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Abstract

In this thesis an s-wave superconductor using the tight-binding model with
nearest and next-nearest neighbour hopping terms on a 2D square lattice is in-
vestigated with the purpose of finding the e↵ect of dense disorder on the critical
temperature Tc. An introduction to second quantization and the microscopic
BCS theory of superconductivity is given. The gap equation has then been
solved numerically in momentum space. The Bogouliubov-de Gennes equations
are derived and subsequently solved numerically for a 50x50 system with 15%
impurity of varying impurity strength. This has been found to establish regions
of finite energy gap � even for temperatures well above the critical temperature
of the system if the impurity potential is strong enough.
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1 Introduction

Superconductivity was discovered in 1911 by Heike Kamerlingh Onnes. The mi-
croscopic theory of superconductivity, BCS theory, was proposed in 1957. Ever
since then superconductivity has been a very active and broad field of research.
An interesting question is what happens to the critical temperature as a result
of disorder? Normally this is understood with respect to the Anderson theorem
which states that Tc remains unchanged in the presence of impurity. However,
this is under the assumption that the impurity is dilute and the order parameter
and the density of states are both spatially uniform [1].
In this thesis we will try and reproduce the results of Gastiasoro and Andersen
[2] of enhanced Tc by impurities. This is done by examining an s-wave super-
conductor in the tight-binding model with nearest and next nearest neightbour
hopping on a 2D square lattice. Impurities have been added to 15% of the lat-
tice sites and the superconducting gap � have then been calculated.

2 Theory

2.1 Second quantization
1 Second quantization, also known as occupation number representation, is a
useful way of describing many-particle systems. As the name suggests, the
N-particle basis state simply lists the occupation number of each state:

|n⌫1 , n⌫2 , n⌫3 , ...i ;
X

j

n⌫j = N (1)

where n⌫j is the number of particles in state ⌫j . The occupation number n⌫j

can be any non-negative integer value for bosons and either 0 or 1 for fermions
- the latter is due to Pauli’s exclusion principle.
Since in this thesis be we will dealing with electrons we will only introduce the
operator algebra for fermions. This is done by introducing the fermionic creation
operator ĉ†⌫j

and annihilation operator c⌫j ⌘ (ĉ†⌫j
)†. The creation operator raises

the occupation number in state ⌫j by one while the annihilation operator lowers
the occupation number by one. When dealing with fermions it is crucial that
the antisymmetry is maintained meaning that not only the occupation number
but also the order of the states has significance:

|..., n⌫j = 1, ..., n⌫k = 1, ...i = �|..., n⌫k = 1, ..., n⌫j = 1i (2)

This means that ĉ
†
⌫j

and ĉ
†
⌫k

anti-commute which in turn means that also c⌫j

and c⌫k anti-commute. As mentioned, n⌫j can only be 0 or 1 for fermions. This
implies

c
†
⌫j
|1i = c⌫j |0i = 0 (3)

1This section is based on chapter 1 of [3]
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meaning that both the creation and annihilation operator can act at most twice
on a state before the state is annihilated. The operator algebra for the fermionic
creation and annihilation operators is defined by these anti-commutation rela-
tions:

{c†⌫j
, c

†
⌫k
} = 0, {c⌫j , c⌫k} = 0, {c⌫j , c

†
⌫k
} = �⌫j ,⌫k (4)

2.2 Cooper pairs

A precursor to the Bardeen-Cooper-Schrie↵er theory was the discovery made
by L. N. Cooper that a pair of electrons near the Fermi surface would form a
bound state, a so-called Cooper pair.
Consider the case of a filled Fermi sea with two electrons located exactly at the
Fermi surface, that is k = kF . Let these two electrons interact via a potential
V (r1 � r2). The Schrödinger equation is then [5]:

�h̄
2

2m
(r2

1 +r2
2) (r1, r2) + V (r1 � r2) (r1, r2) =

✓
�+

h̄
2
k
2
F

m

◆
 (r1, r2) (5)

Choosing the case of k = �k
0 and rewriting in terms of relative position r =

r1 � r2 gives us:

�h̄
2

m

@
2
 (r)

@r2
+ V (r) (r) =

✓
�+

h̄
2
k
2
F

2m

◆
 (r) (6)

Rewrite the Schrödinger equation in momentum space:

h̄
2
k
2

m
g(k) +

Z
d
3
k
0

(2⇡)3
V (k � k

0)g(k0) =

✓
�+

h̄
2
k
2
F

2m

◆
g(k) (7)

where

g(k) =

Z
d
3
r (r)e�ikr (8)

and

V (k � k
0) =

Z
d
3
re�i(k�k0)r

V (r) (9)

The potential V (k�k
0) scatters a pair of electrons with momentum (k0,�k

0) into
another pair with momentum (k,�k). It may be approximated in the following
way [5]:

V (k � k
0) =

⇢
�V for EF <

h̄2k2

2m ,
h̄2k02

2m < EF + h̄!D

0 otherwise
(10)

With this approximation we now have
✓
h̄
2(k2 � k

2
F )

2m
��

◆
g(k) = V

Z
d
3
k

(2⇡)3
g(k0) (11)
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Letting ⇠ be the energy measured from the Fermi level and N(⇠) the density of
states we can write

(2⇠ ��)g(k) = V

Z h̄!D

0
d⇠

0
N(⇠0)g(k0) (12)

= V N(0)

Z h̄!D

0
d⇠

0
g(k0) (13)

where the last equality assumes that the density of states does not vary sig-
nificantly in the interval [0, h̄!D]. Integrating with respect to the energy gives
us:

Z h̄!D

0
d⇠g(k) =

Z h̄!D

0
d⇠

V N(0)
R h̄!D

0 d⇠
0
g(k0)

2⇠ ��
(14)

1 =

Z h̄!D

0
d⇠

V N(0)

2⇠ ��
(15)

=
V N(0)

2
ln

✓
2h̄!D ��

��

◆
(16)

In the weak coupling limit where V N(0) ⌧ 1 this can be solved to give [5]:

� = �2h̄!Dexp

✓
�2

V N(0)

◆
(17)

2.3 BCS theory

The microscopic theory of superconductivity was named BSC theory in 1957
after J. Bardeen, L. N. Cooper and J. R. Schrie↵er. BCS theory describes how
the Fermi surface is unstable against the formation of bound electron pairs, so
called Cooper pairs. This is due to an attractive electron-electron interaction for
electrons located near the Fermi surface. The interaction is caused by coupling
with the phonons of the crystal lattice [4] and is attractive for electrons located
within h̄!D of the Fermi surface (!D is the Debye frequency).
The BCS Hamiltonian is given by [5]:

HBCS =
X

k�

⇠kc
†
k�ck� � V

X

kk0

c
†
k"c

†
�k#c�k0#ck0" (18)

The first term with ⇠k = h̄2k2

2m �µ counts the single particle energy depending on
whether the state is occupied or not. The second term describes the scattering
of a Cooper pair with momentum (k0,�k

0) into another pair with momentum
(k,�k). V is the amplitude with which the scattering occurs. In order to treat
this problem further we perform a mean-field decoupling of the last term:

c
†
k"c

†
�k#c�k0#ck0" ' hc†k"c

†
�k#ic�k0#ck0" + c

†
k"c

†
�k#hc�k0#ck0"i (19)
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We can now write the BCS mean-field Hamiltonian as

H
mf
BCS =

X

k�

⇠kc
†
k�ck� �

X

k

(�c
†
k"c

†
�k# +�⇤

c�k#ck") (20)

where � = V
P

khc�k#ck"i. Furthermore, it is reasonable to assume that the
crystal exhibits inversion symmetry meaning ⇠k = ⇠�k and the Hamiltonian can
then be written in matrix form as

H
mf
BCS =

X

k

✓
c
†
k"

c�k#

◆✓
⇠k ��

��⇤ �⇠k

◆✓
ck"
c
†
�k#

◆
(21)

The next step is to diagonalize the Hamiltonian. This is done by introducing a
unitary transformation U and demanding that this transformation diagonalizes
the Hamiltonian, that is

U
†
✓

⇠k ��
��⇤ �⇠k

◆
U =

✓
Ek 0
0 �Ek

◆
(22)

where

U =

✓
uk v

⇤
k

�vk u
⇤
k

◆
(23)

Parametrizing with uk = cos t and vk = sin t and assuming uk, vk are real this
set of equations can be solved to give the following results:

Ek =
q
⇠
2
k + |�|2 (24)

|uk|2 =
1

2

✓
1 +

⇠k

Ek

◆
and |vk|2 =

1

2

✓
1� ⇠k

Ek

◆
(25)

The physical interpretation of uk and vk is that |uk|2 is the probability of mea-
suring a hole and |vk|2 is the probability of measuring an electron if the charge
of the excitation is measured. [4].
The diagonalization is really just a rotation of the original fermionic creation/an-
nihilation operators to a new set of fermionic creation/annihilation operators in
which the Hamiltonian is diagonal, that is:

H =
X

k�

Ek�
†
k��k� (26)

where ✓
�k"
�
†
�k#

◆
= U

†
✓

ck"
c
†
�k#

◆
(27)

The new �-operators still represent fermions and so their thermal averages are
given by

h�†k��k0�0i = f(Ek)�kk0���0 and h�†k��
†
k0�0i = 0 (28)
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Subsituting the obtained expressions for uk, vk we can write the following ex-
pression for the superconducting order parameter �:

� = V

X

k

ukv
⇤
k(1� 2f(Ek)) (29)

= V

X

k

�

2Ek
tanh

Ek

2kBT
(30)

where f(Ek) =
1

exp(Ek/(kBT ))+1 This equation is the BCS gap equation which is
a self-consistency equation for �.

While the above holds for homogeneous systems, things get slightly more
complicated when the system is not spatially uniform, e.g. in the presence of
impurities. The Hamiltonian describing s-wave superconductivity on a two-
dimensional square lattice in the tight-binding model is given by:

H = �
X

<ij>,�

tijc
†
i�cj�+

X

i�

(V imp
i� �µ)c†i�ci��V

X

i

c
†
i"ci"c

†
i#ci# = H1+H2+H3

(31)
where c†i� and ci� are the fermionic creation and annihilation operators at site i.
The first term is the kinetic energy with hopping integral tij . This includes both
nearest neighbour hopping tij = t and next-nearest neighbour hopping tij = t

0.

The second term is the onsite energy with impurity strength V
imp
i� and chemical

potential µ. The third term is the BCS term from which the superconductivity
arises. Since this term is not quadratic in the creation/annihilation operators
we again perform a mean-field decoupling of the term in order to be able to
diagonalize the Hamiltonian [5]:

H
mf
3 = �

X

i

�
�⇤

i ci#ci" +�ic
†
i"c

†
i#
�

(32)

where �i = V hci#ci"i and �⇤
i = V hc†i"c

†
i#i. Now that the Hamiltonian can

be diagonalized, it is time to introduce the Bogoliubov-de Gennes equations.
Solving these equations is equivalent to diagonalizing the Hamiltonian.

2.4 Bogoliubov-de Gennes equations

In the case of a homogeneous system, the transformation that diagonalizes the
Hamiltonian is just the Bogoliubov transformation used in the previous section.
However, when the system is inhomogeneous, k is no longer a good quantum
number and we need a di↵erent transformation. This is where the Bogoliubov-
de Gennes equations come into play. We start by introducing a more general
transformation:

ci� =
X

n

�
uni��n� + vni��

†
i�0

�
(33)
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We again demand that the Hamiltonian is diagonal in these new operators:

H = E0 +
X

n�

�
†
n��n� (34)

From the anti-commutation relations in eq. [?] we easily get:

[H, �n�] = �En��n� (35)

[H, �
†
n�] = En��

†
n� (36)

The Bogoliubov-de Gennes equations can now be found by calculating the com-
mutators of the Hamiltonians in eq. 31 and 34 and the fermionic creation/anni-
hilation operators. The �-operators are still fermionic operators and thus obey
eq. 4. The commutators are calculated using the identity

[AB,C] = A{B,C}� {A,C}B (37)

. First term:

[H1, ci"] = �
X

ij,�

tij [c
†
i�cj�, ci"]

= �
X

j�

tij(c
†
i�{cj�, ci"}� {c†i�, ci"}cj�)

=
X

j�

tij��"cj�

=
X

j

tijcj"

(38)

Similarly

[H1, ci#] =
X

j

tijcj# (39)

Second term:

[H2, ci"] =
X

i�

(V imp
i� � µ)[c†i�ci�, ci"]

=
X

�

(V imp
i� � µ)(c†i�{ci�, ci"}� {c†i�, ci"}ci�)

= �
X

�

(V imp
i� � µ)��"ci�

= �(V imp
i� � µ)ci"

(40)

Similarly

[H2, ci#] = �(V imp
i� � µ)ci# (41)
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Third term:

[H3, ci"] = �
X

i

(�⇤
i [ci#ci", ci"] +�i[c

†
i"c

†
i#, ci"])

= �
�
�⇤

i (ci#{ci", ci"}� {ci#, ci"}) +�i(ci"{c†i#, ci"}� {c†i", ci"}c
†
i#)

�

= �ic
†
i#

(42)

And

[H3, ci#] = ��c
†
i" (43)

Combining the terms we now have:

[H, ci"] = [H,

X

n

uni"�n" + v
⇤
ni"�

†
n#]

= �En"uni"�n" + En#v
⇤
ni"�

†
n#

=
X

j

tij

�X

n

unj"�n" + v
⇤
nj"�

†
n#
�

� (V imp
i" � µ)

�X

n

uni"�n" + v
⇤
ni"�

†
n#
�

+�i

�X

n

u
⇤
ni#�

†
n# + vni#�n"

�

(44)

[H, ci#] = [H,

X

n

uni#�n# + v
⇤
ni#�

†
n"]

= �En#uni#�n# + En"v
⇤
ni#�

†
n"

= �
X

j

tij

�X

n

unj#�n# + v
⇤
nj#�

†
n"
�

� (V imp
i# � µ)

�X

n

uni#�n# + v
⇤
ni#�

†
n"
�

��i

�X

n

u
⇤
ni"�

†
n" + vni"�n#

�

(45)

We can now compare coe�cients of the �’s to obtain the four Bogoliubov-de
Gennes equations:

En"uni" = �
X

j

tijunj" + (V imp
i" � µ)uni" ��ivni# (46)

En#v
⇤
ni" =

X

j

tijv
⇤
nj" � (V imp

i" � µ)v⇤ni" +�iu
⇤
ni# (47)
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En#uni# = �
X

j

tijunj# + (V imp
i# � µ)uni# +�ivni" (48)

En"v
⇤
ni# =

X

j

tijv
⇤
nj# � (V imp

i # �µ)v⇤ni# ��iu
⇤
ni" (49)

By defining an operator h�ui� = �
P

j tijuj�+(V imp
i� �µ)ui� the four Bogoliubov-

de Gennes equations can be written as eigenvalue problems:

En"

✓
un"
vn#

◆
=

✓
h" ��i

��⇤
i �h

⇤
#

◆✓
un"
vn#

◆
(50)

En#

✓
un#
vn"

◆
=

✓
h# �i

�⇤
i �h

⇤
"

◆✓
un#
vn"

◆
(51)

We can also determine the order parameter in terms of uni�, vni� by using the
transformation in eq. 33 and the thermal averages in eq. 28:

�i = V hci#ci"i = V

X

n

⌦�
uni#�n# + v

⇤
ni#�

†
n"
��
uni"�n" + v

⇤
ni"�

†
n#
�↵

= V

X

n

�
uni#v

⇤
ni"h�n#�

†
n#i+ v

⇤
ni#uni"h�†n"�n"i

�

= V

X

n

uni#v
⇤
ni"(1� 2f(En))

(52)

3 Numerical calculations

3.1 Gap equation in momentum space

Equation 29 is a self-consistency equation for the superconducting order param-
eter �. It can be used to determine the gap numerically. This is done in the
following way:

1. Guess a value for the gap �.

2. Use this value in eq. 29 to calculate a new value for �. This is done with
the following code:

1 for n = 1:N
2 for m = 1:N
3 xik(n,m) = -2.0*(cos(kx(n))+cos(ky(m)))-mu;
4 end
5 end
6

7 while abs(Delta prev-Delta new)>10ˆ-6 % continue until � ...
converges
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8 Delta prev = Delta new;
9 Delta new = 0.0;

10 for i = 1:N
11 for j = 1:N
12 Delta new = Delta new+V sc*(Delta prev. ...

/(2*sqrt(Delta prev.ˆ2+(xik(i,j)).ˆ2)))...
13 *tanh(sqrt(Delta prev.ˆ2+(xik(i,j)).ˆ2)...
14 /(2*T(m)))/Nˆ2;
15 end
16 end
17 end

3. Iterate over the previous step until � converges.

This has been done for a 2D square lattice in the tight-binding model. The
dispersion relation is ⇠k = �2t(cos(kxa) + cos(kya)) where kx, ky is in the first
Brilluoin zone [6]. Figure 1 shows the resulting plot of the temperature depen-
dence of the gap parameter �.

Figure 1: Gap parameter as a function of temperature

3.2 Gap equation in real space

1. Construct the Bogoliubov-de Gennes matrix M =

✓
h" �i

�⇤
i �h

⇤
#

◆
with both

nearest neighbour t and next-nearest neighbour t0 hopping terms and with
periodic boundary conditions.

2. Generate a set of random values to determine on which sites the impurities
should be placed. Let the matrix elements of the form Mi,i take the form
Vimp�µ and elements of the form MN2+i,N2+i take the form �(Vimp�µ).
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3. Guess a value for the gap � and assign this value to all elements of the
form MN2+i,i and Mi,N2+i.

4. Diagonalize the matrix M to find eigenvectors and eigenvalues.

5. Use the eigenvectors and eigenvalues to calculate the gap on site i:

1 [eigvecs,eigvals] = eig(bdg);
2

3 while abs(Delta prev(1)-Delta new(1))>10ˆ-6 % continue ...
until � converges

4 Delta prev = Delta new;
5 Delta new = zeros(Nˆ2,1);
6

7 for i = 1:Nˆ2
8 for n = 1:2*Nˆ2
9 Delta new(i) = ...

Delta new(i)-V sc*eigvecs(i,n)*conj(eigvecs(Nˆ2+i,n))...
10 *(exp(eigvals(n,n)/T(p))+1)ˆ(-1);
11 end
12 end

6. Iterate over the previous two steps until � converges.

This has been done for a system with 50x50 sites with filling 0.83. The
following parameters have been used: nearest neighbour hopping t = 1, next
nearest neighbour hopping t

0 = �0.3t and on-site attraction Vsc = 0.8t. With
these parameters we get �0 = 0.025t at T = 0 and kBT

0
c = 0.0148t. The figures

2-4 show real space maps of �(r)/�0 with 15% impurities for varying temper-
atures and impurity strengths. As seen from figure 2 the impurity potential
of 1.5t is not strong enough to sustain regions of finite � above the critical
temperature of the system. However, for both figure 3 and figure 4 we see dis-
connected regions of non-zero � even at T/T

0
c = 1.92. This means that the

superconductivity is not destroyed everywhere in the system and that regions
of finite � can survive temperatures well above the critical temperature of the
system if the impurity potential is strong enough. The regions of finite � are
caused by an enhancement of the local density of states [2].

A lot of studies, both experimental and theoretical, has been done on the
e↵ect of disorder on the critical temperature. Mostly it has been found that
disorder makes the critical temperature drop, or at best does not a↵ect the
critical temperature (this is understood with respect to the Anderson theorem).
However, there have also been experimental examples of enhanced Tc by disor-
der [2]. In this particular case it has been found that impurities causes areas
of non-zero � for temperatures above the critical temperature of the system.
This is caused by areas of reinforced density of states. This means that super-
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Figure 2: Impurity strength Vimp = 1.5t.

Figure 3: Impurity strength Vimp = 3.3t

Figure 4: Impurity strength Vimp = 5t
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conductivity is not destroyed everywhere at once, but rather some areas remain
superconducting while other areas revert back to the normal state.

4 Conclusion

In this thesis the e↵ect of disorder on the critical temperature on a conventional
s-wave superconductor has been studied. This has been done by solving the
Bogoliubov-de Gennes equations numerically on a 2D square lattice with 15%
impurities. It has been found that there are regions of finite gap parameter
� even for temperatures well above the critical temperature of the system,
meaning that there remains regions of superconductivity. This is caused by a
local enhancement of the local density of states [2].
If the time had permitted so, it would have been interesting to investigate the
conditions on the coherence length or the typical inter-impurity distance in order
to better understand what makes Tc grow.
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