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Abstract

English
This thesis considers the interaction between N ions confined in an ion trap and a set of laser fields,
described by the Dicke model. The Dicke Hamiltonian for the two different models, used by the research
group at the University of Innsbruck (the Quantum Optics and Spectroscopy group) and the Quantum
Optics group at the National Institute of Science and Technology in Boulder, Colorado, respectively. The
Innsbruck model uses an effective two-level system, while the Boulder model uses a ∆-system, which is
reduced to a two-level system by eliminating the excited level adiabatically.
This thesis shows that the system undergoes a phase transition at a critical value of the Lamb-Dicke
parameter η, where the system goes from the ground state into a state characterized by super radiance,
where the atomic ensemble spontaneously emits radiation with intensity proportional to N2. The exis-
tence of the phase transition is shown from a mean-field description of the Dicke model and from the
Holstein-Primakoff representation of the model in the thermodynamic limit N →∞. This representation
enables a physical interpretation of, and a detailed description of, the phase transition.
A direct numerical diagonalization of the ground state of the Dicke Hamiltonian have been carried out
to test the behaviour of a finite number of ions. This diagonalization also indicates that the system
needs to prepared in such a way that the interaction with the laser fields excite more oscillations in the
center-of-mass mode than in the atomic spin.
The possibility of measuring the phase transition has also been discussed by numerically solving the
time-dependent Schrödinger equation for various linear models of the Lamb-Dicke parameter. It is
shown that the Lamb-Dicke parameter needs to be adiabatically driven to properly measure the phase
transition and that the deviation from the phase transition decreases as the Lamb-Dicke parameter is
driven more slowly. Lastly the universality of the phase transition is discussed.

Dansk
Denne bacheloropgave omhandler interaktionen mellemN ioner i en ionfælde og en række lasere, beskrevet
ved hjælp af Dicke-modellen. Dicke Hamiltonen er blevet opstillet for to forskellige modeller, der bliver
brugt af henholdsvis Quantum Optics and Spectroscopy group fra University of Innsbruck og kvanteoptik-
gruppen fra National Institute of Science and Technology i Boulder, Colorado. Innsbruck-modellen bruger
et to-niveau atom, mens at Boulder-modellen bruger et ∆−system, der reduceres til et to-niveau system
ved at eliminere the tredje niveau adiabatisk.
Denne opgave viser, at der findes en faseovergang i system ved en kritisk værdi af Lamb-Dicke parame-
teren η for systemets grundtilstand. Denne faseovergang går fra grundtilstanden til en tilstand, hvor det
atomare ensemble er karakteriseret ved begrebet "super-radiance", hvor ensemblet udsender spontant
emitteret stråling med en intensitet proportional til N2. Faseovergangens eksistens bevises gennem en
middelfelts-beskrivelse til nulte og første orden, blandt andet ved hjælp af Holstein-Primakoff repræsen-
tationen af modellen i den thermodynamiske grænse N → ∞. Denne repræsentation muliggør desuden
en fysisk fortolkning af faseovergangen.
Grundtilstanden for Dicke Hamiltonen er blevet diagonaliseret numerisk for at teste om hvordan an-
tallet af ioner i fælden påvirker faseovergangen. Diagonaliseringen viser også, at systemet skal forberedes
sådan, at interaktionen danner flere ekscitationer i oscillationen i ionernes massemidtpunkt end i det
atomare spin.
Den tidsafhængige Schrödingerligning er blevet løst numerisk for at undersøge muligheden for at måle
faseovergangen i et eksperiment. Dette er gjort for forskellige lineære modeller for Lamb-Dicke parame-
teren. I den forbindelse vises det, at Lamb-Dicke parameteren skal køres adiabatisk langsomt i tid , od det
vises desuden, at afvigelsen fra grundtilstanden samtidig bliver mindre. Universaliteten af faseovergangen
diskuteres til slut.
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1 Introduction
Phase transitions are well described in various physical systems; examples include the ordering of bosons
in the ground state in Bose-Einstein condensation or the transition between a ferromagnetic system to
a paramagnetic system as the temperature is increased above the Cure temperature. A similar phase
transition can be found in the Dicke model describing the interaction between a number of lasers and an
atomic ensemble.

This thesis expands upon the procedure outlined in [5] and examines the conditions for the phase transi-
tion in the Dicke model through two different ion-laser interactions, used by the experimental quantum
optics groups at the University of Innsbruck and at the National Institute for Science and Technology
in Boulder, respectively. These are referred to as Innsbruck and Boulder, Colorado, respectively, in the
rest of the thesis. The interaction Hamiltonian is derived for both models and the existence of the phase
transition is demonstrated through a mean-field description of the Hamiltonian. The aim of this thesis
is to demonstrate the importance of an adiabatic evolution of the appropriate parameters in order to
induce the phase transition, e.g. a rapid increase in, say, the Lamb-Dicke parameter η(t) will not yield
a phase transition, but an adiabatic evolution will.

The thesis also aims to present a simple model for the evolution of η(t) that can be used in an ex-
periment to observe the phase transition. It is assumed that the Lamb-Dicke parameter evolves linearly
in time and present different slopes - those that permit the phase transition and those that do not.
This thesis in organized in the following sections:

• Section 2 introduces the formalism used to describe an atomic ensemble and a quantized light field.
It also introduces the quantum mechanical angular momentum formalism used in this thesis and
outlines the general procedure for changing to the interaction picture. The two models are also
introduced and the general form of the interaction Hamiltonian for each are presented.

• Section 3 outlines the change to the interaction picture for the two models. This section only
describes the unique features in the mathematical derivation so most of the detailed calculations
have been omitted from this section. These can be found in Appendix (A). Note that the application
of standard quantum optics methods, primarily the application of the Baker-Hausdorf lemma, have
been omitted completely from this thesis, and it is assumed that the reader is familiar with these
methods.
The existence of phase transition is also shown and the critical value for η is derived through a
zeroth-order mean-field description of the Hamiltonian and a first-order description is made using
the Holstein-Primakoff representation of angular momentum operators. This enables a physical
interpretation of the phase transition.

• Section 4 discusses the phase transition in detail, in three different ways:

– The ground state of the Hamiltonian have been diagonalized for varying ratios of the strength
of the spin and the cavity oscillator. This part examines the phase transition’s dependence
on the number N of ions in the ion trap, as well as the dependence on the strengths of the
spin and the oscillator.

– The time dependent Schrödinger equation have been numerically solved for various ratios of
the strength of the spin and the oscillator, as well for different models for the time-evolution
fo the Lamb-Dicke parameter η(t). This part examines the adiabatic evolution of η(t) and
aims to find a model for η(t) that permits the existence of the phase transition.

– The universality of the phase transition is shown, meaning that the phase transition exist for
any number of ions confined in the trap. This is done by finding the optimal model for a
given set of parameters. This is done for varying numbers of ions and it is shown that the
relationship between the second derivative of the z-component of the spin and the optimal
slope is essentially the same, regardless of the number of ions in the trap.

• Section 5 concludes on the results, primarily those from section 4, and provides an outlook for
further study.

We set ~ = 1 throughout the thesis, which causes the unit of energy and frequency to coincide.
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2 Formalism

2.1 The Interaction-Free System
The interaction-free ion-laser system can be split up in two separate parts: An ion part described by the
atomic Hamiltonian Ĥa and the vector space Va, and an electromagnetic part, describing the quantized
electric field using the Hamiltonian ĤEM and the vector space VEM . The total vector space of the system
is written as the product space V = Va ⊗ VEM . The two vector spaces, as well as the corresponding
Hamiltonians, are defined in the following sections.

2.1.1 The Atomic Ensemble

We will in general be considering an ensemble of N atoms confined in the trap. The ions used in the
Innsbruck model have two energy levels for the nth ion: |g〉n and |e〉n, while the Boulder model uses a
three level system, comprised of a hyperfine split ground state: |1〉n and |2〉n, and an excited level |e〉n.
This model is, however, approximated as a two-level system by adiabatically eliminating the excited
state |e〉n.
The Hamiltonian for the atomic ensemble in the Innsbruck model can be written as the sum of the
individual atomic Hamiltonians Ĥa =

∑
n Ĥ

(n)
a . The nth atomic Hamiltonian can be written in a diagonal

form in terms of the energies of the ground state and the excited state, E(n)
g and E(n)

e , respectively:

Ĥn
a = E(n)

g |g〉n 〈g|n + E(n)
e |e〉n 〈e|n (1)

The atomic Hamiltonian in the Boulder model is written in the same manner, where the Eg term is
replaced by a sum over the two ground state energies: E(n)

g |g〉n 〈g|n = E
(n)
0 |0〉n 〈0|n + E

(n)
1 |1〉n 〈1|n.

2.1.2 Angular Momentum Operator Formalism

Both systems can be described in terms of spin- 1
2 angular momentum operators, provided that the excited

state in the Boulder model is adiabatically eliminated. These operators are, for the nth atom with the
z−axis as the quantization axis, defined in terms of the Pauli spin matrices as:

σ̂z,n = (|1〉n 〈1|n − |0〉n 〈0|n) , σ̂+,n = |1〉n 〈0|n ; σ̂−,n = |0〉n 〈1|n (2)

σ̂x,n =
1

2
(σ̂+,n + σ̂−,n) ; σ̂y,n =

i

2
(σ̂−,n − σ̂+,n) (3)

These operators σ̂i,n (i = x, y, z) obey the standard angular momentum commutation relations [σ̂i,m, σ̂j,n] =∑
k iεijkσ̂k,mδm,n. The collective angular momentum operators Ĵi, i = (x, y, z,±), that acts on the entire

system, can be defined by Ĵi =
∑
n σ̂i,n.

These operators also obey the angular momentum commutation relations[
Ĵi, Ĵj

]
=
∑
n,m

[σ̂i,n, σ̂j,m] =
∑
n,m

∑
k

iεijkσ̂k,nδn,m =
∑
k

iεijkĴk (4)

Ĵz is an eigenfunction of the product state |S〉 = |s1, s1〉 |s2,m2〉 ... |sN ,mN 〉, such that

Ĵz |S〉 =

[
N∑
n=1

mn

]
|S〉

It is assumed that the system have the largest possible spin J ≡
N∑
n=1

sn = N
2 , since all ions can be

described as a spin 1
2 system. The eigenvalues for the raising and lowering operators for the nth ion are

given by: Sn,± |s,mn〉 =
√

(s∓mn) (s+ 1±mn) |s,mn ± 1〉.
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This formulation allows us to write the atomic Hamiltonian from equation (1) in a more helpful manner.
The zero-energy point is chosen to lie directly between the ground state and the excited state, such that
E

(n)
1 = ω0

2 and E(n)
0 = −ω0

2 :

Ĥa =

N∑
n=1

E
(n)
1 |1〉n 〈1|n − E

(n)
0 |0〉n 〈0|n =

ω0

2

N∑
n=1

1

2
(|1〉n 〈1|n − |0〉n 〈0|n) =

ω0

2

N∑
n=1

σ̂z,n =
ω0

2
Ĵz (5)

2.1.3 The Laser Field and the Ion Trap

The quantized cavity field is replaced with a quantized vibrational motion of the center-of-mass (abbre-
viated as COM) of the trapped ions. The Hamiltonian for an electromagnetic wave with frequency ω
can be written as a harmonic oscillator:

ĤEM =

N∑
k=1

1

2

[
p2 + C (xk+1 − xk)

]
(6)

where the last term describes the coupling between two ions, with the force constant C. This Hamiltonian
can be greatly simplified by changing to phonon coordinates, i.e. by replacing the displacement x̂j of the

jth ion from its equilibrium position by a linear combination of N coordinates q̂j by setting x̂j =
N∑
l=1

blj q̂l,

where blj obeys the orthogonality conditions
N∑
j=1

bljb
l′

j = δl,l′ and
N∑
l=1

bljb
l
j′ = δj,j′ . A similar change for

the momentum coordinates is made: pj → Pk, such that [qk, Pk′ ] = iδk,k′ . It can be shown that the
transformed Hamiltonian is (the details can be found in appendix (C)):

ĤEM =
1

2

N∑
j=1

[
PjP−j + ω2

j qjq−j
]

(7)

where ωj is the frequency of the jth phonon coordinate. This allows us to write x̂ in terms of the
annihilation and creation operators (âl and â

†
l ) of the l

th mode by:

q̂l =

N∑
l=1

√
1

2νlm

(
âl + â†l

)
(8)

using standard methods in quantum optics found in any introductory quantum optics textbooks (see for
instance reference [4]), with the Hamiltonian

ĤEM =

N∑
l

νl

(
â†l âl +

1

2

)
(9)

The laser field of frequency ωL is described by:

E−(x̂, t) =

N∑
j=1

E0

2
exp [i (ωL,jt− kLx̂+ φ)] + C.C.

where C.C. is the complex conjugate, E0 is the amplitude of the field, kL = 2π/λL is the component of
the wave vector of the field along the trap axis, and φ is a phase. The field can be written in terms of
âl and â

†
l using equation (8):

E−(x̂, t) =

N∑
j=1

E0

2
ei(ωL,jt+φ)e

−i
N∑
l=1

ηl(âl+â†l ) (10)

where ηl ≡ kL
√

1
2νlm

is the Lamb-Dicke parameter, given by ηj,n = ηn

√
Nbj√
ν′/ν

, ηn = kn

√
1

2mνN , where m

is the mass of the ion. The subscript n refers to the nth laser, if there is more than one. These operators
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create and annihilate quanta of vibrational motion and operate on the so-called Fock-space, where the
natural basis for the lth mode is the occupation number nl, defined as the eigenvalue of the number
operator n̂l = â†l âl, such that: n̂l |nl〉 = nl |nl〉, where nl is the number of excitations in the oscillator in
the lth mode. The total basis is then the product state |n̂〉 =

∏
l

⊗ |n̂l〉

Equations (5) and (9) can be combined to give the interaction-free Hamiltonian of the form

Ĥ0 =
ω0

2
Ĵz +

N∑
l=1

νlâ
†
l âl (11)

where the zero-point energy has been dropped.

2.2 The Dipole Interaction
The interaction between the ensemble of ions and an electric field is well described by the dipole inter-
action, characterized by the Hamiltonian:

ĤI = −D−σ̂−Ê− (x̂, t) +H.C. (12)

where H.C. is the hermitian conjugate, Ê−(x̂, t) is the negative frequency part of the laser field and
D− is the corresponding dipole moment for the |g〉 ↔ |e〉 transition. We also have D+ for the positive
frequency term. The exact form of the Hamiltonian depends on the system and are defined for the two
models in section (2.3).
It is convenient to change to the interaction picture with respect to a suitable Hamiltonian Ĥc by using
the unitary operator Û0 = exp

[
−iĤct

]
by:

H̃I = Û†0 ĤÛ0 − iÛ†
∂Û0

∂t

= Û†0 ĤI Û0 + Û†0 Ĥ0Û0 − Û†0 ĤcÛ0 (13)

where it has been used that ∂Û0

∂t = −iĤcÛ0 from which it follows that iÛ†0
∂Û0

∂t = Û†0 ĤcÛ0. It is often
convenient to choose Ĥc = Ĥ0, such that H̃I = Û†0 ĤI Û0, but other choices may be viable.

2.3 The Ion-Laser Models
2.3.1 The Innsbruck Model

The research group in Innsbruck uses a qubit comprised of the metastable states |g〉 ≡ S1/2 (m = 1/2) and
|e〉 ≡ D5/2 (m = 3/2) of the isotope 40Ca+ . The transition interacts with a bichromatic laser field with
frequencies ω1,2 = ω0 ± δ, where ω0 is the qubit transition frequency and δ is close the lth vibrational
mode frequency. Further details about the experimental set up can be found at [1]. This model is
modified slightly: the lasers are further detuned by a small frequency ε from ω0, which is necessary to
induce the phase transition. The energy diagram for the model is shown in figure (1).
The interaction-free Hamiltonian for the jth ion is:

Ĥ0,j =

N∑
l=1

νlâ
†
l âl +

ω0

2
σ̂z,j (14)

The laser fields are characterized by

E1 =
E0

2
exp

[
−ik1r̂

]
exp [i (ω1t+ φ1)] + C.C.

E2 =
E0

2
exp

[
−ik2r̂

]
exp [i (ω2t+ φ2)] + C.C.

where k is the wave vector associated with each field and φi are the phases of each laser. r̂ is the
position of the ion, which oscillates about the equilibrium position r0 with the small displacement δr̂.

4



|g〉

|e〉
-νl+ δ - ε

νl- δ + ε

ε

ω1

ω2

Figure 1: Energy diagram for the Innsbruck Model

The equilibrium term only contributes a phase factor φr, while the displacement can be given in terms
of the annihilation and creation operators for the lth mode by:

kδr̂ =

N∑
l=1

kl

√
1

2mνl

(
âl + â†l

)
=

N∑
l=1

ηl

(
âl + â†l

)
The total phase is described by: Φi = φi + r0 and it is assumed that both lasers have the same phase Φ.
The interaction-Hamiltonian is given by:

ĤI =

D−1 E0

2
eiω1te

−i
N∑
l=1

η1,l(âl+â†l )
eiΦ1 +D−2

E0

2
eiω2te

−i
N∑
l=1

η2,l(âl+â†l )
eiΦ2

 |e〉 〈g|+H.C. (15)

whereD−i is the dipole moment for the transition between the two level for the ith laser. It is advantageous
to tune the laser phase to Φ = Φ′+π/2, such that eiΦ = ieΦ′ . It is then possible, with no loss of generality,
to absorb the phases into the state ieiΦ

′ |e〉 〈g| = i ˜|e〉 〈g| = iσ̃−, where the tildes are omitted in the rest
of the thesis. The Rabi frequency is defined as Ωn =

D−nE0

2 . The interaction Hamiltonian then takes the
form:

ĤI = iσ̂−

Ω1e
iω1te

−i
N∑
l=1

η1,l(âl+â†l )
+ Ω2e

iω2te
−i

N∑
l=1

η2,l(âl+â†l )
+H.C. (16)

2.3.2 The Boulder Model

The model used by the research group in Boulder is composed of two 9Be+ hyperfine ground states
(|0〉 ≡ |F = 2,mF = −2〉 and |1〉 ≡ |F = 1,mF = −1〉) and an excited state |e〉. Only the motion
corresponding to the resonant COM mode with frequency ν is considered, for simplicity. Further details
about the experimental set up can be found at [2]. The energy diagram for a single ion is shown in
figure(2).
The system interacts with two bichromatic lasers with frequencies ω1, ω3 for the first laser and ω2, ω4 for
the second laser. The beam directions are at right angle to each other and the direction in the wavevector
difference ∆k = k1 − k2 coincides with the trap axis. The laser fields interact with an ion located at the
equilibrium position r̂0 and are given by

E1(r, t) =
E0

2
exp

[
i
(
k1r̂ − ωit+ φ

)]
+ C.C. (17)

E2(r, t) =
E0

2
exp

[
i
(
k2r̂ − ωjt+ φ

)]
+ C.C. (18)

where, k1,2 and ωi,j is the wavevector and frequency for each laser (with i = 1, 3 and j = 2, 4). It is
assumed that the lasers have the same phase φ and both lasers are detuned by ∆ ≈ 2π · 82GHz from the
2s 2S1/2 → 2p 2P1/2 electric dipole transition with wavelength λ = 313nm.
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|1〉

|e〉

|0〉

∆

δ

-δ

-δ

δ

ω2,4

ω1,3

Figure 2: Energy diagram for the Boulder Model

We look at the situation with two ions confined in the trap. The first ion is located at r̂1 while the
second is located at r̂2. The position of the ith ion can be written as a deviation δr̂i from the equilibrium
position r̂0,i, such that r̂i = r̂0,i + δr̂i. The deviation is the same for the two ions when they are in the
COM mode δr̂1 = δr̂2 ≡ δr̂ and the distance between the ions is: d̂ = r̂2 − r̂1 = r̂0,1 − r̂0,2.
The laser phase is absorbed into ttheir respective states, as in the Innsbruck model: eiφ |0〉 〈e| = ˜|0〉 〈e|
and eiφ |1〉 〈e| = ˜|1〉 〈e|. We need to keep the contribution to the phase from the equilibrium positions,
eir̂0,i , due to interference effects from the lasers.
The displacement can be given in terms of the annihilation and creation operators:

kδr̂ = k

√
1

2mν

(
â+ â†

)
= η

(
â+ â†

)
The interaction Hamiltonian ĤI is given by:

ĤI = |0〉 〈e|
(
eik1r̂1α10e

−iω1t + eik2r̂1α20e
−iω2t + eik1r̂2α10e

−iω1t + eik2r̂2α20e
−iω2t

)
+H.C.

+ |1〉 〈e|
(
eik1r̂1α11e

−iω3t + eik2r̂1α21e
−iω4t + eik1r̂2α11e

−iω3t + eik2r̂2α21e
−iω4t

)
+H.C.+ ∆ |e〉 〈e|


(19)

where αij = Ωiα
′
i,j with i = 1, 2 and j = |0〉 , |1〉, where Ωi is defined as in section (2.3.1). This term

describes the strength of the dipole transition for the jth ground state interacting with the ith laser by
the product of the Rabi frequency for the transition Ωi and a "strength"-factor α′ij . This factor describes
possible changes in the strength of the Rabi frequency due to effects from atomic physics. It it assumed
that these terms are real numbers, but they can be complex numbers in a more general treatment.
There are certain restriction to combinations of these factors, where the important combinations are
α10α20 = −α11α21 and α12α20 = α10α21. The other combinations are irrelevant in this thesis, as they
do not enter into ĤI or, alternatively, they appear in terms that are approximately zero in the rotating
wave approximation (RWA) applied in section (3).
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3 Changing to the Interaction Picture

3.1 The Innsbruck Model
The interaction Hamiltonian for the jth ion, given by equation (16), is transformed into the interaction
picture with respect to

H̃c =

N∑
l=1

(νl − δ) â†l âl +
ω0 − ε

2
σ̂z,j (20)

using the unitary operator Û0 = exp
[
−iH̃ct

]
. The transformed Hamiltonian is is then, according to

equation (13):

H̃I,j = Û†0

(
Ĥ0 − H̃c

)
Û0 + Û†0 ĤI,jÛ0

=
ε

2
σ̂z,j + δâ†l âl + Û†0 ĤI,jÛ0 (21)

The interaction term Û†0 ĤI,jÛ0 needs to be rewritten, where the outer sum is over the two lasers:

ĤI,j =

2∑
n=1

Ωniσ̂−,je
iωj,nte

i
N∑
l=1

ηj,n,l(âl+â†l )
+H.C.

The two terms are of the same form so only the first will be discussed in the following. The term can be
split into an atomic part Ã and a motional part B̃:

ĤI = Ω1

{
Ã · B̃ +H.C.

}
where Â and B̃ are given by:

Ã = ei
ω′0
2 t ˆσz,j σ̂−,je

−iω
′
0
2 t ˆσz,j = σ̂−,j − e−iω

′
0t

B̃ = ie
i
N∑
l=1

ν′l â
†
l âl
e
−i

N∑
l=1

η1,l,j(âl+â†l )
e
−i

N∑
l=1

ν′l â
†
l âl ≈ i+

N∑
l=1

η1,l,j

(
âle
−iν′lt + â†l e

iν′lt
)

where ν′l = νl − δ and ω′0 = ω0 − ε. Both terms were rewritten by using the Baker-Hausdorf lemma:

eγÔP̂ e−γÔ = P̂ + γ
[
Ô, P̂

]
+
γ2

2!

[
Ô,
[
Ô, P̂

]]
+ ...

The hermitian conjugate of the first term is σ̂+e
iω′0t and the approximation in the second term is valid

in the Lamb-Dicke regime with η � 1, which holds for most ion trap experiments.
Applying the same calculation to the second term yields the following expression, where n = 1, 2 denotes
whether the term interacts with the first laser field or the second:

Û†0 ĤI,jÛ0 ≈
∑
n

Ω1e
iωntσ̂−,je

−iω′0t

[
i+

N∑
l=1

η1,l,j

(
âle
−iν′lt + â†l e

iν′lt
)]

+H.C.

=
∑
n

Ω1σ̂−,j

[
iei(ωn−ω

′
0)t +

N∑
l=1

ηn,l,j

(
âle
−i(ν′l−ωn+ω′0)t + â†l e

i(ν′l+ωn−ω
′
0)
)]

+H.C.

It is advantageous to tune the lasers at the respective side bands: ω1 = ω′0 − ν′l and ω2 = ω′0 + ν′l :

Û†0 ĤI,jÛ0 ≈ Ω1σ̂−,j

[
ie−iν

′
lt +

N∑
l=1

η1,l,j

(
âle

i2ν′lt + â†l

)]

+ Ω2σ̂−,j

[
ieiν

′
lt +

N∑
l=1

η2,l,j

(
âl + â†l e

i2νl
)]

+H.C.
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Only the terms resonant with the side bands contribute significantly to the Hamiltonian, while the other
can be neglected in the RWA, yielding:

Û†0 ĤI,jÛ0 ≈ Ω1η1,j σ̂−,j â
† + Ω2η2,j σ̂−,j â+H.C. (22)

This can be rewritten in a simpler form by assuming Ω1η1,j = Ω2η2,j ≡ Ωpηj .:

Û†0 ĤI,jÛ0 ≈ ηjΩp
[(
σ̂−,j â

† + σ̂−,j â
)

+
(
σ̂+,j â+ σ̂+,j â

†)]
= ηjΩpσ̂x,j

(
â+ â†

)
Substituting this expression into equation (21) yields the effective interaction Hamiltonian, assuming
that ηj = η for all ions:

ĤI =

N∑
j=1

ε

2
σ̂z,j + δâ†â+ ηjΩpσ̂x,j

(
â+ â†

)
(23)

=
ε

2
Ĵz + δâ†â+ ηjΩpĴx

(
â+ â†

)
(24)

which describes the interaction between the two laser fields and the motion of the center-of-mass of the
ions.
The parameters can be simplified by introducing the quadrature operator x̂ =

(
â+ â†

)
/
√

2, which
corresponds to a dimensionless position operator. The following parameters are also defined: λ = ε/2
and η′/

√
N = ηΩp, where the factor of

√
N has been extracted from E0 from the Rabi frequency

Ωp = E0D
−. The quantum number J is taken for the magnitude of the angular momentum to have its

maximum value J = N/2. Substituting these definitions into equation (23) yields

Ĥ = λĴz + δâ†â+
η′√
J
Ĵxx̂ (25)

The total number of excitations N in the system is the sum of the number of oscillator excitations â†â,
spin excitations Jz and magnitude of the angular momentum j, such that N̂ = â†â+ Ĵz + j. The parity
operator by can be defined by:

Π = exp =
[
iπN̂

]
(26)

which commutes with the Hamiltonian and thus describes the symmetry of the problem. This operator
has the eigenvalues ±1, depending on whether the number of excitations is even or odd. The Hamiltonian
is thus divided in two equivalent subspaces that do not interact with each other, which is the symmetric
property of the system.

3.1.1 Phase Transition

We make a mean field description, using the method described in [5], of the Hamiltonian given by
equation (25), rewritten in terms of position and momentum operators:

Ĥ = λĴz +
δ

2

(
x̂2 + p̂2

)
+

η√
J
Ĵxx̂ (27)

where the primes have been dropped and the commutator term [x̂, p̂] have been ignored, since they play
no role below.
The mean field description to zeroth order is done by assuming that any fluctuations about the different
expectation values are negligible, such that x̂2 ≈ 〈x̂〉2. The x and z components of the angular momentum
are related by:

〈Ĵx〉 =

√
J2 − 〈Ĵz〉

2
(28)
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assuming that the system is in the manifold with total angular momentum J . The p̂2 term is also ignored,
as it does not contribute to the dynamics. The ground state of the system can be found by minimizing
equation (27) in the mean field description:

H = λ 〈Ĵz〉+
δ

2
〈x̂〉2 +

η√
J
〈Ĵx〉 〈x̂〉 (29)

The derivatives are easily found to be:

∂H

∂ 〈x̂〉
= δ 〈x̂〉+

η√
J
〈Ĵx〉 = 0 (30)

∂H

∂ 〈Ĵz〉
= λ− η 〈Ĵz〉 〈x̂〉

√
J

√
J2 − 〈Ĵz〉

2
= λ− η 〈Ĵz〉 〈x̂〉√

J 〈Ĵx〉
= 0 (31)

The first equation can be solved for 〈x̂〉:

〈x̂〉 = − η

δ
√
J
〈Ĵx〉 (32)

which by substitution into the second yields:

0 = λ+
η2

Jδ
〈Ĵz〉 (33)

⇒ 〈Ĵz〉 = −λδ
η2
J (34)

This solution only makes sense when
∣∣∣〈Ĵz〉∣∣∣ ≤ J , which means that η2 > λδ. We must then have

〈Ĵz〉 = −J for all values of η2 less than λδ, which means that there is a sharp transition at η2 = λδ ≡ η2
crit

into a state with a non-zero number of excitations of the spin. This phase transmission requirements can
be given in terms of the laser properties:

√
ε0δ
2 = ηΩp

√
N , if the definitions following equation (25) are

substituted into η2 = λδ.
Equation (32) shows that there are three regimes for this system: the spin-regime, when δ � η/

√
J ,

where most of the excitations are in the spin. There is a comparable number of excitations in the spin
and oscillator in the intermediate regime when δ ∼ λ and most excitations in the oscillator when λ� δ
(the strong-oscillator regime).

3.2 The Boulder Model
This section rewrites the model described in section (2.3.2) with two ions confined in the trap. The first
ion is located at r̂1 while the second is located at r̂2. The position of the ith ion can be written as a
deviation δr̂i from the equilibrium position r̂0,i, such that r̂i = r̂0,i + δr̂i. The deviation is the same
for the two ions when they are in the COM mode δr̂1 = δr̂2 ≡ δr̂ and the distance between the ions is:
d̂ = r̂2 − r̂1 = r̂0,1 − r̂0,2. The detailed calculations can be found in Appendix (A).
The interaction Hamiltonian is given by the single-ion Hamiltonian plus the contribution from the second
ion:

ĤI = |0〉 〈e|
(
eik1r̂1α10e

−iω1t + eik2r̂1α20e
−iω2t + eik1r̂2α10e

−iω1t + eik2r̂2α20e
−iω2t

)
+H.C.

+ |1〉 〈e|
(
eik1r̂1α11e

−iω3t + eik2r̂1α21e
−iω4t + eik1r̂2α11e

−iω3t + eik2r̂2α21e
−iω4t

)
+H.C.+ ∆ |e〉 〈e|


(35)

where the laser phases have been absorbed into the states: |0〉 = eiφ ˜|0〉 and |1〉 = eiφ ˜|1〉. The total phase
Φi = φ+ r̂i,0 is not absorbed, because of interference effects due to the position of the ions. This will be
explained in detail later in this section.
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We consider an arbitrary state |ψ〉 = c0 |0〉 + c1 |1〉 + ce |e〉, which, by plugging into the Schrödinger
equation i∂|ψ〉∂t = ĤI |ψ〉, gives a set of coupled differential equations for the coefficients. The coefficient
for the third energy level is adiabatically eliminated by setting ċe = 0, by assuming that all ions start
out in the ground state, and that the interaction quickly deexcites the third level, leaving it essentially
unpopulated for the duration of the experiment. This yields:

ce = − 1

∆


c0

(
e−ik1r̂1α10e

iω1t + e−ik2r̂1α20e
iω2t + e−ik1r̂2α10e

iω1t + e−ik2r̂2α20e
iω2t
)

+c1

(
e−ik1r̂1α11e

iω3t + e−ik2r̂1α21e
iω4t + e−ik1r̂2α11e

iω3t + e−ik2r̂2α21e
iω4t
)
 (36)

which, by inserting into the equations for ċ0 and ċ1, yields a set of differential equations for the remaining
coefficients. The lasers are tuned at:

ω1 − ω2 = δ − ν = ω3 − ω4 ω3 − ω1 = −ω0 = ω4 − ω2

ω3 − ω2 = δ − ω0 − ν ω4 − ω1 = ν − ω0 − δ

This choice of laser frequencies causes the terms containing α2
ij , α20α11 and α10α21 to be approximately

zero.
It is known from atomic physics that α10α20 = −α11α21 and α20α11 = α10α21. The two lasers are
directed at right angles and we have, assuming that ki ‖ r̂i, from which it follows that k2 ⊥ r̂1 and
k1 ⊥ r̂2. It is also assumed that k1 ⊥ r̂1 ≈ k2 ⊥ r̂2. It can be shown the interaction Hamiltonian reduces
to:

ĤI =


α′10α

′
20E

2
0D
−D+

2∆
σ̂z

[
ei(ν−δ)t

(
e−i∆kr̂1 + e−i∆kr̂2

)
+ e−i(ν−δ)t

(
ei∆kr̂1 + ei∆kr̂2

)]
+

(
α′10α

′
11E

2
0D
−D+

4∆
σ̂+e

−iω0t

[
eik1

ˆ
d + e−ik1

ˆ
d + eik2

ˆ
d + e−ik2

ˆ
d

]
+H.C.

)
 (37)

where the expressions for αij have been inserted. The Rabi frequencies are defined as

Ωp ≡
α′10α

′
20E

2
0D
−D+

2∆
(38)

Ωx ≡
α′10α

′
11E

2
0D
−D+

∆
(39)

The spatial exponentials need to be rewritten. For the first term in equation (37):

ei∆kδr̂
[
ei∆kr̂0,1 + ei∆kr̂0,2

]
= ei∆kδr̂ei∆k

r̂0,1+r̂0,2
2

(
ei∆k

r̂0,1−r̂0,2
2 + e−i∆k

r̂0,1−r̂0,2
2

)
= 2ei∆kδr̂ei∆k

r̂0,1+r̂0,2
2 cos

(
∆k

r̂0,1 − r̂0,2

2

)
= 2ei∆kδr̂ei∆k

r̂0,1+r̂0,2
2 cos

(
∆k d̂

2

)
(40)

The cosine-part shows that constructive interference occurs when

k d̂ = 2πp, p ∈ Z (41)

which also ensures that ei∆k
r̂0,1+r̂0,2

2 = 1 due to the periodicity of the interference pattern. For the
second term in equation (37)

e±ik1
ˆ
d + e±ik2

ˆ
d = 2e±

i
ˆ
d(k1+k2)

2 cos

(
k d̂

2

)
(42)

where this term have the same requirement for constructive interference, ∆k d̂ = 2πp. Inserting equations
(40) and (42) into equation (37) gives:

ĤI = Ωpσ̂z

[
ei(ν−δ)te−i∆kδr̂ + e−i(δ−ν)tei∆kδr̂

]
+
(

Ωxe
i∆kδr̂σ̂+e

−iω0t +H.C.
)

(43)
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The change to the interaction picture is done with respect to

Ĥc = (ν − δ) â†â+
ω0

2
Ĵz (44)

The procedure is the same as in section (3.1) by using standard quantum optics methods. The two-ion
interaction Hamiltonian in the RWA is then:

ĤI = δâ†â+
Ωx
2
Ĵx + ηΩpĴzi

(
â− â†

)
(45)

The ions need to be located in this constructive interference zone, as defined by the cosine part in
equation (41), to maximize the atomic response to the laser fields. This is relatively simple to realize for
two ions but it becomes progressively harder for higher number of ions as the distance between the ith
and jth ions will in general differ from the distance between the kth and lth ions due to the Coulomb force
between the ions. The combination of the Coulomb force and the more complicated electric field in the
Boulder model makes this model somewhat harder to realize. The Innsbruck model may be preferable if
the aim for an experiment is to examine the behaviour of phase transition for high ion numbers.

3.2.1 Phase Transition

The mean field description of the Hamiltonian given by equation (45) is done using the same procedure
as in section (3.1.1). The derivatives are taken with respect to 〈p̂〉 and 〈Ĵx〉 instead, which yields

〈x̂〉 = − η

δ
√
J
〈Ĵz〉

〈Ĵx〉 = −J λδ
η2

which has the same requirements for the phase transition as in the Innsbruck model. The processes are
essentially the same: all ions in the Innsbruck model are prepared in the spin-z configuration but abruptly
change to the spin−x configuration as the Lamb-Dicke parameter η increases. The ions in the Boulder
model undergoes the same transition, but in the opposite direction: from the spin−x configuration to
the spin−z configuration. Only consider the Hamiltonian for the Innsbruck model will be considered in
the following, as the two Hamiltonians essentially describe the same dynamics.

3.3 Description Through Holstein-Primakoff Transformations
This section follows the procedure presented in reference [3] and the detailed calculations can be found
in Appendix (B). The phase transition is best explained by rewriting the Hamiltonian, given by equa-
tion (25), using the Holstein-Primakoff transformations by expressing the atomic angular momentum
operators in terms of creation b̂ and annihilation b̂† operators of a second mode of light:

Ĵ+ = b̂†
√

2J − b̂†b̂ (46)

Ĵ− =

√
2J − b̂†b̂b̂ (47)

Ĵz = b̂†b̂− J (48)

The Hamiltonian from equation (25) is in this representation:

Ĥ = λ
(
b̂†b̂− j

)
+ δâ†â+ η′

(
â+ â†

)b̂†
√

1− b̂†b̂

2J
+

√
1− b̂†b̂

2J
b̂

 (49)

where λ = ε/2 and η′ = η/2. The parity operator, given by equation (26), is:

Π = exp
[
iπ
(
â†â+ b̂†b̂

)]
(50)

The the lack of both population inversion and oscillator excitations in this normal phase can be explained
by the spatial distribution of the atoms. Light will scatter of the atoms and will in general destructively
interfere with light scattered from nearby ions, no cavity field will then build up, i.e. â†â = 0 and there
will not be any excitations. The ions will tend to position themselves according to the constructive
interference pattern defined by equation (41), strengthening the response of the atoms.
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3.3.1 The Normal Phase

A mean field description equivalent to that in section (3.1.1) can be made by neglecting terms with J
in the denominator in equation (49), assuming that we take the thermodynamical limit N →∞, which
yields a Hamiltonian of the form:

Ĥ = λb̂†b̂+ δâ†â+ η′
(
â+ â†

) (
b̂+ b̂†

)
− Jλ (51)

This Hamiltonian can be diagonalized by introducing position, x̂ and ŷ, and momentum p̂x and p̂y
operators for the two bosonic fields. The diagonalized Hamiltonian is:

Ĥ =
1

2

[
ε2−q

2
1 + p2

1 + ε2+q
2
2 + p2

2 − δ − λ
]
− Jλ (52)

which has the form of two uncoupled harmonic oscillators, where

ε2± =
1

2

[
δ2 + λ2 ±

√
(δ2 − λ2) + 16η′2λδ

]
(53)

The energies need to be real, so we need to set;

δ2 + λ2 >

√
(λ2 − δ2)

2
+ 16η′2λδ ⇒ η′ <

√
λδ

2
⇒ η <

√
λδ (54)

which is the same phase transition condition as in section (3). Note that the parity operator given by
equation (50) still commutes with the Hamiltonian, so the symmetry of the system is still preserved.

3.3.2 The Excited Phase

A mean field description to first order can be made by modifying the bosonic modes to have macroscopic
displacements, corresponding to the macroscopic excitations shown in section (4.1):

â→ ĉ±
√
α, b̂→ d̂∓

√
β (55)

where the choice of sign is arbitrary, except for a few changes of sign in the following. The final result is
the same regardless of the choice of sign. The Hamiltonian becomes:

Ĥ =λ
[
d̂†d̂−

√
β
(
d̂+ d̂

)
+ β − j

]
+ δ

[
ĉ†ĉ+

√
α
(
ĉ+ ĉ†

)
+ α

]
+ η′

√
2j − β

2j

[
ĉ+ ĉ† + 2

√
α
] [
d̂†K +Kd̂− 2

√
βK
]

 (56)

where

K =

√√√√
1−

d̂†d̂−
√
β
(
d̂+ d̂†

)
2j − β

' 1−
d̂†d̂−

√
β
(
d̂+ d̂†

)
2 (2j − β)

The first-order mean field description is done by expanding K to first order and eliminate terms linear
in ĉ and d̂ by choosing

√
α =

2η′

δ

√
j

2
(1− µ2) (57)√

β =
√
j (1− µ) (58)

where µ = δλ
4η2 . The Hamiltonian can be simplified by introducing position and momentum operators

similarly to the previous section. The resulting Hamiltonian is:

Ĥ1 = ε
(1)
− ê†1ê1 + ε

(1)
+ ê†2ê2 − j

[
2η′2

δ
+
λ2δ

8η′2

]
+

1

2

[
ε
(1)
+ + ε

(1)
− −

δ

2µ
(1 + µ)− λ− 2η′2

λ
(1− µ)

]
(59)
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The oscillator energies are given by:

2ε
(1)
± =

λ2

µ2
+ δ2 ±

√[
λ2

µ2
− δ2

]2

+ 4λ2δ2 (60)

These energies also need to be real, which gives that η > δλ, so this Hamiltonian hold for values of η
above the phase transition. These energies do not depend on the choice of sign in equation (55), so the
states are degenerate. It can be shown that this Hamiltonian does not commute with the parity operator
from equation (26), thus breaking the global symmetry of the system. But two local symmetries appear,
corresponding to a new parity operator:

Π1 = exp
[
iπ
(
ĉ†ĉ+ d̂†d̂

)]
(61)

for either choice of displacement. This kind of symmetry-break indicates that the system can be described
by the double-well potential, which has the general form: V (x) = αx2 + βx4. Each atom in the
ensemble will in the normal phase be found in the bottom of the a harmonic oscillator potential but will
spontaneously jump to one of the new potential wells as the symmetry is broken. The atoms will be
randomly distributed between the two wells and the population in one of the wells will in general differ
slightly from the other. The destructive interference effects described at the start of this section will no
longer hold and a cavity field will begin to build up, i.e. â†â 6= 0, so the light will excite some of the ions.
The electric fields in both the Innsbruck model and the Boulder model have the forms E1 = E0 cos(k1r1,0)
and E2 = E0 cos(k2r2,0), where the small deviation δri from the equilibrium position have been excluded
to simplify the following equation. The potential associated with these fields is:

V (r1,0, r2,0) = E2
0 cos2 (k1r1,0) + E2

0 cos2 (k2r2,0)± 2E2
0 cos (k1r1,0) cos (k2r2,0) (62)

where the sign of the last term depend on the phases of the lasers. The last term corresponds to the
constructive interference condition of equation (41) and will increase one of the wells in the potential.
This increased minima will attract more ions, which will further increase the effective strength of the
cavity field, giving more excitations. This results in a runaway process, which gives rise to the sudden
population inversion. This is shown in figure (3) in section (4.1).
Both of these results are derived in the thermodynamical limit, where N →∞. It is then expected that
the phase transition behaves similarly for any number of ions, as long as N � 〈b̂†b̂〉. This is examined
in section (4.3).

4 Numerical Analysis

4.1 The Ground State
It has been shown in sections (3.1.1) and (3.2.1) that the expectation value for the z−component of the
spin 〈Ĵz〉 has a phase transition to the lowest possible value 〈Ĵz〉 = −J when η2 = δλ. Further insight
into the behaviour of the phase transition can be gained from a direct diagonalization of the Hamiltonian
for the Innsbruck model for various values of the ratio λ/δ, given by (25). Only the Hamiltonian for the
Innsbruck model is considered, since this Hamiltonian and the Hamiltonian for the Boulder model are
equivalent. The Hamiltonian can be made dimensionless by dividing with a characteristic frequency. A
suitable choice is the critical value of the Lamb-Dicke parameter, ηcrit =

√
δλ, such that the rescaled

Hamiltonian is:

〈Ĥ〉√
δλ

=

√
λ

δ
〈Ĵz〉+

1

2

√
δ

λ
〈â†â〉+

η√
δλJ

〈Ĵx〉 〈x̂〉 (63)

This ensures that the phase transition will happen at η ≈ 1 for any value of λ/δ. These value are chosen
such that each of the three regimes described in section (3.1.1) The expectation value of Ĵz is computed
for a varying value of η for each λ/δ. The results are plotted in figure (3). A reference to the Matlab
script for the diagonalization, and for the subsequent numerical treatments, can be found in section (6.1).
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(a) Expectation value of Ĵz for 2 ions (b) Expectation value of Ĵz for 3 ions

(c) Expectation value of Ĵz for 4 ions (d) Expectation value of Ĵz for 5 ions

Figure 3: Plots of phase transitions for various number of ions and ratios λ/δ for the Innsbruck
model

The diagonalization reveals that the transition gets sharper for high values of λ/δ across all values
of N and that the phase transition is essentially non-existent in the intermediate- and the spin regimes,
regardless of the number of ions. This seems to suggest that the system needs to be prepared in the
strong-oscillator regime to permit the phase transition. The expectation value of the number of oscillator
excitations n̂ = â†â has been found in the same manner for N = 5. The plots are presented in figure
(4) The expectation value of the number of excitations in the oscillator follows the same pattern: The
number of excitations suddenly rises at η2 = λδ when λ > δ, while the increase in excitations are a lot
slower in the spin regime λ < δ. This conforms with the equation (32) in section (3). A plot for the
Boulder model is shown in Appendix (D.3) It is clearly seen that the two models undergo the same phase
transition at η = ηcrit = λδ.
The diagonalization also seems to indicate that the number of ions is not important for the phase tran-
sition, as it behaves in the same way for all the examined values of N . This behaviour will be examined
more thoroughly in section (4.3).
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(a) Expectation value for 〈â†â〉 with λ/δ =
16, 4, 1

(b) Expectation value for 〈â†â〉 with λ/δ =
1/4, 1/16

Figure 4: Expectation value for n̂ = â†â for N = 5. Note the high values for plot (b)

4.2 Adiabatic Parameters
The existence of the phase transition has been demonstrated in sections (3.1.1) and (3.3) by examining
the ground state in the former section, and by examining the dependence on η in the latter. This section
continues the examination of η by numerically testing various time-dependent linear models for η. This
section also demonstrates the need to evolve η(t) adiabatically slow to be able to measure the phase
transition and to be able to do so with minimal error.
The conditions for the adiabatic increase in η(t) for the system is examined by numerically solving the
time-dependent Schrödinger equation id|ψ〉

dt = Ĥ |ψ〉 for various linear models for η(t) using the ODE45
solver in Matlab. The Matlab scripts are described in section (6.1).

4.2.1 Linear Lamb-Dicke Parameter η(t)

The Schrödinger equation has been numerically solved for four different models for a linear increase in
η(t) ∝ kt, where k = 10−3, 10−2, 10−1, going from a slow, adiabatic increase in η(t) to a rapid increase.
The solution is plotted against the results from the diagonalization of the ground state to examine the
effect on the phase transition. This is done for a system containing three ions in the strong oscillator
regime λ/δ = 16, where the phase transition is prominent. The deviation from the ground state, ε, have
been defined as:

ε =
∣∣∣〈Ĵz〉Time − 〈Ĵz〉Ground∣∣∣ (64)

where 〈Ĵz〉Time is the expectation value of Ĵz from the solution to the Schrödinger equation and
〈Ĵz〉Ground is the expectation value from the ground state. The results for the expectation values and
the errors are plotted against η(t) in figure (5).
Plot (a) and (b) in figure (5) show that a fast increase in η(t), corresponding to k = 0.01 and k = 0.1,
do not follow the ground state. It is also seen that the deviation with respect to the ground state is large
at the phase transition and remains significant for high values of η(t). The models for η(t) will therefore
not permit a measurement of the phase transition. The slow model, with η(t) = 10−3t, closely follows the
ground state with little deviation. This indicates that a slope of 10−3 is of the right order of magnitude
to permit a measurement of the phase transition. A fast increase in η(t) drives the population inversion
faster than the change in the electric field, preventing the field to split the potential into the double-well
potential and thereby the spontaneous symmetry breaking described in section (3.3) will not take place.
Plot (c) and (d) in figure (5) shows the same situation for slowly evolving η(t) ranging between k = 10−3

and k = 10−2. It is seen that these cases rapidly approach the ground state, as the slope of η(t) is
lowered, giving the electric field time to split into the double-well potential.
The very slow models with k = 10−3 and 2 · 10−3 in particular stand out, with negligible deviation
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(a) Population inversion for N = 3 for vari-
ous η(t)models

(b) The deviation from the ground state for
the models

(c) Population inversion for N = 3 for vari-
ous η(t)models

(d) The deviation from the ground state for
the models

Figure 5: Population inversion and error for N = 3, λ/δ = 16 for various η(t)-models

from the ground state. Both of these models should permit a measurement of the phase transition; it
is possible that the remaining of the slow models also permit this measurement, but the possibility to
do so rapidly decreases. Appendix (D.1) shows additional plots for N = 2, 4, 5 to test the behaviour
with a different number of ions trapped. It is seen that the number of ions do not change the behaviour
of the phase transition significantly, as was seen in section (4.1). This is further discussed in section (4.3).

A similar plot is shown in figure (6) but shows the mean deviation εm from the ground state against the
different slopes dη

dt and for various values of λ/δ, ranging from λ/δ = 4 to λ/δ = 20, i.e. from the inter-
mediate regime to the strong-oscillator regime. The intermediate regime is included for reference, while
the strong-spin regime is excluded since this regime does not allow the phase transition, as was described
in the previous section. Figure (6) further shows the importance of driving the system adiabatically slow
in the strong-oscillator regime, as it is seen that the deviation rapidly rises in this case. Note that this
difference in the deviation is almost negligible in the intermediate regime. Additional plots are shown in
Appendix (D.2) for N = 2, 4, 5 shows that the deviation behaves in the same manner for the different
cases, but that the mean deviations rise slightly with the number of ions.
This section then provides the information about the parameters λ, δ and η(t), that is necessary to ex-
perimentally measure the phase transition, provided that η(t) increases linearly in time and that the
value of λ and δ is fixed in the strong-oscillator regime, λ � δ. η(t) needs to be driven adiabatically,
preferably around η(t) ∝ 10−3t. Figures (5) and (6) suggests that a reasonable upper bound for the
deviation is about εm = 0.1, as the slowest models described in figure (5,c) fulfils this.
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4.3 Universality of the Phase Transition
The universality of the phase transition is examined by examining the relationship between the optimal
slopes and the second derivative of 〈Ĵz〉 for various values of λ/δ and N . The second derivative is
used, as the phase transition is of second order [3] and we work with scaled parameters 〈Ĵz〉 /N and
εm =

∣∣∣〈Ĵz〉Time − 〈Ĵz〉GS∣∣∣ /N to test the universality. The upper bound of the deviation is set to
εm/N = 0.015, which correspond to εm ≈ 0.1 for each N . The Schrödinger equation is then solved and
dη(t)

dt corresponding the chosen upper bound is found. This slope is plotted against the second derivative
evaluated at the phase transition in figure (7) for N = {2, 5} to test for a varying number of ions of ions
and for λ/δ = {8, 20} to test both the intermediate region and in the strong-oscillator regime.
Figure (7) shows that the systems behave in the same manner at the phase transition, with small
differences due to the resolution of the program. This provides evidence of the universality of the
system. It should thus be possible to measure the phase transition for any number of ions, provided that
η is driven adiabatically slow.

Figure 6: The mean deviation εm from the ground state for various λ/δ and dη/dt

Figure 7: Test of the universality of the phase transition for various numbers N of ions and ratios
λ/δ
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5 Conclusion and Outlook

5.1 Conclusion
This thesis has demonstrated the existence of a phase transition in the expectation value of 〈Ĵz〉 in the
Dicke model, realized in the models used by the research groups in Innsbruck and Boulder. It has also
been shown that the phase transition is strongest in the regime where there are lot of excitations in the
oscillations of the ions in the trap.
The importance of driving the Lamb-Dicke parameter η(t) adiabatically slow has been demonstrated;
this reduces the deviations from the expectation value for the ground state, provided that η(t) is driven
linearly in time, with the optimal model η(t) ≈ 10−3t. It has been shown how the phase transition breaks
down if either the system is not prepared in the strong-oscillator regime or if the Lamb-Dicke parameter
is driven too fast. It should be possible to measure the phase transition for any number of ions, as the
universality of the phase transition has also been shown to hold.

5.2 Outlook
The analysis in section (4.2) is limited, due to the fact that only η evolves in time, while λ and δ stay at
fixed values. Further insight can be gained by letting λ or δ (or both) evolve in time. The significance
of the model used for η(t) can also be further examined by inputting different models into the Matlab
script. More realistic models can also be considered, for example a model where η(t) is only adiabatically
driven close to the phase transition point η =

√
λ/δ and fast otherwise can be used, which may be easier

to implement in a experimental set up.

The properties of the phase transition can also be studied in further detail, with emphasis on the order
parameter, i.e. the first derivative of the energy, and the dependence of the adiabatic evolution of η(t).
The corresponding classical system, i.e. the coupling between two harmonic oscillators, shows chaotic
properties at the phase transition [3], and there is a possibility that the Dicke model can be used to make
a proper description of quantum chaos.
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6.1 Matlab Programs
The program Matlab R2013a developed by Mathworks have been used in the numerical treatment for
this thesis. The main m-files are ordered in to three sub-folders, depending on the problem. Most of
the files are identical but are used differently for each problem. TimePhase_vOne is used to plot 〈Ĵz〉
against η(t) for various models of η(t) and TimePhase_vTwo is used to plot the error for various models
of η(t) and ratios of λ/δ. The results for these scripts are presented in section (4.2). TimePhase_vThree
tests the universality, as described in section (4.3).
These folders are posted on the internet at (https://www.dropbox.com/s/hjaolxgl0n1g0yo/MatlabScripts.zip)
and is not presented here, as the length of the code is considerable.

Shared m-files

• Parameters.m: This m-file defines the various parameters used.

• Phase.m: This program defines the various matrices used by the rest of the programs

• HFunc.m: This function defines the time-dependant Hamiltonian as a function. The time-
dependance is only entered through the function eta.m

• Deriv.m: This function defines the time-dependant Schrödinger equation as |ψ̇〉 = −iĤ |ψ〉

• TimeSolve.m: This program solves the time-dependant Schrödinger equation and saves the re-
sults in convenient vectors

• eta.m: This function defines eta as a time-dependant function. Note the functions lambda.m and
delta.m - these are set equal to one in this thesis, but can easily be changed to a time-dependant
function for further analysis

• Parametersq.m: This program defines the parameters used to diagonalize the ground state.

• QPhase.m: This program diagonalizes the ground state. It can easily be modified to produce
the plots shown in section (4.1).

The next programs are specific for each sub-folder

TimePhase_vOne

• Master.m: This program runs TimeSolve.m for various models for η(t) and plots 〈Ĵz〉 against
η(t) for each model

TimePhase_vTwo

• MasterEps.m: This program runs TimeSolve.m for various models of η(t) and ratios λ/δ. It
calculates the deviation εm from the ground state and plots the results.

TimePhase_vThree

• MasterUni.m: This program runs TimeSolve.m for various models of η(t) and ratios λ/δ and
calculates the second derivative of Ĵz. It also find the optimal slope for a given λ/δ and plots this
slope against the second derivative, to test the universality of the phase transition
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A Detailed calculations for the two-ion Boulder model
The interaction Hamiltonian for the Boulder model with two ions has the form:

ĤI = |0〉 〈e|
(
eik1r̂1α10e

−iω1t + eik2r̂1α20e
−iω2t + eik1r̂2α10e

−iω1t + eik2r̂2α20e
−iω2t

)
+H.C.

+ |1〉 〈e|
(
eik1r̂1α11e

−iω3t + eik2r̂1α21e
−iω4t + eik1r̂2α11e

−iω3t + eik2r̂2α21e
−iω4t

)
+H.C.+ ∆ |e〉 〈e|


(65)

where αij = Ωiα
′
i,j = D±E0/2α

′
ij . We expand the state |ψ〉 of the system in terms of the eigenstates of

the interaction-free Hamiltonian:

|ψ〉 = c0 |0〉+ c1 |1〉+ ce |e〉 (66)

The Schrödinger equation idψ
dt = ĤI |ψ〉 gives a set of differential equations describing the time evolution

of the coefficients:

iċ0 = ce

(
eik1r̂1α10e

−iω1t + eik2r̂1α20e
−iω2t + eik1r̂2α10e

−iω1t + eik2r̂2α20e
−iω2t

)
(67)

iċ1 = ce

(
eik1r̂1α11e

−iω3t + eik2r̂1α21e
−iω4t + eik1r̂2α11e

−iω3t + eik2r̂2α21e
−iω4t

)
(68)

iċe = c0

(
e−ik1r̂1α10e

iω1t + e−ik2r̂1α20e
iω2t + e−ik1r̂2α10e

iω1t + e−ik2r̂2α20e
iω2t
)

+ c1

(
e−ik1r̂1α11e

iω3t + e−ik2r̂1α21e
iω4t + e−ik1r̂2α11e

iω3t + e−ik2r̂2α21e
iω4t
)

+ ce∆

 (69)

We adiabatically eliminate the third energy level by setting ċe = 0, which gives e expression for ce:

ce =


−c0

∆

(
e−ik1r̂1α10e

iω1t + e−ik2r̂1α20e
iω2t + e−ik1r̂2α10e

iω1t + e−ik2r̂2α20e
iω2t
)

+−c1
∆

(
e−ik1r̂1α11e

iω3t + e−ik2r̂1α21e
iω4t + e−ik1r̂2α11e

iω3t + e−ik2r̂2α21e
iω4t
)
 (70)

which, by substituting into equations (67) and (68) yields the following set of differential equations:

iċ0 =



− c0
∆

α2
10

(
2 + eik1

ˆ
d + e−ik1d

)
+ α2

20

(
2 + eik2d + e−ik2

ˆ
d

)
α10α20e

i(ω2−ω1)t
[
ei∆kr̂1 + ei∆kr̂2 + ei(k1r̂1−k2r̂2) + ei(k1r̂2−k2r̂1) + C.C.

]


− c1
∆


α10α11e

i(ω3−ω1)t

(
2 + eik1

ˆ
d + e−ik1

ˆ
d

)
+ α20α21e

i(ω4−ω2)t

(
2 + eik2

ˆ
d + e−ik2

ˆ
d

)
α20α11e

i(ω3−ω2)
[
e−i∆kr̂1 + e−i∆kr̂2 + ei(k2r̂2−k1r̂1) + ei(k2r̂1−k1r̂2)

]
α10α21e

i(ω4−ω1)
[
ei∆kr̂2 + ei∆kr̂1 + ei(k1r̂1−k2r̂2) + ei(k1r̂2−k2r̂1)

]




(71)

iċ1 =



− c0
∆


α10α11e

i(ω1−ω3)t

(
2 + eik1

ˆ
d + e−ik1

ˆ
d

)
+ α20α21e

i(ω2−ω4)t

(
2 + eik2

ˆ
d + e−ik2

ˆ
d

)
α20α11e

i(ω2−ω3)
[
ei∆kr̂1 + ei∆kr̂2 + ei(k1r̂1−k2r̂2) + ei(k1r̂2−k2r̂1)

]
α10α21e

i(ω1−ω4)
[
e−i∆kr̂2 + e−i∆kr̂1 + ei(k2r̂2−k1r̂1) + ei(k2r̂1−k1r̂2)

]



− c1
∆

α2
11

(
2 + eik1

ˆ
d + e−ik1d

)
+ α2

21

(
2 + eik2

ˆ
d + e−ik2d

)
α11α21e

i(ω3−ω4)t
[
ei∆kr̂1 + ei∆kr̂2 + ei(k1r̂1−k2r̂2) + ei(k1r̂2−k2r̂1) + C.C.

]



(72)
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We tune the lasers such that:

ω1 − ω2 = δ − ν = ω3 − ω4

ω3 − ω1 = −ω0 = ω4 − ω2

ω3 − ω2 = δ − ω0 − ν
ω4 − ω1 = ν − ω0 − δ

We know from atomic physics that α10α20 = −α11α21 and α20α11 = α10α21. The lasers are directed
at right angels, so we have that k1 ⊥ r̂2 and k2 ⊥ r̂1 and assume that k1 · r̂1 ∼ k2 · r̂2, such that
ei(k1r̂1−k2r̂2) + ei(k1r̂2−k2r̂1) ' 2. We can write equations (71) and (72) in matrix form:

i

(
ċ0
ċ1

)
=
(
ĤI + Ĥz

)(c0
c1

)
(73)

This splitting of the Hamiltonian into two parts will become clear later. This enables us to write the
Hamiltonians in terms of σ̂z, σ̂+ and σ̂−:

ĤI =
α′10α

′
20E

2
0D
−D+

4∆
σ̂z

[
ei(ν−δ)t

(
e−i∆kr̂1 + e−i∆kr̂2

)
+ e−i(ν−δ)t

(
ei∆kr̂1 + ei∆kr̂2

)]
+

(
α′10α

′
11E

2
0D
−D+

4∆
σ̂+e

−iω0t

[
eik1

ˆ
d + e−ik1

ˆ
d + eik2

ˆ
d + e−ik2

ˆ
d

]
+H.C.

)

Ĥz =− c0
∆

[
α2

10

(
2 + eik1d + e−ik1d

)
+ α2

20

(
2 + eik2d + e−ik2d

)]
|0〉 〈0|

− c1
∆

[
α2

11

(
2 + eik1d + e−ik1d

)
+ α2

22

(
2 + eik2d + e−ik2d

)]
|1〉 〈1|

+

(
Ωx
2
σ̂+

{
ei(δ−ω0−ν)t

[
2 + e−i∆kr̂1 + e−i∆kr̂2

]
+ ei(ν−ω0−δ)t

[
2 + ei∆kr̂1 + ei∆kr̂2

]}
+H.C.

)
where the expressions for αij have been inserted into ĤI . The Rabi frequencies are defined as

Ωp ≡
α′10α

′
20E

2
0D
−D+

2∆
(74)

Ωx ≡
α′10α

′
11E

2
0D
−D+

∆
(75)

We need to consider the spatial exponential functions before we change to the interaction picture, where
r̂i = r0,i + δr̂. We have, for the σ̂z term:

ei∆kδr̂
[
ei∆kr̂0,1 + ei∆kr̂0,2

]
= ei∆kδr̂ei∆k

r̂0,1+r̂0,2
2

(
ei∆k

r̂0,1−r̂0,2
2 + ei∆k

−r̂0,1+r̂0,2
2

)
= 2ei∆kδr̂ei∆k

r̂0,1+r̂0,2
2 cos

(
∆k

r̂0,1 − r̂0,2

2

)
= 2ei∆kδr̂ei∆k

r̂0,1+r̂0,2
2 cos

(
∆k d̂

2

)
We see from the cosine-part that constructive interference occurs when

k d̂ = 2πp, p ∈ Z (76)

which also ensures that ei∆k
r̂0,1+r̂0,2

2 = 1 due to the periodicity of the potential. We have for the σ̂+

term:

e±ik1
ˆ
d + e±ik2

ˆ
d = e±i

ˆ
d(k1−k2)

(
e±i∆k

ˆ
d + e∓i∆k

ˆ
d

)
= 2ei

ˆ
d(k1−k2) cos

(
k d̂

2

)
(77)
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where this term has the same requirement for constructive interference, k d̂ = 2πp. This also ensures
that ei

ˆ
d(k1−k2) = 1.

This gives the effective interaction Hamiltonian:

ĤI = Ωpσ̂z

[
ei(ν−δ)te−i∆kδr̂ + e−i(δ−ν)tei∆kδr̂

]
+
(

Ωxe
i∆kδr̂σ̂+e

−iω0t +H.C.
)

(78)

We can rewrite this Hamiltonian by using e±i∆kδr̂ ≈ 1± iη
(
â+ â†

)
and 2i sinx = eix− e−ix. This gives:

ĤI =
Ωx
2

[
σ̂+e

−iω0t +H.C.
]
− 2Ωpσ̂z

(
â+ â†

)
sin ([ν − δ] t) (79)

We change to the interaction picture with respect to Ĥ0 = ω0

2 σ̂z + (ν − δ) â†â using standard quantum
optics methods. This yields:

ĤI ≈ δâ†â+
Ωx
2
σx + ηΩpiσ̂z

(
â− â†

)
(80)

There is a extra term in equation (78) of the form 2 cos ([ν − δ] t) which is approximately zero when we
change to the interaction picture.
It can be shown, using similar methods, that Ĥz ≈ 0 when we change to the interaction picture and such
will not contribute to the dynamics of the system.

B Detailed Holstein-Primakoff Transformations
The phase transition for the Hamiltonian for the Innsbruck model, given by equation (25), can be de-
scribed by expressing the atomic angular momentum operators as in terms of creation b̂ and annihilation
b̂† operators of a second mode of light through the Holstein-Primakoff transformations:

Ĵ+ = b̂†
√

2J − b̂†b̂ (81)

Ĵ− =

√
2J − b̂†b̂b̂ (82)

Ĵz = b̂†b̂− J (83)

The Hamiltonian is in this representation:

Ĥ = λ
(
b̂†b̂− j

)
+ δâ†â+ η′

(
â+ â†

)b̂†
√

1− b̂†b̂

2J
+

√
1− b̂†b̂

2J
b̂

 (84)

where λ = ε0/2 and η′ = η/2. The parity operator, given by equation (26) is:

Π = exp
[
iπ
(
â†â+ b̂†b̂

)]
(85)

The Normal Phase
The normal phase can be described by neglecting terms with j in the denominator in equation (84). This
gives

Ĥ = λb̂†b̂+ δâ†â+ η′
(
â+ â†

) (
b̂+ b̂†

)
− Jλ (86)

The description is made clearer by introducing position and momentum operators for the two modes:

x̂ =
1√
2δ

(
â+ â†

)
, p̂x = i

√
δ

2

(
â† − â

)
(87)

ŷ =
1√
2λ

(
b̂+ b̂†

)
, p̂y = i

√
λ

2

(
b̂† − b̂

)
(88)
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The Hamiltonian can then be written as:

Ĥ =
1

2

[
δ2x2 + p2

x + λ2y2 + p2
y + 4η′

√
δλxy − δ − λ

]
− Jλ (89)

This Hamiltonian has the form of two harmonic oscillators in x− and y−coordinates that are coupled
together by the term 4η

√
δλxy. This Hamiltonian can be written in diagonal form by rotating the

coordinate frame according to: (
q1

q2

)
=

(
cos γ(1) sin γ(1)

− sin γ(1) cos γ(1)

)(
x
y

)
(90)

where the angle γ(1) is defined as

tan 2γ(1) =
4η′
√
δλ

λ2 − δ2
(91)

γ(1) → π

4
for δ → λ (92)

This is found by setting the equations in (90) equation (89) and setting the coefficient for the non-linear
term equal to zero. Using the limit in equation (92), we have

x =
1√
2

(q1 + q2) (93)

y =
1√
2

(−q1 + q2) (94)

The Hamiltonian can then be written as:

Ĥ =
1

2

[
δ2q2

1 + p2
1 + λ2q2

2 + p2
2 + 4η′

√
δλ
(
q2
2 − q2

1

)
+
(
δ2 − λ2

)
q1q2

]
+

1

2
(−δ − λ) + Jλ (95)

We can write the position-dependant part in matrix form by:

ĤQ =
(
q1 q2

)(A B
C D

)(
q1

q2

)
(96)

where

A = δ2 + λ2 − 4η
√
λδ, B =

1

2

(
δ2 − λ2

)
(97)

D = δ2 + λ2 + 4η
√
λδ, C =

1

2

(
δ2 − λ2

)
(98)

This can be diagonalized in the usual way. The results are:

ε
(1)2

± =
1

2

[
δ2 + λ2 ±

√
(λ2 − δ2)

2
+ 16η′2δλ

]
(99)

The energies need to be real, so we need

δ2 + λ2 >

√
(λ2 − δ2)

2
+ 16η′2δλ (100)

⇒η′ <
√
λδ

2
⇒ η <

√
λ/δ (101)

and the Hamiltonian takes the form

Ĥ =
1

2

[
ε
(1)2

− q2
1 + p2

1 + ε
(1)2

+ q2
2 + p2

2 − δ2 − λ2
]
− Jλ (102)
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which has the form of two uncoupled harmonic oscillators. The Hamiltonian can be written in terms of
two new bosonic modes, corresponding to the rotated coordinates:

q1 =

√
1

2ε
(1)
−

(
ĉ1 + ĉ†1

)
, p1 = i

√
ε
(1)
−
2

(
ĉ†1 − ĉ1

)
(103)

q2 =

√
1

2ε
(1)
+

(
ĉ2 + ĉ†2

)
, p2 = i

√
ε
(1)
+

2

(
ĉ†2 − ĉ2

)
(104)

which yields the Hamiltonian

Ĥ = ε
(1)
− ĉ†1ĉ1 + ε

(1)
+ ĉ†2ĉ2 +

1

2

(
ε
(1)
− + ε

(2)
− − δ − λ

)
− λJ (105)

The Excited Phase
A mean field description to first order can be made by modifying the bosonic modes to have macroscopic
displacements, corresponding to the macroscopic excitations shown in section (4.1):

â→ ĉ±
√
α, b̂→ d̂∓

√
β (106)

where the choice of sign is arbitrary, except for a few changes of sign in the following. The Hamiltonian
becomes:

Ĥ =λ
[
d̂†d̂−

√
β
(
d̂+ d̂

)
+ β − j

]
+ δ

[
ĉ†ĉ+

√
α
(
ĉ+ ĉ†

)
+ α

]
+ η′

√
2j − β

2j

[
ĉ+ ĉ† + 2

√
α
] [
d̂†K +Kd̂− 2

√
βK
]

 (107)

where

K =

√√√√
1−

d̂†d̂−
√
β
(
d̂+ d̂†

)
2j − β

' 1−
d̂†d̂−

√
β
(
d̂+ d̂†

)
2 (2j − β)

The first-order mean field description is done by expanding K to first order. This yields:

Ĥ =δĉ†ĉ+

[
λ+

2η′

k

√
kαβ

2j
(j − β)

]
d̂†d̂−

[
2η′

√
β

2j
− δ
√
α

] (
ĉ+ ĉ†

)
[
−λ
√
β +

4η′

k

√
αk

2j
(j − β)

](
d̂+ d̂†

)2

+
η′

2k2

√
αβk

2j
(2k + β)

(
d̂+ d̂†

)2

+
2η′

k

√
k

2j
(j − β) (ĉ+ ĉ†)

(
d̂+ d̂†

)
+

[
λ (β − j) + δα− η′

λ

√
αβk

2j
(1 + 4k)

]
The terms that are linear in the bosonic operators can be eliminated by choosing

√
α =

2η′

δ

√
j

2
(1− µ2) (108)√

β =
√
j (1− µ) (109)

where µ = δλ
4η′2 . Rearranging some of the other terms gives another form of the Hamiltonian:

Ĥ =δĉ†ĉ+
λ

2µ
(1 + µ) d̂†d̂+

λ (1− µ) (3 + µ)

8µ (1 + µ)

(
d̂+ d̂†

)2

+ η′µ

√
2

1 + µ

(
ĉ+ ĉ†

) (
d̂+ d̂

)
− j

[
2η′2

δ
+
δλ2

8η′2

]
− η′2

δ
(1− µ)

24



where we define ω̃ ≡ λ
2µ (1 + µ). We then introduce position and momentum operators:

X̂ =
1√
2δ

(
ĉ+ ĉ†

)
, p̂X = i

√
δ

2

(
ĉ† − d̂

)
(110)

Ŷ =
1√
2ω̃

(
d̂+ d̂†

)
, p̂Y = i

√
ω̃

2

(
d̂† − d̂

)
(111)

The Hamiltonian can be diagonalized in the same manner is in the normal phase. The diagonalized
Hamiltonian is:

Ĥ = ε
(2)
− ê†1ê1 + ε

(2)
+ ê†2ê2 − j

[
2η′2

δ
+
λ2δ

8η′2

]
+

1

2

(
ε
(2)
+ + ε

(2)
− −

λ

2µ
(1 + µ)− δ − 2η′2

δ
(1− µ)

)
(112)

with oscillator energies

2ε
(1)
± =

λ2

µ2
+ δ2 ±

√[
λ2

µ2
− δ2

]2

+ 4λ2δ2 (113)

These need to be real, so we need:

λ2

µ2
+ δ2 >

√[
λ2

µ2
− δ2

]2

+ 4λ2δ2 (114)

⇒η >
√
λδ (115)

and where ê1 and ê2 are new bosonic modes defined from the rotated coordinates.

C Phonon Harmonic Oscillator
Consider N ions that are kept in an one-dimensional ion trap. An ion will oscillate if it interacts with a
light field. This causes the other ions to oscillate in response. This response is modelled as an harmonic
oscillator, where we assume that each ion is connected by a spring of length L with spring constant C.
The displacement of the j′th particle is xj and the momentum is pj . The Hamiltonian is:

Ĥ =
1

2

N∑
j=1

[
1

M
p2
j + C (xj+1 − xj)2

]
(116)

We assume that the ions are subject to the periodic boundary condition xj = xj+N . This Hamiltonian
can be significantly simplified by changing to phonon coordinates by taking the Fourier transform of xj
and pj . The Fourier transform qk of xj is:

qk = N−1/2
N∑
j=1

xje
−ikjL (117)

with the inverse transformation

xj = N−1/2
N∑
k=1

qke
ikjL (118)

where k is the wavevector with the N values given by the periodic boundary condition:

k =
2πn

NL
, n = 0,±1,±2, ...,±

(
1

2
N − 1

)
,

1

2
N (119)

The Fourier transform of the momentum need to be the canonical conjugate of xj :

Pk = N−1/2
N∑
j=1

pje
ikjL, pj = N−1/2

N∑
k=1

Pke
−ikjL (120)
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Note the opposite sign in the exponential functions, these ensures that the two transformed coordinates
are canonical conjugates:

[qk, Pk] = N−1

 N∑
l=1

xle
−iklL,

N∑
j=1

pje
ik′jL


= N−1

∑
l

∑
j

[xl, pj ] e
−i(kl−k′j)L (121)

The operators xl and pj satisfy the commutation relation [Xl, pj ] = iδl,j , where δl,j is the Kronecker
delta function. Remember that we have set ~ = 1 in this thesis. This gives:

[qk, Pk] = N−1i
∑
l

e−i(k−k
′)lL = iδk,k′ (122)

where we have used: ∑
l

e−i(k−k
′)lL =

∑
l

e−i2π(n−n′)/N = Nδn,n′ = Nδk,k′ (123)

We can now transform the Hamiltonian by inserting the coordinate transformations. The momentum
term is:

N∑
j=1

p2
j = N−1

N∑
j=1

N∑
k=1

N∑
k′=1

PkPk′e
−i(k+k′)lL

=
∑
k

∑
k′

PkPk′δ−k,k′ =
∑
k

PkP−k (124)

The displacement term is:

N∑
j=1

(xj+1 − xj)2
= N−1

∑
j

(
N∑
k=1

qke
ik(j+1)L −

N∑
k′=1

qk′e
ikjL

)2

= N−1
∑
j

∑
k

∑
k′

qkqk′e
iklL

[
eikL − 1

]
eik
′lL
[
eik
′L − 1

]

= N−1
N∑
j=1

∑
k

∑
k′

qkqk′e
i(k+k′)jL [eikL − 1

] [
eik
′L − 1

]
(125)

=

N∑
j=1

∑
k

qkq−ke
i(k−k)jL

[
1 + ei(k−k)L − eikL − e−ikL

]
(126)

= 2
∑
k

qkq−k (1− cos (kL)) (127)

where we have used
∑
k′
ei(k+k′)jL = Nδk,−k. We define the k′th frequency by

ωk =

√
2C

M

√
1− cos (kL) (128)

The transformed Hamiltonian is then:

Ĥ =
1

2

∑
k

[
1

M
PkPk′ +Mω2

kqkq−k

]
(129)

which has the form of the harmonic oscillator Hamiltonian.

26



D Additional Plots

D.1 Linear Lamb-Dicke Parameter η(t) for Additional Numbers of Ions
This section show additional plots used in the discussion in section (4.2.1), where the Scrödinger equation
has been solved for different models of η(t) for N = 2, 4, 5 ions in the trap for the slow models. This
tests the phase transition for a time-dependent η for varying number of ions. We see that the number of
ions do not significantly alter the behaviour of the phaser transition.

(a) Population inversion for N = 2 for var-
ious η(t)models

(b) The deviation from the ground state for
the models

(c) Population inversion for N = 4 for var-
ious η(t)models

(d) The deviation from the ground state for
the models

(e) Population inversion for N = 5 for var-
ious η(t)models

(f) The deviation from the ground state for
the models
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D.2 Mean Errors for Additional Numbers of Ions
The mean deviations from the ground state is shown for N = 2, 3, 4, as was done for N = 3 in section
(4.2.1). It is seen the mean deviations are slightly larger for a higher number of ions, but the scaled
deviation εm/N is roughly the same for all cases.

(a) Deviations for N = 2 (b) Deviations for N = 4

(c) Deviations for N = 5

Figure 8: The mean deviation from the ground state ε for various λ/δ and dη/dt
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D.3 Phase Transition for the Boulder Model
The ground state of the Boulder model Hamiltonian has been diagonalized and plotted in figure (9). We
see that the plot is essentially the same as for the Innsbruck model, discussed in section (4.1).

Figure 9: Expectation value of Ĵx for 5 ions for the Boulder Model

29


	Introduction
	Formalism
	The Interaction-Free System
	The Atomic Ensemble
	Angular Momentum Operator Formalism
	The Laser Field and the Ion Trap

	The Dipole Interaction
	The Ion-Laser Models
	The Innsbruck Model
	The Boulder Model


	Changing to the Interaction Picture
	The Innsbruck Model
	Phase Transition

	The Boulder Model
	Phase Transition

	Description Through Holstein-Primakoff Transformations
	The Normal Phase
	The Excited Phase


	Numerical Analysis
	The Ground State
	Adiabatic Parameters
	Linear Lamb-Dicke Parameter (t)

	Universality of the Phase Transition

	Conclusion and Outlook
	Conclusion
	Outlook

	References
	Matlab Programs

	Detailed calculations for the two-ion Boulder model
	Detailed Holstein-Primakoff Transformations
	Phonon Harmonic Oscillator
	Additional Plots
	Linear Lamb-Dicke Parameter (t) for Additional Numbers of Ions
	Mean Errors for Additional Numbers of Ions
	Phase Transition for the Boulder Model


