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Abstract

Superconducting quantum bits (qubits) are a leading platform for realizing high-
fidelity quantum computing [1]. One aspect of this, is the ability to measure the
qubit states to high fidelity. This is typically done by recording ‘single shots’
of the qubit state, which corresponds to a (complex) voltage. This voltage can
be decomposed into an in-phase (I) and quadrature (Q) phase. This thesis is fo-
cused on statistical methods for discriminating between ‘0’ and ‘1’ in the IQ plane.
Although the classifier effects readout fidelity significantly, there are no standard-
ized method of classifier determination today. In this project we investigate the
machine learning algorithm Support Vector Machines (SVM) as an automated
method of determining the state classifier yielding the highest readout fidelity for
four different qubit spanning three different devices. Furthermore, we analyze the
performance of the classifiers using a multiple of statistical methods. This was
achieved by the creation of the Python package Readout Discrimination Tools.
We conclude that SVM efficiently determined quantum states with the highest
fidelity being 85.5 ± 0.4% across the four used datasets. Single-shot sample sizes
were determined to influence the readout fidelity when below 2000 single-shots pr.
state.
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1 Introduction

In the past decades the field of quantum com-
puting has made major progress. Experiments
like Quantum Supremacy from Google strongly
suggest and has mostly established that [2]: The
theory of quantum computing is true. All points
to that quantum computers work, and they have
the potential to redefine huge sections of our so-
ciety, ranging from drug discovery, cyber secur-
ity, banking industry and even weather forecast-
ing.

Quantum computers can compute exponen-
tially faster than conventional computers. This
is achieved by exploiting the core principles of
quantum mechanics, that a qubit (quantum bit),
unlike a conventional bit, can occupy multiple
states at simultaneously [3, 4]. This means that
even a few thousand of qubits potentially have
a greater computational power than all conven-
tional computers, combined. It likewise means
that some unsolvable problems today, can be
solved by ease in the future.

Computations depend on the output of bits.
For conventional computers, bits are determ-
ined by a threshold in voltage, where only if
the voltage is above a threshold, the bit is
one. Analogously, for superconducting qubits
these outputs are complex numbers referred to
as single-shots. The unit of single-shots are
likewise voltage, but in a complex space called
the In-phase and Quadrature plane (IQ-plane).
Determination of the threshold or classifier in
the IQ-plane is, due to data noise non-trivial,
but highly important due to the classifiers dir-
ect correlation with the outcome of computation
[1, 5, 6].

In this project we attempted to optimize

the determination of the classifier, by introdu-
cing the single-shot data to machine learning al-
gorithms, which are primarily Support Vector
Machines (SVM). We subsequently evaluated
the performance of the classifier itself with the
parameter readout fidelity. The qubits are not
necessarily robust systems and therefore needs
frequently re-calibration. By development of a
Python packages, we created an easy-to-use tool
to calibration single-shot readout classifiers.

2 Theory

In the following section we shall describe the
theories used in this thesis, spanning from a
general overview of superconducting qubits to
methods in the field of machine learning. Fi-
nally we will introduce a Python-code package
named Readout Discrimination Tools (RDT), as
this will be the main tools for analyzing the sub-
ject of single-shot state distribution.

2.1 Superconducting qubits

Superconducting qubits use the superconduct-
ing properties of some metals when cooled to
near base temperature (T = 0K. One promising
type of superconducting qubit is the Transmon
qubit [7]. A Transmon uses a Josephson junc-
tion to perturb the Quantum Harmonic Oscil-
lator (QHO), a parallel LC-oscillator, achieving
energy gaps in states where h̄ω01 > h̄ω12. The
QHO without a Josephoson junction consist of
an inductor L (linear) and capacitor C in paral-
lel corresponding to the Hamiltonian [3, 4]:

H = 4ECLn
2 +

1

2
ELφ

2, (1)
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where ECL = e2/(2C) is the energy required
to add an extra single electron to the island, n is
the number of Cooper-pairs and EL is the energy
from inductance L. φ is the phase of the wave-
form. When replacing the linear inductorL with
the Josephson junction, a nonlinear inductor,
the Hamiltonian is modified to:

H = 4ECJn
2 + EJcos(φ), (2)

where ECJ = e2/(2C∑), with C∑ = Cs+CJ ,
where Cs is the capacitance from the circuit and
CJ is the self-capacitance of the Josephson junc-
tion. EJ = ICΦ0/2π is the energy from the
Josephson junction as a function of the critical
current of the junction. This ensures that the
potential is non-parabolic, which changes the en-
ergy gap between states to h̄ωn > h̄ωn+1 [3, 4].
The energy gab between the two lowest states
are thereby distinguishable from higher energy
gabs, which enable us to make a controllable
qubit with these low energy gabs.

By placing a resonator close to our Joseph-
son junction we can couple the two with a coup-
ling constant g, resulting in a signal passing
through the resonator, which will be effected by
the state of the qubit. This coupling can be es-
timated from the dispersive shift:

χ = g2/∆, (3)

where ∆ =| ωq − ωr |, with ωq and ωr as
the qubit and resonator frequencies, respect-
ively. This allows us to distinguish between two
states by in using the Hamiltonian for dispersive
approximation [3]:

Hdisp = (ωr + χσz)(a
†a+

1

2
) +

ω̃q

2
σz, (4)

where a is the annihilation of a single ex-
citation of the resonator, and ω̃q = ωq + q2/∆

is the Lamb shift. This results in the dispersive
shift for a Transmon qubit being qubit state, σz,
dependent.

2.1.1 Single-shot readout data

We showed in the previous section that we
are able to distinguish between states due to
the state dependent frequency of the resonator.
To utilize this in the most beneficial way, we
want achieve the greatest separation between
the voltages of the two states, meaning using
a frequency just in between the two state fre-
quencies. This maximises the separation in the
IQ-plane, where I and Q is the in-phase and
quadrature components of the voltage, respect-
ively. After inducing a microwave signal to the
resonator the reflected signal has the form [8]:

s(t) = AROcos(ωROt+ θRO), (5)

where ARO is the readout amplitude, θRO is
the phase and ωRO is the probe frequency. By
transforming the into a real and imaginary part,
we get the following equation, showing that the
reflected signal contains both real and imaginary
parts:

s(t) = Re{AROcos(ωROt+ θRO

+jsin(ωROt+ θRO)},
(6)

We can extract values of I and Q by using a
analog IQ-mixer. By defining a local oscillator
(LO) signal with frequency ωLO = ωRO, we get
a signal as a function of time t:

y(t) = ALOcos(ωLOt), (7)
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By splitting the LO signal and phase-shifting
one part by π/2, we get I and Q parts of the LO
signal:

yI(t) =
ALO

2
cos(ωLOt) (8)

yQ(t) = −ALO

2
sin(ωLOt) (9)

Likewise, the same signal splitting occurs for
the reflected signal s(t), but with no phase-shift
induced:

sI(t) =
ALO

2
cos(ωLOt+ θRO) (10)

sQ(t) =
ALO

2
cos(ωLOt+ θRO) (11)

Finally the I and Q values can be calculated
by integration over the time-averaging (demodu-
lation length) T :

I =
1

T

∫ T

0

dtsI(t)yI(y) (12)

Q =
1

T

∫ T

0

dtsQ(t)yQ(y) (13)

Subsequently the I and Q values can be used
to calculate the amplitude and phase:

ARO ∝
√

I2 +Q2 (14)

θRO = arctan(Q/I) (15)

Assuming a perfect no-noise qubit, all single-
shots would fall close to the same point in the
IQ-plane, but due to qubit decay (T1 and T2),
measuring uncertainties, etc., the single-shot fol-
lows a Gaussian distribution. The difficulties in
classification of states is discussed in the follow-
ing section.

2.1.2 Readout fidelity

Quantum computing is limited by data noise,
and to quantify this limitation, fidelity is com-
monly used. Readout fidelity is a measure of
the ability to determine single-shots belonging
to the ground or excited state. This fidelity
can be determined in multiple ways. Here we
present three of the methods. Common for all
methods is that one compare single-shots with
two different state preparations; one with no
microwave pulse applied to the qubit, meaning
the recorded single-shot data will correspond to
the qubit being in the ground state, and the
other with a pulse, preferably a π-pulse, where
single-shot data will correspond to the qubit be-
ing in the excited state, see Figure 1a. Here
the ground and excited state are visualised in
the IQ-plane and a overlab in states are seen.
The illustrated simulated data depicts a qubit
at a temperature T = 0K. In data there would
be single-shots with a π-pulse applied, meaning
a pulse for the excited state, where the single-
shots would show in the ground state, due to T1
qubit decay. Moreover, there would be single-
shots prepared for the ground state shown in
the excited state in the IQ-plane, due to the
qubit temperature being non-zero. These be-
ing thermally excited single-shots. The rate of
thermal excitation is a function of temperature
derived from Boltzmann’s equation of thermal
probability [1, 9]:

p0
p1

= exp
(
ε1 − ε0
kBT

)
= exp

(
ε1
kBT

)
, (16)

where p0 and p1 are the probability of being
in the ground and excited state. ε0 and ε1 is the
relative energy states, where ε1 can be defined:

ε1 = h̄ω = 2h̄π · f, (17)
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where, f is the frequency. Finally the qubit
temperature can be determined as:

T =
2h̄π · f
ln(p0/p1)

kB, (18)

Figure 1b shows readout fidelity of a simu-
lated dataset (no thermal population, no qubit
decay during readout) determined with the fol-
lowing calculation::

u0(s) =

{
1 |s− µ0| > |s− µ1|
0 |s− µ0| ≤ |s− µ1|

(19)

ni(s) =
∑

ui(s), (20)

where s is a specific single-shot. The mean
of the ground state (µ0) and excited state (µ1)
are estimated from the single-shots correspond-
ing to specific state. Every single-shot is sorted
into one of two bins (n0, n1) depending on dis-
tance from the two state means. Readout fidel-
ity of the i′th state is then defined as:

fidelityi =
ni

n0 + n1

, (21)

When defining readout fidelity as shown in
Equation 21, one assumes that the mean of each
dataset corresponds to the state mean. Due to
thermal excitation one can justify that the cal-
culated means µ0 and µ1 falls in the interval of
the true state means [µ0true : µ1true], but likewise
that µn 6= µntrue, where n is a state.

Another method of estimation of readout
fidelity is shown in Figure 1c, where a 2-
dimensional double Gaussian is fitted to the
combined set of single-shots. The double Gaus-
sian is derived from a single Gaussian:

gauss(x, y) = A · exp(−a(x− x0)
2+

2b(x− x0)(y − y0) + c(y − y0)
2) + k,

(22)

where x0 and y0 are the x and y coordinates
of the mean, A is the amplitude, k is a constant
and a, b and c are defined as follows:

a =
cos(θ)2

2σ2
x

+
sin(θ)2

2σ2
y

, (23)

b =
− sin(θ)2

4σ2
y

+
sin(2θ)2

4σ2
y

, (24)

c =
sin(θ)2

2σ2
x

+
cos(θ)2

2σ2
y

, (25)

where σx and σy are the width in the x

and y plane respectively, and θ is the rotation
around the (x0, y0). Combining two Gaussian’s
like shown:

gaussdouble(x, y) = gauss0(x, y)

+gauss1(x, y),
(26)

where the amplitudes A0 and A1 corresponds
the to likelihood of generation of single-shots in
the ground state and excited state, respectively.
One can then used the fitted parameters and
determine the amplitudes for only the ground
state prepared data. Finally the readout fidelity
of the ground stated can be determined as A0.
Comparing to equation 21, this method determ-
ines means, which are not limited in the pre-
viously mentioned interval, and the means can
thereby be µn = µntrue. This method assumes
that the single-shots follows a Gaussian distri-
bution. With T1 and T2 decay this assumption
is not necessarily true but an estimation [5].

The final method, shown in Figure 1c, shows
fidelity defined by machine learning algorithms.
This is described in details in the following sec-
tion.
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(a) (b) (c) (d)

Figure 1: (a) The two state marked as |0〉 and |1〉. This is a simulation, assuming no thermal
population (i.e. T = 0K). (b) Fidelity calculated with Equation 21. (c) States fitted with double
Gaussian. (d) Fitted SVM on single-shots.

2.2 Machine learning

The determination of the classifier yielding the
highest readout fidelity for a given set of single-
shots in the IQ-plane can be achieved in mul-
tiple ways [10, 11]. For a dataset with low noise
and great distance between the two Gaussian
distributed states, one might be encouraged to
assume choosing an arbitrary line dividing the
two states, would yield the same readout fidelity,
as a non-linear classifier function. Although this
may be the case, the assumption can be proven
or dis-proven by the use of machine learning.

Machine learning comes in a variety of dif-
ferent forms, but the denominator of them all
is a cost function. Cost functions are functions
which are minimized or maximized during the
machine learning progress. In the case of the
single-shot readout classification, the machine
learning algorithm maximizes the readout fidel-
ity. In other words, the algorithm evaluates the
frequency of rightly compared to wrongly as-
signed single-shots.

2.2.1 Cross validation

A common imperfection in machine learning al-
gorithms is over-fitting [12]. A method to over-
come this drawback of over-fitting is named K-
fold. When using K-fold, one simply splits
the dataset into K-folds, meaning K sub data-
sets. Artifacts like small clusters of noise can
effect the hyper-parameters, the parameters fit-
ted during the algorithm, if cross validation is
not used. It is common practice to divide a data-
set into 10 randomly chosen folds of equal size.
One fold is set aside for final evaluation of the
algorithms output. The remaining n-1 folds are
then used as training sets, as seen in Figure 2.
Here a 5 fold setup is used as illustration. One
fold, called the ’test data’, is saved and stays
hidden from the algorithm. The remaining 4
folds are used as ’training data’. Training data
can be fitted in multiple ways. One way is called
’one against the rest’. As depicted in figure 2 ’the
one against the rest’ method uses one of the K-
folds as the test data in i′th iteration. After
all iterations are performed the results are aver-
aged and the hyper-parameters thereby determ-
ined. The final step is comparing the determ-
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ined hyper-parameters with the initial test data.
The performance of the algorithm is defined as
the score from the initial test dataset. K-folds
are one of multiple outer-parameters, which are
not changed during fitting but can impact the
outcome significantly.

Figure 2: The structure of data handling in
cross validation, when using K-fold. The data-
set is divided into K-fold, in the case K = n.
One fold is saved as ’test data’ and remains un-
seen for the algorithm until final performance
testing. The reaming K − 1 folds are used as
training data.

2.2.2 Support vector machine

The objective of the SVM is to the maxim-
ize the margin in-between the separate classes
of a given dataset. The SVM is a discrimin-
ative classifier functioning in a N-dimensional
space by separating the hyperplanes of the space
[13, 12, 14]. In other words, it separates labeled
classes of a dataset. For single-shot data in
the IQ-plane (2D space) containing only two
states, the SVM would return a classifier in
the form of a function, which would determ-
ine the state of each single-shot in the data-
set. Visually a SVM functions as a classifier
by transforming a N -dimensional space into a
higher dimension, as seen in Figure 3, where a
2-dimensional space (3a) is transformed into 3

dimensions by a Gaussian kernel (3b). The hy-
perplane with the maximized margin between
classes is thereby determined (3c). By optimiz-
ing a margin a SVM algorithm has an advantage
compared to other machine learning algorithms,
because a SVM classifier is determined with a
degree uncertainty. There are multiple different
forms of SVM’s called kernels. This project fo-
cuses on the differences in the linear (Equation
27), polynomial (Equation 28), Radical Basis
Function (RBF) (Equation 29) and Sigmoid ker-
nels (Equation 30). Each kernel consists of an
individual set of hyper parameters, as shown be-
low, which are varied during the fitting.

Klinear(xi, xj) = (xi, xj) + c, (27)

where c is an offset constant common to
all SVM kernels used. By only containing one
hyper-parameter, the linear SVM kernel is the
simplest and thereby the most consistent, but
likewise the least computationally demanding.

Kpolynomial(xi, xj) = (γ(xi · xj) + r)d + c, (28)

where d is the polynomial degree, r is an off-
set constant and γ determines the influence of a
single training set.

KRBF (xi, xj) = exp(−γ ‖xi − xj‖2) + c, (29)

where γ likewise determines the influence of
a training set.

Ksigmoid(xi, xj) = tanh(γ(xi · xj) + r) + c, (30)

where r is a offset constant. A benefit of
SVM’s is the ability to classify in N -states for
multi qubit operations [15, 16].
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(a) (b) (c)

Figure 3: (a) Two class data, not solvable with a linear classifier in 2D-space. (b) Same data in
3D-shape, transformed by a Gaussian kernel. (c) Classes divided in 3D-shapes by hyper-plane.

2.2.3 Alternative kernels

In addition to SVMs a different set of algorithms
were tested as a baselines during this project.
Below we briefly discuss these:

K-Nearest Neighbors (KNN): A classifier
which uses proximity as its only parameter. It
counts the number of same-class neighbors of
a specific data-point i. The i′th data-point is
thereby weighed and the algorithm maximizes
the weight for the data-set.

Decision Tree: A classic decision tree classi-
fier [11].

Adaptive Boosting (AdaBoost) : A meta-
estimator that combines multiple ’weak’ classi-
fiers into one strong. It uses decision trees with
only one spilt, called decision stump.

Linear Discriminant Analysis (LDA):
Lowers the dimension by creating a new axis,
where the distance between mean of classes is
maximized and the variation within each class
is minimized.

3 Python script
The main part of this project has been the de-
velopment of the Python-code package Readout
Discrimination Tools (RDT). While this thesis
only focuses on single-qubits, the purpose of
RDT was to create an easy-to-use package with
the ability to classify and analyze states in
single-shot data from one or multiple qubits. It
is necessary to re-calibrate the single-shot clas-
sifiers frequently, due to the previously men-
tioned need of re-calibration of qubits. By ap-
plying SVM algorithms to single-shot data we
theorized that a low-uncertainty, high fidelity
classifier could be determined. A great part of
RDT contains statistical tools of performance
evaluation, meaning the RDT package is dual
purpose by not only determining a single-shot
readout classifier but also by providing an ana-
lyzing tool of the classifier itself. Figure 4 shows
the structure of RDT and the data flow within.
Inputting single-shot data belonging to two sep-
arate states, one being the ground state and the
other the excited state as complex numbers of
the IQ-plane, where-after RDT defines the data-
set size as specified by the user. After selection
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Figure 4: General structure of RDT. Data is imported (left) as arrays of complex numbers. The
data is then transformed in Data Management, where the data is down scaled to fit dataset size.
Training of classifier is performed with output of expectation values in return. Statistical analysis
can return multiple different plots describing the performance and robustness of the classifier.

of data, the fitting of the classifier is performed,
where after the user can save the fitted SVM and
use it to estimate expectation values of data sub-
sets. Moreover, the user can run a multiple of
statistical tests on the classifier to evaluate it’s
performance and robustness.

3.1 Data import

When determining the classifier using the SVM
two separate sets of data are needed. Half of
the data points must stem from the experiment
without a π-pulse applied, which corresponds to
the qubit in the ground state. The other half of
the data points stem from an experiment with
a π-pulse, which corresponds to the qubit being
in its first excited state. The single-shots are
labeled responding to their state, meaning that
all data points from the first half of the dataset
are labeled as the ground state (0). The second
half is labeled as the excited state (1). If more
than two subsets of data are imported into RDT,
the code will automatically determined the best
candidates for classifier determination, by call-

ing the _min_max_index() function, see Listing
1. If ’entries’ is defined as ’None’, the first index
is defined as the ground state index. The excited
state index is defined as the index for witch the
mean of all single-shots in the subset is the fur-
thest away from the mean of the ground state.
This function ensures the optimal data is used
for classification.

1 def _min_max_index(self, X=None):
2 if X is None:
3 X = self.h5data
4

5 means = linalg.norm(X, axis=2)
6 data_mean = sum(means , axis=1)
7

8 min_, max_ = argmin(data_mean),
argmax(data_mean)

9 return data_mean , [min_, max_]

Listing 1: Shows the _min_max_index()
function from RDT code, which determines
the minimum and maximum index of complex
datasets. This is used for selecting the excited
state data.

12



1 def set_pipeline(self, scalar=True, pca=
True):

2 if scalar == True:
3 scalar = StandardScaler()
4 else:
5 scalar = None
6

7 if pca == True or int:
8 if pca == int:
9 pca = PCA(n_components=pca)

10 else:
11 pca = PCA(n_components=2)
12 else:
13 pca = None
14

15 self.pipeline = Pipeline(steps=[
16 ('transformer', scalar),
17 ('PCA', pca),
18 ('classifier', self.classifier)

])

Listing 2: Shows the set_pipeline() function
from RDT code, which constructs a pipeline
with normalization, Principal Component
Analysis (PCA) and the classifier function. This
ensures that the Standard Deviation (STD)
and rotation will not effect the outcome of the
classifier algorithm.

After the two indices have been selected, a
pipeline is constructed, to ensure that the user
receives the classifier with the highest readout fi-
delity. A pipeline of instructions is set ensuring
a uniform calculation of the classifier, see Listing
2. The pipeline has three components. Firstly it
standardizes the data, meaning scaling the data-
set to have a mean at (0, 0) and a variance of 1.
This is optimal for machine learning algorithms.
The second step of the pipeline is using PCA,
which rotates the data in the IQ-plane to en-
sure the greatest separation between the differ-

ent states on the I axis (PCA component axis
1) [17]. Finally the SVM machine learning al-
gorithm is applied to the dataset.

3.2 Simple classifier test

Determination of the best SVM classifier for a
dataset of single-shots can be done using the
script in Listing 3. Here the datafile is selec-
ted and run with the RDT package. The return
of the script is the classifier plotted with the
single-shot data.

1 import quantum_fitter.readout_tools as
rdt

2

3 # Set up path
4 file_path = '.../example_data/

ss_q1_rabi_v_ampl_5_fine.hdf5'
5

6 # Set the instence
7 rd = rdt.Readout(file_path , size=4000,

verbose=1)
8

9 # Plot
10 rd.plot_classifier()

Listing 3: A short script for determination
of the best classifier for at given dataset. The
rd.plot_classifier() function plots the classifier.

3.3 Testing effect of parameter

An important aspect of the RDT code is the
ability to determine the effect a given parameter
has on the outcome of the performances of the
classifier. To estimate the effect one can sweep
the performances as a function of the parameter
in a chosen interval. Therefore, to test the ef-
fect of a parameter, the parameter needs to be
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changed where-after the classifier can be determ-
ined. This can be done like seen in Listing 4.
Here the effect of the dataset size is being test.

1 import quantum_fitter.readout_tools as
rdt

2 from tqdm import tqdm
3

4 # Set up path
5 file_path = '.../

ss_q1_rabi_v_ampl_5_fine.hdf5'
6

7

8 # Set the instence
9 rd = rdt.Readout(file_path , verbose=0)

10

11 # Set the forloop
12 set_list = np.geomspace(20, 4000, num

=50, dtype=int)
13 for i in tqdm(set_list):
14 rd.set_dataset_size(size=i)
15 rd.set_plot_dir(i, param_name='

Dataset size', score_name=None)
16

17 # Plots figure
18 rd.plot_param_effect()

Listing 4: To determine the effect of a
parameter, the listed script is executed. The
analyzed parameter here is dataset size. The
classifiers performance will be estimated for all
values in ’set_list’.

3.4 Rabi data fitting

The performance of a fitted classifier can be eval-
uate in multiple ways. One of them is by fitting
rabi oscillations. For a qubit with perfect state
preparation and high separation of states in the
IQ-plane, a fit of rabi oscillations will have an
amplitude A = 0.5. If the separation or state

preparation is non-perfect the absolute value of
the amplitude | A |< 0.5. Rabi oscillations can
be fitted using the RDT packages. This is done
by determining the expectation value of all in-
dexes in the dataset and fitting this with the
following equation:

f(x) = A · sin(ωx+ ϕ) + c, (31)

where A is the amplitude, ω is the rabi fre-
quency, ϕ is the phase and c is a constant offset.

4 Results and discussion

In the following section we show the results of
the RDT package used on four different single-
shot dataset and discuss the implications of
these.

4.1 Data acquisition

We aimed to investigate the general perform-
ance and overall usability of SVM’s as classifiers
for single-shot readout states, and to accomplish
this we picked three various rabi dataset stem-
ming from two different devices from prior stud-
ies in the CQED-at-QDev-group. These qubits
are; the Aalto 190701 qubit 4 (Aalto), the MIT
1023 from cryostat T5 (MIT T5) and the MIT
1023 from cryostat T3 (MIT T3). The rabi
experiments for Aalto and MIT T5 were per-
formed by ph.d. Jose Manuel Chavez-Garcia,
and MIT T3 was performed by ph.d. Oscar Er-
landsson. Furthermore, we used the five qubit
Soprano device from Qunatware shown in Figure
5.
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Figure 5: Picture of the Soprano device, show-
ing six qubits (black squares), whereof five are
controllable, and the last is a control (bottom
right). From Quantware.

Figure 6: Reaodut fidelity as a function of K-
folds for all four qubits. Solid line is the result.
Transparent area is the STD.

We calibrated Soprano device qubit 2
(Soprano) with a flux current of 7mA, a drive
frequency of 5.02891GHz, a drive power of
−35dBM, a readout frequency of 7.63164GHz,
a readout power of −37.6915dBm, a readout
amplitude of 434.218mV and readout duration

of 5.99436us. Finally we swept the pulse amp-
litude in the interval [0, 1]V in 201 steps and
took 13.000 single-shots per step. These values
were optimized using our qubit calibration script
shown in Appendix.

All experiments were performed on all four
datasets. However, we focused on the Soprano
data. It is noted, when simulated data is used.

4.2 Outer-parameter determina-
tion

In the following section we investigate the
outer-parameters of the machine learning al-
gorithm and their effects on the readout fidel-
ity. Outer-parameters, like mentioned in section
2.2, are parameters other then the SVM’s hyper-
parameters, which are not alternated doing fit-
ting but may impact the result.

4.2.1 Cross validation optimized at K-
fold = 10

We studied the effect of cross validation to de-
termine its impact on the fitted classifier and to
evaluate the change in readout fidelity. Initially
we ran the algorithm with K-fold= 2, meaning
the complete dataset was split into two folds;
the test and training subset, effectively making
cross validation invalid, and then compared the
results to K-fold = 3 to 15, using all kernels
letting the algorithm pick the candidate with
the highest fidelity. The result seen in Figure
6 shows that the mean readout fidelity of all
K-folds for Aalto and Soprano is higher than
determined for MIT T5 and MIT T3, with a
readout fidelity of ∼ 85% and ∼ 80% for Aalto
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(a) (b)

(c) (d)

Figure 7: Single-shot data from ground (blue) and excited (orange) state entries, with fitted the
best performing classifier. (a) the Soprano, (b) the Aalto, (c) the MIT T5 and (d) the MIT T3.
All classifier are linear.

and Soprano, respectively. The mean readout
fidelity of MIT T5 and MIT T3 are ∼ 58% and
∼ 67%, respectively. The lower readout fidelity
for the MIT qubits can be justify by the relative
distance between state seen in Figure 7. Fur-
thermore, we observed that K-fold did not stat-
istically effect the performance of the classifier
for either of the devices. In all further experi-
ments K-fold = 10 used. Because the number
of K-fold did not effect the readout fidelity sig-
nificantly, it is theorized that small sample sizes
likewise dose not effect the algorithms ability to
determine the optimal classifier for a qubit.

4.2.2 Sample size controls readout fidel-
ity

It was shown that splitting datasets into many
folds (more than 10) in cross validation did not
effect the performance of the classifier negat-
ively. To study the effect of the size of the data-
set further we looked at the sample size with a
fixed K-fold. We used the same data as previ-
ously, with K-fold = 10, and determined the op-
timal classifier for the dataset with sample size
ranging from 20 to 4000 single-shots per state,
meaning 40 - 8000 single-shots in total. We ob-
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served from the results shown i Figure 8, that
the number of single-shots effects the readout fi-
delity significantly. Classifiers fitted with a num-
ber of single-shots ranging from 20 to 38 have a
mean readout fidelity of ∼ 50%. A great in-
crease in performance was observed from 38 -
42 single-shots. It is hypothesized that this is
due to the cross validations threshold in num-
ber of iterations, meaning with only 38 data
points the algorithm only performed iteration of
fitting, yielding significantly lower readout fidel-
ity. In the region 42-1500 single-shots, the STD
in performance decreases. From 1500 to 4000
single-shots the performance and STD remains
statistically the approximately equal, suggesting
that around 2000 single-shots per state is a min-
imum of sample size for the four specific data-
sets. To ensure the minimum effect of the data
size, 6000 single-shots per state are used in all
following experiments.

Figure 8: Readout fidelity as a function of
dataset size for all four qubits. Solid line is the
result. Transparent area is the STD. The ver-
tical dotted line represent the 2000 single-shots
line on the log scale

4.3 Kernel comparisons

In the previous section we discussed the outer-
parameters effect on the readout fidelity. In
the following section we look at the inner-
parameters, being the hyper-parameters, and
compare the performance of kernels.

4.3.1 Readout fidelity dependents on
kernels

We wanted to compare the performance of the
different kernels, being linear, polynomial, RBF
and Sigmoid. To compare the performance of
the kernels all four datasets were used. The
hyper-parameters of the kernels were set in fol-
lowing intervals: The degree d = [2, 4], r =

[1, 15], c = [1 × 10−3, 1 × 104] and gamma γ

as ’scale’ or ’auto’, being two internal options.
The machine learning algorithm was run with
10 K-folds, 12000 data points and tested on the
combined dataset of the ground and first excited
state. The results listed in Table 1 show the
performance of the different kernels for Soprano
(tables for other qubits are seen in Appendix).
Here we see kernel types listed with number of
resources (number of single-shots) used to de-
termined the classifier and the mean training
and testing scores. Furthermore, we see the per-
formance of KNN, AdaBoost, decision tree and
the LDA. We observed that the linear, poly-
nomial and RBF kernels performed statistically
the same, with RBF as marginally better. The
Sigmoid kernels performed poorly compared to
the previously mentioned kernels. Furthermore,
we observe that the SVM kernels perform sim-
ilar to baseline-algorithms. The performance of
the four SVM kernels across all four qubits is
shown in Figure 9 and 10, where we observe the
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(a) (b)

(c) (d)

Figure 9: Single-shot data from Soprano, with different kernels. (a) Linear kernel, (b) Polyno-
mial kernel, (c) RBF kernel and (d) Sigmoid kernel.

relatively pour readout fidelity when using the
Sigmoid. Although the LDA performed similar
to the SVM kernels, its limitations of only clas-
sifying two classes makes it unsuited for multi-
qubit single-shot data. Moreover, the classifiers
fitted with KNN, AdaBoost and decision tree
are ’jagged’, meaning not physical. This is non-
problematic for qubits with low fidelity measure-
ments, but it but it could be theorized that for
high fidelity readout the jagged classifier would
perform less efficiently then the SVM kernels.
Because the kernels performance was so similar,
we hypothesized no difference overall, except if
artifacts are present.

4.3.2 Simulated artifacts effect kernels
performance

The readout fidelity yielded from the different
kernels was shown to be statistically equal across
all four dataset, when no artifacts were present.
Therefore, we wanted to determine the effect of
artifacts. To investigate artifacts effect on the
readout fidelity across the kernels, we used sim-
ulated Gaussian distributed single-shots with
mean µ = (0, 10) mV and width σ = (0.30, 0.75)

mV. By appending the simulated single-shots
to the ground state of the Soprano data, the
readout fidelity was estimated as a function of
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percentage of added simulated single-shots. The
intervals for the hyper-parameters were kept the
same. 4000 data points were used.

Figure 10: Reaodut fidelity as a function of
kernel for all four qubits. Errorbars represent is
the STD.

Figure 11: Readout fidelity as a function of %
added simulated single-shots for all four kernels.
Solid line is the result. Transparent area is the
STD.

The results show, that Sigmoid kernel gen-
erally performed less efficient, than the linear,
polynomial and RBF. The three remaining ker-
nels performed similar at 0% and 100% simu-
lated single-shots added at ∼ 80% and ∼ 90%,
respectively. The polynomial and RBF per-
formed similar in the entire range. Compared

to the linear kernel, the readout fidelity has ap-
proximately ∼ 2% lower, suggesting that the lin-
ear kernels might be more affected by artifacts in
the IQ-plane. To study this further one should
acquire non-simulated real data with different
forms of artifacts.

4.4 Performance depending val-
ues

Finally, after determination the classifier yield-
ing the highest readout fidelity, we wanted to
use this classifier to extract information about
our qubits. In the following section we investig-
ate the performance of all four qubits by using
the determined classifiers from two entries of the
rabi oscillation datasets.

4.4.1 Expectation values from rabi fit-
ting

To estimate the performance of the qubits, we
wanted to fit the rabi oscillations. For this
purposes we used the four sets of single-shot
data with the previously determined classifiers
and determined the expectation value at a given
pulse amplitude as the ratio of ground compared
to excited state single-shots. The results de-
picted in Figure 12b show Soprano qubit oscil-
lations between the ground and excited state.
At a pulse amplitude Apulse = 0V the qubit is
closest to ground state, with a probability of be-
ing in state 1 below 20%. Furthermore, we see
the qubit closest to the excited state at pulse
amplitude Apulse = 0.65V. The oscillation is fit-
ted with Equation 31, where the oscillation amp-
litude |A| = 0.235 ± 0.004 is a measure of per-
formance. Mentioned in page 14 the oscillation
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Classifier Resources Mean train score Mean test score
SVM linear 8748 80.77±0.27 % 81.0±1.5 %

SVM polynomial 8748 80.82±0.27 % 81.0±1.4 %
SVM RBF 8748 81.08±0.27 % 81.3±1.5 %

SVM sigmoid 8748 74.0±0.4 % 74.3±0.9 %
KNN 8748 81.21±0.27 % 81.2±1.4 %

AdaBoost 8748 81.07±0.26 % 81.2±1.3 %
Decision tree 8748 80.95±0.22 % 81.1±1.4 %

LDA 108 84.4±2.1 % 81±10 %

Table 1: Soprano performers for all four kernels and the four other machine learning algorithms.
Tables for the other devices can be seen in 9 Appendix.

Qubit Soprano Aalto MIT T5 MIT T3
Kernel Linear Linear Linear Linear

Amplitude (A) 0.235 ±0.004 0.30 ±0.02 0.168 ±0.002 0.080 ±0.003
Frequency (ω) 3.92 ±0.03 9.3 ±0.2 8.11 ±0.04 5.66 ±0.07

Phase (φ) 1.92 ±0.03 39.1 ±0.1 1.59 ±0.02 2.05 ±0.07
Offset (c) 0.483 ±0.003 0.39 ±0.01 0.532 ±0.001 0.503 ±0.002

Temperature (T ) [mK] 159.5 58.17 248.9 430.7

Table 2: Rabi oscillations from all four qubits fitted with Equation 31. A amplitude A = 0.5
corresponds to a fidelity of 1. The offset c = 0.5 shows a qubit with equally good ground and
excited state. c > 0.5 indicates a warm qubit. c < 0.5 indicates a non-perfect π-pulse.

amplitude for a perfect qubit is |A| = 0.5. All
fitted parameters are listed in Table 2, where
we observe that the Aalto amplitude obtains the
highest value A = 0.30±0.02, but with an offset
c = 0.39±0.01 suggesting that the device is at a
low temperature but the π-pulse is not probably
calibrated. We can conclude that the SVM clas-
sifiers are able to efficiently fit and classify rabi
oscillations, and that none of the qubits yield
a oscillation amplitude A = 0.5. To study this
further one could determine the β-matrix of sys-
tems, fit with a double Gaussian and compare
the results with the results from Table 2 [18].

4.4.2 Temperature calculations

Ground state prepared single-shots from a qubit
at base temperature (T = 0K would be expected

to be in the ground state in the IQ-plane. When
the qubit temperature raises above base tem-
perature T > 0K, thermal excitation becomes
present, meaning ground state prepared single-
shots would populate the excited state. We can
therefore estimate the qubit temperature from
the expectation value of the ground state data.
We did this by using best classifier and Equa-
tion 18. Figure 12a shows the single-shot data
of Soprano with no pulse. A qubit temperat-
ure of 159.5 mK was determined. The temper-
atures for all four qubits are shown in Table 2,
where it can be observed, that the qubit temper-
ature 58.17 mK of Aalto is considerable lower
compared to the other three qubits. This can
likewise be seen in Figure 12c and 12d. Due
to the overestimation of expectation values dis-
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(a) (b)

(c) (d)

Figure 12: (a) Soprano single-shot data from ground fitted the best performing classifier. (b)
Soprano rabi oscillation fitted with 31. (c) Aalto single-shot data from ground fitted the best
performing classifier. (d) Aalto rabi oscillation fitted with 31.

cussed in subsection Readout Fidelity, the tem-
peratures are suspected to be overestimated as
well. To study this further one should compare
the temperature calculation results when using
different determination methods of expectation
values.

5 Conclusion

We can conclude that Support Vector Machines
can be used as an effective method for classi-
fication of states in superconducting single-shot
data in the IQ-plane. Furthermore, it was shown

that the sample size and cross validation are
key components when determining the classi-
fier with the highest readout fidelity. Hyper-
parameters was determined to effect readout fi-
delity greatly. Simulating single-shots artifacts
in ground state showed that a linear kernels is
more sensitive than both a RBF and a poly-
nomial kernel. For Gaussian distributed single-
shots the linear, polynomial and RBF kernels
performed similar, but deviating from Gaussian
distributions showed that polynomial and RBF
overall actives a higher readout fidelity. Lastly
we showed that classifier can be used when fit-

21



ting rabi oscillations and that temperatures can
be calculated from this data.

6 Future perspectives

To study this field further one might investig-
ate the effect of different methods in determina-
tion of readout fidelity, this being with the meth-
ods described in section 2.1.2 Readout fidelity.
We theorized that the qubit temperatures were
overestimated due to T1 decay and overlab in
states. One might compare temperature calcu-
lations from different fidelity estimation meth-
ods. Lastly, this entire subject of readout fidel-
ity depends highly on qubit state preparation.
To achieve high fidelity readout in single-shot
data, one should study qubit calibration and the
automation of this.
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