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Abstract

I study the Weyl semimetal and TPC semimetal near their topological charge monopoles

with the goal of finding an analytical description of the surface states characteristic of

topological semimetals, for the TPC (triple point crossing). I derive a k-space bulk Hamil-

tonian for a system and demonstrate that it hosts TPC’s. I examine the constraint of

self-adjointness on a Weyl or TPC system, with a physical boundary and what restric-

tion that places on the surface states. Finally I compare my derived surface states to a

numerical simulation of the TPC semimetal I am examining.
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1 INTRODUCTION

1 Introduction

In modern physics, the correspondence between high energy relativistic particle physics

and low energy condensed matter physics has historically been a source of much insight.

Particles predicted from the relativistic Dirac equation, like the Dirac fermion, have seen

equivalent quasiparticles in condensed matter physics, graphene being the most known

example. While there are definitely no elementary Dirac fermions in graphene, the pe-

riodic crystal potential, that graphene imposes upon its resident electrons, gives way to

quasiparticles with the properties of relativistic Dirac fermions albeit at a much lower

velocity.

The Dirac equation was proposed in 1928 by Paul Dirac and became the basis for

the unification of quantum mechanics and special relativity [1]. One year later, in 1929,

Hermann Weyl pointed out that by removing mass from the Dirac equation, one can

make a simpler Weyl equation that describes massless fermions with definite chirality [2].

In 1937 Ettore Majorana found a modification on the Dirac equation that allowed for

another class of fermions based on the Majorana equation. These fermions would have

the unique property of being their own antiparticle.

The three solutions to the Dirac equation give rise to three different kinds of fermionic

particles: Dirac fermions, Weyl fermions and Majorana fermions. While the Dirac equa-

tion has had much success in describing relativistic electrons and the Majorana equation

is a candidate for the description of the neutrino, the Weyl equation has stood without

experimental candidates for Weyl fermions in high energy physics for 89 years.

In 1937 Conyers Herring [3], while studying degeneracies of electron bands, found

that in the absence of any particular symmetry one could have a degeneracy in energy of

electron bands at the same crystal momentum. The particles emergent at these crossing

points where described by the Weyl equation. In modern times these crossing points have

been dubbed Weyl nodes.

When tracing the wavefunction of an electron around a magnetic monopole in real

space, creating a closed loop, one finds that it acquires a phase. This same phenomenon

happens when one traces a loop around a Weyl node in k-space for a many body wave-

function in condensed matter physics. The Weyl nodes thus serve as equivalents to

sources of magnetic charge but in k-space. Instead of charges they are topological charges,

monopoles of Berry curvature or Berry flux [4]. See Appendix A for an explicit calculation

of this.

As mentioned previously, Weyl fermions have definite chirality. This chirality is equiv-

alent to the topological charge of the Weyl nodes which the Weyl fermions are excitations

of and it is quantized. The Nielsen–Ninomiya theorem states that the monopoles of Berry

curvature must always come in pairs [5]. The net topological charge of Berry curvature

over the entire Brilloun zone must be equal to zero. It can be shown that if this is not

the case, electric charge is not conserved in the presence of parallel electric and magnetic

fields [6]. A minimum of two Weyl nodes are therefore always present in a system that

hosts Weyl fermion quasiparticles [7, 8].

Because of the conservation of Berry monopole charge, the Weyl nodes are extremely

resilient to imperfections in the host crystal or small perturbations. As long as transla-
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1 INTRODUCTION

Figure 1: Left: Plot of dispersion relation of equation 1.1 with k1 = π. This is an example

of a system with Weyl nodes. Right: Dispersion relation plot of equation 2.20. The TPC

system examined throughout the thesis.

tional invariance is not broken, the Weyl nodes will continue to exist regardless of small

perturbations. It is possible to remove Weyl nodes from a system by introducing a large

enough perturbation that does not break translational invariance. Doing so would con-

tinuously move the Weyl nodes towards each other in k-space until they occupy the same

point, at which point a gap would open in the bands and the system would become an

insulator [9, 10].

Semimetals are a category of systems, that in band theory have multiple bands, but

at a given Fermi energy have multiple partially filled bands, typically displaying small

Fermi surfaces. In the most extreme cases, the Fermi surface can shrink to a discrete

set of points. Topological semimetals are semimetals that have Weyl nodes at the Fermi

energy, or higher monopole generalizations of them. The simplest topological semimetal

is the Weyl semimetal, given by the Weyl equation close to the Fermi energy Hweyl = ~σ ·~k,

where ~σ is the vector of Pauli spin matrices and ~k is the momentum vector [10, 11]. An

example of such a system could be:

Hweyl = J (σx sin (kx) + σy sin (ky) + σz sin (kz)) (1.1)

Near the Fermi energy at (k1, k2, k3) = (0, 0, 0) this becomes the Weyl equation.

Hweyl ≈ J (σxkx + σyky + σzkz) = J~σ · ~k (1.2)

The dispersion relation can be seen in full on figure 1.

A more complicated system with higher monopoles of the Berry curvature present

the so called triple points crossing (TPC), sometimes referred to as triple point fermions.

This system has three bands instead of two, and has the following dispersion relation

near the Fermi surface HTPC = ~S ·~k [12], where ~S is the vector of the three 3x3 matrices

(Sj)kl = −iεjkl, which are the three generators of rotation in SO(3). This dispersion

relation can be seen on figure 1 and features two bands that are linear near the Berry

curvature monopole, hence known as the TPC and one flat band. The TPC is less stable

than the Weyl node and requires additional chiral symmetries whose analysis is beyond

the scope of this thesis [13, 14]. The monopoles of the TPC have chirality ±2 instead of

the ±1 of the Weyl nodes [14, 12].
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2 TPC HAMILTONIAN DERIVED FROM REAL-SPACE LATTICE

It has been shown that only a finite number of zero gap topological semimetals exist,

that are protected by lattice symmetries [12]. This makes the cataloging of their properties

all the more interesting. The TPC is one of these semimetals.

A property characteristic of topological semimetals like the TPC and the Weyl se-

mimetal is a linear dispersion relation near their Berry flux monopole. Similar to 2D

topological materials, one of the main characteristics of these topological systems is the

appearance of chiral surface modes with Fermi-arcs, that continuously exist between the

monopoles in k-space when a boundary is introduced [4, 15]. The states that form these

Fermi-arcs are localized surface states, localized on the boundaries of the system. This is

a property of Weyl fermions unique to condensed matter physics and has no parallel in

high energy physics.

The aim of this thesis is to explore and derive an analytical description of surface

states in a TPC system, once a boundary is introduced into the system. The main

tool I will exploit is the self-adjoint extensions of the Hamiltonians, describing the TPC

semimetals. While the bulk Hamiltonian is self-adjoint and Hermitian upon a Hilbert

space that spans all of R3 and has no boundaries, that may not necessarily be true for

the same system but restricted to a slab with finite length in one dimension. One must

limit oneself to a domain (of the Hilbert space) upon which the Hamiltonian is self-adjoint

with the boundary [16]. This requirement vastly limits the form of wavefunctions that

can exist.

2 TPC Hamiltonian derived from real-space lattice

The system I am working with is a 3-D Lieb lattice as described in [14]. The Lieb lattice

is a 2-D structure made out of L shaped unit cells with 3 sites. The unit cell that defines

it is as follows: Site 1 is located at (1,0), site 2 is located at (0,0) and site 3 is located at

(0,1), with Bravais lattice vectors a1 = (2, 0) and a2 = (0, 2), as seen on figure 2, using

units where the lattice spacing in the square lattice is a = 1.

To expand this to 3-D we extend the lattice along a third direction with Bravais vector

a3 = (1, 1, 1), changing a1 = (2, 0, 0) and a2 = (0, 2, 0). Keeping 3 sites within the unit

cell with the basis: site 1 = (1,0,0), site 2 = (0,0,0) and site 3 = (0,1,0). This creates

the unit cell seen on figure 3 in green. It is created such that any 2-D plane cut along

any of the Cartesian axes will form a Lieb lattice. Thus there is no favored axis with the

addition of the third dimension.

The reciprocal lattice vectors k̂1, k̂2, k̂3 are the following: a1 = (2, 0, 0)

a2 = (0, 2, 0)

a3 = (1, 1, 1)

 k̂1 = (1/2, 0,−1/2)

k̂2 = (0, 1/2,−1/2)

k̂3 = (0, 0, 1)

(2.1)

Considering only nearest neighbor coupling where C~r is the fermionic annihilation opera-

tor at the site located at ~r and C†~r is the creation operator, yields a real space Hamiltonian
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2 TPC HAMILTONIAN DERIVED FROM REAL-SPACE LATTICE

Figure 2: The Lieb lattice. A unit cell is shown in green with blue arrows being the Bravais

lattice vectors.

that reads [14]:

H = −J

 ∑
~r,(−1)x+y=−1

C†~r+~zC~r +
∑

~r,(−1)x+z=−1

C†~r+~yC~r +
∑

~r,(−1)y+z=−1

C†~r+~xC~r

+h.c. (2.2)

where the boolean requirement in the sums require 2-sites to couple in the x-y plane, 3-

sites to couple in the y-z plane and 1-sites to couple in the x-z plane. I introduce a vector

potential ~A which applies a phase to every coupling[17, 18, 19], based on the direction of

the coupling as shown below in equation 2.3.

C†~r+~nC~r → ei
∫ ~r+~n
~r

~A·d~lC†~r+~nC~r (2.3)

By taking ~A = π
(
0, 0, x− z + 1

2

)
we get the following phase change in the z-direction[14].

H = −J

 ∑
~r,(−1)x+y=−1

(−1)x−zC†~r+~zC~r +
∑

~r,(−1)x+z=−1

C†~r+~yC~r +
∑

~r,(−1)y+z=−1

C†~r+~xC~r

+h.c.

(2.4)

Introducing a notation where the creation and annihilation operators have 4 indices: The

first index is the site number within the unit cell and the next 3 indicate the coordinate

in terms of the Bravais vectors.

C†site,l,m,n (2.5)

The Hamiltonian can now be written as a sum using only the indices l,m, n specifying

the unit cell.

H = Hxy +Hz (2.6)
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2 TPC HAMILTONIAN DERIVED FROM REAL-SPACE LATTICE

Figure 3: The figure to the left shows the 3-D Lieb lattice. The sites are numerated based

on their lattice vectors; solid lines have normal tightbinding coupling while dashed lines

have a negative sign due to the applied vector potential. The right side shows the Brilloun

zone and the reciprocal lattice vectors inside of it. The blue and red points are the two

Weyl points where the three bands touch. Picture taken from [14]

where Hxy includes all the terms for hopping in the x-y plane and Hz includes the hopping

terms that change z-coordinate.

Hxy = −J
∑
l,m,n

C†1,l,m,nC2,l,m,n + C†3,l,m,nC2,l,m,n + C†1,l−1,m,nC2,l,m,n + C†3,l,m−1,nC2,l,m,n + h.c

(2.7)

Hz = −J
∑
l,m,n

C†1,l−1,m,n+1C3,l,m,n + C†3,l+1,m,n−1C1,l,m,n

−J
∑
l,m,n

−C†1,l,m+1,n−1C3,l,m,n − C†3,l,m−1,n+1C1,l,m,n

(2.8)

I use the Fourier transform of the annihilation and creation operators to transform the

Hamiltonian into k-space, where ki labels the momentum coordinate along k̂i[18].

Csite,l,m,n =
1√
V

∫ ∞
−∞

d~ke−i(k1l+k2m+k3n)Csite

(
~k
)

(2.9)

I further subdivide Hxy into terms that couple sites 1 and 2, and terms that couple sites

3 and 2. Since H1,2 and H3,2 are identical in form, due to the symmetry between x and

y direction in our system, I only need to evaluate one of the terms.

Hxy = −J
∑
l,m,n

C†1,l,m,nC2,l,m,n︸ ︷︷ ︸
H1,2,in

+C†3,l,m,nC2,l,m,n︸ ︷︷ ︸
H3,2,in

+C†1,l−1,m,nC2,l,m,n︸ ︷︷ ︸
H1,2,out

+C†3,l,m−1,nC2,l,m,n︸ ︷︷ ︸
H3,2,out

+h.c

(2.10)
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2 TPC HAMILTONIAN DERIVED FROM REAL-SPACE LATTICE

I split H1,2 in two parts: The part that has coupling inside the unit cell.

H1,2,in = −J
∑
l,m,n

1

V

∫ ∞
−∞

∫ ∞
−∞

d~kd~k′ei(k1l+k2m+k3n)C1
†
(
~k
)
e−i(k

′
1l+k′2m+k′3n)C2

(
~k′
)

+ h.c

= −J 1

V

∫ ∞
−∞

∫ ∞
−∞

d~kd~k′
∑
l,m,n

ei((k1−k
′
1)l+(k2−k′2)m+(k3−k′3)n)

︸ ︷︷ ︸
V δ(~k−~k′)

C1
†
(
~k
)
C2

(
~k′
)

+ h.c

= −J
∑
~k

C1
†
(
~k
)
C2

(
~k
)

+ h.c

(2.11)

And the part that has coupling outside the unit cell.

H1,2,out = −J
∑
l,m,n

C†1,l−1,m,nC2,l,m,n + h.c.

= −J 1

V

∑
l,m,n

∫ ∞
−∞

∫ ∞
−∞

d~kd~k′ei((k1−k
′
1)l+(k2−k′2)m+(k3−k′3)n)C†1

(
~k
)
C2

(
~k′
)
e−ik1 + h.c

= −J
∑
~k

C1
†
(
~k
)
C2

(
~k
)
e−ik1 + h.c

(2.12)

Combining the above I get H1,2 and H3,2.

H1,2 = −J
∑
~k

C1
†
(
~k
)
C2

(
~k
) (

1 + e−ik1
)

(2.13)

H2,3 = −J
∑
~k

C3
†
(
~k
)
C2

(
~k
) (

1 + e−ik2
)

(2.14)

I move on to solve Hz

Hz = −J
∑
l,m,n

C†1,l−1,m,n+1C3,l,m,n + C†3,l+1,m,n−1C1,l,m,n︸ ︷︷ ︸
Hz,+

−C†1,l,m+1,n−1C3,l,m,n − C†3,l,m−1,n+1C1,l,m,n︸ ︷︷ ︸
Hz,−

(2.15)

Focusing only on the parts where site 1 is created.

Hz,1,3+ = −J
∑
l,m,n

C†1,l−1,m,n+1C3,l,m,n

= −J 1

V

∫ ∞
−∞

∫ ∞
−∞

d~kd~k′
∑
l,m,n

ei((k1−k
′
1)l+(k2−k′2)m+(k3−k′3)n)C†1

(
~k
)
C3

(
~k′
)
ei(−k1+k3)

= −J
∑
~k

C†1

(
~k
)
C3

(
~k′
)
ei(−k1+k3)

6



2 TPC HAMILTONIAN DERIVED FROM REAL-SPACE LATTICE

(2.16)

Subdividing further into terms that acquire a negative sign because of the vector potential
~A and the ones having a positive sign.

Hz,1,3− = J
∑
l,m,n

C†1,l,m+1,n−1C3,l,m,n

= −J−1

V

∫ ∞
−∞

∫ ∞
−∞

d~kd~k′
∑
l,m,n

ei((k1−k
′
1)l+(k2−k′2)m+(k3−k′3)n)C†1

(−→
k
)
C3

(
~k′
)
ei(k2−k3)

= J
∑
~k

C†1

(
~k
)
C3

(
~k
)
ei(k2−k3)

(2.17)

I combine it and get the following Hz

Hz = −J
∑
~k

C†1

(
~k
)
C3

(
~k
) (
ei(−k1+k3) − ei(k2−k3)

)
+ h.c (2.18)

Giving me the following complete Hamiltonian

H = Hz +H1,2 +H3,2

= −J
(
C†1 C†2 C†3

) 0 1 + e−ik1 e−i(−k3+k1) − e−i(k3−k2)
1 + eik1 0 1 + eik2

ei(−k3+k1) − ei(k3−k2) 1 + e−ik2 0

 C1

C2

C3


(2.19)

The bulk Hamiltonian in k-space is then the following: [14].

H = −J

 0 1 + e−ik1 e−i(−k3+k1) − e−i(k3−k2)
1 + eik1 0 1 + eik2

ei(−k3+k1) − ei(k3−k2) 1 + e−ik2 0

 (2.20)

with 0-point energy at (k1, k2, k3) = (π, π, π/0) and every multiple of 2π in any direction,

as the Brillouin zone is periodic with 2π. The dispersion relation can be seen on figure 1.

I wish to find the surface states that exist in this system when it is restrained by a wall

at x1 = 0, such that for x1 < 0 the wavefunction vanishes. x2 and x3 are not restrained

and go to minus and plus infinite. To make the problem simpler I do an expansion in k1
around the 0 point for the Hamiltonian at k1 = π.

H = J

 0 −i (k1 − π) e−k3 + e−i(k3−k2)

i (k1 − π) 0 −1− eik2
e−ik3 + eik3−k2 −1− e−ik2 0

 = J

 0 −∂x1 µ†

∂x1 0 C†

µ C 0


(2.21)

In the second equality I translate the Brillouin zone by π along k1 and I have defined C

and µ as the following:

µ = e−ik3 + eik3−k2

C = −1− e−ik2

7



3 BOUNDARY CONDITIONS ON WEYL EQUATION

To verify that my Hamiltonian does indeed describe a H = ~S · ~k TPC semimetal, I can

simplify the problem by writing the Hamiltonian of equation 2.20 in Cartesian momenta

space and expanding around the triple point crossing to first order. I use the following

identity to map the momenta from the reciprocal lattice to Cartesian coordinates.

~k = k1

 1/2

0

−1/2

+k2

 0

1/2

−1/2

+k3

 0

0

1

 = kx

 1

0

0

+ky

 0

1

0

+kz

 0

0

1

 (2.22)

which results in:

k1 = 2kx k2 = 2ky k3 = kz + ky + kz (2.23)

Mapping equation 2.20 into equation 2.24.

H = −J

 0 1 + e−2ikx e−i(kx−ky−kz) − e−i(−ky+kx+kz)
1 + e2ikx 0 1 + e2iky

ei(kx−ky−kz) − ei(−ky+kx+kz) 1 + e−2iky 0


(2.24)

In these coordinates the TPC is at (kx, ky, kz) = (π
2
, π
2
, 0) or (kx, ky, kz) = (π

2
, π
2
, π). I

expand around the first of these TPC to linear order in ~k.

Translating kx and ky into k′x = kx − π
2

and k′y = ky − π
2
.

1

2
H = −J

 0 ik′x −ikz
−ik′x 0 −ik′y
ikz ik′y 0

 = −J

 0 ∂x −∂z
−∂x 0 −∂y
∂z ∂y 0

 (2.25)

Giving me the desired H = ~S · ~k expression up to a sign in the ky and kz direction,

showcasing that the chosen system gives rise to TPC’s in k-space.

3 Boundary Conditions on Weyl equation

Before addressing the problem of boundary conditions on the TPC, I wish to first examine

the simplest semi-metal, the Weyl semimetal, and derive the maximal subspace of the

Hilbert space that the Weyl Hamiltonian is self-adjoint within (D(Q)), specifically the

condition 3.2. I start with the Weyl equation in the bulk. [10]

H = ~k · ~σ =

(
kz kx − iky

kx + iky −kz

)
(3.1)

Bounding the wavefunction with ψ = 0 for x < 0, but making space infinite in y and z,

such that ky and kz remain good quantum numbers and kx does not, thus I substitute

the momentum kx with the differential operator kx = −i∂x. I create the integral required

8



3 BOUNDARY CONDITIONS ON WEYL EQUATION

by the equation of self-adjointness.

〈Hψ|φ〉 − 〈ψ|Hφ〉 = 0

=

∫ ∞
−∞

∫ ∞
−∞

∫ ∞
0

dxdydz

((
kz −i∂x − iky

−i∂x + iky −kz

)(
ψ1

ψ2

))†(
φ1

φ2

)
−
(
ψ1

ψ2

)†(
kz −i∂x − iky

−i∂x + iky −kz

)(
φ1

φ2

) (3.2)

Expanding the expression

=

∫ ∞
−∞

∫ ∞
−∞

∫ ∞
0

dxdydz

(
kzψ1 − i∂xψ2 − ikyψ2

−i∂xψ1 + ikyψ1 − kzψ2

)†(
φ1

φ2

)
−
(
ψ1

ψ2

)†(
kzφ1 − i∂xφ2 − ikyφ2

−i∂xφ1 + ikyφ1 − kzφ2

)
All the terms that do not contain differentials of x cancel out and I am left with

0 =

∫ ∞
−∞

∫ ∞
−∞

∫ ∞
0

dxdydz
(
i∂xψ2

†φ1 + i∂xψ1
†φ2 + iψ1

†∂xφ2 + iψ2
†∂xφ1

)
Performing partial integration I am left only with the surface term created by the barrier

at x = 0. Writing ψ instead of ψ|x=0, meaning the wavefunction at the surface x = 0.

0 =
[
ψ1
†φ2 + ψ2

†φ1

]x=∞
x=0

= 〈ψ|σx|φ〉 σx =

(
0 1

1 0

)
(3.3)

I now look for the space of wavefunctions at the surface of the system that conform to this

equation, starting with the general normalized 2-vector. Taking θ ∈ [0, 2π] and χ ∈ [0, π].

ψj =

(
cos (θ)

sin (θ) eiχ

)
(3.4)

Any set of vectors inside the domain D(Q), where the Hamiltonian is self-adjoint with

my erected boundary must fulfill this equation, including the case where ψ = φ. I thus

choose the set of vectors where the parameters are the same.

〈ψj|Q|ψj〉 =

(
cos (θ)

sin (θ) eiχ

)†(
0 1

1 0

)(
cos (θ)

sin (θ) eiχ

)
= cos (θ) sin (θ)

(
eiχ + e−iχ

)
= 0

(3.5)

From this I see that the complex phase χ must be π
2
. I thus have one less parameter

and my subspace of self-adjoint wavefunctions is parametrized by a single parameter and

includes only a single wavefunction. It becomes clear that in this case there was no other

choice in equation 3.3 than two wavefunctions that were the same at the surface.

Hθ =

{
ψ =

(
cos (θ)

i sin (θ)

)}
(3.6)

9



4 BOUNDARY CONDITION IN LINEARIZED TPC

3.1 Probability current density for Weyl Hamiltonian

It is interesting, useful and correct that the space of wavefunctions is reduced by a bound-

ary inserted into the system, but what does this reduction of self-adjoint space physically

mean? By calculating the current density of the system, I wish to showcase the physical

implication of this reduction of the Hilbert space.

dρ

dt
= −∇ · ~J =

d

dt

(
ψ†ψ

)
=
dψ†

dt
ψ + ψ†

dψ

dt
(3.7)

I find the differentials with regard to time by looking to the time dependent Schrödinger

equation with units of ~ = 1.

i
dψ

dt
= Hψ ⇔ dψ

dt
= −iHψ (3.8)

dψ†

dt
= i(Hψ)† (3.9)

Substituting and calculating explicitly I find the current. Replacing kj = −i∂j
dρ

dt
=
∑

j=x,y,z

i(Hjψ)†ψ − iψ† (Hjψ) =
∑

j=x,y,z

i(−i∂jσjψ)†ψ − iψ† (−i∂jσjψ)

=
∑

j=x,y,z

−(∂jψ)†σjψ − ψ†σj (∂jψ) =
∑

j=x,y,z

−∂j
(
ψ†σjψ

)
= −∇ · ~J

(3.10)

Making the current:

Jj =
(
ψ†σjψ

)
(3.11)

This was the same equation that had to be 0 at the surface of our system for self-

adjointness. We see then that requiring self-adjointness in the system is the same as

requiring no probability current to flow out of the system.

4 Boundary condition in linearized TPC

I now turn to the more complicated TPC, derived in section 2. Requiring self adjointness

in a system where the wave equation is 0 when x < 0 but not restrained in the y and z

direction.

〈Hψ|φ〉 = 〈ψ|Hφ〉 (4.1)

By integrating by parts, I can make everything simplify except the surface term in

the x direction. It is done as following:

∞∫
0

dx

∞∫
−∞

dy

∞∫
−∞

dz

−J
 0 ∂x −∂z
−∂x 0 −∂y
∂z ∂y 0

 ψ1

ψ2

ψ3

† φ1

φ2

φ3

 =

∞∫
0

dx

∞∫
−∞

dy

∞∫
−∞

dz

−J
 ψ1

ψ2

ψ3

† 0 ∂x −∂z
−∂x 0 −∂y
∂z ∂y 0

 φ1

φ2

φ3
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−J cancels out on each side of the equation and I suppress the integrals of y and z.

∫∫ ∞∫
0

dx

 0 ∂x −∂z
−∂x 0 −∂y
∂z ∂y 0

 ψ1

ψ2

ψ3

† φ1

φ2

φ3



=

∫∫ ∞∫
0

dx

 ψ1

ψ2

ψ3

† 0 ∂x −∂z
−∂x 0 −∂y
∂z ∂y 0

 φ1

φ2

φ3


I move everything to the left side of the equation and explicitly calculate Hψ and Hφ. I

then calculate the scalar products.

∫∫ ∞∫
0

dx

 ∂xψ2 − ∂zψ3

−∂xψ1 − ∂yψ3

∂zψ1 + ∂yψ2

† φ1

φ2

φ3

−
 ψ1

ψ2

ψ3

† ∂xφ2 − ∂zφ3

−∂xφ1 − ∂yφ3

∂zφ1 + ∂yφ2

 = 0

⇔∫∫ ∞∫
0

dx
(
∂xψ2

† − ∂zψ3
†)φ1 +

(
−∂xψ1

† − ∂yψ3
†)φ2 +

(
∂zψ1

† + ∂yψ2
†)φ3

−
(
ψ1
† (∂xφ2 − ∂zφ3) + ψ2

† (−∂xφ1 − ∂yφ3) + ψ3
† (∂zφ1 + ∂yφ2)

)
Every term with differentials in y and z cancel out when integrating by parts, since the

surface term is 0.∫∫ ∞∫
0

dx
(
∂xψ2

†φ1 − ∂xψ1
†φ2

)
−
(
ψ1
†∂xφ2 − ψ2

†∂xφ1

)
(4.2)

Since there is translational invariance in ky and kz, the wavefunction must take the form
~ψ (x, ky, kz) = eikyeikz ~ψ (x). The integrals over y and z can thus be evaluated and I get

the following, where kj and k′j are the momentum vector in the j direction for the ψ

wavefunction and φ wavefunction respectively.

δ (ky − k′y) δ (kz − k′z)
∞∫
0

dx
(
∂xψ2

†φ1 − ∂xψ1
†φ2

)
−
(
ψ1
†∂xφ2 − ψ2

†∂xφ1

)
(4.3)

Doing integration by parts in regards to x, I can make the rest of the integral cancel out

and be left with just our surface term. Suppressing the Dirac delta functions for ease of

reading.

∞∫
0

dx
(
∂xψ2

†φ1 − ∂xψ1
†φ2

)
+
(
∂xψ1

†φ2 − ∂xψ2
†φ1

)
−
[
ψ1
†φ2 − ψ2

†φ1

]x=∞
x=0

= 0

[ψ†2φ1 − ψ†1φ2]|x=0 = 0 = 〈ψ|Q|φ〉 Q =

0 −1 0

1 0 0

0 0 0

 (4.4)
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4 BOUNDARY CONDITION IN LINEARIZED TPC

where I suppress the index to evaluate at 0, such that ψ|x=0 = ψ and I assume the

wavefunction to be 0 at infinity. This is justified by the fact that we are going to look for

real exponentially decaying solutions later.

Equation 4.4 constitutes a constraint on the wavefunction spinors. To deduce what space

(D(Q)) of spinors I have available that makes the Hamiltonian self-adjoint, I start with

an arbitrary normalized complex 3-vector and narrow down the scope of it using equation

4.4.

ψj (x = 0) =

 cos (θj) sin (φj)

sin (θj) sin (φj) e
iεj

cos (φj) e
iχj

 (4.5)

An arbitrary normalized 3-vector has 5 degrees of freedom in the form of parameters, one

for each dimension in both real and imaginary space, and 1 less because it is normalized.

I can add an arbitrary phase to my entire wavefunction, which I use to remove the

possibility of the first row being imaginary, reducing the degrees of freedom to 4.

I take two generic wavefunctions ψ1 and ψ2 and insert them into equation 4.4.

0 = 〈ψ1|Q|ψ2〉 = − cos (θ1) sin (φ1) sin (θ2) sin (φ2) e
iε2 + cos (θ2) sin (φ2) sin (θ1) sin (φ1) e

−iε1

=
[
− cos (θ1) sin (θ2) e

iε2 + cos (θ2) sin (θ1) e
−iε1
]

sin (φ1) sin (φ2)

(4.6)

Any pair of wavefunctions in a given domain D(Q) must fulfill the previous equation. This

includes the case ψ1 = ψ2. Therefore I am placing no extra restrictions on the parameters

by looking at and requiring equation 4.6 where ψ1 = ψ2.

0 = cos (θ) sin (θ) 2i sin (ε) sin2 (φ)

ε is thus π · n. ε = 0 and ε = π, change the sign of the second row but nothing else. This

freedom is already given in the freedom of θ, since θ → −θ yields a sign in the second

row as well. ε can therefore be set to 0 with no loss of generality, reducing the degrees of

freedom to 3 parameters. Making our requirement for the domain D(Q):

0 = [cos (θ2) sin (θ1)− cos (θ1) sin (θ2)] sin (φ1) sin (φ2)

This is only possible if θ1 = θ2, independently of the value of φ1 and φ2. Given this, the

complete set of domains of 3-vectors on which the Hamiltonian is self-adjoint is defined

by a single parameter θ.

Dθ (Q) =

ψ =

 cos (θ) sin (φ)

sin (θ) sin (φ)

cos (φ) eiχ

∀ (φ, χ)

 (4.7)

This means that whatever solutions we gather from our eigenvalue equation, at the surface

it must reduce to a spinor inside one of these domains, fixing θ for the system. the same

solution and restricted space applies to the TPC system described in equation 2.21, since

there is translational invariance in k2 and k3, and a first order differential in x1. This

result can be shown using the same method.
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5 DERIVING SURFACE STATES

5 Deriving surface states

I set up the eigenvalue equation with the linearized Hamiltonian in equation 2.21. Since

J is just a general energy rescaling factor, I set it to 1. 0 −∂x1 µ†

∂x1 0 C†

µ C 0

 α (x)

β (x)

γ (x)

 ei(k2·x2+k3·x3) = E

 α (x)

β (x)

γ (x)

 ei(k2·x2+k3·x3) (5.1)

From this I get 3 core equations, that define the eigenstates.

−∂x1β + µ†γ = Eα (5.2)

∂x1α + C†γ = Eβ (5.3)

µα + Cβ = Eγ (5.4)

I isolate α from equation 5.2 and 5.4.

α =
−∂x1βE + Cµ†β

(E2 − µµ†)
(5.5)

Inserting α into equation 5.4, I isolate γ. So that I now have α and γ as just functions

of β and ∂x1β.

γ =

(
−µ

E2 − µµ†

)
∂x1β +

C

E

(
µµ†

E2 − µµ†
+ 1

)
β (5.6)

Combining equation 5.5, 5.6 and 5.3, I can create a differential equation with only β,

as an unknown function, using that Cµ† is real.

∂x1α + C†γ = Eβ

⇔

∂x1

(
−∂x1βE + Cµ†β

(E2 − µµ†)

)
+ C†

((
−µ

E2 − µµ†

)
∂x1β +

C

E

(
µµ†

E2 − µµ†
+ 1

)
β

)
= Eβ

⇔

−∂2x1β +

(
Cµ†

E
− C†µ

E

)
∂x1β +

(
CC†

E2

(
µµ† + E2 − µµ†

))
β =

(
E2 − µµ†

)
β

⇔
−∂2x1β +

(
CC† + µµ† − E2

)
β = 0

The solutions to this linear homogeneous second order differential equation are exponen-

tials.

β = e−ηx1
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5 DERIVING SURFACE STATES

Inserting the solution I find η to be the following:

η2 = CC† + µµ† − E2

η = ±
√
CC† + µµ† − E2

= ±
√

2 (2 + cos (k2) + cos (2k3 − k2))− E2

(5.7)

Looking for localized states on the x1 = 0 surface we have η positive, while on x1 = L we

have η negative. For CC† + µµ† < E2 we get imaginary η and we enter the bulk state.

From equation 5.5 and 5.6 we know that α and γ will also be exponential functions

of the form:

ψ (x1) =

 α (x1)

β (x1)

γ (x1)

 =

 α0

β0
γ0

 e−ηx1 (5.8)

Comparing this to equation 4.7 we can find the values of θ, φ and χ, from the parameters

of k2, k3 and E. α0

β0
γ0

 =

 cos (θ) sin (φ)

sin (θ) sin (φ)

cos (φ) eiχ

 (5.9)

Taking the ratio between β and α from equation 5.5 I can find θ.

β

α
= tan (θ) =

β
−∂x1βE+Cµ†β

(E2−µµ†)

=
E2 − µµ†

ηE + Cµ†
=

E2 − µµ†

±E
√
CC† + µµ† − E2 + Cµ†

(5.10)

In terms of k2 and k3

tan (θ) =
E2 − 2 (1 + cos (2k3 − k2))

±E
√

2 (2 + cos (k2) + cos (2k3 − k2))− E2 − 2 (cos (k3 − k2) + cos (k3))
(5.11)

I find that for differing signs of η (and thus different sides of the material that our

bound states are localized at) there are differing values of the defining parameter for our

boundary condition θ, as one might expect since the boundary is different.

I find φ by inserting equation 5.9 into equation 5.4.

µ cos (θ) sin (φ) + C sin (θ) sin (φ) = E cos (φ) eiχ

⇔
tan (φ) (µ cos (θ) + C sin (θ)) = Eeiχ

⇔

tan (φ) =
Eeiχ

µ cos (θ) + C sin (θ)

By taking the absolute value of this expression I can find φ independently of χ.

tan (φ) =
E√

(µ cos (θ) + C sin (θ)) (µ† cos (θ) + C† sin (θ))

=
E√

µµ†cos2 (θ) + CC†sin2 (θ) + 2Cµ† sin (θ) cos (θ)

(5.12)
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6 BZ ANALYTICS COMPARISON TO DATA USING AMPLITUDE APPROACH

In terms of the conserved wave numbers k2 and k3 of our Brillouin zone.

tan (φ) =

E√
2 + 2 cos (2k3 − k2) cos2 (θ) + 2 · cos (k2) sin2 (θ) + 4 (cos (k3 − k2) + cos (k3)) sin (θ) cos (θ)

(5.13)

χ is derived from the phase we removed

eiχ = tan (φ)
µ cos (θ) + C sin (θ)

E
=

µ cos (θ) + C sin (θ)

|µ cos (θ) + C sin (θ)|

=
−
(
e−ik3 + ei(k3−k2)

)
cos (θ) +

(
1 + e−ik2

)
sin (θ)√

2 + 2 cos (2k3 − k2) cos2 (θ) + 2 · cos (k2) sin2 (θ) + 4 (cos (k3 − k2) + cos (k3)) sin (θ) cos (θ)

(5.14)

6 BZ Analytics comparison to data using amplitude

approach

To investigate to what degree these analytical results are correct I received numerical

simulation data by Dr. Fulga of Leibnniz Institute for Solid State Materials Research

(Dresden). The simulations were tight-binding simulations of a system with the Hamilto-

nian in equation 2.20, with a finite number of unit cells in the a1 direction, (either 100 or

200) with no translational invariance broken in a2 or a3, making k2 and k3 good quantum

numbers by which the surface Brillouin zone is defined (Creating an infinite slab whose

plane can be defined by being orthogonal to k1).

I considered data of the exact diagonalization of the Hamiltonian in the energy regime

of 0.4-0.5J, in order to avoid overlap with the flat band. These data show, for which

values of the momentum components along the surface of the slab, eigenstates occur,

with eigenvalues in the simulated spectrum. On figure 4 these states can be seen plotted

in the Brilloun zone defined by k2 and k3.

Along side this I received wavefunction data for 3 wavefunctions at specific points in the

Brillouin zone, that also had energies in this regime. These points have been marked on

figure 4.

To sort these wavefunctions into surface states and bulk states I used a ”position” value

created by Dr. Fulga that accompanied the data. This position value is the absolute

value of the wavefunction at given k2, k3 and E summed over the first half of the material

divided by the absolute value of the wavefunction summed across the entire material.

pos =

∑a1=L/2
a1=0 |ψ (a1, k2, k3, E)|∑a1=L
a1=0 |ψ (a1, k2, k3, E)|

Defining x1 as the coordinate propagating into the slab, parallel to k1.
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●●▲▲

■■

● wf1

▲ wf2

■ wf3
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k2
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0

1

2

3

4

k3

Figure 4: Plot of the Brilloun zone at E/J = [0.4, 0.5] all layered on top of each other.

Blue points are states with position in the interval [0.99, 1], red points are states with

position in the interval [0, 0.01] and the green points are states with position in the

interval [0.4, 0.6]. The 3 markers are the 3 surface state wavefunctions I examined.

They are dubbed wavefunction 1 through 3. Circle is localized on x1 = 0, triangle is

localized on x1 = L and square is localized on x1 = L, but is strongly localized compared

to wavefunction 2.

For surface states we would have a position value that is very close to 0 or 1 depending

on whether it is localized on the surface at x1 = 0 or the surface at x1 = L. States far

from these position values are not strongly localized. This means that they are either

bulk states with imaginary η (see equation 5.7) or localized states with small absolute

values of η, resulting in slow exponential decay as a function of system depth from their

corresponding surface.

From figure 4 we see green bulk states inside an elongated Fermi surface, projected on

the surface Brillouin zone. Two Fermi arcs, one made out of x1 = 0 localized states

and one made out of x1 = L localized states, stretch from the triple point crossing at

(k2, k3) = (π, π), to the triple point crossing at (k2, k3) = (π, 0). These two Fermi arcs

can be deduced and expected from the sign in equation 5.10, which predicts two kinds of

surface states continuous in the Brillouin zone based on the sign of η in equation 5.7.

From section 4 we know that the surface states are defined by the boundary condition

parameter θ, that describes the boundary of the system. To find out what this value of

θ is in our numerical data, I use equation 5.10 for the numerical points at the surface of

the simulated material.

tan (θ) =
|β (a1 = 0)|
|α (a1 = 0)|

(6.1)
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Figure 5: The purple arcs are from wavefunction 1 and match a value of θ = π
2

exactly. A

state where site 1 has zero amplitude on the surface. The yellow arcs are from wavefunc-

tion 3 on the left and wavefunction 2 on the right. Wavefunctions 2 and 3 have negative

values of η while 1 has a positive value of η.

By considering the sample wavefunctions with η negative and positive, I can find the two

values of θ that define the two Fermi arcs along the two surfaces of the system. I have

worked with the data sets of wf1, wf2 and wf3. Wf1 and wf2 are clearly localized, as can

be seen on figure 6, but overlap with the bulk states in the Brillouin zone and have very

slow exponential decay. Wf3 is very far from the projection of the TPC’s and is more

strongly localized. On figure 4, the 3 points are marked in the Brillouin zone.

By calculating θ and inserting it into equation 5.11, choosing the sign in equation 5.11

based on which side of the slab the wavefunction is localized on, we get the equation that

describe our Fermi arcs in the Brillouin zone for a given energy. This is seen on figure 5,

where pairs of them are plotted at energies 0.4J and 0.5J for differing values of θ based

on which wavefunction we extracted it from.

7 Analytical wavefunctions compared to data

By calculating η from equation 5.7 and θ from the amplitude approach described in equa-

tion 6.1, I obtain wavefunctions from equation 5.8. I compare these analytical functions

to the numerical results in figure 6. An important thing to note about these plots is

that the wavefunction that is calculated analytically and shown as a solid line, is the

exact analytical expression from equation 5.8; there is no fitting parameter. Because η

is very important for the normalization of the wavefunction, any change in it will make

the plots displaying the absolute value of the wavefunction appear much less accurate.

In particular this can be seen on the bottom plots of figure 6, where the logarithmic

plot showcases the small difference in η between the data and the analytical function.
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Figure 6: Absolute value of wavefunctions on sites 1 (red), 2 (green), 3 (blue) for wave-

functions 1 through 3. Since 3 is heavily localized a logarithmic plot is also provided.

Another important thing to note is that the x-axes in these plots are measured in the

unit cell coordinates a1, because the data is sampled for sites in the a1 direction. This is

different from the x1 coordinate used in my analytics, which is perpendicular to the slabs

surface. To remedy this I simply rescale using x1 = a1/
√

2. This causes the data and the

analytics to sync up in depth into the system perpendicular to the surface, but not in the

coordinates along the surface of the system. Since the system is infinite in the k2 and k3
direction this has no effect on the absolute value of the wavefunction, but it does mean

that the adapted approach, cannot accurately predict the phase of the wavefunction. The

linearized approach we use towards k1 is also unsuitable to estimate this phase, so the

loss is minimal.

From looking at this data we see that the amplitudes of site 2 and 3 are the same at

the two surfaces, while site 1 has zero amplitude at the x1 = 0 surface. This corresponds

to θ = π
2

at the x1 = 0 surface and approximately θ = 0.15π at the x1 = L surface.

η ≈ 0.057 in wavefunction 1, η ≈ −0.028 in wavefunction 2 and η ≈ −0.940 in wave-

function 3. Showcasing the expected difference in localization to the surface between the

wavefunctions close to the triple point crossing and those far from it.
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8 CONCLUSION

8 Conclusion

The Weyl semimetal and TPC semimetal systems were studied near the Weyl nodes

and TPC, with the goal of finding the maximal reduced Hilbert space D(Q), where the

bulk Hamiltonian is self-adjoint after inserting a physical boundary at x1 = 0. It was

shown that a boundary could be defined by a single parameter that I dubbed θ. It was

shown that this reduction of Hilbert space could physically be understood as restricting

probability current from flowing out of the system. A system that hosts TPC’s in k-

space was derived from a real space Hamiltonian through a Fourier transformation of the

fermionic annihilation and creation operators. Utilizing the reduced Hilbert space D(Q)

and the preservation of translational invariance in directions x2 and x3, an analytical

description was derived for the surface states characteristic of topological semimetals.

Using simulation data provided by Dr. Fulga, I found the value for θ based on the relative

amplitude of the numerical wavefunctions and compared the analytical description of these

wavefunctions to the simulated ones. As seen on figures 5 and 6, the resulting analytics

are very close to describing the real phenomenon.
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A APPENDIX

A Appendix

A.1 Berry curvature monopoles of the Weyl Hamiltonian

To give credence to the earlier claim that Weyl nodes are monopoles of Berry curvature,

I address the problem of calculating the Berry curvature. The Berry curvature is defined

from the Berry connection and the Berry connection is defined as follows [15, 20]:

~A = i 〈ψ|∇k|ψ〉 (A.1)

And the Berry curvature is defined as:

~B = ∇k × ~A (A.2)

Where ψ are the eigenstates of the Hamiltonian in question [15]. I therefore start by

finding the eigenstates for the Weyl Hamiltonian ~σ · ~k.

H = ~σ · ~k =

(
kz kx − iky

kx + iky −kz

)
(A.3)

It is useful to write the Weyl Hamiltonian in spherical coordinates around the Weyl node.

Using the following mapping:

kx = k sin (θ) cos (φ)

ky = k sin (θ) sin (φ)

kz = k cos (θ)

(A.4)

This yields the Hamiltonian:

H = k

(
cos (θ) sin (θ) cos (φ)− i sin (θ) sin (φ)

sin (θ) cos (φ) + i sin (θ) sin (φ) − cos (θ)

)
(A.5)

That has eigenstates:

ψ1 = −e−iφ sin

(
θ

2

)
|1〉+ cos

(
θ

2

)
|2〉

ψ2 = e−iφ cos

(
θ

2

)
|1〉+ sin

(
θ

2

)
|2〉

(A.6)

With Eigenvalues

E = ∓k (A.7)

Calculating the Berry connection in spherical coordinates for ψ1 yields.

~A = i 〈ψ|∇k|ψ〉 = ieiφ sin

(
θ

2

)
∇ke

−iφ sin

(
θ

2

)
+ i cos

(
θ

2

)
∇k cos

(
θ

2

)
=

i

2k
cos

(
θ

2

)
· sin

(
θ

2

)
θ̂ +

1

k sin (θ)
sin2

(
θ

2

)
φ̂− i

2k
cos

(
θ

2

)
sin

(
θ

2

)
θ̂

=
1

k sin (θ)
sin2

(
θ

2

)
φ̂

(A.8)
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While the Berry curvature is

~B = ∇k × ~A =
1

k sin (θ)

∂

∂θ

(
1

k sin (θ)
sin2

(
θ

2

)
· sin (θ)

)
k̂ − 1

k

∂

∂k

(
k

1

k sin (θ)
sin2

(
θ

2

))
θ̂

=
1

k sin (θ)

∂

∂θ

(
1

k
sin2

(
θ

2

))
k̂ =

1

k2 sin (θ)
· sin

(
θ

2

)
cos

(
θ

2

)
k̂ =

1

2k2
k̂

(A.9)

Integrating the flux through a sphere around the Weyl node yields the Chern number

times 2π.

C =
1

2π
4πk2

1

2k2
= 1 (A.10)
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