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Abstract

Scanning Tunneling Microscopy (STM) has been a success in the study of the electronic struc-
ture of normal metals and cuprate superconductors, and the technique has greatly improved
during the last decade. In a typical STM experiment, a tip is held above the material in vac-
uum and a bias voltage is applied across the tip-material interface. This results in a tunneling
current between the tip and the material, and for STM tips of interest the differential tunneling
conductance dI/dV is proportional to the density of states (DOS) of the material. Thus STM
measurements yield real-space information about the local electronic structure of the material
in question.

The dispersion of Landau and Bogoliubov quasiparticles can be extracted from STM measure-
ments, assuming the sample contains impurities. When quasiparticles scatter off of impurities
elastically in a material, their momentum-space eigenstates interfere, a phenomenon known
as quasiparticle interference (QPI). This interference produces modulations in the DOS of the
material, which is detectable with STM. In the first part of the present thesis, it is found that
the location of these scatterers can be determined uniquely in a metal by injecting a quasipar-
ticle wavepacket, which acts as an echo. The echo time is extracted from the modulations in
the DOS caused by QPI.

In the high-Tc cuprates BSCCO and Na-CCOC, it has been shown experimentally that QPI
is dominated by certain scattering vectors, which is explained theoretically by the so-called
octet model. In the second part we numerically reproduce some of the main features of these
results within a Bogoliubov-de Gennes framework, and use them to investigate how it is pos-
sible to suppress errors in STM measurements due to tip elevation errors.
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1 Introduction

1.1 The tight-binding model

A metal can be described by the tight-binding Hamiltonian operator, which for a two-dimensional
lattice in the simplest case is given by

H = −t ∑
n,δ

c†
ncn+δ − µ ∑

n
c†

ncn. (1.1)

Here c†
n and cn are the usual fermion operators that, respectively, create and annihilate an

electron at site n, and they satisfy
[
c†

n, cn′
]

F = δn,n′ . In this simple model the spinless valence
electrons can only jump from a site n to the nearest neighbor sites n + δ a lattice constant a
away with overlap energy tn,n+δ, and hence δ = ±1. Here tn,n+δ is a measure of the coupling
between a given pair of nearest neighbors, and assumed to be constant for all pairs of nearest
neighbors. In this representation the Hamiltonian has diagonal contributions given by the
on-site energy reference µ.

In our system used to model a metal, shown in appendix A.1, we have employed (1.1) and
the individual sites on a Nx × Ny lattice are labelled as

1 2 . . . Nx

Nx + 1 Nx + 2 . . . 2Nx

. . . . . . . . . . . .

. . . . . . . . . Nx Ny

Figure 1: The labelling of sites on a Nx × Ny lattice.

and it is subject to periodic boundary conditions. The size of a nonmagnetic impurity V at site
m is measured in units of t, and it is described by the Hamiltonian operator

H′ = Vc†
mcm. (1.2)

From now on we work exclusively with square lattices and the case of half-filling (unless
otherwise stated) with a = 1, t = 1. Any impurities are nonmagnetic, repulsive and placed at
the middle.

If the system in figure 1 contains no impurities, it is translationally invariant. In this case the
tight-binding model can be combined with Fourier analysis to calculate the energy spectrum
in k-space. We use a transformation having the form of a discrete Fourier transformation

cn =
1√

Nx Ny
∑
k

eikn ·rn ck, (1.3)
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where the sum runs over the first Brillouin zone, and rn denotes a lattice vector to site n.
Carrying out the transformation for the Hamiltonian operator in (1.1) we obtain

H = − 1
Nx Ny

t ∑
n,δ̂

∑
k,k′

e−ik·rn eik′ ·(rn+δ̂)c†
kck′ −

1
Nx Ny

µ ∑
n

∑
k,k′

e−ik·rn eik′ ·rn c†
kck′ (1.4)

= − 1
Nx Ny

t ∑
k,k′

∑̂
δ

eik′ ·δ̂c†
kck′ ∑

n
e−irn ·(k−k′) − 1

Nx Ny
µ ∑

k,k′
c†

kck′ ∑
n

e−irn ·(k−k′), (1.5)

where δ̂ = {±x̂,±ŷ}. It can be shown rigorously that

∑
n

e−irn ·(k−k′) =

{
0 for k 6= k′

Nx Ny for k = k′,
(1.6)

but we will settle for the argument that the sum averages out to zero for k 6= k′, due to
unit-length rotation in the complex plane. This leads to

H = −t ∑
k,δ̂

eik·δ̂c†
kck − µ ∑

k
c†

kck (1.7)

= −2t ∑
k

(cos kx + cos ky)c†
kck − µ ∑

k
c†

kck (1.8)

= ∑
k

[
−2t(cos kx + cos ky)− µ

]
c†

kck. (1.9)

In k-space the Hamiltonian for a homogeneous system is thus diagonal with the dispersion

εk = −2t
(
cos kx + cos ky

)
− µ. (1.10)

Hence the weaker the overlap, the narrower is the energy band. For a square lattice there
are also four reflection symmetries, four-fold rotation symmetry and inversion. Recalling the
critical relationship between symmetries and degeneracies, we expect degenerate states for the
dispersion relation (1.10).

The matrix H representing the operator (1.1) satisfies the lattice Schrödinger equation
Hψ = Eψ, where the n’th element ψn of ψ is the amplitude of the wavefunction for site
n. A histogram of the eigenvalues of H found numerically will reveal a crude picture of the
DOS for this system, and for the specific case of a homogeneous system one finds figure 2.

-4 -2 0 2 4

0

50

100

150

200

Ω

Figure 2: A histogram of the eigenvalues of H for a homogeneous 60× 60 lattice.
The van Hove singularity is clearly visible, and its position is determined by the
energy reference µ.
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As anticipated, the degenerate eigenenergies are confined to a band of width 8. Now, if
an impurity is present, the eigenenergies are no longer bound to this interval. Furthermore,
depending on the location and amount of impurities, some of the above-mentioned symmetries
are broken while new ones are created, and hence the number of degenerate states reduce. In
the extreme case with complete disorder, the DOS flattens out.

There is no reason for the DOS to be spatially invariant in an inhomogeneous material. E.g.,
in a finite crystal we do not expect the DOS in the bulk to behave the same at the surface. This
leads us to introduce a spatially dependent DOS, the local DOS (LDOS), and the connection
between the LDOS N(n, ω) for site n and the DOS D(ω) for the entire system is given by

D(ω) = ∑
n

N(n, ω). (1.11)

Thus in the case of a homogeneous system, N(n, ω) is proportional to D(ω).

1.2 Quasiparticle interference and STM

According to [Tersoff and Hamann, 1985], the current I at site n with STM bias V is given by

I(n) =
2πe

h̄ ∑
t,ν
|Mt,ν(n)|2nF(εt)(1− nF(εν))δ(εt − εν + eV), (1.12)

where nF is the Fermi function, e the electron charge, t and ν denote the tip and sample
states, respectively, and Mt,ν(n) is the tunnelling matrix element from the tip state t to the
sample state ν at site n. Ideally the tip can be considered as a point source, and in this case
|Mt,ν(n)|2 ∝ |ψν(n)|2, where ψν(n) denotes the eigenfunctions of the sample. Utilizing the
relation ([Andersen, 2004])∫

dω δ(εt + eV −ω)δ(ω− εν) = δ(εt − εν + eV), (1.13)

we obtain at low temperatures, where nF is a step function,

I(n) ∝
∫ ∞

0
∑
ν

dε |ψν(n)|2δ(ε− εν) (1.14)

=
∫ ∞

0
dε N(n, ε), (1.15)

where we assumed a constant DOS for the tip. Note that the expression for the LDOS

N(n, ε) = ∑
ν

|ψν(n)|2δ(ε− εν) (1.16)

is carefully derived below. Thus we conclude that the differential tunneling conductance at
site n is proportional to the LDOS,

dI
dV

(n, ε) ∝ N(n, ε), (1.17)

and this is the relation that allows us to compare our numerically calculated LDOS to STM
measurements.

Real space imaging techniques such as STM are useful for learning about the system,
when crystal defects or impurities are present to break the translational symmetry. To first
order these sources of disorder make eigenstates on the same contour of constant energy
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(CCE) in k-space with different k interfere with a probability according to Fermi’s golden rule
([Bruus and Flensberg, 2004])

Γi→ f = 2π
∣∣〈ψk, f

∣∣V∣∣ψk,i
〉∣∣2D f , (1.18)

where D f is the density of final states. When these mixed states are inserted in (1.16), the
resulting LDOS has modulations with wavevector q = k f inal −kinitial ([Hoffmann et al., 2002]),
which can be observed through (1.17).

These modulations also manifest themselves in energy/time domain, and here their period
can be found from the relation N(rn, ω) ∝ Im GR(rn, rn, ω), which is shown below. Here
GR(rn, rn, ω) is the local single-particle retarded Greens function in frequency domain, and in
time domain GR(rmt, rnt′) gives the amplitude for a fermion to travel from rn at t′ to rm at t. In
the extreme case where GR(rmt, rnt′) as a function of time is given by δ(t−T), GR(rn, rn, ω) will
be proportional to exp(iTω). In the actual case there is a sharp peak at time T, which is why
the Fourier component exp(iTω) dominates. This in turn produces modulations in N(rn, ω)
with period ∆ω = 2π/T, and this prediction is proven analytically in [Hoffmann et al., 2002].

2 Echolocation in metals

2.1 Basic principles

Echolocation refers to finding the position of an object by measuring the time for an echo to
return. In our model the STM tip injects an electron wavepacket at time t = 0 at a point r in a
two-dimensional lattice, which spreads outwards at the group velocity

vg(k) =
1
h̄
∇kεk, (2.1)

where εk = h̄ω is the dispersion of the quasiparticles. From now on we set h̄ = 1. When
the wavepacket reaches an impurity at point r0, it scatters elastically and hence the reflected
wavepacket echoes at the time

T = 2
|r0 − r|
vg(k)

(2.2)

for the k satisfying vg(k) ‖ r0− r. Hence we can locate the scatterer after extracting the period
T of the impurity-induced modulations in N(r, ω).

Since the oscillations have small amplitude, they are best visualized by working with
δN(n, ω), the difference between the dirty and clean LDOS. For an energy ω, we define
∆ω(ω)/2 as the distance between the zeroes that bracket ω in δN(n, ω). After extracting
T(ω) from δN(n, ω), the set {

vg(k)T
2

: εk = ω

}
(2.3)

will define a locus of possible impurity locations, cf. (2.2). By performing STM measurements
at multiple sites, the intersection of these loci will locate the scatterer uniquely. Before we can
proceed any further, we need to derive an expression for N(n, ω).
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2.2 Deriving the local density of states

Operators bilinear in the creation and annihilation operators are single particle operators, and
hence describe a non-interacting system, i.e. free particles. Generally the Hamiltonian for free
fermions is thus represented by

H = ∑
i,j

c†
i Hijcj = c†Hc, (2.4)

which is always diagonalizable. Since the fermions in our system are not interacting with any
external time-dependent potential, (2.4) is time-independent.

In the Lehmann representation, the spectral function A for a quantum state ν is defined as
A(ν, ω) ≡ −2 Im GR(ν, ω), and for spinless fermions in real-space GR is given by

GR(rmt, rnt′) = −iθ(t− t′)
〈[

cm(t), cn(t′)†
]

F

〉
. (2.5)

Here the Heisenberg picture is used, and hence all time-dependence is transferred to the
operators such that state-vectors are left time-independent. Recalling the interpretation of GR,
it is also referred to as a propagator.

In its eigenbasis (2.4) is written as

H = ∑
ν

ενc†
νcν, (2.6)

where εν are the eigenvalues of H. The equation of motion for GR for a non-interacting system
in this diagonal basis is in frequency domain given by ([Bruus and Flensberg, 2004])

∑
ν′′

δν,ν′′(ω + iη − εν)GR(ν′′, ν′, ω) = δν,ν′ . (2.7)

The positive infinitesimal η → 0+, besides ensuring the existence of GR(ν′′, ν′, ω), introduces
the concept of self-energy. As usual we define the inverse Green’s function as

(GR)−1(ν, ν′′, ω) = δν,ν′′(ω + iη − εν), (2.8)

and with this definition (2.7) can be regarded as the matrix equation (GR)−1GR = I, where
(2.8) denotes the element (GR)−1

ν,ν′′ of the matrix (GR)−1. The Green’s function GR(ν, ω) is the
diagonal elements of GR, and hence they are found by inverting (GR)−1, which simply results
in

GR(ν, ν′′, ω) =
1

ω− εν + iη
δν,ν′′ (2.9)

since (GR)−1 is diagonal. Now, using the well-known identity

Im
1

(ω− εν)± iη
= ∓πδ(ω− εν), (2.10)

summing the corresponding spectral function over ν-states results in

∑
ν

A(ν, ω) = ∑
ν

−2 Im GR(ν, ω) (2.11)

= 2π ∑
ν

δ(ω− εν) (2.12)

= 2πD(ω) (2.13)
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and hence

D(ω) = − 1
π ∑

ν

Im GR(ν, ω). (2.14)

Strictly speaking, in our case D(ω) is the density of one-particle states, since we are dealing
with fermions. The result (2.14) is true for any non-interacting system, and using this relation
we can derive an expression for N(n, ω).

Letting the unitary matrix U have the normalized eigenvectors of H as columns, the trans-
formation needed to represent (2.4) in its eigenbasis is found by looking at

H = c†Hc = c†UU†HUU†c (2.15)

= γ†Eγ, (2.16)

where E = U†HU is diagonal. The vector of fermion operators c is thus transformed as
c = Uγ. This transformation yields

GR(rmt, rnt′) = −iθ(t− t′)
〈[

cm(t), c†
n(t′)

]
F

〉
(2.17)

= −iθ(t− t′)
〈

cm(t)c†
n(t′) + c†

n(t′)cm(t)
〉

(2.18)

= −iθ(t− t′)δm,n

〈
∑
p,q

Umpγp(t)γ†
q(t′)U†

qn + ∑
p,q

γ†
q(t′)U†

qnUmpγp(t)

〉
(2.19)

= −iθ(t− t′)δm,n ∑
p,q

UmpU†
qn

〈
γp(t)γ†

q(t′) + γ†
q(t′)γp(t)

〉
. (2.20)

In the Heisenberg picture the time evolution of the creation and annihilation operators for (2.6)
is given by

cν(t) = e−iενtcν (2.21)

c†
ν(t) = e+iενtc†

ν. (2.22)

Utilizing (2.21) and (2.22) we obtain

GR(rmt, rnt′) = −iθ(t− t′)δm,n ∑
p,q

UmpU†
qn

〈
e−iεpteiεqt′

(
γpγ†

q + γ†
q γp

)〉
(2.23)

= −iθ(t− t′)δm,n ∑
p,q

UmpU†
qn

〈
e−iεpteiεqt′

[
γp, γ†

q

]
F

〉
(2.24)

= −iθ(t− t′)δm,n ∑
p,q

UmpU†
qn

〈
e−iεpteiεqt′δp,q

〉
(2.25)

= −iθ(t− t′)δm,n ∑
p

UmpU†
pne−iεp(t−t′), (2.26)

from which we see that the free fermion propagator only depends on the time difference t− t′

in this representation. Setting t′ = 0, the transformation to frequency domain is given by

GR(rn, ω) = −i
∫ ∞

0
dt ei(ω+iη)t

(
∑
p
|Unp|2e−iεpt

)
(2.27)

= ∑
p

|Unp|2

ω− εp + iη
, (2.28)

and here the self-energy is used again to ensure the integrability of the integrand.
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Since U is orthonormal, the expression (2.28) indeed satisfies (2.14), as expected. Hence
from (1.11) we conclude that the LDOS N(n, ω) is given by

N(n, ω) = − 1
π

Im GR(rn, ω) (2.29)

= − 1
π ∑

p
Im

|Unp|2

ω− εp + iη
, (2.30)

where we keep in mind that Unp is the amplitude of the wavefunction p at the site n. From
now on we will denote the position of a site by r, where the nonmagnetic impurity is given by
V(r) = 6tδ(r), and we look at 60× 60 systems with η = 0.15 unless otherwise stated. Further
below we discuss how a reasonable value of η is determined. For a homogeneous system, a
plot of (2.30) results in figure 3.

-5 0 5
0

0.05

0.15

0.25

Ω

NHr, ΩL

0.10

0.20

Figure 3: The LDOS at an arbitrary site r for
a homogeneous system.
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0.05

0.15

0.25
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NH-1, -1, ΩL

0.10

0.20

Figure 4: The LDOS at r = (−1,−1)T for an
inhomogeneous system.

From (1.11) we notice that in this case the DOS for the entire system is identical to figure
3 multiplied by the total number of sites, and hence it is has a “tent”-form as expected, cf.
figure 2. The smoothness of the curve is governed by the self-energy η, since it is responsible
for the Lorentz-broadening of the spectral function A through equations (2.10) and (2.11). This
broadening explains why the DOS expands outside the permitted interval.

In the inhomogeneous case we obtain figure 4. Integrating (2.30) in the limit η → 0+ yields∫ ∞

−∞
dω N(n, ω) = ∑

p

∫ ∞

−∞
dω |Unp|2δ(ω− εp) (2.31)

= 1, (2.32)

and for figure 3 and 4 numerical integration yields 0.99. Hence this normalization condition is
satisfied in these cases even though we are using a finite value of the self-energy.

The position of the secondary van Hove singularity centered approximately around V in
figure 4 can also be calculated explicitly. First we recall that the poles of GR determine the
eigenenergies of the Hamiltonian, cf. (2.9). Our Green’s functions satisfy the Dyson equation

GR(r, r′, ω) = GR
0 (r− r′, ω) + GR

0 (r− r′′, ω)V(r′′)GR(r′′, r′, ω), (2.33)

where GR
0 is the Green’s function for the unperturbed system. Taking r = r′ = 0 yields

GR(0, r′, ω) = GR
0 (−r′, ω) + GR

0 (0, ω)VGR(0, r′, ω) (2.34)

=
GR

0 (−r′, ω)
1−VGR

0 (0, ω)
. (2.35)
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Inserting this expression in (2.33) with r′′ = 0 gives us another expression for the full Green’s
function

GR(r, r′, ω) = GR
0 (r− r′, ω) +

GR
0 (r, ω)VGR

0 (−r′, ω)
1−VGR

0 (0, ω)
(2.36)

≡ GR
0 (r− r′, ω) + GR

0 (r, ω)T(ω)GR
0 (−r′, ω), (2.37)

where we have defined the T-matrix. None of the original poles of GR
0 will remain poles of GR

in (2.36) (see e.g. [Marder, 2000] or [Balatsky et al., 2006]), so any remaining poles are due to

1−VGR
0 (0, ω) = 0, (2.38)

which determines the energy eigenvalues of the impurity Hamiltonian. Thus from (2.37) we
see that generally the effects of a single impurity are related to the properties of the corre-
sponding T-matrix. Figures 5 and 6 show Re GR

0 (0, ω) and Im GR
0 (0, ω), respectively. The

values ω = 0.25 and ω = 6.68 satisfy 1− V Re GR
0 (0, ω) = 0, and constitute potential poles.

Disregarding the broadening in figure 6, we see that only ω = 6.68 satisfies V Im GR
0 (0, ω) = 0,

and hence this is the only pole of (2.37). This determines the position of the secondary van
Hove singularity in the limit η → 0+.

-2 0 2 4 6
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-0.6

-0.4

-0.2

0
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0.4

Ω

Re G0
RH0, ΩL

Figure 5: A plot of Re GR
0 (0, ω).
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Figure 6: A plot of Im GR
0 (0, ω).

The results obtained so far can be compared to results obtained from the expression (2.37).
In k-space we have

GR
0 (k, ω) =

1
ω− εk + iη

, (2.39)

where εk is given by (1.10), and transforming to real-space yields

GR
0 (r, ω) =

1
Nx Ny

∑
k

1
ω− εk + iη

eik·r. (2.40)

By dividing the first Brillouin zone into a 60× 60 mesh, and using (2.36) and (2.40) to find the
LDOS via (2.30) we obtain figure 7. The minuscule difference between figure 7 and 4 is caused
by the periodic boundary conditions in our model.
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Figure 7: A plot of N(−1,−1, ω) obtained
from (2.36).
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Figure 8: A plot of N(r, 6.68) obtained from
(2.36).

We know that the impurity introduces new states around ω = 6.68. From figure 8 we see
that the clean and dirty LDOS only differ at sites close to the origin, and hence the effects of
an impurity on the LDOS decay quickly with increasing r. From this we can conclude that the
dirty DOS will look like the clean DOS, only with a small kink at ω = 6.68.

2.3 Estimating the self-energy

We recall that η turns our spectral function into a Lorentz-distribution with FWHM 2η, and
hence if η is too small, finite-sized noise will prevent us from finding ∆ω/2. If η is too large, it
will smear out the natural modulations caused by the impurity, and this is illustrated in figure
9. Even though it is not clear from the figures, ∆ω/2 does change as expected.
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(a) η = 0.05
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(b) η = 0.15
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(c) η = 0.30
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(d) η = 0.60

Figure 9: The behavior of the modulations δN(8, 8, ω).

Generally we are interested in using the smallest possible value of η, since it induces an
uncertainty in the locus of possible impurity locations δR through δ(∆ω/2). This can be seen
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by looking at the uncertainty in the period T, which is given by

δT =
π

(∆ω/2)2 δ(∆ω/2). (2.41)

The distribution of the eigenenergies has to be considered when estimating a value for η,
and this in turn is connected to the size of the lattice Nx Ny. If Nx Ny is large enough for the
eigenenergies in the vicinity of the homogeneous interval to be somewhat equidistant, then
the smallest possible η is of the order 8t/Nx Ny.

However, the resolution of the eigenvalues of our system is not large enough for them to
be somewhat equidistant, so η has been estimated by finding the largest difference Γ between
adjacent eigenvalues. This value can be minimized by recalling that we are only interested
in the ∆ω/2 satisfying the condition (2.3), so we only have to consider the distances between
adjacent eigenvalues in an interval around the energy satisfying the condition, which yielded
η = 0.15 for the 60× 60 lattice.

2.4 Echolocations

For the CCE ε(k) = −0.7, we have made the following measurements

r1 = (−5, 1)T : (∆ω/2)1 = 0.51 and T1 = 6.20

r2 = (4, 5)T : (∆ω/2)2 = 0.72 and T2 = 4.35

r3 = (−3,−3)T : (∆ω/2)3 = 0.97 and T3 = 3.23,

(2.42)

(2.43)

(2.44)

and from these the loci of possible impurity locations is found by utilizing the condition (2.3).
The numerical procedure is shown in appendix A.3.
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Figure 10: The loci of possible impurity loca-
tions around three tip positions.
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Figure 11: A closer view at the intersection
of the loci.

This CCE is chosen in order to get the smoothest loci, i.e. here the set (2.3) has solutions
in all directions. The lack of solutions for some energy contours explains why the loci change
with ω, as mentioned in [Pujari and Henley, 2009].
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The first thing we notice in figure 11 is the missing intersection, and it is found that the
periods

T′1 = 5.52 (2.45)

T′2 = 4.65 (2.46)

T′3 = 3.05 (2.47)

would correspond to an intersection at r = 0. Recalling the above discussion on η, it is natural
to attribute the lack of intersection to the uncertainty δT. In order to verify this assumption,
we can use (2.36) and (2.40) to look at large systems, in which δT should be minimized since
η is small. By dividing the first Brillouin zone into a 500× 500 mesh and choosing η = 0.005
we find

T′′1 = 6.25 (2.48)

T′′2 = 4.99 (2.49)

T′′3 = 3.17. (2.50)

Thus the uncertainty induced by η is minimal, and does not explain figure 11, contrary to
our expectations. The only explanation left is that our choice of η is not optimal, and that the
method by which we have estimated η is only approximative. Hence a more thorough analysis
is needed in order to determine an optimal value.

One might also argue that the periodic boundary conditions introduce noise in ∆ω/2
through peaks in |GR(rn, rn, t)| from other scatterers, but we have deliberately chosen to look
at sites in the vicinity of the origin in order to minimize this effect. Also, looking at e.g. r1, the
second closest impurity is 55 sites away, and vg = 1.64 in this direction, which gives the period
T = 66.8. The factor exp(−Tη) in |GR(rn, rn, t)| is so small that it is not likely that the induced
noise can explain the discrepancy between (2.42)-(2.44) and (2.45)-(2.47). In order to be certain
that this effect has indeed been minimized, we would have to investigate even larger systems.

However, we will not go deeper into these matters, but emphasize the fact that echolocation
of impurities in metals is shown to be theoretically possible.

2.5 Optimizing numerical calculations

The most memory demanding calculation done with the code in appendix A.1 is the diag-
onalization of the Hamiltonian. In order to investigate large lattices (Nx = Ny ? 100), one
could either diagonalize the corresponding Hamiltonian on a system that meets this memory
demand, or one could optimize the diagonalization. The latter can be done by realizing that,
according to (2.12), we only have to consider the eigenvalues in an interval surrounding the
energy satisfying (2.3) in order to find ∆ω/2. The further away we probe, the smaller part of
the spectrum is needed.

Arnoldi iteration is a technique to find the largest eigenvalue and corresponding eigenvec-
tor of a general matrix A, and this method can be used to find the specific part of the spectrum.
A certain eigenvalue of A can be found by applying Arnoldi iteration to the matrix (A− σI)−1,
where the shift σ is a number close to the desired eigenvalue ([Lehoucq et al., 1997]). From

(A− σI)−1ψ = λψ (2.51)

we see that if λ is a large eigenvalue of (A− σI)−1, then σ + λ−1 is an eigenvalue of A close
to σ.

11



However, our calculations were done using the whole spectrum, but this is an obvious
extension of our model in appendix A.1.

3 Superconductors

Echoes in cuprate superconductors can potentially reveal the nature of the scatterer in the sam-
ple ([Pujari and Henley, 2009]). However, we will not pursue the rather straightforward matter
of extending our echo analysis to high-Tc cuprates, but instead make use of our framework to
investigate how to suppress errors due to STM tip alignment in these systems.

3.1 Formalism

In the case of d-wave superconductors, the Hamiltonian for the system becomes

H = H0 + ∑
n,δ′′

(
∆n,n+δ′′ c

†
n,↑ c†

n+δ′′ ,↓ + ∆∗n,n+δ′′ cn,↓ cn+δ′′ ,↑
)

. (3.1)

Here δ′′ refer to the nearest neighbors, and ∆ is the size of the gap that opens to single par-
ticle excitations. Because of the d-wave nature, ∆n,n±1x = −∆n,n±1y , and in our model |∆| is
assumed to be the same for all pairs of nearest neighbors.

The term H0 is given by (1.1), but now includes next-nearest neighbor coupling with over-
lap energy t′, i.e.

H0 = −t ∑
n,δ

c†
ncn+δ − t′ ∑

n,δ′
c†

ncn+δ′ − µ ∑
n

c†
ncn (3.2)

where δ′ denotes next-nearest neighbors, and transforming to k-space using (1.3) yields

εk = −2t
(
cos kx + cos ky

)
− 4t′ cos kx cos ky − µ. (3.3)

The last term in H is the d-wave BCS term, and writing H as H = c†Hc, we see that the
vector of fermion operators c is no longer given by c† = (c†

1, c†
2, . . . , c†

N), which was the case
with metals, but is now c† = (c†

1,↑, c†
2,↑, . . . , c†

N,↑, c1,↓, c2,↓, . . . , cN,↓). Here H is the mean-field
Bogoliubov-de Gennes Hamiltonian and partitioning it in four N × N blocks,

H =

(
H11 H12

H21 H22

)
, (3.4)

we have that H11 = −H22 = H0 and H†
12 = H21. In the homogeneous case, a tranformation to

k-space yields a diagonal Hamiltonian with the dispersion ([Annett, 2004])

Ek = ±
√

ε2
k + ∆2

k, (3.5)

where εk is given by (3.3) and ∆k = 2∆(cos kx − cos ky) is the k-dependent energy gap at the
Fermi surface. The dispersions of ∆k and for next-nearest neighbor coupling are easily derived
by the use of the transformation (1.3).
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3.2 Deriving the local density of states

In order to represent (3.1) in its eigenbasis, we make use of the Bogoliubov transformation
c = Uγ−Vγ†, where the vectors up and vp satisfy the Bogoliubov-de Gennes equations

H

(
up

vp

)
= Ep

(
up

vp

)
. (3.6)

The new quasiparticles described by the operators γ, γ† are called Bogoliubov quasiparticles,
and Ep is the energy needed to create excited states by adding these quasiparticles to the BCS
ground state |BCS〉, which is their vacuum state. As usual, normalization of |BCS〉 requires
|up|2 + |vp|2 = 1. Carrying out the Bogoliubov transformation for the retarded Green’s func-
tion (2.5) yields

GR(rmt, rnt′) = −iθ(t− t′)δm,n

(
∑
p,q

UmpV†
qn
(
γp(t)γq(t′) + γq(t′)γp(t)

)
+

∑
p,q

UmpU†
qn
(
γp(t)γ†

q(t′) + γ†
q(t′)γp(t)

)
−

∑
p,q

VmpV†
qn
(
γ†

p(t)γq(t′) + γq(t′)γ†
p(t)

)
−

∑
p,q

VmqU†
qn
(
γ†

p(t)γ†
q(t′) + γq(t′)γ†

p(t)
))

= −iθ(t− t′)δm,n

(
∑
p,q

UmpV†
qne−iεpte−iεqt′[γp, γq

]
F +

∑
p,q

UmpU†
qne−iεpteiεqt′[γp, γ†

q
]

F −

∑
p,q

VmpV†
qneiεpte−iεqt′[γ†

p, γq
]

F −

∑
p,q

VmqU†
qneiεpteiεqt′[γ†

p, γ†
q
]

F

)
= −iθ(t− t′)δm,n

(
∑
p,q

UmpU†
qne−iεpteiεqt′δp,q +

∑
p,q

VmpV†
qneiεpte−iεqt′δp,q

)
.

(3.7)

(3.8)

(3.9)

Taking m = n and t′ = 0, the transformation to frequency domain yields

GR(rn, ω) = ∑
p

( |Unp|2

ω− εp + iη
+

|Vnp|2

ω + εp + iη

)
. (3.10)

Using (2.14) we now have an expression for the LDOS, and it is shown in figure 12 for a
homogeneous 30× 30 system with η = 0.125 and ∆ = 0.2t, where the energy is measured from
the Fermi level. We clearly see the the two van Hove singularities, BCS coherence peaks, in the
homogeneous case.

13



-2 -1 0 1 2
0

0.2

0.4

0.6

0.8

Ω

NHr, ΩL

Figure 12: The LDOS at an arbitrary site r.
The peaks occur at ω = ±0.8.
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Figure 13: The LDOS at r = 0 for a system
with V = 10t.

The positions of the two coherence peaks are determined by v−1
g = |∇kεk|−1 → ∞, which

follows from the general expression for the DOS,

D(ω) ∝
∫

dk δ(εk −ω)
1

|∇kεk|
. (3.11)

The values kx = mπ, ky = nπ for m, n ∈ {−1, 0, 1} satisfy this limit, which correspond to the
positions Ek = ±4∆. When an impurity at r = 0 is present, the coherence peaks are suppressed
meaning superconductivity is locally destroyed, see figure 13. These results are identical to
the ones obtained by looking at e.g. optimally doped BSCCO with Zn atoms swapped for Cu
([Andersen, 2004]).

The location of the van Hove singularity in figure 13 can be found analogously as in the case
with figure 4, since the same formalism applies to our non-interacting Bogoliubov quasiparti-
cles. In terms of the Nambu spinor ψ†

k = (c†
k,↑, c−k,↓), the Green’s function for the unperturbed

system in Matsubara representation is given by (see e.g. [Andersen, 2004])

GR
0 (rn, ω) = ∑

k

i(ω + iη)τ0 + εkτ3 + ∆kτ1

[i(ω + iη)]2 − ε2
k − ∆2

k
exp(ik · rn), (3.12)

where τ0 is the 2 × 2 identity matrix and τ1,τ2 and τ3 denote the Pauli spin matrices, re-
spectively. The poles of GR

0 (r, ω)T(ω)GR
0 (−r′, ω) will again determine the singularity, and in

[Andersen, 2004] it is argued that the peak is determined by 1−VGR
0,11(0, ω). By dividing the

first Brilliouin zone into a 30× 30 mesh, the location is found to be ω = −0.01.

3.3 The octet model

In this case the CCE are banana shaped, as shown in figure 14. Note that the CCE at Ek = 0
consist of four nodal points in the (±π,±π) directions, since ∆k possesses d-wave symmetry
and vanishes there.

Each of the four “bananas” exhibit the largest rate of increase with energy near their two
tips. Thus, according to (3.11), the largest contribution to the DOS comes from the eight tips
k1, k2, . . ., k8, which is the octet. This means a quasiparticle in momentum-space located
near one of the eight tips will most likely be elastically scattered to another tip with scattering
vector q = k f inal − kinitial , because of the large density of final states there, cf. (1.18). Note that
the “bananas” track the normal state Fermi surface in figure 14 ([Hanaguri et al., 2007]), and
in figure 15 the end points of the scattering vectors are found by mirroring each of the original
seven vectors in the symmetry planes of the Brillouin zone.
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Figure 14: CCE in k-space for a d-wave
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lying (dashed) normal-state Fermi surface
(εk − µ = 0), and the seven distinct scatter-
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ing vectors q representing the octet model
shown in figure 14. Note that q2 is degen-
erate with q6.
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There are seven possible qi (i ∈ {1, 7}) from one of the octet ends, and hence a total of
32 q may be observed in the norm of the Fourier transformed conductance map g(q, ω) ≡
dI(q, ω)/dV, where 16 of them are independent. Thus, if this quasiparticle interference model
is correct, there should be 16 distinst local maxima in |g(q, ω)|, which would indicate that
coherent Bogoliubov quasiparticles and the underlying d-wave gap indeed exist.

These scattering vectors have indeed been verified experimentially in the cuprates BSCCO
and Na-CCOC by [McElroy, 2005] and [Hanaguri et al., 2007], respectively, indicating the ex-
istence of well-defined Bogoliubov quasiparticles in these materials. The technique of probing
the LDOS by looking at |g(q, ω)| is called Fourier transform scanning tunneling spectroscopy
(FT-STS).

The dispersion of the peaks at qi allows one to extract the shape of the underlying Fermi
surface, alongside other methods such as de Haas-van Alphen and Shubnikov-de Haas mea-
surements. This is done by utilizing relations between the normal state Fermi surface ks =
(kx, ky)T and q found in e.g [McElroy, 2005]. Now, using the realistic parameters t′ = −0.3t,
µ = −1t, ∆ = 0.2t and V = 0.1t, we show the numerically found conductance maps with
increasing ω in figure 16 for a 61× 61 system, which we will be looking at from now on. The
curved ellipses in figure 14 grow with increasing energy, which means that e.g. q7 also dis-
perses to higher momenta with increasing energy. This is also seen to be the case in figure 16,
where the q = 0 component has been subtracted for clarity. Its magnitude measured from the
CCE is given for comparison. The system is not that sensitive to the self-energy as in the case
with echolocation in metals, but we naturally have to choose an η such that Γ < η < ∆, which
is why η = 0.075. Here Γ again denotes the largest distance between adjacent eigenvalues.

The conductance map is the amplitude of

g(q, ω) = ∑
R

eiq·Rg(R, ω), (3.13)

where q = (m, n)T2π/Nx with {(m, n) ∈ Z | − Nx ≤ (m, n) ≤ Nx} and R denote site posi-
tions. As is evident from the inverse of (3.13), the map should have zero amplitude for all
nonzero q when V = 0, which is also the case for our system.
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(c) |g(q, 0.7)| and q7 = 2.53

0.3 0.4 0.5 0.6 0.7
0

1

2

3

4

Ω

q7

(d) q7 versus ω.

Figure 16: Part 16a-16c shows conductance maps for a d-wave superconductor in
the first Brilliouin zone in the presence of a single weak, nonmagnetic impurity.
The red regions show higher values. Part 16d shows the dispersion of the q7

peak measured from the preceding maps.

The CCE in figure 14 have been used in order to identify the peaks in figure 16a-16c. The
scattering vector q7 positioned along [π, π] is easy to identify, in contrast to q1, q4 and q5,
which are hardly identifiable. This is because they are enhanced by other scattering channels1

than the ones in our system ([Nunner et al., 2006]). E.g. an applied magnetic field will en-
hance q1, q4 and q5 in the weak impurity limit, according to [Pereg-Barnea and Franz, 2008].
From figure 14 we see that these should disperse to lower, higher and higher momenta with
increasing energy, respectively. Note that the CCE in figure 14 will at some point slam into
the edge of the first Brillouin zone, which is the point where our analysis breaks down. The
energies we probe at are below this critical value.

For lower energies our peaks are seen to be arclike structures, especially at large momen-
tum. This is in contrast to experimental features, which appear as roughly round spots, as is
also noted in [Nunner et al., 2006]. This implies that the octet model, as presented here, does
not work quantitively, but serves mainly as a model to interpret our QPI patterns.

1Since our scatterer can be written as H′ = Vψ̂†
kτ3ψ̂k in Nambu space, it is denoted a pointlike τ3 disorder.
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3.4 Enhancing QPI patterns

Now, [Hanaguri et al., 2007] recently measured the ratio of differential conductances at oppo-
site bias given by

Z(r, ω) ≡ g(r, ω)
g(r,−ω)

. (3.14)

During topographic scans the tip-sample distance varies with r if the electronic state is not
uniform, which means that g(r, ω) for some fixed energy contains errors associated with the
variations in the tip-sample distance. However, they claim that these severe systematic errors
cancel out when looking at the ratio in (3.14). To investigate this, we look at the corresponding
ratio maps shown in figure 17 for the measurements in figure 16.
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Figure 17: Ratio maps at increasing bias for a weak pointlike scatterer.

We notice that all the octet peaks are retained in the ratio maps in figure 17a-17c, which
strongly indicates that the modulations in Z(r, ω) originate from QPI alone in our model.
There are some “background” features in figure 16a-16c, i.e. regions in q-space of high in-
tensity other than the octet peaks, which is also mentioned in [Nunner et al., 2006]. Many of
these regions are seen to disappear in the corresponding ratio maps, in which the octet peaks
are also enhanced, which illustrates the usefulness of this ratio in the weak impurity limit.
However, it should be noted that the predicted noise in the conductance map is not observed
experimentially. We notice that the q7 peaks in this limit appear only as tiny spots at low bias
in both types of maps, which is also in agreement with [Nunner et al., 2006].

17



Besides these features, [Hanaguri et al., 2007] have used FT-STS to reveal nondispersive
peaks in various materials originating from so-called “checkerboard” (CB) modulations in
real-space. We will not go into the origin of these modulations, but [Hanaguri et al., 2007]
show that the nondispersive peaks almost completely disappear when looking at |Z(q, ω)|,
which is yet another interesting property of the conductance-ratio.

In the case where V = 10t, i.e. where the impurity is the dominating energy scale, we find
the conductance maps shown in figure 18a-18c and the corresponding ratio maps in 18d-18f.
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Figure 18: The top row shows conductance maps with increasing bias with a
strong pointlike τ3 scatterer alongside with an extended τ3 scatterer, and the
bottom row shows the corresponding ratio mapsx.

Looking at figure 18a-18b, the first thing we notice is that q7 is not as identifiable in the con-
ductance maps as in the case with a weak impurity. This is explained by [Nunner et al., 2006],
who mention that calculations for a strong pointlike τ3 impurity predict strong weight for large
scattering vectors at lower bias. Indeed, the amplitude of the q7 peaks in these figures are of
the same order as in figure 16a-16b, so q7 is not suppressed in these cases. Also we notice
that the noise is increased in the conductance maps, especially around the origin. Hence the
dispersion of the peaks is not as clear as in the corresponding ratio maps, which also contain
more noise than in the weak scattering limit. Furthermore, the fact that noise is present in
our conductance maps regardless of the impurity strength confirms yet another statement in
[Nunner et al., 2006].

The intense horizontal and vertical peaks in figure 18c actually coincide with q1. But the
diagonal, small momentum peaks are intense noise, which renders it difficult to determine
whether or not q1 really does appear. The ratio map is seen to contain much noise as well,
and actually only q3 is clearly visible (at the edges of the first Brillouin zone). It seems that
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the ratio map in this limit displays QPI pattern best at lower bias.
It would be interesting to investigate the origin of the noise in our model in the strong

impurity limit, especially why it is more intense at the origin in both |g(q, ω)| and |Z(q, ω)|.
Furthermore to determine whether or not q1 is actually enhanced by a strong impurity at high
bias. However, such tasks are beyond the scope of this present thesis.

Instead we will investigate a remark by [Nunner et al., 2006], namely that the addition of
spatially weak extended τ3 scatterers will enhance and broaden q7. They model the extended
scatterer by a Yukawa potential, but we will settle for an exponentially decaying potential
normalized to 0.1t at its randomly chosen positon r0. Placing a pointlike strong τ3 scatterer
V(r) = 10tδ(r) alongside this yields the maps in figure 19.
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Figure 19: The top row shows conductance maps with increasing bias with a
strong pointlike τ3 scatterer alongside with an extended τ3 scatterer, and the
bottom row shows the corresponding ratio maps.

It is clear that the q7 peaks are indeed more pronounced in the conductance maps than in
figure 18a, and that they appear more as broad spots, in contrast to the tiny spots in figure
16a, which agrees with [Nunner et al., 2006]. This enhancement is also apparent in the corre-
sponding ratio maps, which is yet another indication of the usefulness of the ratio map in this
limit. However noise at the origin is still an issue. Furthermore, by measuring q7 from the
ratio maps we find q7 = 0.93 and q7 = 1.23 with increasing energy, so they do indeed disperse
to higher momentum.
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3.5 Conclusion

These observations allow us to state that provided the conductance map in our model is dom-
inated by octet peaks, the ratio map will contain them too in the weak impurity limit. In the
strong impurity limit heavy noise is induced in the ratio map, rendering it difficult to locate
the octet peaks, especially at high bias. However, the pronunciation and dispersion of q7 in
the ratio map by the addition of the extended τ3 scatterer at low bias indicates that it really is
a more generic parameter in this case as well. As mentioned, the predicted noise has not been
verified experimentially, and hence it might be reduced by making our system more realistic.
This would enable us to decisively determine if the ratio map is as useful here as in the weak
impurity limit.
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4 Summary

We have introduced the phenomenon of QPI, and shown that it is theoretically possible to
extract the location of scatterers through modulations in the LDOS caused by QPI in metals.
However, in our approach a more careful method of estimating the self-energy is needed,
which is reasonable since we have seen how it is directly responsible for the behavior of the
modulations.

It is important to notice that the technique is based on the same QPI as already observed ex-
perimentially, which indicates that the modulations in the LDOS are observable as well. How-
ever, real STM measurements will most likely contain a superposition of modulations from
several scatterers, and hence it is necessary to devise a method of separating these contribu-
tions before it can potentially aid the study of metals and cuprate superconductors, alongside
other methodes such as FT-STS. As noted by [Pujari and Henley, 2009], echo analysis can be
done in small areas of the sample, which means the existance of QPI can be verified locally.
This is unlike FT-STS, which probes over a larger region.

Our Bogoliubov-de Gennes system agrees quantitatively with the octet model in the weak
impurity limit, and the differential tunneling conductance ratio is seen to be a more generic
parameter than the differential tunneling conductance in this case. In the strong impurity limit
at low bias, the enhancement and visible dispersion of q7 by the addition of an extended τ3

scatterer indicates that the ratio map is also useful in this case. Such a claim cannot be made
in the high bias case before the severe background noise is reduced.

It is important to keep in mind that our model does not mimic a realistic system in the
sense that it only contains a single spin-independent, nonmagnetic impurity. Nevertheless,
it can be extended to investigate phenomena such as CB modulations by adding more disor-
der components, and by including other scattering channels such that q1, q4 and q5 can be
enhanced.
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5 Summary in Danish

Vi har introduceret begrebet QPI, og vist at det er teoretisk muligt at lokalisere urenheder i
metaller udfra modulationerne i LDOS induceret af QPI. Dog kræver vores fremgangsmåde
en noget mere detaljeret metode til at estimere selv-energien, hvilket stemmer overens med at
den har stor indflydelse på modulationernes opførsel.

Det er vigtigt at bemærke, at teknikken er baseret på allerede observeret QPI, hvilket indik-
erer, at modulationerne i LDOS også er observérbare. Dog vil rigtige STM målinger sandsyn-
ligvis indeholde en superposition af modulationer fra mange urenheder, hvorfor det er nød-
vendigt at finde en metode til at separere disse bidrag, før teknikken potentielt kan bidrage til
undersøgelsen af metaller og superledende kuprater, som eksempelvis FT-STS gør det. Som
nævnt i [Pujari and Henley, 2009], kan ekko analyse foretages i små områder af prøven, hvilket
betyder at eksistensen af QPI kan bekræftes lokalt. Dette er i modsætning til FT-STS, som måler
over et større område.

Vores Bogoliubov-de Gennes system passer kvantitativt med oktet modellen i tilfældet med
en svag urenhed, og differential tunnelering konduktans forholdet ses at være en mere præcis
parameter end differential tunnelering konduktansen i dette tilfælde. I tilfældet med en kraftig
urenhed og ved lav energi, så indikerer forstærkelsen og dispersionen af q7 i tunnelering kon-
duktans forholdet ved tilføjelsen af en rumligt udvidet τ3 urenhed, at dette forhold også er en
brugbar størrelse i denne grænse. Der kan ikke siges noget entydigt i høj-energi grænsen, før
den kraftige baggrundsstøj reduceres.

Det er vigtigt at huske på, at vores model ikke efterligner et realistisk system i den forstand,
at vores system kun indeholder en spin-uafhængig, ikke-magnetisk urenhed. Ikke desto min-
dre kan systemet udvides, således andre fænomerne såsom CB modulationer kan undersøges
ved at tilføje flere uordens komponenter, og ved at inkludere andre spredningskanaler kan q1,
q4 and q5 forstærkes.
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H∗∗ PROCEDURE TO GENERATE TIGHT−BINDING HAMILTONIAN ∗∗L
coupleMetal @nx_, µ_, t_, tprime_, impuritysize_, impuritysite_, nnn_ D : = I

H∗∗ BEGIN NEAREST NEIGHBOR COUPLING∗∗L
fill @i_, j_ D : = If @j � i, −µ ,

If @j � i + nx, − t,

If @j � i − nx, − t,

If @j � i + 1, − t,

If @j � i − 1, − t, 0.0 DDDDD;

H∗∗ COUPLE SITES TO "APPARENT" NEAREST NEIGHBORS∗∗L
lattice = Table @fill @m, nD, 8m, nx ∗ nx<, 8n, nx ∗ nx<D ;

lattice @@impuritysite, impuritysite DD += impuritysize;

H∗∗ REMOVE NON−NEAREST NEIGHBORS AT LEFTêRIGHT SITES ∗∗L
right = Table @nx ∗ p, 8p, nx − 1<D;
left = Table @1 + p ∗ nx, 8p, 1, nx − 1<D;
For @i = 1, i < nx ∗ nx, i ++,

For @j = 1, j < nx, j ++,

If @i � right @@j DD, lattice @@i, i + 1DD = 0.0,

If @i � left @@j DD, lattice @@i, i − 1DD = 0.0, DD DD;

H∗∗ ADD PERIODIC BOUNDARY CONDITIONS TO FOUR CORNERS∗∗L
upperleftsite = 1;

upperrightsite = nx;

lowerleftsite = 1 + nx ∗ Hnx − 1L;
lowerrightsite = nx ∗ nx;

For @i = 1, i < nx ∗ nx + 1, i ++,

If @i � upperleftsite,

lattice @@i, upperrightsite DD += − t;

lattice @@i, lowerleftsite DD += − t,

If @i � upperrightsite,

lattice @@i, upperleftsite DD += − t;

lattice @@i, lowerrightsite DD += − t,

If @i � lowerleftsite,

lattice @@i, upperleftsite DD += − t;

lattice @@i, lowerrightsite DD += − t,

If @i � lowerrightsite,

lattice @@i, upperrightsite DD += − t;

lattice @@i, lowerleftsite DD += − t, DDDD D;

A Mathematica code

In this appendix we list the relevant Mathematica code used in obtaining the numerical results.
All calculations are done with machine-precision numbers.

A.1 Generating the d-wave BCS Hamiltonian
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H∗∗ ADD PERIODIC BOUNDARY CONDITIONS TO BOUNDARY POINTS EXCEPTFOUR CORNERS∗∗L

uppersites = Table @p + 1, 8p, 1, nx − 2<D;

lowersites = uppersites + nx ∗ Hnx − 1L;

rightsites = Delete @right, 1 D;

leftsites = Delete @left, nx − 1D;

For @i = 2, i < nx ∗ nx, i ++,

For @j = 1, j < nx − 1, j ++,

If @i � uppersites @@j DD, lattice @@i, i + nx ∗ Hnx − 1LDD += − t,

If @i � lowersites @@j DD, lattice @@i, i − nx ∗ Hnx − 1LDD += − t,

If @i � rightsites @@j DD, lattice @@i, i − Hnx − 1LDD += − t,

If @i � leftsites @@j DD, lattice @@i, i + Hnx − 1LDD += − t, DDDD DD;

H∗∗ BEGIN NEXT−NEAREST NEIGHBOR COUPLING∗∗L

If @nnn � 1,

H∗∗ GET LIST OF INNER SITES ∗∗L

innersites = 8<;

For @i = 0, i < nx − 2, i ++,

q =.;

q = i ∗ nx;

For @j = nx + 2 + q, j < 2 ∗ nx + q, j ++,

AppendTo @innersites, j D DD;

H∗∗ COUPLE INNER SITES TO NEXT−NEAREST NEIGHBORS∗∗L

For @i = 1, i < nx ∗ nx − 4 ∗ nx + 5, i ++,

For @j = 1, j < nx ∗ nx + 1, j ++,

If @j � innersites @@i DD,

lattice @@j, j − nx − 1DD += tprime;

lattice @@j, j − nx + 1DD += tprime;

lattice @@j, j + nx − 1DD += tprime;

lattice @@j, j + nx + 1DD += tprime, D DD;

H∗∗ COUPLE CORNERS TO NEXT−NEAREST NEIGHBORS∗∗L

For @i = 1, i < nx ∗ nx + 1, i ++,

If @i � upperleftsite,

lattice @@i, nx + 2DD += tprime;

lattice @@i, 2 ∗ nxDD += tprime;

lattice @@i, nx ∗ Hnx − 1L + 2DD += tprime;

lattice @@i, nx ∗ nxDD += tprime,

If @i � upperrightsite,

lattice @@i, i + nx − 1DD += tprime;

lattice @@i, i + 1DD += tprime;

lattice @@i, i + nx ∗ Hnx − 2L + 1DD += tprime;

lattice @@i, i + nx ∗ Hnx − 1L − 1DD += tprime,

If @i � lowerleftsite,

lattice @@i, i − nx + 1DD += tprime;

lattice @@i, i − 1DD += tprime;

lattice @@i, i − nx ∗ Hnx − 1L + 1DD += tprime;

lattice @@i, i − nx ∗ Hnx − 1L + nx − 1DD += tprime,
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If @i � lowerrightsite,

lattice @@i, nx − 1DD += tprime;

lattice @@i, 1 DD += tprime;

lattice @@i, i − Hnx + 1LDD += tprime;

lattice @@i, i − 2 ∗ nx + 1DD += tprime, D DDD D;

H∗∗ COUPLE BOUNDARY SITES BESIDES CORNERS TO NEXT−NEAREST NEIGHBORS∗∗L

For @i = 2, i < nx ∗ nx, i ++,

For @j = 1, j < nx − 1, j ++,

If @i � uppersites @@j DD,

lattice @@i, i + Hnx − 1LDD += tprime;

lattice @@i, i + Hnx + 1LDD += tprime;

lattice @@i, i + nx ∗ Hnx − 1L − 1DD += tprime;

lattice @@i, i + nx ∗ Hnx − 1L + 1DD += tprime,

If @i � leftsites @@j DD,

lattice @@i, i + 2 ∗ nx − 1DD += tprime;

lattice @@i, i + Hnx + 1LDD += tprime;

lattice @@i, i − Hnx − 1LDD += tprime;

lattice @@i, i − 1DD += tprime,

If @i � rightsites @@j DD,

lattice @@i, i + Hnx − 1LDD += tprime;

lattice @@i, i + 1DD += tprime;

lattice @@i, i − nx − 1DD += tprime;

lattice @@i, i − 2 ∗ nx + 1DD += tprime,

If @i � lowersites @@j DD,

lattice @@i, i − Hnx − 1LDD += tprime;

lattice @@i, i − Hnx + 1LDD += tprime;

lattice @@i, i − nx ∗ Hnx − 1L + 1DD += tprime;

lattice @@i, i − nx ∗ Hnx − 1L − 1DD += tprime, D DDD DD, D;

Developer`ToPackedArray @lattice D

L;

H∗∗ GENERATE dBCS HAMILTONIAN∗∗L

coupleBCS @nx_, delta_ D : = H

lattice = Table @0, 8i, nx ∗ nx<, 8j, nx ∗ nx<D;

H∗∗ ADD PERIODIC BOUNDARY CONDITIONS TO FOUR CORNERS∗∗L

upperleftsite = 1;

upperrightsite = nx;

lowerleftsite = 1 + nx ∗ Hnx − 1L;

lowerrightsite = nx ∗ nx;

For @i = 1, i < nx ∗ nx + 1, i ++,

If @i � upperleftsite,

lattice @@i, upperrightsite DD += +delta;

lattice @@i, lowerleftsite DD += −delta;

lattice @@i, i + 1DD += +delta;

lattice @@i, i + nxDD += −delta,

26



If @i � upperrightsite,

lattice @@i, upperleftsite DD += +delta;

lattice @@i, lowerrightsite DD += −delta;

lattice @@i, i − 1DD += +delta;

lattice @@i, i + nxDD += −delta,

If @i � lowerleftsite,

lattice @@i, upperleftsite DD += −delta;

lattice @@i, lowerrightsite DD += +delta;

lattice @@i, i − nxDD += −delta;

lattice @@i, i + 1DD += +delta,

If @i � lowerrightsite,

lattice @@i, upperrightsite DD += −delta;

lattice @@i, lowerleftsite DD += +delta;

lattice @@i, i − 1DD += +delta;

lattice @@i, i − nxDD += −delta, DDDD D;

H∗∗ GET LIST OF INNER SITES ∗∗L

innersites = 8<;

For @i = 0, i < nx − 2, i ++,

q =.;

q = i ∗ nx;

For @j = nx + 2 + q, j < 2 ∗ nx + q, j ++,

AppendTo @innersites, j D DD;

H∗∗ COUPLE INNER SITES TO NEAREST NEIGHBORS∗∗L

For @i = 1, i < nx ∗ nx − 4 ∗ nx + 5, i ++,

For @j = 1, j < nx ∗ nx + 1, j ++,

If @j � innersites @@i DD,

lattice @@j, j − nxDD += −delta;

lattice @@j, j + nxDD += −delta;

lattice @@j, j + 1DD += delta;

lattice @@j, j − 1DD += delta, D DD;

H∗∗ COUPLE BOUNDARY SITES BESIDES CORNERS TO NEAREST NEIGHBORS∗∗L

For @i = 2, i < nx ∗ nx, i ++,

For @j = 1, j < nx − 1, j ++,

If @i � uppersites @@j DD,

lattice @@i, i + nxDD += −delta;

lattice @@i, i − 1DD += +delta;

lattice @@i, i + 1DD += +delta;

lattice @@i, i + nx ∗ Hnx − 1LDD += −delta,

If @i � leftsites @@j DD,

lattice @@i, i + nx − 1DD += +delta;

lattice @@i, i + nxDD += −delta;

lattice @@i, i − nxDD += −delta;

lattice @@i, i + 1DD += +delta,

If @i � rightsites @@j DD,

lattice @@i, i + nxDD += −delta;
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lattice @@i, i − nx + 1DD += +delta;

lattice @@i, i − nxDD += −delta;

lattice @@i, i − 1DD += +delta,

If @i � lowersites @@j DD,

lattice @@i, i − 1DD += +delta;

lattice @@i, i + 1DD += +delta;

lattice @@i, i − nxDD += −delta;

lattice @@i, i − nx ∗ Hnx − 1LDD += −delta, D DDD DD;

Developer`ToPackedArray @lattice D

L;

metal = coupleMetal @

nxc = 10, H∗∗ NUMBER OF nx SITES∗∗L

0, H∗∗ ON−SITE POTENTIAL ∗∗L

1, H∗∗ OVERLAP ENERGY t FOR NN COUPLING∗∗L

0, H∗∗ OVERLAP ENERGY t' FOR NNN COUPLING∗∗L

6, H∗∗ IMPURITYSIZE ∗∗L

Round@nxc ∗ nxc ê 2D, H∗∗ IMPURITYSITE. ODD nxc: HHnxc −1Lê2L∗nxc +HHnxc −1Lê2L+1 ∗∗L

0D; H∗∗ COUPLE TO NNN? "1" YES− "0" NO ∗∗L

dBCS= coupleBCS @

nxc, H∗∗ NUMBER OF nx SITES∗∗L

0.2 D; H∗∗ ∆ ∗∗L

hamilton =

Join @Join @Hmetal L, HdBCSL, 2 D, Join @HConjugateTranspose @dBCSDL, H−metal L, 2 DD;

8eigenenergies, eigenstates < = Chop@Eigensystem @hamilton DD;

For @i = 1, i < 2 ∗ nxc ∗ nxc + 1, i ++,

eigenstates @@i DD = Normalize @eigenstates @@i DDD D;

u = 8<;

For @i = 1, i < 2 ∗ nxc ∗ nxc + 1, i ++,

temp = 8<;

For @j = 1, j < nxc ∗ nxc + 1, j ++,

AppendTo @temp, eigenstates @@i DD@@j DDDD;

AppendTo @u, temp D

D;

v = 8<;

For @i = 1, i < 2 ∗ nxc ∗ nxc + 1, i ++,

temp = 8<;

For @j = nxc ∗ nxc + 1, j < 2 ∗ nxc ∗ nxc + 1, j ++,

AppendTo @temp, eigenstates @@i DD@@j DDDD;

AppendTo @v, temp D

D;
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η = 0.1;

probesite = 1;

lDOS = −H1. ê HPi LL ∗

Sum@Im@Norm@u@@n, probesite DDD^2 ê Hω − eigenenergies @@nDD + 1. ∗ I ∗ ηL + Norm@v@@n,

probesite DDD^2 ê Hω + eigenenergies @@nDD + 1. ∗ I ∗ ηLD, 8n, 1, 2 ∗ nxc ∗ nxc <D;
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H∗∗ PROCEDURE TO GENERATE WIGGLES∗∗L
wiggles @nx_, µ_, t_, tprime_, impuritysize_, impuritysite_, nnn_, probe site_, η_D : = H

8eigenenergiesClean, eigenstatesClean < =

Chop@Eigensystem @coupleMetal @nx, µ, t, tprime, 0.0, impuritysite, nnn DDD;

For @i = 1, i < nx ∗ nx + 1, i ++,

eigenstatesClean @@i DD = Normalize @eigenstatesClean @@i DDD D;

8eigenenergiesDirty, eigenstatesDirty < =

Chop@Eigensystem @coupleMetal @nx, µ, t, tprime, impuritysize, impuritysite, nnn DDD;

For @i = 1, i < nx ∗ nx + 1, i ++,

eigenstatesDirty @@i DD = Normalize @eigenstatesDirty @@i DDD D;

cLDOS= −H1 ê HPi LL ∗ Sum@Im@HNorm@eigenstatesClean @@n, probesite DDD^2 ê
Hω − eigenenergiesClean @@nDD + 1.0 ∗ I ∗ ηLLD, 8n, 1, nx ∗ nx<D;

dLDOS= −H1 ê HPi LL ∗ Sum@Im@HNorm@eigenstatesDirty @@n, probesite DDD^2 ê
Hω − eigenenergiesDirty @@nDD + 1.0 ∗ I ∗ ηLLD, 8n, 1, nx ∗ nx<D;

deltaLDOS = cLDOS− dLDOS

L;

findZeroes @fx_, D : = I
graphObj = Plot @fx 	 0, 8ω, −3, 0 <, PlotRange → All D;

H∗∗ GET COORDINATES IN GRAPHICS OBJECT graphObj∗∗L
points = Cases@graphObj, Line @8ω__<D → ω, ∞D;

H∗∗ SELECT PAIRS THAT HAVE SIGN CHANGE IN y−COORDINATE∗∗L
pairs =

Select @Split @points, Sign @Last @�2DD 	 −Sign @Last @�1DD &D, Length @�1D 	 2 &D;

H∗∗ TAKE FIRST COORDINATE IN EACH PAIR ABOVE∗∗L
xVals = Map@First, pairs, 82<D;

H∗∗ MAP x−PAIRS FROM ABOVE TO FindRoot∗∗L
solutions = Map@FindRoot @fx 	 0.0, 8ω, �@@1DD, �@@2DD<D &, xVals D;

Print @graphObj D;
sol = ω ê. solutions

M;

A.2 Generating modulations in the local density of states

30



H∗∗ CALL PROCEDURE TO GENERATE AND PLOT WIGGLES∗∗L

findZeroes @wiggles @

nxw = 60, H∗∗ NUMBER OF nx SITES∗∗L

Abs@0.0 D, H∗∗ ON−SITE POTENTIAL ∗∗L

Abs@1.0 D, H∗∗ OVERLAP ENERGY t FOR NN COUPLING∗∗L

Abs@1.0 D, H∗∗ OVERLAP ENERGY t' FOR NNN COUPLING∗∗L

Abs@6.0 D, H∗∗ IMPURITYSIZE ∗∗L

Round@nxw ∗ nxw ê 2D, H∗∗ IMPURITYSITE ∗∗L

0, H∗∗ COUPLE TO NNN? "1" YES− "0" NO ∗∗L

Round@nxw ∗ nxw ê 2D + 3 nxw − 3, H∗∗ WHICH SITE TO OBSERVE FOR WIGGLES∗∗L

η = 0.15 DD
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t = 1.0; ∂ = −0.70;

step = 0.025;

pi = Pi êê N;

findSolution@t_, directionx_, directiony_, ∂_D := I
graphObj =

Plot@−2 ∗ t ∗ HCos@directionx ∗ kxD + Cos@directiony ∗ kxDL � ∂, 8kx, −20 pi, 20 pi<D;

H∗∗ GET COORDINATES IN GRAPHICS OBJECT graphObj ∗∗L
points = Cases@graphObj, Line@8kx__<D → kx, ∞D;

H∗∗ SELECT PAIRS THAT HAVE SIGN CHANGE IN y−COORDINATE ∗∗L
pairs = Select@Split@points, Sign@Last@�2DD � −Sign@Last@�1DD &D, Length@�1D � 2 &D;

H∗∗ TAKE FIRST COORDINATE IN EACH PAIR ABOVE ∗∗L
xVals = Map@First, pairs, 82<D;

H∗∗ MAP x−PAIRS FROM ABOVE TO FindRoot ∗∗L
solutions = Map@FindRoot@−2 ∗ HCos@directionx ∗ kxD + Cos@directiony ∗ kxDL � ∂,

8kx, �@@1DD, �@@2DD<D &, xValsD;
sol = kx ê. solutions;

solutionBrillouin = Quiet@Sort@Select@sol, � > 0 &DD@@1DDD;

If@NumberQ@solutionBrillouinD,
If@−pi < solutionBrillouin < pi, solutionBrillouin,

While@solutionBrillouin > pi »» solutionBrillouin < −pi,

If@solutionBrillouin > pi, solutionBrillouin −= 2 piD;
If@solutionBrillouin < −pi, solutionBrillouin += 2 piDD;

solutionBrillouinDD
M;

drawLocus@x_, y_, period_D := H
list = 8<;

For@i = 1.0, i > 0.0, i −= step,

k = findSolution@t, 1, i, ∂D;
If@−pi < k < pi,

vgroupR = Sqrt@H2 ∗ t ∗ Sin@kDL^2 + H2 ∗ t ∗ Sin@i ∗ kDL^2D;
AppendTo@list, 8x + HvgroupR ∗ period ê 2L ∗ Cos@ArcTan@iDD,

y + HvgroupR ∗ period ê 2L ∗ Sin@ArcTan@iDD<DDD;

For@i = 0.0, i > −1.0, i −= step,

k = findSolution@t, 1, i, ∂D;
If@−pi < k < pi,

vgroupR = Sqrt@H2 ∗ t ∗ Sin@kDL^2 + H2 ∗ t ∗ Sin@i ∗ kDL^2D;
AppendTo@list, 8x + HvgroupR ∗ period ê 2L ∗ Cos@ArcTan@iDD,

y + HvgroupR ∗ period ê 2L ∗ Sin@ArcTan@iDD<DDD;

A.3 Plotting the loci
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For@i = 1.0, i > 0.0, i −= step,

k = findSolution@t, i, −1, ∂D;

If@−pi < k < pi,

vgroupR = Sqrt@H2 ∗ t ∗ Sin@kDL^2 + H2 ∗ t ∗ Sin@i ∗ kDL^2D;

AppendTo@list, 8x + HvgroupR ∗ period ê 2L ∗ Cos@3 Pi ê 2 + ArcTan@iDD,

y + HvgroupR ∗ period ê 2L ∗ Sin@3 ∗ Pi ê 2 + ArcTan@iDD<DDD;

For@i = 0.0, i > −1.0, i −= step,

k = findSolution@t, i, −1, ∂D;

If@−pi < k < pi,

vgroupR = Sqrt@H2 ∗ t ∗ Sin@kDL^2 + H2 ∗ t ∗ Sin@i ∗ kDL^2D;

AppendTo@list, 8x + HvgroupR ∗ period ê 2L ∗ Cos@3 Pi ê 2 + ArcTan@iDD,

y + HvgroupR ∗ period ê 2L ∗ Sin@3 ∗ Pi ê 2 + ArcTan@iDD<DDD;

For@i = 1.0, i > 0.0, i −= step,

k = findSolution@t, −1, −i, ∂D;

If@−pi < k < pi,

vgroupR = Sqrt@H2 ∗ t ∗ Sin@kDL^2 + H2 ∗ t ∗ Sin@i ∗ kDL^2D;

AppendTo@list, 8x + HvgroupR ∗ period ê 2L ∗ Cos@Pi + ArcTan@iDD,

y + HvgroupR ∗ period ê 2L ∗ Sin@Pi + ArcTan@iDD<DDD;

For@i = 0.0, i > −1.0, i −= step,

k = findSolution@t, −1, i, ∂D;

If@−pi < k < pi,

vgroupR = Sqrt@H2 ∗ t ∗ Sin@kDL^2 + H2 ∗ t ∗ Sin@i ∗ kDL^2D;

AppendTo@list, 8x + HvgroupR ∗ period ê 2L ∗ Cos@Pi + ArcTan@iDD,

y + HvgroupR ∗ period ê 2L ∗ Sin@Pi + ArcTan@iDD<DDD;

For@i = 1.0, i > 0.0, i −= step,

k = findSolution@t, −i, 1, ∂D;

If@−pi < k < pi,

vgroupR = Sqrt@H2 ∗ t ∗ Sin@kDL^2 + H2 ∗ t ∗ Sin@i ∗ kDL^2D;

AppendTo@list, 8x + HvgroupR ∗ period ê 2L ∗ Cos@Pi ê 2 + ArcTan@iDD,

y + HvgroupR ∗ period ê 2L ∗ Sin@Pi ê 2 + ArcTan@iDD<DDD;

For@i = 0.0, i > −1.0, i −= step,

k = findSolution@t, −i, 1, ∂D;

If@−pi < k < pi,

vgroupR = Sqrt@H2 ∗ t ∗ Sin@kDL^2 + H2 ∗ t ∗ Sin@i ∗ kDL^2D;

AppendTo@list, 8x + HvgroupR ∗ period ê 2L ∗ Cos@Pi ê 2 + ArcTan@iDD,

y + HvgroupR ∗ period ê 2L ∗ Sin@Pi ê 2 + ArcTan@iDD<DDD;

list

L;

Show@

ListLinePlot@drawLocus@−5, 1, 6.20DD,

ListLinePlot@drawLocus@4, 5, 4.35DD,

ListLinePlot@drawLocus@−3, −3, 3.23DD

D
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