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Abstract

Much attention has been given to geometric phases in quantum mechanics and good,
concise introductions to the subject exist. Understanding geometric phases in classical me-
chanics however requires the piecing together of the content of many articles and textbooks
while enduring confusingly different notation and inconsistencies. This is problematic since
a bridge between the classical and quantum mechanical paradigm might be crucial in future
insight in open questions. The purpose of my bachelor thesis is to help bridge the research
gap by providing a thorough and coherent introduction to the subject of geometric phases in
classical mechanics, introducing all the necessary concepts so the notation is kept consistent.
A contribution is given in the solution of the Foucault pendulum by a direct computation
of parallel transportation of a vector on a sphere using differential geometry.

i



Contents

1 Introduction 1

2 The Foucault pendulum 1
2.1 Treatment using fictitious forces . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
2.2 Review of differential geometry . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
2.3 The Foucault pendulum revisited . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

3 Action-angle variables and adiabatic invariance 11
3.1 Short recap of Hamiltonian mechanics . . . . . . . . . . . . . . . . . . . . . . . . 11
3.2 Action-angle coordinates . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
3.3 Adiabatic invariance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
3.4 Example of a geometric phase using adiabatic invariance . . . . . . . . . . . . . . 17

4 The Hannay angle 18

5 Conclusion 19

References 20

A Harmonic oscillator with time dependent frequency 21

ii



1 Introduction

In the eighties a geometric phenomenon was discovered by Berry [1]. It was already known
— and known as the adiabatic theorem — that if a quantum mechanical system dependent on
some parameters is in a given eigenstate and the parameters are slowly changed, then the system
stays in a state with the same quantum numbers but picks up a phase. Berry’s insight was to
imagine that the parameters were changed slowly in such a way that the value of all parameters
end the same as they started. The non-trivial phase picked up because of the variation is
often called Berry’s phase. As explained by Hannay a few years later [2], it turned out that
Berry’s phase wasn’t an artifact of weird quantum behaviour, but that a strong analogy exists
in classical mechanics for systems exhibiting periodic motion. Here the phase is a change in the
angle variable associated with the periodic motion and it is sometimes called Hannay’s angle.
Because of the similarities between the two concepts, they are referred to as being different
cases of geometric phases meaning that they are phases picked up by the system after doing
an excursion of the parameters the system depends on, irrespective of how long this excursion
takes.
It is fairly simple to introduce the notion of geometric phases in quantum mechanics, for example
it is done very well by Griffiths [3]. Curiously enough, however, it quickly becomes tricky
to introduce geometric phases in classical mechanics as many concepts are required to fully
appreciate the subject. This paper sets out to fill the gap in the literature by providing a
comprehensive introduction to and treatment of the subject. We will begin with an illustration
of a well understood problem and devote some effort towards understanding the geometry in
the problem using differential geometry.
With the intuition from this first example, we will continue with a review of adiabatic invariants
and the classical adiabatic theorem; a very convenient tool for seperating dynamic and geometric
contributions to the phase. Lastly we will end with a short discussion of the relation of the
Hannay angle to the Berry phase.

2 The Foucault pendulum

As the first example of a geometric phase we will consider the familiar Foucault pendulum. This
is a simple contraption: It is imply a long and heavy pendulum suspended and set in motion.
As time goes the plane of oscillations turn and this is taken as a demonstration that earth is
rotating, rather than the universe rotating about earth. As it happens, the Foucault pendulum
is also an excellent example of a geometric phase. In this section we will start with treating the
problem in the manner it is usually done, following the line of reasoning as Fetter and Walecka
[4]. This way of solving the problem doesn’t offer much insight into why the acquired angle
takes the form it does. Therefore we follow up with a review of differential geometry before
solving the problem of parallel transport on the sphere, obtaining the result again.

2.1 Treatment using fictitious forces

Consider a pendulum hung at a fixed position on earth and rotating around with it. We will
approximate the earth as a perfect sphere. When the sphere revolves, the pendulums plane
of oscillation precesses, except when the pendulum is suspended on equator. First a heuristic
argument; Imagine suspending the pendulum exactly on the north pole. From an inertial frame
the pendulum doesn’t move so it is not subject to any fictitious forces. Seen from an observer
on earth, though, the pendulum seems to precess clockwise when viewed from above with a
period of exactly one day. On the south pole it seems to precess the other way around with the
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same period. Because of the symmetry of the sphere putting the pendulum on equator doesn’t
make it turn as no direction of pressesion is preferable to others.

The phenomenon can be attributed to the Coriolis force. Let the pendulum be suspended
at a polar angle θ as shown on figure 1. Newton’s second law gives

mr̈ = mg + T− 2mω × ṙ, (1)

where T is the force on the bob from the tension in the string.

Figure 1: The suspension point of the pendulum is situated at a constant polar angle θ.

Figure 2: The pendulum in local coordinates.

Now let us invoke a local coordinate system (x, y, z) as shown in figure 2, describing the
position of the bob relative to the suspension point of the pendulum which is held fixed in this
coordinate system. The xy-plane is the tangent plane to the sphere with the point (0, 0, 0)
being the equilibrium point of bob in the pendulum. As shown in the figure we let φ denote the
azimuthal angle, and let ψ be the angle the pendulum makes with the z-axis and let r denote
the horisontal distance from the bob to the z-axis. Let us restrict ourselves to relatively small
oscillations. We neglect variations in the distance of the bob to the center of earth so we assume
that ż ≈ 0. We also assume T ≈ mg and by using that sinψ = r

l we get that (1) becomes
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mẍ ≈ −T sinψ cosφ+ 2mω⊥ẏ = −mg
l
r cosφ+ 2mω⊥ẏ

mÿ ≈ −T sinψ sinφ− 2mω⊥ẋ = −mg
l
r sinφ− 2mω⊥ẏ,

where ω⊥ = ω cos θ and the second terms come from the coriolis force. Noticing that r cosφ = x
and r sinφ = y by definition gives

ẍ ≈ −g
l
x sinψ cosφ+ 2ω⊥ẏ (2)

ÿ ≈ −g
l
y sinψ sinφ− 2ω⊥ẋ. (3)

A convenient way to solve (2) and (3) is to introduce the variable ζ(t) ≡ x(t) + iy(t) so

ζ̈ = −g
l
ζ − 2iω⊥ζ̇. (4)

The constancy of the coefficients in (4) entails that the solution can be written as an exponential
function

ζ(t) = ζ0e
−iσt. (5)

Substituting (5) into (4) yields

σ2 − 2ω⊥σ −
g

l
= 0,

whereby

σ± = ω⊥ ±
√
ω2
⊥ +

g

l
≡ p± q.

This gives the solution as
ζ(t) = Ae−i(p+q)t +Be−i(p−q)t. (6)

Choosing the inital conditions ζ(0) = x(0) = a ∈ R and ζ̇(0) = 0 gives the solution as

ζ(t) = ae−ipt(cos qt+ ipq−1 sin qt) (7)

Notice how ζ is always non-zero. This means that it is never a perfect pendulum. The solutions
for x and y are then

x(t) = a cos(ω⊥t) cos
[(
ω2
⊥ +

g

l

)1/2
t
]

+ aω⊥

(
ω2
⊥ +

g

l

)−1/2
sin(ω⊥t) sin

[(
ω2
⊥ +

g

l

)1/2
t
]

y(t) = −a sin(ω⊥t) cos
[(
ω2
⊥ +

g

l

)1/2
t
]

+ aω⊥

(
ω2
⊥ +

g

l

)−1/2
cos(ω⊥t) sin

[(
ω2
⊥ +

g

l

)1/2
t
]
,

and if we study the solution in the limit where ω⊥ � g
l , which for the simple pendulum would

be the frequency of the pendulum, we get

x(t) = a cos(ω⊥t) cos
[(g
l

)1/2
t
]

(8)

y(t) = −a sin(ω⊥t) cos
[(g
l

)1/2
t
]
. (9)

Now the pendulum goes through the origin and we are lead to the conclusion:

tanφ =
y(t)

x(t)
= − tanω⊥t
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⇔ φ = − cos(θ)ωt = −2π cos(θ)
t

T
, (10)

where T is the period of the rotation of the earth — that is one day. Now to the point: φ seems
at first glance to depend on time, but in fact all it depends on is angle the sphere has turned.
After a day for instance, with no reference to how long a day is, the pendulum has precessed
through an angle −2π cos θ. The pendulum is said to have picked up a geometric phase meaning
that the phase is dependent only on the angle which the sphere has turned, ωt, and on θ.
The Foucault pendulum is treated in many textbooks on classical mechanics often as an example
of the coriolis force. The strategy is often the same as the one used here, utilizing an accelerated
frame and fictitious forces. It is not immediate, however, how the geometric phase relates to the
geometry of the problem and why the result takes the form it does. It has a very nice and clear
explanation which is fruitful to pursue, but in order to do so we have to venture into the realm
of differential geometry which we will do in the next section before returning to the Foucault
pendulum.

2.2 Review of differential geometry

In the following section, I will review a few of the important concepts in differential geometry.
The central object of concern is that of differential manifolds. The exact, rigorous definition
will not be important for the applications in this treatment and for more details I strongly
suggest Carroll [5] or for a more mathematical treatment Schlichtkrull [6]. Instead I will follow
the typical intuitive approach by physicists and define an m-dimensional manifold, M , to be a
space that locally looks like Rm in a well defined way1. Likewise, I will define the tangent space
TpM at a point p on the manifold as the linear span of all tangents to curves on M through p.
TpM is a vector space and an element V ∈ TpM is called a vector. We can also define the dual
space T ?pM at p as the vector space of all linear mappings TpM → R. An element ω in the dual
space is sometimes called a dual vector.
A basis {ê(µ)} for µ ∈ (1, . . . ,m) can be chosen for TpM as well as a basis {θ̂(µ)} for T ?pM

by demanding ê(µ)(θ̂
(ν)) = θ̂(ν)(ê(µ)) = δνµ, where δνµ is Kronecker’s delta function equal to 1 if

ν = µ and 0 otherwise. A vector can then be written V = V µê(µ) and a dual vector ω = ωµθ̂
(µ).

We now adopt the Einstein summation convention so we always sum over all possible values of
an index if it appears both up and down in the same term2. With this in mind, the action of
vectors and dual vectors on each other is defined, with the summations written out explicitly
for clarity:

ω(V ) = ωµθ̂
(µ)(V ν ê(ν)) = ωµV

ν θ̂(µ)(ê(ν)) = ωµV
νδµν =

∑
µ,ν∈{1,...,m}

ωµV
νδµν =

∑
µ∈{1,...,m}

ωµV
µ = ωµV

µ,

and likewise V (ω) = ωµV
µ so that a vector at point p can be thought of as a linear mapping

T ?p → R.

The basis {ê(µ) = ∂
∂xµ }µ∈(1,...,m) is called the standard basis. Considering basis vectors as

partial derivatives may seem odd at first but the idea is that tangent vectors can be thought of
as directional derivatives of functions that map from Rm onto the manifold (this approach has
the nice feature that it also makes sense for abstract manifolds).
With tangent- and dual vectors defined, we can now define the more general term of a tensor.

1Meaning that there exists a coordinate system at all points p ∈ M such that the metric (to be defined in a
while) is the identity to first order in the coordinates in this coordinate system

2This is why there is put a parenthesis on the basis vectors index - these are not to be summed over.
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A useful, albeit not particularly deep, definition of a rank (k, l) tensor Tµ1µ2···µkν1ν2···νl is that
it is an object that transforms in the following way:

T
µ′1µ
′
2···µ′k

ν′1ν
′
2···ν′l

=
∂xµ1

∂xµ
′
1

∂xµ2

∂xµ
′
2
· · · ∂x

µk

∂xµ
′
k

∂xν
′
1

∂xν1
∂xν

′
2

∂xν2
· · · ∂x

ν′l

∂xνl
Tµ1µ2···µkν1ν2···νl . (11)

It can be thought of as having k dimensions that behave like tangent vectors and l dimensions
that behave like dual vectors. In that sense, a vector is a rank (1, 0) tensor and a dual vector is
a rank (0, 1) vector. If we assign a tensor to a particular point p on the manifold, the manifold is
a multilinear mapping, T ?pM× . . .×T ?pM×TpM× . . .×TpM → R, with T ?pM appearing k times
and TpM appearing l times. Differential geometry is a particularly nice tool when working with
abstract manifolds but introducing tensors vindicates the use of doing differential geometry on
manifolds in Rn since one can then formulate quantities independently of coordinates since a
change of coordinates for a tensor is given by equation (11).
The next thing to do is to introduce an inner product on the manifold. When doing so the
enterprise is called Riemannian geometry after the great mathematician, Bernhard Riemann.
The inner product is introduced by a rank (0, 2) tensor called the metric tensor which is denoted
gµν and which is symmetric in its indices, that is gµν = gνµ. The metric tensor defines what it
means to lower and raise indices by

Vµ ≡ gµνV ν (12)

ωµ ≡ gµνων , (13)

and noting that this gives the definition of gµν by

gµν = gµρgνσgρσ, gνσgρσ = δνσ. (14)

so gµν is the inverse of gµν . With this in mind we now define the inner product 〈V |U〉 between
two vectors V and U in the same tangent space as

〈V |U〉 ≡ VµUµ = gµνV
µUν (= V µUµ). (15)

The inner product is also sometimes called a contraction because the dependence on one
index is removed. If infinitesimal lengths, ds2, on the manifold are known, then gµν is also
known since

ds2 = 〈dx|dx〉 = gµνdx
µdxν , (16)

so gµν can be read off as the coefficients. Now that we have the basics and know what a tensor
is, we can wonder how we can quantify the change of a tensor. Partial derivatives are very useful
in Euclidean space when wanting to compute rates of changes but sadly, partial derivatives of
tensors are not themselves tensors because of the Leibniz rule, illustrated here on a vector for
clarity:

∂

∂xµ
V ν =

∂xµ
′

∂xµ
∂

∂xµ′

( ∂xν
∂xν′

V ν′
)

=
∂xµ

′

∂xµ
∂xν

∂xν′
∂

∂xµ′
V ν′ + V ν′ ∂x

µ′

∂xµ
∂2xν

∂xµ′∂xν′
.

We would like a linear operation fulfilling Leibniz’ product rule generalizing the notion of
changes in tensors in the sense that it reduces partial derivative in flat space. This operator is
called the covariant derivative and is denoted

∇µV ν = ∂µV
ν + ΓνµλV

λ, (17)

5



where Γνµλ is called the connection and is chosen so that ∇µV ν and ∇µων transform according
to (11). Note that this means that the connection is not a tensor since ∂µV

ν is not a tensor.
When it is further demanded that the covariant derivative commutes with contractions, that is

∇µ
(
T λλρ

)
=
(
∇T
) λ

µ λρ
, (18)

and demanding for every scalar φ that

∇µφ = ∂φ, (19)

it can be shown that
∇µων = ∂µων − Γλµνωλ. (20)

If it is further assumed that the connection is metric compatible — meaning ∇µgµν = 0 — and
torsion free — meaning Γλµν = Γλνµ — then it can be shown that the connection is uniquely
given by

Γλµν =
1

2
gλσ
(
∂µgνσ + ∂νgσµ − ∂σgµν

)
, (21)

which is called the Christoffel connection. Now that we have the covariant derivative and the
Christoffel connection we can make sense of comparing vectors in different tangent spaces on
the manifold. In flat space we would compare vectors at two different points visually simply
by moving them while keeping them constant until they start in the same point. The act of
keeping a vector V µ constant while moving it along a curve γ : I →M with I ⊂ R amounts to
demanding

0 =
d

dλ
V µ(λ) =

dxν

dλ
∂νV

µ.

We want our condition of keeping a vector constant while moving it about on a general manifold
to be independent of coordinates and we now know that the partial derivative is not tensorial
and the above condition is therefore dependent on coordinates. We therefore simply replace
our partial derivative in the above with a covariant and define that a vector V (λ) ∈ Tγ(λ)M is
parallelly transported along a curve γ(λ) on M if

dxν

dλ
∇νV µ = 0,

or
d

dλ
V µ + Γµσρ

dxσ

dλ
V ρ = 0. (22)

Note that parallel transportation preserves the norm if a metric compatible connection is used
since if two vectors V and W are parallelly transported, then

dxν

dλ
∇ν(gµνV

µW ν) = V µW ν dx
ν

dλ
∇νgµν + gµνW

ν dx
ν

dλ
∇νV µ + gµνV

µdx
ν

dλ
∇νW ν = 0 (23)

The curves on M whose tangent vectors are themselves parallelly transported are called
geodesics and one can show that the geodesics of the Christoffel connections uniquely define
the shortest routes between points on the manifold. For this reason and since the Christoffel
connections are metric compatible, so that parallel transport with respect to them preserves
norms, the rest of this project will assume that Christoffel connections are used.
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Figure 3: Illustration of a sphere with a vector at point A being parallelly transported along
two different curves to the point C.

On figure 3, the notion of parallel transport along geodesics is illustrated. Here the manifold
is a sphere so the geodesics can be shown to be great circles. Note that since parallel trans-
portation preserves norms, the angle between a vector and a tangent vectors to a great circles is
preserved during parallel transportation along said great circle. On the figure, a vector at point
A is transported parallelly two different ways to the north pole. One way is due north along a
geodesic and the other is east for some distance and then due north afterwards. Since the angle
to the geodesics must be kept constant, the results of transporting the vector are different. This
is a good illustration of the fact that it is not obvious how to compare two vectors at different
points on the manifold because moving the vector along different curves yields different results.

Equation (22) can be solved exactly, yielding a practical formula as long as the metric and
connections for the given system is known. We look for a solution for a given curve γ(λ) on M
where a vector is linearly related with its parallel transported in another tangent space. That
is, we are looking for a linear map Tx(λ0) → Tx(λ) so that V µ(λ) ∈ Txµ(λ) is related to V µ(λ0)
by

V µ(λ) = Pµρ(λ, λ0)V ρ(λ0). (24)

Pµρ is called the parallel propagator and the objective now is to find an expression for this that
solves the parallel transportation equation.

By defining

Aµρ(λ) = −Γµσρ
dxσ

dλ
, (25)

equation (22) takes the form
d

dλ
V µ = AµρV

ρ. (26)

Plugging (24) into (26) gives

d

dλ
Pµρ(λ, λ0)Aρ(λ0) = Aµρ(λ)Pµρ(λ, λ0)Aρ(λ0)

⇔ d

dλ
Pµρ(λ, λ0) = Aµρ(λ)Pµρ(λ, λ0). (27)
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This can be solved first by integration and then iteration:

Pµρ(λ, λ0) = δµρ +

∫ λ

λ0

Aµσ(η)Pσρ(η, λ0)dη (28)

⇒ Pµρ(λ, λ0) = δµρ +

∫ λ

λ0

Aµρ(η)dη +

∫ λ

λ0

∫ η2

λ0

Aµσ(η2)A
σ
ρ(η1)dη1dη2

+

∫ λ

λ0

∫ η3

λ0

∫ η2

λ0

Aµσ(η3)A
σ
ν(η2)A

ν
ρ(η1)dη1dη2dη3 + . . . (29)

In (28) the delta function is introduced so the parallel propagator reduces to the identity when
λ = λ0. It is convenient to introduce the path-ordering operator P that arranges a product
depending on different parameters from largest values of the parameter to the smallest. For
instance if η1 < η2 then P[A(η1)A(η2)] = A(η2)A(η1). Using this gives in matrix notation

P(λ, λ0) = 1 +

∞∑
n=1

1

n!

∫ λ

λ0

. . .

∫ λ

λ0

P[A(ηn)A(ηn−1) · · ·A(η1)]dη1dη2 · · · dηn (30)

This can be reduced to a more appealing equation by noticing that the above is an expo-
nential series so that

P(λ, λ0) = P exp

(∫ λ

λ0

A(η)dη

)
,

or with indices

Pµν = P exp

(
−
∫ λ

λ0

Γµσν
dxσ

dη
dη

)
. (31)

2.3 The Foucault pendulum revisited

We are now ready to return to the Foucault pendulum for a completely geometric approach to
deriving (10). The idea is to assume that the pendulum is oscillating at all times in a plane that
is free to rotate slowly. This is justified when the pendulum is much smaller than the radius of
the sphere and the sphere is rotating with a frequency much slower than the pendulum. In this
case the pendulum hardly feels the fictitious forces and the deviation from normal pendulum
motion is a small correction.
We will take the pendulum as living on the manifold S2, which is a sphere, and the orientation
of the oscillation on the initial point p on the sphere is represented by a vector V µ ∈ TpS2, say a
vector orthogonal to the plane of oscillations. Instead of considering the earth as rotating with
the pendulum on it, we will perceive the situation as the vector V µ being parallelly transported
along a curve γ : R→ S2. If we let the path be given by γ(λ) = (θ, λ) in spherical coordinates
with a constant polar angle θ, then the situation is reminiscent of the one discussed earlier.
In spherical coordinates infinitesimal lengths are given by

ds2 = dR2 +R2dθ2 +R2 sin2 θdφ2 (32)

so on a sphere with constant radius R,

ds2 = R2dθ2 +R2 sin2 θdφ2.
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This means that the metric tensor is given by

gij =

(
R2 0
0 R2 sin θ

)
(33)

and thus

gij =

(
1
R2 0
0 1

R2 sin θ

)
. (34)

Calculating the Christoffel symbols using equation (21) gives the only non-zero contibutions:

Γθφφ = − sin θ cos θ (35)

Γφθφ = Γφφθ = cot θ. (36)

On the path γ, we have
dxσ

dλ
= δσφ . (37)

Therefore, by inserting in (25) we get

Aθθ = −Γθσθδ
σ
φ = 0

Aθφ = −Γθφφδ
φ
φ − Γθθφδ

θ
φ = sin θ cos θ

Aφφ = −Γφφφδ
φ
φ − Γφθφδ

θ
φ = 0

Aφθ = −Γφσθδ
σ
φ = −Γφθθδ

θ
φ − Γφφθδ

φ
φ = − cot θ,

or, written more conveniently,

A =

(
0 sin θ cos θ

− cot θ 0

)
. (38)

Now we can use equation (30) to find the parallel propagator for the 2-sphere along this
particular path. Notice how A is independent of the parameter λ in this case. This means that
the path-ordering operator in this case doesn’t change anything:

P(λ, λ0) = 1 +
∞∑
n=1

1

n!

∫ λ

λ0

∫ λ

λ0

. . .

∫ λ

λ0

dη1dη2 . . . dηnP[A(η1)A(η2) . . . A(ηn)]

= 1 +
∞∑
n=1

1

n!

∫ λ

λ0

dnηP[An] = 1 +
∞∑
n=1

1

n!

∫ λ

λ0

dnηAn =

(
1 0
0 1

)
+
∞∑
n=1

1

n!
(λ− λ0)nAn

It can be shown by induction that

(
0 a
b 0

)n
=



(
(ab)n/2 0

0 (ab)n/2

)
n even,(

0 a
n+1
2 b

n−1
2

a
n−1
2 b

n+1
2 0

)
n odd.

(39)
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Thus, comparing (38) with (39) we obtain

P(λ, λ0) =
∑
n even

(λ− λ0)n

n!

(
(− cot θ sin θ cos θ)n/2 0

0 (− cot θ sin θ cos θ)n/2

)

+
∑
n odd

(λ− λ0)n

n!

 0 (−1)
n−1
2

cos
n−1
2 θ

sin
n−1
2 θ

sin
n+1
2 θ cos

n+1
2 θ

(−1)
n+1
2

cos
n+1
2 θ

sin
n+1
2 θ

sin
n−1
2 θ cos

n−1
2 θ 0



=

(∑
n even(−1)n/2 (λ−λ0)

n

n! cosn/2 θ 0

0
∑

n even(−1)n/2 (λ−λ0)
n

n! cosn/2 θ

)

+

(
0 −

∑
n odd(−1)

n+1
2

(λ−λ0)n
n! cosn θ sin θ∑

n odd(−1)
n+1
2

(λ−λ0)n
n!

cosn θ
sin θ 0

)

⇒ P(λ, λ0) =

(
cos
[
β(λ− λ0)

]
sin θ sin

[
β(λ− λ0)

]
− sin−1 θ sin

[
β(λ− λ0)

]
cos
[
β(λ− λ0)

] )
(40)

where cos θ ≡ β. Notice that P(λ0, λ0) = 1.
Now that we have the parallel propagator we can compute the angle a vector has rotated when
taken around the path. For simplicity let λ0 = 0. We then want to compare the vector Vλ with
V0 when

Vλ ≡ P(λ, 0)V0 =

(
cos(βλ) sin θ sin(βλ)

− sin−1 θ sin(βλ) cos(βλ)

)(
V θ
0

V φ
0

)
.

Let V0 be normalized. It then follows that V is also normalized since parallel transportation
preserves the norm of a vector. The inner product between the two vectors is given by

gµνV
µ
0 V

ν
λ = gµνV

µ
0 P(λ, 0)V ν

0

= R2V θ
0

(
cos(βλ)V θ

0 + sin θ sin(βλ)V φ
0

)
+R2 sin2 θV φ

0

(
− 1

sin θ
sin(βλ)V θ

0 + cos(βλ)V φ
0

)
= R2 cos(βλ)(V θ

0 )2 +R2 sin2 θ cos(βλ)(V φ
0 )2 = gµνV

µ
0 V

ν
0 cos(βλ) = cos(βλ), (41)

but the the inner product is in general also given by

gµνV
µ
0 V

ν
λ =

√(
gµνV

µ
0 V

ν
0

)(
gρσV

ρ
λ V

σ
λ

)
cosα = cosα, (42)

where α is the sought after angle between Vλ and V0. Using (41) and (42) we obtain that
cos(α) = cos(βλ). This is compatible with

α = − cos(θ)λ, (43)

which is identical to (10), proving that the phase obtained by the Foucault pendulum is indeed
geometric. This treatment allows the nice intuition that angular momentum is conserved in the
system of the earth and the pendulum and when the earth rotates the orientation of the plane
of pendulating is parallelly transported. The assumption we used in the first treatment of the
Foucault pendulum coincides with the one we used now, being a sort of adiabaticity since we
demanded that the pendulum at all times behaved like a regular pendulum but allowed it to
act differently over longer time scales.
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We shall now turn our attention toward adiabaticity more rigorously. In physics conserved
quantities can often make solving problems a lot easier and as it turns out, there exists a con-
served quantity when a system exhibiting oscillatory motion is changed slowly. This incidentally
offers a nice way of computing geometric phases since geometric phases are unaffected by the
change being slow. Finding this conserved quantity, however, relies on some subtle concepts in
analytical mechanics which we will review first.

3 Action-angle variables and adiabatic invariance

The purpose of this section is to define the action-angle coordinates and show that the action is
an adiabatic invariant. As good as every textbook has its own notation and they even disagree on
some points3. Therefore I will start by quickly going through the relevant analytical mechanics
before defining and discussing the action-angle coordinates. Next I will prove that the action
is an adiabatic invariant. The proof is adapted from Wells and Siklos [8] and is important
since it gives a stronger result than ones like Landau and Lifshitz [7] or [9] use and to which
the literature often refers. The section ends with an example on how to apply the adiabatic
theorem to obtain a geometric phase.

We will only work in a flat where the metric is the identity. This means that there is no
difference in an index up or down. For clarity I therefore keep all indices down in the following.

3.1 Short recap of Hamiltonian mechanics

One of the advantage of analytical mechanics is that it is formulated using generalized coordi-
nates {qi} and momenta {pi}. This gives the theory flexibility since the theory is not bound to
regular coordinates. The objective then is usually to determine equations of motions - differen-
tial equations of the coordinates - which can then be solved to yield the solution to the problem.
These equations of motion are derived from either the Lagrangian or the Hamiltonian. This
section is a brief recap of Hamiltonian mechanics. The Hamiltonian H is a Legendre trans-
formation of the Lagrangian L = T − V where T is the kinetic energy and V is the potential
energy and is given by

H =
∑
i

piq̇i − L, (44)

where I have adopted the notation q̇ = dq
dt . In terms of the Lagrangian the generalized

momenta are given by pi = ∂L
∂q̇i

so for systems where V is independent of q̇i for all i and T
depends quadratically on q̇i and is independent of qi for all i, then, using the Einstein summation
convention, we have

H = q̇i
∂L

∂q̇i
− T + V = q̇i

∂T

∂q̇i
− q̇i

∂V

∂q̇i
− T + V = 2T − T + V = T + V = E (45)

So H is the total energy of the system in this case.
Once H is known the equations of motion are found using Hamilton’s equations

q̇i =
∂H

∂pi
(46)

ṗi = −∂H
∂qi

(47)

3For instance, Goldstein [9] and Fetter-Walecka [4] disagree on whether the action and angle coordinates are
cannonically conjugate, though they arrive at the same results.
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It is possible to make a change of variables while preserving the form of Hamilton’s equa-
tions. Such a transformations is called canonical. Denoting the new generalized coordinates
Q1, Q2 . . . , QN and P1, . . . , PN , then the new Hamiltonian H ′(Q1, . . . QN , P1 . . . PN , t) is given
by

H ′ = H +
∂S

∂t
(48)

for some generating function S depending on either the {qi} or {pi} and either {Qi}
or {Pi} and time t. The new and old coordinates that S is independent of can be ob-
tained through partial differentiation of S with respect to its coordinates. If for instance
S = S(q1, . . . , qN , P1 . . . , PN , t) then it can be shown that for the transformation to be canonical
then

pi =
∂S

∂qi
(49)

Qi =
∂S

∂Pi
(50)

An example of how to apply the theory of cannonical transformations to solve a seemingly
difficult problem is given in appendix A. A particularly nice application of canonical transforma-
tions is Hamilton Jacobi theory where S is chosen so Q ≡ β and P ≡ α are constants of motion.
It is convenient to use a generating function of the above type S(q1, . . . , qN , P1 . . . , PN , t). Not-
ing from (46) and (47) that Qi and Pi being constants of motion implies that a solution is
H ′ = 0, it is seen that the transformation equation (48) is

H
(
q1, . . . , qN ,

∂S

∂qi
, . . . ,

∂S

∂qN
, t
)

+
∂S

∂t
= 0 (51)

where I have used (49). This equation is called the Hamilton-Jacobi equation and S is called
Hamilton’s principal function. The equation can be solved for S(q1, . . . , qN , α1, . . . , αN ) (actu-
ally the solution would be dependent of an additional additive constant but this is not interesting
for our purpose since all we are concerned with are partial derivatives of S) and then Qi = βi
can be found by the equation βi = ∂S

∂αi
.

At this point the original coordinates can be found by (49) and qi can be found by inverting
(50) using Qi = βi and Pi = αi.

When the Hamiltonian is independent of time then the principal function may be written

S(q1, . . . , qN , α1, . . . , αN , t) = W (q1, . . . , qN , α1, . . . , αN )− at. (52)

W then is called Hamilton’s characteristic function. A formula for W can be obtained by
taking the time derivative

dW

dt
=
∂W

∂qi
q̇i (53)

Using (49) and (52) it is seen that (53) becomes

dW

dt
= piq̇i,

so
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W =

∫
piq̇idt =

∫
pidqi (54)

With this in mind let us continue discuss the important aciont-angle variables.

3.2 Action-angle coordinates

Consider a system exhibiting periodic motion and which is separable, meaning that the char-
acteristic function can be written4

W (q1, . . . , qN , α1, . . . , αN ) =
N∑
i=1

Wi(qi, α1, . . . , αN )

If the Hamiltonian does not explicitly depend on time then a particularly nice set of variables
called action-angle variables may be chosen. Let the constant Hamiltonian be denoted E. Now
define the action variables as

Ii =
1

2π

∮
pidqi. (55)

By using (49), (52) and separability we get pi = ∂Wi
∂qi

. Putting this into the equation for Ii gives

Ii =
1

2π

∮
∂Wi(qi, α1, . . . , αN )

∂qi
dqi = Ii(α1, . . . , αN ),

which can be inverted to yield relations

αi = αi(I1, . . . , IN ). (56)

For the Hamilton-Jacobi equation (51) to be satisfied, it must hold that a as defined in (52)
is equal to E since W is independent of time. Equation (56) allows me to write W and S as
functions of the I’s instead of the α’s and I will denote the resulting functions with a tilde so
as to avoid thinking that the α’s are evaluated in the I’s, so

W
(
q1, . . . , qN , α1(I1, . . . , IN ), . . . , α(I1, . . . , IN )

)
= W̃ (q1, . . . , qN , I1, . . . , IN ) (57)

S̃
(
q1, . . . , qN , I1, . . . , IN

)
= W̃ − a(I1, . . . , IN )t, (58)

where the time independence of H ensures that a is only a function of the I’s since a dependency

on qi would introduce a the time dependent term
∂a

∂qi
t to H. The functions satisfy the Hamilton-

Jacobi equation

H
(
q1, . . . , q2,

∂S̃

∂q1
, . . . ,

∂S̃

∂qN

)
+
∂S̃

∂t
= 0, (59)

with (49) and (50) giving

pi =
∂S̃

∂qi
(60)

Q̃i =
∂S̃

∂Ii
, (61)

4Note that if N = 1 then the system is automatically seperable. In the examples therefore I won’t discuss
seperability.

13



and note that
∂S̃

∂qi
=
∂S

∂qi
since demanding the constancy of the α’s and the I’s amount to the

same when taking partial derivative with respect to the q’s. So it is indeed the same p’s as
before choosing αi(I1, . . . , IN ) = Ii. Since (59) is satisfied

P̃i = Ii = constant

Q̃i ≡ β̃ = constant.

Now we define the angle variables5

θi =
∂W̃ (q1, . . . , qN , I1, . . . , IN )

∂Ii
. (62)

The constancy of the Q̃i’s gives

Q̃i = constant =
∂S̃

∂Ii
=
∂W̃ − at
∂Ii

= θi −
[∂a(I1, . . . IN )

∂Ii

]
t = β̃ (63)

Note that
E = H = a(I1, . . . , IN ), (64)

because H satisfies (59). From this is seen that

θi = νit+ β̃, (65)

νi ≡
∂a(I1, . . . IN )

∂Ii
=

∂

∂Ii
H.

Now we just need to get an intuition about νi. A nice way to get this is by computing the
change ∆θi in the angle θi over one period using (62) and (49):

∆θi ≡
∮
dθi =

∮
∂θi
∂qi

dqi =

∮
∂2W̃

∂qi∂Ii
dqi =

∂

∂Ii

∮
∂W̃

∂qi
dqi =

∂

∂Ii

∮
pidqi = 2π

∂

∂Ii
Ii = 2π.

Let the period be τ . Then we now have

2π = νiτ

⇒ νi =
2π

τ
, (66)

so that νi is the frequency of the system and we actually have that Hamilton’s equations are
satisfied by the action-angle coordinates θ and I:

θ̇i = νi =
∂H

∂Ii
(67)

İi = 0 =
∂H

∂θi
, (68)

since from (64) H depends only on the action coordinates.

5Note that {θi, Ii} are not canonically conjugate with respect to the constant Hamiltonian produced by the

generating function S̃ since θi 6=
∂S̃

∂Ii
.
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Even though I won’t use it in this paper there is a very practical formula I will derive now
for completion. First note that from Hamilton’s equations we have

q̇ =
∂H

∂p
⇔ dt =

(∂H
∂p

)−1
dq

This gives us a neat formula for calculating the freqency ω of a system executing periodic
motion in one dimension since the period T is

T =

∫ T

0
dt =

∮ (∂H
∂p

)−1
dq.

Suppose that
(
∂H
∂p

)−1
= ∂p

∂H , which holds for instance when H depends only on p. In that case,

T = 2π
∂

∂H

(
1

2π

∮
pdq

)
= 2π

∂I

∂H
,

which gives the relation
∂I

∂H
= ω−1, (69)

valid in the above mentioned cases.

3.3 Adiabatic invariance

Now we are ready to define adiabatic invariance and prove the classical adiabatic theorem.
A classic treatment of the subject is given by Landau and Lifshitz [7] but the derivation is
cumbersome and the result is not as strong as it could be. Recently Wells and Siklos [8], using
a formulation of adiabatic invariance similar to Arnold [11], have provided a more transparent
proof which also gives the slightly stronger result. This section follows in their footsteps.
We wish to understand what happens to a system executing a periodic motion in a single
dimension when the Hamiltonian is being slowly changed6. The change is introduced by the
dependency of the Hamiltonian on a single parameter λ. Generalizing this to an arbitrary
number of parameters doesn’t change the idea in the proof - it only makes it more tedious.
More formally let ε > 0 be arbitrary and consider changes in the parameter of the form λ(t) =
f(εt) for som smooth function f : R → R with λ̇(t) = O(ε) and λ̈(t) = O(ε2), then a quantity
B(t) is said to be an adiabatic invariant if

∀t ∈
[
0,

1

ε

]
: |B(t)−B(0)| = O(ε).

In the previous section we defined action-angle coordinates for Hamiltonians independent on
time. Now we have a time-dependency and slightly more care must be given in the definitions
of the coordinates. First we have the action coordinates

I ≡ 1

2π

∮
C
pdq, (70)

where the integration is taken on a curve C on which the Hamiltonian H is constant and λ is
kept constant. For one such value of H and λ we can follow the discussion of the preceding
section, giving us a function W̃ (q, I, λ) and an angle coordinate θ defined by

θ ≡ ∂W̃

∂I
. (71)

6The discussion above assumed that the Hamiltonian was time independent. This means that now sets of
action-angle coordinates are well-defined in short time intervals at given times, and for such a set the Hamiltonian
is assumed constant in the interval.
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Then {θ, I} are a canonically conjugate pair of variables satisfying Hamilton’s equation with
respect to the Hamiltonian given by the canonnical transformation

K = H +
∂W̃

∂t
= H + λ̇

∂W̃

∂λ
. (72)

Using (72) we can make a Taylor expansion of I(q,H, λ) yielding

I(H,λ) = I(K − W̃

∂I
, λ) = I(K,λ)− λ̇∂W̃

∂λ

∂I

∂H

∣∣∣∣
H=K

+ O(λ̇2). (73)

The next step is crucial in the proof. We define

J(K,λ) ≡ 1

2π

∫ 2π

0
Idθ, (74)

where the integration is along the curve given by a constant K.
If we plug (73) into (73) we get, remembering that K is kept constant in the integral,

J = I(K,λ)− λ̇

2π

∂I

∂H

∣∣∣∣
H=K

∫ 2π

0

∂W̃

∂λ
dθ + O(λ̇2)

= I(H,λ) + λ̇
∂W̃

∂λ

∂I

∂H
− λ̇

2π

∂I

∂H

∣∣∣∣
H=K

∫ 2π

0

∂W̃

∂λ
dθ + O(λ̇2). (75)

This means that to first order |J − I| ∝ λ̇ since I and ∂W̃
∂λ don’t depend on λ̇ implicitly so that

|J − I| = O(ε). (76)

The hope is to show now that J is an adiabatic invariant since equation (76) then gives
that I is an adiabatic invariant. The strategy is to compute dJ

dt and integrate this from 0 to 1
ε .

Remembering that J is only a function of K and λ we have

dJ

dt
=

(
∂J

∂λ

)
t,K

dλ

dt
+

(
∂J

∂K

)
t,λ

(
∂K

∂t

)
θ,I

=

(
∂J

∂t

)
K

+

(
∂J

∂t

)
λ,θ,I

=

(
∂J

∂t

)
θ,I

. (77)

By using equation (73) and (75) we thus obtain

dJ

dt
=

(
∂

∂t

)
θ,I

[
I(H,λ) + λ̇

∂W̃

∂λ

∂I

∂H
− λ̇

2π

∂I

∂H

∫ 2π

0

∂W̃

∂λ
dθ + O(λ̇2)

]
. (78)

The first term drops out because the derivative is taken with constant I. Again because I
and W̃ don’t implicitly depend on λ̇ and because λ̇ = O(ε) and λ̈ = O(ε2) we have

dJ

dt
= O(ε2). (79)

Integrating this from t = 0 to t = 1
ε gives that |J(t) − J(0)| = O(ε). From this and equation

(76), we then have the desired, |I(t)− I(0)| = O(ε), so I is an adiabatic invariant.

In the classic textbook on classical mechanics by Landau and Lifshitz [7] it is stated that
the average of dI

dt is an adiabatic invariant but as has been shown here, the stronger statement
that I is an adiabatic invariant is true. Applying this result is a lot easier than having to
first deal with the averages. Dealing with the averaging was done instead by the function J
introduced in this proof, but as has been seen I itself is adiabatically preserved In the problem
in appendix A it is demonstrated how I is adiabatically conserved for a harmonic oscillator with
time dependent frequency.
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3.4 Example of a geometric phase using adiabatic invariance

As an example of utilizing the adiabatic invariance of the action coordinate, consider a bead
sliding without fricion on a circular hoop with radius R as shown on figure 4.

Figure 4: Sketch of the the problem.

The hoop is then slowly rotated with time dependent frequency dα
dt ≡ Ω . (x, y) denote the

position in cartesian coordinates of the bead and θ and α are as shown in the figure. From the
geometry on the figure it is seen that

x = R cos(α) +R cos(α+ θ),

y = R sin(α) +R sin(α+ θ). (80)

By differentiating with respect to time

ẋ = −ΩR sin(α)− (Ω + θ̇)R sin(α+ θ),

ẏ = ΩR cos(α) + (Ω + θ̇)R cos(α+ θ), (81)

and with this the Lagrangian L is obtained:

L = T − V = T =
1

2
m(ẋ2 + ẏ2) =

1

2
mR2

(
Ω2 + (Ω + θ̇)2 + 2Ω(Ω + θ̇) cos θ

)
.

The generalized momentum pθ conjugate to θ therefore is

pθ =
∂L

∂θ̇
=

1

2
mR2

(
2(Ω + θ̇) + 2Ω cos θ

)
= mR2

(
θ̇ + Ω(1 + cos θ)

)
,

and the action associated with this momentum is

I =
1

2π

∫ 2π

0
pθdθ =

mR2

2π

∫ 2π

0

(
θ̇ + Ω(1 + cos θ)

)
dθ.

Now imagine that Ω depends very slowly on time, going from 0 up to a certain point which
is much lower than the rate the bead (that is, for all t we demand that Ω � θ̇), before going
back to 0. Then we can take Ω out of the integral since it is constant during the course of one
period for the bead. This gives

I = mR2

(
1

2π

∫ 2π

0
θ̇dθ + Ω

)
.
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In this limit we know from the earlier discussion that I is an adiabatic invariant, so
1
2π

∫ 2π
0 θ̇dθ+Ω ≡ C is preserved in time during the variation of Ω. More important the constant

C is independent on the type of variation of Ω and in particular 1
2π

∫ 2π
0 θ̇dθ ≡ ωav is equal to

C when Ω is constantly 0. Thus if the time it takes to complete the variation of Ω from 0 up
to some small value and back to 0 is τ then

∫ τ
0 ωavdt is equal to the number of revolutions the

small bead makes in the same time. If Ω had been 0 the whole time then Cτ =
∫ τ
0 Cdt =

∫ τ
0 ωav,

so Cτ is the number of revolutions the the small bead makes in the time τ if Ω(t) = 0 for all
t ∈ [0, τ ]. Letting Ω vary as described above and choosing to let it go around exactly once in
the time τ , we thus have

Cτ =

∫ τ

0
ωavdt+

∫ τ

0
Ωdt =

∫ τ

0
ωavdt+ 2π,

and this means that the geometric phase of the bead, independent on τ , is γ = −2π which
makes sense especially in the case where the bead is not moving initially in the rest frame of
the hoop. In this case the bead is simply moving around the hoop once.

4 The Hannay angle

In the last section I will outline how the geometric phase in classical mechanics is often explained.
The reason that this way is chosen is probably that the obtained formula for computing the
geometric phase looks a lot lik the formula for computing Berry’s phase in quantum mechanics.
Consider Hamiltonian H which is dependent on the parameters R = (R1, R2, . . .) permitting a
representation in action-angle coordinates. If all the parameters were constant then we would

have dθ
dt = ∂W̃

∂I . This mean that when the parameters are time-dependent we therefore have

dθ

dt
=
(∂θ
∂t

)
R

+
∂θ

∂R
· Ṙ =

∂W̃

∂I
+
∂θ

∂R
· Ṙ

The last term gives the geometric contribution to the phase, so when we change the param-
eters the change in angle is

∆θ =

∫
dθ =

∫
θ̇dt =

∫
∂H

∂I
dt+

∫
∂θ

∂R
· Ṙdt =

∫
∂H

∂I
dt+

∫
∂θ

∂R
· dR, (82)

whereby the geometric contribution is found in the last integral. The system before and after
the excursion of the parameters is best compared if the parameters end with the same values
as they begin. Notice from equation (82) that the path R changes along must enclose an area
for it to give a contribution. Now consider cyclical changes in the parameters as described and
denote the change from the last term in (82) by γ. Then we have

γ =

∮
∂θ

∂R
· dR (83)

If the system is only quasi-periodic7, one may have to remember to keep I constant during
the integration since the system has to be periodic, but this is automatically achieved if the
parameters are varied slowly enough thanks to the adiabatic theorem.

Equation (83) is reminiscent of the one for Berry’s phase in quantum mechanics as described
very well in Griffiths [3].

7That is, the trajectories in phase space only almost close
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The analogy can be stretched quite far when the parameter space is 3-dimensional since we can
also define the ”connection” as A ≡ ∂θ

∂R and ”curvature”8 as B ≡ ∂
∂R ×A. In that case, using

Stokes theorem we have

γ =

∫
∂S

A · dR =

∫
S
∇×A · da =

∫
S
B · da, (84)

where S is the area enclosed in parameter space during the excursion of the parameters and
where da is an infinitesimal area. So γ is the flux through the enclosed area by the curve in
parameter space. In the example with the hoop the parameters were x and y and we changed
these slowly around from one point and back again9. The geometric phase therefore is equal to
the flux of B through the hoop, so finding B amounts to solving the problem. When there is
references to Hannay’s 2-form, what is meant is the ”curvature” B.

5 Conclusion

We have seen two different strategies to finding the geometric phase picked up by a system
depending on parameters being changed slowly. The first strategy is to transform to an acceler-
ated coordinate system and use Newtonian mechanics — with the inclusion of the appropriate
fictitious forces — and possibly root out dynamic contributions by making some approxima-
tions. This approach was illustrated by solving the Foucault pendulum. The second strategy is
to identify an appropriate action-angle pair, let the parameters be changed slowly and envoke
the adiabatic theorem, using that the action then is conserved. This approach was useful for
dealing with a bead on a rotating hoop. In a given problem one strategy may be more conve-
nient than the other but they may both be viable. Khein and Nelson have solved the Foucault
pendulum using action-angle variables [10] and Berry has solved the problem with the bead on
the hoop using the Euler force appearing from the time dependent angular velocity of the hoop
[12].
Regarding the first strategy, many textbooks on classical mechanics treat the Foucault pen-
dulum in a similar fasion as we initially did and sometimes the word ”parallel transport” is
used to describe what happens without going into details. My contribution to this was to go
through the computation in details and show that the geometric phase can be explained just
by parallel transportation, hereby clearly demonstrating the nature of the acquired geometric
phase. Regarding the second strategy, the supplied proof of the adiabatic invariance of I, and
not just the average of I, makes practical applications of the theorem more transparent. I see
many promising avenues for future research in geometric phases, particularly in the intersec-
tion between quantum mechanics and classical mechanics. It is my conjecture that insight into
quantum mechanical behaviour might be gained by applying the strategies developed in this
paper in semi-classical approximations10. I hope that this paper will inspire interest and help
research in this area.

8These are the words commonly used although I’m not sure if they explicitly are related to the connections I
have described in section 2.2. Perhaps one could think of it as imposing a non-trivial metric on the parameter
space, but I have not been able to find a good rigorous way to do so and compare these with A and B.

9The example looked deceptively like it was dependent on only one parameter, Ω, but the reason that x and
y could be described with a single parameter α and through this Ω was due to the constraint the the bead was
confined to move on the hoop.

10Of different ideas I persued, I particularly had hoped to find a semi-classical analogue to the anomalous
velocity of particles moving in a space with a non-vanishing Berry ”curvature” but it didn’t work out in time for
this project.
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A Harmonic oscillator with time dependent frequency

In this section we will study as an example the harmonic oscillator with a time dependent
frequency. The Hamiltonian is

H =
p2

2m
+

1

2
mω2(t)x2 ≡ E(t)

The goal is to find a new Hamiltonian K so that θ̇ = ∂K
∂I and İ = −∂K

∂θ . Since

K = E +
∂S

∂t
, (85)

this goal boils down to finding S. For a regular Harmonic oscillator the solution is

q =

√
2E

mω2
sin θ,

p =
√

2mE cos θ.

In the course of one period the trajectory in phase space is almost elliptical with half of the

major axes
√

2E
mω2 and

√
2mE respectively. The area of this ellipsis thus is π

√
2E
mω2 ·

√
2mE =

2πEω . I is defined as I ≡ 1
2π

∮
pdq, so it is per definition equal to that area divided by 2π. This

means that

I =
E

ω
.

From (49) we get

p =
√

2mE cos θ =
∂S(q, I, ω)

∂q
=
∂S(q, I, ω)

∂θ
,

but

q =

√
2E

mω2
sin θ ⇔ θ = arcsin

(√mω2

2E
q
)
,

⇒ ∂θ

∂q
=

√
mω2

2E

1√
1− mω2

2E q2
=

√
mω2

2E

1√
1− sin2 θ

=

√
mω2

2E

1

cos θ
,

so
∂S

∂θ
=
√

2mE

√
2E

mω2
cos2 θ

⇔ S = 2I

∫
cos2 θdθ.

Thus we can find θ̇ by using (85):

θ̇ =
∂

∂I

(
E +

∂S

∂t

)
=
∂E

∂I
+

∂

∂I

(∂S
∂ω

∂ω

∂t

)
= ω + ω̇

∂

∂I

[∂S
∂θ

∂θ

∂ω

]
= ω + ω̇

∂

∂I

[
2I cos2(θ)

∂θ

∂ω

]
.

To determine ∂θ
∂ω note that

q2 =
2I

mω
sin2 θ ⇔ sin2 θ =

mωq2

2I
,
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so the total differential is

2 sin θ cos θdθ =
mq2

2I
dω +

mωq

I
dq − mωq2

2I2
dI,

⇒ ∂θ

ω
=

mq2

4I sin θ cos θ
=
m

4I

2I

mω
sin2 θ

1

sin θ cos θ
=

tan θ

2ω
.

Hereby the result is obtained

θ̇ = ω + ω̇
∂

∂I

[
2I cos2 θ · tan θ

2ω

]
= ω + ω̇ · 2 · 1

2ω
cos θ sin θ,

⇔ θ̇ = ω +
ω̇

2ω
sin 2θ,

One could likewise calculate the change in action:

İ = − ∂

∂θ

[
E +

∂S

∂t

]
= 0− ω̇ ∂

∂θ

[
2I cos2 θ

tan θ

2ω

]
,

⇔ İ = −I ω̇
ω

cos 2θ.

This also shows that if the change in ω is comparatively much smaller than ω then I is
conserved.
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