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Abstract

An atomic medium can serve as quantum memory for light in the interface
of light and atoms. The property of the atomic medium as quantum memory is
examined in this thesis, where the atomic ensemble consists of �-type atoms. It is
acted on by a quantum light field and a classical control field, where the latter maps
the mode of the input light to the state of the atoms. Thus, the state of the light is
stored in the atomic medium.

To derive the output field of storage the equations of motion are solved ana-
lytically in the adiabatic limit. The equations of motion have been developed in
a paper [1] for the beam splitter type interaction of light and an atomic medium,
which is the examined interaction type. The retrieval process has already been
studied in great detail, therefore, in this thesis the focus is on storage of the light
and propagation of the stored wave.

The output field of storage is determined to describe the stored wave in terms
of the input field. This enables us to choose parameters of the input field, which
yields the desired characteristics of memory. The shape of the stored wave impose
a condition on the frequency of the input light, since the frequency must be small
to minimise the attenuation of the output field of storage.

The input parameters are chosen to attain the possibility of localising the stored
wave at di�erent times inside the ensemble. The shape of the stored wave changes
in time, since after storage, the wave propagates and is broadening due to a time
dependence of the centre and width of the stored wave. The requirement of distin-
guishable waves inside the ensemble imposes a condition on the optical depth of the
atomic medium to be large. This condition is supported by a numerical solution to
the time dependent stored wave. Furthermore, the detuning of the light frequency
and the frequency of the atomic transition needs to be much greater than 1/2 to
decrease broadening of the wave while increasing the distance it is propagating.
Thus, conditions of the input field and the atomic medium are derived to achieve
an optimised shape of the stored and propagating wave.
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1 Introduction
This thesis is concerned with the interface of light and an atomic ensemble. The coupling
of light and atoms can be realised with di�erent approaches, eg. Electromagnetically
induced transparency and o�-resonant Raman processes. These techniques cause sta-
tionary light for optically dense media, since this interface and coupling stores the light
in the medium, which makes the atomic medium serve as quantum memory for the light
field.

In research papers, photon storage in atomic media is well described both in the
case of a cavity and free space [1] [2] [3]. They discuss how to obtain an optimal retrieval
e�ciency by choosing the shape of the input light. This work expands on the former
research on stationary light in a �-type atomic ensemble by looking into the conditions
of the input light field and the atomic medium for storage of light and wave propagation
inside the ensemble.

After storage of the light pulse, the wave packet propagates inside the atomic en-
semble until it is retrieved by interaction of a classical control field. The requirement
of being able to localise the stored wave packet imposes conditions on the shape of the
input field. These conditions are examined in detail analytically and compared with the
numerical solutions from the article this work is based on [1].

As the former research shows [1], a necessary condition for storage is a large optical
depth for the atomic medium, which reduces loss during storage. The examination of
the propagating wave packet yields conditions on the dispersion relation that applies for
the �-type atomic medium [4], since it is required that the wave packet can be localised
after propagation.

This thesis begins with an overview of the considered system, a �-type atomic
medium acted on by a quantum field and a classical control field, to introduce the
reader to the main ideas behind this thesis. Second, the equations of motion are given
and discussed. Finally, the main part of the theoretical work of the thesis, based on
the equations of motion, is described in the two chapters Storage of Input Light and
Propagation of Stored Wave in Atomic Ensemble.

2 Interface of Light and Atomic Medium
The interface of light and an atomic medium can be divided into three parts: storage
of the light in the atomic ensemble, propagation of the stored wave inside the ensemble
and retrieval of the light. The atomic medium, consisting of many multilevel atoms, is
acted on by a quantum light field and a classical control field. The fields interact only
with the three levels depicted in Fig. 2.1, so the remaining levels of the medium are
disregarded. The ensemble consists of atoms with the �-type atomic level scheme (see
Fig. 2.1). This is the type of atoms that are used for EIT memory of light.

The states |gÍ and |sÍ are the stable ground states of the system which couple to
the excited state |eÍ by the two interaction light fields, the quantum field (described
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Figure 2.1: Level scheme of �-type atomic medium

[3] The atoms are
prepared in the ground state |gÍ. The quantum field couples |gÍ and |eÍ with
frequency g. The |eÍ ≠ |sÍ transition is is acted on by a classical control field
with frequency �. Both fields have a detuning, �, with respect to state |eÍ.

by E(z, t)) with frequency g and the strong classical control field with frequency �,
respectively. Since the fields interact with not just a single atom, but an atomic ensemble,
the 3-level medium has collective states, shown in Fig. 2.1, which are described by the
spin wave operator S(z, t). The frequencies of the light fields are detuned from resonance
with the atomic transition frequency with common detuning, �. The only considered
decay rate is the polarisation decay rate, “, while the decay of the spin wave is neglected,
“

s

, since the ratio “
s

/“ is negligible.
The transition between |gÍ and |sÍ is dipole forbidden, meaning that the |gÍ ≠ |sÍ

transition is via the excited state |eÍ. The atoms are prepared in the ground state cou-
pled to the quantum field by optical pumping, and the light is stored when atoms are
in the ground state |sÍ. The state of the light is stored, since the classical control field
maps the state of the input field to the state of the spin wave. At a later time, the light
can be retrieved by mapping the spin wave state back to the quantum light state by
interaction of the classical control field. In this storage and retrieval process, the atomic
ensemble serves as quantum memory for the light.

The quantum memory can occur by using the Electromagnetically Induced Trans-
parency (EIT) technique for storage of light inside the atomic ensemble. The EIT ap-
proach reduces the group velocity of the light, and by adiabatically turning of the control
field, stationary light is developed. The reduction of the group velocity occurs, since an
induced transparency window appears, where there is no absorption for a narrow range
of frequencies. [5]

The quantum field acting on the |gÍ≠ |eÍ transition is a quantised electric field, which
is described by the annihilation and creation operator. The electromagnetic field is a
classical function and the Hamiltonian of the field is used to derive the quantised field,
E(z, t), which is an operator, in terms of the annihilation and creation operator.

During storage of light, the characteristics of the state of the stored quantum light
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field change due to the interaction. These changes are dependent on the parameters
of the input field and the atomic medium and impose conditions on the parameters
for storing the light in the atomic ensemble. It is these changes that are examined in
this thesis to be able to describe the process and determine the possible values of the
parameters for an experimental set-up.

3 Equations of Motion
To find the equations of motion for the operators, the Heisenberg equation of motion is
used by calculating the commutator of the operators with the Hamiltonian of the system.
The Heisenberg equation of motion in the Heisenberg picture is i~da(t)

dt

= [H, a(t)], where
the operator a is time dependent since it is given in the Heisenberg picture in which the
states are time independent. This is in contrast to the Schrödinger picture with time
independent operators and time dependent states [6]. The total Hamiltonian for the
system is described by the sum of Hamiltonians for the light, for the atoms and for
the interaction. The latter is the beam-splitter type Hamiltonian, since this type of
interaction maps the state of light and atoms. The equations of motion are derived in
the mainly used article in this paper [1] and the dimensionless equations of motion are
given by

ˆ

ˆz
E(z, t) = i

Ô
dP(z, t) (3.1a)

ˆ

ˆt
P(z, t) = ≠(1 + i�)

Ô
dP(z, t) + i

Ô
dE(z, t) + i�S(z, t) (3.1b)

ˆ

ˆt
S(z, t) = i�P(z, t) (3.1c)

where E , P and S all are complex functions of (z, t). E(z, t) is the electric field operator,
S(z, t) is the spin wave operator and P(z, t) is the polarisation operator, which is the
internal state operator between the states |gÍ and |eÍ.

The operators are treated as complex numbers, although they describe a quantum
field coupled to the transition |gÍ to |eÍ. This can be done since the operator equations of
motions give complex number equations if the expectation values of the operator equa-
tions are evaluated to obtain Eq. 3.1 with coherent input states. Coherent states |–Í are
eigenstates of the annihilation operator, a, with eigenvalue –: a |–Í = – |–Í. Although
coherent states are not eigenstates of the creation operator, the relation È–| a† = È–| –ú

is satisfied. Since the coherent states are defined as linear superpositions of the photon
number states, any input mode can be expanded to a set of coherent states, hence the
complex number equations of motion 3.1 can be obtained. [1] [6]

To find this set of equations, the dipole approximation and the rotating-wave ap-
proximation are used, time is given by tÕ = t ≠ z/c to introduce a co-moving frame, and
the operators, time and the coordinate, z, are rescaled to give dimensionless equations.
The detuning from resonance and the frequency of the classical field are rescaled with
a factor of the decay rate according to �̃ = �/“ and �̃ = �/“ to obtain dimensionless
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equations, and the tilde is omitted in the equations of motion. The wavelength of the
light field is much larger than the size of the atoms, hence the dipole approximation is
valid. The quantum field and the classical field are assumed to have frequencies near the
atomic transition frequency for transitions between state |gÍ and |eÍ and between |sÍ and
|eÍ, respectively. In the rotating-wave approximation, the rapidly oscillating terms in the
Hamiltonian are neglected because the light fields are near resonance with the atomic
transition frequencies. The optical depth of the medium d = g2NL/(“c) is introduced,
with N the number of atoms, L the length of the medium, “ the polarisation decay
rate due to spontaneous emission and c the speed of light. Decay is assumed to be in
the direction perpendicular to the atomic ensemble, since reabsorption of emitted pho-
tons is neglected. This approximation is good since for incoming photons, the fraction
of spontaneously emitted photons is decreasing with increasing optical depth [1], and a
large optical depth is considered in the thesis as explained in chapter 5.2.

The atomic medium is approximated to a one-dimensional system to be able to treat
one-dimensional equations of motion by imposing the paraxial approximation.

4 Storage of Input Light
In the preceding section, the equations of motion are defined by Eq. 3.1. These are solved
analytically for the output field S

out

(z) to describe storage of the light. To solve this set
of di�erential equations, they are transformed using Fourier and Laplace transform in
time and space, respectively.

First, this set of di�erential equations are transformed with a Fourier transform in
time defined by [7]

f̃(Ê) = 1Ô
2fi

ˆ Œ

≠Œ
f(t)e≠iÊtdt (4.1)

f(t) = 1Ô
2fi

ˆ Œ

≠Œ
f̃(Ê)eiÊtdt (4.2)

to describe the operators in the frequency domain.

ˆ

ˆz
E = i

Ô
dP (4.3a)

≠ iÊP = ≠(1 + i�)P + i
Ô

dE + i�S (4.3b)

≠ iÊS = i�P (4.3c)

where the operators are now functions of (z, Ê).
Solving for E(z, Ê) the di�erential equation of the light field in the frequency-space

domain is

ˆ

ˆz
E(z, Ê) = ik(Ê)E(z, Ê) (4.4)
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where the wave vector k(Ê) is introduced

k(Ê) = d

≠i + � ≠ Ê + �2
Ê

(4.5)

The Fourier transform of the set of Eqs. 3.1 yields the spin wave operator written
as a function of the light operator by

S(z, Ê) = ≠ �Ô
d

k(Ê)
Ê

E(z, Ê) (4.6)

The aim is to find S(z, t) described by the input light field, since mapping of the
light mode to the spin wave mode is described by the spin wave output field, S

out

(z).

4.1 Input Light Field
A Laplace transform is made of Eqs. 4.4 and 4.6 to describe the spin wave operator as
a function of the incoming light field. The transform with respect to z used, is:

f̃(s) =
ˆ Œ

0
e≠iszf(z)dz (4.7)

f(z) = 1
2fi

ˆ
i‘+Œ

i‘≠Œ
eisz f̃(s)ds (4.8)

where the inverse transform (Eq. 4.8) is an integral over the real axis, since the approx-
imation ‘ π 1 is made. The transformed coordinate s is used to avoid confusion with
k(Ê), since k is the standard use of the transformed spacial coordinate.

The transform of Eq. 4.4 is derived using partial integration of the derivative

L(ˆE
ˆz

) =
ˆ Œ

0
e≠isz

ˆ

ˆz
Edz = [e≠iszE ]

----
Œ

0
≠(≠is)

ˆ Œ

0
e≠iszEdz = E(0, Ê)+isE(s, Ê) (4.9)

where the imaginary part of s is finite and not equal zero to yield e≠isŒE(Œ, Ê) = 0,
and E(0, Ê) = E

in

(Ê). From Eqs. 4.4 and 4.9 we now obtain

ikE(s, Ê) = E
in

(Ê) + isE(s, Ê) (4.10)

which relates the light as a function of the transformed coordinates (s, Ê) to the incoming
light. Rewritten in a simpler form gives

E(s, Ê) = ≠ i

s ≠ k
E

in

(Ê) = ≠ifi”(s ≠ k)E
in

(Ê) (4.11)

where the approximation 1
x≠x0

¥ fi”(x ≠ x0) is used in the last step.
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The spin wave operator can now be described as a function of the incoming light due
to the Laplace transform of Eq. 4.6, which merely transforms the spacial coordinate of
the operators, and Eq. 4.11 by

S(s, Ê) = ifi
�Ô
d

k(Ê)
Ê

”(s ≠ k)E
in

(Ê) (4.12)

The incoming wave of light is the normalised Gaussian function

E
in

(t) = 1
ÒÔ

2fi‡
e≠ (t≠T/2)2

4‡2 +i”t (4.13)

centred around T/2 with width ‡. The incoming light as a function of frequency
is the Fourier transform of Eq. 4.13. Since E

in

(t) is a Gaussian function, the Fourier
transformed E

in

(Ê) is likewise a Gaussian

E
in

(Ê) =

Û

‡

Ú
2
fi

e≠‡

2(Ê≠”)2≠i

T
2 (Ê≠”) (4.14)

The normalisation is determined with
´Œ

≠Œ|E
in

(t)|2dt =
´Œ

≠Œ|E
in

(Ê)|2dÊ = 1.
To determine the spin wave operator, S(z, t), the inverse Laplace transform (Eq.

4.8) and the inverse Fourier transform (Eq. 4.2) is made of S(s, Ê). The inverse Laplace
transform gives

S(z, Ê) = 1
2fi

ˆ
i‘+Œ

i‘≠Œ
ifi

�Ô
d

k(Ê)
Ê

”(s ≠ k)E
in

(Ê)eiszds = i

2
�Ô
d

k(Ê)
Ê

E
in

(Ê)eik(w)z (4.15)

The integration from i‘ ≠ Œ to i‘ + Œ is made over the real axis from ≠Œ to +Œ
by neglecting the imaginary part. This is done by letting the limit of ‘ go to 0.

The inverse Fourier transform of S(z, Ê) is

S(z, t) = 1Ô
2fi

ˆ +Œ

≠Œ

i

2
�Ô
d

k(Ê)
Ê

E
in

(Ê)eik(w)zeiÊtdÊ (4.16)

The output field from storage of light is the spin wave operator at time t = T

S
out

(z) = S(z, t = T ) = i

2
Ô

2fi

�Ô
d

ˆ +Œ

≠Œ

k(Ê)
Ê

E
in

(Ê)eik(w)zeiÊT dÊ (4.17)

By expanding k(Ê) for Ê ¥ ”, the equations of motion can be solved analytically for
the output spin-wave operator to treat storage of the input light. The Taylor expansions
are k(Ê) ¥ k(”) + dk(Ê)

dÊ

----
Ê=”

(Ê ≠ ”) and k

Ê

¥ k(”)
”

+ d

dÊ

k(Ê)
Ê

----
Ê=”

(Ê ≠ ”)

Using this expansion of k(Ê) in Eq. 4.17, the integral is centred around the variable
› = Ê ≠ ”. Solving the integral for the output field of storage gives

S
out

(z) = i�

2
ÒÔ

2fi‡5d
[( k

Ê
)Õ(( k

Ê
)Õ ≠ T

2 ) + 2k

”
‡2]ei”T eikze

≠ (z≠z0)2

4‡2
0 (4.18)
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where ( k

Ê

)Õ denotes the derivative d

dÊ

k(Ê)
Ê

----
Ê=”

, and the parameters z0, ‡0 and k are all

complex numbers.

z0 = T/2
kÕ = T

2
(≠i” ≠ ”2 + �” + �2)2

d(”2 + �2) (4.19)

‡0 = ‡

kÕ = ‡
(≠i” ≠ ”2 + �” + �2)2

d(”2 + �2) (4.20)

k = d

≠i ≠ ” + � + �2/”
(4.21)

where kÕ denotes the derivative dk(Ê)
dÊ

----
Ê=”

.

To describe the shape of the stored light, the output field should be of the form of
a purely real Gaussian function with a complex phase. S

out

(z) is rewritten by denoting
z0 = z

R

+ iz
I

and 4‡2 = A + iB, where z
R

is the real part of z0 and z
I

is the imaginary
part of z0. Likewise is A the real part of 4‡4 and B the imaginary part.

z
R

= T

2
((�” ≠ ”2 + �2)2 ≠ ”2)

d(”2 + �2) (4.22a)

z
I

= ≠T ”(�” ≠ ”2 + �2)
d(”2 + �2) (4.22b)

A = 4‡2

d2(”2 + �2)2 [(�” ≠ ”2 + �2)4 ≠ 6”2(�” ≠ ”2 + �2) ≠ ”4] (4.23a)

B = ≠16‡2”

d2(”2 + �2)2 [((�” ≠ ”2 + �2)2 ≠ ”2)(�” ≠ ”2 + �2)] (4.23b)

The output field is rewritten in terms of the real numbers z
R

, z
I

, A, B by

≠ (z ≠ z0)2

4‡2
0

= ≠(z ≠ (z
R

+ iz
I

))2

A + iB
= ≠(A ≠ iB)(z ≠ z

s

)2 + C + ik̃z + i„

A2 + B2 (4.24)

where z
s

is the centre of the Gaussian and 1
2

Ò
A

2+B

2
A

the width. C

A

2+B

2 is a real factor,
„

A

2+B

2 is a phase and k̃

A

2+B

2 is a part of the real wave vector, where the other part is
the real part of k (Eq. 4.21).

z
s

= z
R

+ B

A
z

I

(4.25)

‡
s

= 1
2

Û
A2 + B2

A
(4.26)

7



C = (A + B2

A
)z

I

(4.27)

k̃ = 2(B2

A
+ A)z

I

(4.28)

„ = 2(A ≠ B2

A
)z

I

z
R

≠ B(B2

A2 + 1)z2
I

(4.29)

The attenuation of the wave is given by the term ikz in Eq. 4.18, since k(”) has an
imaginary part. That results in a factor of e≠Im(k)z in S

out

(z).

Im(k) = d

1 + (≠” + � + �2/”2)2 = d”2

”2 + (≠”2 + �” + �2)2 (4.30)

To decrease the loss, Im(k), ” needs to be small, since the attenuation is proportional
to ”2. For ” π 1 and ”� π 1 the loss is approximately

Im(k) ¥ d”2

�4 (4.31)

where it is clear that the smallest order of ” is ”2 and hence a decrease of ” decreases the
loss of the output operator. To first order in ” the centre and the width of the output
spin-wave operator are

z
s

¥ T

2d
(2�” + �2) (4.32)

‡
s

¥ ‡

d
(2�” + �2) (4.33)

Both z
s

and ‡
s

have a term independent of ”.
When the light is stored in the atoms the Gaussian wave of S

out

(z) propagates in time
according to the dispersion relation of the system, which is described in more detail in
the following chapter. Since the wave moves, it is optimal to store the wave at z

s

¥ 0.25
and with a small width, chosen ‡

s

¥ 0.05, because the width increases as a function of
time for the propagating wave. These properties of the stored field can be converted to
the parameters of the input field. When the centre and the width is chosen z

s

= 0.25
and ‡

s

= 0.05 it gives, in terms of the input field and duration time, T

T = d

2(2�” + �2) (4.34)

‡ = d

20(2�” + �2) (4.35)

which determines the duration time as a function of the width of the input field

T = 10‡ (4.36)
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The loss is given by the imaginary part of k as before mentioned. The loss can be
described in terms of the centre and the width of the input field for small ”

z
s

¥ T

2d

d”2

Im(k) (4.37a)

‡
s

¥ ‡

d
( d”2

Im(k))2 (4.37b)

Which describes the attenuation in two ways

Im(k) ¥ T ”2

2z
s

�2 (4.38a)

Im(k) ¥

Û
‡d”4

‡
s

�2 (4.38b)

When solving the Eq. 4.17 the wave vector k(Ê) was expanded to first order in (Ê≠”),
which means that the only loss included was due to the width of the wave. Including
the second order term of ” would give an extra loss for small optical depth, which can
be seen by evaluating the second order derivative, since the only term of (Ê ≠ ”)2 in Eq.
4.17 is e≠‡

2(Ê≠”)2 and the second order derivative is the second order term in the Taylor
expansion of k(Ê)

d2k(Ê)
dÊ2 = 2dÊ(≠iÊ ≠ Ê + �Ê + �2)2 + 2d(Ê + �2)(1 + 2Ê ≠ �)

(≠iÊ ≠ Ê + �Ê + �2)3 (4.39)

In the limit ” æ 0 it gives

d2k(Ê)
dÊ2 ¥ 2d(i ≠ �)

�4 (4.40)

The optical depth, d, can be varied by varying the frequency of the control field. This is
done by keeping �2

d

constant for di�erent optical depths, which makes d

2
k(Ê)

dÊ

2 proportional
to 1/d. Thus for a large optical depth this modification of including the second order
term in k(Ê) in the expansion to improve the solution can be neglected.

A comparison of S
out

(z) in integral form (Eq. 4.17) and the expansion of k(Ê):

k(Ê) ¥ k(”)+ dk(Ê)
dÊ

----
Ê=”

(Ê ≠ ”)+ 1
2

d

2
k(Ê)

dÊ

2

----
Ê=”

(Ê ≠ ”)2 shows that the added (Ê ≠ ”)2 term

results in a modification of ‡, because the only term of (Ê ≠ ”)2 in S
out

(z) is e≠‡

2(Ê≠”)2

originating from E
in

(Ê) (Eq. 4.14). The modified ‡ is therefore given by

‡2 æ ‡2 ≠ i

2
ˆ2k(Ê)

ˆÊ2 z (4.41)

This modification to the output field of storage is used in the following chapter, where
the analytical solution in Eq. 4.18 is compared with the numerical solution of the exact
integral solution of the equations of motion in Eqs. 3.1.
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4.2 Comparison of Analytical and Numerical Solution of Storage
The validity of the analytical solution, Eq. 4.18, of storage is examined by solving
the equations of motion numerically. They can be solved more exact by not assuming
that the frequency is near ”, thus omitting the expansion of k(Ê) for Ê near ”. This
is possible in the adiabatic limit, which gives a more exact integral form of S

out

(z)
than in the preceding calculations, where the expansion of k(Ê) was introduced. The
adiabatic limit eliminates the optical polarisation in Eq. 3.1b. This limit requires only
the condition Td“ π 1 to be satisfied.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

z

0

1

2

3

4

5

6

7

8

|S
(z
)|
2

Analytically and Numerically Solved Sout(z)

A. d = 10
A. d = 100
A. d = 1000
N. d = 10
N. d = 100
N. d = 1000

Figure 4.1: Plot of the output field solved analytically and numeri-

cally for di�erent optical depth, d. Dashed lines are analytical solutions
given by Eq. 4.18. Dotted lines are numerical solutions using numerical inte-
gration to solve the exact S

out

(z) (Eq. 4.42). In the analytical solutions the
modified width of the Gaussian is used according to Eq. 4.41. The parame-
ters are chosen for the case of no detuning from resonance and ” = 0 to give
a Gaussian wave with centre z

s

= 0.25 and width ‡
s

= 0.05 for d = 1000.

The integral form of S
out

(z), determined by solving the equations of motion in the
adiabatic limit, is given by Eq. 34 in reference [1]

S
out

(z) =
ˆ

T

0
dt � 1

1 + i�e[�(T ≠t)+dz]/(1+i�)I0(2


�(T ≠ t)dz

1 + i� )E
in

(t) (4.42)

where � is the constant frequency of the control field independent of (z, t) and I0 is the
zero order modified Bessel function. For large d, ie. d = 1000, the Bessel function can
be expanded using the asymptotic series expansion for large argument 2

Ô
�(T ≠t)dz

1+i� , with
d large. For the zero order modified Bessel function the expansion to lowest order for
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large argument z is
I0(z) ¥ ez

Ô
2fiz

(4.43)

The integral in S
out

(z), Eq. 4.42, is solved numerically using numerical integration.
For large optical depth, d = 1000, the expansion of the Bessel function is used to obtain
finite values of S

out

(z).
Fig. 4.1 shows that the analytically solved output field (Eq. 4.18) converges to the

numerical solution for large optical depth, since the two solutions approach each other
for d = 1000. That implies that the Taylor expansion of k(Ê) around Ê = ” is a good
approximation for a large optical depth. The condition of large optical for the analytical
solution is discussed in detail in chapter 5.2.

In the analytical solution the improvement of the width given in Eq. 4.41 is included,
which primarily a�ects output field for d = 10. This is seen in the figure, since the wave
for d = 10 has a non-Gaussian tail due to the position dependent width. For d = 100 the
analytically solved wave has a larger absolute maximum than the numerical solution,
however, they are centred around the same value of z and have the same shape. The
convergence of the numerical and analytical solution for large optical depth is derived
analytically in chapter 5.2 by examining the parameters of the stored wave and how it
propagates inside the atomic medium.

5 Propagation of Stored Wave in Atomic Ensemble
To examine the output field from storage the time evolution of S

out

(z) is developed. The
time evolution of a wave packet is determined by a Fourier transform in space with time
dependence e≠iÊt [8]

f(z, t) = 1Ô
2fi

ˆ +Œ

≠Œ
f(k)ei(kz≠Ê(k)t)dk (5.1)

where f(k) is the Fourier transform of f(z, 0), and Ê is a function of k determined by
the dispersion relation for the system.

To make the following calculations more clear S
out

(z) is used in the form of the
normalised Gaussian

S
out

(z) = s0e≠ (z≠zs)2
A+iB eiksz (5.2)

where s0 is the constant of normalisation and k
s

is stored wave vector

k
s

= k̃

A2 + B2 + k (5.3)

s0 = i�

2
ÒÔ

2fi‡5d
[( k

Ê
)Õ(( k

Ê
)Õ ≠ T

2 ) + 2k

”
‡2]ei”T e

C+i„
A2+B2 (5.4)

defined in Eq. 4.18 and 4.24.
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To determine the time evolution of S
out

(z), it is Fourier transformed in space

S(k) = 1Ô
2fi

ˆ Œ

≠Œ
S

out

(z)e≠ikzdz = s0
Ô

2
Ô

A + iB

2 e≠( A+iB
4 )(k≠ks)2≠izs(k≠ks) (5.5)

Eq. 5.1 is used for S(k) to get the time evolution of S
out

(z) by adding the time
dependence e≠iÊ(k)t, where Ê is a function of k, and then using the inverse Fourier
transform of S(k)e≠iÊt

S(z, t) = 1Ô
2fi

ˆ Œ

≠Œ
S(k)ei(kz≠Êt)dk

= s0
Ô

A + iB/2Ô
fi

ˆ Œ

≠Œ
ei(kz≠Êt)e≠( A+iB

4 )(k≠ks)2≠izs(k≠ks)dk

(5.6)

Since Ê(k)’s dependence on k is determined by the dispersion relation of the medium,
the integral is solved by expanding Ê(k) for k near k

s

to second order in (k ≠ k
s

) to
include the term involving dispersion.

Ê(k) ¥ Ê(k
s

) + dÊ

dk

----
k=ks

(k ≠ k
s

) + 1
2

d2Ê

dk2

----
k=ks

(k ≠ k
s

)2 (5.7)

The expansion is inserted in Eq. 5.6 to find the time dependent spin-wave operator after
storage. It is written with Ê(k

s

) = Ê, dÊ

dk

----
k=ks

= ÊÕ, d

2
Ê

dk

2

----
k=ks

= ÊÕÕ to make it more

apparent.

S(z, t) = s0
Ô

A + iBÔ
2
Ô

2fi

ˆ Œ

≠Œ
ei(kz≠(Ê+Ê

Õ(k≠ks)+Ê

ÕÕ(k≠ks)2
/2)t)e≠( A+iB

4 )(k≠ks)2≠izs(k≠ks)dk

= s0
Ô

A + iBÔ
2
Ô

2fi

ˆ Œ

≠Œ
ei(kz≠Êt)e≠(i ÊÕÕ

2 +( A+iB
4 ))(k≠ks)2

te≠i(zs+Ê

Õ
t)(k≠ks)dk

= s0
Ô

A + iBÔ
2
Ô

2fi
e≠iÊt

ˆ Œ

≠Œ
eikze≠(i ÊÕÕ

2 +( A+iB
4 ))(k≠ks)2

te≠i(zs+Ê

Õ
t)(k≠ks)dk

= s0
Ô

A + iBÔ
2
Ô

2fi
e≠iÊt

ˆ Œ

≠Œ
eikze≠‡

2
t (k≠ks)2

teizt(k≠ks)dk

(5.8)

Introducing the function S̃(k; ‡
t

, z
t

) with

S̃(k; ‡
t

, z
t

) = s0
Ô

2‡
t

e≠‡

2
t (k≠ks)2≠izt(k≠ks) (5.9)
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S(z, t) can be rewritten in the form of the inverse Fourier transform with time dependent
width and centre

S(z, t) = s0

Û
A + iB

2 e≠iÊt

1Ô
2fi

ˆ Œ

≠Œ
eikz

1
s0

Ô
2‡

t

S̃(k; ‡
t

, z
t

)dk (5.10)

where the function S̃(k; ‡
t

, z
t

) has been introduced as the spin-wave operator defined
in the form of Eq. 5.5 with ‡

t

=
Ò

(A + iB)/4 + iÊ

ÕÕ
2 t and z

t

= z
s

+ ÊÕt, because
S(k) æ S̃(k; ‡

t

, z
t

) for


(A + iB)/2 æ ‡
t

and z
s

æ z
t

. ‡
t

describes the width of
the Gaussian, when the wave is given in real parts and a phase. S̃(k; ‡

t

, z
t

) is the
Fourier transform of S̃(z; ‡

t

, z
t

) = 1Ô
2fi

´Œ
≠Œ eikzS̃(k; ‡

t

, z
t

)dk. The integral in Eq. 5.10
can be seen as the inverse Fourier transform of S̃(k; ‡

t

, z
t

), denoted S̃(z; ‡
t

, z
t

), where
z

t

= z
s

+ ÊÕt, which gives

S(z, t) =
Ô

A + iB

2‡
t

e≠iÊtS̃(z; ‡
t

, z
t

)

= s0
Ô

A + iB

2‡
t

e≠iÊte
≠ (z≠(ÊÕt+zs))2

4‡2
t

+iksz

(5.11)

where the following definition of S̃(z; ‡
t

, z
t

) is used.

S̃(z; ‡
t

, z
t

) = s0e
≠ (z≠zs)2

4‡2
t

+ikszt
(5.12)

Since the frequency, Ê, in general is complex, the Gaussian in S(z, t) is written with
complex parameters. To define the centre, width and loss of the wave the exponential
in S(z, t) is rewritten into a real Gaussian with a phase. S(z, t) is rewritten in the same
way as was done for the equation of storage S

out

(z) in Eq. 4.24, where the function is
given with real and imaginary parts explicitly.

≠ (z ≠ (ÊÕt + z
s

))2

4‡2
t

= ≠(z ≠ (z
tR

+ iz
tI

))2

A
t

+ iB
t

=
≠(A

t

≠ iB
t

)(z ≠ z
m

)2 + (a + b

2
a

)z2
tI

+ 2iz
tI

( b

2
a

+ a)(z ≠ z
tR

) ≠ ib( b

2

a

2 + 1)z2
tI

A2
t

+ B2
t

= ≠(A
t

≠ iB
t

)(z ≠ z
m

)2

A2
t

+ B2
t

+ – + i—

(5.13)

To express the width and centre of the Gaussian as real number the following four real
parameters have been introduced

z
tR

= z
s

+ Re[ÊÕ]t (5.14a)
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z
tI

= Im[ÊÕ]t (5.14b)

A
t

= 4‡2
s

≠ 2Im[ÊÕÕ]t (5.15a)
B

t

= 2Re[ÊÕÕ]t (5.15b)
To simplify the expression the new parameters – and — have been introduced in the

last step.

– =
(a + b

2
a

)z2
tI

A2
t

+ B2
t

(5.16a)

— =
2z

tI

( b

2
a

+ a)(z ≠ z
tR

) ≠ b( b

2

a

2 + 1)z2
tI

A2
t

+ B2
t

(5.16b)

The time evolution of S
out

(z), S(z, t), after storage of light is given as a Gaussian with
real width, 1

4‡

2
f

= At
A

2
t +B

2
t

and centre, z
f

= z
s

+ Re[ÊÕ]t by

S(z, t) = s0
Ô

A + iB

2


(A + iB)/4 + iÊÕÕt/2
e≠iÊte

≠(At≠iBt)(z≠zf )2

A2
t

+B2
t eiksz+–+i— (5.17)

S(z, t) is a Gaussian function with a time dependent overall loss due to broadening of
the wave, since the width Re[‡

t

] is time dependent. It is centred around z
f

= z
s

+Re[ÊÕ]t,
which tells that the centre of the stored wave, z

s

is propagated by Re[ÊÕ]t and hence
dependent of time.

The time dependent width, ‡
f

, given in terms of the stored parameters, is

‡
f

= 1
2

Û
A2

t

+ B2
t

A
t

=
Û

(2‡2
s

≠ Im[ÊÕÕ]t)2 + (Re[ÊÕÕ]t)2

4‡2
s

≠ 2Im[ÊÕÕ]t (5.18)

Since Im[ÊÕÕ] is negative, the wave is broadening when propagating inside the ensemble
due to the time dependence of the width.

5.1 Conditions Imposed by the Dispersion Relation
The dispersion relation, Ê(k), for this system is the quadratic dispersion relation for
stationary light in �-type atoms, which expanded for small ( k

n0
)2, where n0 is the density

of atoms, is [4]

Ê = 1
2m

( k

n0
)2 (5.19)

and the inverse of the mass is defined by [4]

1
m

= 162fi2“�2(� ≠ i/2)
d2 n2

0

= (v
r

+ iv
i

)n2
0

(5.20)
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where v
r

is the real part and v
i

the imaginary part of 1/(mn2
0). The decay causing

reabsorption is neglected in the definition of 1/m like in the preceding calculations.
This dispersion relation is determined for �-type atomic medium with the level

scheme shown in Fig. 2.1, where the atoms are initially prepared in the ground state |gÍ,
and the rotating wave approximation is used to solve the equations of motions. Hence
this dispersion relation applies for the system considered.

The centre of S(z, t), z
f

is time dependent and moves with velocity Re[ÊÕ] with ÊÕ

given by

ÊÕ = dÊ

dk

----
k=ks

= (v
r

+ iv
i

)k
s

(5.21)

If the wave vector k
s

of storage is considered real, the centre moves with the real part
of 1/m

Re[ÊÕ] = v
r

k
s

(5.22)

k
s

can be considered real in the limit of ” π 1, since for ” æ 0, the imaginary part of k
s

can be neglected, k
s

æ Re[k
s

].
The attenuation of S(z, t) in time is identified with the factor e≠iÊt, since Ê is com-

plex. As explained the wave vector of storage is chosen real, which gives an attenuation
of Im[Ê].

e≠iÊt = e≠iRe[Ê]t+Im[Ê]t (5.23)

shows that the loss as a function of time is Im[Ê]t, with Im[Ê] negative according to
Eq. 5.19, which is an attenuation of the wave.

To optimise the storage of light, the attenuation in time needs to be small compared
to the velocity, with which the centre propagates, since the wave needs to propagate
inside the ensemble with minimal loss. That imposes the condition |Im[Ê]| π |Re[ÊÕ]|.
For this condition on Ê to be satisfied, the dispersion relation in Eq. 5.19 needs to satisfy

----
1
2v

i

k2
s

---- π |v
r

k
s

| (5.24)

For this relation to be satisfied for all choices of k
s

, it confines 1/m by

� ∫ 1
2 (5.25)

which is determined from 1/m in Eq. 5.20.

5.2 Condition on Optical Depth for Storage
The solution of the time dependent spin wave operator, Eq. 5.11, imposes a condition
for storage of the light, since for storage and retrieval to be possible, the wave has to
propagate inside the ensemble with width and broadening small enough to distinguish
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the stored and the propagated wave, ie. localisation of the wave inside the ensemble.
Written in terms of the propagating centre, z̃, and width �z the condition is

z̃ ∫ �z (5.26)

where z̃ and �z are defined by approximations of z
f

and ‡
f

, respectively. The conditions
for minimum loss of the stored wave and the propagating wave, ” π 1 and Im[ 1

m

] π
Re[ 1

m

], respectively, are imposed in the following definitions of z̃ and �z

z̃ = Re[ÊÕ]t (5.27)

�z = 1
2

Û

4‡2
s

+ Re[ÊÕÕ]2t2

‡2
s

(5.28)

�z has to be minimized to satisfy the condition z̃ ∫ �z. The minimal value for �z is
obtained when

4‡2
s

= Re[ÊÕÕ]2t2

‡2
s

(5.29)

which inserted in Eq. 5.28 gives the minimised width

�z = 1Ô
2

Re[ÊÕÕ]t
‡

s

(5.30)

The duration time, T = z̃

Re[ÊÕ]s , where the subscript s denotes storage and evaluation
in k = k

s

, is inserted in the minimised �z to relate the width and centre, and thus obtain
a condition on the stored light.

z̃ =
Ô

2‡
s

Re[ÊÕ]
s

Re[ÊÕÕ]
s

�z

=
Ô

2‡
s

k
s

�z

(5.31)

The imposed condition z̃ ∫ �z is thus satisfied when

‡
s

k
s

∫ 1 (5.32)

Using the real part of Eq. 5.3 to lowest order in ” imposes

‡
s

d”

�2 ∫ 1 (5.33)

which leads to the condition on d, that d is required to be large compared to ”: d ∫ 1
”

.
This condition on d supports the analytical solution, since the comparison of the

analytical and numerical solution in Fig. 4.1 yields that the two solutions converge for
large d, ie. d = 1000. Thus the approximations made to solve the equations of motions
analytically are good for a large optical depth, which is required for storage.
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5.3 Numerical Solution of Travelling Wave
The condition on the optical depth to be large is examined by numerically deriving the
time dependence of the propagating wave. The numerically solved propagating wave is
compared with the stored wave to study the possibility of localisation of the two waves.

The numerical solutions of the propagating wave inside the atomic ensemble are
made for d = 100 and d = 1000 with a numerical Fourier transform. This is done
by using a Fast Fourier Transform of the analytical solution S

out

(z). The transformed
output field, S(k), is multiplied with the time dependence eiÊ(k)Tt , where Ê(k) is defined
by the dispersion relation Eq. 5.19 and k is the wave vector. T

t

is the time the wave
propagates inside the ensemble. Since the transform is made numerically, and hence
S

out

(z) is discrete values, the zero frequency component is shifted.
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Propagating Wave Inside Ensemble, S(z, t); d=1000

Sout(z)
S(z,Tt)

Figure 5.1: Plot of the stored input field and numerically solved

propagating wave inside the atomic ensemble for optical depth,

d=1000. The blue graph is the stored light, S
out

(z) given by Eq. 5.13.
The red graph is the propagating wave, which is obtained by numerically de-
riving the time evolution of the stored wave. The parameters of the input field
are chosen to yield a stored wave with centre z

s

= 0.25 and width ‡
s

= 0.05.
The frequency, ” = 0.5, and propagation time, T

t

= 0.0003, are chosen to
attain a wave, that has propagated a distance with minimum broadening.

The frequency, ”, is chosen small to decrease the attenuation of the stored wave and
su�ciently large to move the wave. Time, T

t

is chosen to make the wave propagate,
however, the width increases with time. Thus ” and T

t

are chosen to obtain a shape of
the propagated wave that can be distinguished from the stored wave.

The numerical propagation inside the ensemble is made for two optical depths, d=100
(Fig. 5.2) and d=1000 (Fig. 5.1). In chapter 5.2 the condition of localisation of the
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Figure 5.2: Plot of the stored input field and the numerically solved

propagating wave inside the atomic ensemble for optical depth,

d=100. The blue graph is the stored light, S
out

(z) given by Eq. 5.13,
with parameters chosen to yield a wave with centre z

s

= 0.25 and width
‡

s

= 0.05. The red graph is the propagating wave, which is obtained by
numerically deriving the time evolution of the stored wave. The parameters
of the input field are chosen to yield a stored wave with centre z

s

= 0.25 and
width ‡

s

= 0.05. The frequency, ” = 0.3, and propagation time, T
t

= 0.0004,
are chosen to attain a wave, that has propagated a distance with minimum
broadening. Since d = 100 the parameters can not be chosen to obtain two
distinguishable waves due to large broadening.

propagating wave required the optical depth to be large. Fig. 5.1 shows the propagating
wave for large optical depth, ie. d = 1000, where ” and T

t

are chosen to fit the stored
and the propagating wave inside the ensemble. The two waves are distinguishable for
d = 1000 as required, however for smaller optical depth, d = 100, the propagated wave
can not be distinguished from the stored wave, since the propagating wave has broadened
while the centres are only separated by a small distance compared to the separation for
d = 1000. This separation for d = 100 is much smaller than the broadening, which is
clear in Fig. 5.2.

A comparison of the figures of the stored and propagating wave supports the condi-
tion on the optical depth, d, imposed in chapter 5.2, since the optical depth is required
to be large for storage of light in an atomic medium.

18



6 Conclusion
In this thesis the interface of light and an atomic medium is examined by an analytical
derivation of the output field for storage and the propagating stored wave inside the
atomic ensemble. The derivation is made by solving the equations of motion for the
system and imposing the dispersion relation.

The analytical solution for storage yields the shape of the output field, with a width
of the wave, a centre, a wave vector and a loss. The parameters for the input field
are expressed as a function of chosen parameters of the stored light that ensures the
possibility of the wave propagating inside the atomic ensemble. The attenuation of the
stored wave is proportional to the frequency squared, ”2, thus ” is required to be small.
Furthermore the stored light must be localised during propagation, which yields the
condition on the optical depth to be large. This condition supports the approximations
made to solve the equations of motion, since the analytical and numerical solution of
storage converge for large optical depth. Therefore, a large optical depth is assumed in
the calculations. For further research the condition on the optical depth can be examined
in detail to determine how the stored and and propagating wave depends on the optical
depth explicitly, since this thesis is concerned with three di�erent optical depths, d = 10,
d = 100 and d = 1000.

The propagation of the wave is solved with the conditions of localisation of the stored
and propagating wave and minimizing loss taken into account. These conditions are
considered by assuming a large optical depth and a small frequency, ”. The propagation
of the stored light is solved by deriving the time dependence of the stored input field. This
yields a wave propagating with the velocity Re[dÊ

dk

----
k=ks

], the real part of the derivative

of the frequency, where the frequency, Ê(k), is a complex function, and it is determined
by the quadratic dispersion relation for a �-type atomic medium. The attenuation in
time is found to be the imaginary part of Im[Ê(k

s

)]. A comparison of the velocity of
the propagating wave and the attenuation yields the condition of the detuning between
the light frequency and the frequency of the atomic transition, � ∫ 1

2 .
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