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Abstract
We use Ginzburg-Landau theory to describe the phase transition to the supercon-

ducting state and the current through a superconductor. Applying quantum mechanics
to the Josephson junction following Feynmann’s method the Josephson relations for AC
and DC current through the junctions is obtained. The resistively shunted Josephson
junction and the resistively and capacitively shunted Josephson junction are analyzed.
When subject to an alternating voltage driven circuit Shapiro spikes occur in the I vs.
V characteristics of the circuit. If the circuit is driven by an AC current Shapiro steps
appear with jumps when the average voltage is an integer multiplum of the frequency
times the Josephson constant.

Vi anvender Ginzburg-Landau teori til at beskrive faseovergangen til det superledende
fase, og strømmen gennem en superleder. Ved brug af kvantemekanik p̊a en Joseph-
son junction findes ud fra Feynmann’s metode Josephson relationerne for AC of DC
strømme gennem junctionen. Josephson junctionen med modstand og Josephson junc-
tionen med modstand of capacitans analyseres. Når kredsløbene bliver drevet med
en vekselstrøm opst̊ar Shapiro spikes i I vs. V karakteristikken. Hvis kredsløbet
drives med en vekselstrøm fremkommer Shapiro steps med hop n̊ar then gennemsnitlige
spænding er et integer multiplum af frekvensen multipliceret med Josephson konstan-
ten.
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1 Introduction

In this Bachelor thesis we aim to investigate the nature of the Shapiro step phenomena
involved with the Josephson junction. From the basic concepts of the superconductor we
will slowly but surely deduce the relevant physics needed to understand why and how they
occur. Starting with the Ginzburg-Landau theory (and a bit of microscopic theory) we
seek to understand the superconductor. Then we look at the Josephson Junctions, which is
two superconductors with a (thin) insulator between that couples the superconductors, and
derive the relevant current equations governing the junction, i.e. the DC and AC Josephson
equations. With this background information at hand we then enter the curcuit realm
apply what we learned to circuits with Josephson junctions, resistive and capacitive shunt
components. Subsequently we study circuits driven by alternating voltages from microwave
radiation and calculate the Shapiro spikes. Finally we explain the fundamentals governing
the step structure known as Shapiro steps when the circuit is driven by alternating currents.

2 Ginzburg-Landau theory

In order to describe the transition to the superconducting state V. L. Ginzburg and L. D.
Landau assumed a free energy functional defined in the vicinity of the phase transition point.
The functional is a function of an order parameter, that is small near the transition point
allowing for expansion in powers.

Assuming the order parameter is linked to the wavefunction of superconducting electrons,
and therefore a complex quantity, Ginzburg and Landau described the condensate with
free energy functional of a single one-particle wave function Ψ(r) as the complex order
parameter. The functional is real, therefore only the absolute value of the wave function
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appears. Expanding the free energy functional F in powers of the order parameter they
obtained 1

F (ψ) = α|ψ|2 +
β

2
|ψ|4 +O(|ψ|6)

Figure 1: A schematic of the free energy functional for T > Tc (Blue curve), T < Tc (Red)
and T = Tc(Yellow). The red curve resembles a ”mexican hat” in three dimensions, i.e.
plotted vs. both the real and imaginary part of ψ.

It is clear that the potential is dominated by the fourth order term invoking β > 0
therefore we can neglect higher order terms since F (ψ) is bounded from below 2. If α ≥ 0 then
F (ψ) has a single minimum at ψ = 0, since ψ is related to the number of superconducting
electrons in the condensate this is a normal metal. If α ≤ 0 then a spontaneous symmetry
braking occurs and F (ψ) has an extrema at

∂F

∂|ψ|
= 2α|ψ|+ 2β|ψ|3 = 0 ⇒ |ψ| = 0 or |ψ| =

√
−α
β

(the minimum) (1)

as shown in the ”mexican hat” potential of Fig(1). The phase transitions happens exactly
when α(T ) = 0 or when the temperature drops to the critical temperature Tc for supercon-
ducting transition. Assuming α(T ) is smooth we can expand it in T around Tc.

α(T ) = α0(Tc − T ) . (2)

The order parameter below Tc then satisfies

|ψ| =
√
α0

β

√
Tc − T . (3)

1The functional can not depend on the global phase of Ψ since the global phase of quantum states is not
observable.

2The expansion of F to fourth order is only valid when ψ is small.
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The scaling of ψ also shown in Fig.(2) is characteristic of mean-field theories as the Landau
theory. This also implies that the order parameter is considered constant in time and space.

Figure 2: A stretch of |ψ|

So what are the underlying physical of this phase transition? To answer this question
we have to look at the microscopic theory. α < 0 requires an attraction between electrons
which may seem strange as electrons repel each other. However, the lattice of positively
charged atoms cancel this repulsion on average. It can even distort such that a small net
attractive interaction results between pairs. Such lattice vibrations are called phonons.
Cooper found that this can lead to pairing of opposite spin electrons with momenta near the
Fermi surface. Schrieffer found the many electron wavefunction in what is now referred to
as the Bardeen-Cooper-Schrieffer (BCS) theory. Unfortunately the phonon attraction is so
weak that thermal fluctuations destroys the pairs at a few degrees Kelvin depending on the
metal corresponding to that α increase to zero at this critical temperature.

Until now we have only described a phase transition so how do we apply it to the su-
perconductor? To describe superconductors we assume the charge q and mass m∗ for the
particles forming the condensate3 and then add two additional terms to the energy functional.

F [ψ,A] = α|ψ|2 +
β

2
|ψ|4 +

1

2m∗
|( h̄
i
∇− q

c
A)ψ|2 +

|B|2

2µ0

(4)

Here A = ∇×B is the vector potential required by gauge invariance and the last term is the
energy density of the magnetic field. The equilibrium value of the order parameter can be
determined from the minimum of the functional, whereas the actual value of the free energy
is given by the value of the functional at the equilibrium order parameter.

3The free energy is gauge invariant only if a universal value is taken for the charge. Ginzburg and Landau
argued that there was no reason to choose it to be different from the the electron charge. It is now known
that q = 2e should be chosen a universal value for all superconductors and m∗ = 2m = 2me.
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Minimizing the functional with respect to the order parameter ψ the first Ginzburg-
Landau equation takes the form

αψ + β|ψ|2ψ +
1

2m∗
(
h̄

i
∇− q

c
A)2ψ = 0 (5)

This equation shares some similarities with the time-independent Schrödinger equation but
is different due to a nonlinear term that determines the order parameter. With Ampères law
we find the second Ginzburg-Landau equation

j =
c

4π
∇×B = i

qh̄

2m∗
(ψ∇ψ∗ − ψ∗∇ψ)− q2

m∗c
|ψ|2A (6)

In the limit of uniform ψ(r)

j = −q
2|ψ|2

m∗c
A (7)

this should reproduce the London equation

j = −e
2ns
mc

A (8)

Which require

ns = 2|ψ|2 (9)

One would think that the phase of the wavefunction, which is a typical microscopic quan-
tum mechanical quantity, cannot be measured, and is therefore of limited importance. This
is indeed so for an isolated superconductor. However, when there is a weak contact between
two superconductors, which prevents the establishment of thermodynamic equilibrium but
allows the transfer of electrons from one superconductor to the other, their phase difference
can lead to interesting phenomena.

3 DC and AC Josephson effects

Let us turn our attention to the Josephson junction. A Josephson junction consists of two
superconductors, 1 and 2, separated by an insulating barrier which electrons can tunnel
through. Each superconductor can be described by a quantum mechanical wave function.

We shall derive the Josephson equations in two different ways - both illustrative. First
from the Ginzburg-Landau equations and second by Feynmann’s method.

When magnetic fields are absent we obtain from the first Ginzburg-Landau Eq. (5)

− h̄
2

m∗
∇2ψ + αψ + β|ψ|2ψ = 0. (10)
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The order parameter in bulk was |ψ0|2 = −α/β below Tc and defining the Ginzburg-Landau
coherence length ξ = h̄/

√
−2m∗α we obtain

ξ2∇2ψ = −ψ(1− |ψ|
2

|ψ0|2
). (11)

If we place the insulating layer at x = 0 and assume that its thickness d is much smaller than
the Ginzburg-Landau coherence length, then d2ψ/dx2 ' 0 because it is multiplied by the
large number ξ2/d2 in the above equation. Therefore the order parameter must be a linear
function in the insulator, −d/2 < x < d/2. Furthermore requiring that it is continuous and
matches the order parameters in both superfluids, it must have the form

ψ(x) = ψ0[(
1

2
− x/d)eiχ1 + (

1

2
+ x/d)eiχ2 ] (12)

where χ1 and χ2 are the phases in the first and second superfluid. Note that we assume the
size of the order parameter is |ψ0| is the same in both superfluids.

Inserting the above order parameter in the second Ginzburg-Landau Eq. (6) we obtain
the superfluid current density

j = i
qh̄

2m∗
[ψ∇ψ∗ − ψ∗∇ψ] (13)

=
2eh̄

m∗d
|ψ0|2 sin(χ2 − χ1). (14)

This is the DC Josephson equation. The current through the Josephson junction is propor-
tional the sine of the phase difference between the two superfluid phases. We now turn to
Feynmann’s derivation of the Josephson equations

The wave function for the superconducting electrons can be writen as a sum

Ψ =
∑
α

Cα(t)ψα α = 1, 2

of the states ψ1 and ψ2 in superconductor 1 and 2 respectively. The wave functions for the
uncoupled superconductors obeys the Schrödinger equation.

ih̄
d

dt
ψα = Eαψα (15)

If the wave functions are normalized such that∫
ψ∗βψαdV = δαβ (16)

The tunneling through the barrier couples the two conductors.

ih̄
d

dt
Ψ = HΨ
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Inserting we obtain

ih̄
d

dt

∑
α

Cαψα =
∑
α

CαHψα

ih̄
∑
α

Ċαψα + Cαψ̇α =
∑
α

CαHψα

Multiplying by ψ∗β

ih̄
∑
α

ψ∗βĊαψα + ψ∗βCαψ̇α =
∑
α

Cαψ
∗
βHψα (17)

Integrating over the space∫
ih̄
∑
α

ψ∗βĊαψα + ψ∗βCαψ̇αdV =

∫ ∑
α

Cαψ
∗
βHψαdV

and using Eq. (16) and Eq. (15) we obtain∑
α

ih̄Ċαδαβ +

∫
ψ∗βCαEαψαdV =

∑
α

CαHβα∑
α

ih̄Ċαδαβ =
∑
α

[Hβα − Eαδαβ]Cα

Because of the delta function within the sum only the terms in which α = β are nonzero.

ih̄
d

dt
Cβ =

∑
α

[Hβα − Eαδαβ]Cα

Here

Hβα =

∫
ψ∗βHψαdV

are the matrix elements in the Hamilton matrix.
Assume that a voltage V is applied between the two superconductors. If zero poten-

tial is assumed to occur in the middle of the barrier between the two superconductors,
superconductor 1 will be at potential −1/2V with Cooper pair potential energy +eV , while
superconductor 2 will be at potential +1/2V with Cooper pair potential energy −eV [8].
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Figure 3: The Josephson junction

The diagonal elements

H11 = E1 + e∗V/2 = E1 + eV H22 = E2 − e∗V/2 = E2 − eV

correspond to the energy levels of state 1 and 2 and e∗ = 2e is the charge of each cooper
pair. Off diagonal elements is a coupling constant which describes the transistions between
states 1 and 2.

H12 = H21 = −K

We can now write the coupled equations.

ih̄
d

dt
C1 = eV C1(t)−KC2(t) (18)

ih̄
d

dt
C2 = −eV C2(t)−KC1(t) (19)

The coefficients are normalized such that

|C1|2 = N1 C1 =
√
N1e

iχ1 (20)

|C2|2 = N2 C2 =
√
N2e

iχ2 (21)

here N1,2 is the number of superconducting electrons in each electrode.
Inserting Eq. (20) into Eq. (18) we obtain

ih̄
d

dt

√
N1e

iχ1 = eV
√
N1e

iχ1 −K
√
N2e

iχ2

Multiplying with the complex conjugate of C1 we get

ih̄[
d

dt
N1 + i2N1

d

dt
χ1] = 2eV N1 − 2K

√
N1N2e

i(χ2−χ1) (22)
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Following the same calculations with Eq. (21) and Eq. (19) and multiplying with the
complex conjugate of C2 we obtain

ih̄[
d

dt
N2 + i2N2

d

dt
χ2] = −2eV N2 − 2K

√
N1N2e

i(χ1−χ2) (23)

We define φ = χ2 − χ1 as the phase difference. Splitting Eq. (22) and Eq. (23) into its real
and imaginary parts we obtain four equations Imaginary parts:

h̄
d

dt
N1 = −2K

√
N1N2 sin(φ) (24)

h̄
d

dt
N2 = +2K

√
N1N2 sin(φ) (25)

Real parts:

h̄N1
d

dt
χ1 = −eV N1 +K

√
N1N2 cos(φ) (26)

h̄N2
d

dt
χ2 = eV N2 +K

√
N1N2 cos(φ) (27)

By adding Eq. (24) and Eq. (25)

h̄
d

dt
N1 + h̄

d

dt
N2 = −2K

√
N1N2sin(φ) + 2K

√
N1N2sin(φ)

h̄
d

dt
N1 + h̄

d

dt
N2 = 0

h̄
d

dt
N1 = −h̄ d

dt
N2

Therefore
N1 +N2 = constant (28)

corresponding to the conservation of charge. By subtracting Eq. (24) and Eq. (25)

h̄
d

dt
N1 − h̄

d

dt
N2 = −2K

√
N1N2 sin(φ)− 2K

√
N1N2 sin(φ)

h̄
d

dt
[N1 −N2] = −4K

√
N1N2 sin(φ)

d

dt
[N2 −N1] =

4K
√
N1N2

h̄
sin(φ)

Using Eq. (28) and multiplying with the electron charge we get

2e
d

dt
[N2] =

4eK
√
N1N2

h̄
sin(φ) . (29)
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We see that the left side is exactly the supercurrent Is since the charge of a Cooper pair is
2e. This equation is the same as Eq. (14) found from Ginzburg-Landau theory since the
current density is just the current per area. The constants d and K are thus related. Eq(29)
can then be written as

Is = Ic sin(φ) (30)

with the critical Josephson current given by

Ic =
4eK
√
N1N2

h̄

Equation (30) describes the DC Josephson effect. The current can penetrate the insulating
barrier as long as there is an interaction (K > 0) between the superconducting regions.

By dividing Eq. (26) with N1 and Eq. (27) by N2 and subtracting them we obtain

h̄
d

dt
φ = 2eV −KN2 −N1√

N1N2

cos(φ)

The last term is usually ignored because it is related to the overall phase χ1 + χ2 of the
device which plays no role. However, in principle either the charge difference or the coupling
must be small. In this case we arrive at

h̄
d

dt
φ = 2eV (31)

Equation (31) describes the AC Josephson effect. The phase difference increases with time
if there is a voltage between the two superconductors.

In the following chapters we will solve the Josephson equations for gradually more compli-
cated circuits driven by DC and AC voltages and currents eventually arriving at the Shapiro
steps.

4 Resistively shunted Josephson junction (RSJ)

Figure 4: The resistively shunted Josephson junction circuit.
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Consider first the AC Josephson effect in a circuit with a Josephson junction in parallel with
a resistance R, which therefore acts as a shunt. See Fig.(4) The total current which is the
sum from Kirchhoffs laws takes familiar form

I =
V

R
+ Icsin(φ) (32)

Here, V is the voltage and I the total current. Using Eq. (31) we get the full current
equation

I =
h̄

2eR

∂φ

∂t
+ Icsin(φ) (33)

which is a first order nonlinear ordinary differential equation. It can easily be solved assuming
a constant current I.

If we look at the case Ic ≥ I the phase does not change with time and is therefore
stationary

φ = arcsin(I/Ic) (34)

and the voltage is zero. The phase difference reaches π/2 for I = Ic
If I > Ic the phase grows with time and we get a nonvanishing voltage. Rewriting Eq.

(33)

h̄

2eR

dφ

I − Ic sin(φ)
= dt (35)

Let t0 be the time it takes for the phase to increase by 2π. Integrating Eq. (35) for such a
period of time we obtain

t0 =
h̄

2eR

2π√
I2 − Ic2

(36)

The voltage varies over this period but we can find its average 〈V 〉 from Eq. (31)

〈V 〉 =
1

t0

t0∫
0

V dt =
h̄

2e

1

t0

t0∫
0

dφ

dt
dt =

2πh̄

2e

1

t0
(37)

Inserting Eq. (36) into Eq. (37) the current-voltage relation takes the form

〈V 〉 = R
√
I2 − Ic2 (38)

This I(V ) curve is shown in Fig. (5), it almost has a step at V = 0.
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Figure 5: The I/V characteristics of the RSJ

5 Resistively and capacitively shunted Josephson junc-

tion (RCSJ)

Next we add a capacitor to our circuit in parallel. A capacitor represent the case in which
the current is’nt solely carried by tunneling electron pairs or leakage currents through the
insulator barrier(shunt), but also takes into account that charge can build up at the interface
layers between the Josephson junction and causes displacement currents.

Figure 6: The resistively and capacitively shunted Josephson junction circuit driven by a
current I.

The current through the capacitor

IC = C
∂V

∂t
=
h̄C

2e

∂2φ

∂t2
(39)
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also has to be added to the supercurrent of Eq. (31) besides the shunted current as follows
from Kirchhoffs laws, giving the total current

I =
h̄C

2e

∂2φ

∂t2
+

h̄

2eR

∂φ

∂t
+ Ic sin(φ) (40)

This can be written as an equation that is a mechanical analogue to a forced pendulum

h̄C

2e

∂2φ

∂t2
+

h̄

2eR

∂φ

∂t
= I − Ic sin(φ). (41)

Here the first term is the acceleration of the phase, the second is a dissipation, and the right
hand side is the force from a potential given as

U = −
∫

(I − Ic sin(φ))dφ = −Iφ− Ic cos(φ) + k. (42)

Choosing arbitrarily the integration constant as k = Ic we arrive at

U = Ic[1− cos(φ)]− Iφ = Ic

[
1− cos(φ)− φ I

Ic

]
(43)

The potential of Eq(43) is called a tilted washboard potential. It is evident from Fig.(7)
that when I � Ic the particle is trapped in a minimum with constant phase just as in
the previous section for the RSJ. When I � Ic the particle rolls down rapidly with almost
linearly increasing phase and I = V/R again as for the RSJ.

Figure 7: The tilted washboard potential illustrated with I � Ic (yellow) and I > Ic(blue).

The interesting case occurs when I < Ic and for finite capacitance. Here there are in fact
two solutions! It can either be trapped with zero voltage as for the RSJ, or it can slowly roll
such that the dissipation cancels the acceleration. This double valued solution is a hysteresis
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effect, i.e. when the current is increased the voltage takes the value given by forward arrow
in Fig. (8), whereas when the current is decreased it takes the other value.

Figure 8: Hysterisis effect in the RCSJ, see text.

It is important to notice the flat plateau when the current is Ic and the voltage jumps.
This is the first example of a Shapiro step.

6 Shapiro Spikes

Above we studied circuits driven by constant currents. We now turn to AC circuits. It
is mathematically easier to analyse the case where the circuit is driven by an AC voltage.
The practical way to implement such a modulation is to bathe the Josephson junction in
microwave radiation.

Let us therefore apply both a DC and an AC voltage across the junction.

V = V0 + V1cos(ωt)

The phase difference follows from Eq. (31)

φ =

∫
2eV

h̄
dt =

2e

h̄

∫
[V0 + V1cos(ωt)]dt

= φ0 +
2e

h̄
V0t+

2e

h̄ω
V1sin(ωt)

The supercurrent follows from Eq. (30)

Is = Icsin(φ) = Ic Im[exp(i(φ0 +
2e

h̄
V0t+

2eV1

h̄ω
sin(ωt)))]. (44)
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where
Substituting ωj = 2e

h̄
V0 , z = 2eV1

h̄ω
and α = ωt in Eq. (44)

Is = Ic Im[exp(i(φ0 + ωjt+ zsin(α)))]

= Ic Im[exp(i(φ0 + ωjt)) exp(izsin(α))]

Next use the expansion[9]

exp(izsin(α)) = J0(z) + 2
∞∑
k=1

J2k(z)cos(2kα) + 2i
∞∑
k=0

J2k+1(z)sin((2k + 1)α)

=
∞∑

k=−∞

Jk(z)cos(kα) + i

∞∑
k=−∞

Jk(z)sin(kα)

Due to the parity Jk(z) = (−1)kJ−k(z) of the Bessel functions, the components with odd k
drop out from the first sum, while the components with even k drop out from the second
sum.

Is = Ic Im[exp(i(φ0 + ωjt))(
∞∑

k=−∞

Jk(z)cos(kα) + i
∞∑

k=−∞

Jk(z)sin(kα))]

= Ic Im[exp(i(φ0 + ωjt))
∞∑

k=−∞

(−1)kJk(z) exp(−ikα)]

= Ic Im[
∞∑

k=−∞

(−1)kJk(z) exp(i(φ0 + ωjt)) exp(−ikα)]

= Ic

∞∑
k=−∞

(−1)kJk(z)sin(φ0 + ωjt− kα)

Substituting back and adding the shunt current V0/R the total current takes the form

I = Is +
V0

R
= Ic

∞∑
k=−∞

(−1)kJk(
2eV1

h̄ω
)sin(φ0 +

2e

h̄
V0t− kωt) +

V0

R
(45)

also known as the inverse AC Josephson effect. The DC part of the current is V0/R unless

V0 =
kh̄ω

2e
, k = 0,±1,±2, ... (46)

Then the supercurrent has the DC component

Is = Ic(−1)kJk(
2eV1

h̄ω
)sin(φ0) (47)

If the potential is not precisely given by Eq. (46) the supercurrent will oscillate slowly with
an amplitude given by Eq. (47) with φ0 = π/2, i.e. given by the Bessel function value.
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The resulting DC current therefore increase linear as V0/R except when the potential is
an integer multipla of h̄ω/2e as given by Eq.(46) where the DC supercurrent suddenly jumps
to the value given by Eq. (47). These are called Shapiro spikes and are shown in Fig(9)

Figure 9: Shapiro spikes of width h̄ω/2e.

7 Shapiro Steps

Realistic circuits are usually driven by a current. Applying an AC current we thus need to
solve the nonlinear second order differential Eq. (40). This is very complicated and can only
be done numerically. The behavior of the phase is quite intricate, however, in terms of the
DC current versus the average voltage a simple ladder behavior appears as shown in Fig(10).
These are called Shapiro steps.
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Figure 10: Current-voltage characteristics of a point-contact Josephson junction with applied
rf power at 35 GHz. Solid lines show experimental results. Broken lines gives results of
calculations without noise.

The Shapiro steps follow naturally from the results in the previous sections. The jumps
occur precisely when the average voltage match 〈V 〉 = kh̄ω/2e, k = 0,±1,±2, ..., as de-
scribed for the Shapiro spikes. The plateaus occur as in the RCSJ. Note that the Shapiro
spikes occurring for voltage driven circuits leads to double valued voltages for the same
current. This does not occur for the current driven circuits due to the hysteresis effect as
described for the RCSJ. Instead the plateau appears and a Shapiro step occurs when the
voltage match an integer value of h̄ω/2e. The currents jump at the Shapiro step by an
amount given by the Bessel function expression above.
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Figure 11: The current-voltage characteristics for a current-driven Josephson junction placed
in microwave fields of different power, according to the measurements of C. C. Grimes and
S. Shapiro [1].

8 Summary and conclusion

Starting from the Ginzburg-Landau description of superfluidity we have derived the AC and
DC equations for the Josephson junction. We have solved these for circuits with Josephson
junction with shunt resistance and capacitance. Driving these circuits with an AC voltage
could also be solved yielding the Shapiro spikes. Driving them with an AC voltage led to
the Shapiro steps where the current jump when the average voltage is an integer multiple
of the AC frequency divided by the Josephson constant 2e/h = 483597, 011GHz/V olt. The
current jumps by the Josephson current times a Bessel function of order k.

Since the voltage makes integer steps in terms of the frequency and fundamental constants
like the electron charge and Planck’s constant, the Shapiro steps and the AC Josephson
effect provide the currently most accurate physical standards for the volt using the Caesium
frequency. The most precise measurement of the electron charge is made from the Josephson
constant h/2e and the von Klitzing constant h̄/e2 measured in the quantum Hall effect.

Mode locking occurs in many physical systems. Two pendulum clocks on the wall can
become synchronous due to the weak coupling between them. Pacemaker cells syncronize to
make your heart pump. The Shapiro spikes and steps can be interpreted as mode locking
in the Josephson junction. When the average voltage of the source is close to an integer
multiple of the frequency of the source, 2e〈V 〉 = h̄ω, the Josephson junction tunes in with
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the source.
Shapiro steps have recently been observed in nanotube Josephson junctions [5], super-

conducting nanowires [6] and High-Temperature superconductors with additional interesting
effects. Fractional Shapiro steps have been observed in circuits with several Josephson junc-
tions although all fractions can not be explained.

This fundamental understanding of the phases and currents in Josephson junctions are
important in applications as SQUIDS mentioned in the introduction, which can measure the
magnetic flux and fields precisely. Josephson junctions are further exploited to make flux
Qubits that are essential for superconducting quantum computers. These and many more
applications are outside the scope of this bachelor thesis.
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