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Preface

Front page picture shows a fluctuation snapshot of the simulated membrane.
The snapshot is taken at phase transition temperature. Red dots illustrate
a protein, green dots illustrate pores. The fluctuations are are illustrated by
a greyscale where white means maximal fluctuations.



Resumé

Vi har i dette projekt undersøgt om proteiner kan p̊arvirke den omkring-
liggende lipidmembran s̊adan, at den udviser egenskaber (channel events)
der ellers typisk kun er tilskrevet proteinerne selv. Dette er blevet gjort ved
brug af en simpel model for en biologisk membran. Vores model er baseret
p̊a en 1,2-dipalmitoy- lphosphatidylcholine (DPPC) lipidmembran hvori et
enkelt simpelt protein er indlejret.

Med denne model har vi undersøgt hvordan proteinets interaktioner med
lipiderne p̊avirker permeabiliteten. Yderligere har vi studeret, hvordan æn-
dringerne i membranens interne interaktioner p̊avirker proteinets effekt.

Vi har fundet klare indikationer p̊a, at proteiner inducerer store lokale æn-
dringer i membranens egenskaber, heriblandt permeabiliten. Disse induc-
erede ændringer kan variere fundamentalt ved ændringerner af proteinets
interaktioner med membranens lipider. B̊ade permeabilitets-fremmende og
-hæmmende proteinadfærd er blevet observeret i en omfattende grad. Vi
fandt yderligere, at små ændringer af membranens interne interaktioner
p̊avirker proteiners effekt kraftigt. Alt dette udmunder i krafig indikation
af at channel events kan tilskrives membranen.

Resultaterne i dette projekt er blevet simuleret ved hjælp af Monte Carlo
metoden. Vi har i simuleringerne benyttet to-tilstands Ising modellen til at
beskrive lipidmembranens adfærd. Parametrene til Monte Carlo metoden
er fundet gennem Differential Scanning Calorimetry (DSC).
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Part I

Introduction

Biological membranes define boundaries in biology. They surround living
cells as well as many of their inner components and are essential for a broad
spectra of vital processes. Understanding the physics of these structures can
contribute to the understanding of the living cell.

Figure 1: Illustration of an idealized patch of biological membrane. Small objects
with tails are lipids, while larger objects are proteins. The figure is taken from [1].

Biological membranes are complex bilayer structures that are mainly
composed of a large numbers of different types lipids and proteins.

Lipids (fig. 2) are amphiphilic molecules which consist of a hydrophilic
head group and a hydrophobic tail. When in a water environment, lipids
tend to aggregate shielding the hydrophobic tail from water. Aggregation
leads to the formation of micelles or bilayer structures, hence planar bilayers
or vesicles (see fig. 2). In general other non-lamellar phases exist, but they
are hardly observed in excess water.

Figure 2: A: Illustration of a 1,2-dipalmitoylphosphatidylcholine (DPPC) lipid.
B: A patch of a bilayer. C: Unilamellar vesicle D: Micelle. Illustrations are taken
from [2].

Proteins are organic compounds made of amino acids arranged in linear
chains, connected by peptide bonds. There are 22 standard amino acids and
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each has rather unique properties e.g. charge. The variety in amino acid
properties and the number of possible combinations, make proteins complex
and versatile structures. Protein are regarded as absolutely essential in
biological processes. In the context of membranes, proteins can either be
adsorbed to the surface or be embedded (see fig. 1) [3].

Biological membranes function as selectively permeable barriers, where
the lipid parts of the membrane often are regarded as permeable only for
small molecules, e.g. water. Transportation of larger molecules and ions
happens through channel protein. These protein create channels through
the membrane where they may control the essential transportation.

Direct electrophysiological studies of protein activity, without including
the effect of the nearby membrane, are impossible [4]. Though have electro-
physiological events been attributed protein activity.

It has been shown that pure lipid membranes, near phase transition,
display channel events similar to those attributed to channel proteins[4][5][6],
and that these events are reversible [7][8][9].

These findings have led to the understanding, that any mechanism that
leads to large fluctuations in a membrane will similarly induce channel
events.

Studies have shown that proteins can induce large fluctuations in the
neighboring membrane [4] and that protein induced changes affect a large
number of lipids [10].

From this is not unreasonable to ask the question: Could it be possi-
ble that channel events typically attributed to proteins could originate from
lipids, because the proteins influence the transition behavior in their envi-
ronment?

1 Motivation

Interactions between proteins and lipids are essential in understanding all
membrane processes, but are poorly understood on a microscopic level. A
variety of simple models have been used to study these interactions with
great success. Among these, are studies of variation in thickness of the
lipids impact on embedded proteins. These studies have though mainly
focused on changes in the protein configuration and their anchoring induced
by lipids and not on the change in lipid configuration [11].

For this reason, the focus of this project will be to investigate protein
influence on permeability of its neighboring lipid environment.

For a biological membrane model we have chosen 1,2-dipalmitoylphospha-
tidylcholine (DPPC) as lipid because of its well documented behavior and
pronounced main melting phase transition. As model of a protein we have
chosen to embed a single stable object that has well defined interactions
with the lipids. With this simple model we aim to get theoretical indication
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on whether the raised question can be true or not.
This is relevant because it can change the general understanding of mem-

branes

To investigate the implications of our simple model we use the Monte
Carlo method. The Monte Carlo method has been chosen over the mean-
field theory due to its strength in simulating transition phenomena and the
fact that it takes fluctuations of the environment into account. A further
strength of the Monte Carlo method compared to more detailed methods,
such as molecular dynamical simulations, is that it can describe the behavior
of a large system within a realistic time frame. The used model in the Monte
Carlo method is based on the two-state Ising model [12].

The main parameters used in the model are experimentally determined
by differential scanning calorimetry (DSC).
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Part II

Theory

This part will introduce the necessary theory for this project. It will include
an introduction to membrane properties, the Monte Carlo method and the
membrane model we used.

2 Membrane Properties

The phase transition is essential for biological membranes behavior.

2.1 Phase transition

For single lipid systems, phase transitions are defined as points where mem-
branes change between two states. Phase transitions for lipids occurs at well
defined temperatures. These transition temperatures depend on lipid com-
position (e.g. length of chains, double bonds between carbon-carbon atoms,
head group size, etc.). The transition can be shifted by changing external
values (e.g. pressure, pH value, etc.) or by adding additional molecules,
such as proteins or anaesthetics. Most natural lipids have melting temper-
atures in the temperature regime −20◦C to 60◦C.
The membrane melting temperature, Tm, is defined as the temperature
where the lipids have an equal probability to be in one of two states. By
calculating the difference in entropy, ∆H, and enthalpy, ∆S, between the
two states (see appendix A), one can find the transition temperature to be:

∆H − Tm∆S = 0 ⇔ Tm =
∆H

∆S
(1)

Membranes are bilayer structures which can exist in four different states
depending on the temperature (listed in order of increasing temperature)
[13]:

• Lc state: Crystalline state, in which the lipids are ordered in three
dimensions.

• L′β state: Crystalline molecular order. Chains are mostly ’all-trans’ 1

ordered and tilted. This phase is often called the solid phase or simply
the gel phase.

• P′β state: So called ’ripple’ phase. The membrane is partially solid,
partially fluid and has a periodic structure. This phase forms prior to
chain melting [14].

1Spatial orientation of the two chains.
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• Lα state: Lipid chains are disordered. Order of lattice is lost. This
phase is often called the liquid-disordered phase or simply the fluid
phase.

Figure 3: Illustration of different membrane states. Left: Lc state. Middle left:
L′β state. Middle right: Pβstate. Right: Lα state. Taken from [15].

In this project we will ignore the transition between the gel and ripple
phase and only consider lipids being in either gel or fluid phase. This can be
justified by the choice of lipid membrane (DPPC), which only has a minor
pre-transition away from the main transition. The transition between gel
and fluid is illustrated in fig. 4.

Figure 4: Illustration of a chain melting transition. Taken from [2].

2.2 Thermodynamic properties

Many thermodynamic properties can be derived from fluctuations of a sys-
tem; among these is the heat capacity.

At constant pressure, the heat capacity, cp, is defined as the difference in
heat, dQ per difference in temperature, dT.

cp =
(

dQ

dT

)

p

(2)

Enthalpy is defined as H ≡ U+pV . The differential is dH = dU+pdV +V dp.
By substituting dU , dH will be reduced to dH = dQ, at constant pressure.

cp =
(

dH

dT

)

p

(3)
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Which states that the heat capacity is directly related to the change in en-
thalpy2.

The heat capacity at constant pressure can be derived from fluctuations
using the fluctuation-dissipation theorem [16] (see appendix B).

cp =
(

d〈H〉
dT

)

p

(4)

=
〈H2〉 − 〈H〉2

RT 2
(5)

Where R is the gas constant. The heat capacity is obtained in the model
through fluctuations in enthalpy using equation (5).

The fluctuations of the lipid membrane system are further correlated to
the isothermal area compressibility. The compressibility is a measure of the
relative area change of the system as response to a change in lateral pressure.

κA
T = −

(
1
〈A〉 ·

d〈A〉
dΠ

)

T

(6)

=
〈A2〉 − 〈A〉2
〈A〉RT

(7)

Where Π is the lateral pressure and the enthalpy in this case is H = U +
pV + ΠA.

2.3 Model for permeability

Lipid membranes are usually considered as insulators, which implies that
the permeability of larger molecules and ions is often neglected. But in
reality, due to diffusion, there is a finite probability for larger molecules to
cross the membrane [14]. Studies have shown that the permeability of lipid
membranes close to lipid melting transition is significantly increased [2][5].

The documented enhancement of the permeability has given rise to spec-
ulations on the nature of this phenomena. It has been stated that this can
not alone be explained by passive diffusion of molecules through the hy-
drophobic parts of the membrane [14]. An likely explanation is the formation
of pores in the membrane.

A formation of a pore will require a compression of the bilayer. The work
needed to compress the bilayer is proportional to the lateral compressibility
of the membrane. Since the compressibility of the membrane is directly pro-
portional to the heat capacity [2], this will make the probability of forming a

2Same procedure can be done for the entropy, since dQ = TdS, so cp = T
(

dS
dT

)
p
.
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pore close to the transition high, which can explain the heighten permeabil-
ity. Further, the compressibility is high at domain interfaces e.g. fluid-gel or
lipid-protein, which will make the appearance of pores more likely in these
areas.

2.4 Hydrophobic matching

Different lipids have different chain length, even the same type of lipid has
different chain length, depending on its state. By changing the state from
gel to fluid a DPPC lipid changes it is chain length by ∼ 13% [17]. A
membrane, depending on the temperature of the system, will have different
hydrophobic thickness.

Proteins as well as lipids, are composed of hydrophobic and hydrophilic
parts. Since contact between hydrophobic parts and water is unfavorable,
proteins can fold themselves such that they protect their own hydrophobic
parts or embed themselves in lipid bilayers.

Figure 5: Illustration of two proteins embedded in a lipid membrane. Due to
hydrophobic matching, the thickness of the membrane varies around the proteins.
Taken from [2].

The thickness of the hydrophobic part of a protein embedded in a lipid
membrane often differs from that of the bilayer. Leading to a hydrophobic
mismatch where hydrophobic parts are exposed to water. The mismatch
between lipid and protein will be minimized in the following ways [18]:

• Protein may aggregate, such that they shield their own hydrophobic
regions by reducing the interface region with lipids. Thus, only the
interface region will have a free energy contribution.

• The lipid membrane surrounding the protein can switch its state (ei-
ther melt or freeze) such that the lipids form a shielding annulus.
There is a free energy cost to change lipid state.

• If the membrane consists of different types of lipids, the protein can
recruit lipids of similar hydrophobic length around itself [19].

• Change of conformation. By changing its structure a protein can
change its hydrophobic length. A change in protein structure is con-
nected to a change in function.
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3 Monte Carlo method

The Monte Carlo method is a universal method that can be applied to a large
range of systems. It is especially potent in the study of systems containing
a large number of coupled degrees of freedom, e.g. gasses, liquids, polymers,
and economics3. The number of possible states in these type of systems is
astronomical.

For a system containing N particles, which can be in one of two states,
the total number of states will be 2N . For a small system containing
N = 100, the number of states will be 2100 ' 1030, this being more than a
supercomputer can compute in a lifetime. In the scope of this project we
will need a system containing 1000−10000 particles, and furthermore a lipid
can in reality be in a vast number of states. From this it is obvious that
direct evaluation is not possible.

The basic idea of the Monte Carlo method is to define a system and the
dynamics that govern it. This gives a set of possible states. The Monte
Carlo method chooses a random state µ and generates a new state ν of the
system, in a random fashion4. The probability of generating the state ν
given µ is called the transition probability P (µ → ν). The transition prob-
ability must not vary over time, and the transition probability must only
depend on the properties of µ and ν, and not on any state the system pre-
viously has passed through. This ensures that the probability of generating
ν given µ is conserved. The system is reaches equilibrium when the number
of changes from state µ to state ν is equal to the number changes from ν to
µ.

This simulated random walk through the states reaches, when equili-
brated, a Boltzmann distribution around the most likely state, equal to that
of the real system. The method can, after equilibrium is reached, estimate
observable quantities (e.g. enthalpy, internal energy, entropy and heat ca-
pacity) of the real system.

As noted, the number of states in the systems of interest is astronomical.
A random search for the subset of states that pose the Boltzmann distri-
bution of the real system, will result in that equilibrium is never reached
on a realistic time scale. The search for the wanted subset is in a Monte
Carlo method is governed by a rejection algorithm, in our case the Glauber
algorithm [20]. This algorithm ensures that a good estimate of the wanted
subset of states is reached after a relatively short time.

3Monte Carlo simulations have no direct time scale included, but only simulate the
equilibrium properties of the given system.

4Meaning that it will not necessary generate ν every time given µ.
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3.1 Glauber Algorithm

The essence of the algorithm [20] is that given the choice between two states,
the most likely should have a higher chance to be generated. This is in
practice carried out in the following manner:

• A given start configuration of the system is stored and its Gibbs free
energy is calculated.

• Let the system undergo minor changes, hereby changing the state of
the system, and calculate the Gibbs free energy of this new configura-
tion.

• The changes of the system are accepted with the probability

P =
exp (−∆G/RT )

1 + exp (−∆G/RT )
≡ K

1 + K
(8)

where ∆G is the difference in the Gibbs free energy between the two
states and K is the Boltzmann factor.

From this the equilibrium between two configurations A and B is determined
by

PB

PA
= exp (−∆G/RT ) (9)

this being the Boltzmann distribution, as required.

The weighting of states in the Glauber algorithm ensures that mainly
the most relevant states are reached in finite iterations (Monte Carlo cy-
cles). This enables the Monte Carlo method to make good estimates of
the Boltzmann distribution of states within a relative small number of cy-
cles. In general all states can be reached if the system is allowed to fully
equilibrated. This ensures, by the ergodic theorem [14], that averaging one
system for a long period of time5 is equal to averaging over a large number
of independent systems. This makes the Monte Carlo method a powerful
tool since a single simulation can ensure a minimal statistical error on the
average values.

5In the context of the method a long period of time is equal to a large number of Monte
Carlo cycles

9



3.2 Model

To model a lipid membrane it is necessary to decide on a level of descrip-
tion. A membrane can be described on the atomic level, as well as on a
coarse grained level where each lipid can only be in one of two states. The
limitations on the number of states that can be simulated means that de-
tailed simulation can only be done on very small systems, where it is possible
to study large systems with more simple models. In this project we only
consider behavior on a scale larger than a single lipid.

In our simulation we have used a model of a lipid membrane system,
which is based on the Ising model [12]. The Ising model is essentially a two
state model taking only nearest neighbor interactions into account. Origi-
nally made for describing transition in ferromagnets. The Ising model com-
pared to more detailed models, such as the 10-state Pink model [21], is
100 − 1000 times faster and the choice of model has no significant effect
on the overall physical behavior of the system [22]. Furthermore the Ising
model contains only a few parameters, which can be determined through
calorimetric experiments [23].

The Ising Hamiltonian in the original form is given by

H = − ε

2

∑

〈i,j〉
σiσj − h

∑

i

σi (10)

where σi is the state, usually denoted by ±, of a given site in the system.
The first sum is over nearest neighbors, indicated by 〈i, j〉, and ε is the near-
est neighbors interaction parameter. The last sum takes into account the
influence of a external field, where h denotes the external field.

To describe the melting of a lipid membrane with the Ising model the fol-
lowing assumptions are needed [24][25]:

• Each lipid can only be in one of the two following states:

– A gel state, with low enthalpy Hg and low entropy Sg

– A fluid state, with high enthalpy Hf and high entropy Sf

• The lipids only interact with nearest neighbors. This is justifiable since
the majority of interaction between lipids is due to Van der Waals
interactions which have a distance dependence of 1

R5 .

• All lipids, independent of state, are hexagonally packed on a two di-
mensional lattice, meaning that each lipid molecule has z = 6 nearest
neighbors. Experiments have shown that lipid membranes in the gel
state mainly have this packing [13], and for simplicity we assume that
the lipids in the fluid state are similarly packed. This assumption has
been discussed in the literature [24].
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These assumption lead to the following Gibbs free energy [14]6

G = Gg + Nf (∆H − T∆S) + Nfgωfg (11)

Essentially, Gg denotes the Gibbs free energy of the system when all
lipids are in the gel state. ∆H and ∆S are respectively the change in
enthalpy and change in entropy between the gel and fluid state. Nf is the
number of lipids in the fluid state and Nfg is the number of interactions
between gel and fluid state lipids. ωfg is the interaction parameter between
gel and fluid state lipids.

The two parameters, ∆H and ∆S, can be found by calorimetric mea-
surements, leaving the interaction parameter ωfg as a free parameter. The
free parameter is estimated by the fitting of simulated heat capacity curves
to the experimentally obtained.

In this project we aim to study the effect on permeability by a protein.
For this we need to expand the model to contain pores (h) and a protein
(p). Including these, leads to the following Gibbs free energy for a given
state:

G = Gg + Nf (∆H − T∆S)
+ Nfgωfg + Npfωpf + Npgωpg

+ Nhgωhg + Npfωhf + Npgωhg

(12)

Where Nij is the number of interactions and ωij is the interaction param-
eter between i and j. Interactions between particles of same type are not
regarded as interactions.

We use equations (8) and (12) to calculate the probability of accepting a
change in state, in the performed Monte Carlo method.

The additional interaction parameters of the extended model have in this
project been estimated from the literature (see section 5.1.1).

3.3 Considerations

In a Monte Carlo method a number of considerations have to be taken into
account.

3.3.1 Equilibration

A random start configuration of the system is unlikely to be near the equi-
librated state of the system. Equilibration of the system is therefore needed
before sampling the data.

6A full description of equation (11) can be found in [14].

11



In general, it is difficult to determine the number of Monte Carlo cy-
cles needed to equilibrate the system beforehand. The number of cycles
depends on the interaction parameters and the number of interactions. Fur-
thermore, the number of interactions depend on the size of the system and
on the temperature. The range of temperatures of interest is fixed around
the transition midpoint, leaving the size of the system as the only control
parameter.

Figure 6: The approach to equilibrium starting from a random starting configu-
ration. Equilibrium is reached when fluctuations settle around a stable enthalpy
level. It can clearly be seen that at Tm = 314.15 K the fluctuations are larger and
the cycles need to equilibrate are higher compared to away from transition.

From fig. 6 the number of Monte Carlo cycles needed to equilibrate at
Tm, is of magnitudes higher than a 1000.

3.3.2 Finite system size

Any system possible to simulate, in reality, is of finite size. This introduces
some errors when the correlation length7 of the system is of the same order
as the size of the system. To avoid these errors the system must be larger
than the phenomena of interest. In the context of our project, the system
has to be larger then the area of membrane affected by a protein.

3.4 Implementation of the Monte Carlo method

The method is carried out in small steps, such that any state of the system
can be reached. Only one step is needed to describe a pure lipid membrane
without pores. The melting or freezing of a lipid. For more complex systems
a broader variety of steps is needed.

7The correlation length is the length scale of behaviors in the system.
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The purpose of this project is to investigate how a protein can effect
the permeability of the membrane. To describe this, three steps are needed:
Creation of pores, closing of pores and diffusion (two particles switching
positions). We have in our model chosen to have periodic boundaries (see
[2] for details) to avoid boundary effects. This will also govern diffusion of
the single protein, since the system can not distinguish between diffusion of
lipids and diffusion of the protein.

The changing in lipid state as well as diffusion is directly handled in ac-
cordance with the Glauber algorithm (see section 3.1).

The dynamics for pore formation and closing, are based on observed area
differences. A DPPC lipid changes its area by ∼ 25% when changing from
gel to fluid state [17]. From this a pore of the size of a gel state lipid can
be created if its three nearest neighbors lipids are in the fluid state, and
simultaneously change states, see equation (13) and figure 7.

Abefore = 3 ·Afluid = Aafter = 3 ·Agel + Apore (13)

A pore is closed in the opposite manner, i.e. if the three nearest neighbor
lipids of the pore are in the gel state and change state simultaneously. To
conserve energy and to keep the number of lipids constant in the system the
lipid replaced by a pore is moved to the end of the lattice, hereby changing
the size of the system by one. Equally, when a pore is closed a lipid is taken
from the end of the lattice to fill the pore. These steps have been proposed
in [4]. The creation and closing of pores is handled in accordance with the
Glauber algorithm.

Figure 7: Illustration of the pore step (either formation or closing of pore). Green
represents fluid state lipids while orange represents gel state lipids. The lipids are
arranged in a triangular lattice. During the pore step three lipids change state
simultaneously while the red particle (either a gel or fluid state lipid) is moved to
or from the edge of the lattice. Illustration taken from [2]. The definition of nearest
neighbor interactions, for the moved red particle, are described in [4]
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3.4.1 Overview of Monte Carlo steps

The model used in this project has in essence been preformed in the following
manner:

• Start setup:

– Fill the system with lipids in gel and fluid state in a random
manner.

– Insert the protein into the system.

Figure 8: Snapshot of the system at phase transition. Gel phase lipids are red,
fluid phase lipids are green, pores are black and the protein is white.

• Equilibration loop:

– Try to melt gel into fluid or freeze fluid into gel.

– Try to create pores and to close pores.

– Let random particles diffuse (holes are also considered as parti-
cles). The protein is not diffusible.

• Monte Carlo loop:

– The equilibration procedure is continued.

– Data is sampled from the continued equilibration.

The used model described in detail in [2].
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Part III

Experiments

This part will give a brief explanation of the experimental technique used to
acquire some of the needed parameters8 and the computer simulation itself.
The techniques used are Differential Scanning Calorimetry (DSC) and the
Monte Carlo method.

4 DSC

Differential scanning calorimetry is a technique that measures the amount
of heat required to increase the temperature of a sample compared to that of
a reference. The instrument (VP-DSC produced by Microcal (Northhamp-
ton/MA, USA)) consists of two, adiabatically separated cells: A reference
and a sample cell. See appendix C for a illustration.

The instrument raises the temperature linearly with respect to time and
measures the difference in heat flow between the two cells (∆P = Psample −
Preference). The heat added to the system can be found by integrating over
the excess power

∆Q =
∫ t+∆t

t
∆P (t′)dt′ ' ∆P ·∆t (14)

where the approximation holds for small time intervals, which means a slow
change in temperature. The difference in heat capacity, at constant pressure,
between the two cells, is given by (see equation (2) for reference)

∆cp =
(

∆Q

∆T

)

p

=
∆P ·∆t

∆T
=

∆P

∆T/∆t
(15)

The expression ∆T/∆t is the scan rate of the calorimeter, which for all the
experiments was 3 K/hour at constant pressure of 50 psi ≈ 3.4 atm.

Membrane melting temperature can directly be estimated by finding the
main peak in the experimentally obtained heat capacity profile. Using equa-
tions (1) and (16) one can obtain the experimental values for ∆S and ∆H.
The interaction parameter, ωfg, has to be estimated through simulations
and fitting of heat capacity curves (see [26] for more detail).

∆H =
∫ T1

T0

cpdT (16)

8The change in enthalpy ∆H, the change in entropy ∆S, the melting point Tm, and
the lipid interaction parameter ωfg.
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4.1 Sample preparation and extrusion

For the DSC experiments, large unilamellar vesicles of DPPC (Avanti Polar
Lipids, Birmingham/AL, USA) were used. The sample was respectively
prepared and extruded according to [27] and [28].

4.2 Data analysis

Four scans were preformed, and the best result is shown in fig. 9.

Figure 9: Blue: Measured excess heat capacity for DPPC measured by DSC. The
first peak is pre-transition and the occurrence of it is discussed in [29]. The second
peak is the main phase transition. Red: Reference heat capacity curve. Measured
heat capacity curve for extruded large unilamellar vesicles of DPPC by DSC with
at scan rate of 5 K per hour. This data has been provided by Thomas Heimburg,
Niels Bohr Institute, University of Copenhagen.

The raw data was normalized by concentration and baseline corrected.
The parameters obtained from the experiment are shown in table 1.

∆H 32170.0 J/mol
∆S 102.0 J/mol· K
Tm 40.97◦C

Table 1: Experimental data from DSC, for extruded large unilamellar DPPC vesi-
cles.

4.2.1 Discussion of experimental results

Thermodynamic properties such as ∆H, ∆S and Tm depend on baseline
correction. A small variation in the baseline can result in a huge variation of
the parameters. A complete investigation of error due to baseline correction,
is a project in itself, and was therefore not done.
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By comparing the measured heat capacity to a reference curve (see fig.
9), two discrepancies are apparent, the width and height of the heat ca-
pacity curve. This indicates an error in the results obtained from DSC. If
one further compares the obtained results with other work for multilamellar
vesicles [26], it suggests that our sample contained a combination of multi-
lamellar and unilamellar vesicles. This is an indication that our extrusion
process wasn’t quite successful.

4.2.2 Determination of interaction parameter

The interaction parameter ωfg is obtained by fitting the simulated heat ca-
pacity curves9 for various values of interaction parameters, over the experi-
mental curve and looking for the best match10 (for more detail see [26]). All
the simulated heat capacity curves are based on the experimentally found
values from table 1. The obtained value for the interaction parameter is
ωfg = 1385.9J/mol.

The found value for the interaction parameter is close to the critical
slowdown value11 of ω = 1434.77 J/mol [30]. Because of this, the amount
of Monte Carlo cycles needed to equilibrate the system and to get decent
statistics will increase [2]. To finish the project within the given time frame
we have chosen to use data from [2] (see table 2).

9In these simulations there was no protein and pore formation was prohibited.
10A better, but more time consuming, way is described in [23].
11Critical slowdown dictates the number of Monte Carlo cycles needed to equilibrate

the system. At the critical value one would need an infinite number of cycles to equilibrate
the system [2]. The critical value is ωc = RTm

ln 3
2

= 1434.77 J/mol for Tm = 314.15 K.
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5 Simulation

This section will give a brief overview of the simulation setup and the pa-
rameters used. The rest of the section is devoted to simulation results.

5.1 Simulation setup

All simulations were performed on a 100 × 100 + 50 lattice. The 50 is an
incomplete row in the lattice, into which lipids are placed when a pore is
created in the system. This is done to avoid creation and deletion of rows,
which will slow down the program.

The simulations are allowed to equilibrate for Neq ' 2 × 104 Monte Carlo
cycles where only changes in the state of the lipids and diffusion12 is allowed.

The program further allows the system to equilibrate for an equal amount
of Monte Carlo cycles where also pore creation and closing is allowed. By
dividing the equilibration in two, the Monte Carlo cycles needed are mini-
mized.

The data sampling is done over 105 Monte Carlo cycles, where all sim-
ulation steps are allowed (diffusion, lipid melting and freezing and pore
formation and closing).

We have chosen to model the single protein in this project as an round-
shaped object of the size of seven lipids13, which we have fixed in the center
of the lattice. Fixing the position of the protein in the simulations enables
direct study of the protein effect on the neighboring membrane.

The parameters used in the simulation can be seen in table 2.

∆H 36400 J/mol
∆S 115.9 J/mol· K
Tm 41.0◦C
ωfg 1326.0 J/mol
ωfh 2254.2 J/mol
ωgh 4508.4 J/mol
ωph 13260.0 J/mol

Table 2: Parameters used in the simulation of DPPC.

12It can be argued that diffusion is not relevant for at system containing only a stationary
protein and lipids. It is however incorporated into this part of the simulation to ensure
generality.

13This has been chosen in accordance with previous studies of proteins [26].
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5.1.1 Consideration of chosen parameters

In the literature [26] simulations studies have been conducted of membranes
containing the polypeptide, Gramicidin A. A polypeptide is not generally
the same as a protein, but in the context of this project there is no actual
difference. The interaction parameters for Gramicidin A with fluid and gel
state lipids were estimated to be of the same magnitude as the fluid-gel in-
teraction parameter. It is on this basis we estimated our protein interaction
parameters.

Experiments have shown that a DPPC bilayer has around 50 pores per
mm2 in the phase transition [31]. The size of the simulated system is ap-
proximately an eighth of this area. To avoid unsatisfying statistics on pores
we have chosen to lower the pore interaction parameters, hereby increasing
the probability of pores.

We have further chosen to set pore-pore interactions extremely high to
avoid pore aggregations, since this has a tendency to make the simulation
crash [2]. This can be justified to some degree by the low number of pores
in a real membrane.

Furthermore, pore-protein aggregation is not allowed, to avoid scenarios
where the protein is not completely embedded in the membrane.

5.2 Simulation results

In the following section, the simulation results will be presented and ana-
lyzed.

To investigate the effect of a protein on a lipid membrane, all pores have
been stored with their relative distance from the edge of the protein. This
is done for each Monte Carlo cycle. The distance is calculated in units
of lipid diameter. The state fluctuations (probability for a lipid changing
state) have been sampled in a similar fashion. Under fluctuation sampling
creation, closing and diffusion of pores where not allowed. This can result
in minor alterations of the protein induced effect, but the general behavior
should be maintained.
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5.2.1 Investigation of protein behavior

To investigate the nature of the protein effect, three different types of pro-
teins have been considered. The types of protein have been chosen such
that they can illustrate categoric behavior of proteins14. The three types of
protein are the following:

• A fluid state loving protein, ωpf = 0 and ωpg = ωfg = 1326.0 J/mol

• A gel state loving protein, ωpg = 0 and ωpf = ωfg = 1326.0 J/mol

• A protein that likes fluid and gel state equally, ωpg = ωpf = 0.0 J/mol

Due to the small size of the protein the overall physics of the system is
conserved independent of protein type. Therefore the effect of the different
proteins can be directly compared. The heat capacity of the system with
the three proteins and the protein free system are compared in appendix D.

The effect on permeability and state fluctuations induced by a fluid state
loving protein can be seen in fig. 10-11 and for a gel state loving protein in
fig. 12-13.

Figure 10: Probability of finding a pore at a given distance from a fluid state loving
protein. Different colors represent different temperatures relative to transition. Full
lines represent temperatures lower than the transition temperature. Dotted lines
represent temperatures higher than or equal to the transition temperature.

As seen in fig. 10-11 the fluid state loving protein induces higher perme-
ability and higher state fluctuations in the neighboring area, at temperatures
below phase the transition. This effect gets more pronounced close to the
phase transition temperature. Above the phase transition there is no pro-
nounced effect to be seen.

14Real proteins can be expected to display more complicated interaction behavior [26],
but this is outside the scope of this project.
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Figure 11: State fluctuations as a function of distance from a fluid state loving
protein. Different colors represent different temperatures relative to transition. Full
lines represent temperatures lower than the transition temperature. Dotted lines
represent temperatures higher than or equal to the transition temperature. The
irregular bumps in the state fluctuations can be attributed to pores in the system
which also induce fluctuations.

For temperatures below and above phase transition the behavior of the
permeability is similar to that of the state fluctuations. Only at the tran-
sition temperature there is a clear difference in the behavior of the perme-
ability and the state fluctuations.

The fashion, in which the state fluctuations are sampled, can not be
expected to contain all information about actual fluctuations of the sys-
tem, since pore creation, closing and diffusion is prohibited. This becomes
apparent at phase transition temperatures since the state fluctuations are
maximal. We will because of this not consider state fluctuations at the phase
transition temperature.
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Figure 12: Probability of finding a pore at a given distance from a gel state loving
protein.

Figure 13: State fluctuations as a function of distance from a gel state loving
protein.

Fig. 12 shows that the gel state loving protein induces a lowering of
the permeability in the local neighborhood at all temperatures. This effect
of the protein gets more pronounced when approaching phase transition
temperature.

This behavior is not shared by the state fluctuations, fig. 13, which show
a increase near the protein for temperatures above phase transition. This
behavior can be explained by the used permeability model, which promotes
pores in a fluid environment, which will lead to diffusion of pores from
the protein induced gel environment to fluid environments away from the
protein.
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The protein that likes gel state and fluid state equally, represents a third
category of protein. This protein type only induces minor changes in the
neighboring membrane. Its behavior is shown in appendix E.

The investigation of different types of protein indicates that proteins can in-
duce large changes in the neighboring lipid membrane and that these changes
vary fundamentally depending on lipid-protein interactions. We have with
this simple protein model observed both promoting and inhibiting effects
regarding permeability. The results further indicate that the protein influ-
ences an area of about 500 lipids close to the phase transition. This indicates
that the protein effects can influence macroscopic behavior of membranes.

5.2.2 Investigation of protein effect dependence on membrane
interactions

It has been shown that a number of external parameters have comprehen-
sive impact on the behavior of cell functions. External parameters such as
anaesthetics change the physical properties of the membrane [8]. Changes of
this nature are shown in the form of a shift in transition temperature and a
change of the width and height of the heat capacity curve. To investigate the
impact of these type of changes on the protein effect on the lipid membrane,
simulations with different interaction parameters, ωfg, have been conducted
with a fluid state loving protein. By changing the interaction parameter
between gel and fluid state lipids, the width and height of the heat capacity
curve will change, while the area under the curve will stay constant [2]. The
unique phenomena displayed at phase transition are correlated to the height
and sharpness of the heat capacity curve. A sharp heat capacity curve will
sharpen the transition, making transition effects more pronounced, while a
broadening of the heat capacity will result in a broader transition which
disperse the transition effects.

The behavior of the heat capacity curve influences a broad spectra of phys-
ical properties15 of the membrane, among these the permeability [2]. This
correlation is illustrated in fig. 14 with three different ωfg values16.

15The behavior of the heat capacity curve will also influence the average domain size
and hereby the correlation length of the system.

16The three ωfg values investigated; ωfg = 1376.0 J/mol, 1326.0 J/mol and
1276.0J/mol.
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Figure 14: Left: Comparison of simulated heat capacitys for the different ωfg

values. Right: Comparison of average number of pores in the entire system for
different values of the interaction parameter.

Fig. 14 further shows that for temperatures away from the transition the
lowest interaction parameter has the highest heat capacity and permeability.
As nearing transition the high interaction parameter leads to the highest
heat capacity and permeability. From the figures, it can be seen that this
shift occurs at a critical point, T ∼ 313.5 K. This behavior can also be seen
away from the protein in fig. 15.

Figure 15: Probability of pores at a given distance from a fluid state loving protein,
normalized with the probability of pores in a pure lipid membrane (without protein).
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However fig. 15 shows for T = 312.55 K that the protein induces the
shift in the neighboring membrane. The shift induced by a protein indicates
that this type of protein changes the local membrane state towards phase
transition.

The investigation of different values for the interaction parameters in-
dicate that protein effect on the nearby membrane is highly sensitive to
variation.

5.2.3 Comparison of results with literature

Simulation studies have been conducted, investigating the hydrophobic match-
ing effect on membrane thickness around a fluid loving protein [10]. It was
found that this behavior followed equation (17)17.

〈dL(I)〉T
〈d0

L〉
= 1 +

(
dp

〈d0
L〉
− 1

)
e−D(I)/ξp(T ) (17)

Where 〈dL(I)〉T is the average thickness of the membrane at a given distance
step I. 〈d0

L〉 is the average membrane thickness away from the protein and
dp is the thickness of the protein. D is the diameter of a lipid and ξp is the
decay length.

Changes in membrane thickness are related to compressibility which is cor-
related to permeability [8]. The permeability of the membrane around the
protein can therefore be expected to display a behavior similar to that of
equation (17). To investigate this similarity, a selection of sampled data
has been divided by non-protein containing simulation data and fitted to
equation (18).

F (r)T = 1 + B · exp
( −r

A(T )

)
(18)

A describes the decay length of the protein behavior. B indicates the mag-
nitude of the behavior. C is the offset.

17The presented equation has been divided by 〈d0
L〉. The is done so comparison with

our data can be done directly.
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Temperature(K) A B C

308.15 0.58 ± 0.03 2.56 ± 0.04 1.004 ± 0.005
310.15 1.07 ± 0.04 2.77 ± 0.04 0.997 ± 0.006
312.15 1.91 ± 0.05 2.57 ± 0.04 1.001 ± 0.006
313.35 3.04 ± 0.09 2.55 ± 0.04 1.014 ± 0.008

Table 3: Fit parameters for a fluid loving protein in a ωfg = 1326.0 J/mol mem-
brane.

The found fit parameters are seen in table 3 and the actual fit on fig. 16.

Figure 16: Relative probability of pores for a fluid loving protein in a ωfg = 1326.0
J/mol membrane. The dotted lines represents the fitted equation (18).

From table 3 and fig. 16 it seem that our results agree with that of the
literature. From the fit values it can be seen that the decay length of the
protein increases when approaching transition, whereas the magnitude of the
decay decreases. Fig. 16 indicates that, independent of temperature, the
permeability at the protein edge is a factor 4 larger than normal permeability
at each given temperature.
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Part IV

Conclusion and perspectives

6 Conclusion

Assuming that the numerical simulations contained the essential physics of
a membrane, our simple model indicates that different types of protein can
induce large changes in the neighboring lipid membrane. The nature of
these changes vary fundamentally depending on the lipid-protein interac-
tions. Both permeability promoting and inhibiting changes of neighboring
lipids have been observed.

The results indicate that the changes induced by a protein can influence
a large number of lipids, making it possible to influence the macroscopic
behavior of a membrane. Our simple model further indicates that the influ-
ence of a protein is highly sensitive to variation of the overall physics of the
membrane. Our results are in good agreement with a known model [10].

To answer the question raised in the introduction:
It is possible that channel events typically attributed to proteins origi-

nate from lipids.

7 Perspectives

The possibility of protein induced lipid channel events, has far reaching
consequences for the understanding of lipid membranes. To fully explore
this possibility further research is necessary.

The first step, would be to enhance the simple model used in this project,
such that it takes more complex lipid-protein interactions into account. Ob-
vious alterations could be to let the protein change conformation state due
to interactions with the membrane or due to external parameters.

The second step, would be to incorporate collective protein behavior.
Studies of protein aggregation and how these aggregates influence the per-
meability of the membrane.

The final step would be to design experiments that can validate these
predictions.

A better understanding of membranes could result in the designing of
function specific proteins, which will enable control of membrane functions.
Far reaching applications could be a new generation of drugs and drug de-
livery systems.
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Part V

Appendix

A Transition temperature

The lipid melting transition occurs, for DPPC, in a temperature interval
smaller than 1 K. In this small temperature region a large amount of en-
thalpy is absorbed by the membrane. Such transition can be described by
the membrane temperature transition, Tm, and melting enthalpy. The en-
tropy change in a sharp transition can be described by:

∆S =
∫ Tm+δ

Tm−δ

cp

T
dT ≈ 1

Tm

∫ Tm+δ

Tm−δ
cpdT =

∆H

Tm
(19)

Where δ is a small temperature interval.

B Fluctuations

Derivation of equation (5) using the fluctuation dissipation theorem.

cp =
(

d〈H〉
dT

)

p

, 〈H〉 =
∑

i Hi · e−Hi/RT

∑
i e
−Hi/RT

(20)

=

(
d

dT

∑
i Hi · e−Hi/RT

Z

)

p

, Z =
∑

i

e−Hi/RT (21)

=
∑

i H
2
i · e−Hi/RT

RT 2 · Z − 1
RT 2

∑
i Hi · e−Hi/RT

Z

∑
j Hj · e−Hj/RT

Z
(22)

=
〈H2〉 − 〈H〉2

RT 2
(23)

Where the indices i, j denote the different states the system can be in, R
is the gas constant and T is the temperature. The sum is over all possible
states.

Derivation of equation (7)

κA
T = −

(
1
〈A〉 ·

d〈A〉
dΠ

)

T

, 〈A〉 =
∑

i Ai · e−Hi/RT

∑
i e
−Hi/RT

(24)

= − 1
〈A〉

(
d

dΠ

∑
i Ai · e−Hi/RT

Z

)

T

(25)

=
〈A2〉 − 〈A〉2
〈A〉RT

(26)

Where Π is the lateral pressure and the enthalpy is H = U + pV + ΠA.
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C Differential scanning calorimeter

The sample and reference cell are enclosed by a adiabatic shield, to prevent
heat leakage. The temperature difference between the two cells is kept zero,
while the calorimeter raises the temperature linearly. The difference between
heat flows to the cells, ∆P, is measured and is proportional to the excess
heat capacity (see equation (15)).

Figure 17: Schematic drawing of how DSC works. The temperature difference
between the two samples is kept equal while the temperature is raised linearly.
Illustration taken from [2].

D Comparison of heat capacity curves

Figure 18: Comparison of simulated heat capacity curves for a system containing
different types of proteins. A pure membrane, with no protein, has been plotted
for reference. Due to fewer data points, there are some discontinuities in three heat
capacity curves.

As can be seen in fig. 18 the heat capacity curves are almost identical for
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different types of proteins, the small discrepancies are due statistical errors.

E Third type of protein

Fig. 19, which shows an increased permeability near the protein for tem-
peratures below phase transition. This effect gets slightly more pronounced
when approaching the transition temperature. As expected there is no ap-
parent effect of the protein at the transition. Above phase transition no
pronounced effect on permeability can be seen. Fig. 20 shows a slight in-
crease in the state fluctuations around the protein, at temperatures both
below and above the transition. At transition no pronounced effect of the
protein is seen. For temperatures at transition and below, the protein ef-
fect on permeability follows that of the state fluctuations. for temperatures
above transition effects similar to those seen for the gel loving protein is
displayed.

The simulation indicates that proteins of this category have no pro-
nounced effect on the nearby membrane.

Figure 19: Probability of pores as a function of distance form a protein.

Figure 20: State fluctuations as a function of distance form a protein.

III



References

[1] S. Singer and G. L. Nicolson, Science 175, 720 (1972).

[2] A. Blicher, Permeability studies of lipid vesicles by fluorescence corre-
lation spectroscopy and monte carlo simulations, Master’s thesis, Niels
Bohr Institute; University of Copenhagen, 2007.

[3] H. Khandelia, J. H. Ipsen, and O. G. Mouritsen, Biochim. Biophys.
Acta 1778, 1528 (2008).

[4] K. Wodzinska, A. Blicher, and T. Heimburg, The thermodynamics of
lipid ion channel formation in the abstence and presence of anesthetics.
blm experiments and simulations, arXiv:0902.2271v2 [Physycs.bio-ph].

[5] D. Papahadjopoulos, K. Jacobson, S. Nir, and T. Isac, Biochim. Bio-
phys. Acta 311, 330 (1973).

[6] J. F. Nagle and H. L. Scott, Biochim. Biophys. Acta 513, 236 (1978).

[7] V. F. Antonov, V. V. Petrov, A. A. Molnar, D. A. Predvoditelev, and
A. S. Ivanov, Nature 283, 585 (1980).

[8] A. Blicher, K. Wodzinska, M. Fidorra, M. Winterhalter, and T. Heim-
burg, The temperature dependence of lipid membrane permeability, its
quantized nature, and the influence of anesthetics, arXiv:0807.4825v1
[Physycs.bio-ph].

[9] K. Kaufmann and I. Silman, Biophysical Chemistry 18, 89 (1983).

[10] M. M. Sperotto and O. G. Mouritsen, Biophysical Journal 59, 261
(1991).

[11] J. A. Killian and T. Nyholm, Current Opinion in Structural Biology
16, 473 (2006).

[12] E. Ising, Z. Phys. 31, 253 (1925).

[13] M. J. Janiak, D. M. Small, and G. G. Shipley, The Journal of Biological
Chemistry 254, 6068 (1979).

[14] T. Heimburg, Thermal Biophysics of Membranes, 1st ed. (Wiley-VCH,
2007).

[15] M. L. gudmundsson, Phase behavior in lipid tethers and vesicles - a
thermodynamic study, Master’s thesis, Niels Bohr Institute; University
of Copenhagen, 2007.

[16] T. L. Hill, An Introduction to Statictical Thermodynamics, 1st ed.
(Dover Publications Inc., 1986).

IV



[17] T. Heimburg, Biochim. Biophys. Acta 1415, 147 (1998).

[18] F. Dumas, M. C. Lebrun, and J. Tocanne, FEBS Letters 458, 271
(1999).

[19] F. Dumas, M. M. Sperotto, M. Lebrun, J. Tocanne, and O. G. Mourit-
sen, Biophysical Journal 73, 1940 (1997).

[20] R. J. Glauber, The Journal of Mathematical Physics 4, 294 (1963).

[21] D. A. Pink, T. J. Green, and D. Chapman, Biochemistry 19, 349
(1990).

[22] O. G. Mouritsen et al., J. Chem. Phys. 79, 2027 (1983).

[23] V. P. Ivanova and T. Heimburg, Phys. Rev. E, 63, 1914 (2001).

[24] S. Doniach, The Journal of Chemical Physics 68, 4912 (1978).

[25] I. P. Sugár, R. L. Biltonen, and N. Mitchard, Methods in Enzymology
240, 569 (1994).

[26] V. P. Ivanova, I. M. Makarov, T. E. Schäffer, and T. Heimburg, Bio-
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