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Abstract

In this paper general Floquet theory is introduced and applied to various time dependent problems
in both quantum and classical mechanics. Analytical solutions are found to the harmonically driven
oscillator and the inverted harmonically driven oscillator and their stability has been studied. The
transition probability to the n’th state of the harmonic oscillator is found for the harmonically driven
oscillator using two methods. The stability of the abruptly driven classical oscillator, the harmonically
driven classical oscillator and the quantum oscillator with time-dependent frequency have been assessed
and stable and unstable solutions have been found.
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1 Introduction

Driven systems appear in various forms in both classical mechanics and quantum mechanics. Some simple
forms allow for analytical solutions, which can then be analyzed and studied in detail. For those that do not,
there are tools to make qualitative statements about their general behaviour. In this paper, various problems,
both with and without analytical solutions, in both classical and quantum mechanics, will be examined and
their general behaviours indentified with the help of Floquet theory. Floquet multipliers will be used to show
stability of a classical system via Poincaré sections. The stability of various driven systems with different
initial conditions have been assessed through identification of the quasi-energy of the system. Stable and
unstable solutions have been found to the harmonic quantum oscillator. The transition probabilities of the
0’th state of the driven harmonic oscillator to the n’th state of the harmonic oscillator have been found and
analyzed and resonance has been discussed.

2 Floquet theory

2.1 Floquet’s theorem

Floquet’s theorem [1] states that the solution to a problem of the form ẋ = A(t)x, where A(t+ T ) = A(t) is
some periodic function with period T, is given by

Φ = P (t)e±iµt, (2.1)

where P(t+T)=P(t) is a periodic function with the the same period T. Second order problems, ẍ = A(t)x
can be rewritten as

d

dt

(
x
ẋ

)
=

(
0 1

A(t) 0

)(
x
ẋ

)
, (2.2)

so that their solution is on Floquet form.

If H = A(t)− ∂t is the operator for which HΦ = 0, then we have that

HP (t) = iµP (t). (2.3)

This can be seen by inserting the proposed solution into Φ and carrying out the differentiations. In
quantum mechanics, we usually say that

µ =
εn
~
, (2.4)

where εn is called the quasi-energy. The quantity µt is a measure of the phase acquired after a time t, for
real values of µ. It can also be used to make a qualitative assessment of the stability of a given system. For
real µ, the solution is normalizable and the motion is bounded. Imaginary (or complex) values of µ allow for
diverging or decaying solutions. For example, consider the case in which µ = −ia, where a > 0. This would
make the solution tend to diverge as t→∞, and is thus not normalizable.

If M̂ is the operator which propagates time by one period when applied to a state, such that M̂Φ(t) =
Φ(t+ T ), then the eigenvalues, ρ, of the operator M̂ are called the Floquet multipliers, and are given by

ρ = eiµT . (2.5)

If the Floquet multiplier |ρ| ≤ 1, then the system is stable and will either be periodic or decay. If |ρ| > 1,
then the solution will grow exponentially with time.
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Just like ρ, the operator M̂ can be can be used to make a qualitative statement about the stability of a given
system, even of ones with no analytical solution. Given a set of initial conditions, one can make a Poincaré
section by applying the operator multiple times. This can reveal the periodicity, decay, or divergence of the
solution, without having to solve the problem analytically.

2.2 Time evolution operator of a driven pendulum

An easily accessible example of using this method to determine stability is the case of the abruptly driven
pendulum [2].

Given the equation

θ̈ + (1 + r)θ = 0, for 0 ≤ t < πx

θ̈ + (1− r)θ = 0, for πx ≤ t < 2πx,

the solution is of the form

θ(t) = θ(0) cos(ωt) + θ̇(0)
sin(ωt)

ω
,

where ω =
√

1± r = Γ±/(πx), + or - depends on t.

The time evolution operator M, which fulfills Mθ(t) = θ(t + T ), can be split up into two matrices, each
responsible for half a period, T

2 . For the first half-period, we use ω =
√

(1 + r).

θ(πx) = θ(0) cos(Γ+) + θ̇(0)
sin(Γ+)

ω
and

θ̇(πx) = −θ(0)
√

1 + r sin(Γ+) + θ̇(0) cos(Γ+).

In matrix notation, this gives us

(
θ(πx)

θ̇(πx)

)
=

cos(Γ+) sin(Γ+)√
(1+r)

− sin(Γ+)√
(1+r)

cos(Γ+)

(θ(0)

θ̇(0)

)
. (2.6)

To find the matrix that takes us the remaining halfway, we just assume that πx is our new starting point
and use the exact same argument. Note that this time ω =

√
1− r, since we are in the second half of the

period.

θ(2πx) = θ(πx) cos(Γ−) + θ̇(πx)
sin(Γ−)√

(1− r)
and

θ̇(2πx) = −θ(πx)
√

1− r sin(Γ−) + θ̇(πx) cos(Γ−),

which in matrix notation gives

(
θ(2πx)

θ̇(2πx)

)
=

 cos(Γ−) sin(Γ−)√
(1−r)

− sin(Γ−)√
(1−r)

cos(Γ−)

(θ(πx)

θ̇(πx)

)
. (2.7)

In total, we have that θ(2πx) = Mθ(0), where
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M =

 cos(Γ−) sin(Γ−)√
(1−r)

− sin(Γ−)√
(1−r)

cos(Γ−)

cos(Γ+) sin(Γ+)√
(1+r)

− sin(Γ+)√
(1+r)

cos(Γ+)

 . (2.8)

From here, we can find the eigenvalues of the M̂ , which are the Floquet multipliers, ρ. From those, we can

find the values of µ, since µ = ± ln(ρ)
iT . For example, if we set x = 0.9 and r = 0.7, we find that µ = ±0.139,

and therefore expect the system to be stable, given these values. This can be verified by examining the
Poincaré section, which we can make by applying M̂ multiple times to a set of initial conditions. Given the
initial condition (

θ(0)

θ̇(0)

)
=

(
1
0

)
, (2.9)

the resulting phase space diagram can be seen in figure 1(a). As expected, the system is stable and just
keeps going around in phase space in the outlined shape.

If, instead, we were to study the case in which x = 0.96 and r = 0.7, then µ = ±0.517i suddenly becomes
purely imaginary, and we would expect the solution to diverge. Using the exact same method for the Poincaré
section, we arrive at figure 1(b). This solution keeps growing exponentially, even if it is slow a first.

If you are more harmonically inclined, and would prefer a harmonically changing frequency rather than
the abrupt one studied here, the equation of motion takes the form of the Mathieu equation, whose solution
is also analyzable from a Floquet perspective and will be studied in chapter 5.2.
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Figure 1: Poincaré sections of the two systems, with the first 200 periods imaged. (a) Stable solution with
initial conditions x = 0.9 and r = 0.7, and µ = ±0.139. (b) Unstable solution with initial conditions x = 0.96
and r = 0.7, and µ = ±0.517i
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3 Driven Quantum Oscillator

3.1 The general solution

In this chapter1 we will study the behaviour of the the harmonic oscillator when exposed to a driving
perturbation, F (t). The Schrödinger equation for such a system is given by

i~Ψ̇(x, t) =

[
− ~2

2m

∂2

∂x2
+

1

2
mω2

0x
2 − xF (t)

]
Ψ(x, t). (3.1)

This can be solved by bringing it on a form that resembles the unperturbed harmonic oscillator, and
hiding the perturbation behind transformations made along the way [5]2. To get there, we will start by
making a change of variables,

x→ y = x− ζ(t), (3.2)

so that we can write the Schrödinger equation in the new coordinate y,

i~Ψ̇(y, t) =

[
i~ζ̇(t)

∂

∂y
− ~2

2m

∂2

∂y2
+

1

2
mω2

0(y + ζ(t))2 − (y + ζ(t))F (t)

]
Ψ(y, t). (3.3)

From here, it is useful to perform the following unitary transformation,

Ψ(y, t) = eimζ̇y/~φ(y, t), (3.4)

where ζ(t) obeys the newtonian equation of motion

mζ̈ +mω2
0ζ = F (t). (3.5)

Inserting this into the above and calculating the LHS and RHS seperately, we get for the LHS:

i~Ψ̇(y, t) = eimζ̇y/~
[
i~φ̇−myζ̈φ

]
. (3.6)

Using (3.5), we eliminate the double time derivative and get the following expression for the LHS

i~Ψ̇(y, t) = eimζ̇y/~
[
i~φ̇− yφF (t) + yφmω2

0ζ
]
. (3.7)

For the RHS, we get

[
i~ζ̇(t)

∂

∂y
− ~2

2m

∂2

∂y2
+

1

2
mω2

0(y + ζ(t))2 − (y + ζ(t))F (t)

]
Ψ(y, t)

= eimζ̇y/~
[
i~ζ̇

∂φ

∂y
−mζ̇2φ− ~2

2m

∂2φ

∂y2
− i~ζ̇ ∂φ

∂y
+
m

2
ζ̇2φ+

m

2
ω2

0y
2φ+

1

2
mω2

0ζ
2φ+mω2

0ζyφ− yF (t)φ− ζF (t)φ

]
(3.8)

Equating the RHS and LHS and reducing, we see that

i~φ̇ =

[
− ~2

2m

∂2

∂y2
+
m

2
ω2

0y
2 − L(ζ, ζ̇, t)

]
φ, (3.9)

where L = m
2 ζ̇

2 − 1
2mω

2
0ζ

2 + ζF (t) is the Lagrangian for a driven harmonic oscillator.

1Chapters 3.1 and 3.2 have been written in collaboration with Jon Brogaard.
2Note that there are multiple mistakes in this part of [5] which we have corrected.
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Introducing another unitary transformation specifically to get the lagrangian term to cancel out,

φ(y, t) = e
i
~
∫ t
0
dt′L(ζ,ζ̇,t′)χ(y, t), (3.10)

we thereby end up with a form whose solution in known,
This transformation gives us the form of a normal, unperturbed harmonic oscillator

i~χ̇(y, t) =

[
− ~2

2m

∂2

∂y2
+

1

2
mω2

0y
2

]
χ(y, t). (3.11)

The stationary states of the harmonic oscillator are

ϕn(y) =
(mω0

π~

) 1
4 1√

2nn!
Hn(y)e−

mω0
2~ y2 , (3.12)

where Hn(x)3 are the Hermite polynomials [6]. The energies of the harmonic oscillator are known to be
En = ~ω0(n+ 1

2 ) . Combining this with the stationary states, ϕn, of the harmonic oscillator, we get that

χn(y, t) =
(mω0

π~

) 1
4 1√

2nn!
Hn(y)e−

mω0
2~ y2− i

~Ent. (3.13)

Inserting this expression into our expression for φ, and then that expression into the one for ψ, we get

φn(y, t) =
(mω0

π~

) 1
4 1√

2nn!
Hn(y)e−

mω0
2~ y2− i

~ [Ent−
∫ t
0
dt′L], (3.14)

ψn(y, t) =
(mω0

π~

) 1
4 1√

2nn!
Hn(y)e−

mω0
2~ y2+ i

~ [mζ̇(t)y−Ent+
∫ t
0
dt′L]. (3.15)

Now, substituting our variable from y back to x

ψn(x, t) =
(mω0

π~

) 1
4 1√

2nn!
Hn(x− ζ(t))e−

mω0
2~ (x−ζ(t))2+ i

~ [mζ̇(t)(x−ζ(t))−Ent+
∫ t
0
dt′L]. (3.16)

Now we have our general wavefunction for an arbitrary F (t), which appears in the lagrange function in
the exponent. This is just a harmonic oscillator with a shifted coordinate and a complex phase in exponential
factor.

3.2 Periodic monochromatic driving force

Let us now try to work with a simple harmonic driving force by setting

F (t) = A sin(ωt+ θ). (3.17)

Classically, this would be like placing a hamonic oscillator (with frequency ω0) on a platform performing
harmonic movement itself, with frequency ω. With this force, a solution to 3.5 is

ζ(t) =
A sin(ωt+ θ)

m(ω2
0 − ω2)

, (3.18)

where ω 6= ω0.
In order to calculate the action, we need to first calculate the time derivative of the moving coordinate, ζ̇,

ζ̇ =
Aω cos(ωt+ θ)

m(ω2
0 − ω2)

. (3.19)

3For ease of notation throughout this paper, it is implicit that the argument of the Hermite polynomial Hn(x) is
√

mω0
~ x.
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We now calculate the action as it appears in our expression for ψ,

∫ t

0

dt′L(ζ, ζ̇, t′) =

∫ t

0

dt′

A2ω2 cos2(ωt′ + θ)

2m(ω2
0 − ω2)2

−
mω2

0(
A sin(ωt′+θ)
m(ω2

0−ω2)
)2

2
+
A2 sin2(ωt′ + θ)

m(ω2
0 − ω2)

 =

A2[ωt(ω2
0 − ω2) + (3ω2 − ω2

0) cos(2θ + ωt) sin(ωt)]

4mω(ω2
0 − ω2)2

.

(3.20)

Inserting this into 3.16 we find the wavefunctions

ψn(x, t) =(mω0

π~

) 1
4 1√

2nn!
Hn(x− ζ(t))e

−mω0
2~ (x−ζ(t))2+ i

~

[
mζ̇(t)(x−ζ(t))−Ent+

A2[ωt(ω2
0−ω

2)+(3ω2−ω2
0) cos(2θ+ωt) sin(ωt)]

4mω(ω2
0−ω

2)2

]
(3.21)

3.3 Floquet

Since ζ and ζ̇ are both periodic in t, then so are the Hermite polynomials. If we, in the exponent of (3.21),
both add and subtract the expression

t

T

∫ T

0

dt′L(ζ, ζ̇, t′) =
A2

4m(ω2
0 − ω2)

t, (3.22)

we can then identify the quasi-energies as being

εn = ~ω0(n+
1

2
)− A2

4m(ω2
0 − ω2)

, (3.23)

which then leaves us with the floquet modes of the form

Φn =
(mω0

π~

) 1
4 1√

2nn!
Hn(x− ζ(t))e

−mω2~ (x−ζ(t))2+ i
~

[
mζ̇(t)(x−ζ(t))+A2(3ω2−ω2

0) cos(2θ+ωt) sin(ωt)

4mω(ω2
0−ω

2)2

]
. (3.24)

This quasi-energy is strictly real, and so the system is stable, since the Floquet multipler |ρ| = |e i~ εnT | = 1.
It is worth noting that as ω → ω0, the last term in equation 3.23 starts to dominate, such that the quasi-
energies lie closer and closer (as long as A 6= 0), and at resonance the quasi-energies form a continuous
spectrum, as seen in figure 2. If we keep incresing ω past ω0, then the quaienergies will flip back around
to go from very negative to very postive. This just means that the phase of the solution (the µ-part from
equation 2.1) changes direction in phase space.

3.3.1 The inverted harmonic potential

It is interesting to consider what happens if we turn the potential of the harmonic oscillator upside-down. If
we do this, then equation 3.5 takes the form

mζ̈ −mω2
0ζ = F (t), (3.25)

and the Lagrange function becomes

L =
m

2
ζ̇2 +

1

2
mω2

0ζ
2 + ζF (t). (3.26)
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Figure 2: Parametic plot of the quasi-energies in (3.23) at ω
ω0

= 0.999, plotted together with the eigen-energies
of the harmonic oscillator. Both are in units of ~ω0.

Now, we can follow the derivation of chapter 3.1 all the way down to (3.11), but with a negative sign in
front of the 1

2mω
2
0y

2-term. The solutions to the inverted oscillator potential [7] are given by

χ(y, t) = exp

[
1

2

(
i

~
mω0y

2 − ω0t

)
+ ikye−ω0t +

ik2

4ω0m
e−2ω0t

]
. (3.27)

The derivation of equation 3.27 can be found in [7] or in appendix A. To get the full solution, we have to
transform back to ψ(x, t), just like we did for the harmonic oscillator. Doing so we get

ψ(x, t) = exp

[
1

2

(
i

~
mω0(x− ζ(t)2 − ω0t

)
+ ik(x− ζ(t)e−ω0t +

ik2

4ω0m
e−2ω0t +

i

~

(
mζ̇(t)(x− ζ(t)) + S(t)

)]
.

(3.28)
However, since normalization of equation 3.27 is far from trivial, we will comment mostly on what is

readily available through the solution to (3.25) and the corresponding action.
The most general solution to equation 3.25 is

ζ(t) = − A sin(ωt)

m(ω2
0 + ω2)

+ αeω0t + βe−ω0t

ζ̇(t) = − Aω cos(ωt)

m(ω2
0 + ω2)

+ αω0e
ω0t − βω0e

−ω0t.

If we choose to start the system in ζ(t) = 0, with a finite initial velocity ζ̇(0) = − Aω
m(ω2

0+ω2)
, then we must

have that α = β = 0, such that

ζ(t) = − A sin(ωt)

m(ω2
0 + ω2)

ζ̇(t) = − Aω cos(ωt)

m(ω2
0 + ω2)

.

These expressions we can plug into the lagrangian to ultimately calculate the action integral, v. If we do
that, we get that
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S =
A2
((

3ω2 + ω2
0

)
sin(2ωt)− 2tω

(
ω2 + ω2

0

))
8mω (ω2 + ω2

0)
2 . (3.29)

This is a combination of a harmonic term and a term linear in t. The term linear in t contributes to
the quasi-energies in the same way that it did for the potential of the upright harmonic oscillator. The
remainder oscillates harmonically with the same period as ζ and F (t). Since ζ(t) is periodic, we can write
this on Floquet form as a quasi-energy

εn = α+
A2

4m(ω2
0 + ω2)

, (3.30)

where α is the contribution to the quasi energy from the general solution, and a Floquet mode which is
periodic with period t = 2π

ω . The quasi-energies of this potential look a lot like the ones of equation 3.23,
but we see that there is no resonance phenomenon in this case. If α is real, the quasi-energy is real, and so
the system is stable, regardless of the strength of the driving force, A. We can rationalize this by noticing
that the initial velocity is dependent on the driving force, and so a stronger driving force will have a faster
initial velocity to stabilize. This velocity makes up for the initial ”push” that would otherwise unbalance the
system.

If we try again with the same potential, but different initial conditions, we stumble upon a curiosity. Say
we want our particle to start out at rest at the top of the potential barrier, so that the initial velocity is 0,
just like the initial position, then we see that

ζ(0) = 0⇔ α = −β (3.31)

and

ζ̇(0) = 0⇔ α =
A ω
ω0

2m(ω2
0 + ω2)

. (3.32)

Using this, we finally get an expression for ζ(t) and ζ̇(t), namely

ζ(t) =
A

m(ω2
0 + ω2)

(
ω

ω0
sinh(ω0t)− sin(ωt)

)
ζ̇(t) =

Aω

m(ω2
0 + ω2)

(cosh(ω0t)− cos(ωt)) .

With this equation of motion, the action becomes

S = −
A2
(
2tω3ω0 − 2ω3 sinh(2ω0t) + 8ω3 cos(ωt) sinh(ω0t) + 2tωω3

0 −
(
3ω2ω0 + ω3

0

)
sin(2ωt)

)
8mωω0 (ω2 + ω2

0)
2 , (3.33)

which, contrary to the prior actions calculated, is not made up of only terms linear and harmonic in t, but
now contains sinh-terms. For this reason, it is not immediately apparent that this expression can be brought
on Floquet form. In fact, this can be seen from the fact that ζ(t) grows as the time goes, and is therefore not
periodic. The shift of equation (3.28) grows with time and the solution therefore seems unstable. As a result,
it is not possible to balance a particle on top of a potential hill of this form, with these initial conditions,
unless the monotonically increasing shift exactly cancels out with something else in (3.28) to make the floquet
mode periodic. This instability is in agreement with what we would expect classically; if you push a ball
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away from an unstable equilibrium, you would have to push even harder to get it back to the equilibrium
position since you would now also have to push against the potential.
We would expect to be able to write the solution on Floquet form, though, because even though we have
changed the initial conditions, the potential is still periodic and so is compatible with the requirements of
Floquet’s theorem.

It can be shown that the quasi-energies of the upright driven harmonic oscillator, with initial conditions
ζ(0) = 0 and ζ̇(0) = 0, are the same as the quasi-energies as those of the harmonic oscillator with the initial
conditions considered above, in equation 3.23.

3.4 Overlaps of the driven oscillator with the harmonic oscillator

If we assume that our upright (regular) harmonic oscillator is in the ground state when we apply our driving
perturbation, we can try to find the overlap of the n’th state of the unperturbed oscillator with the 0’th state
of the driven oscillator. This result we can use to find the probability of finding the system in an excited
state of the harmonic oscillator. Using equations 3.12 and 3.21

Pn(t) = | 〈ϕn|ψ0|ϕn|ψ0〉 |2, (3.34)

where the usual inner product is used, such that

〈ϕn|ψ0|ϕn|ψ0〉 =

∫ ∞
−∞

dxϕ∗n(x, t)ψ0(x, t). (3.35)

This can be evaluated for different values of n. As an example, the overlap with the groundstate (n=0)
is given by

〈ϕn|ψ0|ϕn|ψ0〉 = exp

[
1

4~

(
−A

2ω0 sin2(ωt+ φ)

m (ω2
0 − ω2)

2 − A2ω2 cos2(ωt+ φ)

mω0 (ω2
0 − ω2)

2

−2i

(
A2
(
tω
(
ω2

0 − ω2
)

+
(
3ω2 − ω2

0

)
sin(ωt) cos(ωt+ 2φ)

)
2mω (ω2

0 − ω2)
2 +

A2ω sin(ωt+ φ) cos(ωt+ φ)

m (ω2
0 − ω2)

2

))]
.

(3.36)

If we examine the relation between consecutive overlaps (here we have examined overlaps upto n = 4),
we find a recurring factor (up to a factor dependent on n),

〈ϕn+1|ψ0|ϕn+1|ψ0〉
〈ϕn|ψ0|ϕn|ψ0〉

=
A (iω cos(ωt) + ω0 sin(ωt))√

2(n+ 1)mω0~(ω2
0 − ω2)

. (3.37)

In the general exression for 〈ϕn|ψ0|ϕn|ψ0〉, we can combine equations 3.12, 3.16, 3.18 and 3.19, and take
all terms that are independent of both x and n outside of the integration in the inner product. This factor
must be the same for all n, regardless of the overlap examined. This leads us to guess an expression for the
overlap of the 0’th state of the driven oscillator and the n’th state of the harmonic oscillator.

〈ϕn|ψ0|ϕn|ψ0〉guess =

(
A(ω0 sin(ωt+φ)+iω cos(ωt+φ))√

mω0~(ω2
0−ω2)

)n
√

2nn!
exp

[
1

4~

(
−A

2ω0 sin2(ωt+ φ)

m (ω2
0 − ω2)

2 − A2ω2 cos2(ωt+ φ)

mω0 (ω2
0 − ω2)

2

−2i

(
A2
(
tω
(
ω2

0 − ω2
)

+
(
3ω2 − ω2

0

)
sin(ωt) cos(ωt+ 2φ)

)
2mω (ω2

0 − ω2)
2 +

A2ω sin(ωt+ φ) cos(ωt+ φ)

m (ω2
0 − ω2)

2

))]
.

(3.38)
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When we want to calculate the transition probability, the expression will simplify greatly, since the
complex phase will vanish, to yield

Pn,guess(ω, t) = | 〈ϕn|ψ0|ϕn|ψ0〉guess |
2 =

e
− 1

2

[
A2

mω0~

(
ω2
0 sin2(ωt)−ω2 cos2(ωt)

(ω2
0−ω

2)2

)] [
A2

2mω0~

(
ω2

0 sin2(ωt) + ω2 cos2(ωt)

(ω2
0 − ω2)2

)]n
1

n!
.

(3.39)

4 The Heisenberg Picture

4.1 Analytical soluion in Heisenberg picture

To justify the form of equation 3.39, it is educational to look at the problem in the Heisenberg picture,
where the wave functions are all stationary, and it is the operators which are considered to have the time
dependence. The following derivation follows closely along the lines of reference [3].

The hamiltonian of a general driven and damped oscillator is given by

H(t) =
p2

2m
+

1

2
mω2x2 − xF (t)− pG(t), (4.1)

where F (t) is the driving term and G(t) is the damping term. Expressing this in terms of the raising and
lowering operators of the unperturbed harmonic oscillator, a†(t) and a(t) respectively, we get

H = ~ω0

(
a†a+

1

2

)
+ f(t)a+ f∗a†, (4.2)

where

a =

√
mω0

2~

(
x+ i

p

mω0

)
and f(t) = −

√
~

2mω0
F (t) + i

√
~mω0

2
G(t). (4.3)

In the Heisenberg picture, it is the operators that have time dependence, while the wavefunctions are
stationary. Using the known commutation relation for a(t) and a†(t) (which can be derived using the
commutation relation of x and p, [x, p] = i~), [

a(t), a†(t)
]

= I, (4.4)

we can find the equation of motion in for the operator a(t).
The equation of motion in the Heisenberg picture is given by (here the explicit time dependence has been
supressed for ease of reading)

i~
da(t)

dt
= [a(t), H(t)]

= ~ω0

(
aa†a+

1

2
a

)
+ afa+ af∗a† − ~ω0

(
a†a2 +

1

2
a

)
− faa− f∗a†a

= ~ω0aa
†a+ f∗aa† − ~ω0a

†aa− f∗a†a
= ~ω0

(
aa† − a†a

)
a+ f∗

(
aa† − a†a

)
= ~ω0a+ f∗

m
da(t)

dt
+ iω0a(t) = − i

~
f∗(t).

(4.5)
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The solution to this differential equation can be found by construction of a Green’s function. The solution
then becomes

a(t) = − i
~

∫ ∞
−∞

dt′G(t− t′)f∗(t′), (4.6)

where G(t− t′) is the Green’s function which satisfies the relation

dG(t− t′)
dt

+ iω0G(t− t′) = δ(t− t′), (4.7)

since

da(t)

dt
= − i

~

∫ ∞
−∞

dt′
G(t− t′)

dt
f∗(t′) = − i

~

∫ ∞
−∞

dt′(δ(t− t′)− iω0G(t− t′))f∗(t′)

= − i
~
f∗(t′)− iω0a(t).

(4.8)

The Green’s function used is, of course, discontinuous at the time t = t′, but the solution to the ho-
mogeneous equation 4.7 has an exponential time dependence. If we use the Green’s functions that are a
combination of this exponential time dependence and the step-function, η, which is also discontinuous at t′,
we have a two functions. One that goes backwards in time (advanced) and another that goes forward in time
(retarded),

GR(t− t′) = η(t− t′)e−iω0(t−t′)

GA(t− t′) = −η(t′ − t)e−iω0(t−t′).

Additionally, if we call the solutions to the homogeneous eq. 4.5 (f∗(t′) = 0) ain and aout, then the
solution to the inhomogeneous differential equation will be

a(t) = ain(t)− i

~

∫ ∞
−∞

dt′GR(t− t′)f∗(t′) = ain(t)− i

~

∫ t

−∞
dt′e−iω0(t−t′)f∗(t′)

a(t) = aout(t)−
i

~

∫ ∞
−∞

dt′GA(t− t′)f∗(t′) = ain(t) +
i

~

∫ ∞
t

dt′e−iω0(t−t′)f∗(t′).

ain and aout describe the system respectively before and after we apply the perturbation. Equating the
two expressions for a(t) and combining the integrations into one, we end up with following relation

aout(t) = ain(t)− i

~

∫ ∞
−∞

dt′e−iω0(t−t′)f∗(t′). (4.9)

Since ain and aout apply to the system before the perturbation is started and after the perturbation ends,
respectively, they are the solutions to 4.5 with the right-hand side set to 0, which means that they have an
exponential time depence, such that

ain(t) = aine
−iω0t

aout(t) = aoute
−iω0t,

and so we can cancel out the e−iω0t terms in 4.9 to get
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aout = ain −
i

~
g∗(ω0), (4.10)

where g(ω0) is the fourier transform of f(t),

g(ω0) =

∫ ∞
−∞

dt′e−iω0t
′
f(t′). (4.11)

We can write a relation between aout and ain with a unitary S as

aout = S†ainS. (4.12)

The hamiltonian before the perturbation is applied is Hin = ~ω0(a†inain + 1
2 ) and the hamiltonian after

the perturbation is stopped is Hout = ~ω0(a†outaout + 1
2 ). Imagine that we stop the perturbation right as

we measure the overlaps. Then Hout will be the hamiltonian for the system as we measure it, and it will
behave as a continuously driven system. The operators a†inain and a†outaout from the hamiltonians have the
eigenvalues n = 0, 1, 2, 3, ...., and the eigenvector corresponding to the eigenvalue n, we call |n〉in or |n〉out,
respectively.
To find a relationship between |n〉out and |n〉in, we consider that

a†outaout |n〉out = n |n〉out , but it must also be true that

a†outaout |n〉out = S†a†inainS |n〉out .

For this to be true, we must have that

|n〉out = S† |n〉in , (4.13)

such that the last term is

S†a†inainS |n〉out = S†a†inainSS
† |n〉in = nS† |n〉in . (4.14)

Together with the operator relation between an operator a and a complex number α

e−αa
†+α∗aaeαa

†−α∗a = a+ α, (4.15)

we have all that is needed to determine an expression for S. From equation 4.10,

aout = S†ainS = ain −
i

~
g∗(ω0), (4.16)

we can identify

a = ain

α = − i
~
g∗(ω0)

and write

S = e(−
i
~ g
∗(ω0)a†in−

i
~ g(ω0)a). (4.17)

Now, we want to know the probability of the driven harmonic oscillator being in an excited state of
the unperturbed oscillator. In other words, assuming that the oscillator is in the ground state before the
perturbation, we want to claculate
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out 〈n|0|n|0〉in =out 〈n|S |0〉out =in 〈n|S |0〉in . (4.18)

Using the relation, with a and b being operators,

eaeb = ea+b+ 1
2 [a,b], (4.19)

we can find, using the commutation relation between a† and a established earlier, that

S |0〉 = e−
1
2 |α|

2

eαa
†
e−α

∗a |0〉 = e−
1
2 |α|

2

eαa
†
(

1− α∗a+
1

2
(α∗a)2 + ....

)
|0〉 = e−

1
2 |α|

2

eαa
†
|0〉 , (4.20)

because using the lowering operator on a groundstate results in 0. Now we can just include the bra on
from the left and utilize the orthogonality of the eigenstates of the harmonic oscillator to get

〈n|S |0〉 = e−
1
2 |α|

2

〈n| eαa
†
|0〉 = e−

1
2 |α|

2

〈n|
(

1 + αa† +
1

2
(αa†)2 + ...+

(αa†)2

n!
+ ...

)
|0〉

= e−
1
2 |α|

2 αn√
n!
.

(4.21)

Inserting α and taking the square of the absolute value, we find the transition probability Pn to be

Pn(ω0) = |out 〈n|S |0〉in |
2 = e−

|g(ω0)|2

~2

∣∣∣∣g(ω0)

~

∣∣∣∣2n 1

n!
(4.22)

4.2 The driven harmonic oscillator in the Heisenberg picture

If we now study the case of a driven harmonic oscillator, with driving force

F (t) = A sin(ωt), (4.23)

and no damping, we see that we can use the Heisenberg picture to calculate the transition probabilities.
We want to know the chance of a driven harmonic oscillator transitioning to a state reminiscent of an excited
state n of the harmonic oscillator at time t. The driving force, F (t), is the same F (t) that appears in equation
4.1, with the damping term G(t) = 0.
We can now, with ease, calculate f(t). Since G(t) = 0,

f(t) = −
√

~
2mω0

F (t) = −
√

~
2mω0

A sin(ωt). (4.24)

From here, it is our goal to calculate the fourier transform, g(ω0, t), where t is the time at which we
measure the transition probability.

g(ω0, t) = −
√

~
2mω0

A

∫ t

−∞
dt′e−iω0t

′
sin(ωt′). (4.25)

To evaluate this integral in the endponts, it is prudent to have the perturbation be applied adiabatically
to the oscillator. This is done by adding an infinitesimal positive term ,O+, that is linear in time, in the
exponent. If we at the same time rewrite the sin(ωt′) to exponential form, the integral becomes (disregarding
the constants in front of the integral for now)
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∫ t

−∞
dt′e−i(ω0+O+)t′ sin(ωt′) =

1

2i

∫ t

−∞
dt′e−i(ω0+iO+)t′

(
eiωt

′
− e−iωt

′
)

=
1

2i

∫ t

−∞
dt′
(
e−i(ω0+iO+−ω)t′ − e−i(ω0+iO++iω)t′

)
=

1

2i

[(
e−i(ω0+iO+−ω)t′

−i(ω0 + iO+ − ω)
+
e−i(ω0+iO++ω)t′

i(ω0 + iO+ + ω)

)]t
−∞

(4.26)

Here, the purpose of the term O+ is to make the integral go to 0 as t′ → 0, while it is negligible at time
t′ = t and the terms in the denominator are virtually unaffected by the presence of the term. Hence, we get
that

1

2i

[(
e−i(ω0+iO+−ω)t′

−i(ω0 + iO+ − ω)
+
e−i(ω0+iO++ω)t′

i(ω0 + iO+ + ω)

)]t
−∞

≈ 1

2i

(
e−i(ω0t−ωt)

−i(ω0 − ω)
+
e−i(ω0t+ωt)

i(ω0 + ω)

)

=
e−i(ω0t−ωt)

2(ω0 − ω)
− e−i(ω0t+iωt)

2(ω0 + ω)
= e−iω0t

[
eiωt

2(ω0 − ω)
− e−iωt

2(ω0 + ω)

]
= e−iω0t

[
(ω0 + ω)eiωt − (ω0 − ω)e−iωt

2(ω2
0 − ω2)

]
= e−iω0t

[
iω0 sin(ωt) + ω cos(ωt)

(ω2
0 − ω2)

]
.

(4.27)

In the end, we get that

g(ω0, t) = −
√

~
2mω0

Ae−iω0t

[
iω0 sin(ωt) + ω cos(ωt)

(ω2
0 − ω2)

]
. (4.28)

The absolute square of this expression is easily found, since it is of the form g = x+ iy. Suppressing the
dependence on ω0,

|g(t)|2 =
~

2mω0
A2

[
ω2

0 sin2(ωt) + ω2 cos2(ωt)

(ω2
0 − ω2)2

]
. (4.29)

This we insert into equation 4.22 to get

Pn(t) = e
−
[

1
2mω0~A

2

(
ω2
0 sin2(ωt)+ω2 cos2(ωt)

(ω2
0−ω

2)2

)] [
A2

2mω0~

(
ω2

0 sin2(ωt) + ω2 cos2(ωt)

(ω2
0 − ω2)2

)]n
1

n!
. (4.30)

Comparing this with the absolute square of equation 3.38 (note that a big part of the exponent will cancel
out),

| 〈ϕn|ψ0|ϕn|ψ0〉guess |
2 = e

− 1
2

[
A2

mω0~

(
ω2
0 sin2(ωt)−ω2 cos2(ωt)

(ω2
0−ω

2)2

)] [
A2

2mω0~

(
ω2

0 sin2(ωt) + ω2 cos2(ωt)

(ω2
0 − ω2)2

)]n
1

n!
,

(4.31)
we see that these expression are identical. Below are plotted the transition probabilites of (4.30) and

(4.31) close to, and far from, resonance.
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Figure 3: Parametic plot of the transition proabilities to the first 15 states, at ω relatively far from resonance,
at ω

ω0
= 1.5.

Note that only the transitions to the ground state (blue) and the first excited state (red) are clearly visible;
the rest are negligibly small in this case.

Figure 4: Parametric plot of the transition proabilities of the first 15 states close to resonance, at ω
ω0

= 1.025.

From figures 3 and 4 we see that as we approach resonance, the transition probabilites tend toward 0.
This is because the 1

ω2
0−ω2 -term in equation 4.30 starts to dominate the 1

n! -term, for all n. As we approach

resonance, more and more transitions become plausible, and so in the limit ω → ω0 all transitions will be
equally probable and since there is no upper limit for n, the probabilities will tend toward 0. From equation
3.23, we see that as ω → ω0, the quasi-energies tend to lie closer and closer, and finally becoming a continous
spectrum at resonance. Far from resonance, all transitions but those to the groundstate and first excited
state of the harmonic oscillator are negligible.

5 Harmonically varying frequency and the Mathieu equation

5.1 Time-dependent frequency

In the situation in which we have a quantum harmonic oscillator which oscillates with a time dependent
frequency, ω(t), the schrödinger equation takes the form
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i~Ψ̇(x, t) =

[
− ~2

2m

∂2

∂x2
+

1

2
mω(t)2x2

]
Ψ(x, t). (5.1)

According to [4], the solution to this equation is of the form

ψ(x, t) =
1√
r(t)

e−iΦ(x,t)χ(y, τ), (5.2)

where y = x
r(t) and τ = γ(t)

ω0
, ω0 is the natural frequency of the oscillator before we perturb it by

making the frequency time-dependent at t→ −∞, χ(y, τ) is the solution to the unperturbed oscillator (with
ω(t) = ω0), and

ζ(t) = r(t)eiγ(t), where r(t) = |ζ(t)| (5.3)

is, just as in chapter 3.1, the solution to the classical equation of motion

ζ(t) + ω2(t)ζ̈(t) = 0. (5.4)

ζ obeys the initial conditions

ζ(t)→ eiω0t as t→ −∞, (5.5)

which means that we ”started” the perturbation infinitely long ago.
To check the legitimacy of this solution, we will calculate the LHS and the RHS independently. In doing so,
we get that

i~Ψ̇(x, t) =

[
− i

2
~r−

3
2 ṙχ+ ~r−

1
2χ
∂Φ

∂t
− i~r− 1

2
∂χ

∂y

x

r2
ṙ + i~r−

1
2
∂χ

∂τ

γ̇

ω0

]
e−iΦ (5.6)

and

[
− ~2

2m

∂2

∂x2
+

1

2
mω(t)2x2

]
Ψ(x, t) =

~2

2m
r−

1
2 e−iΦ

[
i
∂2Φ

∂x2
χ+ 2i

∂Φ

∂x

∂χ

∂y

1

r
+

(
∂Φ

∂x

)2

χ− ∂2χ

∂y2

1

r2

]
+

1

2
mω(t)2x2χ.

(5.7)
Forcing the terms that are linear in ∂χ

∂y to cancel out, we find that Φ = −mṙ
2~rx

2. If we insert this relation
into equations 5.6 and 5.7, and then insert 5.6 and 5.7 into equation 5.1, we get

i~
∂χ

∂τ

γ̇

ω0
=

1

2

[
m

(
ṙ

r

)2

+m
d

dt

(
ṙ

r

)
+mω(t)2

]
x2χ− ~2

2mr2

∂2χ

∂y2
. (5.8)

To get from here and to an expression reminiscent of the harmonic oscillator, we can consider the complex
number

a(t) = a1 + ia2 = −i ζ̇
ζ

= γ̇(t)− i ṙ
r
. (5.9)

Rewriting ζ as ζ = α+ iβ and inserting this in the expression for a(t), we find that

a1 = Re

[
−i ζ̇
ζ

]
=
αβ̇ − βα̇
α2 + β2

≡ −i∆(ζ, ζ∗)

2|ζ|2
=
ω0

r2

a2 = Im

[
−i ζ̇
ζ

]
= −αα̇+ ββ̇

α2 + β2
= − ζ̇ζ

∗ + ζζ̇∗

2|ζ|2
= − ṙ

r
,

(5.10)
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where ∆(ζ, ζ∗) = ζ̇ζ∗ − ζ̇∗ζ = 2iω0 is the Wronskian. Comparing this result to equation 5.9, we see that
γ̇ = ω0

r2 .
Finally, we can use this to show the fact that

ω2(t) = − ζ̈
ζ

= −

 d
dt

(
ζ̇

ζ

)
+

(
ζ̇

ζ

)2
 = −iγ̈ − d

dt

(
ṙ

r

)
−
(
ṙ

r

)2

+ γ̇2 − 2iγ̇
ṙ

r
= − r̈

r
+
ω2

0

r4
⇔

r̈

r
+ ω(t)2 =

ω2
0

r4
,

(5.11)

and use this along with γ̇ = ω0

r2 to reduce equation 5.8 to the harmonic oscillator,

i~
∂χ

∂τ
(y, τ) =

[
− ~2

2m

∂2

∂y2
+

1

2
mω2

0y
2

]
χ(y, τ), (5.12)

the solution to which is, of course,

χn(y, τ) =
(mω0

π~

) 1
4 1√

2nn!
Hn(y)e−

mω0
2~ y2− i

~Enτ . (5.13)

So equation 5.2 is indeed the solution to equation 5.1. All that remains to be done is to solve equation
5.4 and insert the solution into equation 5.2 to get the general solution.
This is no easy task since few forms of ω(t) give analytically solvable equations of motion. If, however, ω(t)
is periodic with some period T , such that ω(t+T ) = ω(t), then the equation is called the Mathieu equation,
and the solutions are called Mathieu functions. The Mathieu functions are infinite series, and therefore
inconvenient for our purposes. However, since the frequency is periodic, Floquet’s theorem states that the
solution must be of the form of equation 2.1, such that r(t) is periodic, assuming that the quasi-energies are
strictly real. Since r(t) is the scaling of the oscillator length of equations 5.2 and 5.13 through the relation
y = x

r(t) , this means that the y-coordinate is periodically stretching and contracting. A way to imagine

this would be picturing the ground state of the harmonic oscillator. It has a gaussian shape, which would
alternate between a slim, tall curve and a flat, wide one.
If, however, the quasi-energies are complex, then r(t) = |ζ| will either grow or decay exponentially in time,
depending on the sign of Im [µ]. If this happens, then one of two scenarios will happen:
If |ζ| → ∞ as t → ∞, then ψ(x, t) would be infinitely flat and inifinitely wide. There would be a uniform
chance (of 0) to find the particle anywhere in the universe. One could call this an unstable solution4, but in
reality, we just know less and less about the position of the particle as time passes.
If |ζ| → 0 as t → ∞, then ψ(x, t) becomes reminiscent of a delta function. This means that we know the
position of the particle to be x = 0 with absolute certainty, but would cause us to know nothing about its
momentum. This solution5 then therefore localizes the particle at x = 0. This is the same effect that we
would expect to happen to an unperturbed hamonic oscillator as ω0 →∞.

For this reason, we will differentiate the solutions that give rise to oscillating solutions (µ ∈ R) from those
that give rise to ”unstable” solutions (µ ∈ C).

The Mathieu equation is generally written as

ζ̈ + (a− 2q cos(2Γ))ζ = 0, (5.14)

where this Γ is dimensionless, time-dependent and unrelated to the Γ in section 2.2. It is possible to find
the values of µ by numerically integrating (5.14) to find the trace of the time propagation operator, M̂ . The

4We will refer to it as such, anyhow.
5It is not an unstable solution, per se, but I will categorize it as such.
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trace of M̂ is the sum of the eigenvalues, ρ, and the product of the eigenvalues is the determinant of the
operator, which is 16. This leads to an expression for ρ,

ρ+ + ρ− = Tr(M̂) and

ρ+ρ− = Det(M̂) = 1⇔

ρ± =
Tr(M̂)±

√
(Tr(M̂))2 − 4

2
.

(5.15)

Since the only stable solutions are the ones where µ is real or, alternatively, |ρ| = 1, we can make a plot
showing combinations of a and q that result in stable solutions. Figure 5 shows the regions of stability for
the Mathieu equation as a function of a and q.

-2 0 2 4 6 8 10

-10

-5

0

5

10

a

q

Figure 5: Plot of combinations of a and q that produce respectively stable and ”unstable” solutions for
equation 5.2. The grey area is the region for which |ρ| = 1, which produces stable solutions. The white area
is the region for which |ρ| 6= 1, which results in the special ”unstable” solutions to (5.2).

5.2 The harmonically driven pendulum

One example of (5.4) could be the (relatively slowly) vertically driven pendulum doing small amplitude
oscillations [2]. If the pendulum (of length l) is fastened at a point which moves in time as Y (t) = Y0 cos(Ωt),
then the coordinates of motion of the pendulum are

x = l sin(θ) ≈ lθ

y = Y (t)+l(1− cos(θ)) ≈ Y (t) +
1

2
lθ2.

(5.16)

Because we have small amplitude oscillation, we are going to neglect terms that are of the order (θθ̇)2

and Ẏ 2. In doing so, we can write the Lagrangian of the system as

6page 203 of [2]
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L =
1

2
m
(
ẋ2 + ẏ2

)
−mgy =

1

2
m
(

(lθ̇)2 + 2Ẏ lθθ̇
)
−mg

(
Y +

lθ2

2

)
. (5.17)

The Lagrange equation then becomes

∂L

∂θ
− d

dt

(
∂L

∂θ̇

)
= 0⇔

mẎ lθ̇ −mglθ −m d

dt

(
l2θ̇ + Ẏ lθ

)
= m

[
Ẏ lθ̇ − glθ − l2θ̈ − Ÿ lθ − Ẏ lθ̇

]
= 0,

(5.18)

which then provides us with the equation of motion for θ,

θ̈ +

(
g + Ÿ

l

)
θ = 0. (5.19)

Identifying θ as ζ from equation 5.4, then we see that ω(t)2 =
(
g+Ÿ
l

)
, which is periodic, since Ÿ =

−Y0Ω2 cos(Ωt). To bring it on the form of equation 5.14, we make the substitution Γ = 1
2Ωt so that

dt = 2
ΩdΓ which leaves us with

Ω2

4

∂2θ

∂Γ2
+

(
g − Y0Ω2 cos(2Γ)

l

)
θ, (5.20)

which then finally gives us

∂2θ

∂Γ2
+

((
2ω0

Ω

)2

− 4Y0 cos(2Γ)

l

)
θ = 0, (5.21)

where we have identified the natural frequency of the undriven pendulum, ω2
0 = g

l . Comparing (5.21) and
(5.14), we can identify

a =

(
2ω0

Ω

)2

and q =
2Y0

l
. (5.22)

From figure 5 we see that for a = 1, there is only the a very small band of q that results in solutions with
|ρ| = 1. This happens when Ω = 2ω0 for almost all ratios Y0

l , save for a select spectrum. This could be a
sort of resonance that causes unstable solutions.
The area in which a < 0 corresponds to the inverted pendulum (ω2

0 → −ω2
0) and we can see that it, too, has

stable solutions.

6 Conclusion

Floquet theory is a useful tool to make qualitative assessments about various periodic system. It is useful in
quantum mechanics, since any periodic hamiltonian will put the Schrödinger equation on Floquet form. It is
a good ansatz for a solution to periodic problems, but other tools are needed to get an analytical solution. For
systems that have no analytical solution, Floquet theory can be a powerful asset in numerical calculations,
as seen in chapter 2.2.
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A Appendix

To get to equation 3.27, we first consider the Schrödinger equation of the system,

i~
∂ψ(y, t)

∂t
=

[
− ~2

2m

∂2

∂y2
− 1

2
mω2

0y
2

]
ψ(y, t). (A.1)

If we make the transformation

ψ(y, t) = e
1
2 ( i~mω0y

2−ω0t)Φ(y, t), (A.2)

and insert it in (A.1), then the Schrödinger equation takes the form

i~
∂Φ(y, t)

∂t
= −i~ω0y

∂Φ(y, t)

∂y
− ~2

2m

∂2Φ(y, t)

∂y2
. (A.3)

If we then make a scaling of the variable y, such that y = q(t)z, and q(t) is the solution to the classical
system with lagrangian

L =
1

2
mq̇2 +

1

2
mω2

0q
2. (A.4)

Lagrange’s equation then leaves us with an equation of motion for q,

q̈ = ω2
0q ⇔ q(t) = eω0t. (A.5)

Now, the transformation changes the time-derivative

∂Φ(y, t)

∂t
=
∂Φ̃(z, t)

∂t
− q̇y

q2

∂Φ̃(z, t)

∂t
=
∂Φ̃(z, t)

∂t
− yω0

∂Φ̃(z, t)

∂t
, (A.6)

where tilde indicates that it is a function of a different variable. Inserting this into (A.3), the terms with
∂Φ
∂z cancel and we end up with

i~
∂Φ(z, t)

∂t
= − ~2

2m
e−2ω0t

∂2Φ(z, t)

∂z2
, (A.7)

where the exponential function comes from the change of variables.
This can be solved by seperation of variables, such that we get

−∂
2Φ(z, t)

∂z2
=

2im

~
e2ω0t

∂Φ(z, t)

∂t
= k2. (A.8)

The time-part gives

2im

~
e2ω0t

∂Φ(z, t)

∂t
= k2 ⇔ Φ(z, t) = exp

(
ik2~

4mω0
e−2ω0t

)
Φ(z), (A.9)

the position part gives the equation of a free particle. The solution to the free particle is

Φ(z) = aeikz, (A.10)

where we will omit the scalar factor a, since the free particle is non-normalizable. All in all, the total
solution, where we have transformed back to ψ(x, t), is

ψ(y, t) = exp

[
1

2

(
i

~
mω0y

2 − ω0t

)
+ ikye−ω0t +

ik2

4ω0m
e−2ω0t

]
. (A.11)
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