their

measurements at & 20mK (Berritta po21). We now have everything we need in order to calculate the
ol
aVSI) ’

current through the dot. In the following figure we show the differential conductivity, G =
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FIGURE 1.2: Differential conductivity as a function of gate- and source-drain voltages. Parametres: Ep = 14kgT, hI* =
0.1k, T

The inverse of G tells us about the effective resistance through the dot, which we in the next section will
refer to as the tunneling resistance, Ry However, it should be clear that this is not a linear resistor, because
Ry is dependent on the source-drain voltage as well as the gate voltages: we will treat it as linear though.
The tunneling resistance is a good measure for the “phase-transition™ when the resistance drops we are
in the areas where the dots can conduct electricity, which is the region where the number of electrons on
the dot can change. The widch and height of the Coulomb Diamond above is set by the charging energy,
which arises due to the Coulomb force: the Coulomb force blocks electrons from moving in our out of the
dot in the central diamond, which is why it is called the Coulomb Blockade.

1.1.1  DousLE Dot

The master Equation for the double dot can be set up in a similar fashion. However, what is interesting
is that in the regime where the number of collective electrons on the double dot system is conserved
(n; + ng = const.) we cannot use the method from Figure 1.4 to establish whether the gate voltages are
such that the number of electrons on cach of the dots changes, because the overall resistance of the dot
will be infinite: using DC-voltages we can only measure the regions where a net current can pass through
the QDot system. Therefore, in gate-voltage-configuration where the number of electrons is constant we
cannot yield any information about what is happening inside the QDot system. This is not the case if we
use reflectometric methods: we can for instance see the transition between (2, 0) and (1, 1), where (72, m)
represents the configuration where there are 7z and m electrons in the left and right dot respectively. In
a transition like this we cannot see anything using DC-methods, because there will never be a current

through the system.

1.2 REFLECTOMETRY

We will now introduce the coaxial cable, which will be modelled Classically. The coaxial cable serves as a
transmission line through which we send signals and receive the reflected wave created by the system we
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are investigating.

A coaxial cable consists of an outer pipe-like conductors and an inner conductor that are separated by a
dielectric medium. The dielectric medium between the conductors can be polarised, therefore the coaxial
cable has as a capacitance per unit length, and additionally the conductors themselves have an inductance
per unit length as depicted in the following figure (Serensen 2oo9, pp. 86):

FIGURE 1.3: Model of an infinitesimal part of the coaxial cable, with inductance per unit length, €, capacitance per unit length,
& and resistance per unit length, 0-

The voltage drop over the length 6x is (Clerk et al. 2010)

ol o ol
Vix+06x)—V(x) = —€6x§ —oléx, -~ o —€a—t —ol (1.7)
Similarly, the current leakage is
o ol o
I(x+6x) —I(x) = —n6xﬁ, S e ve (1.8)
Combining the two, we get:
r;v Vo
7 = Ty ")

[f we assume that the resistance is negligible, this becomes a one dimensional D’Alambert equation, with

v = (/45)_1/2, whose solution consists of a left and right propagating wave: the incident wave and the
reflected wave. Assuming our cable has 1ength, L (Miiller 2019):

l;vmez'(wt—/ex) + ﬁ ez’(wt+kx) 0<x<l

7 (x,1) = {V )" o (1.10)

tra

where Vm, Vout and V[m are the incident, reflected and transmicted Voltages respectively. The wavenum-
ber, k, is defined as # = 7. The incident and reflected wave propagate on the same part of the cable,
whereas the transmitted wave passes through the sample and goes to ground from there. Therefore the
relevant voltage is not the voltage that we apply (77,,), but rather the superposition of incident and re-

flected voltages.

From Equation @ we have 0,1 = —xd,V, which gives us a way of calculating the impedance of the load

Z; = & Miller R019):
2 (ﬁin e—z’kx + Vour ez’/ex) e 2 (1 7 eZz’/ex) ﬁ r ZL _z . -
Z; = = = = —— r= === ST, Zo=4/- (i
e (Vie® =V *) et o (1 - re?t) Vi (ZL + Zc)
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We see that the coefficient of reflection, 7, has a phase factor which depends on where you measure the
reflection, this is because the phase of the wave in Equation depends on both time and position. We
will henceforth ignore this phase factor, because we can assume that we perform the measurement point
at x = 0 where there is no phase.

Typically experimentalists work with 50Q transmission lines, which implies that the load impedance
would need to have a similar value in order for » to differ from either one or minus one. When this
is the case we can send a signal through the coaxial cable, measure the reflected signal, and calculate the
impedance of the load, using the equation above. For instance if the load is shorted, then we can plug
Z — 0 into the expression for the reflection coefficient, which gives us r = —1, this means that the
incident is flipped. However, if we have an open load, we let Z; — oo and get 7 = 1, which means that
the wave is reflected as is.

The incident and reflected waves are related through the following relation (Clerk et al. 2010, App. C, p.
61), which is derived in Appendix :

ﬁout (L’ t) = 7in (L> t) + Zci(l" t) (1.12)

where I(L, ¢) is the current that enters the load.

2 REFLECTOMETRY

2.1 A SHORT NOTE ON CAPACITANCES

Whenever charges in our circuit interact with each other, we model them as two capacitors. For instance,
the charges in the leads interact with charges in the dots, through the Coulomb force, therefore there
is a capacitive coupling. Therefore, in the following sections there will be many capacitances that are
introduced. Not only do the capacitors model the interactions between dots, but also the interactions
between our macroscopic apparatuses and the dots.

We will use many values for the capacitances throughout this thesis; at first we will use C ~ pF, because
this is the required order of magnitude to get a reflection coefhicient that differs from one. However, if we
assume that the capacitance between a gate and a dot can be treated as a plate capacitor the capacitance

is C = EOZA where 4 is the area of the plates and d is the distance between them; for 4 ~ (IOOnm)2 and
d ~ 100nm we get C ~ 1aF and if we consider the fact that the electrons are inside of a material this

value should increase with the relative permittivity. In the case of GaAs we have that ¢, = 10 (Gallium

Arsenidg poz21). Therefore, from Section p.2.3, which is when we achieve impedance matching and we can
choose the capacitances more freely we will use C ~ 10aF, which is approximately in correspondence

with (Bruus and Flensberg 2016, p. 157, Fig 10.2) and (Scholze 1969, p. 112).

We will look at frequencies in the interval [0, 10]GHz.
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2.2 CLASSICAL CALCULATION

Let us build our classical description of a double dot up step by step, simply beginning with a capacitor
as the load impedance. The charges on a single dot interact with the charges in the coaxial cable through
the Coulomb-interaction, which is exactly what a capacitor is.

Z

L1

FIGURE 2.1: The coaxial cable (the parallel inductors and capacitors) is terminated by a load impedance, which we will describe
using inductive, capacitive and resistive components.

221 SINGLE Dot

In the case where the load is a simple capacitor, the impedance is Z = ﬁ, giving us a reflection coefficient
of:
0 C*Zr - 1+ 2i0CZ,

1+ 02C222 (z)

=

The absolute value of which is equal to one: the entire signal is reflected, however there is a phase shift

. 20CZ,
between the V', and V', given by ¢ = arctan (#ch—l)

. . . ) 1
FIGURE 2.2: Phase of 7 as a function of ©CZ,, there is clearly resonance when o = 7c

However, in reality the QDot will also interact with the lead going to ground capacitively, which in our
naive model would correspond to an additional capacitor. Additiona”y we can Change the energy level

of the dot by applying a voltage to the ground gate:

Z; e Q Cg

C v,
e

FIGURE 2.3: A naive description of a QDot. Cyp is the capacitive coupling between the coaxial cable and the dot, and Cy; is
the coupling between the dot and the gate.

C]assically we can just describe this as two capacitors in series, hence we can use our previous expression
1

Crr out”

-1
and replace C ~» ( + CLG) : we still only see the effect of the dot as a phase shift between 77, and V',

6
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It is worth noting that the value of V; does not affect the oscillatory behaviour of the charges at Gy B
it merely sets the zero-point voltage, which cannot be seen in the reflected signal: for a QDot described
quantum mechanically this is not the case, as the gate voltages determine the phaselﬂ (number of charges
on the dot).

By expressing the charges on the capacitors in terms of the applied, gate and dot voltages, we can derive

an expression for the energym required to put Q charges on this simple dot:
1 Q*

which can be obtained by expressing the total charge, Q, only in terms of the voltages.

The next step towards the double dot is to allow the charge on the dot to change, we can do by connecting
the island to ground through a tunnel junction, which we model as a resistor, Ry, and capacitor, Cy, in

parallel (Wiel et al. 2003, p. 3, Fig 1)

5.

Z; CRIF CIb Ve
= = | o ! —

FIGURE 2.4: Classical single dot with a tunnel junction to ground, which means that Q no longer is fixed.

In this case the load impedance is given by:

7 =
L™ GoCrr 1 +i0CeZ

(2.3)

R, (1-ioR,Cy) . . . . .
where Z 4 = %, is the effective impedance of the tunnel junction. The derivation of Z; can be
found in Appendix A.1.3. The tunneling process involves a dissipative part, because energy is sent to the
environment when an electron transitions to a lower energy level. The capacitive part on the one hand
is the Coulomb-interaction between electrons on the respective dots but is also a quantum mechanical
PE
g,
issue, because it is not a physical capacitor, but rather a way of modelling a quantum mechanical system in

electrical circuits. However, for the double dot we can use Cp = 10fF (Petersson et al. 2010), and because
we lack an estimate for the value for the single dot I will use 10fF in Figure E )

quantity, given as C « - (Petersson et al. 2010). The value of the tunneling-capacitance provides an

We can now calculate the reflection coefficient using Equations and @:

“this is a general point: DC voltages do not appear in the AC Kirchhoff Laws
Tohase in the sense of phase-transitions
p p
fnote similarity to the expression we had for the energy on a dot in the Coulomb Blockade section: the first term is the
charging energy and the second term is the energy associated with the height of the potential
2
S h; 0 : N . _ 1 Q
this extra capacitor would modify the energy on the dot to E = ToTovon (7 + (CrpeV (2) + C5Vy) Q)
SStrict]y speaking this is not valid, because the one is a tunneling capacitor between two dots and the other between a dot

Elﬂd a lead.
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—JU
o5 |43
72 jot8)
Q =
< <
0k I | I | 40
0 2 ®in 6 8 10
o[10GHz]

The minimum lies at:

1
wnlin = (24)
\/ CoCrrRrZ, + CppCrRyZ,

Using this we can calculate the Ry which will give us the best (largest) absorption:

Crr )

Car + Cy + Cr (2:5)

RT = ZL‘ (
This tells us that the classical single dot has an optimal Ry smaller than or equal to Z,, however R
represents dissipation during a tunneling process, and should be R > é ~ 10kQ (Scholze 1969). For
the classical circuit, however, impedance matching is not achieved for this value OFRT and the entire
signal will be reflected.

Using Equations Q and @ we can simplify Abs(7) assuming that we can choose Ry and Cp such that

®in = 2GHz and such that we have the smallest possible 7, . we get that the minimum of Abs(r) is:

min

1
optimal = o CRFZc

min

Abs(7) (2.6)

For @, = 2GHz and Z, = 50Q this is only valid for Cgz > —— = 10pF (otherwise we are looking at a
maximum in Abs(7), not a minimum). Therefore, even in the most optimal case possible, if we hold the
requirement for our minimum to be in the GHz region, we will need an Cpr = 10pF T reality though

we cannot set Ry nor Cp because they are emergent properties of a quantum mechanical system.

This implies that when performing refleccometry on single dots using the circuit above it will always be
the case that there is an impedance mismatch. However, there is a way of adjusting the impedance, as we
will see shortly.

2.2.2  DOUBLE DoT

Let us now add a second dot to the system and connect the dots with a tunnel junction:

“note that if we want @, to be in the MHz region we need a Cgp > 10nF.
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Qr Cor Var
=]
Z; CII{F C}GL Var
= = | 0 |
L

FIGURE 2.6: Classical double dot with a tunneling junction connecting the dots.

We can use Kirchhoff’s AC laws to find an expression for the effective impedance:
P p

0CorZ o (Crr + Cgr) — 7 (Cgr + Cor + Crp)
@Cprp (Cor + Cgr (1 +i0CerZ,1))
_Z'G)RT(CT(CGL + Cor + Crr) + Cor(Cor + Crp)) + Cor + Cor + Crr
0Crp(0R(Cor(Cor + Cr) + CorCr) — i(Cgp + Cor))

Z; = (2.7)

The derivation can be found in Appendix . We must assume that all components are linear, in order
to use Kirchhoff’s AC laws, which also implies that Q; will oscillate at the same frequency as the incident
wave.

This, once again allows us to calculate the reflective coefhicient:

T 1 N 7T

< 0.5 S 05| 13 =
w foT0) %] o0
e e
< < < <
0 L il il il il 1 0 O - il il il il il - 0
0 O%min 4 6 8 10 0 @min 2 4 6 8 10
o[GHz] w[GHz]
FIGURE 2.7: Left: Cgy = 4pF, Cyp = 20pE, Cp = 90pE, Gy = 10fF, Ry = 78.99, Z, = 509, 0. = 2GHz.
Rigl’l[f CGL = 1OPF, CGR = IOPF, CRF = 1OPF, CT = 10{:1:, RT = 4199, Zc = SOQ, wmin = ].GHZ
The minimum of which is at:
\/ Cor + Cor + Crp C=Crp=Cg1=Cr 3
C‘)min = - wmin = C,
RyZ Crr (CorCr + Cor(Cor + Cr)) R;Z.C*(1+2F)
(2.8)

However, when one uses values for Cgp, Cgp and Cyp that even approach the values cited in the literature
(Bruus and Flensberg 2016, p. 157, Fig 10.2) and (Scholze 1969, p. 112), the dip in Abs(7) becomes smaller,
and the frequency at which the dip happens increases outside of the interval o € [0, 10]GHz (see Figures
@ and @) This imp]ies thart there is once again an impedance mismatch when we use small capacitances.
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2.23 ADDING THE INDUCTOR AND PARASITIC CAPACITOR

We would like to match the impedances, so that we can measure a reflection coefficient different from
one even though we use capacitances closer to those cited in the literature. Therefore we would like to
introduce components which allow us to (approximately) set the resonant frequency. Adding these two
components appears to be common practice, see for example (Y. Y. Liu et al. 2020; Mizokuchi et al. 2021;
Schoelkopf et al. 1998).

Qx Cor Vor
V[) b

l CRF C'GL V GL

= = %Cﬂ:?%ﬁ%!

FIGURE 2.8: Classical double dot with a tunnel junction connecting the dots. An inductor and a parasitic capacitor have been
added to achieve impedance matching. The value of the voltage between Cyp and L will be referred to as V.

The total impedance of which is:

_CGRLZchw3(CGL(CP + Crp) + CpCrp)
0(ICorZ 50 (Cor(Cp + Crp) + CpCrp) + Crp(Cor + Cor + Cp) + Cp(Cop + Cgr))
.(LQZ(CRF(CGL + Cgr + Cp) + Cp(Cp + Cgr)) = (Cor + Cop + CRF)) + CorZoio(Cr + Crp)

o(iCorZ g0 (Cor(Cp + Crp) + CpCrp) + Crp(Cop + Cor + Cp) + Cp(Cop + Cr))

ZLZ

(2.9)

The derivation can be found in Appendix

Note that by isolating the current between the dots Lot B andi integrating, we can write QL = QL + 6QL,
where QL is the integration constant, and 6QL is the oscﬂlatory part, which will be proportional to P ().

Therefore, for future use, we can in fact write 6QL =7 f de'8(e—2" )V ('), where 7 is the proportionality
constant we get from Kirchhoff.

The addition of the two components Couples an LC resonator to the double dot system. When Cpp — 0
B However, when Cpy # 0 the double dot system

this gives us “resonance” (Arg(r) = 7) at @ = m
will influence the frequency at which we have resonance, as well as the size of the dip in Abs(r) near

5.

resonance, due to the tunneling resistor

the current that goes from the node denoted by Q; through Qg and down to ground.

*Note that Abs(r) is one when Cpz — 0 because the impedance is purely reactive.

$values of Cp and L were chosen such that resonance is inside the interval & € [0,10]GHz and such that Abs(r) differs
significantly from 1 at resonance.

10
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T T T
1 j ‘rf N
0.8 |- n
S
=z
=]
<q
0.6 |- R;=2.5kQ
R;=25ke
R;=250kQ
Ry=1M@
0.4 |- Rp=2.5Mo ||
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4.41 4.42 4.43
o[GHz]

FIGURE 3.9a: Behaviour of the resonance dip for differ-
ent values of Ry. Cgp = 10aF, Cop =
10aF, Cpp = 10aF, Cp = 100aF, L =
480uH, Z, = 50Q. Here Cy is set to zero.

CLASSICAL CALCULATION

|
In (Abs(r))

4.42 0
)
O, 4.4195 -
3
4.4190 : : : -5
0 S0 100 150 200

Ry [ke]

FIGURE 3.9b: In (Abs(r)) as a function of Ry and w.

CGL = IOQE, CGR = IOHF, CRF =
10aF, Cp = 100aF, L = 480uH, Z, =
50Q. Here Cr is set to zero

The turmeling capacitor is set to 0 in Figures M and @ because quantum dot systems are occasionally
modelled as a non-linear resistor (Persson et al. 2010), and because the result is most simple in this case.
However, we have included Cp in our previous calculations, therefore we will add it once again. Adding

C again moves the resonance point and makes the system less sensitive to changes in Ry

4.42 0
— G = IfF

5 S
5 44195 - N -2 g"
S — <
44190 ! w _
0 50 100 150 200
Rr[kQ]

FIGURE 3.10a: In (Abs(7)) as a function of Ry and w.
Coy = 10aF, Cgp = 10aF, Cyp
10aF, Cp = 100aF, L = 480uH, Z,
50Q and Cp = 1fF

@

:E
) 4.4195 - -

4.4190 ‘ : ;
0 S0 100 150 200

Ry [kQ]

442 0
—C; = 10fF

-0.225

-0.45

FIGURE 3.9b: In (Abs(7)) as a function of Ry and w.
CGL = lan, CGR = lan, CRF = 103F,
Cp = 100aF, L = 480uH, Z. = 50Q and

It should be noted that the figures above are inspired by (Y. Y. Liu et al. , Figure 2 (¢) and (f)), though
they describe a single dot and here we describe the double dot system. Additionally, they use frequencies
in the MHz region, which accounts for the difference in values chosen for L and C,.

II

In (Abs(7))
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Additionally for very large R (> 100MQ) the absorption dip appears once again, however, at a different

frequency:
Abs(r) Arg(r)
4.447 4.447 : £
—G-w —=z-~|fi
—
T ) : =
5 4426 | 5 ssef o =
S = \ <
———
4.405 ‘ ‘ 4.405 ‘ ‘ -
25 10° 10° 107 107P 10718 107V 107
Ry[kQ] Crlr]

FIGURE 2.10: Left: Abs(7) as a function of Ry and @ for Cp = 0. Cgp = 10aF, Cgp = 10aF, Cyp = 10aF, Cp = 100aF,
L = 480uH and Z, = 50Q. The lines show “equipotential” lines for Abs(;”)2 in order to show the differences
close to Abs(r) = 1 more clearly. The minimum of is Abs(r) = 0.2
Right: Arg(r) as a function of Cr and @ for Ry = 0. Same parametres as left.

Unfortunately a general expression for the resonant Frequency was not obtained, however, it 18 possib]e
to find it in the two limits, where R — 0 and R, — o=

Ry—0 _ \/ Cor + Cor + Crr (2.102)

o \/LCP (Cor + Cor + Crr) + LCrp (Cr + Cap)

Rp—eo _ \/CGR (Cor + Crp) + Cr (Cor + Crp + Cgr)

" VLCp (Cor (Cop + Crp) + Cr (Cop + Crp + Cor)) + LCrp (CorCor + CorCr + CGRC(YT) b
2.10

[t becomes apparent that the difference in resonant frequency in the limits is because of a play-off between
the parasitic capacitor and the double-dot system. In the Ry — 0 limit the two dots behave as one large
dot, because they are connected. In the opposite limit the two dots behave as two independent dots that
are coupled capacitively.

In principle this implies that by using the circuit in Figure @ and performing reflectometry on the double
dot system with frequencies in @ € [0, 10]GHz one can create a charge stability diagram for the double
dot. This is because in regions where the number of electrons on each dot is stable we have that Ry — oo,
and in the regions where electrons can move around Ry 2 4%2 ~ 10kQ (Scholze 1969). This implies
that there will be values of the left and right gate voltages where Ry takes a value where the reflection
coefhicient has a value different from one and we know that in these regions the system is approaching a
state where the electrons can tunnel. Similarly we can look at Arg(r) and determine where capacitance
Changes signiﬁcantly, which will also be near the transition, because this is where the dots can ‘feel’ each

other most.

Unfortunately a general expression for the resonance condition was not obtained for R € R \ {0}. Even

12



CHAPTER 2. REFLECTOMETRY CLASSICAL ENERGY LEVELS: DOUBLE Dot

if there is no closed from expression for the resonance condition, one could rely on numerical calculations
to find the minimum.

In Figure on the right we see a similar plot, however here we plot Arg(r) as a function of C; and w.
We see a similar shift in resonance f}equency, which has be solved for. The behaviour around resonance
though is quite different, because the transition from non-resonant to resonant behaviour is much sharper
when we plot Arg(r), however, when Ry = oo there is no dip in Abs(7) because the impedance is purely
imaginary.

Note that these results also hold for the single dot with a tunnel junction to ground, as this corresponds
to the limit where Cr — .

2.3 CLASSICAL ENERGY LEVELS: DOUBLE DOT

We are now interested in an expression for the energies on the two dots as a function of the number of
clectrons on each dot, which we will need this for the quantum mechanical description. We begin by

calculating the charges on each dot, given all the voltages (Wiel et al. 2003):

Q1 = Crr (Vaout, = V() + Cor (Vaoer. = Vor) + Cr (Vo = Vo) (2.11)
Qr = Cor (Vdot,R - VGR) +Cr (Vdot,R - Vdot,ll) (2.12)

By expressing this as a matrix equation and defining the sum of capacitances as C; and Cy;

(QL + CreV/ (1) + CGLVGL) _ ( Cr _CT) (Vdot,L) (CL) — (CRF + G + CT) (2.13)
Qr + CorVor =G G | Viaoer Cr Cor + Cr

we solve for the voltages on each of the dots, merely by inverting the matrix:

(Vdot,L) _ 1 (CR CT) (QL + CrpV(2) + CGLVGL) 1 (CR CT) (QL + QEL)

Vir) CiCr— C% G C Qr + CorVor - CCr — C'% Cr Cp)\Qr + Qpr
(2.14)

The charges Qp; and Qg aren’t physical charges, but relate the dot voltages to the gate and rf-voltages;
only Qg (and Q; and Qp) is time-dependent. The value C;Cy — C is never equal to zero, because C;
and Cy are equal to C plus some positive constant ==.

We now take the line integral of the dot voltage vector with respect to the dot charge vector, giving us a
scalar quantity: the energy of the system:

E:h 2, Ecr o

where we've defined
2 2 2
e Cq eCy 2¢°Cr
E,=——_ E.,=—"™=_ = — 16
L= G- C TR GG - T T 0, - C (2162)
CrQpr + CrQ CrQpr + C 0O
ELE—e( RCEé _ZZER)’ ERE—e( TCEé _ézER (2.16b)
L~R T L~R T

¥or rather the value is only zero when Cpr = Cg; = Cgp = 0, in which case the circuit is fully disconnected.
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CHAPTER 2. REFLECTOMETRY LINEAR RESPONSE THEORY

In the case that we are using the LC resonator circuit, we need to replace V() with Vp(¢), which is the

voltage to the left of Cyp which is derived in Appendix :

‘ol ‘ol
VP(Z') = Vout(t) (1 + 7[) + Vin(t) (1 - 7[) (2.17)
This only affects the term Qp;, which would be modified to
Qrr = CorVor + Crr (Vout(t) (1 + l;—L) + V5 (2) (1 - ZE—L)) (2.18)

2.4 LINEAR RESPONSE THEORY

Let us now focus on a different approach to describing the double dot, which requires a bit of quantum
mechanics. We will think of the load as the classical circuit, where we have replaced the two dots and the
tunnel junction with a quantum mechanical two-level system (hence we are removing Ry and Cp from
the circuit):

Ep(z) Cor Vor

CGL VGL

L Cre
- - JM?CL—EW —

FIGURE 2.11: Quantum mechanical double dot modelled as a two-level system whose energy levels are set by the circuit above.

The number of charges on the double dot system is conserved , therefore we can treat the separate cases
individually. The system consists of two levels, therefore the occupancy can be anywhere between 7z = 0
and 7 = 4. Luckily we do not need to look at each of the cases, because there are only 3 distinct cases,
one of which (when 7z = 0 and # = 4) is trivial.

When 7 = 0 and # = 4 there is no dynamics, because there are either no electrons, or all the electrons are
frozen due to the Pauli principle.

For n = 1 the electron will follow a Hamiltonian evolution, tunneling from the one dot to the other. The
case with #z = 3 is equivalent to 7z = 1 because the Pauli exclusion principle locks two of the charges in
place, so there is still only one electron moving.

Finally, for » = 2 we have two distinct behaviours. Firstly if the two spins are parallel the system is inerr,
just like z = 0 and 7z = 4. Secondly if the spins are opposite the system evolves following Hamiltonian
evolution, whose matrix representation is a 4 X 4 matrix.

The following figure we see the dynamical classes: the static class where there is no dynamics, the simple
class where only one electron can move and the double class where two electrons are mobile:

“*Due to our constraint that the double dot system is only couple capacitively to its environment

14



CHAPTER 2. REFLECTOMETRY LINEAR RESPONSE THEORY

(a) Static Class (b) Simple (¢) Double

FIGURE 2.12: (a) Static class where no electrons are mobile due to the Pauli exclusion principle. (b) one electron is mobile,
either because there only is one electron, or because two of the three electrons are frozen in place. (c) Two mobile
electrons, only possible if they have opposite spin.

See Table @ for a visualisation for the different Hilbert-subspaces. Due to our assumption that tunnel-
ing events cannot flip spin and that the number of electrons is conserved we can treat the three classes
separately. We will focus on the case where we only have one electron (hole) tunneling,

2.41  SINGLE OCCUPANCY: LINEAR RESPONSE THEORY

Let us now use the expression for the classical energy to create a second quantisation Hamilconian. When
n = 1(3) there cannot be an electron (hole) on the left and right dot at the same time, therefore ;7 = 0,
additionally there cannot be more than one electron (hole) at each site, which implies that ni = n,
Therefore the Hamiltonian simp]iﬁes when we constrict ourselves to the Hilbert subspace, which consists
of states that have one electron (hole) in them:

E, E,
H = (% + EL) cle, + (% + ER) C};CR - 7clep - T*c;;cL (2.19)

let us rewrite this in such a way, that it is casier to determine which coefficients are time dependent and

]

which are noc .

H, = eLc}EcL + eRc;gcR - Tcch - T*C};CL, H'(t) = @(t)5L(t)chL (2.20)

where the total Hamiltonian is H = Hy + H'. The Heavyside function, ©(¢), tells us that we turn on the
perturbation at # = 0, before which the system evolved “freely”. Because we are modelling the tunnel
junction as a quantum mechanical system, we will set C; — 0 and R — co. Let us assume that §;(¢) =
8, cos(wr + @y). The phase shift is essentially an additional parametre that tells us about the phase shift
between our drive and the systems H, evolution. We intend to treat H' () as a perturbation, which is
why we split the time-dependent part from the time-independent part. The energies above were taken

from Equation , in the limit where C — 0:

= ¢ ¢ _ €CRF ’ l
0" G G (2~ Cafar)s 00 = = S0 (2210)
e (e
Ep = _CGR (z - CGRVGR) > 6 =0 (2.21b)

where V(2) =V, () +V . (¢), or when we use the LC resonator we would use V) (#), which still is a linear
as discussed previously, see Equation .. Tt should be noted that 7, (¢)

combination of V', and V',

and V' (¢) do not in general oscillate at the same frequency. For convenience let us define & = %% and
A= L5 5o that
Hy=(e+0cle,+(e=A)cheg + vclep +7chc (2.22)
0 ‘L R‘R LR R°L '

"6, (¢) is zero because we are setting Cy = 0
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CHAPTER 2. REFLECTOMETRY LINEAR RESPONSE THEORY

which we can diagonalise with a unitary transformation using

1 A
UE(” U), ’ s—ll—— (2.23)
vou A2+T N

We wish to use linear response theory to Lalgu ate the system’s response to our perturbation up to linear

order in the perturbation; for us to do that we need to use the Kubo Formula (Bruus and Flensberg 2016,

p- 93):
(4) (2) = (¢1(0)|A1(t)|w1(0)>+% fo de' (9, 0)|[H;(£), A,()]|w,(0)) (2.24)

for some operator 4. The index 7 tells us to use the interaction picture, where the phase factors ctitht
have been attached to the states and operators. The first term is the expectation value before we have
switched our perturbation on, and the second term is the response to the perturbation. The operator
whose expectation value we are interested in is 7, because —ezn; is the current between the dots which
we could, in principle use to calculate the reflected signal.

Let us simplify things by assuming that we start the system in an eigenstate to the Hamiltonian, say |9, ).
In this case we get (for the full calculation see )
(ng) (¢) = (”L>0 + (0ny) (¢) (2.25)

where

<”L>o — A= % (1 + ﬁ), (6n,) (2) = ZE(A%/ dz‘HS )sm (Q(l‘—t)) (2.26)

where 2Q = 2vVA? + 72, The quantum capacitance is given by cQ = - aAZ (Petersson et al. 2010), which

for the two level system is :Fﬁ. In the following figure we see the quantum capacitance as a function of
A, beside the two energy levels.

_E:t

A

Co» E,

-2t 0 27
A

FIGURE 2.13: The quantum capacitance, Co, and the energy levels of the two-level system as a function of A. The capacitance
has a peak where the energy levels have the greatest curvature.

By instead calculating the charge on the left dot (Q;) (¢) = —e (n;) (¢) and by using that §,(¢') = —eVp,(¢)

we get

(0,) () = %QCQ /0 &' V() sin (2t - 1)) (2.27)
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CHAPTER 2. REFLECTOMETRY LINEAR RESPONSE THEORY

where V7, = %Vp(z‘) Hence we can define the susceptibility (Clerk et al. , p- 21, Eq. 4.2) of the

system as
N loo o ,
2(t—1)= EQ o sin (Q@-1)) (2.28)

Which for the example above, when V}(#) is monochromatic we would get:
QCQ VD ¢ , , ,
(6Q;) (r) = > / dt’ cos(wt’ + @) sin (Q(t -t )) (2.29)
0

CoV,
= Q2 D (cos (0f + @) + % (cos ((& + Q) + @y) + cos ((@ — Q) + ‘Po))) (230)

However, if we use non-eigenstate initial conditions the expressions become more complicated, due to
the Rabi oscillation, for example when |(0)) = |9;), sce .

Not only does our perturbation cause the (otherwise stationary) system to oscillate at the driving fre-
quency, but also at @ £ Q, this is shown in the following figure:

1 2 I 0.2

3 <n]>0 AAAAAAAAAAAAAAAAAAA AAAAAAAAA‘ TO} 1F VRN — ()
) 3

(omp) (2)

-0.2

|
= = 0 125 25
' t[5]

FIGURE 2.14: Left: (), for different set of parametres. Initial condicion: [(0)) = [,). Black: 7 = 1.24, @ = g
5, = 0.024, g = 0. Grey: 7 = 104, @ = 1.05Q, 8, = 0.014 and ¢ = 0.
Right: (6n) as a function of @ and ¢. A = 17077 and §; = 0.0025A.

We see that the system responds best when our driving frequency matches the natural frequency of the
system, and that the response is not monochromatic.

Tl’le fact that our 1inear response thGOTy tCHS us that thC system Wlll osciﬂate at frequencies other than the

out

. . . . . v
incident frequency implies that we no longer can us the ratio » = 3

to completely describe our reflected

in

wave: V' will have higher harmonics, just like Q;, as we can see in the following equation, which relates

Vo (unknown) to 77, (known) and Q; (unknown/known) B2 1; is derived in Appendix :

1 Ld (1 Ld Cor
Z-cl-zalle-(z-clezg)-aige o

c c c

Hwe've caleulated Q; for monochromatic driving, but in reality we need to calculate what happens if the percurbation is

not monochromatic.
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CHAPTER 3. DISCUSSION & CONCLUSION

where

C
Cu=Cp+C (1—¢) (232)
1l P RF Cop + Crr 3

What this also implies is that our initial assumption, that Hg(¢) ~ cos(ot + ) is not valid. The voltage
that sets the energy levels of the two-level system is 7 (¢), which is a linear combination of V', and V',
the latter of which is not monochromatic, as we have just seen. Therefore, we have to use a more general

form, such as

(50,) (t)=%QCQ fo df Vip(¢) sin (Q(r - 7)) = /0 de' 7t = £ )W (£ (2.33)

where our new ¥, (¢) (and hence Hg(#')) has to include higher harmonics. However, even this is an issue:

in order to know what Hg(¢) looks like, we need to know what the result, Q;, is so that we know what
voltage we are applying to the system. Therefore, we would need to find a general way of solving this type
of a problem: perhaps through Fourier Analysis, where we leave Hg(¢)s Fourier coefficients as unknown
and later match them to the coefficients we find for QL and V'

out’

However, as we can see in Equation we can write (Q;) (¢) as a convolution of V(¢') and a ‘suscept-
ibility’, 5, which in the case above is simple because we have assumed we start the system in an eigenstate
. . ~ . . . /
to H,. This is useful, because it means that the Fourier transform is a product: (6Q;) (0) = x(0)Vp (o).
However in the case where we do not start the system in an eigenstate, the integrand in Equation m
/ . . .
has terms that also depend purely on # and #; these are only important in the transient phase. Once the
system has reached a steady state, when the behaviour cannot depend on initial conditions, we can write

the integrand as y(z — £ )V (¢) 5,

3  DISCUSSION & CONCLUSION

Our description of classical dots began with an over-simplified circuit, which did not include a dissip-
ative part. The coefhicient of reflection had magnitude 1, however, the phase depended on ©. Once we
added the tunneling resistor, Ry, we saw that there were frequencies where the absorption was signific-
ant: frequency intervals where we deliver energy into the system. However, in physical quantum dots,
there is also the possibility that electrons tunnel from the leads into (and out of) the dot and between the
dots. This implies that a more accurate model of quantum dots would include tunneling resistors parallel
to Cpp and Cy,.

The small scale of quantum dot systems presented the next problem: using S0Q transmission lines requires
the gate capacitors to be ~ pF, whereas the relevant capacitances in QDot systems is closer to ~ aF,
therefore, we included an LC resonator in our circuit, to solve the problem of impedance mismatching.

Once this was done, we had designed a circuit that can be used to measure the tunneling resistance or
capacitance for a double dot (and also a single dot). However, in this thesis we did not find® 2 general
expression for the frequency at which resonance occurs (for 0 < Ry < o0), which means that we could
not determine what the magnitude of absorption or the location of resonance depends on. This implies
that we could not derive a method of determining Ry from an Abs(r) as a function of @. However,

% ¢his statement requires the system include dissipation.

“The expression became too large for even Mathematica to work with.
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even if this expression does not exist, we could rely on numerical analyses to obtain a result that can
be used in experiments. If we had an analytic expression for the location and depth of the minimum
of Abs(r) we could use the Fermi Golden Rule description of double (and single) dots to predict the
exact shape and form of a Charge Stability (and Coulomb Diamond) Diagram, which can be measured
by ‘merely’ attaching a quantum dot into a classical reflectometry device. Another issue is that the size of
the absorption depends greatly on the value of Cp, for instance for C = 100fF the absorption becomes
almost negligible, see Figure [B.4. However, we can expect the value of Cp to be 10fF, as per (Petersson

et al. 2010).

In e]ectrodynamic courses one usua]]y assumes that two capacitors in a circuit can be described as in-
dependent of one another, however quantum dots are so small that the charges on capacitors C; and C;
can feel each others Coulomb forces, and therefore cannot be treated as independent: we need to include
mutual capacitances. However, this implies that there are additional fitting parametres, as it is difhicule
to determine their size.

An additional assumption that was made throughout this thesis, is that we can assume that Ry is inde-
pendent of the voltage applied to it, i.e that it is a linear resistor. However, we know that R is not a
physical resistor, but just a tool we use to model an inherently non-linear effect, therefore we cannot treat
Ry as time-independent when solving Kirchhoff’s Laws, as R-(V(¢)) is time-dependent. By looking into
how Ry is dependent of source-drain voltage, we can determine a more accurate form of Kirchhoff’s laws,
which inevitably will include higher harmonic terms. The description used in this thesis only applies to
the regions where Ry is approximately independent of Vg, which is in the regions where the number of
charges per dot is an integer (far away from the transitions).

The effective impedance between the dots was treated as a parallel R and € throughout the classical
description, therefore we attempted to model the tunnel junction as a quantum mechanical system. How-
ever, due to the complicated interaction in linear response theory the reflected wave was not monochro-
matic, which implied that we could not use the usual tools to find a reflection coefhicient nor an imped-
ance, because these tools require monochromatic waves. However an expression was obtained that gave
the system’s response, (67;) (¢) as a convolution of the perturbation and a periodic function, which in
the simplest case was proportional to sin(Q(¢ — ¢')).

The Hamiltonian in Equation only involved hopping between the levels, but it did not include spon-
taneous decay. Therefore, the only energy loss from the coaxial cable is energy that is absorbed into
the system. However, due to spontancous decay a double quantum dot system can emit energy into the
environment. Therefore the next step in describing quantum double dot systems would be to include

spontaneous decay in the description. Unfbrtunately, due to the fact that V' no ]onger is monochro-

out
matic, we cannot derive an expression for the effective impedance of the double dot system. However, we
~ ~ t ~ it . .
can note that in the classical case we had that Q; = Qg + ‘/;) de'z8(t = £)V(¢'), and in the linear response
t . :
theory case, we had that (Q;) = (Q;), + /(‘) de' 5(t = )Wy (¢'). Therefore, given more time I would look
further into the input-output theory description quantum dot systems, where the susceptibilities play a
central role.
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A CALCULATIONS

A1  CLASSICAL CIRCUIT

Al1l V. AS AFUNCTION OF V.,

out

In Section .2 we introduced the total voltage at position x as V(x, £) = V' (x,£) + V' (x, ). Additionally
we derived that 0,7 = —«d,V" (Clerk et al. 2010, App. C, p. 61):

1
Z

c

I(x,2) = (Vin(:2) =V o (%, 2)) (A1)

where we've used that ¢ = o= () ™, and that 2 = /% = L Now, by solving for V/,,,(x,):

Vol t) =V, (x,8) + Z1(x,t) (A.2)
specifically, this holds at the border between the coaxial cable and the load:

VoilLit) =V, (Lt) + ZI(L¢) (A3)

in which case I(Z, ¢) is the current that enters the load.

A.1.2  SINGLE DOT WITH DRAIN

=
Z CRIF CI'G Ve
= = o ! —

FIGURE A.1: Classical single dot with a tunnel junction to ground, which means that Q no longer is fixed.

In the case with a single dot that is connected to ground with a tunnel junction, Kirchhoff’s Laws look as

follows:
Orr . Qg
V(t) = =L+ =241 (A.4)
( ) gRF CG G 4
_ Qe =
V(t) = _C + ZCHJT (AS)
RF

Ry (1-iR;0Cr) . - . - . . ..
where Z 4 = W is the effective impedance of the tunnel junction. Additionally we have that
T T

Q = QRF + QG (A.6)



APPENDIX A. CALCULATIONS CLASSICAL CIRCUIT

Differentiating
S iRF ]NG
V(o) = _z'wCRF M 10Cg; (A7)
o fRF -
Vi) = “7oCer + Zoglr (A.8)
—~RF=[~G+[~T=[~G—Q~ (A9)

Note that we have assumed that Z- ~ . We define the charge on the dot as Q = Qpp+ Q. This charge
can tunnel through the tunnel junction.

K([) T ioChr  i0Cg 0 [ISF
V(t) = _z'a)é’RF 0 Zcﬂf {G (A.10)
0 1 1 1)\

Tl’liS COTTGSPOHdS €X3Ct1y to the pTCViOHS example, but Where we 1€t CGR —> 0.

j]gF 1 _Z'G)ZCG'CRFZcH‘ ~&Cpp WCppZ ?(f )
o e e A | ) B
and hence
. V(t)oCrp (1 + i0CgZ ) (As2)
i = 0Zg (Co + Crp)
Using that Z; = -@ The load impedance is
7 - 1 1+i0Z.5(Cq+ Crp) (Ary)

Z'O)CRF 1 + Z'(()CGZCH‘
A.13 DOUBLE DOT IMPEDANCE MISMATCH

Or Car Ver

II{F Cor Ve
[

C
= =
4'QL

FIGURE A.2: Classical double dot with a tunnel junction connecting the dots.
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APPENDIX A. CALCULATIONS CLASSICAL CIRCUIT

We can obtain Kirchhoff’s AC laws by treating the tunnel junction as an effective impedance, once again:

7 (e :_'jRF + ‘jGL

iwChr  10Cq;
500 — Ipr Ign 7
V) = FoCr + Con +Zyrrlir

Iip = Igr
and so
V:(l‘ ) _ngF i0Cqyy 0 ) {RF
V)| = oGy 0 Z"ff + 1wCgr [NGL
0 1 1 1 Irp

By inverting this we can solve for Zpp:

. V(oG (Cor + Cor (1 + i0CerZ,ss))
K 0CopZpr (Crp + Cor) = 1 (Cop + Cor + Crp)

hence

0CorZ .5 (Crp + Cgr) =i (Cop + Cop + Crp)
0Crp (Cor + Cor (1 + i0CorZ 1))
_ _Z'C‘)RT(CT(CGL + Cor + Crp) + Cor(Cop + Crp)) + Cop + Cop + Crpe

ZL:

- Crp(0R 7 (Cor(Cor + Cr) + CorCr) — 1(Cp + Cor))
A.1.4 DOUBLE DOT IMPEDANCE MATCHING
0r Cer Vor

Z; L Crr Cor Vor

(A1g)

(A.IS)

(A.16)
(A.17)

(A.18)

(A.20)

FIGURE A.3: Classical double dot with a tunnel junction connecting the dots. An inductor and a parasitic capacitor have been

added to achieve impedance matching
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APPENDIX A. CALCULATIONS CLASSICAL CIRCUIT

Once again we set up Kirchhoff’s AC laws:

V(t) = z'a)LPjLP + z'af]é{;F + z'afCC;’LGL (A.212)

V(t) = ioLpl;p + /. Zolon + Lok (A.21b)
10Cqhp 10Csp

V() = z'a)LP]NLP + ziC—Cpp (A.21c)

Ing = Iop + Iy (A.21d)

Iip = Ipp + Ipp (A.21€)

Which we just need to write in matrix form and then invert. Now it is /;p that is the relevant current,
because that is the current from the coaxial cable.

7 - V(l‘) _ _CGRLZef}ﬁ’3(CGL(CP + Crp) + CpCry)
g Ip  @(CerZgo(Cor(Cp + Crp) + CpCrp) + Crp(Cop + Cor + Cp) + Cp(Cr + Cor))
(A.22)
s (LG)Z(CRF(CGL + Cgr + Cp) + Cp(Cgp + Car)) — (Cop + Cor + CRF)) + CopZ.q@(Cor + Crr)

0 (iCorZ 0 (Cor(Cp + Crp) + CpCrr) + Crp(Cop + Cop + Cp) + Cp(Cop + Cr))
By letting R — oo we get the following expression:

(Cr(Cor + Cor + Crp) + Cor(Cor + Crp))
10(Cor(Cor + Cr)(Cp + Crp) + CorCr(Cp + Crp) + CorCpCrp + CpCrrCr)

Z; =iol + (A.23)

INTERDOT CURRENT

From the inversion of Kirchhoff’s laws, we can also calculate the interdot current. Integrating this gives
us Q;(£) = Q) +6Q,(¢), where Q) is the integration constant:

= V()
§QL([) = - CGRCRF

CrE(Ca+CoR+Cp)+Cp(Car+CoR)+CoRLP Zoi(Car (Cp+CRE)+CPCRE)~CROZ o CoL+CRE)+(CaL+CoRYCRE) [

(A.24)

We can write this as 6Q~L(t) j;)t df' 75(r — £V ('), which will be used so that we can compare it to the
result from linear response theory.

A.1.5 VOLTAGE RELATIONS: MONOCHROMATIC

FIGURE A.4: First part of the circuit
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The current through the components is

. 1~ .
I=77 (V@) = V() (A.252)
Ing = i0Crp (Vo () = Vyorr) (A.25b)
Ip = i0CpVp(1) (A.250)
Additionally we have that
Vout(t) = I}in (t) _ZciL (AZG)
and so
- - Zc ~ - ~
Vour - Vin = _Z’CJL (VP - Vin - out) (A27)
Giving us
~ ~ ‘ol ~ ‘oL
=V, (1+ Z )+Vout(1— 7 ) (A.28)
This means that
~out(t) = ﬁm(t) +Z (iRF + iP) (A 29)
= ~m (t) + Zc (ZO) (CP + CRF) VP(t) - Z.G)C'RFVdot,L) (A 30)
The voltage on the dot:
- CR - -
4 2 (QL B CRFVp(f)) (A31)

dot,L — 0

putting it all cogether

ﬁ(dth(t) - V’iin(t) . ~ . C ~ ~
Z[ =1 (CP + CRF) VP - ZG)CRF —CLCRR_ CYZV (QL + CRFV})(t)) (A'}Z)
0CrrCr \ (5 ' 5 ‘ 0CriCr =
= (z'a) (Cp + Crp) - M) (Vin (1 + ZQL) +V (1 - ﬂ)) I i R2 0,
(A33)
[solating
5 i0CrrCp N
Vow (2) (1 —(Z. —iwl) (z'a) (Cp + Crp) — —2)) =V, (2) (1 +(Z, +iwl) (z'a) (Cp + Cxp) —
(A34)
_ ZcCRCRFQL
C,Cyp - C%

Note that when Q; = 0 we can once again obtain the expression for Z; with the entire circuit in the limit
where Ry — oo, which is the limit where the charges can’t oscillate between the dots.

)
10CrpCp
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A.1.6 VOLTAGE RELATIONS: POLYCHROMATIC

FIGURE A.5: First part of the circuit

The voltage drops are

Iy = 1 ) -7 ()

Qrr = Crr (Vp(l‘) - Vdor,L)
Qp = Cplp(2)

CLASSICAL CIRCUIT

(A352
(A3sb
(A35¢

)
)
)
(A35d)

We will assume that Cp = 0, because this is only relevant for the quantum mechanical description.

But we can take time derivatives until we have 7 everywhere:

Iy = 7 () - V()

jRF = Cr (Vp(l‘) - Vdot,L)
Ip = CpVp(2)
Additionally we have that
Vour(t) = Vin (t) - ZC’[L - Vour([) = Vin (t) - ZIL

C

and so

Giving us

- Ld)\ .- Ld)\ .
VP = (1 + Z&) Vin + (1 - Z&) Vout

c

This means that

Vout(t) = Vin (t) + Zc (jRF + [P)
= Vm(f) +Z, ((CP + Crr) ‘V'p(f) - CRFVdot,L)
The voltage on the dot:
. 1 .
V dor + CrpVp(2)
dot,L CGL + CRF (QL RF” P )

vi

(A.36)

(A37)
(A38)
(A.39)

(A.40)
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putting it all cogether

Vout - Vin . CRF . .
—Zc = (CP + CRF) V}) - m (QL + CRFV})) (A46)

C .. C
=Co+C (1——” ))V——RF (A.47)
( pTTRE Cor + Crr P Cor + Crr g /

plugging in for Vo (2):
Vout B Vin _ CRF L d . L d . CRF .
Z, - (CP + Crr (1 - Cor + CRF)) ((1 " 25) Vin ¥ (1 - Z&) Vom) - Cor + CRFQL
Cai

a

(A.48)

Integrating and setting the integration constant to zero, because it is not important for the current ana-

lysis, and isolating V. dependent terms on the left:

out

1 Ld (1 Ld Crr
Z-el-z@)re-(z-clza)r-aime  ow

c c

A2 QUANTUM MECHANICS

A.2.1 LINEAR RESPONSE THEORY

. . . + . .
Let us begin by expressing A, in terms of the average energy ¢ = % and the difference in energy
A= ELTER,
Hy=(e+0Mclc,+(e—A) ey +7cicp + ! (A50)
0= & Cr & CRCR CLCR RCL .50

The eigenvalues are E, = & + VA? + 72, But let us ignore the average energy, because the dynamics is
independent of the average energies, and only dependent on the energy differences: the average energy
is on the diagona] OFHO, so it can be written as 1, which is unchanged by the upcoming unitary trans-
formation. We can transform A}, into a diagonal matrix using the following unitary tranformation:

U (” ”) “ —1‘/1+ A, —1‘/1 A (A1)
= 5 = , = - 51
-0 U /2 /AZ +TZ /2 /AZ +72 S

We can show that UHU" is diagonal, by using the following relations:

This tells us that
in (U [9)) = UHU' (U |)) (A53)

Hence we are changing basis from the left-right basis to the {|1p+) , |1,l)_)} basis:
I )) (% v)(l%))
+) = (As54)
(Iw_> v u)\lva) !

vii
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We can also change the basis of our Fermion operators:

A O 6 N e 9

note that the determinant is one. Now, in order to use the Kubo formula for linear response theory,
we need to use the interaction picture, where both states and operators are time-dependent (Bruus and

Flensberg 2016, p. 82)

0,()) = e (1)), Ap(e) = e 4 (e)e i (A56)

The indices / and S denote that these are wave functions and operators in the interaction and Schrédinger
picture respectively. Ag(#) can both be time-dependent and independent of time, the only difference
being that in the former case the 4;(#) time-dependent is both due to Hj and due its inherent time-
dependence.

In a way this removes the “crivial” time dependence of the wave functions due to Hj so that we can focus on
the time-dependence due to the perturbation. In fact, in this picture the Schrédinger Equation becomes

ihd, | (2)) = Hy(2) [9,(2)) (A57)

note that the perturbation does not necessarily commute with Hj, and therefore we need to use the in-
teraction operator, however A, commutes with itself, therefore there is no difference between H in the

Schrodinger and the interaction picture. Unfortunately the full form of the unitary operator U (z,0)
that evolves a state from |9;(0)) to |9;(2)) is quite complicated, and for the purpose of this thesis it is
sufficient to look at it to linear order:

.t
Up(2,0) = 1 - %/0 de" Hy(¢') (A58)

. . . . !/ . .
This is the case because we are viewing H;(¢) as a perturbation to H; and hence are assuming that the
~ ot
energy scales of () are small compared to Hj,

To linear order the expectation value of an operator A(z) is

) @) = L) = (w145 [ & @) (1-5 [ o )

9,0 >>
(A59)

to linear order in H' this becomes
) ©) = OO0 + £ [ & OIEOAO0©) Ao

In our case we are interested in n; = cch and the perturbation is H'(¢) = 5L(t)CZCL + 6z (I)C};CR. Let us

look at the second term more closely:

% / a (5(0) |e# gt e =) e [y (0) ) = (5 (0) |eF 0, R0 Fy ()& 30 | 9 5(0))
0

(A.61)

The phase factors pose an issue, therefore it makes sense to change basis into {|9,), |p_)} because this
is the eigenbasis to H,. Suppose that [1g(0)) = a, ‘¢S+> +a_ |1])S_>, where we can find 82 from initial

conditions using Equation . This also means that we have to rewrite 7; and 7y in the eigenbasis:
ny = czcl = (uch — o) (ne, —vc) =a’cle, + e —uv (e +le,) (A.62)
ng =vce, + e +uv (e +cle,) (A.63)

viii
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This allows us to calculate 7; |1h¢(0)), which we assume is a linear combination of the eigenbasis |¢(0)) =
a, |9,) +a_ |p_), where the constants a, are determined by initial conditions.

np [ 9s(0)) = ey [9,) + oo [p_) — v (a_|p,) +a, [9_)) (A.64)
ng [05(0)) = oo, [9,) + wPa_ |[p_) +uv (a_ [9,) +a, [9_)) (A.65)

And the in this basis the exponential operators just become phase factors, e 7% |, ) = ¢ ikt l,):

npe A [5(0)) = i, ) + 2 o [p2) — o (e [p,) a9l (AG6)

npe” 0 |9g(0)) = o, e |9,) + i a9 ) +av (o ) +a e ) (Aly)
where we've defined Ao, = E,. And hence

e, e g (0)) = e, |,) + 0P |9) = wo (a e ) + @, T 9] (Aes)
e H | (0)) = P, |9,) + o |]) + o (a7 [p) a0 ) (Ao)

note that @, — o_ = 2VA% + 7% = 1Q. So let us explicitly write 7

eh

eithot npe” it Ps(0)) = (o, — wva_e™) |p,) + (vPa_ — uva,e™) |p_) (A.70)
+ + + 7

We can similarly calculate

eH ! (s (7) “HO |95(0)) = 6 cos(wr’ + (Po)tholr nre it [9(0)) (A.71)
letting H, operate on the ket and letting n; operate on the result
e ()R [i(0)) = 8, cos(or + @)t mye Y (3 (0)
= §; cos(wt’ + @) (u a, |p,) +via_ | ) —uw (a & lp,) +a,e —ior \w_))) (A.72)

= 6, cos(ot' +@,) (e, —uva_®) ) + (Pa_ - woa,e™ ) [p_))
This tells us chat

(5 (0)|e#5 Hy ()Rl )¢50 s (0))

= §; cos(ot + @, (u o, — uvo_e thf) (e, — wva_e™) (A73)

)
+ 0, cos(wt + o — noa, s o — uvo, e
L 20 +

multiplying out
(5(0) |3 Hy (¢ ) AU~ 74 | (0))

= §; cos(wt’ + @) (u2a+ (s, — wva_e™) — nva_ (uzaJre_‘Q/ - uva_em(r—tl))) (A74)

+ 8 cos(wt’ + @) (vza_ (v’a_ — wva,e™) - nva, (vza_e’m — wva, _t)))

writing it in this way allows us to calculate the total integrand, which is 27 times the imaginary part of
the value above.

f(t,1) = <1])5(0) ‘e%%t,Hé(z")e%H"(t_’l)nLe_%H"’ ¢5(0)>

= 2i6, cos(ot’ + @,) (—#’va_a, sin(Qt) + wva_a, sin(QF) + u*v (oz_)2 sin (t=1") (A75)
L 0 + + 75

¢S(0)> _ <U)S(O) ’6"[—10([)71 tho(t t)H (tl) Hot'

+ 248, cos(ot + uv3a_a sin(Qr) — uv3a_a sin (Q¢') - %202 a 2sin Q(t -+
L Po + + +

2 2 A T
we have that #” — v* = and 2uv =
VAZ 472 VAZ472

f(t,¢) =45, cos(wt’ + (po)ﬁ (a_a+A (— sin (Q¢) + sin (Qt’)) + % ((0&_)2 - (a+)2) sin (Q (z - t')))

ix
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STARTING IN THE LEFT DOT
Consider the case where we start the system in [9(0)) = |9;) =# |p,) —v|P_): o, =#and a_ = —v

F(t,£) = =i cos(at’ + @) L
2 (A% + 7?)

(sin (@ (2 —¢)) — sin (Q¢) + sin (Q2')) (A.76)

3
2

Integrating

1z L "N 6L12A _ _
ony(t) = 7 /0‘ de’ f(¢,1) = —Zh e ; / dt' cos(ot’ + @) (sm (Q (t t )) sin (Qf) + sin (Qt ))
(A77)

Note that Hg(#') = 8, cos(t + @) has be taken along throughout the entire calculation, unchanged. This
implies that for a general Hg(¢') we would use:

on;(t) = f dr’ f(z t) / dr’ H sm( (t - l")) —sin (Q¢) + sin (Qt’)) (A78)

For the monoharmonic perturbation I solved the integral using Mathematica:

it , 6L12A 4Q sin® (%) cos (“’{ +(p0) (Q sm(z)cot (%) — @ COos (%t))
7 dr' f(z,¢) = ; (A79)
0 2% (A% + 72)? o(o - Q) (o + Q)
B PN Q wt . (or\ [Qr . (¢ ot wr\ | 5 (Qt
%(sin @o+sin(et+@,)) % sin Qf %(COS @o+cos(wt+pg)) %(l—cos Qr)
(A.80)
= 7#@2»,;)5(2:—9)(0#9) (Q( sin @ sin Q¢ + sin (of + @) sin Q¢ )_
%(cos(Qt—(po)—cos(QtﬂpO)) %(cos((w—Q)tﬂpO)—Cos((a}+Q)t+LpO))
a)( cos Py + cos (0 + @y) —  cos@pycosQt  —  cos (0t + @) cos Qt ))
% (cos(Qt—g@g)+cos(Qt+9¢,)) % (cos((Q-o)t+gy)+cos((Q+a)t+¢;))
(A.81)

The sin and cos product rules were obtained from (Spiegel, Lipschutz and J. Liu 2013) We see that there
is a term that oscillates at the same frequency (and same) phase as the incident voltage. However, we also
get terms with frequencies @ and Q + .

We also are interested in (n;) ,:

(n1)y = (95(0)] e%HO"nLe_%HO’ 195(0)) = a, (a, — wwa_e™) +a_ (v’a_ — nva, ™) (A.82)
if we again assume we start the system in the left dot then o, = # and a_ = —v:
- - 7
(”L)O — %4 + 04 + uZUZ (eth + e—le) =1- 2%202 (1 - COS(QI)) =1- m (1 - COS(Qt)) (A83)

for # = 0 this is equal to one, and otherwise is smaller or equal to one.
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STARTING IN AN EIGENSTATE

Alternatively, if we begin the system in an eigenstate, say |1, ) we get that @, = 1 and a_ = 0, therefore

1 A
(nL)O = = 3 (1 + m) (A.84)
and
(6n,) (¢) = T /tdt'H (¢')sin (Q(z = £)) (A.85)
T vy O »

Which for the example above would be

(6n;) (¢) = 7O /t dt’ cos(at’ + @g) sin (Q(z - £')) (A.86)
) Jo

2h (A% + 72

TZ
_ ﬁ (cos 1+ ) + 5 (cos (0 + Q) + ) +cos (=) + )] (Asy)
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B.1 QUANTUM DOT DEVICE, GAAS

R T A R T T I

electric potential
from electrodes

FIGURE B.1: Depiction of a quantum dot device, obtained from (Laucht et al.

B.2  CLASSICAL DOT

1 1
. 0.8
. 0.6 |

0.9996 =
. 0.4
. 0.2
| |
04 06 08 1

18

CerlpF]
rmm

CorlpF]
[
N

G)min [GHZ]

L
0 02 09992 %0 02 04 06 08 10
CorlpF] CorlpF]
FIGURE B.2: Minimum of Abs(r) as a function of C¢;, FIGURE B.3: @, as a function of Cg; and Cgp with
Cl?’ld CGR w1th CRF = O.IPF, CT = IOfF, CRF = O.IPF, CT = IOfF, RT = 1001{9,

Ry =100kQ, Z, = 50Q. Z, =50Q.
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442
— Cp = 100fF

| -0.02

In (Abs())

4.4195 |- -

—-0.04

4.4190
0.2 2 20 200
R, [kQ]

FIGURE B.4: In (Abs(7)) as a function of Ry and w. Cgy = 10aF, Cgp = 10aF, Cxp = 100aF, Cp = 100aF, L = 480uH,
Z, =50Q and C = 100fF
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Abs(7)

4.437

4.4195

o[GHz]

5 10°

10° 107
R, [kQ]
FIGURE B.5: Abs(7) as a function of Ry and w. Cgp = 10aF, Cgp = 10aF, Cpp = 100aF, Cp = 100aF, L = 480uH,

Z, = 50Q and Cp = OfF. The smallest value of Abs(r) = 0.2 and the greatest is one. The minimum is
Abs(r) = 0.2 and the lines are changes in Abs(7)? such that it is easier to see differences close to Abs(r) = 1.

There are 150 lines

Xiv



APPENDIX B. PLOTS, TABLES & IMAGES CLASSICAL DOT

Arg(r)

4.447 T

———
N ) <
T 4426 0 ®
= <

4.40S5 ‘ ‘ -7

10—19 10—18 10—17 10—16
CrlF]

FIGURE B.6: Arg(r) as a function of C and @. Cgp = 10aF, Cgp = 10aF, Cpp = 100aF, Cp = 100aF, L = 480uH,
Z,=50Qand Ry = .
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4.4216 — 1
o) =
5 44195 045 Z
= <
4.4175 | | 0.1
50 2 x 10* 3x10° 10°
R [Q]

FIGURE B.7: Abs(7) as a function of Ry and @. Cgyp = 10aF, Cgp = 10aF, Cyp = 100aF, Cp = 100aF, L = 480uH,

Z, = 50Q and Cp = 1fF. The lines are changes in Abs(r)? s0 as to see changes close to Abs(r) = 1. There are
150 lines.

B3 QUANTUM MECHANICAL DESCRIPTION

In the following Figure I show the entire Hilbert space, which decouples into separate Hilbert subspaces:

N=0| N=1 N=2 N =3

N=4
. [0) 1 ® 1) I
Static |l)®|l)
&0y [ (el |11
Denamic 0@ (1) | 1)@ 0) | 1) & 1)
Y Del0)y | (et [11) e
0@ 1) | [0)®]1]) | 1) ®]L)

TABLE B.1: Hilbert subspaces in the case where we ignore spin flips. The states in the same box can evolve into one another.
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