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Abstract

In this Bachelor’s thesis we investigate the temperature dependence of the
superconducting gap parameter, as well as its response to magnetic and non-
magnetic impurities. We formulate self-consistent gap equations in real space
and in momentum space. We treat impurities by applying Abrikosov-Gor’kov
theory in momentum space and by randomly distributing localised impurities on
the lattice sites in the real space formulation. Both magnetic and non-magnetic
impurities are found to suppress the critical temperature. The dependence of the
critical temperature on impurity concentration is found for certain concentrations
and compared to the theoretically expected values.
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1 Introduction
In 1957, close to half a century after Onnes first discovered superconductivity, Bardeen,
Cooper and Schrieffer proposed the first microscopic theory of the phenomenon. Since
the mid-fifties, the study of the effect of impurities in superconductors has garnered
much interest. In the BCS theory, superconductivity is understood as the correlation
between electrons with opposite spin and momentum, which are seen as time-reversed
states. [1] [2] Anderson [3] and Abrikosov and Gor’kov [4] considered conventional
s-wave superconductors and argued that non-magnetic impurities would not break the
time-reversal symmetry of the Cooper-pairs and thus would not affect the transition
temperature. Shortly after, Abrikosov and Gor’kov examined the effect of magnetic
impurities, and found that these would locally break the time-reversal symmetry and
suppress the critical temperature. [5]

The purpose of this Bachelor’s thesis is to investigate, through numerical simula-
tion, the effect of magnetic and non-magnetic impurities in a superconductor, by use
of two approaches, one of which is the theory developed by Abrikosov and Gor’kov
(AG). The other approach is to Fourier transform the BCS Hamiltonian to real space
and set up a two-dimensional lattice with periodic boundary conditions, in order to
see the effect of randomly distributed, localised impurities on the superconducting gap
parameter.

The critical temperatures for different impurity concentrations will be numerically
computed using AG theory, and compared to the theoretically predicted values. For
the real space lattice, the value for the gap parameter on the different sites will be
plotted to see how impurities affect the gap and how the gap parameter is suppressed
in the area surrounding the impurities.

2 A brief look at second quantisation
For an N -particle system in the second quantisation representation, or occupation
number representation, the basis states are found by listing the occupation numbers
of each basis state [6]. Thus an N -particle basis state can be written

|nν1 , nν2 , nν3 , . . .〉,
∑
j

nνj = N (2.1)

The occupation number nνj is then the number of particles occupying state |νj〉. The
occupation number operator has these basis states as eigenstates and nνj as its eigen-
value.

Creation operators, c†νj , and annihilation operators, cνj , can be introduced. These
operators raise and lower the occupation number in a state by one.

The operator algebra for the fermionic creation and annihilation operators can be
defined by the following three anti-commutation relations:

{c†νj , c
†
νk
} = 0, {cνj , cνk} = 0 {cνj , c†νk} = δνjνk . (2.2)
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3 BCS theory in momentum space
The BCS mean-field Hamiltonian is given by

HMF
BCS =

∑
kσ

ξkc
†
kσckσ −

∑
k

∆kc
†
k↑c
†
−k↓ −

∑
k

∆∗kc−k↓ck↑ (3.1)

Where the gap function is given by

∆k = −
∑
kk′

Vkk′〈c−k′↓ck′↑〉 (3.2)

Vkk′ , is the effective phonon-mediated electron-electron attraction, which leads to
the formation of Cooper pairs. Although the attraction varies with the momenta of the
electrons, the model is simplified by letting it be attractive when half the magnitude of
the kinetic energy of the pair is smaller than the Debye frequency , ωD, of the phonons
[6]. Thus −V < 0 for all |ξk| < ωD. Throughout the project, a two-dimensional tight
binding model has been used, with a dispersion relation of the form

ξ(kx, ky) = ε(kx, ky)− µ = (2t[cos(kxa) + cos(kxa)] + µ) (3.3)

Where µ denotes the Fermi energy. The above Hamiltonian can be diagonalised by
a rotation of the c-operators into γ-operators, known as the Bogoliubov transformation
[6]. We then have (

γk↑
γ†−k↓

)
=

(
u∗k vk
−v∗k uk

)(
ck↑
c†−k↓

)
(3.4)

and accordingly, the γ-operators can be rotated to c-operators(
ck↑
c†−k↓

)
=

(
uk −vk
v∗k u∗k

)(
γk↑
γ†−k↓

)
=

(
ukγk↑ − vkγ†−k↓
−v∗kγk↑ + u∗kγ

†
−k↓

)
(3.5)

. The gap equation can be rewritten as

∆ =
∑
k

V 〈c−k↓ck↑〉

=
∑
k

V
〈(
u∗kγ−k↓ − vkγ

†
k↑
)(
u∗kγk↑ + vkγ

†
−k↓
)〉

=
∑
k

V (u∗kvk〈γ−k↓γ
†
−k↓〉 − vku

∗
k〈γ

†
k↑γk↑〉)

(3.6)

The quasi-particles acted on by the γ-operators are nicknamed bogoliubons. They
behave as free fermions, and they are distributed according to Fermi-Dirac statistics.
This implies that 〈γ†kσγk′σ′〉 = nF (Ek)δkk′δσσ′ In combination with the anticommuta-
tion relations for fermion operators, this yields

∆ =
∑
k

V
[
u∗kvk(1− nF (Ek))− vku∗knF (Ek)

]
=
∑
k

V u∗kvk
[
1− 2nF (Ek)

] (3.7)
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The values of uk and vk that diagonalise the Hamiltonian are found in appendix
A. They are

uk = ±
√
Ek + ξk

2Ek

, vk = ±
√
Ek − ξk

2Ek

(3.8)

By using this result and by rewriting 1 − 2nF (Ek) with common denominator,
followed by multiplication by e−Ek/2kT , the expression in the gap equation reduces to

∆ =
∑
k

V
∆

2Ek

tanh

(
Ek

2kT

)
(3.9)

where k and T come from the Fermi-Dirac distribution, and are the Boltzmann
constant and the temperature, respectively. This gap equation can be solved self-
consistently to give the value of the gap parameter. The momenta of the electrons are
quantised as were they particles of a free electron gas:

k = ±2πn

N
, n ∈ Z (3.10)

The sum over k runs over the momenta of the first Brillouin zone. The numerical
treatment of this problem will be handled in section 7.2.

4 BCS theory with Matsubara Green’s functions
The review of this topic follows chapter 18 in [6]. The normal Matsubara Green’s
function G↑↑(k, τ) and the anomalous Matsubara Green’s function F↓↑(k, τ) are defined
as [6]

G↑↑(k, τ) = −〈Tτck↑(τ)c†k↑(0)〉 = −θ(τ)〈ck↑(τ)c†k↑(0)〉 (4.1)

F↓↑(k, τ) = −〈Tτc†−k↓(τ)c†k↑(0)〉 = −θ(τ)〈c†−k↓(τ)c†k↑(0)〉 (4.2)

Where Tτ is the time-ordering symbol. It orders operators ’historically’, with the
later times to the left. To find the equations of motion for G↑↑(k, τ) and F↓↑(k, τ) by
using that the time derivative of an operator in imaginary time is given by

∂τA(τ) = [H,A](τ) (4.3)

and that the time derivative of a general Matsubara Green’s function of the form

CAB(τ, τ ′) = −
〈
Tτ [A(τ)B(τ ′)]

〉
(4.4)

is

∂τ
〈
Tτ [A(τ)B(τ ′)]

〉
= ∂τ [θ(τ − τ ′)〈A(τ)B(τ ′)〉 ± θ(τ ′ − τ)〈B(τ ′)A(τ)〉] (4.5)

Where fermion operators require the minus sign. The derivatives of the two step-
functions will have differing signs, resulting in

∂τ
〈
Tτ [A(τ)B(τ ′)]

〉
= δ(τ − τ ′)〈AB − (±)BA〉+

〈
Tτ [H,A](τ)B(τ ′))

〉
(4.6)

which for fermion operators becomes

∂τ
〈
Tτ [A(τ)B(τ ′)]

〉
= δ(τ − τ ′)〈{A,B}〉+

〈
Tτ [H,A](τ)B(τ ′))

〉
(4.7)
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We now find the equations of motion for both the normal and anomalous Matsubara
Green’s functions by use of 4.7

∂τG↑↑(k, τ) = − δ(τ)〈{ck↑(τ)c†k↑(0)}〉
− 〈∂τck↑(τ)c†k↑(0)〉

(4.8)

∂τF↓↑(k, τ) = − δ(τ)〈{c†−k↓(τ), c†k↑(0)}〉
− 〈∂τc†−k↓(τ)c†k↑(0)〉

(4.9)

We look at the time derivative of ck↑(τ) when using the BCS mean field-Hamiltonian

∂τck↑(τ) =[HMF
BCS, ck↑] =

[∑
kσ

ξkc
†
kσckσ −

∑
k

∆kc
†
k↑c
†
−k↓ −

∑
k

∆∗kc−k↓ck↑, ck↑

]
=
∑
k

(
ξk

[
c†k↑ck↑, ck↑

]
+ ξk

[
c†−k↓c−k↓, ck↑

]
−∆k

[
c†k↑c

†
−k↓, ck↑

]
−∆∗k

[
c−k↓ck↑, ck↑

])
(4.10)

∂τc
†
−k↓(τ) is treated similarly. By evaluation of the commutators using B.2, one obtains

∂τck↑(τ) = −ξkck↑(τ) + ∆kc
†
−k↓(τ). (4.11)

∂τc
†
−k↓(τ) = ξkc

†
−k↓(τ) + ∆∗kck↑(τ). (4.12)

By inserting these results into 4.8 and 4.9 we get the equations of motion. These
equations of motion will later be used to obtain an analytic expression for the Nambu
Green’s function.

∂τG↑↑(k, τ) = −δ(τ)− ξkG↑↑(k, τ) + ∆kF↓↑(k, τ) (4.13)

∂τF↓↑(k, τ) = +ξkF↓↑(k, τ) + ∆∗kG↑↑(k, τ) (4.14)

∂τF↓↑(k, τ) lacks has no delta-term because the anticommutator in 4.9 is zero. The
Nambu formalism of BCS theory can be introduced through the following spinors:

αk(τ) =

(
ck↑(τ)

c†−k↓(τ)

)
, α†k(τ) =

(
c†k↑(τ), c−k↓(τ)

)
(4.15)

The Nambu Green’s function, ¯̄G(k, τ), is defined by

¯̄G(k, τ) = −〈Tταk(τ)α†k(0)〉 =

(
G↑↑(k, τ) F∗↓↑(k, τ)
F↓↑(k, τ) G∗↓↓(k, τ)

)
(4.16)

The equation of motion for the Nambu Green’s function is obtained by writing
the equations of motions for its elements on matrix form. Two of these have been
calculated explicitly in 4.13 and 4.14. Thus we find that

∂τ
¯̄G(k, τ) = −δ(τ)

(
1 0
0 1

)
−
(

ξk −∆k

−∆∗k −ξk

)
¯̄G(k, τ) (4.17)

If the Hamiltonian does not explicitly depend on time, the Green’s functions only
depend on the imaginary time argument, and one can rewrite the above equation in the
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Matsubara frequency domain by use of a Fourier transform. Fourier transformation of
the differential operator gives ∂t → −iω and for the delta function one has δ(t) → 1.
4.17 becomes (

iωk − ξk ∆k

∆∗k iωk + ξk

)
¯̄G(k, iωk) =

(
1 0
0 1

)
(4.18)

where the leftmost matrix in the above equation is the inverse of the Nambu Green’s
function, ¯̄G−1(k, iωk). The Nambu Green’s function is found to be

¯̄G(k, iωk) =
1

(iωk)2 − E2
k

(
iωk + ξk −∆k

−∆∗k iωk − ξk

)
(4.19)

5 Abrikosov Gor’kov theory

To account for scattering effects, we introduce an impurity Hamiltonian, Ĥimp, which
can be added to 3.1.

Ĥimp = V1
∑
kk′σ

c†kσck′σ +
∑
kk′σ

Vσc
†
kσck′σ

{
Vσ = V2 if σ =↑
Vσ = −V2 if σ =↓

(5.1)

The first term is for scattering off non-magnetic impurities. The attractive or
repulsive potential V1 is the same, independent of the electron spin. The second term
describes scattering off magnetic impurities. This simple model takes the spin of the
impurity atom and the spin of the electron to both have only a z-component.The
magnetic dipole interaction can then be either stabilising or destabilising, with the
same absolute magnitude in both cases.

From 3.2 we have

∆k = V

|ξk|<ωD∑
k

〈c−k↓ck↑〉 (5.2)

Consider now the complex conjugate of F from 4.2.

F↓↑(k, τ) = −〈Tτc†−k↓(τ)c†k↑(0)〉 (5.3)

Using that (AB)† = B†A† its complex conjugate becomes

F∗↓↑(k, τ) = −〈Tτck↑(0)c−k↓(τ)〉 = 〈Tτc−k↓(τ)ck↑(0)〉 (5.4)

where the rightmost equality is due to the fact that {ck↑, c−k↓} = 0, which gives
ck↑c−k↓ = −c−k↓ck↑. The operators should be considered for the same imaginary time
τ , and this is achieved by letting τ approach 0 from above. Thus

F↓↑(k, τ = 0+) = 〈c−k↓ck↑〉 (5.5)

hence we have

∆ = V

|ξk|<ωD∑
k

〈c−k↓ck↑〉 = V

|ξk|<ωD∑
k

F∗↓↑(k, τ = 0+) (5.6)



5 Abrikosov Gor’kov theory 6

F∗ is Fourier transformed to Matsubara frequency space, so that it can be found from
the Nambu Green’s function. With the Matsubara summation we get

∆ = V

|ξk|<ωD∑
k

∑
iωk

1

β
F∗↓↑(k, iωk)eiωk0

+

(5.7)

where β is 1/kT , and the exponential function of 0+ is 1. The Matsubara frequency
for fermions is given by

ωn =
(2n+ 1)π

β
(5.8)

and we can therefore take the sum to be over the integer n. [6] Evidently, the spacing
between Matsubara frequancies scales with temperature, so for small temperatures, the
frequencies lie very close. The Nambu Green’s function which describes the electron
in the presence of impurities is a renormalised function that is determined by the
equation [1]

¯̄G−1(k, iωk) = [ ¯̄G0(k, iωk)]−1 − Σ(k, ωk) (5.9)

Where Σ(k, ωk) is the self energy. Up until now, we have considered the electrons as
free particles. Electrons in a crystal are not free, but subject to crystal field effects.
These effects are contained in the self-energy. In the Born approximation, scattering
events are approximated to events where the electrons scatter off of one impurity
without further scattering off of others and without scattering doubly off of a single
impurity. In the Born approximation the self-energy is given by

Σ(k, ωk) = n

∫
d3k′

(2π)3
[Û(k− k′) ¯̄G(k′, iωk)Û(k− k′)] (5.10)

From insertion of 5.9 into 5.10 we obtain an equation that can be used to self-
consistently determine the self-energy:

Σ(k, ωk) = n

∫
d3k′

(2π)3
[Û(k− k′)

[
[ ¯̄G0(k′, iωk)]−1 − Σ(k′, ωk)

]−1
Û(k− k′)] (5.11)

Û(k− k′) is the impurity scattering Hamiltonian in the Nambu basis. It depends
only on the the difference k−k′ due to the translational symmetry of the lattice. n is
the concentration of impurities. We will rewrite the Hamiltonian in 5.1 in the Nambu
basis of 4.15. Starting with the term for non-magnetic impurities we have

V1
∑
kk′

c†k↑ck′↑ + c†−k′↓c−k↓ = V1
∑
kk′

c†k↑ck′↑ − c−k↓c†−k′↓ + 1 =
∑
kk′

α†k

(
V1 0
0 −V1

)
αk + V1

(5.12)
for the magnetic impurity scattering term we have∑
kk′

V2c
†
k↑ck′↑ − V2c†−k′↓c−k↓ = V2

∑
kk′

c†k↑ck′↑ + c−k↓c
†
−k′↓ − 1 =

∑
kk′

α†k

(
V2 0
0 V2

)
αk − V2

(5.13)
The constant terms in the Hamiltonian do not affect the energy spectra except for

lowering or raising them by a constant value, and are therefore left out in the following.
In the case of a finite lattice of N sites, we replace the integral in 5.10 by a sum over
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the discrete values of the momentum, previously mentioned. Going from integral to
sum we will also lose the factor 1/(2π)3. We separate the sum over momentum into a
sum over kx and ky, and end up with

Σ(k, ωk) = n
∑
kxky

Û ¯̄G(k′, iωk)Û (5.14)

= n
∑
kxky

(V1ρρρ3 + V2I2)
¯̄G(k′, iωk)(V1ρρρ3 + V2I2) (5.15)

where ρρρ3 is the third Pauli matrix and I2 is the 2×2 identity matrix.

6 BCS theory in real space
We will now consider a square lattice with N2 positions, numbered as follows:

1 2 · · · N
N + 1 N + 2 · · · 2N

...
... . . . ...

N2 − (N − 1) N2 − (N − 2) · · · N2

 (6.1)

The Hamiltonian governing the system is found by Fourier transforming the BCS
mean-field Hamiltonian given by 3.1 from momentum space to real space. Starting
with the first term, we use that

a†q =
1√
V

∫
dreiq·rΨ†(r), aq =

1√
V

∫
dre−iq·rΨ(r) (6.2)

∑
kσ

ξkc
†
kσckσ =

1

V
∑
k

∫
V
dr

∫
dr′
∫
dr′′ξ(r)e−ik·rΨ†σ(r′)eik·r

′
Ψσ(r′′)e−ik·r

′′
(6.3)

Using that

1

V
∑
k

e−ik·r = δ(r) (6.4)

this reduces to∑
kσ

ξkc
†
kσckσ =

∫
V
dr

∫
dr′
∫
dr′′ξ(r)Ψ†σ(r′)Ψσ(r′′)δ(−r + r′ − r′′)

=

∫
dr′
∫
dr′′Ψ†σ(r′)ξ(r′ − r′′)Ψσ(r′′)

(6.5)

ξ(r) is found from

ξ(r) =
1

V
∑
k

ξ(k)eik·r (6.6)

In two dimensions this becomes
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ξ(x, y) =
1

V
∑
kxky

ξ(kx, ky)e
ikxxeikyy =

1

V
∑
kxky

−(2t[cos(kxa) + cos(kxa)] + µ)eikxxeikyy

=− 1

V
∑
kxky

−(t[eikxa + e−ikxa + eikya + e−ikya] + µ)eikxxeikyy

=− 1

V
∑
kxky

(t[eikx(x+a) + eikx(x−a)]eikyy + [eiky(y+a) + eiky(y−a)]eikxx + µeikxxeikyy)

=−
(
t[δ(x+ a) + δ(x− a)]δ(y) + t[δ(y + a) + δ(y − a)]δ(x) + µδ(x)δ(y)

)
(6.7)

Thus r can either be in the x- or y-direction, and the Fourier transformed dispersion
relation becomes

ξ(r) = −
(
t[δ(r + a) + δ(r− a)] + µδ(r)

)
(6.8)

6.5 becomes

∫
dr′
∫
dr′′Ψ†σ(r′)

[
− t
(
δ(r′ − r′′ + a) + δ(r′ − r′′ − a)

)
− µδ(r′ − r′′)

]
Ψσ(r′′)

= −t
∫
dr′Ψ†σ(r′)Ψσ(r′ − a)− t

∫
dr′Ψ†σ(r′)Ψσ(r′ + a)− µ

∫
dr′Ψ†σ(r′)Ψσ(r′)

(6.9)

The first and second term describe how an electron can tunnel from a site, to any
of the closest neighbouring sites, changing the energy of the system by −t. As the
lattice in 6.1 has N2 discrete positions the integral is replaced by a sum over these.

−t
N2∑
〈ij〉σ

c†iσcjσ − µ
N2∑
iσ

c†iσciσ (6.10)

To restrict tunneling to between neighbouring sites, we sum over nearest neigh-
bours, here written as 〈ij〉. The remaining two terms of the k-space Hamiltonian are
handled similarly (see appendix B) and their Fourier transform is

−
N2∑
i

(
∆ic

†
i↑c
†
i↓ + ∆∗i ci↑ci↓

)
(6.11)

Where ∆i is given by

∆i = V 〈ci↓ci↑〉 (6.12)

The important difference between this equation and the other equations for the gap
parameter previously considered is that 6.12 gives the value for the gap at a specific
lattice point. Depending on how impurities are distributed throughout the system,
the gap will take different values at different sites. The spin-generalised Bogoliubov
transformation is defined as [7]

ci↑ =
∑
n

[
un,i↑γn↑ + v∗n,i↑γ

†
n↓

]
ci↓ =

∑
n

[
un,i↓γn↓ + v∗n,i↓γ

†
n↑

] (6.13)
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where the sum only runs over n corresponding to positive eigenvalues. The super-
conducting gap becomes

∆i = V 〈ci↓ci↑〉 = V
∑
n

〈(un,i↓γn↓ + v∗n,i↓γ
†
n↑)(un,i↑γn↑ + v∗n,i↑γ

†
n↓)〉 (6.14)

As before, the quasi-article bogoliubons are free fermions distributed according to
Fermi-Dirac statistics, meaning that 〈γ†iσγi′σ′〉 = f(Ei)δii′δσσ′ , where Ei is the i’th
energy level of the system. Two of the products in 6.14 will be zero, and this leaves

∆i = V
∑
n

[
un,i↓v

∗
n,i↑〈γn↓γ

†
n↓〉+ v∗n,i↓un,i↑〈γ

†
n↑γn↑〉

]
(6.15)

We use that un,i↓v∗n,i↑ = −v∗n,i↓un,i↑, as shown in appendix C, and

∆i = V
∑
n

un,i↓v
∗
n,i↑(〈γn↓γ

†
n↓〉 − 〈γ

†
n↑γn↑〉) = V

∑
n

un,i↓v
∗
n,i↑(1− 2f(En)) (6.16)

Similarly to the expression for the gap in momentum-space, this can be simplified
to

∆i = V
∑
n

un,i↓v
∗
n,i↑ tanh

( En
2kT

)
(6.17)

The full Hamiltonian is the sum of 6.10 and 6.11. This Hamiltonian can be written
compactly by use of the following spinors:

ψ† ≡ (c†1↑, . . . c
†
N↑, c1↓, . . . cN↓), ψ ≡



c1↑
...
cN↑
c†1↓
...
c†N↓


(6.18)

The real space Hamiltonian can now, by use of an appropriate matrix, be written
as

Ĥ = −t
N2∑
〈ij〉σ

c†iσcjσ − µ
N2∑
iσ

c†iσciσ −
N2∑
i

(
∆ic

†
i↑c
†
i↓ + ∆∗i ci↑ci↓

)
= ψ†Mψ (6.19)

The matrix M consists of four sections of equal size, where the top left quadrant
contains the coefficients of terms where both operators have ↑ indices. The element
Mm,n is the coefficient of the term c†m↑cn↑. The bottom right quadrant contains the
coefficients of terms where both operators have ↓ indices. The element M(N2+m,N2+n)

is the coefficient of the term cm↓c
†
n↓. In order for these terms to match those of the

Hamiltonian in 6.10, we use the anticommutation relations given by 2.2 to obtain
cm↓c

†
n↓ = 1− c†m↓cn↓. The elements of the bottom right quadrant are as a consequence

the same as those of the top left quadrant, but multiplied by negative 1 to counter the
sign due to the anticommutation. The many terms arising from the term 1 from the
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anticommutation relation do not affect the energies, except for raising or lowering the
entire spectrum by a constant value.

The coefficients for the terms with different spin indices are contained in the upper
right and lower left quadrants of M. The element M(N2+m,n) is the coefficient of the
term cm↓cn↑, while M(m,N2+n) is the coefficient of the term c†m↑c

†
n↓.

We introduce periodic boundary conditions for the lattice. Thus an electron
tunelling to the right from the right edge of the lattice enters through the left edge. In
order to construct M, we must know to which lattice sites an electron can tunnel from
a lattice site a. An electron on site a, not on the edges of the lattice in 6.1, can tunnel
to sites a+ 1, a−1, a+N and a−N , corresponding to tunelling to neighbouring sites
in the x- and y-direction.
Accomodation of the periodic boundary conditions is achieved by the implementation
of the four following rules for the cases where a lies along the upper, lower, left and
right edge of the lattice, respectively:

lattice sites along the upper edge, where a−N ≤ 0 couple to a−N +N2

lattice sites along the lower edge, where a+N > N2 couple to a+N −N2

lattice sites along the left edge, where
a− 1

N
∈ Z couple to a+N − 1

lattice sites along the right edge, where
a

N
∈ Z couple to a−N + 1

(6.20)
In appendix E the matrix M is shown for a lattice with sides of length N = 3.

6.17 provides an equation for the gap parameter that can be solved self consistently.
The gap parameter does not enter directly on the right hand side of 6.17, but the
energy states of the system are given by the eigenvalues of M. Associated with each
eigenvalue En, there is an eigenvector which has 2N2 elements. This vector consists
of two halves, with the upper half containing N2 elements. The i’th element of the
upper half is un,i↓, while the i’th element of the bottom half (and thus the (i+N2)’th
element of the entire vector) is v∗n,i↑. M depends on the gap, and thus one can find a
self-consistent value for the gap. This is done in section 7.4.

In the real space representation, localised impurities can be introduced. Consider
an impurity scattering Hamiltonian that can be added to the Hamiltonian in 6.19.

Ĥimp = V1
∑
iσ

c†iσciσ +
∑
iσ

Vσc
†
iσciσ

{
Vσ = V2 if σ =↑
Vσ = −V2 if σ =↓

(6.21)

Similarly to the Hamiltonian in 6.19, this can be rewritten on matrix form in the
basis given by the spinors in 6.18. In 5.12 and 5.13 the same scattering Hamiltonian in
k-space was rewritten in the Nambu basis. By the same logic, we see that the matrix
elements that are the coefficients of terms with only spin down indices take different
signs, depending on whether the impurity is magnetic or non-magnetic. We will only
consider magnetic impurities. All sites on which an impurity is placed will thus have
an added Hamiltonian term governing it. Placing an impurity on site i will change
element Mi,i from µ to µ + V2 and element MN2+i,N2+i from −µ to −µ + V2 in the
M-matrix. Impurities can thus be placed at random in the two-dimensional model,
and the resulting gap on each site i can be found.
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7 Numerical calculations

7.1 Note on parameters

The numerical simulations have all been programmed in python. As mentioned in
connection with 3.10, we consider values of k that are in the first Brillouin zone. Thus
we have

kx =
{
− π,−π +

2π

N
,−π +

4π

N
, . . . , π − 2π

N

}
(7.1)

and similarly for ky, when we let the lattice constant be unity. The Debye frequency
is set to 1, µ is set to -1, and the Boltzmann constant is set to 1. Furthermore, in the
code, we use H = N2 and L = 2N2.

7.2 Gap equation in momentum space

Equation 3.9 can be used to self-consistently determine the BCS gap parameter. We
use the tight binding model of 3.3. The procedure is as follows

1. Guess at a value, ∆A, for the gap parameter.

2. Compute the sum of the usual gap equation 3.9 using ∆A as the gap to obtain
a new value, ∆B, for the gap. This is achieved with the following code:

1 def ksi(a, b):
2 ksi = -2.0*(np.cos(a) + np.cos(b))-mu
3 return ksi
4

5 def selfconusualksi(T, N):
6 gapnew = 0.0
7 for i in np.nditer(k_x):
8 for j in np.nditer(k_y):
9 if abs(ksi(i,j))<debye:

10 gapnew = gapnew - ((V_sc*gap*np.tanh(np.sqrt
(ksi(i, j)**2+ gap **2) /(2.0*T)))/(2.0* np.
sqrt(ksi(i, j)**2+ gap **2)))/(N**2)

11 return gapnew

3. Iterate over step 2, always using the previously obtained value for the gap to
compute the sum. This is done until ∆ converges.

The sum over k is handled by splitting it up into a sum over kx and ky, with appro-
priate normalisation of the sum. Throughout the numerical treatment, we let k=1
for simplicity. Below is shown a plot of the dependence of the gap parameter on the
temperature.
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Figure 1: Gap parameter vs. temperature

7.3 Gap equation with Matsubara Green’s functions

The standard gap equation does not take impurities into account. Impurities can be
handled by use of 5.7, where F∗ is an element in the Nambu Green’s matrix, which
can be found from 5.9.

In the following, we consider the cases of either magnetic or non-magnetic impu-
rities in a superconductor. A combination of both impurities is not considered. If
the impurity scattering potential is uniform (the impurities are evenly smeared out,
and nowhere localised) the scattering Hamiltonian takes the following forms in Nambu
space:

Û =

{
V1ρρρ3 for non-magnetic impurities
V2I2 for magnetic impurities

In the numerical simulation the same scattering potential was used for magnetic
and non-magnetic impurities i.e. V1 = V2 = V . In both cases above, the scattering
potentials can be taken outside the sum and merged with the impurity concentration
to become one parameter, nV 2. Now two methods present themselves. One can use
¯̄G0, in place of ¯̄G in 5.14, reducing the equation to

Σ(k, ωk) = n
∑
kxky

Û ¯̄G0(k′, iωk)Û (7.2)

to find the self-energy, a method we will refer to as a self-consistent computation of
the gap using ¯̄G0. This method has not been used to obtain data in this thesis. One
can also use the full Nambu Green’s function to find the self-energy, i. e. by use of
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5.9, a method we will refer to as a self-consistent computation of the gap using ¯̄G. In
order to find the gap parameter, the following is done.

1. Guess at a value, ∆A, for the gap parameter.

2. Compute ¯̄G0(k, iωk) from 4.19 with the gap being ∆A. A function to do this is
defined:

1 def selfenzero (x, y, gap , omega , nimpVsq):
2 selfenzero = nimpVsq /(( omega *1.0j)**2-(ksi(x, y)**2 +

gap **2))*(np.matrix ([[ omega *1.0j+ksi(x, y), gap],[gap
, omega *1.0j-ksi(x, y)]]))

3 return selfenzero

3. Compute Σ(k, ωk) from 7.2 with the gap being ∆A. This can be done with the
following:

1 def selflistzero(T, N, N_mat , nimpVsq):
2 a_list = []
3 for i in range(-N_mat , N_mat +1):
4 selfen = np.matrix ([[0.0 , 0.0] ,[0.0 , 0.0]])
5 for k in np.nditer(k_x):
6 for l in np.nditer(k_y):
7 selfen = selfen + selfenzero(k, l, gap , (2*i

+1)*np.pi*T, nimpVsq)/(N**2)
8 a_list.append(selfen)
9 return a_list

4. Now that both ¯̄G0 and Σ(k, ωk) are known, solve 5.9 to find ¯̄G.

5. Select element ¯̄G1,2 = F∗↓↑(k, iωk) and solve 5.7 to find a new value, ∆B, for the
gap parameter. A function that combines step 4 and 5 is

1 def selfconfull(T, N, N_mat , nimpVsq):
2 gapnew = 0.0
3 for n in range(-N_mat , N_mat +1):
4 for i in np.nditer(k_x):
5 for k in np.nditer(k_y):
6 if abs(ksi(i,k))<debye:
7 gapnew = gapnew + V_sc*T*np.linalg.inv(np

.matrix ([[(2*n+1)*np.pi*T*1.0j-ksi(i,k
), -gap],[-gap , (2*n+1)*np.pi*T*1.0j+
ksi(i,k)]])- selfen_list[n + N_mat]).
item ((0,1))/(N**2)

8 return gapnew

6. Assign the value ∆B to the variable ∆A and go back to step 2.

Step 3 is carried out during the first iteration in both methods. This step uses
7.2 to obtain the self-energy matrix. This matrix is needed as input when solving
5.11 self-consistently. Without some initial self-energy matrix, the self-consistency
loop cannot be started. The difference between the methods is that the self-consistent
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computation of the gap using ¯̄G0 keeps using 7.2 to find the self-energy matrix for
subsequent iterations. This is the method outlined in the steps above.

After one iteration, 5.14 can be used to find the self-energy matrix, and the self-
consistent computation of the gap using ¯̄G, therefore, after one iteration, changes step
3 to be ’computation of Σ(k, ωk) from 5.14 with the gap being ∆A’. A function to do
this is defined:

1 def selflistfull(T, N, N_mat , nimpVsq):
2 a_list = []
3 for i in range(-N_mat , N_mat +1):
4 selfen = np.matrix ([[0.0 , 0.0] ,[0.0 , 0.0]])
5 for k in np.nditer(k_x):
6 for l in np.nditer(k_y):
7 selfen = selfen + nimpVsq*np.matrix

([[1.0 ,0.0] ,[0.0 , 1.0]]) *(np.linalg.inv(np.
matrix ([[(2*i+1)*np.pi*T*1.0j-ksi(k,l), -gap
],[-gap , (2*i+1)*np.pi*T*1.0j+ksi(k,l)]])-
selfen_list[i + N_mat]))*np.matrix
([[1.0 ,0.0] ,[0.0 , 1.0]]) /(N**2)

8 a_list.append(selfen)
9 return a_list

For the case of non-magnetic impurities the identity matrices would be replaced
by the third Pauli matrix. The gap parameter can thus be found self-consistently by
starting with a guessed value for the gap and repeating the prescribed procedure until
the gap reaches a convergence value:

1 selfen_list = []
2 selfen_list = selflistzero(T, N, N_mat , nimpVsq)
3 for a in range(iterations):
4 temp = selfconfull(T, N, N_mat , nimpVsq)
5 gap = np.real(temp)
6 selfen_list = selflistfull(T, N, N_mat , nimpVsq)

The above procedure gives the gap for a specific temperature and impurity con-
centration. In order to find the dependence of the critical temperature on nV 2 one
can set up a conditional loop, starting at a temperature greater than the critical one,
which is made to terminate once the value of the gap exceeds some very small value.
Employing this method for a range of values for the impurity concentration, the de-
pendence of the critical temperature on nV 2 can be found. Below graphs are seen of
the gap as a function of temperatures for various values of nV 2, for both magnetic and
non-magnetic impurities. The graphs are for systems where N = 40 and the number
of iterations is 60.
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Figure 2: Gap parameter vs. temperature for various values of nV 2, where the impu-
rities are magnetic.

Figure 3: Gap parameter vs. temperature for various values of nV 2, where the impu-
rities are non-magnetic.



7.4 Gap equation in real space 16

7.4 Gap equation in real space

The AG theory approach previously described takes impurities into account, but they
are smeared out and not localised. The real space gap equation of 6.17 allows us to
place impurities at certain lattice points and find the value for the gap parameter at
each discrete point.

This computation uses the matrix from 6.19. The procedure is the following:

1. The matrix M is constructed, by use of the rules outlined in 6.20.

2. Impurities are randomly distributed. Generate a set of random values of i and
let elements Mi,i = µ→ µ+ V2 and MN2+i,N2+i = −µ→ −µ+ V2.

3. Guess at a value, ∆A, for the gap parameter, and assign this value to all matrix
elements of the form M(N2+i,i) and M(i,N2+i).

4. Diagonalise the matrix, i.e. find its set of eigenvalues and -vectors.

5. Select elements i and i + N2 from all eigenvectors in the set and use them to
solve 6.17 to get the gap ∆i on site i. Do this for all lattice sites. To achieve
this, we use

1 def i_gap(vectors , eigenvals , T, i):
2 gap = 0.0
3 for a in range(H):
4 gap = gap + V_sc*vectors[i, a]*np.conjugate(vectors[

i+H, a])*np.tanh(np.real(eigenvals[a])/(2*T))
5 return gap

6. Redefine the matrix M by assigning the value ∆i to element M(i,N2+i) and the
value ∆∗i to element M(N2+i,i). Return to step 2.

This procedure can be repeated until the gap at every site reaches its convergence
value. Instead of checking every site, which would be laborious for large systems, one
can simply check for the convergence of the sum of the gaps on each site. This iteration
procedure is written as follows:

1 for b in range(iterations):
2 total = 0.0
3 vals , vecs = np.linalg.eigh(lattice)
4 idx = vals.argsort ()[:: -1]
5 vals = vals[idx]
6 vecs = vecs[:,idx]
7 for i in range(H):
8 lattice[i][H+i]=i_gap(vecs , vals , a, i)
9 lattice[H+i][i]=np.conjugate(i_gap(vecs , vals , a, i)

)
10 total = total + i_gap(vecs , vals , a, i)
11 print("total: ", abs(total))

This routine uses the fact that M is hermitian to reduce the time for the computation.
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(a) T=0.01 K (b) T=0.07 K

(c) T=0.13 K (d) T=0.19 K

Figure 4: The gap parameter on the sites of a lattice with N=20 and 20 impurity sites
for various temperatures. V2 = 0.1t.
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(a) T=0.01 K (b) T=0.07 K

(c) T=0.13 K (d) T=0.19 K

Figure 5: The gap parameter on the sites of a lattice with N=20 and 40 impurity sites
for various temperatures. V2 = 0.1t.

8 Discussion
The critical temperature, in the presence of a perturbation in the form of magnetic
impurities, can be expressed in terms of a function of a Cooper-pair breaking parameter
α [1]:

ln

(
Tc
Tc0

)
+ ψ

(
1

2
+

α

2πTc

)
− ψ

(
1

2

)
= 0 (8.1)

Tc0 is the critical temperature in the absence of impurities and ψ(z) is the digamma
function. Below is shown the relation between α and Tc. Superimposed are data points
showing values of Tc for certain impurity concentrations.
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Figure 6: Critical temperature vs. the pair breaking parameter α.

For the plot in figure 6, the value of α is the same as that of nV 2. The disagree-
ment between the values found from simulation and those of 8.1 could be due to the
lattice size, which in principle should be infinitely great to reproduce the expected
dependence. However it is more likely that the range of n used for the Matsubara
summation, as discussed in relation to 5.7 and 5.8, is too small. As the difference
between successive frequencies scales with the temperature, this can be particularly
problematic for small values of T , where the sum will not include a wide enough range
of frequencies. An example of this is how the graphs in figures 2 and 3 show peaks
in the gap parameter. The gap decreases with increasing temperature, as it should,
but it also shows the gap decreasing for temperatures lower than that where the peak
lies. This should not happen - the graphs should show the same behaviour as figure 1,
where the gap is approximately unchanged up to the point where it starts to decrease.
For the numerical simulation for AG theory, n = 80. A continuation of the work in
this thesis could be to run simulations for successively greater n to see the effect on
the data points in figure 6 and the low-temperature region of the graphs in figure 2
and 3.

The theoretical prediction of 8.1 follows directly from AG theory. Therefore, with
a numerical simulation sophisticated enough, one would expect to reproduce it. The
more interesting case is that of the real space formulation. AG theory considers a
random distribution of impurity atoms and it would therefore have been very inter-
esting to find the critical temperatures from the real space simulation with randomly
distributed, localised impurities, and compare this to 8.1.

The dependence of the gap parameter on the temperature for various values of nV 2

as shown in figures 2 and 3 are partly in accordance with the expectations outlined
in the introduction. The introduction of magnetic impurities into the superconductor
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suppresses Tc, and as figure 2 clearly shows, the gap parameter quickly decreases in
value as nV 2 is increased, and by nV 2 = 0.03 it is almost completely gone. For non-
magnetic impurities the critical temperature is suppressed, but only for much greater
values of nV 2, contrary to the assumption that non-magnetic impurities would not
affect the transition temperature.

Furthermore, the subfigures of both figure 2 and 3 show that as the temperature
increases, the gap parameter throughout the lattice is suppressed, but in particular it
is suppressed around the impurities.

9 Conclusion
It has been shown how magnetic and non-magnetic impurities suppress the critical
temperature in a two-dimensional superconductor by use of AG theory. The spatially
dependent suppression of Tc around impurities in the real space formulation of BCS
theory has also been shown.

Were the timeframe for the project longer, an extension could be to find the critical
temperature for many more values of nV 2 and compare them to the theoretical pre-
diction of 8.1. A more interesting extension would be to find the critical temperatures
for various impurity concentrations in the real space formulation to see how well these
values agree with the theoretical expectations of AG theory.
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Appendix

A Calculation of uk and vk

The BCS mean-field Hamiltonian in 3.1 can, using the Nambu spinors, be rewritten
in matrix form as

α†Aα =
(
c†k↑, c−k↓

)( ξk −∆
−∆∗ −ξ−k

)(
ck↑
c†−k↓

)
(A.1)

Introduce the unitary matrix

U =

(
uk −vk
v∗k u∗k

)
(A.2)

U diagonalises the matrix A and thus

U†
(

ξk −∆
−∆∗ −ξ−k

)
U =

(
Ek 0
0 −Ek

)
(A.3)

where the diagonal contains the eigenvalues for the Hamiltonian. These eigenvalues
are found in the usual way:

det(A− λI) = (ξk − λ)(−ξ−k − λ)− |∆|2 = 0 (A.4)

For a crystal symmetric under inversion ξk = ξ−k and the equation reduces to

λ =
√
ξ2k + |∆|2 = Ek (A.5)

By explicitly multiplying through equation A.3(
Ek 0
0 −Ek

)
=

(
uk(u∗kξk + v∗k∆∗) + v∗k(u∗k∆− vkξ−k) u∗k(u∗k∆− vkξ−k)− vk(u∗kξk + vk∆∗)
uk(uk∆∗ − v∗kξk) + v∗k(−v∗k∆− ukξ−k) u∗k(−v∗k∆− ukξ−k)− vk(uk∆∗ − v∗kξk)

)
(A.6)

If we let uk, vk og ∆ be real numbers for simplicity, while employing ξk = ξ−k we
obtain (

Ek 0
0 −Ek

)
=

(
ξk(u2k − v2k) + 2ukvk∆ ∆(u2k − v2k)− 2ukvkξk
∆(u2k − v2k)− 2ukvkξk ξk(v2k − u2k)− 2ukvk∆

)
(A.7)

thus we arrive at
Ek = ξk(u2k − v2k) + 2ukvk∆ (A.8)

From A.5 we have that ∆ =
√
E2

k − ξ2k and as U is unitary, it follows that u2k+v2k = 1.
With this information, A.8 can be written as

Ek = ξk(2u2k − 1) + 2uk

√
1− u2k

√
E2

k − ξ2k (A.9)

and
Ek = ξk(1− 2v2k) + 2vk

√
1− v2k

√
E2

k − ξ2k (A.10)

whence we deduce that

|uk|2 =
1

2

(
1 +

ξk
Ek

)
, |vk|2 =

1

2

(
1− ξk

Ek

)
(A.11)
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B Proof of commutator identities
[AB,C] = ABC − CAB

= ABC + (ACB − ACB)− CAB
= A(BC − CB) + (AC − CA)B

= A[B,C] + [A,C]B

(B.1)

[AB,C] = ABC − CAB
= ABC + (ACB − ACB)− CAB
= A(BC + CB)− (AC + CA)B

= A{B,C} − {A,C}B

(B.2)

C Fourier transformation of the BCS mean-field Hamiltonian

−
∑
k

∆c†k↑c
†
−k↓ −

∑
k

∆∗c−k↓ck↑ =− 1

V
∑
k

∫
V
dr

∫
dr′
∫
dr′′∆e−ik·rΨ†↑(r

′)eik·r
′
Ψ†↓(r

′′)e−ik·r
′′

− 1

V
∑
k

∫
V
dr

∫
dr′
∫
dr′′∆e−ik·rΨ↓(r

′)eik·r
′
Ψ↑(r

′′)e−ik·r
′′

=−
∫
V
dr

∫
dr′
∫
dr′′∆Ψ†↑(r

′)Ψ†↓(r
′′)δ(−r + r′ − r′′)

−
∫
V
dr

∫
dr′
∫
dr′′∆Ψ↓(r

′)Ψ↑(r
′′)δ(−r + r′ − r′′)

=−
∫
V
dr

∫
dr′∆Ψ†↑(r

′)Ψ†↓(r
′ − r)

−
∫
V
dr

∫
dr′∆Ψ↓(r

′)Ψ↑(r
′ − r)

(C.1)

∆ =
1

V
∑
k

∆eik·r = ∆δ(r) (C.2)

−
∫
V
dr

∫
dr′∆Ψ†↑(r

′)Ψ†↓(r
′ − r)δ(r)−

∫
V
dr

∫
dr′∆Ψ↓(r

′)Ψ↑(r
′ − r)δ(r)

=−
∫
dr′∆Ψ†↑(r

′)Ψ†↓(r
′)−

∫
dr′∆Ψ↓(r

′)Ψ↑(r
′)

(C.3)

We are looking at a quadratic lattice with sides of length N and discrete lattice
sites. The integral is changed to a sum over the positions:

N∑
i

−∆ic
†
i↑c
†
i↓ −∆∗i ci↓ci↑ (C.4)

D Anticommutation of Bogoliubov-transformed operators

The Bogoliubov transformation cannot violate the canonical anti-commutation relation
for fermion operators given by 2.2. For the c-operators in the form defined by the spin-
generalised Bogoliubov transformation of 6.13, we have that
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0 = {ci↑, ci↓} =
∑
n

[
(un,i↑γn↑ + v∗n,i↑γ

†
n↓)(un,i↓γn↓ + v∗n,i↓γ

†
n↑)

+(un,i↓γn↓ + v∗n,i↓γ
†
n↑)(un,i↑γn↑ + v∗n,i↑γ

†
n↓)
]

=
∑
n

[
v∗n,i↓v

∗
n,i↑ {γ

†
n↑, γ

†
n↓}︸ ︷︷ ︸

0

+un,i↑un,i↓ {γn↑, γn↓}︸ ︷︷ ︸
0

+un,i↑v
∗
n,i↓ {γn↑, γ

†
n↑}︸ ︷︷ ︸

1

+v∗n,i↑un,i↓ {γ
†
n↓, γn↓}︸ ︷︷ ︸

1

]
=
∑
n

un,i↑v
∗
n,i↓ +

∑
n

v∗n,i↑un,i↓

−
∑
n

un,i↑v
∗
n,i↓ =

∑
n

v∗n,i↑un,i↓

(D.1)

E An example of the M-matrix

Below is shown the matrix M for a lattice with sides of length 3.

ψ†



−µ −t −t −t 0 0 −t 0 0 ∆ 0 0 0 0 0 0 0 0
−t −µ −t 0 −t 0 0 −t 0 0 ∆ 0 0 0 0 0 0 0
−t −t −µ 0 0 −t 0 0 −t 0 0 ∆ 0 0 0 0 0 0
−t 0 0 −µ −t −t −t 0 0 0 0 0 ∆ 0 0 0 0 0
0 −t 0 −t −µ −t 0 −t 0 0 0 0 0 ∆ 0 0 0 0
0 0 −t −t −t −µ 0 0 −t 0 0 0 0 0 ∆ 0 0 0
−t 0 0 −t 0 0 −µ −t −t 0 0 0 0 0 0 ∆ 0 0
0 −t 0 0 −t 0 −t −µ −t 0 0 0 0 0 0 0 ∆ 0
0 0 −t 0 0 −t −t −t µ 0 0 0 0 0 0 0 0 ∆

∆∗ 0 0 0 0 0 0 0 0 µ t t t 0 0 t 0 0
0 ∆∗ 0 0 0 0 0 0 0 t µ t 0 t 0 0 t 0
0 0 ∆∗ 0 0 0 0 0 0 t t µ 0 0 t 0 0 t
0 0 0 ∆∗ 0 0 0 0 0 t 0 0 µ t t t 0 0
0 0 0 0 ∆∗ 0 0 0 0 0 t 0 t µ t 0 t 0
0 0 0 0 0 ∆∗ 0 0 0 0 0 t t t µ 0 0 t
0 0 0 0 0 0 ∆∗ 0 0 t 0 0 t 0 0 µ t t
0 0 0 0 0 0 0 ∆∗ 0 0 t 0 0 t 0 t µ t
0 0 0 0 0 0 0 0 ∆∗ 0 0 t 0 0 t t t µ



ψ

(E.1)


