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Abstract

This thesis study an ultra cold (UC) atom trap simulation of a topological semi-metal with double-
Weyl points in a cubic lattice. Atoms in the simulated topological semimetal system can be driven by
external forces through the Brillouin Zone (BZ), and as such the population in the two-level system of
the effective Hamiltonian, can be examined. Especially the evolution close to the band-touching points,
where non-adiabatic transitions, Landau-Zener transition, take place is of great interest. The double-
Weyl semimetal quadratic energy dispersion is special compared to that of the linear dispersion that
single-Weyl semimetals has. The quadratic dispersion is compared with that of the standard Landau-
Zener problem, a linear dispersion, which is also present in the system. The system has more than
one Weyl point, and therefore more than one transition. Therefore the two-band populations undergo
Stückelberg oscillations. The goal is to present a first order computation, and predict the results of a
potential future experiment.

A description of the topology of the Weyl points is studied as a description of the anomalous flow
that the system undergoes in real space. We find that no flow is present in our case. The discussion
of realizing the Hamiltonian in experiments is described as well as a discussion of the diabatic case.
Furthermore, higher order calculations are also presented.
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1 Introduction

The theory of exotic topological quantum matter have enjoyed a growing interest in the last decade.
Though they have previously been studied in solid state sytems, the advent of quantum simulations using
ultra cold (UC) atom traps has sped up the study [1]. Observables, which are not studied in solid state
physics of these theoretically predicted states of quantum matter, can be accessed within a controlable en-
vironment of high tunability. This thesis’ goal is to achieve an understanding of one such quantum matter’s
transport properties: The double-Weyl semimetal.

Topology in mathematics is the description of equivalency in geometry. In the physics of topological
semimetals the word refers to the stability of the band structure. Topological semimetals are a gapless
state of matter with a stable Fermi surface. Several types of topological semimetals exist, and the Weyl
semimetal is one of the canonical examples of these. The band touching points are protected and described
by the topological invariance of the Chern number of the points. This invariance, which is the topological
charge of the system, can be violated by breaking the symmetries of the Hamiltonian. Breaking the C4

rotational symmetry invariance, will result in splitting the double-Weyl into two Weyl points of charge±1.
Double-Weyl point can be brought together to annihalate each other. Keeping the Weyl points far from
each other will therefore, be key to the stability of the band structure. If the double-Weyl point is situated
at the Fermi surface it will result in a hole in the surface, constituting a incomplete Fermi surface, and
exotic surface arc states will appear, which have an intrinsic chirality. The wavefunctions link two nodes
of different chirality [2, 3].

Using a low energy effective Hamiltonian of a cubic Bloch band lattice structure enables the approximation
of a two state system. We will adapt the following notation for derivatives,

∂n
i =

∂n

∂ni
(1.1)

and the natural constant of h̄ = 1.

1.1 Realizing the cubic lattice of a Weyl semimetal in an UC atom trap

The modeling of the double-Weyl Hamiltonian and its lattice structure in a UC atom traps is not the main
objective of this thesis. However, for the sake of completeness, I summarize the main features of the
proposal presented in [4] for the realization of a double-Weyl semimetal based on an UC atom system
in an optical lattice subject to artificial gauge potentials. Articifial gauge fields are an enormously valuable
tool to simulate magnetic fields. When the internal states, in this case there are two, couple they generate
lattice vortices that are synonymous to magnetic vortices [5]. Because of the energy difference between
neighbouring lattice sites, Raman lasers with a frequency equal to the energy difference couple them [6].
This in turn constitute vortices in all unit cells, which is the simulation of an extremely large magnetic field.

To find an effective low-energy Hamiltonian for the two-level system, firstly a system with Weyl nodes is
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1. INTRODUCTION

defined, by introducing the Abelian, Hasegawa gauge AAB [4, 7], that establish π pulses in the lattice at the
postion r = (x, y, z),

AAB(y, z) = I2×2π

z− y
y− z

0

 . (1.2)

Note that two states or species of an atom are accounted for in the gauge of Eq. 1.2 by the 2 by 2 identity
matrix, I2×2. Otherwise physically achievable species of spin, has been shown to be energetically unfavor-
able in an experimental setup [5, 6]. The species are regarded as a hyperfine structure of the system, which
is degenerate in the ground state manifold [5]. The manifold is defined by the topology of the system’s
Berry curvature [8]. The topology of the system will also be described in this thesis’ Sec. 4. The lattice
Hamiltonian is constructed by creation and annihilation operators, cr, c†

r . Due to the gauge these are two-
state spinors, at different lattice sites. In the convention of [4, 9] they are spaced by a lattice constant of 1,
and a hopping factor of t, with a phase between them explicitly written as

H = −t ∑
r ,ĵ

c†
r+ĵe

iθĵ cr + h.c., (1.3)

with the phase between two sites is the path integral,

θĵ(r) =
∫ r+ĵ

r
AAB,ĵ(r)dr. (1.4)

We will not go into detail about the calculations to compute the Weyl Hamiltonian as it is not the goal
of this thesis. The r is broken up into sums over x,y and z postions with a lattice constant of 1. The
creation/annihilation operators’ Fourier counterparts are used to achieve the Hamiltonian in momentum
space k(kx, ky, kz) [9]. The Brillioun Zone (BZ) in this scheme is split into 4 squares each of area π × π

where each square are coupled to the square in the opposite corner, effectively introducing a new degree
of freedom; a pseudo-spin τi. The sum can be simplified for all the directions, yielding,

H(k) = −2tτx cos kx + 2tτy cos ky − 2tτz cos kz. (1.5)

To realize the Hamiltonian in Eq. 1.3 in 2 dimension (2D), Raman lasers are employed. To achieve a
4 double-Weyl Hamiltonian a non-Abelian gauge, constructed by Pauli matrices σi, is introduced to the
gauge in Eq. 1.2,

A(y, z) = AAB + q

σx

σy

0

 , (1.6)

which constitute a Hamiltonian of the form,

H(k, q) = t ∑
r ,S,S′

c†
r ,SUĵ,S,S′cr+ĵ,S′ + H.C. Uĵ,S,S′ = Pei

∫ r+ĵ
r Aĵ(r)dr. (1.7)

The path ordering, P , can with great succes be removed. Even with the introduction of a non-Abelian
gauge potential, the gauge still commutes at each point in space with another point in space. The Hamil-
tonian that we aquire is,

Ux = eiθx(cos qI2×2 + i sin qσx) Uy = eiθy(cos qI2×2 + i sin qσy)

H = 2t
(
− cos q cos kxτx ⊗ I + cos q cos kyτy ⊗ I − cos q cos kzτz ⊗ I

+ sin q sin kxτx ⊗ σx − sin q sin kyτy ⊗ σy

)
. (1.8)
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2. LANDAU-ZENER TUNNELING

(a) The dispersion opens a gap when kx 6=
0 and without a gap for kx = 0 seen when
changing kz

(b) The dispersion opens a gap when
kx 6= 0 and without a gap for kx = 0 seen
when changing ky

(c) The dispersion opens a gap when
kz 6= 0 and without a gap for kz = 0 seen
when changing kx − ky

Figure 1: Energy dispersion of effective Hamiltonian. A reasonable guess would be that, that whether
the variable under change is ky, kx or kz will have an impact on the evolution of the system’s state; if the
dispersion is either quadratic or linear.

This is a 4 band Hamiltonian, but in a perturbative limit it reduces to Eq. 2.1 with the energy dispersion
shown in Fig. 1. The experimental realization of the non-Abelian gauge is still an open discussion, with rare
earth metals and Ytterbium being the most relevant points of interest [10, See Fig. 2]. Even the realization
of the 3 dimensional (3D) Abelian gauge is not a settled matter. I have presented the Hasegawa gauge
which can be realized by Raman lasers. Another way to achieve Weyl nodes is by stacking 2D sheet with
Dirac cones, breaking the translational symmetry in the z-direction and then employing Raman lasers to
assist hopping [11]. With other systems’ Hamiltonians being realized, their topology probed and their edge
states observed [12], the future of UC atom trap simulations are, however, bright.

2 Landau-Zener tunneling

This section will focus on deriving the non-adiabtic first order transition amplitudes of an atom subjected
to a constant force of magnitude F. The transition for a quadratic dispersion of a double-Weyl node, as we
will see, has another probabilty than that of the linear dispersion of a single Weyl node. The method has
been used to calculate the transition amplitudes for an atom moving past Dirac cones [13], which have
been measured experimentally [14]. As mentioned in Sec. 1.1, our case can be thought of as a 3D extension
of this. A graphene sheet with Dirac cones are stacked to form line nodes, and breaking the translational
invariance along the z direction forms Weyl nodes. An atom is prepared adiabatically at time t = −∞
in the lower band of the effective Hamiltonian in Eq. 2.1 and a force in the direction n̂ begins to move
the atom such that ∂t[k(t)] = Fn̂. As it moves through momentum space (See Fig. 1), it can approach
a band touching point. Displaced from these points the evolution of the states is quasi-adiabatic; and
according to the adiabatic theorem there should be no transfer of particles between the bands, except at the
bandtouching point. I will reference the theorem several times through out the thesis, so we define it as
Born and Fock writes it:
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2. LANDAU-ZENER TUNNELING

A physical system remains in its instantaneous eigenstate if a given perturbation is acting on it slowly enough and
if there is a gap between the eigenvalue and the rest of the Hamiltonian’s spectrum

However, due to the finitely slow velocity, the two bands interact close to the node under the exchange
of the state’s amplitude: As it moves through the BZ, and the difference between the two bands shrinks,
the adiabatic theorem collapses. Landau-Zener transitions are a very general concepts and have been
employed in many different areas. Its description were originally used to describe atomic collisions [15],
but as we will show the generality and simplicity of coupling two-level system non-adiabatically is a great
strength, and proves its universality.

2.1 The Hamiltonian; the states and energies

With the realization of 4 double-Weyl nodes in a cubic lattice structure in the UC atom trap, the problem
is further simplified for low energy atoms, close to the nodes, by the perturbative approximation of a two
level system. The effective Hamiltonian that this thesis will center around is,

H =

(
kz k2

−
k2
+ −kz

)
= S(k(t)) · σ, (2.1)

where S(k(t)) is a Bloch vector (See Eq. 2.3). The momenta of this toy Hamiltonian should be corrected by
their effective velocities, α, β and vz, as menitioned in [13]. We will discuss the dimensions of the Hamil-
tonian in Sec. 2.2. The Hamiltonian has, in this continuum limit, an O(2) symmetry about the z-axis. It is
written in terms of the Pauli vector and a Bloch vector, with k± = kx ± iky. The vector k(t), will in this
thesis always change with a force of linear time dependency. For simplicity we retract this explicit depen-
dency, so k(t) ≡ k. As the Hamiltonian is simply the product between the vector S(k) and the Pauli vector,
the states and energies are characterized by a Bloch sphere notation (See Appendix 8.C). We introduce
a gauge transformation of e−iφS(k)/2, with φS being the azimuthal angle of the Bloch vector. We can also
conclude that shifting the polar angle of S, θS, by π/2 two states, an upper ψ+ and lower ψ−, which is still
orthogonal and eigenstates to the Hamiltonian with the correct energies, E±, can be separated,

|ψ−(k)〉 =
(

sin(θS(k)/2)e−iφS(k)/2

− cos(θS(k)/2)eiφS(k)/2

)
, |ψ+(k)〉 =

(
cos(θS(k)/2)e−iφS(k)/2

sin(θS(k)/2)eiφS(k)/2

)
,

E±(k) = ±|S(k)| = ±
√

k2
z + (k2

x + k2
y)

2, (2.2)

with the Cartesian and spherical coordinates of the Bloch vector,

S(k) cart.
=

Sx(k)
Sy(k)
Sz(k)

 =

(k2
x − k2

y)

2kxky

kz

sphe.
=

|S|(k)θS(k)
φS(k)

 =



√
S2

x + S2
y + S2

z

arccos
Sz√

S2
x + S2

y + S2
z

arctan
Sy

Sx

 =


E+(k)

arccos
kz

E+(k)

arctan
2kxky

k2
x − k2

y

 .

(2.3)

The gauge transformation will be helpful to obtain an easy to use timedependency of the states. The
instantaneous eigenstates of the Hamiltonian correspond to an upper and a lower band, E±(k). Due to
the linearity of the force, instantaneous eigenstates are a decent basis; the Hamiltonian is diagonalized
with regards to the force, and therefore time, as the parameter (See Eq. 2.4). The bands touch in the
Weyl nodes, where the adiabatic theorem, breaks down, as the atom’s neighbourhood at such a point will
contain the non-adiabatic band touching point. If an atom is loaded in the lower band, adiabaticly, there

4



2. LANDAU-ZENER TUNNELING

is no transition probability discplaced from these nodes. However, close to the crossing, the energy bands
exhibit a avoided-touching appearence where a non-adiabatic Landau-Zener (LZ) tunneling event can take
place. We will throughout this thesis use a parameter k0 to displace the atom from the band touching point,
so when the atom moves through the BZ it moves past the point; close to it, but not into it. This thesis
researches 3 cases (See Table 1) of displacement from the bandtouching point. In each case, the atom starts
so far from the bandtouching point that the adiabatic theorem holds, even for finitely slow velocities. We
then move the atom with a force F past the bandtouching point, with a parameter k0, that tunes how far
from the point the atom is when it is at its closest. The method of Landau and Zener is that when we obtain
the amplitude at t = ∞, the explicit time dependency is not needed [16].

Moving in kz Moving in kx Moving in kx

Displacement: kx-ky-plane kz ky

S-parameters ∂tθS = 0 ∂tφS = 0 ∂tφS = 0

Table 1: The three cases, this thesis will research to obtain the probabability of tunneling to the upper state.
The three cases of displacement from the bandtouching point and the Bloch vector’s time dependency in
each cases. The length of the vector is always time dependent, but as we will see, the length of the Bloch
vector will not play into the time-dependent perturbation theory that we use in this thesis.

The general time dependency of the amplitudes, A±(t), of the two adiabatic states satisfy the time-dependent
Schrödinger equation. Any instantaneous wavefunction, |Ψ(t)〉 can be written as a linear combination of
the instantaneous eigenstates, |ψ(t)±〉, the time-dependent amplitudes, A±(t) and a dynamical phase [17],

|Ψ(t)〉 = A+(t)ei
∫ t dt′E+(t′)|ψ+(t)〉+ A−(t)ei

∫ t dt′E−(t′)|ψ−(t)〉. (2.4)

The Schrödinger equation can be reduced to,

∂t A±(t) + A±(t)〈ψ±(t)|∂tψ±(t)〉 = −〈ψ±(t)|∂tψ∓(t)〉A∓(t)e±2i
∫ t dt′E+(k(t′)), (2.5)

due to the fact E+(k(t)) = −E−(k(t)). Furthermore, for all of the cases 〈ψ±(t)|∂tψ±(t)〉 = 0. This is due
to the fact that |∂tψ±(t)〉 ∝ |ψ∓(t)〉 with 〈ψα|ψβ〉 = δαβ. We then obtain the differential equation,

∂t A±(t) = −〈ψ±(t)|∂tψ∓(t)〉A∓(t)e±2i
∫ t dt′E+(k(t′)), (2.6)

where 〈ψ±(t)|∂tψ∓(t)〉 corresponds to the force coupling the adiabatic eigenstates of the Hamiltonian. The
adiabatic basis can relatively easily be held up against that measured in experiments [18]. After the atoms
have evolved through the BZ, the experimenter can take a snapshot of the atom cloud and the state will
be frozen in the linear combination of the instantaneous Hamiltonian. The differential equations of Eq. 2.6
are solved by time-dependent perturbation theory (TDPT). For each case the Hamiltonian, the eigenstate
and the energies of interest are presented. After the calculations we will quickly conclude and present the
results.

2.1.1 Movement in kz, displacement in the kx − ky plane

The first case is akin to that of the regular LZ problem in 3D [15]. It will be a method to compare the
results found in the next two cases, which are arguably more complicated, with the same method used
on a problem that is well documented. The force is in the kz direction and we have a displacement from
the node in the kx − ky plane. Due to the O(2) symmetry in the kx − ky plane, the dispalacement can be is

5



2. LANDAU-ZENER TUNNELING

defined by cylindrical coordinates kΓ = (k0,Γ, θΓ, kz), instead of taking specific coordinate. The Hamiltonian
is,

H =

(
Ft Γ
Γ∗ −Ft

)
= k2

0,Γ cos 2θΓσx + k2
0,Γ sin 2θΓσy + Ftσz, (2.7)

with Γ = k2
0,Γe−2iθΓ . The time dependency, which can be obtained by a simple change of the derivative

parameter, of the states in Eq. 2.2 are only dependent in the θS parameter of Eq. 2.3,

|∂tψ±(t)〉 = ∓
∂tθS(t)

2
|ψ∓(t)〉 E±(t) = ±F

√
t2 + k4

0,Γ/F2, (2.8)

and the amplitudes then satisfy Eq. 2.6. The time derivative of θS(t) is given by ∂tθS(t) = −
Fk2

0,Γ
E+(t)2 . This is

used to set up the differential equation in Eq. 2.6. The integral we want to obtain for A+(∞) is,

A+(∞) = −
∫ ∞

−∞
dt

Fk2
0,Γ

2E+(t)2 · e
2i
∫ t dt′E+(t′). (2.9)

This integral has two poles in the Argand plane, ± ik0,Γ
F . The exponential of the dt’-integral can be moved

out of the dt-integral, and the phase of Eq. 2.9 can then be evaluated in the pole enclosed in the contour
that closes the integral of A+(t). Naively one could think that it is the application of Cauchy’s theorem that
allows this. However, we identify that the funtion is not single valued around the time pole; rotating 2π

around the pole will not yield the same functional value, and therefore Cauchy’s theorem is not applicable
(See discussion in Appendix 8.A and proof by [19]). To solve the exponential integral we use a trigono-
metric substitution with a new intragtion variable, θ̃, so that t = tan(θ̃)k2

0/F. The integral evaluated at the
upper half plane pole yields,

F
∫ t0

0
dt
√

t2 + k4
0,Γ/F2 =

k4
0,Γ

2F
ln
( F

k2
0,Γ

t0

)
=

ik4
0π

4F
. (2.10)

The pole enclosed in the contour are in the upper half plane, due to E+ > 0, and it is a result of the
singularity in ∂tθS, which is t0 = ik2

0,Γ/F. The residue at this first order pole is,

Rt+ = lim
t→ik2

0,Γ/F
−

k2
0,Γ

Ft + ik2
0,Γ

=
i
2

, (2.11)

which leaves us the probability,

P+(∞) = |A+(∞)|2 =
π2

4
e−

πk4
0,Γ

2F . (2.12)

This result is expected from the classical LZ problem[15, 20], with a linear adiabacity parameter δ =

k4
0,Γ/4F. We can also write it without the prefactor, that stems from it being a first order perturbation

theory [13].

P+(∞) = |A+(∞)|2 = e−
πk4

0,Γ
2F . (2.13)

2.1.2 Movement in kx, displacement in kz

Moving in the kx direction with a displacement in ky the Hamiltonian is given by,

H =

(
kz F2t2

F2t2 kz

)
= kzσz + F2t2σx, (2.14)

with the two states and energies

|ψ+〉 =
(

cos(θS/2)
sin(θS/2)

)
, |ψ−〉 =

(
sin(θS/2)
− cos(θS/2)

)
E± = ±

√
k2

z + (Ft)4. (2.15)

6



2. LANDAU-ZENER TUNNELING

This is the case that [13, 21] discuss. A sliver of our double-Weyl momentum space is equal to their case of
two displaced Dirac cones with a quadratic dispersion in one direction. The major difference between this
case and the previous of the regular/linear LZ problem is that the squareroot in the time integral of the
energy is a squareroot of a hyperpolynomial. We will discuss this later in the section and Appendix 8.E.
Now we define the differential equation (Eq. 2.6) to be solved. The following couplings are calculated,

−〈ψ+|∂tψ−〉 = 〈ψ−|∂tψ+〉 =
∂tθS

2
,

∂tθS =
2k0,zF4t3(

F4t4 + k2
0,z

)√
F4t4

=
2k0,zF2t(

E+

)2 . (2.16)

We are left with an equation for the upper band amplitude, at first order with the zeroth order amplitude
A(0)
− (t) = 1,

∂t A+(t) = −〈ψ+|∂tψ−〉A−(t)e2i
∫ t dt′E+(t′) =

∂tθS

2
e2i
∫ t dt′E+(t′), (2.17)

with the poles given below,

t0 =
{
± e3iπ/4

√
k0,z

F
,±eiπ/4

√
k0,z

F

}
. (2.18)

Integration in the upper plane closes the integral. The fact that there are two poles in each half plane, will
create oscillations as the two interfere [13]. Now we introduce a Taylor expansion of the energy integral.
Due to the integral of the squareroot of a quaternic polynomial in the exponent, the time evolution found
with Eq. 2.6 has an exponential integral, which arises from the dynamical phases, where at one of the poles
it is equal to an incomplete elliptical function of first kind, which this thesis will avoid to delve too far into
(See Appendix 8.E, where it is solved). Instead the energy is expanded. This still leaves the correct k:F
ratio only with a different factor in front of it. In Sec. 2.3 we expand in another variable than what we
integrate over. This is achieved by making it slightly anisotropic, and expanding in the anisotropy. Instead
of solving a O(2) symmetric Hamiltonian, a C4 symmetric Hamiltonian is instead solved. For now we will
expand in time around the complex pole, with δt being the small step away from the pole,

E+(δt) '
√

4F4t3
0δt⇒

∫ t0

0
d(δt)E+(δt) =

2
3F

k3/2
0,z e3iπ/4 ∨ 2

3F
k3/2

0,z e9iπ/4, (2.19)

for respectively t1 =

√
k0,z
F eiπ/4 and t2 =

√
k0,z
F e3iπ/4. Calculating the residue of each pole yield

R√keiπ/4/F(∂tθS) = −
i
2

, R√ke3iπ/4/F(∂tθS) =
i
2

. (2.20)

We gather the result obtain a transition probability of,

P+(∞) = |A+(∞)|2 = π2
(

sin
(2
√

2
3F

k3/2
0,z

)2)
e−

4
√

2
3F k3/2

0,z . (2.21)

2.1.3 Movement in kx, displacement in ky

Moving in kx with a displacement in ky the Hamiltonian is completely off-diagonal,

H =

(
0 ((Ft)2 − k2

y)− 2ikyFt
((Ft)2 − k2

y) + 2ikyFt 0

)
= ((Ft)2 − k2

y)σx + 2kyFtσy. (2.22)

In comparison with the previous two cases this case is entirely new, peculiar to a double-Weyl Hamiltonian
and to my knowledge not covered before. The states and energies are given in Eq. 2.2, but in this case we
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2. LANDAU-ZENER TUNNELING

have no kz displacement. To obtain the differential equations (Eq. 2.6) for this case the coupling between
the adiabatic eigenstates, when subjecting the system to a force along kx, is calculated as,

〈ψ+|∂tψ−〉 = 〈ψ−|∂tψ+〉 =
∂tφS

2i
. (2.23)

The time-dependency is obtained as,

∂tφS = −
2 · k0,y · F
k2

0,y + F2t2
= −

2 · k0,y · F
E+

, (2.24)

which implies,

∂t A±(t) = −
∂tφS

2i
A∓(t)e±2i

∫ t dt′E+(t′). (2.25)

This equation has simple poles in t± = ±i k0
F . The differential is treated with first order TDPT, where

A−(−∞) = 1 and A(0)
− (t) = 1, so that the coupling is small; the system is treated as if it is perturbed by a

small coupling of ∂tφS ∝ F and ∂tφS 6= 0 if the path through the BZ is displaced from the node. Integrating
over t(−∞; ∞), the exponential can be moved out of the integral with the assumption made by Dykhne
[13, 19] (See Appendix 8.A). Another method is to integrate over the aquired phase φP = 2

∫ t dt′E+(t′)
[13, 21, 22]. By this substitution branch cuts eminating from the poles can be avoided. Continuing with the
same method results in the integral,

A+(∞) = − 1
2i

e2i
∫ t+ dt′E+(t′)

∫ ∞

−∞
dt∂tφS(t). (2.26)

The pole of the integral that is enclosed in the contour, C, is that in the upper plane, t+, yielding,

− 1
2i

∫ ∞

−∞
dt∂tφS(t) = −

1
2i

∮
C

dt′
−2k0,yF
E+(t)

=
−2πi

2i
Rest+ = πi. (2.27)

The exponential integral evaluated at the pole is

φP(t+) = 2i
∫ t+

E+(t) = i
4k0,y

3F
. (2.28)

The probability to find the particle in the upper state is then,

P+(∞) = |A+(∞)|2 = π2e−
8k3

0,y
3F . (2.29)

2.2 Conclusion on Landau-Zener transitions, first order time-dependent pertubation theory
and dimension analysis

Recap of this section is a brief summarization of the 3 cases in Table 1. There is a prefactor error in all
cases, which arises from the fact that the calculations are only first order [13]. To calculate the amplitude
we have split the integral of the differential equation of Eq. 2.6 in two products. One is the phase that must
be evaluated from 0 to the pole in question, and the other is the residue of the pole. If we have two poles
it is the sum of this methods for each pole. There is also the problem that for now the Hamiltonian has
been dimensionless. To correct this we introduce a velocity vz and a relative velocity β is, which yields the
correct Hamiltonian,

H =

(
kz k2

−
k2
+ −kz

)
⇒
(

vzkz βk2
−

βk2
+ −vzkz

)
. (2.30)

In this thesis h̄ = 1, so J = 1
s . The principle is to find the dimensions of β and vz, by first looking at the

energy and then conclude that the exponential must be dimensionless. From analysis of the energy we find
that,

[E] =
[√

v2
zk2

z + β2(k2
x + k2

y)
2
]
= J =

1
s

, (2.31)
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2. LANDAU-ZENER TUNNELING

[β] =
1

N2s3 =
s

kg2m2 , [vz] =
1

N · s2 =
1

kg ·m . (2.32)

Moving in kz dis-
placement kxky-plane

Moving in kx

displacement kz

Moving in kx displace-
ment in ky

PLZ: e−
πk4

0,Γ
2F π2 sin2

(2
√

2
3F

k3/2
0,z

)
e−

4
√

2
3F k3/2

0,z π2e−
8k3

0,y
3F

Approximation? Exact First order + Taylor First order + O(2) sym-
metric

Exponent
k4

0,Γ

F
k3/2

0,z

F

k3
0,y

F

Dimensionless if
β2

vz

k4
0,Γ

2F
v3/2

z√
β

k3/2
0,z

3F
β

k3
0,y

3F

Table 2: The three cases’ probability of a Landau-Zener tunneling PLZ, how the exponential integral is
solved and the introduction of vz and β. When moving in kz I have written the case of summing all orders
in the perturbation theory. This removes the prefactor. The other two cases are first order TDPT

2.3 Breaking the O(2) symmetry of the system

The Hamiltonian of Eq. 2.1 is a special O(2) symmetric case of a more general, C4 symmetric Hamiltonian,
which is written with its dimensions α, β and vz,

H =

(
vzkz αK2

+ + βK2
−

αK2
− + βK2

+ −kz

)
= kzσz + (β− α)(2kxky)σy + (α + β)(k2

x − k2
y)σx. (2.33)

The differential is still defined by Eq. 2.6 with a force driving the atom, and coupling the adiabatic eigen-
states of Eq. 2.2. The O(2) case is α = 0. The energy is corrected to

E+ =

√
v2

zk2
z +

(
α + β

)2(
k2

x − k2
y

)2
+
(

β− α
)2(

2kxky

)2
. (2.34)

The coupling between the two eigenstates of Eq. 2.2 will still be either

〈ψ+|∂tψ−〉 = −
∂tθS

2
∨ ∂tφS

2i
, (2.35)

depending on the case, as no new explicit time dependency is introduced. However, it alters the time
dependency of the Bloch vector parameter, where now,

φS = tan−1
( (β− α)2kxky

(α + β)(k2
x − k2

y)

)
,

θS = cos−1

(
vzkz√

v2
zk2

z +
(

α + β
)2(

k2
x − k2

y

)2
+
(

β− α
)2(

2kxky

)2

)
, (2.36)

and as such this equation introduce a correction to the wavefunction of Eq. 2.4. It also alters the poles in
the complex time plane of Eq. 2.35. For the case of moving in kx and having a displacement in ky there are
4 poles,

t0 = ±
k0,y

ξF
·
√

ξ2 ± 2
√
−ξ2 + 1− 2 , ξ =

β− α

β + α
. (2.37)
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3. STÜCKELBERG OSCILLATIONS

In the case of moving in kx and with a displacement in kz there are also 4 poles.

t0 =

√
vzkz

α + β

1
F
· η, η =

{
± (−1)1/4,±(−1)3/4

}
, (2.38)

This yields the same poles, when we remove the anisotropy. Due to the anisotropy, to solve the integrals,
we obtain a correction to the energy and time dependency. To obtain an approximate solution of the phase
integral in Eq. 2.2, we expand the energy, to obtain an integral, where the energy for the three cases is
expanded in a small anisotropy (α → 0), which is actually so small that even the displacement from the
isotropic case δα→ 0. As such the expansions yields, for the case of ky = 0

E+ '
√

v2
zk2

z + β2kx(t)4 + 2βkx(t)4δα

'
√

v2
zk2

z + β2kx(t)4
(

1 +
β2kx(t)4

v2
zk2

z + β2kx(t)4 δα
)

, (2.39)

and for the case of kz = 0

E+(t) '
√

β2(kx(t)2 + k2
y)

2 + 2β((kx(t)2 − k2
y)

2 − (2kx(t)ky)2)δα

' β(kx(t)2 + k2
y) +

(kx(t)2 − k2
y)

2 − (2kx(t)ky)2

kx(t)2 + k2
y

δα, (2.40)

with kx(t) = F · t. Naturally we obtain a correction term that is linear in the anisotropy, as we only go to
first order. Notice that in both cases when the squareroot is raised, the postive solution is chosen to give
the upper band energy. These new functions are analytic except in a finite amount of poles. For the case of
kz = 0 the correction as a function of δα in the phase integral is

∫ t0

0

(F2t2 − k2
0,y)

2 − (2Ftk0,y)2

F2t2 + k0,y
δα =

[
t0(

1
3

F2t2
0 − k0,y − 6k2

0,y) +
1
F
(k3/2

0,y (1 + 6k0,y + k2
0,y) tan−1 ( Ft0

k0,y

)
)

]
δα.

(2.41)
In the case of ky = 0, hypergeometric functions, pFq[a; b; z] are obtained. In this thesis we will not go into
details about these corrections, but simply boint out that they exist and should be considered.

3 Stückelberg oscillations

Stückelberg oscillations occur when the particle moves past two avoided band-touching point (See Fig.
2). As the amplitudes of the state move in the upper or lower band the accumulated phase differ (See
Eq. 2.4)[18, 23, 24]. This is the method of Stückelberg interferometry. The interferometer in this case is
not a object/lab equipment that is situated in real space. Instead, the two avoided band-touching points
in momentum space, where a non-adiabtic transition can take place, can to some extent be thought of as
beam-splitters, and the adiabatic evolution between to nodes causes interference. In our case, the general
Hamiltonian of Eq. 2.33 allow for two the Weyl points to have different topological charge of −2 and +2,
with repectively the two Hamiltonians, that approximate the dispersion in the vicinity of the nodes.

H−β =

(
kz βk2

−
βk2

+ −kz

)
, H+

α =

(
kz αk2

+

αk2
− −kz

)
. (3.1)

In Eq. 3.1 the plus and minus of the Hamiltonian refers to the polarity of the node. This charge will also
be calculated in Sec. 4. In momentum space the nodes correspond to magnetic monopoles, and depending
on the sign, we can label them as either a source(+) or a sink(-). α, β is the prefactor on the off-diagonal,
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3. STÜCKELBERG OSCILLATIONS

F

H−β

H+
α

H+
α

H−β

|k0|

ky

kx

twait

(a) 2D view (b) 3D view

Figure 2: The path through the Brillouin Zone: The red and blue lines demonstrate how a sliver of the
BZ’s energy dispersion appear, when traveling in the dotted arrowed path driven by the force F. a) The
1st BZ in 2D, which is drawn as the black square, with 4 band-touching nodes. In the vicinity of these,
The Hamiltonians are effectively those of Eq. 3.1. The displacement from the nodes is as always described
by some |k0|. The lowest path is the case of Sec. 3.1 and the upper path is that of Sec. 3 b) show the
dispersion of the effective lattice Hamiltonian in 3D in Eq. 1.3 that we will cover in Sec. 4.2. The force and
displacement is given by the black dotted arrow. The state will either evolve in the upper band (blue line)
or lower band (red line)

and while we will keep it in the notation, for computing probabilities we will set α = β = 1, which in this
simple lattice model is a reasonable assumption. We still set vz ≡ 1. The two Hamiltonians can be related
by:

H+
β (ky) = H−β (−ky) ∨ H+

β =
(
H−β
)∗. (3.2)

The movement of the state through the 1st BZ can be seperated into 4 matrices [25], which we will now go
through:

Mtot = M(−,+)
dyn M+

LZ,α M(+,−)
dyn M−LZ,β− (3.3)

The total matrix is the result of an LZ tunneling event at Hβ, the dynamical phase aquired between Hβ

and Hα, an avoided band touching with a second tunneling event and a new, not necessarily the same,
dynamical phase, to return to the starting momentum (See Fig. 2). The LZ matrix is written as [13, 25, 26]:

M±LZ =

√P±LZ − 1e−i(φ±St−π/2) −
√

P±LZ√
P±LZ

√
P±LZ − 1ei(φ±St−π/2)

 , (3.4)

where P±LZ is the LZ transtion probability at a source or sink. I might add that the matrix has been found
with method of [26, Appendix A], that computes it for a linear dispersion. Though it is out of the scope
of this this to find it for a quadratic dispersion, in my academic analysis [27, Sec. C] and preliminary
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3. STÜCKELBERG OSCILLATIONS

theoretical analysis of the differential equations (Eq. 2.6), I have no reason to doubt its generality for the
hyperpolynomial dispersions. I have presented the problem in Appendix 8.D. The Stoke phase, φSt, is
given by [13, 21] (See Appendix 8.D)

φSt =
π

4
+ δ(ln δ− 1) + Γ(1− iδ), (3.5)

where the linear adiabatic parameter, δ, is defined by the LZ probability[21], PLZ ∝ e−2πδ. In this thesis we
will leave the Stoke phase as a parameter. Γ(x) is the Gamma function. The Hamiltonian at these poles
can be related by the sign ky (Eq. 3.2). This have to be accounted for when changing the sign of ky, and
calculating the new probability of transition,

M(±,∓)
dyn =

e−iΦ(±,∓)
dyn 0

0 eiΦ(±,∓)
dyn

 , Φ(±,∓)
dyn =

1
F

∫ k±

k∓
E+(k)dk. (3.6)

The dynamical matrix is a function of the phase integral from seperation of the source (denoted with a
plus) and sink (denoted with a minus), |k± − k∓|. It has to be noted that the relative velocity α, β also has
to be accounted for. The probability to be in the upper band after a full path through the BZ, TBZ, can be
calculated from the matrix Eq. 3.3:(

A+(TBZ)

A−(TBZ)

)
= Mtot

(
0
1

)

A+ =− e−iΦ(−,+)
dyn

√
1− P+

LZ,αe−i(φ−st,β−π/2)e−iΦ(+,−)
dyn

√
P−LZ,β − e−iΦ(−,+)

dyn

√
P+

LZ,αeiΦ(+,−)
dyn

√
1− P−LZ,β ei(φ+

st,α−π/2)

=−
√

P+
LZ,αP−LZ,β · e

−i(Φ(−,+)
dyn −Φ(+,−)

dyn )
(

e−i(φ−st,β−π/2−2Φ(+,−)
dyn )

√
(P+

LZ,α)
−1 − 1 + ei(φ+

st,α−π/2)
√
(P−LZ,β)

−1 − 1
)

,

(3.7)

where Φ(+,−)
dyn corresponds to moving from the sink to the source, which is the positions of the avoided

bandtouching point forH−β /H+
α . The probability is then

P+(T) =P+
LZ,αP−LZ,β

∣∣∣∣∣(e−i(φ−st,β−π/2−2Φ(+,−)
dyn )

√
(P+

LZ,α)
−1 − 1 + ei(φ+

st,α−π/2)
√
(P−LZ,β)

−1 − 1
)∣∣∣∣∣

2

=P+
LZ,αP−LZ,β

(
(P−LZ,β)

−1 + (P+
LZ,α)

−1 − 2

+ 2
√
(P+

LZ,α)
−1 − 1) · ((P−LZ,β)

−1 − 1) cos(φ+
st,α + φ−st,β + 2Φ(+,−)

dyn )
)
. (3.8)

Eq. 3.8 is a general Stückelberg probability for the case of the two different Hamiltonians in Eq. 3.1. We
will simplify by setting α = β, and Eq. 3.2 relates the two Hamiltonian with H+(ky) = H−(−ky). We then
remind ourselves that close to node the Hamiltonian, in the continuum limit, is O(2) symmetric about the
z-axis. Rotating by π, ky → −ky, will not influence the probability. This is the symmetry argument for,

P+
LZ(k0,i, F) = P−LZ(−k0,i, F). (3.9)

Why does it make sense in regards to the contour integral? Setting ky → −ky, means that we have to draw
a contour in the lower half plane for the contour to close the function. But then it is the other pole that is
enclosed and the signs cancel out. There is therefore no difference in the transition probability to the first
order of moving past a sink or a source. The Stückelberg equation (Eq. 3.8) can therefore be written as,

P+(T) = 2PLZ − 2P2
LZ + 2P2

LZ

(
P−1

LZ − 1
)

cos(2(Φ(+,−)
dyn + φst +

π

2
)), (3.10)

where φ+
st,α = φ−st,β + π (See Appendix 8.D). We can appreciate that it is only the dynamical phase acquired

between the nodes, which is relevant, and not the phase acquired after passing the second node. The only
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3. STÜCKELBERG OSCILLATIONS

transition allowed is the non adiabatic one, and the only interference is with particles that travel between
the bands. Consequently of Eq 3.10 the Landau-Zener-Stückelberg (LZS) probability has two orders of
magnitude,

P+(T) = O(PLZ) +O(P2
LZ) = 2PLZ(1 + cos(2(Φdyn,1 + φst +

π

2
)))− 2P2

LZ(1 + cos(2(Φdyn,1 + φst +
π

2
)))

= 4PLZ(1− PLZ) cos2((Φ(+,−)
dyn + φst +

π

2
)). (3.11)

We have also talked, in Sec. 2.2, about the discrepancy between the prefactor in the LZ transition probability
that we have calculated, and that calculated exactly with the full higher order solution. The prefactor is
explained by [13, 22]: Adiabatic perturbation theory, even for the standard LZ problem will not return
the correct prefactor. Instead of looking at the entire adiabatic sum of terms in the perturbation, we solve
the problem for the deep adiabatic limit; which is the first order perturbation theory. Consequently, for
our approximation to be suitable, we require the gap between the two Bloch bands, ∆(k), to be much
bigger than that of the force in such a way that,F � ∆(k) = 2|S(k)| = 2E+. Only evolutions far from
the monopole is characterized with this adiabatic perturbation theory. Due to the first order pertubation
theory, only small transition amplitudes are appropriate as A−(∞) ' 1. However, in fact the previous
inequality is not entirely correct e.g. F, ∆ do not have the same dimensions. I have mentionened it before,
in Sec. 2.1.3. The coupling of the adiabatic eigenstates is required to be small:

Abs
[
〈ψ+|∂tψ−〉

]
� 1. (3.12)

For the three cases this equation correspond to,

Abs
[
〈ψ+|∂tψ−〉

]
=



∂tθS

2
=

Fk2
0,Γ

2(F2t2 + k4
0,Γ)

=
2Fk2

0,Γ

∆(k)2 move kz, displace ky/kx

∂tθS

2
=

F2k0,zt
k2

0,z + F4t4
=

4F2k0,zt
∆(k)2 move kx, displace kz

∂tφS

2
=

Fk0,y

k2
0,y + F2t2

=
2Fk0,y

∆(k)
move kx, displace ky

. (3.13)

The gap also is a function of F · t, but we might be better off by exchanging t→ T′. That is T′ is some period

over which the adiabatic theorem breaks down. For the sake of computation we can set T′ =
TBZ

4
=

π

2F
,

choosing a lattice spacing of 1. If we look at the plots in Fig. 3 we can see that the envelopes changes their
realtive positioning in the case of moving in kx with a displacement in ky. This seems to be an intrinsic
property of the double-Weyl nodes, and could very well be used in future experiments. Furthermore, in
Appendix 8.F we will look at non-zero temperature non-interacting distrubutions a how they would have
evolved after a transport through the 1st BZ.

3.1 Particle travel back and forth past a Weyl node

The previous section showed the transistion probabilities as the particles travel one full trip through BZ. To
check the calculation it is perhaps suited to also show the probability when traveling past one monopole,
waiting, and then turning back to the origin, going past the monopole again[25](See Fig. 2). The hermitian
conjugate is equivalent to a time reversal.

P+(T) =
∣∣∣M†

dyn M†
LZ Mwait MLZ Mdyn|ψ(t = −∞)〉

∣∣∣2. (3.14)

The Mwait is the phase acquired when a particle is static in one of the bands for a time twait.

Mwait =

(
e−iE−twait 0

0 e−iE+twait

)
. (3.15)
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0.6

0.8
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(a) Stückelberg probability when moving
in kx with a displacement ky = (2, 3, 5),
plotted against 1

F .

0.010 0.100 1

0.1

0.2

0.3

(b) Stückelberg probability when mov-
ing in kx with a displacement kz =

(1, 2, 3), plotted against 1
F .

0.010 0.100 1
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0.4
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0.8

1.0

(c) Stückelberg probability when moving
in kz with a displacement k0 = (1, 1.5, 2),
plotted against 1

F .

Figure 3: Transition probabilities for the three cases of Table 2 plotted against 1
F . The gray dotted line marks

where the adiabatic theorem breaks down from Eq. 3.12. We know that the prefactors of PLZ in Table 2 are
wrong, but the specific correction cannot be calculated. In these plots we have therefore set the prefactor
to 1, in the same manner as [13]

Due to the fact that it is the same touching point the LZS probability is given by

P+(T) = −4PLZ(PLZ − 1) sin2 (∆φ + φst), (3.16)

where ∆φ = (Φdyn + E+twait) is the phase differences acquired, due to all dynamical factors, that is waiting
twait and accelerating, Φdyn. The phase is simplified in comparison with the work done by Zenesini et al.
[25] by the fact that E+ = E−.

4 The topology of the nodes

This section focuses on explaining the physics of the nodes and their correspondance to the topology of
the Hamiltonian. The nodes can be described as constituting synthetic quantum mechanical magnetic
monopoles in the reciprocal space [28, 29]. When a particle moves around the nodes, it acquires a Berry
phase, which is defined as a path integral of the Berry connection A. The Berry connection of the lower
level, is

A−(S) = i〈ψ−|∇Sψ−〉. (4.1)

simply by using the time-dependent Schrödinger equation[29]. To acquire the field that generates this
connection and subsequent phase, in three dimensions, a Berry curvature is defined as the curl of the
connection.

Ω−(S) = i · ∇S ×

 〈ψ−|∂Sψ−〉
〈ψ−|∂θS ψ−〉
〈ψ−|∂φS ψ−〉

 =

∂θS AφS − ∂φS AθS

∂φS AS − ∂S AφS

∂S AθS − ∂θS AS

 . (4.2)

This vector field is generally a tensor; but for non-degenerate systems and due to the 3 dimensionality of
our parameter space it reduces to a vector. Unlike the connection this field is gauge invariant, and an actual
physical size. It can be checked that the path integral of the connection equals a surface integral around the
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node, cf. Stokes Theorem. The states of a two-level Bloch band Hamiltonian do not depend on the size of
S, meaning AS = 0 and ∂S Ai = 0,

Ω−(S) =

∂θS AφS − ∂φS AθS

0
0.

 . (4.3)

In this parameter space the curvature will act as a monopole.

4.1 The Berry monopole in momentum space

The components of S is also dependent on kx, ky, kz or k, θk, φk. The Berry connection can then be defined
for momentum space. We will derive it for Cartesian and calculate it for spherical coordinates,

A−(k) = i〈ψ−|∇kψ−〉. (4.4)

The Berry curvature for the Cartesian case will help us express the anomalous flow in Sec. 4.2, while the
flux is easily calculated with the spherical coordinates. Starting with the Cartesian case,

A−(k) = i

〈ψ−|∂kx ψ−〉
〈ψ−|∂ky ψ−〉
〈ψ−|∂kz ψ−〉

 . (4.5)

The differential are substituted to the variable used in the states,

∂ki =
dSx

dki

( dS
dSx

∂S +
dθS

dSx
∂θS +

dφS

dSx
∂φS

)
+

dSy

dki

( dS
dSy

∂S +
dθS

dSy
∂θS +

dφS

dSy
∂φS

)
+

dSz

dki

( dS
dSz

∂S +
dθS

dSz
∂θS +

dφS

dSz
∂φS

)
.

(4.6)
Naturally the states do not depend on the size of S. It can also be checked that,

〈ψ−|∂θS ψ−〉 = 0, 〈ψ−|∂φS ψ−〉 =
i
2

cos(θS), (4.7)

meaning that

Acart(k) = −
1
2

cos(θS)



dSx

dkx

dφS

dSx
+

dSy

dkx

dφS

dSy
dSx

dky

dφS

dSx
+

dSy

dky

dφS

dSy
dSz

dkz

dφS

dSz

 =
− cos(θS)

Sx

(
S2

y

S2
x
+ 1
)
ky − kx

Sy
Sx

kx − ky
Sy
Sx

0

 . (4.8)

The Berry curvature equation (Eq. 4.2) yields

Ω(k) = ∇×A =

 −∂kz Ay(k)
∂kz Ax(k)

∂kx Ay(k)− ∂ky Ax(k)

 . (4.9)

The first two coordinates are trivial to calculate, as the only kz dependent parameter for Acart is cos(θS):

∂kz cos(θS) =
dSz

dkz
∂Sz cos(θS) = ∂Sz

Sz√
S2

z + S2
y + S2

x

=
1

E+

(
1− cos2(θS)

)
. (4.10)

The Ωkx/ky is then,

Ωkx =
kx − ky

Sy
Sx

Sx

(
S2

y

S2
x
+ 1
)

E+

(1− cos2(θS)), Ωky = −
ky − kx

Sy
Sx

Sx

(
S2

y

S2
x
+ 1
)

E+

(1− cos2(θS)). (4.11)
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The last coordinate is a bit more brute force method. It reduces to

Ωkz(k) =
kz

(k2
x + k2

y)
3|k|3

(
k6

x − 13k4
xk2

y − 9k2
xk2

y − 12k2
xk2

yk2
z + 5k6

y + 4k2
yk2

z

)
(4.12)

Using exactly the same method, but now for spherical momentum coordinates the Berry connection and
curvature is found as

A =
cos(θS)

k sin(θk)
φk (4.13)

Ω(k) =
1

k2 sin(θk)
∂θk cos(θS)k̂−

1
k · sin(θk)

∂k cos(θS)θ̂k (4.14)

Equipped with these equations we calculate the Berry flux of these Berry curvatures in Appendix 4. This is
either done by integrating over the surface of a sphere in the case of the spherical Berry curvature, or two
infinitly large planes on either side of the node, in the Cartesian case. The result is that the two equations
constitute double-Weyl nodes with a Chern number of 2.

4.2 Anomalous flow

We will prove that there is no movement in real space as the atoms make one round-trip of the BZ. The two
cases investigated in this paper is

F =

{
Fx = F · x̂ = kx · x̂
Fz = F · ẑ = kz · ẑ

(4.15)

As such two cases of anomalous velocities could be calculated. The anomalous velocity is due to the
breaking of translational symmetry caused by applying a force of F [29]. To satisfy Bloch’s theorem the
actual momentum we have discussed is the gauge invariant momentum. Instead, while the the physical
momentum is a constant of motion, the gauge invariant momentum changes as we move through the BZ.
This we will now see. Firstly the case of moving in kz

∂tr = ∇kE(k) + Fz ×Ω = ∇kE(k)− F

 ∂z Ax(k)
∂kz Ay(k)

0

 (4.16)

and in the case of moving in kx

∂tr = ∇kE(k) + Fx ×Ω = ∇kE(k) + F

 0
∂ky Ax(k)− ∂kx Ay(k)

∂kz Ax(k)

 (4.17)

The velocity of each state k corresponds to the change of the Berry curvature. As the trip is through the
entire BZ, the energy gradient will average to zero. However the anomalous term will contribute with a
velocity perpendicular to the direction of the force. The distance covered is found by an integration of the
velocity as a function the momentum

∫ k0+2π
k0

dki∂tr

Moving in kx: The integration yields a movement in

drz =
∫ k0+2π

k0

dkx∂kz Ax(k), dry =
∫ k0+2π

k0

dkx

[
∂ky Ax(k)− ∂kx Ay(k)

]
(4.18)

=
∫ k0+2π

k0

dkx∂ky Ax(k)−
[

Ay(k)
]k0+2π

k0

(4.19)
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Moving in kz: The integration yields a movement in

drx =
∫ k0+2π

k0

dkz∂kz Ax(k) =
[

Ax(k)
]k0+2π

k0

, dry =
∫ k0+2π

k0

dkz∂kz Ay(k) =
[

Ay(k)
]k0+2π

k0

(4.20)

The Berry connection is periodic when we move the atom through the entire BZ. The only anomalous
velocity will then appear for the movement in x̂

dr =

 0∫ k0+2π
k0

dkx∂ky Ax(k)∫ k0+2π
k0

dkx∂kz Ax(k)

 (4.21)

Until now, the Hamiltonian, from where our eigenstates are derived, has not been dealing with the period-
icity of the BZ. The more general lattice Hamiltonian, from where we can derive the effective Hamiltonian
(Eq. 2.1) is:

H = −(cos(kx)
2 − cos(ky)

2)σx + 2 sin(kx) sin(ky)σy + sin(kz)σz (4.22)

Integration of the derivative of the x-component of Eq. 4.8, using the lattice Hamiltoninan yields a zero in
both direction of Eq. 4.21

5 Higher order perturbation theory

With the first order TDPT results of the LZ transition from Sec. 2, we will conclude this thesis’ results by
analyzing a more general way to derive higher order terms in the perturbation theory. The method is based
on the work by Rojo [20]. The explicit evaluation of the integral is left for future investigation.

5.1 The standard Landau-Zener problem

The method is presented by the paper of Rojo [20]. In our system, the case of moving in the kz direction
the analogy to that of the standard LZ problem. A unitary tranformation, U (See Appendix 8.B), of the
Hamiltonian in Eq. 2.7 yields,

H̃ = U†HU −U†∂tU,=

(
0 Γe−iFt2/2

Γ∗eiFt2/2 0

)
, U = eiσz

∫ t dt′Ft. (5.1)

The fact that this linear case Hamiltonian acquires only off-diagonal terms means that only integrals with
an odd number of Hamiltonians will count in the evaluation of the upper band states in our perturbation
theory’s Dyson series. (

A+(∞)

A−(∞)

)
= Tn

[
ei
∫

dtH̃(t)
] (A+(−∞)

A−(−∞)

)
(5.2)

Note the alternating sign of the exponential in the integral, for each of the dtn-integrals in the time-ordered
integral, Tn. We also employ the use of the Heavyside function in its integral form,

Θ(t) =
1

2iπ

∫ ∞

−∞
dω

eiωt

ω + iε
, (5.3)

as an integral of frequency ω. This means that instead of having differing integral limits, dependent on
each other, all integrals will run over the same interval, and the Heavyside function will act as the boundary
of integrals. The solution can then be found with the Dyson series [17]

A+(∞) =
∞

∑
n=0

(−1)n
[ |Γ|

F

]2n Γ
F

T2n+1 , n = [0, 1, 2...], (5.4)
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where the odd-sized timeordered integral, T2n+1, with alternating functions is,

T2n+1 =
1

(2iπ)2n

∫ ∞

−∞

( 2n+1

∏
i=1

ti

) ∫ ∞

−∞

( 2n

∏
j=1

ωj

)eit2
1eiω1(t1−t2)

ω1 + iε
e−it2

2eiω2(t2−t3)

ω2 + iε
. . .

e−it2
2n+1eiω2n(t2n−t2n+1)

ω2n + iε
(5.5)

Because we are now dealing with the standard LZ problem this integral is somewhat simple to solve.
Solving the square to get gaussian time-integrals1 yields,∫

dte±it2
=

√
π

±i
. (5.6)

The timeordered integral is now a function of new Heavyside functions, by relabeling the indices of ωi.
This yields identical integrals, I1. A product of n identical integrals, In, can be written as

In =
1
n!

( ∫
dtI1(t)

)n
. (5.7)

We will skip to the final result which is the well-known LZ probability of Eq. 2.13. To see the last equations
where the sum is gathered and converged we refer to [20].

5.2 Quadratic dispersion in the Landau-Zener problem

Insteadof describing the linear case we will spend more time on describing the problem for the Hamiltonian
of Eq. 2.14, which is more complex. A pseudo-rotation using a unitary transformation, U◦, yields:

U◦ = (
√

2)−1

(
1 1
1 −1

)
, ⇒ H =

(
F2t2 kz

kz −F2t2

)
(5.8)

Another unitary transformation yields the diagonal Hamiltonian,

U = eiσz
∫ t dt′F2t2

, ⇒ H̃ =

(
0 k0,ze−2iF2t3/3

k0,ze2iF2t3/3 0

)
. (5.9)

The exponential in the time-ordered integral can be simplified like the previous section by a change of

integration variable, t′ = 3

√
2
3

F2/3t. Our time-ordered exponential integral is,(
A+(∞)

A−(∞)

)
= T

[
ei
∫ ∞
−∞ H(t)dt

] (A+(−∞)

A−(−∞)

)
(5.10)

Since the Hamiltonian is off-diagonal, we only need the odd terms in the time-ordered integral, T2n+1,

T2n+1 =
(

3

√
3
2

F3/2
)2n+1 ∫ ∞

−∞

∫ t1

−∞
...
∫ t2n+1

−∞

( 2n+1

∏
i=0

dti

)
e−it3

1+it3
2−it3

3+...−it3
2n+1 . (5.11)

The Dyson series that yields the amplitude of the upper band now reads,

A+(∞) = i
∞

∑
n=0

(−1)n
(

3

√
3
2

F3/2k0,z

)2n+1
T2n+1. (5.12)

This timeordered integral is not Gaussian. To solve the integrals, we shift the origin of time from t =

−∞ → t = 0 without the loss of generality, and the Heavyside function in its intgral form is introduced
again to control the bounds of the integral

T2n+1 =
1

(2πi)2n

∫ ∞

0

( 2n+1

∏
i

dti

) ∫ ∞

−∞

( 2n

∏
j

dωj

)eit3
1eiω1(t1−t2)

ω1 + iε
e−it3

2eiω2(t2−t3)

ω2 + iε
. . .

e−it3
2n+1eiω2n(t2n−t2n+1)

ω2n + iε
(5.13)

1The center of the curve is displaced, however the integral runs from −∞ to ∞
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The time-ordered integral is now a product of integrals. We will now draw the 2πi-term into the sum of
Eq. 5.12. The starting general I1, ending integral I2n+1, and general integrals Ij,± to solve are,

I1(ω1) =
∫ ∞

0
dt1e−t3

1+iω1t1 , I2n+1(iω2n) =
∫ ∞

0
dt2n+1e−t3

2n+1−iω2nt2n+1 ,

Ij,±((ωj −ωj−1)) =
∫ ∞

0
dtje

±it3
j +i(ωj−ωj−1)tj (5.14)

The solution is obtained with the mathematica integration tool:

Ij,+(ω) =
∫ ∞

0
dtje

it3
j +i(ω)tj =

2π

3 3
√

3
e

πi
6 Bi
[ ω

3
√

3
e

2πi
3

]
− i

ω2

6 1
F2

[
1;

4
3

,
5
3

;
(ω

3

)3]
(5.15)

While the minus integral can be written as

I−(ω) =

2π
√

ωe−iπ/6 J−1/3

[2ω3/2

3
√

3

]
9

+

2π
√

ωeiπ/6 J1/3

[2ω3/2

2
√

3

]
9

+
iω2

6 1F4

[
1;

2
3

,
5
6

,
7
6

,
4
3

;
( ω

3(2)3/2

)6]
− iω5

360 1F4

[
1;

7
6

,
4
3

,
5
3

,
11
6

;
( ω

3(2)3/2

)6]
(5.16)

The result is a mixture of second kind Airy (Bi(z)), Bessel (Ji(z)), and generalized hypergeometric functions
(qFp

[
aq; bp; z

]
). The now frequency-ordered integral yields, without the fraction 1

ωi−iε ,

T2n+1 =
∫ ∞

−∞

(
∏

j
dωj

)
I1(ω1) · I2,−(ω2 −ω1) ·

n−1

∏
i,k=2

[
I2k−1,+(ω2i−1 −ω2i−2) · I2k,−(ω2i −ω2i−1)

]
,

·I2n,+(ω2n −ω2n−1) · I2n+1(−ω2n). (5.17)

To solve this integral, we use a convolution of the functions. The integrals as a function of ω can be
viewed in Appendix 8.G. The complexity consists in the fact that the integration is over functions that
have connected variables. A way to proceed is via the Fourier transform (F [ f (x)] = f̃ (φ)) convolution
theorem. We reintroduce the fraction 1

ωi−iε ,

Icon,ω2(ω2) =
∫ ∞

−∞

I1(ω1)

ω1 − iε
I2,−(ω2 −ω1)dω1,

Icon,ω3(ω3) =
∫ ∞

−∞

Icon,ω2(ω2)

ω2 − iε
I3,+(ω3 −ω2)dω2,

...

T2n+1 =
∫ ∞

−∞

Icon,ω2n(ω2n)

ω2n − iε
I2n+1(−ω2n)dω2n (5.18)

The problem is that we do not know the answer to this recursive formula. However we might choose to
use the theorem,

h(z) =
∫ ∞

−∞
f (z)g(z + x)dz→ F

[
h
]
(φ) =

√
2πF

[
f
]
(φ)F

[
g
]
(φ) (5.19)

This we will use

F
[

Icon,ω2

]
(φ) =

√
2πF

[ I1(ω1)

ω1 − iε

]
F
[

I2,−(ω2 −ω1)
]

F
[

Icon,ω3

]
(φ) =

√
2πF

[ Icon,ω2(ω2)

ω2 − iε

]
F
[

I3,+(ω3 −ω2)
]

. . . (5.20)
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Applying the convolution theorem again

F
[

T2n+1

]
(φ)∏2n

j=1 F
[
ωj − iε

]
= (2π)nF

[
I1(ω1)

]
F
[

I2n+1(ω2n)
]

∏n
i=1 F

[
I2i,−(ω2i −ω2i−1)

]
· F
[

I2i,+(ω2i+1 −ω2i)
]

(5.21)
While we now have derived the formula for the Fourier transform of the time-ordered integral, we have not
gained any insight. The functions are not that easily transformed, and to obtain the time-ordered integral
we have to deconvolute F

[
T2n
]

again. If we could succeed in this, the only step missing would be to find
the convergence of the Dyson series, which is the amplitude, A+(∞). We cannot obtain a unitary transform
of the kind in Eq. 5.9 for movement in kx and a displacement in ky. Due to the quadratic element, both
Pauli matrices has the time dependency. This mixing between the two, results in the fact that a rotation
of the Bloch sphere (Appendix 8.C, Fig 4) will leave some time dependency in the factor infront of the
exponential.

6 Conclusion

This thesis has shown that the method of Landau-Zener-Stückelberg, is applicable for a quantum simu-
lation of a double-Weyl semimetal. The quadratic dispersions in the Hamiltonian is still solvable by a
first order approximation as suggested in the work of Montabaux et al. [13, 21] (See Table 2). We have
presented the Stückelberg probability plots in Fig. 3. Higher order corrections as shown in [20] by Rojo
can be achieved for two of the cases of a displacement from the Weyl node; namely the case of moving in
kx, ky with a displacement in kz and moving in kz with a displacement in kx, ky-plane. However, we did
not aquire the full equation for transitions from the recursive formula in the case of moving in kx, ky with
a displacement in kz. We have also discussed the consequnce of a system with two double-Weyl nodes,
effectively breaking the O(2) symmetry and going to a C4 symmetry, by adding a small anisotropical term
by the one double-Weyl node. Approximately, we add a term in the energy, linear in the anisotropy, that
has singular points in the complex plane.

For further research it would also be satisfactory to discuss the the limit of extreme diabacity. For faster
moving systems in the vicinity of crossing the diabatic basis is more suitable [13]. However, another way to
express the diabatic case is to see the Bloch bands as degenerate [30, 29,(Chap. IX)]. This is a more complex
situation, where our semiclassical approach breaks down. In the degenerate case, we can no longer draw
parallels between the Berry connection and curvature and the magnetic vector potential and field strength.
Instead the two are matrices of vectors, where they correspond to the gauge potential and the gauge field
in SU(2) gauge theory [29]. The Berry phases of the adiabatic case convert to a non-Abelian phase. To this
we refer to the Berry conection:

Aij = 〈ψi|∂Sψj〉 (6.1)

The topology of the system can be researched further. From this alot of transport theory of atoms in the
system can be explored.
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8 Appendices

8.A Defining the adiabatic limit and the level lines

This appendix defines the adiabatic limit and describes the branch cuts of the Hamiltonian following the
notation and conventions of [19]. We define a generic two level Hamiltonian H(t), which does not cross at
any point on the real time axis. For the case of Eq. 2.1 this is achieved by simply displacing the system from
the level crossing by some k0. The description of this system adiabatically is the same as the semi-classical
limit; that is to say that moving infinitely slow and setting h̄ = 1 is the same as the limit h̄ → 0. Varying
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infinitely slowly is achieved with an adiabacity parameter δ so that in the limit δ → 0 for Hδ(t) = H(δt)
fulfills

i∂tφ(t, δ) = Hδ(t)φ(t, δ) ⇔ i∂tψ(t, h̄) = H(t)ψ(t, h̄) if ψ(t, h̄) = φ(t/h̄, h̄) (8.A.1)

This entire thesis is based on the fact that our evolutions can simply be equated by the same method as
that of a non-adiabatic transistion at one point and adiabatic evolution everywhere else. Now we want
to describe how this is true. The phase - the integral in the exponent - has to account for the branches
eminating from the complex crossing points. What we will find is that asymptotically to the first order this
is equivalent to integrating to the complex crossing time and moving the exponent out of the dt-integral.
In these points the energy difference is close to zero, and a Taylor expansion for the two poles reads,

2E+(t) = δE(t) =
√
(t− tc)(t + tc) = α(t− tc)

1/2(1 + β(t)(t− tc)) (8.A.2)

With some parameter α and function β. The phase is defined by

∆(t) =
∫ t

dt′δE(t) (8.A.3)

The level lines are defined as the lines where =[∆(t)] has the same value. The lines that are eminating from
a crossing point is called Stoke lines. From the Taylor expansion it can be seen that there are three lines
from each point.

∆(t) = ∆(t0) +
2
3

α(t− tc)
3/2 (8.A.4)

where we ignore the 5/2 power from the integral, for a small displacement from the singular pole. By this
notion we will arrive at [19, Eq 4.23]. Instead of using the eigenstates from a Hamilitonian where H12 = H21

|ψ−〉 =
(

sin(θS/2)
− cos(θS/2)

)
, |ψ+〉 =

(
cos(θS/2)
sin(θS/2)

)
(8.A.5)

For the movement in kx and with a displacement in ky, the relation between them is H12 = H∗21 the eigen-
states are that of Eq. 2.2. For movement in kx and a displacement in ky it is the exact same scenario.

4 poles in the Argand plane: In this case the energy expansion of Eq. 8.A.2 will read.

δE(t) =
√
(t− tc,1)(t + tc,1)(t− tc,2)(t + tc,2) (8.A.6)

With the poles tc,1, tc,2However, if we look near the pole, only that pole’s value will effectively contribute
to the energy

δE(t) =
√
(t− tc,1)(t + tc,1)(t− tc,2)(t + tc,2)⇒ δE(t) =

√
(t− tc,1∨2)(t + tc,1∨2) (8.A.7)

What we find is that even for several poles in the Argand plane we still have an equivalent situation as in
[19], and the introduction of complex exponentials to the states, will not play a role. In the work of [19] it
is concluded that, for the first order calculation, asymptotically we can ignore the branch cuts.

8.B A unitary transformation / The interaction picture

Unitary transformation are of great importance in quantum mechanics[17, Chap. 5.5]. The interaction
picture is a result of an unitary tranformation of the Schrödinger picture

HI = UHSU†, |ψ〉I = U|ψ〉S (8.B.1)
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The Schrödinger equation reads

Schrödinger Picture: i∂t|ψ〉S = HS|ψ〉S ⇒
Interaction Picture: i∂t|ψ〉I = HI |ψ〉I ,

i∂t(U)|ψ〉S + iU∂t|ψ〉S = UHSU†U|ψ〉S,

iU†∂t(U)|ψ〉S + i∂t|ψ〉S = HS|ψ〉S, (8.B.2)

which motivates that the transformation also can be written as

H̃ = UHU† + iU†∂tU (8.B.3)

8.C The Bloch sphere / two-level system

The Bloch sphere is a way to gain a geometric intuition about two level systems2 [31, Chap. 7.3]. The idea
is to visualize the superposition of eigenstates as points on the unit sphere. The north- and southpole then
corresponds to the orthonormal eigenstates (See Fig. 4). The reason that the Bloch sphere is such a strong

ϕ

θ

x̂

ŷ

ẑ = |0〉

−ẑ = |1〉

S

Figure 4: The Bloch sphere with a state |ψ〉 as a vector of a linear combination of (x̂, ŷ, ẑ), with ẑ being pure
eigenstates and x̂, ŷ being complex super positions

tool to visualize two-level systems is the nature of unitary operations. It corresponds to a rotation of the
subspace of the Hilbert space that contains the state about one, two or three axis, depending on the euler
angles employed for the rotation.

8.D The Stoke phase

This thesis will not go to much into the description of the Stoke phase; it is the result of a much more
general phenonema. The Stoke phase or Stoke’s phenomenon is a result of the asymptotic behaviour of the
dispersion relations [26, 32, Sec. Introduction].

The differential equation: Let’s take a look at the second order differential derived in Eq. 2.6

∂2
t A+(t) = −∂t

[
〈ψ+|∂tψ−〉

]
A−(t)e2i

∫ t dt′E+(t′) + 〈ψ+|∂tψ−〉〈ψ−|∂tψ+〉A+(t) + 2iE+(t)A+(t) (8.D.1)

2Hyperspheres are also a thing but then the intuition goes out the window. For our system we only need the understanding of
S2
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Now we realize that we can substitute the A− coefficient, due to the facts that:

〈ψ+|∂tψ−〉 =



∂tθS = −
Fk2

0,Γ

F2t2 + k4
0,Γ

move kz, displace ky/kx

∂tθS =
2F2k0,zt

k2
0,z + F4t4

move kx, displace kz

∂tφS = −
2Fk0,y

k2
0,y + F2t2

move kx, displace ky

(8.D.2)

∂t
[
〈ψ+|∂tψ−〉

]
=



− 2F2t
F2t2 + k4

0,Γ
∂tθS move kz, displace ky/kx

k2
0,z − 3F4t4

t(k2
0,z + F4t4)

∂tθS move kx, displace kz

− 2F2t
k2

0,y + F2t2
∂tφS move kx, displace ky

(8.D.3)

Due to the fact that we acquire the same expression with a prefactor, we can exchange the first term on the
RHS of Eq. 8.D.1 with ∂t A+,

∂2
t A+(t) = C(t)∂t A+(t) + 〈ψ+|∂tψ−〉〈ψ−|∂tψ+〉A+(t) + 2iE+(t)A+(t), (8.D.4)

where C(t) is the prefactor derived in Eq. 8.D.3. What we obtain is a secondary partial differential equation:

∂2
t A+(t)− C(t)∂t A+(t)− D(t)A+(t) = 0, (8.D.5)

where D(t) = 〈ψ+|∂tψ−〉〈ψ−|∂tψ+〉+ 2iE+(t). Remember that,

〈ψ+|∂tψ−〉 =
{
−〈ψ−|∂tψ+〉 move kz(kx), displace ky/kx(kz)
+〈ψ−|∂tψ+〉 move kx, displace ky

. (8.D.6)

In the standard LZ calculations, the second order differential is solved with an expansion in parabolic
cylinder functions. The differential equation’s exact solutions are matched with that of the asymptotic
case far from the crossing (adiabatic). The adiabatic wavefunction solution, |ψad(t)〉 at adiabatic times,
−ta and ta cf. before and after the crossing then evolves, past the node at time t = 0 with a non-adiabatic
transition,

|ψad(ta)〉 = U(ta; 0+)NU(0−;−ta)|ψad(−ta)〉, (8.D.7)

where N = MLZ is the non-adiabatic transition matrix and U(t1; t2) involves the adiabatic dynamics of the
wavefunction moving from and to the Weyl node. A Stoke phase appears from this[26].

The solution to this general case, of the differential Eq. 8.D.5 is left to further research. The first order
differential persists due to the non-linearity of the coupling of the adiabatic eigenstates. The problem is
further complicated by the singular nature of C(t) and D(t). The solution of this is left for further research.
If the coefficients have regular singular poles, then the differential equation is Fuchsian, and could likely
be solved with the Frobenius method by appying Fuch’s theorem, which is closely linked to the Laurent
series of the function.

Timeordered integral and unitary transformations: Without solving Eq. 8.D.5, we are able to see the
relation between the matrices. We set α = β in the Hamiltonian for each of the nodes in Eq. 3.1. We write
the positive topological charge as,

H+(t) = H+(kx(t), ky) = Λx(k(t))σx + Λy(k(t))σy, (8.D.8)
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with Λx = (kx(t)2 − k2
y) and Λy = −2kx(t)ky. We then consider the unitary matrix that evolves the state

past the node to the times, t1 and t2, which are far from the node,

U+(t2; t1) = T e−i
∫ t2

t1
dtH+(t), (8.D.9)

with the ordered exponential integral T . The Hamiltonian for the other node can be written

H−(t) = H−(kx(t), ky) = Λx(k(t))σx −Λy(k(t))σy. (8.D.10)

The idea is to realize that H+(t) = (H−(t))∗, which ultimately leads to the unitary matrix for evolution
past the node with a negative charge:

U−(t2; t1) = T e−i
∫ t2

t1
dtH−(t)

= T e−i
∫ t2

t1
dt(H+(t))∗ (8.D.11)

Then we can realize that the complex conjugation corresponds to the unitary transformation of the Hamil-
tonian by the σy-matrix

(H+(k(t)))∗ = −σyH+(k(t))σy = −σyΛx(k(t))σxσy − σyΛy(k(t))σyσy = Λx(k(t))σx −Λy(k(t))σy

(8.D.12)
Equipped with the equality, H−(k(t)) = −σyH+(k(t))σy we rewrite the untary matrix:

U−(t2; t1) = T e−i
∫ t2

t1
dtH−(t)

= T ei
∫ t2

t1
dtσy H+(t)σy (8.D.13)

Using again the fact that σyσy = I2×2

T ei
∫ t2

t1
dtσy H+(t)σy = σyT ei

∫ t2
t1

dtH+(t)
σy = σy(U+)−1σy = σy(U+)†σy (8.D.14)

The last equality is due to unitarity. The last step is to realize that U± = M±LZ

M−LZ =

√P−LZ − 1e−i(φ−St−π/2) −
√

P−LZ√
P−LZ

√
P−LZ − 1ei(φ−St−π/2)

 = σy

√P+
LZ − 1e−i(φ+

St−π/2) −
√

P+
LZ√

P+
LZ

√
P+

LZ − 1ei(φ+
St−π/2)

†

σy

= σy

√P+
LZ − 1e−i(φ+

St−π/2)
√

P+
LZ

−
√

P+
LZ

√
P+

LZ − 1ei(φ+
St−π/2)

 σy = σy

 i
√

P+
LZ −i

√
P+

LZ − 1e−i(φ+
St−π/2)

i
√

P+
LZ − 1ei(φ+

St−π/2) i
√

P+
LZ


=

√P+
LZ − 1ei(φ+

St−π/2) −
√

P+
LZ√

P+
LZ

√
P+

LZ − 1e−i(φ+
St−π/2)


(8.D.15)

The conclusion is that the Stoke phase of the two are the same exact except for a phase of π

8.E Expanding an elliptic integral, moving in kx displaced in kz

The integration of the squareroot of a quartic polynomial is an incomplete elliptical integral of the first
kind,

I3π/4 =
∫ t0

0
dt
√

k2
0,z + F4t4 =

2k0,z
√

ik0,z

3F
F
(

i sinh−1(1)
∣∣∣− 1

)
, (8.E.1)

with t0 = e3iπ/4

√
k0,z

F
and,

F(φ|m) =
∫ φ

0
dθ

1√
1−m sin2(θ)

(8.E.2)
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While for t0 = eiπ/4

√
k0,z

F

Iπ/4 =
∫ t0

0
dt
√

k2
0,z + F4t4 =

(−1)1/4√π(|k0,z|)3/2

8F
Γ(1/4)
Γ(7/4)

. (8.E.3)

We will express the elliptical integral in terms of Legendre polynomials, Pn[x] [33, 1st Section]. To do this
the integral is written a bit differently,

F(φ|m) = 2
∫ ṽ

0

dv√
1 + 2λv2 + v4

, (8.E.4)

with v = tan
θ

2
, ṽ = tan

φ

2
, λ = m′ −m, and m′ = 1−m then,

F(φ|m) = 2
∫ ṽ

0
dv

∞

∑
n=0

Pn(−λ)v2n (8.E.5)

= 2
∞

∑
n=0

Pn(−λ)
(i tanh[sinh−1(1)/2])2n+1

2n + 1
. (8.E.6)

Now we calculate λ

m = −1⇒ m′ = 2⇒ λ = 1 (8.E.7)

F(φ|m) = 2
∞

∑
n=0

Pn(−1)
(i tanh[sinh−1(1)/2])2n+1

2n + 1
(8.E.8)

Numerically it can be checked that,

<
[4
√

i
3
·

∞

∑
n=0

Pn(−1)
(i tanh[sinh−1(1)/2])2n+1

2n + 1

]
= −<

[ (−1)1/4√π

8
Γ(1/4)
Γ(7/4)

]
, (8.E.9)

=
[4
√

i
3
·

∞

∑
n=0

Pn(−1)
(i tanh[sinh−1(1)/2])2n+1

2n + 1

]
= =

[ (−1)1/4√π

8
Γ(1/4)
Γ(7/4)

]
, (8.E.10)

or

4
√

i
3
·

∞

∑
n=0

(−1)nPn(1)

(
i tanh

[sinh−1 1
2

])2n+1

2n + 1
= −

[ (−1)1/4√π

8
Γ(1/4)
Γ(7/4)

]∗
. (8.E.11)

8.F Non-zero temperatures

Until now we have only been concerned with what corresponds to a single particle traveling through the
bandstructure. This case is analagous to a Bose-Einstein condensate (BEC) at zero temperature. Instead, to
better illustrate the transfer of particles as a function of displacement k0,i, we introduce a non-zero temper-
ature, and observe how a Fermi-Dirac (F-D) and Bose-Einstein (B-E) distribution evolve after an evolution
through the entirity of the first BZ. Note that this description is for non-interacting particles. The two
distributions a given by the eqautions,

nF−D =
1

e(E−µ)/(kBT) + 1
, nB−E =

1
e(E−µ)/(kBT) − 1

(8.F.1)

To demonstrate the displacement dependecy we have plotted the distribution and the tranfered fraction in
Fig. 5
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Figure 5: The Fermi-Dirac distribution and the amount that is transfered in the three cases for F=1.

8.G Higher order correction plots

In this section we will plot the integrals as a function of ωi. To obtain a numerically graphable function
from Mathematica it is advisable to write the exponential as the followin instead,∫ ∞

0
dte±(t

3±(ωj−ωj−1)) =
∫ ∞

0
dt cos(t3 ± (ωj −ωj−1))± i sin(t3 ± (ωj −ωj−1)). (8.G.1)

The two solutions are,

π
3
√

3
Ai
[
± ω

3
√

3

]
± i

360

[
40 · 3
√

3
2
Bi
[
± ω

3
√

3

]
− 60ω2

1F4

[
1;

2
3

,
5
6

,
7
6

,
4
3

;
ω6

1082

]
∓ω5

1F4

[
1;

7
6

,
4
3

,
5
3

,
11
6

;
ω6

1082

]]
.

(8.G.2)
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(c) The two different integrations real part is actually equal to each
other. This is the reason one of them does not show

20

-1.0
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Figure 6: The convolution plots of the two integral I+(ω), I−(ω), seems to converge for an integral with
bounds ±∞
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8.H The Berry curvature and flux calculations

The Berry flux, also called the Chern number or chirality, is found by integrating a sphere, dS, enclosing
the node in momentum space over the Berry curvature,

C =
1

2π

∫
S

Ω · dSk. (8.H.1)

The normal of a sphere is naturally the radial unit vector and the infitisimal area is given as dA = k2 sin(θ)dφdθ,

C =
∫ π

0

∫ 2π

0

1
k2 sin(θk)

∂θk(cos θS)k2 sin(θk)dφdθ = 2π
∫ π

0
∂θk cos(θS)dθk = 2π

(
k cos(θk)

k
√

cos2(θk) + k2 sin4(θk)

)∣∣∣∣∣
π

0

= −4π. (8.H.2)

This is a double-Weyl point sink, with a topological charge of −2. The same flux can be found for the
Berry curvature in Cartesian coordinates. Instead of a sphere, infinitely large planes seperated from the
monopole by some constant number has to be integrated.

C =
∫∫ ∞

−∞
dkidk jΩk(K+

k , ki, k j)−
∫∫ ∞

−∞
dkidk jΩk(K−k , ki, k j) (8.H.3)

This is the same as integrating a box in Cartesian coordinate space with sidelengths, L = k+x/y/z − k−x/y/z.
No matter the axis that these planes are perpendicular to, the flux through is of the size 4π.

∫ ∞

−∞
dkzΩx(K+

x , ky, kz) =
kx − ky

Sy
Sx

Sx

(
S2

y

S2
x
+ 1
)[ kz

E+

]∞

−∞
;
∫ ∞

−∞
dkzΩy(K+

y , kx, kz) = −
ky − kx

Sy
Sx

Sx

(
S2

y

S2
x
+ 1
)[ kz

E+

]∞

−∞
(8.H.4)

Evaluation of the integral yields,

lim
kz→±∞

[ kz

E+

]
= lim

θS→0∨π

[
cos(θS)

]
= ±1. (8.H.5)

Before integrating the ky, kx dependent terms, note that,

kx − ky
Sy
Sx

Sx

(
S2

y

S2
x
+ 1
) = −1

2

(dSx

dky

dφS

dSx
+

dSy

dky

dφS

dSy

)
, −

ky − kx
Sy
Sx

Sx

(
S2

y

S2
x
+ 1
) = −1

2

(dSx

dkx

dφS

dSx
+

dSy

dkx

dφS

dSy

)
. (8.H.6)

This yields,∫∫ ∞

−∞
dkydkzΩx(K±x , ky, kz) =

∫ ∞

−∞
dky

1
2

dφS

dky

[ kz

E+

]∞

−∞
= 2K+

x

∫ ∞

−∞
dky

1
k2

x + k2
y
= ±2π.

The same method yields the same result for
∫∫ ∞
−∞ dkxdkzΩy(K±y , kx, kz). For Ωz-component,∫∫ ∞

−∞
dkxdkyΩz(K+

z , ky, kx) =
∫ ∞

−∞
dky[Ay(k)]∞−∞ −

∫ ∞

−∞
dkx[Ax(k)]∞−∞ (8.H.7)

Note that this is equal to zero. In the integration we need to account for poles,∫∫ ∞

−∞
dkxdky

[
∂kx Ay − ∂ky Ax

]
. (8.H.8)

The result is a Chern number of −4π. In Fig. 7 we have plotted the stream lines of the Berry curvature of
Eq. 4.9. From this we can see that in the vicinity of k = (0, 0, 0) the node changes the direction of the stream
line going in the kz direction. This is the reason that the integration of the infinite plane perpendicular to
the kz-axis yields a pole .
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8. APPENDICES
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Figure 7: The Berry curvature field lines. c) shows the lines seen from kz = 0. Altering kz does not change
the field lines only the strenght of them. The 4 grid lines show where the slices a,b,d,e) are from. a,b,d,e)
shows the deoendency of the orientation by the position kx, ky. The field lines point either up or down in
kz
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