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1 Summary in Danish - Resumé på dansk
På baggrund af "traditionel" kvanteoptik og en endimensionel model for et system bestående af
en enkelt plasmon og et atom forsøgte vi at generalisere os frem til en mere kompleks model for
et system bestående af flere (eller rettere to) plasmoner og det samme (to-niveau) atom.
Målet var at opstille en række sandsynlighedsamplituder for diverse potentielle sluttilstande. Meto-
den skulle gerne være den samme som i den simple model med en plasmon.
Som udgangspunkt opstillede vi en Hamilton, der gerne skulle beskrive vekselvirkningen mellem
plasmon og atom. Derefter forsøgte vi at konstruere nogle tilstande, vi kunne få den selvsamme
Hamilton til at virke på. Slutteligt benyttede vi begge disse i den tidsafhængige Schödingerligning,
der gerne skulle give os de ønskede sandsynligheder.
Med udgangspunkt i bølgepakker med form som Gaussfordelinger (dette var begyndelsesbetingelserne
til vores differentialligninger) løste vi nu Schrödingerligningen og var i stand til at summere vores
resultater op, enten ved et plot af sandsynlighedsamplituder for forskellige typer af bølgefunk-
tioner eller ved at lave et filmklip, hvori bølgepakken ramte atomet, hvorefter pakken delte sig i
en reflekteret del og en transmitteret del.
Ved at gennemføre en række af de ovenstående simulationer (både for en plasmon og for to plas-
moner) var vi nu i stand til at konstruere en graf for sandsynligheden for transmission kontra
bredden af bølgepakken, vi sendte ind.
Jo bredere vores bølgepakke var i positionsrummet var, des smallere (og derfor des mere sandsyn-
ligt, at plasmonen var på resonansfrekvensen og derfor des mere vekselvirkende - dette er et resultat
af Fouriertransformationen) var bølgepakken.
Hele formålet med projektet var nu at sammenligne de to grafer (en for en plasmon og en for to
plasmoner) for transmissionen versus bølgepakkens bredde.
Forventningen var (eller nærmere den klassiske forventning ville være), at hvis sandsynligheden
for at transmittere en plasmon ved en given bølgepakkebredde var f.eks. 50% for en-plasmon-
scenariet, så ville sandsynligheden for at transmittere begge plasmoner være 25% (man forventer
naturligvis 50%2) i to-plasmon-scenariet.
Men ved nærmere inspektion af vores grafer viste det sig, at dette ikke var tilfældet.
Vi opnåede nogle resultater, der bedst af alt kunne fortolkes således, at hvis begge plasmoner var
i nærheden af resonansfrekvensen, så var de begge i stand til at vekselvirke med atomet, men da
atomet kun er "bygget" til at vekselvirke med en plasmon, svækkedes den egentlige vekselvirkning
(og derved muligheden for refleksion) en del.
Med andre ord så vi altså to plasmoner vekselvirke med hinanden - dog gennem vekselvirkningen
med et atom - dette er íkke desto mindre en stykke vej fra den traditionelle opfattelse, at den
enkelte plasmon ikke kan "se" andre plasmoner (eksempelvis er lyset fra en lampe ikke påvirket
af lyset fra en anden lampe).
Der var altså en ganske udemærket årsag til, at projektet faldt under kategorien "ikke-lineær
optik".
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2 Introduction
Both matter and radiation possess a remarkable duality of char-
acter, as they sometimes exhibit the properties of waves, at other
times those of particles. Now it is obvious that a thing cannot be a
form of wave motion and composed of particles at the same time
- the two concepts are too different.

Werner Heisenberg, 1930

Luckily for this project, Heisenberg was not entirely correct in the statement above. A few years
after 1930 he (and most other parts of the scientific society; or rather those that had not already
done so) embraced this new way of thinking and understanding particles and light. This way of
thinking is now referred to as particle-wave-duality.
This "concluded" a discussion, that had been going on for hundreds of years. One group believed
that Young’s interferenceexperiments and Newton’s experiments concerning the dispersion of sun-
light through a prism proved, that light was electromagnetic waves, while the other group claimed,
that Compton’s experiments along with Einstein’s photoelectric effect were arguments enough to
prove that light was indeed massless particles.
In the late 1920’s and the early 1930’s Heisenberg, Niels Bohr, Paul Dirac, and Ernst Schrödinger
developed, what is now known as the quantummechanical description of the nature of atoms and
other particles and paused the discussion for the time being.
Today, quantumphysical methods are used all over the world to all sorts of technology and exper-
iments, while the theory itself is widely considered one of the most successful theories in modern
physics due to remarkably accurate and useful results.
In this project we will attempt to treat a simple quantumoptical system using traditional quantum-
mechanical calculations combined with numerical solutions of the numerous differential equations,
that will rise, when we attempt to apply our model to the system.
The system in question will be an atom in a cavity being hit by one or two photons (or rather
plasmons, as we will stick to a onedimensional approximation of the problem).
The particle, we call plasmon, is the physical name of a photon contained in a onedimensional
enviroment. Though we were first surprised by the amount of articles and literature on system
like the ones, we studied, it became clear to us, that this kind of particle is rather important, since
it is found everywhere in modern technology. An example would be optical fibers used for data
transmission.
As one was taught in the more simple courses concerning particle physics and quantum optics,
the photon is not interacting with other photons. The same is the case for plasmons as these are
nothing but a special kind of photons.
We do, however, also know that if one plasmon were to excite an atom, another plasmon would
not be capable of doing the same thing (until the atom had relaxed again, that is).
So in a sense we should be able to make plasmons interact with each other through the dynamics
of the plasmon-atom-connection.
The wavefunction of one plasmon would be dependant of the wavefunction of another plasmon
- and this is the interaction we are looking for. We shall aim our efforts in this report towards
describing this interaction-like behaviour - by simulating the whereabouts of the plasmons (or
rather the energy brought into the system by the plasmons).

3 Plasmons
There are two ways of describing the plasmon - as there will always be with any quantumoptical
particle due to the particle-wave-duality of most quantumdynamical objects.
In the particle-picture a plasmon is a photon travelling along a wire. The allowed wavevectors (the
correct term when dealing with particles would be momentumvectors, since the word wavewector
implicates a wave) of these are confined to the direction parallel to the wire. These plasmons may
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or may not interact with any atoms along their path on the wire due to the traditional photoelec-
tric effect.
In the wave-picture we can consider plasmons as fluctuations in the electromagnetic field sur-
rounding the wire. These have the traditional properties of any other electromagnetic wave, but
no wavecomponents travelling orthogonal to the wire are permitted.

Figure 3.1 - A plasmon inside a coaxial cable interacting with an two-level atom. This clearly gives
rise to our one-dimensionel approximation as the plasmon only propagate in the direction of the
cable1.

As we have tried to indicate on figure 3.1, we will be dealing with a onedimensional approximation
(this would be the x-direction on the figure), since a plasmon is contained in a wire. This ensures
that our plasmons will hit and interact with the atom and that we can discard the possibility of
any kind of emission perpendicular to the wire.
As one might have guessed, this is the reason for the name "surface" plasmons. In this project,
the plasmons exist on the surface of the wires in a coaxialcable. In two dimension they would
exist on the surface of a conductor.
This is the very reason, why this project is about plasmons rather than the more general case -
the photon.
When dealing with a photon in a 3D-enviroment, we have to consider all sorts of issues like "will
the photon hit the atom - or come close enough to interact?", "will emission be possible in all
directions?", and "will we still be able to approximate with a discrete wavespace, now that we
have three times as many dimensions?"; we would have to incorporate the crosssection of the atom
into our calculations and severely complicate our wavevectorspace. And the actual dynamics of
plasmon-atom-interaction is exactly the same as photon-atom-interaction.
We will be concerning ourselves mainly with the case, where two plasmons propagate towards
the atom as this gives rise to a number of phenomena that cannot be observed in the case of the
lonely plasmon. The price is paid in anaytical compatibility, as we are forced to solve the two-
plasmon case numerically. Furthermore we are forced to abandon the continuous wavevectorspace,
as MatLab has obvious trouble accomprehending infinite potential results.
The purpose of these calculations would be to observe the different possible ways of reflected and/or

1Thanks to Martin Troels Eberhardt for creating this picture.
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transmitted plasmons - i.e. two left-propagating plasmons enter; how many right-propagating
plasmons exit?
We have further simplified our model by assuming that the atom is a socalled "two-level-atom";
meaning that once the atom is excited no further excitations are possible. There is only two
energylevels; |b〉 and |a〉. And we have negleted the possibility of the atom using both plasmons in
the excitation. Though one will see later that the atom is capable of absorbing the first plasmon,
then emitting it, and still having time to absorb the second one - this will happen, when the
potential distance between the two plasmons increases.
Though we have chosen to limit this project to a maximum of two plasmons, there really is no
upper limit to the number of excitation, we might be operating with.
But keep in mind, that the processing power (and thus time) required to do the following simulation
will grow rapidly, as the complexity of the system increases.
A good way of representing the problem would be a traditional Feynman-diagram:

γ
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e− //

e+

��
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Figure 3.2 - The synopsis of this project contained in this Feynman-diagrams.

The object of the project is to show that a system consisting of an atom and two plasmons obey
the dynamics described in the diagram above, rather than just the traditional linear dynamics.

4 Single Plasmon

4.1 Singlemode singleplasmon model
The model, which we are going to apply to the single-plasmon case, can be found in its full extent
in [5].
The dynamics of a system consisting of a single plasmon and a single atom is more or less equal
to the model found in [6] or [7].
The Hamiltonian of a two-level (a low-energy-level |b〉 and a high-energy-level |a〉) atom in a
multimode, electromagnetic field is given by2:

Ĥ = Ĥatom + Ĥfield + Ĥinteraction

=
1
2

~ω0 (σaa − σbb) +
∑

k

~ωk

(
âkâ

†
k +

1
2

)
+
∑

k

~gk

(
σ+âk + σ−â

†
k

)
We have used the abbreviations:

σij = |i〉 〈j| gij
k =

Mij · ε̂kEk

~
and σ+ = |a〉 〈b| σ− = |b〉 〈a|

For a singlemode field (one kind of k-mode) this equation reduces to (σz = σaa − σbb - and the
zeropoint of the energy in the atom is set exactly between the two energy levels.):

Ĥ =
1
2

~ω0σz + ~ωââ† + ~g
(
σ+â+ σ−â

†)
2More on the various operators in Appendix A.
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Notice that we have chosen to neglect the 1/2-term representing the energy of the zeromode.
The only difference between a system consisting of a photon and an atom or a plasmon and an
atom is contained in the factor, gk.
As mentioned before g is given by:

gk =
Mab · εkEk

~

Where Mab is the dipole-matrix element for a transistion from state |a〉 to state |b〉. Ek is the
energy in the mode k and εk is the polarization of the lightfield.
>From [6] we find, that

Ek =
√

~ωk

2ε0V

As we can see the interactive coupling (Ĥint) between the atom and the plasmon/photon is pro-

portional with
√

1
V . Since the plasmon is contained in a wire, the effective volume will be much

smaller. The interaction will therefore be much stronger.

4.2 Applying the model
An atom in a singlemode field has the wavefunction:

|Ψ(t)〉 = ca,n (t) |a, n〉+ cb,n+1 (t) |b, n+ 1〉

Using our Hamiltonian, our waveequation and the time-dependant Schrödingerequation:

i~
∂ |Ψ〉
∂t

= V̂ |Ψ〉

where3 (V̂ is the timeevolved Ĥint):

V̂ = ~g
(
σ+âe

i∆t + σ−â
†e−i∆t

)
∆ = ω − ω0

We can write the following differential equations for the timedependant probability amplitudes:

∂ca,n (t)
∂t

= −ig
√
n+ 1ei∆tcb,n+1

∂cb,n+1 (t)
∂t

= −ig
√
n+ 1e−i∆tca,n

Based on these equations we can derive the following solutions for the probability amplitudes:

ca,n (t) =
(
ca,n (0)

(
cos

Ωnt

2
− i∆

Ωn
sin

Ωnt

2

)
− cb,n+1 (0)

2ig
√
n+ 1

Ωn
sin

Ωnt

2

)
e

i∆t
2

cb,n+1 (t) =
(
cb,n+1 (0)

(
cos

Ωnt

2
+
i∆
Ωn

sin
Ωnt

2

)
− ca,n (0)

2ig
√
n+ 1

Ωn
sin

Ωnt

2

)
e−

i∆t
2

where:

Ω2
n = ∆2 + 4g2 (n+ 1)

3See Appendix B for detailed derivation of the timeevolution.
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If our system indeed only consists of one plasmon, we can put |n〉 = |0〉 and |n+ 1〉 = |1〉 to find
the probability amplitudes in this case.
We find that:

ca,0 (t) =
(
ca,0 (0)

(
cos

Ω0t

2
− i∆

Ω0
sin

Ω0t

2

)
− cb,1 (0)

2ig
Ω0

sin
Ω0t

2

)
e

i∆t
2

cb,1 (t) =
(
cb,1 (0)

(
cos

Ω0t

2
+
i∆
Ω0

sin
Ω0t

2

)
− ca,0 (0)

2ig
Ω0

sin
Ω0t

2

)
e−

i∆t
2

This is the "standard" way of treating the singlemode-field-problem.
We will in the next section try to develop a method of calculating the timeevolution of a system
consisting of an atom and a plasmon capable of "obtaining" a variety of different frequencies (or
rather wavenumbers).
In reality the singlemode field is an impossibility due to imperfection of the constructed system,
i.e. different ways of broadening the emission and absorbtion spectra of the atom or inability
to construct complete "pure"/monochromatic beams (or rather plasmons that is not a coherent
state).
One problem with this calculation is, that there can be no geometric interpretation of the equations
above - they do not contain information of the whereabouts of the plasmon. This is another good
reason to turn to numerical calculation instead of analytical.

5 Calculations - Single Plasmon

5.1 Constructing the algorithm
The purpose of this project is to construct an algorithm capable of simulating the quantumphysical
dynamics of any given plasmon system under given initial conditions (this will later be limited to
Gaussian waves - but only for this project - "feeding" the algorithm a different inital state will be
just as possible, we just had to limit ourselves to one type of initial conditions).
The way to do this will be programming at set of scripts to be run by MatLab.
MatLab is chosen due to its matrix-based calculations methods, which corresponds well to the
operator mathematics in quantum physics.
The fundamental part of our calculations will be observations of the interactions between different
states.
In order to do this we will need Schrödingers equations along with a way of identifying the different
combinations of photons and/or the atom.
MatLab has an algorithm ,ode45, that can evaluate a set of coupled partial differential equations
based only on the equation itself and a set of boundary conditions. Recalling the timedependant
Schrödinger equation

i~
∂Ψ
∂t

= ĤΨ

we see that if we can put this into MatLabs syntax, we will have an expression that can be solved
by ode45. The solutions will then contain the timeevolution of the system.
The important aspect in these processes will be keeping track of the different states while con-
structing a Hamiltonian-like operator, which will be one of the base elements of our description.
To descibe the dynamics of a quantumoptical system, we will have to describe the coupling from
one state to another.
As written before our Hamiltonian is given by

Ĥ

g
=

∑
k

∑
i=L,R

(
σ−â

†
k,i + σ+âk,i

)
+
∑

n

∑
j=L,R

~ckn

g
â†n,j ân,j

= V̂ + V̂ † + D̂
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where V̂ and V̂ † describes the coupling terms of the operator and D̂ describes the field properties
of the system. We will use the notation:

∆ω =
~ckn

g

The interpretation of this quantity is explained in figure 5.1.

Figure 5.1 - The graph drawn is a traditional Lorentzian representing absorbtion of an energylevel
in the atom. The properties (and importance) of ∆ω should be pretty obvious.

A note should be made on the units (that we more or less neglect through the entire project).
Observing the following property of the Shrödingerequation

i~
∂Ψ
∂gt

=
Ĥ

g
Ψ

we get an idea of the timescale, we should be looking at; and to calculate this more explicitly, we
seek to approximate the quantity gt.
First of all we notice that g = ~ckn/∆ω. As we observe a discrete wavespace (more on this later),
we can write k in terms of "cavity-length" such that k = 2π

L .
Writing L as velocity times time (T is the size of the timescale, that should correspond to one
period in a cavity of length, L) and substitute, we see that

g = ~c
2π
L

= ~c
2π
cT

setting ~ = 1,4 we now obtain the relation:

gT =
2π
∆ω

4Standard atomic units.
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This should give us the boundries of our calculations. If we set ∆ω = 0.1, our calculations and
simulations should be constrained to the timeinterval, t ∈ [0; 62.8].
All this is important, as MatLab will automatically assume periodic boundary conditions un-
less told otherwise. If we leave the system "on" in longer timeintervals, we would observe the
transmitted and reflected wave hit the atom once again (and again and again) causing some not-
so-easy-to-interpret graphs.
As we are dealing with numerical operations, a continous wavevectorspace becomes an impossi-
bility, as it would require an "(∞×∞)-matrix" to describe the different couplings of the system.
We turn to a discrete space consisting of nmax possible states.
Since our plasmon is capable of propagating either left or right, we now have nmax potential states
for left-propagating plasmons and nmax potential states for right-propagating plasmons, summing
up to a total of 2nmax + 1 different states (the "+1" represents the state in which the atom has
absorbed the plasmon).
Please notice that through this entire project, plasmons will be characterized by the direction in
which they are heading and not their position in relation to the atom.
Due to periodic boundary conditions, our positionspace will repeat itself, hence making the actual
position of the plasmon hard to express; i.e. a rightmoving plasmon located to the right of the
atom will after a certain amount of time be located to the left of the atom without having actually
been in the vicinity of the atom.
The abundance of different states will then be:

Leftpropagating plasmons Rightpropagating plasmons State of the atom Abundance
0 0 Excited 1
0 1 Ground nmax

1 0 Ground nmax

In order to make MatLab understand the coupling, we need a delicate system to enumerate the
different states. We define the ground state as being the state with L = 1.
The states with left-propagating plasmons will be enumerated L ∈ [2;nmax + 1] and the states
with rightpropating will be enumerated L ∈ [nmax + 2; 2nmax + 1].
This way, we will be able to choose a central wavenumber, k0 (preferably the resonance vector,
but not necesarily; though any other choice would not make much sense), and the observe the
dynamics of the nearby wavevectors - the size of the word "nearby" is based on the quantity ∆ω
and the number of states included in out calculations, nmax.
In other words our Hamiltonian covers an "area" in wavevectorspace corresponding to{
k0 − nmax−1

2 , . . . , k0, . . . , k0 + nmax−1
2

}
.

In this discrete wavevectorspace our Hamiltonian becomes a ((2nmax + 1)× (2nmax + 1))-matrix.
The diagonal elements of this matrix will consist of the energy relative to k0.
Using the algorithms described in Appendix C, we can construct an operator, whose matrixrepre-
sentation is given by (we have chosen nmax = 5; this number will usually be much, much larger,
but it should give an idea of the properties of the matrix, altogether with ∆ω = 0.1):

Ĥ =



0 1 1 1 1 1 1 1 1 1 1
1 −0.2 0 0 0 0 0 0 0 0 0
1 0 −0.1 0 0 0 0 0 0 0 0
1 0 0 0 0 0 0 0 0 0 0
1 0 0 0 0.1 0 0 0 0 0 0
1 0 0 0 0 0.2 0 0 0 0 0
1 0 0 0 0 0 −0.2 0 0 0 0
1 0 0 0 0 0 0 −0.1 0 0 0
1 0 0 0 0 0 0 0 0 0 0
1 0 0 0 0 0 0 0 0 0.1 0
1 0 0 0 0 0 0 0 0 0 0.2


The top row and the left column represent the coupling between the excited state of the atom to
any of the potential quantumoptical states.
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And as stated the diagonal is the energy relative to the central k, which would then be (4; 4) for
a leftgoing k0-plasmon and (9; 9) for a rightgoing plasmon.
Using the operator described above in our Schrödinger-equation we get an idea of the challenge,
we are about to give MatLab.
Applying the operator to a wavevector, Ψ, consisting of 2nmax + 1 elements, we should have the
same number of coupled differential equations. Setting nmax = 51 to solve over 100 differential
equation - this number will escalate drastically, when we move to the dual plasmon case.

5.2 Initial conditions
Whenever one is solving a differential equation, one will need a set of boundary conditions and a
set of initial condition in order to obtain a unique solution for the (set of) equations.
We will focus our efforts on a wave of the following type:

Figure 5.2 - Rightpropagating Gaussian and an atom. This is the first and foremost initial condi-
tion used in our program. The Gaussian wave is "easily" obtained with a traditional pulselaser.

The standard Gaussian wave can be written as:

E (x) =
1√
2πσ

e−( x−µ
2σ )2

Once this is done, we can plug this initial condition into ode45 and calculate the timeevolution of
such a system.
We are now faced with a bit of a problem. The function written above exists in positionspace,
whereas our Hamiltonian governs the dynamics in wavevectorspace. Long story short, we need to
Fouriertransform this Gaussian in order to obtain a usable initial condition for our equations.
Luckily, MatLab is capable of doing this for us, using the operation FFT, which is short for Fast
Fourier Transform.
Furthermore we shall make use of the command FFTSHIFT, which is used to keep our function
within the boundries of the cavity (i.e. shifting the parts of the function that exceed the cavity to
the other side).

10
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Figure 5.3 - The very useful result of the FFTSHIFT-command.

Whenever one uses FFT on a vector, one will obtain the Fouriertransformed vector - the elements,
however, will be shifted in the way indicated above. Using the command FFTSHIFT will restore
the order of the elements.
There are two key parameters describing a Gaussian wave; σ is governing the width of our Gaussian
and µ is describing the location of the center of the wave (keep in mind that our atom is located
in x = 0).
The rest of the dynamics of the system is left completely to the mercy of the Schrödingerequation
and our Hamiltonian.
This concludes our list of quantities and functions necessary to construct our string of programs and
we (well, MatLab actually) should now be ready for accepting the task of numerically calculating
the different properties of the singleplasmon multimode case.
In traditional quantumphysical notation we need a creationoperator with the property:∑

k

Φkâ
†
k |0〉 = â†Φ |0〉 = |1Φ〉

In this case Φ would be the Fouriertransform of the initial condition (the Gaussian wave). The
quantity |1Φ〉 represents the wavefunction, where we have one plasmon in a Φ-state.
This way we can write our resulting state as:

|1Φ〉 =
∑

k

ck |1k〉

The information regarding our initial state can now be kept in a string (actually, a vector), where
the k’th element is ck.
This vector will later serve as initial conditions for our Schrödinger equation, where we will use it
as Ψ(t = 0).

5.3 Results
For the simulation with one plasmon, we have chosen only to send in a plasmon from the right
side (this would be a leftpropagating plasmon), since obvious symmetry arguments would yield
the same result for rightpropagating plasmons.
One way of displaying the dynamics of the system would be to derive the probability amplitudes
for either of the three kinds of potential states (atom in ground state, leftpropagating plasmon, or
rightpropagating plasmon).
The following two pictures represent the solution to a system with initial conditions being a
leftpropagating Gaussian wave with σ = 2 and a interaction charaterized by ∆ω = 2.

11
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Figure 5.4 - The evolution of our system with respect to time. The black graph corresponds to the
probability for having an excited atom, the green and the red graph covers the probability of having
a rightpropagating or a leftpropagating plasmon, respectively.

This picture clearly shows the requirements for reflecting a wave, as it is quite obvious that a
reflected plasmon is actually a plasmon that has been absorbed by the atom and emitted in the
direction from whivh it came (there is no way of having a rightgoing plasmon until the probability
of an excited atom begins to rise).
Another way of displaying our resuls could be in a movie-like fashion, where we could observe a
travelling wave in positionspace and transmitted and reflected wave.
The best way of picturing this is in a cartoon-like fashion5 like this:

Figure 5.5 - Before-and-after-picture of the interaction between a leftpropagating Gaussian wave
and an atom. The red graphs are travelling to the left and the green graph is travelling to the right.

5The actual "movieclip" can be found at
http://www.fys.ku.dk/∼mcp/Bachelorprojekt/SinglePlasmonMovie.wmv
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Comparing these pictures to the graph in figure 5.4, we can see, that we (obviously) start out with
a leftpropagating wave and end up with about 55% chance of having a leftpropagating plasmon
(approximately the integral under the red curve in the second picture) and roughly 45% chance
of having a rightpropagating plasmon (the area under the green curve in the second picture as a
reference).
In other words figure 4.4 and figure 4.5 pretty clearly state the same facts about our system.
For the singleplasmon scheme we obtained the following graph by running our simulation numerous
times (30 to be more exact), each time with a different initial value for the width of the incoming
wave (this would be the parameter σ):

Figure 5.6 - The relation between the width of the incoming wavepacket versus the likeliness of full
transmission of the plasmon for states containing a single plasmon.

The shape of this graph is pretty wellknown and expected. We obviously want the transmission
to be low, when the Gaussian is wide (in positionspace), as this will result in a narrow Gaussian
in wavevectorspace and therefore a high chance of interaction and hence reflection.

6 Multiple Plasmons

6.1 Multimode multiplasmon model
In this section we are going to derive a model describing a system consisting of an atom as before
and many plasmons travelling along a wire.
We adopt the same sort of Hamiltonian as in the previous section. But as one might suspect this
one will be more detailed and complex than the previous one. Ĥatom remains unchanged, but
our Ĥfield now contains a term for each plasmon. The real challenge is to construct Ĥinteraction,
which should now contain every possible way the plasmons can interact with our atom.
The generalized Hamiltonian for a system containing a multimode multiphoton field and a twolevel

13



Lars Guski & Martin Cramer Pedersen Nonlinear Optics with Surface Plasmons

atom - a more general descibtion can be found in [8]:

Ĥ =
1
2

~ω0 (σaa − σbb) +
∑

k

~ωk

(
âk,Râ

†
k,R + âk,Lâ

†
k,L +

1
2

)
+

∑
k

~gk

(
σ+

∏
k

(âk,R)nR

(
â†k,R

)mR

+ σ−
∏
k

(âk,R)mR

(
â†k,R

)nR

)
+

∑
k

~gk

(
σ+

∏
k

(âk,L)nL

(
â†k,L

)mL

+ σ−
∏
k

(âk,L)mL

(
â†k,L

)nL

)

where n is the number of photon annilihated when the atom is exited, m the number created when
relaxed.
It should be emphasized that the Hamiltonian is strongly nonlinear.
This Hamiltonian appears to couple the desired states (this becomes excedingly clear, if we choose
the number of plasmons involved to be 1 or 2) and furthermore contains terms familiar to the
singleplasmon Hamiltonian, which will make the derivations a bit easier.

6.2 Applying the model
In order to use the timedependent Schrödingerequation we will need the timeevolved version of
the interaction part of out Hamiltonian. This is, however, easier said than done.
We suspect something along the lines of the timeevolved interaction operator from the singleplas-
mon model, but since we now have the factors like (âk,R)nR and

(
â†k,L

)mL

, our timeevolution
turns out to go less smooth. We end up with6:

V̂ = Û (t) Ĥint =
∑

k

~gk

(
σ+e

−iω0t
∏
k

(âk,R)nR

(
â†k,R

)mR

eiωk(nR−mR)t+

σ−e
iω0t

∏
k

(âk,R)mR

(
â†k,R

)nR

e−iωk(nR−mR)t

)
+

∑
k

~gk

(
σ+e

−iω0t
∏
k

(âk,L)nL

(
â†k,L

)mL

e−iωk(nL−mL)t+

σ−e
iω0t

∏
k

(âk,L)mL

(
â†k,L

)nL

eiωk(nL−mL)t

)

This operator should be ready for the Scrödingerequation, so without further delay, we use our two
components (timeevolved interaction-part of the Hamiltonian and a state consisting of an atom
and two travelling wavepackets, one from the left and one from the right).
At this point we are faced with the limitations of the analytical way of solving these problems.
The next step will quite simply be very, very tedious and very, very long.
Writing down the Schrödinger equations (and even worse: the solutions to these) will take forever,
as we have to be aware of the many different potential detunings and combinations of wavevectors.
A singlemode field is just not possible in the same way as in the single plasmon case.
In other words doing this by hand/analytically is a bad idea. We therefore skip directly to the
MatLab-based way of solving this, as we suspect the numerical method to be the "right" way of
doing things.
We will, however, be using the Hamiltonian above as an important tool during the calculations.

6See Appendix B for detailed derivation of the timeevolution
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7 Calculations - Multiple Plasmons

7.1 Constructing the algorithm
We will adopt a discrete subspace of wavenumbers, n, spanding from 1 to nmax.
The abundance of different states will then be:

Leftpropagating plasmons Rightpropagating plasmons State of the atom Abundance
1 0 Excited nmax

0 1 Excited nmax

2 0 Ground 1
2nmax(nmax + 1)

0 2 Ground 1
2nmax(nmax + 1)

1 1 Ground n2
max

Or 3nmax + 2n2
max in total; we call this number ntotal.

Please notice that the case where two leftmoving plasmons has k1 = 4 and k2 = 7 is not any
different from the state, where k1 = 7 and k2 = 4.
The number of different states is then:

NStates with two leftmoving plasmons =
nmax∑
i=1

i =
n2

max + nmax

2

The same is obviously the case for two rightmoving plasmons. It is, however, not the case, when
the plasmons are moving in opposite directions, as we will be able to tell plasmon 1 apart from
plasmon 2.
Once again we will make use of the following abbreviations and properties:

∆ω =
~ckn

g
gT =

2π
∆ω

In other words we will aim our calculations at the same timeframe as in the previous chapters
(concerning the systems with one plasmon). ∆ω is the same parameter as before and has the same
physical meaning. Combined with the knowledge of the width of the wave, these two cover the
information about the size of the interaction.

Figure 7.1 - Three of the five different kinds of possible states in the dualplasmon model; each of
the plasmons is contained in a discrete wavespace with nmax different possibilies. The other two
consist of the atom in an excited state and a plasmon travelling either left of right.

In order to create the matrix Ĥ to suit our needs, we will need it to be of the dimension ntotal ×
ntotal. This way we can construct it in such a way that we can connect every pair of coupled
states with a coupling constant in the offdiagonal elements corresponding to the transistion in
statespace.
That being said we plan on containing combined wavenumbers of the n’th state in the (n, n)
element.
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The generalized version of Ĥ for the multiple plasmon is:

Ĥ =


D1 0 C1 0 C3

0 D2 0 C2 C4

C†
1 0 D3 0 0

0 C†
2 0 D4 0

C†
3 C†

4 0 0 D5


The submatrices Cn and C†

n contain the information of the different possible couplings. The
elements of these matrices will be either 0, if no coupling, 1, if a normal couping, and

√
2, if there

is a coupling based on stimulated emission.
The C1- and C2-matrices have the dimensions ( 1

2nmax(nmax + 1))× (nmax). The C3 and C4 are
(n2

max)× (nmax)-matrices
Dn represents a diagonal matrix with elements corresponding to the energy in the field relative to
the resonance of the atom. D1 andD2 have dimension (nmax)×(nmax), D3 andD4 ( 1

2nmax(nmax+
1))× ( 1

2nmax(nmax + 1)), and D5 is (n2
max)× (n2

max).
And our MatLab-scripts can be found in Appendix D.
The mathematical form of the matrix will be more or less the same as the previous case, which is:

Ĥ

g
=

∑
k

∑
i=L,R

(
σ−â

†
k,i + σ+âk,i

)
+
∑

n

∑
j=L,R

~ckn

g
â†n,j ân,j

When using this matrix in our Schrödingerequation, we obtain a huge number of differential
equations (an equation for the timeevolution of every single state). When we set nmax = 51,
we are indirectly asking MatLab to solve more than 5000 coupled differential equations. These
calculations has taken a decent amount of time to perform.

7.2 Initial conditions
As done earlier for single-plasmon-systems, we will need to consider our initial states the same way
we did in the chapter for single plasmons. Once again we will be sending Gaussian wavepackets
at the atom, however, this time two plasmons will be in the state of the Gaussian beam, not one.
This will give rise to a number of necessary precautions, as we will now have to be more careful
with the normalization and our statespace.
First of all we need to be sure that when the two wavenumbers of the two plasmons are the same,
we will need to adjust by multiplying by

√
2. Furthermore the very enumeration of the states is

far more complicated than in the singleplasmon case - we will need an elaborate system to convert
our Gaussian in positionspace to a distribution in wavevectorspace. Not just the Fouriertransform
as earlier.
Once again we need a creationoperator (but only one, since we will be sending two plasmons in
the same state against the atom).
We want our operator to have the property:(∑

k

Φkâ
†
k

)2

|0〉 = â†2Φ |0〉 = |2Φ〉

Now things turn a bit more complicated this time, as we will run into trouble, whenever the two
plasmons have the same k.
The actual expression of the resulting state would be:

|2Φ〉 =
∑

k1>k2

√
2Φk1Φk2 |1k1k2〉+

∑
k1=k2

Φ2
k1
|1k1k2〉

And once again we will be able to write our as a sum of the complete set of wavevectors:

|2Φ〉 =
∑

k

ck1k2 |1k1k2〉
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These coefficients will be used as elements in the vector, we will use in our Schrödingerequation.
One more note on the initial states needs to be made. The enumeration of our states also plays
a bigger part in this chapter. In the singleplasmon-model we had the luck, that the number of a
state represented the energy relative to the resonant state; i.e. in state number 30 the plasmon
has less energy than state number 42.
This is not the case now. First of all we have two parameters representing the energy instead of
one.
We need to design a way of representing a two-parameter-state with only one parameter7.
The best way of describing this is done graphically. Please notice that k1 > k2 at all times, since
we would otherwise be counting some states twice. This way of enumerating the states is only
used for states, where both plasmons are propagating in the same direction.

-
k1

6k2

1 2 · · · nmax − 1 nmax

nmax + 1 · · · 2nmax − 2 2nmax − 1

· · · ...
...

ntotal − 2 ntotal − 1

ntotal

Figure 7.2 - Our enumeration of the states.

Combining the way of enumerating our states with the expression for |2Φ〉, we can now construct
the desired initial state.
Notice, that the initial state in positionspace is equal to the initial state of the singleplasmon
model. All we really do is adding another plasmon to the same state. This is one of the reasons,
why we have not made another "movieclip" of the events in positionspace. It would not be much
different from the one, we have already made.

7.3 Results
Once again we turn our attention to graphing the probabilities for having our system in different
states.
As one might have guessed, we need more graphs, as we have more states than before. These are,
however, best explained by the graph itself.
The following graph is made by setting nmax = 51, σ = 2, ∆ω = 2, and µ = 0:

7The program Integerfromarray.m does this in our script. The code can be found in Appendix D.
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Figure 7.3 - The black graph represents the probability of having atomic excitation. Notice, that it
peaks, when the center of the wave crosses the atom. The yellow graph contains the information
of the likeliness that one plasmon is travelling to the left and the other one propagating right. The
red graph is the probability of having two plasmons propagating left and the green graph represent
the same for rightmoving plasmons.

This figure tells us, what we already know. A reflected plasmon is clearly a plasmon, that has
interacted with the atom and has been emitted back in the direction from which it came. The
complicated part of this graph is, that both plasmons can find the time to interact with the atom
(the green graph is above zero at some point - this will become exceedingly clear later on).
In this case the probability of having "full transmission" is approximately 55% (the last points on
the red graph).
As we did in the previous resultsection, we have also constructed a graph of the probability of
transmission of both plasmon versus the width of the incoming wave.

18



Lars Guski & Martin Cramer Pedersen Nonlinear Optics with Surface Plasmons

Figure 7.4 - A (σ, P (Full transmission))-graph of states containing two plasmons.

Once again the shape of this graph is highly anticipated for exactly the same reasons as before.
We could have made a similar cartoonlike figure, but chose not to. An unfortunate feature of
the states in the dualplasmonmodel is, that where the states for single plasmons moved in a
direction that could be seen directly from the states position in the statevector, this is not the
case for multiple plasmon. The states, where the plasmons travel in different directions can not
be Fouriertransformed by MatLab. We would have to do the Fouriertransformations manually.
So even though creating a movie is not impossible at all, it would have been rather timeconsuming
and have lots of lots of tricky calculations.
We chose to prioritize the actual results above this.
This concludes our examinations of the dualplasmonsystem. We now turn our attention towards
comparing the singleplasmon scheme and the dualplasmon scheme.

8 Comparing the results
We have constructed two graphs, one for the singleplasmon case and one for the dualplasmon case.
The graphs has been created by varying the width of the Gaussian (known as σ) and measuring
the total probability for being in a state, where the directions of the velocity of the plasmons are
preserved.
And now for the final result of the project:
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Figure 8.1 - The black graph is the same as the one in figure 7.4. The blue graph is the values of
the graph in figure 5.6. The red is simply the blue graph squared. Please notice that the black and
the blue graph are very close to each other for small values of σ. They do, however, not cross!

The most important part of the picture above is to nice that the values of the black graph is (way)
above both the other graph.
As mentioned before one would expect the probability of full transmission of two plasmons to be
the same as the probability of full transmission of one plasmon squared, if we were dealing with
linear optics.
A quick look on the graphs tells us that this is not the case. Not even close to being the case
actually. Whereas the red graph is close to zero as about σ = 10, the black one is approximately
0.2. This is a remarkable difference in the model constructed from linear optics and the actual
results of the simulation.
The first and most important conclusion to draw here is simply that the fact that more plasmons
are present, limits the likeliness that the plasmons are actually capable of interacting with the atom
(please notice, that (Probability of full transmission) ∝ (Interaction with the atom)−1). Another
potential (although rather farfetched and "unphysical") model could be that one plasmon would
interact, while the other one would pass straight through as though the atom was were there.
If this were the case the blue and the black graph would be equal each other. This is obviously
not the case.
In other words we have "solved" the problem presented in figure 3.2. We are dealing with mechanics
more complicated than traditional optics. There is quite simply a more complicated effect taking
place during the interaction. It should be pretty clear that we left the realm of linear optics the
second, we turned our attention to the dualplasmon system.
The cause of the effect is a harder to figure out, than to actually show the existence of such.
Intuitively speaking, one imagines, that both plasmons interact a little with the atom, and therefore
none of them makes an actual "real" photoelectric interaction. In a very vague and unclear sense
the plasmons are blocking the interaction of each other.
Finally we have been asked to plot our graph with respect to g. The relation between the units
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has appeared to be:

gT =
2π
∆ω

Using c = 1 and ∆ω = 2, we can obtain an expression between distances in positionspace and the
corresponding coupling constants:

x =
π

g

As σ is a parameter existing in positionspace, we can now construct the following graph:

Figure 8.2 - The values from figure 8.1 plotted versus the width of the Gaussian in relation to
the coupling constant, g. This is probably a more correct manner of displaying our results, as the
parameter σ is a rather ambiguous quantity. It is highly dependant on nmax and the interpretation
is closely related to ∆ω. The factor, g, is a simpler and more "physical" quantity.

There are no new conclusions to be drawn here (all we really did was rescaling the categoryaxis). It
is merely the "right" way of doing things, as we have now taken units a bit back into consideration.

9 Conclusion
The synopsis of this project was investigating the nonlinear effects of a system described so many
times in this report.
Through simulations of these systems we have (in our own opinion) aquired results showing that
clearly sticking to linear optics simply will not suffice in these cases.
And even though the effects caused by this nonlinearity are too complicated to describe and un-
derstand yet, our simulations show that they are unquestionably there.
The project has gone relatively smooth. The biggest troublemaker during the process has un-
doubtedly been MatLab and MatLab’s unpleasant syntax. The actual physics behind the issues
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at hand are not too tricky (the linear ones, that is) to understand and once one is familiar with
the Hamiltonians and the Schrödingerequation, the dynamics of the system are understood quite
easily.
That being said, the obtained results are, as mentioned, far from fully explained.
Most of our time has gone by inventing, constructing, and interpreting the algorithms found in
Appendix C and D. Countless failed attempts have been made to construct usable initial condi-
tions and Hamiltonians. Every failed process did leave behind a little more understanding of the
numerical method we (and MatLab) were using.
This is an obvious advantage in this project. We were never in doubt, whether a result was close
to being correct or completely wrong, the graph would simply be physically uninterpretable (i.e.
the wave interact instantly/constantly with the atom or perhaps not at all). This was very helpful,
as debugging our scripts was necessary.
The results themselves seem to speak a bit for themselves. Some features in our graphs are easy
to interpret (i.e. the wave hits the atom at the right time or the probabilies for reflection differing
from zero at the correct parts of the graph). Other part of our results, this would be explaining
the events or effects caused by nonlinearity, are simply close to nondoable.
Nonetheless, we feel as if our goals have been fulfilled and that our initial questions have been
answered. We found (more or less expected) results that seems to be quite a good fit in the
nonlinear model.
In any way it has been an interesting assignment and a challenging procedure to work with.
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10 Appendix

10.1 Appendix A
Our operators and their applications
In our basic treatment of the atom and the field we can simplify the formulas and physical inter-
pretation by using operators to describe the dynamics of the system. The state of the atom is
descibed by our raising and lowering operators, σ+ and σ−.
In standard Dirac-notation, these are given by |a〉 〈b| and |b〉 〈a| respectively, where |a〉 and |b〉
represent the exited and the ground state of an atom.
The effect of these operators become clear, when we let them operate on the eigenstates of an
atom:

σ+ |b〉 = |a〉 〈b| b〉 = |a〉 σ− |a〉 = |b〉 〈a| a〉 = |b〉

As one might have suspected, the raising operator excites the atom, while the lowering operator
relaxes it.
The field is described by the creation- and the annihilationoperator, â†k and âk. Using traditional
canonical variables these can be written as (can be found in [9] and [7]):

âk =
1√

2mk~ωk

(mkωkx̂k + ip̂k) â†k =
1√

2mk~ωk

(mkωkx̂k − ip̂k)

In textbook-examples these operators are meant to work on a harmonic oscillator with discrete
modes. In this project we use them to treat the socalled Fock-states, where |n〉 represents a state
with n photons (in a cavity).
The effect of these operators are best viewed, when they are applied to a Fock-state:

âk |n〉 =
√
n |n− 1〉 â†k |n〉 =

√
n+ 1 |n+ 1〉

As we can see, there is a reason for the names of these operators.
One can obtain another important operator using these two:

n̂k = â†kâk

The effect of this operator is pretty simple:

n̂k |nk〉 = nk |nk〉

The operator simply tells us, how many particles can be found in the k’th mode.
This adds a minor interpretation to the Hamiltonian of a quantummechanical electromagnetic
field, as it becomes clear that all it really means is:

Etotal =
∑

k

nk · ~ωk

23



Lars Guski & Martin Cramer Pedersen Nonlinear Optics with Surface Plasmons

10.2 Appendix B
Timeevolution of our operators
During our derivations in the theoretical parts of the project, we often use timeevolved operators,
namely the annihilation- and the creationoperator (âk and â†k respectively) for the field and the
raising and lowering operator (σ+ and σ− respectively) for the atom.
When timeevolving these operators, we apply a time-evolution operator, which is described in [9].
The effect this operator will have on our four operators can easily be computed:

Û (t)σ+ = σ+e
iω0t

Û (t)σ− = σ−e
−iω0t

Û (t) âk = âke
iωkt

Û (t) â†k = â†ke
−iωkt

These timeevolutions play an important role in our way of proceeding through our calculations,
as these make our use of the timedependant Scrödingerequation possible.
Another (and perhaps more correct) way of deriving these expressions would be to use Heisenberg’s
commutatorrelations.
This would hopefully yield the same results as above, so we have not performed the calculations;
it is the traditional way of obtaining the timeevolution of an operator, though.
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10.3 Appendix C
Single plasmon MatLab scripts
The scripts written below can be found at http://www.fys.ku.dk/∼mcp/MatLab/SinglePlasmon.
Our program consists of the following scripts. In this case we have chosen nmax = 51, ∆ω = 2,
and we solve for t ∈ [0, π].
Our initial conditions consist of a leftpropagating Gaussian wave with parameters σ = 2 and
µ = −10.
The main MatLab-script of our program is:

clear;
clc;

%% Inputs
global nmax
nmax = 51;

global sigma
sigma = 2;

global mu
mu = -10;

global Delta
Delta = 2;

%% Program
global ti
ti = 0;
global tf
tf = 2*3.14169/Delta;
global N
N = 2*nmax + 1;

Hamiltonian;
disp(’Hamiltonian constructed...’)

InitialLeft;
% InitialRight;
disp(’Initial conditions constructed...’)

global psi
global T
[T,psi] = ode45(@Schr,[ti tf], psiini);
disp(’Schroedingerequation solved...’)

%% Outputs
ProbabilityAmplitude
% Movie

First things first. The lines in the beginning are used to specify the different quantities needed to
perform the calculation.
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After this a Hamiltonian is constructed using the following string:

global Delta
global nmax
global N

D = sparse(N,N);
V = D;

for j = 2:1:nmax+1;
aarray = Arrayfrominteger(j);
D(j,j) = aarray(2)-(nmax+1)/2;

end

for j = nmax+2:1:N
aarray = Arrayfrominteger(j);
D(j,j) = aarray(3)-(nmax+1)/2;

end

for j = 1
aarray = Arrayfrominteger(j);
if aarray(1)==1

for k = 1:1:nmax
barray = [0,k,0];
targetone = Integerfromarray(barray);
V(targetone,j) = 1;

end
for l = 1:1:nmax

barray = [0,0,l];
targetone = Integerfromarray(barray);
V(targetone,j) = 1;

end
end

end

D(1,1) = 0;

global H
H = V + V’ + Delta*D;

The two function, Integerfromarray and Arrayfrominteger, are supportfunctions, enumerating
the different states. They are obviously each others inverse function.
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IntegerFromArray is:

function f = Integerfromarray(barray);

global nmax
global N

if barray(1) == 0;
if barray(3) == 0;

f = barray(2)+1;
else

f = nmax+1+barray(3);
end

else
f = 1;

end

And the ArrayFromInteger-function consists of the following m-file:

function f = Arrayfrominteger(j);

global nmax
global N

if j == 1;
f = [1,0,0];

else
if j <= nmax+1;

f = [0,j-1,0];
else

f = [0,0,j-(nmax+1)];
end

end

Our Main.m-program now constructs the initial conditions (a Gaussian wave) using either the
InitialRight.m-file or the InitialLeft.m-file. These are almost identical except for the obvious fact
that InitialLeft constructs a leftpropagating wave and InitialRight constructs a rightpropagating.
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InitialLeft.m looks like the following in textformat:

global nmax
global sigma
global mu
global N

for m = 1:1:nmax
l(m) = 0;
r(m) = 0;

end

%% Leftpropagating Gaussian wave
for m = 1:1:nmax

l(m) = 1/(sigma*sqrt(2*3.14159))*exp(-((m-(nmax+1)/2)-mu)^2/(2*sigma^2));
end

lf = fft(l);
lfs = fftshift(lf);

global psiini
psiini = [0 lfs r];

The function forces a Fouriertransformed Gaussian into the leftpropagating part of a vector later
to be used in the Schrödinger equation.
And now for the core of the program - solving the differential equations - using ode45.
The function @Schr is given by:

function dpsidt = Schr(t,psi);
global H

dpsidt = -i*H*psi;

We have constructed our program in such a way that it is capable of making two different kinds
of outputs, one being a graph of the likeliness of being in one kind of state or another and the
other being a smaller movie of the whereabouts of our Gaussian wave and the resulting reflected
and transmitted wave.
The graph is constructed by the following script - called ProbabilityAmplitude.m:

global psi
global T
global ti
global tf
global nmax
global N

for m = 1:1:N;
for n = 1:1:length(psi(:,1));

psi2(n,m) = abs(psi(n,m))*abs(psi(n,m));
end

end
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for m = 1:1:N;
for n = 1:1:length(psi(:,1));

A(n) = 1/sum(psi2(n,:));
psi2n(n,m) = A(n)*psi2(n,m);

end
end
disp(’Preparations for plotting complete...’)

%% Probability of atomic excitation
for m = 1:1:length(psi(:,1));

psi2e(m) = psi2n(m,1);
end

plot(T,psi2e,’k’)
hold on

%% Probability of having a leftgoing plasmon
for m = 2:1:nmax+1

psi2left(:,m-1) = psi2n(:,m);
end

for m = 1:1:length(psi(:,1));
psi2l(m) = sum(psi2left(m,:));

end

plot(T,psi2l,’r’)
hold on

%% Probability of having a rightgoing plasmon
for m = nmax+2:1:N

psi2right(:,m-nmax-1) = psi2n(:,m);
end

for m = 1:1:length(psi(:,1));
psi2r(m) = sum(psi2right(m,:));

end

plot(T,psi2r,’g’)

%% All at once
axis([ti tf 0 1])
title(’Single plasmon excitation’);
xlabel(’Time’);
ylabel(’Probability amplitude’);
disp(’Plotting complete...’)

The program plots the normalized square of the outputs from the solutions of the differential
equations (keep in mind that (probability)∝ |ψ|2).
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The movie is made using these lines - referred to as Movie.m:

global psi
global T
global ti
global tf
global nmax
global N

%% Calculations
for m = 1:1:nmax

x(m) = m-(nmax+1)/2;
end

for m = 1:1:length(T)
gr(m) = psi(m,1);

for n = 2:1:nmax+1
left(m,n-1) = psi(m,n);

end
for n = nmax+2:1:N

right(m,n-nmax+1) = psi(m,n);
end

end

for m = 1:1:length(T)
lefts(m,:) = fftshift(left(m,:));
rights(m,:) = fftshift(right(m,:));
le(m,:) = fft(lefts(m,:));
ri(m,:) = conj(fft(conj(rights(m,:))));

end

for m = 1:1:nmax;
for n = 1:1:length(T);

gr2(n) = abs(gr(n))^2;
le2(n,m) = abs(le(n,m))^2;
ri2(n,m) = abs(ri(n,m))^2;

end
end

for m = 1:1:length(T)
sumx2(m,:) = le2(m,:)+ri2(m,:)+gr2(m);

end

for m = 1:1:nmax;
for n = 1:1:length(T);

A(n) = 1/sum(sumx2(n,:));
le2n(n,m) = A(n)*le2(n,m);
ri2n(n,m) = A(n)*ri2(n,m);

end
end
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for m = 1:1:length(T)
le2ns(m,:) = fftshift(le2n(m,:));
ri2ns(m,:) = fftshift(ri2n(m,:));

end
disp(’Preparations for plotting complete...’)

%% Plot
for m = 1:10:length(T)

plot(0,0.009,’bo’)
hold all
plot(x,ri2ns(m,:),’g’)
hold all
plot(x,le2ns(m,:),’r’)
axis([-(nmax+1)/2 (nmax+1)/2 0 0.5])
xlabel(’x’)
ylabel(’Fieldstrength’)
pause(0.5)
hold off

end
disp(’Plotting complete...’)

This script is a bit trickier.
First of all we have to transform back to positionspace (this is done relatively easy using FFT and
FFTSHIFT. After that we plot the same normalized probabilities (they differ greatly from the ones
in ProbabilityAmplitude, as these are in an entirely different Hilbertspace).
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10.4 Appendix D
Multiple plasmons MatLab scripts
The follwing scripts can be found at http://www.fys.ku.dk/∼mcp/MatLab/MultiplePlasmon.
The structure of the dualplasmon simulation is much like the one of the single plasmon simulation.
The different scripts and functions fulfill the same task as the one by the same name in the other
simulation.
In this case we have chosen nmax = 51, ∆ω = 2, such that we solve for t ∈ [0, π].
Our initial conditions consist of a leftpropagating Gaussian wave with parameters σ = 2 and
µ = 0.
The main MatLab-script of our program is:

clear;
clc;

%% Inputs
global nmax
nmax = 11;

global sigma
sigma = 2;

global mu
mu = 0;

global Delta
Delta = 2;

%% Program
global ti
ti = 0;
global tf
tf = 2*3.14169/Delta;
global N
N = 2*nmax + (nmax*(nmax+1)) + nmax^2;

Hamiltonian;
disp(’Hamiltonian constructed...’)

InitialLeft;
% InitialRight;
disp(’Initial conditions constructed...’)

global psi
global T
[T,psi] = ode45(@Schr,[ti tf], psiini);
disp(’Schroedingerequation solved...’)

%% Outputs
ProbabilityAmplitude

The string used to construct the Hamiltonian is (not surprisingly) a lot more complicated than
the previous.
First of all the part of the matrix that describes the coupling is no longer filled with either zeroes
or ones, but also with

√
2. Furthermore, the actual number of nonzero elements is much, much
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larger than before.

global nmax
global N
global Delta

D = sparse(N,N);
V = D;

for m = 1:1:nmax;
aarray = Arrayfrominteger(m);
D(m,m) = aarray(2)-(nmax+1)/2;
if aarray(1) == 1

for n = 1:1:nmax
if m == n

barray = [1 m 0 0 0];
darray = [0 m 0 n 0];
targetone = Integerfromarray(barray);
targetthree = Integerfromarray(darray);
V(targetone,targetthree) = 1;

else
barray = [1 m 0 0 0];
darray = [0 m 0 n 0];
targetone = Integerfromarray(barray);
targetthree = Integerfromarray(darray);
V(targetone,targetthree) = 1;

end
end
for n = 1:1:m

if m == n
barray = [1 m 0 0 0];
carray = [0 m n 0 0];
targetone = Integerfromarray(barray);
targettwo = Integerfromarray(carray);
V(targetone,targettwo) = sqrt(2);

else
barray = [1 m 0 0 0];
carray = [0 m n 0 0];
targetone = Integerfromarray(barray);
targettwo = Integerfromarray(carray);
V(targetone,targettwo) = 1;

end
end

end
end
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for m = nmax+1:1:2*nmax;
aarray = Arrayfrominteger(m);
D(m,m) = aarray(4)-(nmax+1)/2;
if aarray(1) == 1

for n = 1:1:nmax
if m-nmax == n

barray = [1 0 0 m-nmax 0];
carray = [0 n 0 m-nmax 0];
targetone = Integerfromarray(barray);
targettwo = Integerfromarray(carray);
V(targetone,targettwo) = 1;

else
barray = [1 0 0 m-nmax 0];
carray = [0 n 0 m-nmax 0];
targetone = Integerfromarray(barray);
targettwo = Integerfromarray(carray);
V(targetone,targettwo) = 1;

end
end
for n = 1:1:m-nmax

if m-nmax == n
barray = [1 0 0 m-nmax 0];
darray = [0 0 0 m-nmax n];
targetone = Integerfromarray(barray);
targetthree = Integerfromarray(darray);
V(targetone,targetthree) = sqrt(2);

else
barray = [1 0 0 m-nmax 0];
darray = [0 0 0 m-nmax n];
targetone = Integerfromarray(barray);
targetthree = Integerfromarray(darray);
V(targetone,targetthree) = 1;

end
end

end
end

for m = 2*nmax+1:1:2*nmax+nmax*(nmax+1)/2;
aarray=Arrayfrominteger(m);
D(m,m) = (aarray(2)+aarray(3))-(2*nmax+2)/2;

end

for m = 2*nmax+nmax*(nmax+1)/2+1:1:2*nmax+nmax*(nmax+1);
aarray=Arrayfrominteger(m);
D(m,m) = (aarray(4)+aarray(5))-(2*nmax+2)/2;

end

for m = 2*nmax+nmax*(nmax+1)+1:1:2*nmax+nmax^2+nmax*(nmax+1);
aarray=Arrayfrominteger(m);
D(m,m) = (aarray(2)+aarray(4))-(2*nmax+2)/2;

end

global H
H = V + V’ + Delta*D;
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As one might suspect, the support functions will also turn out to be far more complicated than
the ones keeping track of the singleplasmon states.
Integerfromarray is:

function f = Integerfromarray(barray);
global nmax
global N

if barray(1) == 1;
if barray(2) == 0;

f = nmax + barray(4);
else

f = barray(2);
end

else
if barray(2) == 0;

f = 3*nmax+nmax*(nmax-1)/2+(nmax-(barray(5)))*(barray(5)-1)...
.+barray(4)+(barray(5)*(barray(5)-1))/2;

else
if barray(4) == 0;

f = 2*nmax+(nmax-barray(3))*(barray(3)-1)+barray(2)...
.+(barray(3)*(barray(3)-1))/2;

else
f = 4*nmax+nmax*(nmax-1)+(barray(4)-1)*nmax+barray(2);

end
end

end
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And the Arrayfrominteger-function consists of the following m-file:

function f = Arrayfrominteger(j);
global nmax
global N

if j <= nmax;
m = j;
f = [1,m,0,0,0];

else
if j <= 2*nmax;

m = j - nmax;
f = [1,0,0,m,0];

else
if j < 2*nmax+nmax*(nmax+1)/2+1;

for r = 1:1:nmax
for s = 1:1:r

if Integerfromarray([0 r s 0 0]) == j
k = r;
g = s;

else
end

end
end
f = [0,k,g,0,0];

else
if j <= 2*nmax+nmax*(nmax+1);

for r = 1:1:nmax
for s = 1:1:r

if Integerfromarray([0 0 0 r s]) == j
k = r;
g = s;

else
end

end
end
f = [0,0,0,k,g];

else
for r = 1:1:nmax

for s = 1:1:nmax
if Integerfromarray([0 r 0 s 0]) == j

k = r;
g = s;

else
end

end
end
f = [0,k,0,g,0];

end
end

end
end

Our Main.m-program now constructs the initial conditions (a Gaussian wave) using either the
InitialRight.m-file or the InitialLeft.m-file. These are almost identical except for the obvious fact,

36



Lars Guski & Martin Cramer Pedersen Nonlinear Optics with Surface Plasmons

that InitialLeft constructs a leftpropagating wave and InitialRight constructs a rightpropagating.
The important part is to make sure the FFT and FFTSHIFT is used properly.
InitialLeft.m looks like the following in text:

global nmax
global sigma
global mu
global N
global tau

for m = 1:1:nmax
exl(m) = 0;
exr(m) = 0;

end

for m = 1:1:nmax*(nmax+1)/2
r(m) = 0;
ini(m) = 0;

end

for m = 1:1:nmax^2
b(m) = 0;

end

%% Leftpropagating Gaussian wave
for m = 1:1:nmax

gau(m) = 1/(sigma*sqrt(2*3.14159))*exp(-((m-(nmax+1)/2)-mu)^2/(2*sigma^2));
end

gauf = fft(gau);
gaufs = fftshift(gauf);

for m = 1:1:nmax
for n = 1:1:m

if n == m
ini(Integerfromarray([0 m n 0 0])-2*nmax) = gaufs(m)*gaufs(n);

else
ini(Integerfromarray([0 m n 0 0])-2*nmax) = sqrt(2)*gaufs(m)*gaufs(n);

end
end

end

global psiini
psiini = [exl exr ini r b];

The events in this program are described in the chapter on the initial states used to solve the
multiple plasmon problem.
The governing equation of the entire problem is still @Schr.
The function handle @Schr is:

function dpsidt = Schr(t,psi);
global H

dpsidt = -i*H*psi;
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The final graph is constructed by the following script - called ProbabilityAmplitude.m - it does
exactly what it sounds like - collecting the different probabilities and plotting them:

global psi
global T
global ti
global tf
global nmax
global N
global tau

for m = 1:1:N;
for n = 1:1:length(psi(:,1));

psi2(n,m) = abs(psi(n,m))^2;
end

end

for m = 1:1:N;
for n = 1:1:length(psi(:,1));

A(n) = 1/sum(psi2(n,:));
psi2n(n,m) = A(n)*psi2(n,m);

end
end
disp(’Preparations for plotting complete...’)

%% Probability of atomic excitation
for m = 1:1:2*nmax

psi2ex(:,m) = psi2n(:,m);
end

for m = 1:length(psi(:,1));
psi2e(m) = sum(psi2ex(m,:));

end

plot(T,psi2e,’k’)
hold on

%% Probability of atomic excitation and leftpropagating plasmon
% for m = 1:1:nmax
% psi2exl(:,m) = psi2n(:,m);
% end
%
% for m = 1:length(psi(:,1));
% psi2l(m) = sum(psi2exl(m,:));
% end
%
% plot(T,psi2l,’m’)
% hold on
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%% Probability of atomic excitation and rightpropagating plasmon
% for m = nmax+1:1:2*nmax
% psi2exr(:,m-nmax) = psi2n(:,m);
% end
%
% for m = 1:length(psi(:,1));
% psi2r(m) = sum(psi2exr(m,:));
% end
%
% plot(T,psi2r,’c’)
% hold on

Probability of having two leftpropagating plasmons
m = 2*nmax+1:1:2*nmax+nmax*(nmax+1)/2

psi2lele(:,m-2*nmax) = psi2n(:,m);
end

for m = 1:length(psi(:,1));
psi2ll(m) = sum(psi2lele(m,:));

end

plot(T,psi2ll,’r’)
hold on

%% Probability of having two rightpropagating plasmons
for m = 2*nmax+nmax*(nmax+1)/2+1:1:2*nmax+nmax*(nmax+1)

psi2riri(:,m-2*nmax-nmax*(nmax+1)/2) = psi2n(:,m);
end

m = 1:length(psi(:,1));
psi2rr(m) = sum(psi2riri(m,:));
end
(T,psi2rr,’g’)
hold on

%% Probability of having one plasmon propagating in each direction
for m = 2*nmax+nmax*(nmax+1)+1:1:2*nmax+nmax^2+nmax*(nmax+1)

psi2leri(:,m-2*nmax-nmax*(nmax+1)) = psi2n(:,m);
end
for m = 1:length(psi(:,1));

psi2lr(m) = sum(psi2leri(m,:));
end

plot(T,psi2lr,’y’)
on
%% All at once
(’Time’);
ylabel(’Probability Amplitude’);
axis([ti tf 0 1])
title(’Dual Plasmon Excitation’);
disp(’Plotting complete...’)
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