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Abstract

A model of classical spins on Bravais lattices with geometrical frustration is studied.
A way of determining the ground state spin con�gurations as a helical order is argued
along with a way of classifying these according to their ground state pitch vectors. Tak-
ing up to second nearest neighbouring spins into account parametrised continuous ground
state degeneracies with certain values of the interaction constants are shown in the tri-
angular and square lattices. It is shown that due to an order by disorder e�ect these
degeneracies are lifted at �nite temperature. A third nearest neighbour interaction is
added in the square lattice and it is shown that with this being ferromagnetic an in-
�nite degeneracy is reduced to a parametrised one in the case of an antiferromagnetic
second nearest neighbour interaction being half of an antiferromagnetic nearest neigh-
bour interaction.
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1 Introduction

Frustration in exchange coupled spin systems oftentimes brings about interesting phe-
nomena because it can lead to quite complex spin con�gurations and rich phase dia-
grams. The term "frustration" is introduced when it is impossible to simultaneously
satisfy all the exchange processes in a system. In periodic lattices "geometrical frus-
tration" would be more exact. It occurs when the geometry of the lattice makes it im-
possible locally to make a simple spin pattern that would minimise the energy. When
introducing geometrical frustration it is quite common to use a triangular lattice with
antiferromagnetic (henceforth AFM) nearest neighbor interactions as seen in �gure 1.
The triangle is such a geometrical shape that we only need the nearest neighbour AFM
bond to easily realise that the energy contributions from all the spin interactions can
not simultaneously be minimised. Through this example we can generalise and say that
a necessary condition for frustration is that at least one interaction is AFM. It is illus-
trated in �gure 1(a). So what will the ground state con�guration in this case look like?
this question and more will be studied in this thesis.

(a) Plaquettes of a triangular lattice (b) Plaquettes of a square lattice

Figure 1: A small number of plaquettes in a tringular and square lattice to illustrate
that every interaction process con not be satis�ed simultaneously. We will take into ac-
count up to second nearest neighbour bond in the tringular lattice ans set lattice con-
stants to 1

Only classical spins on a square and a triangular lattice will be dealt with and a way of
determining the ground state con�gurations of frustrated spin systems will be argued.
This is done in chapter 3. A way of classifying these ground states is developed in chap-
ter 4. This constitutes a theoretical background of performing calculations on concrete
lattice structures with well de�ned interaction parameters that in general could be de-
�ned by a vector,

(1.1)J = (J1, J2, · · · , JN) ,

with in this case N di�erent interactions between the particles of the sites of the lattice.

Next we will use the triangular and square lattices with nearest and second nearest
neighbour interactions as concrete examples. When dealing with frustrated systems one
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can encounter a continuous manifold of degenerate ground states at zero temperature
as we shall see examples of. These degeneracies can be lifted due to a mechanism called
"order by disorder" which we will also see examples of. Next we take �uctuations into
account and show how a spectrum of these can be found.

All �gures in this thesis are self-made. Plots and numerical calculations have been made
using MathematicaTM .

2 The Heisenberg model

The general model under consideration is the Heisenberg model given by the Hamilto-
nian

(2.1)H =
1

2

∑
ij

Jijsi · sj.

The prefactor of 1
2
in 2.1 corrects for double counting, and the sum is to be taken over

pairs of spins 〈ij〉. The symmetric exchange interaction integrals, Jji = Jij, we will take
to be functions of real space positions only i.e. Jij = Jn

(
Ri −Rj

)
, where the Jn is the

n'th interaction constant with the corresponding distance
(
Ri −Rj

)
. The sign of these

determine whether the spins favour a parallel or antiparallel con�guration. 2.1 will for
example be minimized with an antiparallel con�guration if the Jij > 0. The spins, si,
are also functions of real space. We want to impose the local constraint that

(2.2)si · si = 1,

at each of the, N , sites of the lattice. The spins under consideration in this thesis are
situated on periodic triangular or square lattices where we through every calculation
de�ne the lattice constant to be 1. When doing thermodynamic calculations we have to
assume that the systems are in the thermodynamic limit, hence N →∞.

The translational invariance makes it convenient to introduce the Fourier transform of
the spins,

si =
1

N
∑
q

sqe
iRi·q. (2.3)

When 2.3 is used in 2.1 we obtain

(2.4)

H =
1

2

∑
qq′

Sq · Sq′

∑
ij

Jij e
i(Ri·q+Rj ·q′)

=
1

2

∑
qq′

Sq · Sq′

∑
ij

Jije
iRi(q+q′)e−i(Ri−Rj)·q′

=
1

2

∑
qq′

Sq · Sq′

∑
ij

Jije
−i(Ri−Rj)·q′∑

i

eiRi(q+q′)
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(2.5)=
1

2

∑
q

J (q)Sq · S−q ,

where we have de�ned

(2.6)J (q) =
∑
ij

Jije
i(Ri−Rj)·q,

which can be used to calculate the energy spectrum in momentum space. This will be
used extensively through the thesis.

3 Spin con�guration in the classical Ground State at

zero temperature

As stated earlier frustration is equivalent to saying that it is impossible for all the terms
in 2.1 simultaneously to be minimized and it is hence not obvious what the ground
state con�guration looks like. In this section a method of rigorously determining the
ground state spin con�guration for some system is taken into account as it will be es-
sential to the rest of the thesis. Ref. 5 is followed in the pursuit of �nding a minimum
of the energy.

We want to �nd the minimum of the energy and still have the the strong, local con-
straint given in 2.2 satis�ed. When using the Lagrange multiplier method this gives rise
to a condition for every site of the lattice, i.e. we would have N Lagrange multipliers,
which makes the task of hopeless. We take another approach and begin with merely
satisfying the weaker constraint given by

(3.1)
∑
i

s2i = N .

That a spin con�guration satis�es this weak constraint is a necessary but not a su�-
cient condition for it to satisfy the strong condition. Replacing the strong condition by
the weak condition is equivalent to the Lagrange multipliers being independent of the
site at which it is supposed to ensure the size of its spin. This problem is a much sim-
pler one and we start by solving that.

We can now write the stationarity condition with respect to the set of variables (si, λ)
for each component α = x, y, z as

(3.2)0 =
∂

∂sαi

∑
ij

Jijsi · sj − λ

∑
i

s2i −N


 ,

which implies

(3.3)
∑
j

Jijs
α
j = 2λsαi .
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This is a set of three independent eigenvalue problems. The translational symmetry of
Jij makes,

(3.4)sαj = Aα cos
[
Q ·Rj + φα

]
,

a good ansatz for a solution where Q is some particular wave vector. We get

(3.5)
∑
j

Jijs
α
j = Aα

∑
j

Jij cos
[
Q ·Rj + φα

]
,

which upon Fourier transformation of Jij becomes

(3.6)

= Aα
∑
j

1

N
∑
q

Jqe
iq·(Ri−Rj)

(
ei(Q·Rj+φα) + e−i(Q·Rj+φα)

)
= Aα

1

N
∑
q

Jqe
iq·Ri

∑
j

[
ei(Q−q)·Rj+φα + e−i((Q+q)·Rj+φα)

]
= Aα

1

N
∑
q

Jqe
iq·Ri

[
δq,Qe

φα + δq,−Qe
−φα
]

= AαJQ2 cos [Q ·Ri + φα] .

Using the fact that JQ = J−Q. This means that the eigenvalues were given by λ = JQ.
The energy of a state satisfying the stationarity condition with the weak constraint can
now be found by picking the Q that minimizes

(3.7)E =
∑
q

Jq
∣∣sq∣∣2 ,

which only comprises to a single wave vector pair ±Q and can therefore be reduced to

E = NJQ (3.8)

Having established a solutions that satisfy the weak constraint we can now among these
pick out those that also satisfy the full local constraint. This is done by adjusting the
six parameters

{
A1,2,3, φ1,2,3

}
. We choose one of the Aα's to be zero, the other two to

be equal and the phases to be φ1 = φ, φ2 = φ + π
2
and we end up with a planar spiral

solution

(3.9)si = e1 cos [Q ·Ri] + e2 sin [Q ·Ri]

Where we without loss of generality have put φ = 0. This comes with the requirements

e1 · e1 = e2 · e2 = 1 , e1 · e2 = 0 (3.10)

This analysis has made it clear that to continue the search for ground state spin con-
�gurations in frustrated systems we need to understand how 3.9 looks with di�erent Q,
which we will henceforth call pitch vectors.
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4 Classi�cation of ground states due to pitch vectors

In the following a way of classifying ground state spin con�gurations in accordance with
the given pitch vector is introduced. We follow mostly ref. 8 in this endeavour and de-
�ne a commensurate spin phase as one that has a periodicity of the spins of �nite size
in its ground state. An incommensurate spin phase is thus one that cannot be divided
into a �nite number of sublattices.

4.1 The 'star' of Q

As we will see concrete examples of later some systems have more than one Q (or its
negative) minimising the energy. Two such Q's are said to be equivalent if their di�er-
ence is a reciprocal lattice vector. The set of non-equivalent Q's is called the 'star' of
Q. The star of Q consisting of only one element is the most common in nature. If for
example Q = 0 we have a ferromagnet.

When the star of Q consists of more than one element eq. 3.9 does not necessarily con-
tain all lowest energy states. When 3.9 comprises all lowest energy states the ground-
state degeneracy is discrete. In the next section we will see examples where Q's can be
combined to give ground states which are not comprised in 3.9.

In general Q brings about incommensurate spin con�gurations. Our ground state spins
given in 3.9 are periodic with 2π which means that incommensurate phases correspond
to nQ not being equal to a reciprocal lattice vector for any n 6= 0. The reason is that if
nQ = G, we could write nQ ·Ri = G ·Ri = 2πm with m ∈ Z which means that when-
ever m

n
is an integer a spin will be back pointing in its original direction. This means

that for in�nitely large systems if nQ = G with n being rational the con�guration can
in principle be broken up into a number of sublattices.

4.2 Pitch vectors of special interest

Let us now turn to look at some special points in �rst Brillouin zone. At certain po-
sitions, see �gure 2, the groundstate degeneracy may be continuous. We shall be con-
tented with two examples.

If we let the dimensionality of the spins be n > 4 one way of obtain a ground state
which is not given by 3.9. The way in which this can be done is simply to add two con-
�gurations with Q1 and Q2 such that

(4.1)
si =

[
e1 cos (Q1 ·Ri) + e3 sin (Q1 ·Ri)

]
cos θ

+
[
e2 cos (Q2 ·Ri) + e4 sin (Q2 ·Ri)

]
sin θ,

where the eα's are all orthogonal unit vectors in order to satisfy the local constraint.
θ is an arbitrary phase which can be attached without violating any of constraints. A
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special case is when 2Q ≡ 0. Or put in other words if n = 2, m = 2 and we hence have
periodicity of 2 in the direction of Q based on the argument above. The correspond
in the square lattice to horizontal stripes, vertical stripes or the Néel state. Then 4.1
reduces to

(4.2)si = e1 cos (Q1 ·Ri) cos θ + e2 cos (Q2 ·Ri) sin θ,

since the sine terms disappear and only two orthogonal unit vectors are needed. 4.2
thus gives us a groundstate that is not comprised in 3.9 for two dimensional spins. The
θ could be any number we thereby have continuously degenerate ground state.

If 4Q ≡ 0 the ground state spins have periodicity 4 in the direction of Q con�guration
consists of only vertical and horizontal spins. One can tilt globally the vertical or hori-
zontal spins without energy costs which can be expressed as

(4.3)si = e1
[
cos (Q ·Ri) + sin (Q ·Ri) cos θ

]
+ e2 sin (Q ·Ri) sin θ.

This is a legitimate ground state because the constraints 3.10 are still satis�ed. We thus
see that both 4.2 and 4.3 give continuous manifolds of ground states parametrised by
the angle θ. We will later see examples of both in concrete examples of geometrical
frustration.

Furthermore it is worth noticing that when the pitch vector, Q, only has one nonzero
component the spin con�guration will be a one dimensional spiral in the case of a square
lattice with ferromagnetic stripes on the axis corresponding to the zero component of Q
since the direction of the spins does not change along this direction. When Q lies on
the Brillouin zone edge boundary in the case of a triangular lattice this is con�gura-
tion in which second nearest neighbouring spins would be either aligned or anti aligned.
This is summed up in the �gure below with special positions of the pitch vector

(a) First Brillouin zone of the square lattice

with special Q's

(b) First Brillouin zone of the triangular lat-

tices with special Q's

Figure 2: Brown dots are reciprocal lattice sites. Red spots: ∼ 0.5G and coexisting spi-
rals can occur. Yellow spots ∼ 0.25G where every spin points vertically or horizontally.
Dotted lines: nQ = G corresponds possibly to commensurate states. The rest is incom-
mensurate states
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5 Frustration in the triangular lattice with J1 and J2

bonds

In this section geometrical frustration in a triangular lattice is considered. The geom-
etry of the lattice gives frustration when only a nearest neighbour AFM coupling is
taken into account. We will brie�y show that the ground state con�guration is the '120
deg.' three sublattice structure ordered ferromagnetically, thus answering the question
posed in the introduction. Next we will introduce an AFM next nearest neighbour and
look at cases of both a FM and AFM J1 interaction. We will outline the phase diagram
based on the �rst case and focus on some of the interesting values of J2. We will in the
following de�ne α ≡ J2

|J1| and use this as a tuning parameter.

Jq
2J1

= cos [qx] + 2 cos

[
1

2
qx

]
cos

[√
3

2
qy

]
+ α

cos
[√

3qy

]
+ 2 cos

[
3

2
qx

]
cos

[√
3

2
qy

] ,

(5.1)

5.1 AFM nearest neighbour (J1 > 0 , J2 = 0)

When J2 = 0, 5.1 is minimised in the corners of the �rst Brillouin zone boundary which
means that the 'star' of Q is twofold. Figure 3 (b) shows a plot of the contours of the
energy in momentum space. It also means that 3Q is equivalent to a lattice site in re-
ciprocal space and we should see a three sublattice structure. Using the pitch vectors
in 3.9 gives a con�guration seen in �gure 3(a), where the alignment of the second near-
est neighbour mentioned earlier is also marked by red dotted lines. It can be seen in the
�gure that this con�guration corresponds to Q =

(
4π
3
, 0
)
since we see the periodicity in

the x direction. The energy of these ground states is E0 = −3J1.

(a) A three sublattice structure with 120 deg.

between them. The ground state with of the

AFM nearest neighbour model on traingular

lattice (b) Plot of the contours in which it is seen that

the corners of the �rst Brillouin zone de�ne the

pitch vectors.

Figure 3: Three sublattice structure in AFM nearest neighbour model on triangular lat-
tice and contourplot of energy in �rst Brillouin zone
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5.2 AFM J1 and AFM J2

An AFM next nearest neighbour bond is now added to the model. First we need to ask
ourselves at what value of α the pitch vectors start change. Surely we expect 120 deg.
state to be the ground state at small J2 couplings. The energy at the corners of the
Brillouin zone is E(α < α0) = −3 + 6α. It is easily checked by using contour plots
such as the one in �gure 3 (b) that the points at which 5.1 has its minimum changes
for some value α0 to become half reciprocal lattice vectors. The energy here is E(α >
α0) = −2 − 2α which means that α0 = 1

8
. When α > 1 the pitch vectors begin moving

along the reciprocal lattice vectors towards the origin corresponding possibly to com-
mensurate spin con�gurations.

Looking for the minimum along the qy-axis by setting the gradient of 5.1 to zero it is
found that the distance d from the origin is d(α) = 2√

3
arccos

(
−1+α

2α

)
with α ≥ 1. No-

tice now that d(∞) = 1
3
4π√
3
is one third of the length a reciprocal lattice vector and we

should expect a periodicity of 3 when J2 >> J1. Indeed we see that in �gure 5 (b)
along the marked lines and in the horizontal direction. This analysis is summed up in
�gure 4.

Figure 4: With α < 1
8
the pitch vectors (represented by brown dots) point to the cor-

ners of the �rst Brillouin zone and the ground state con�guration is like that of the case
of only nearest neighbour AFM bonds. With 1

8
< α < 1, Q's are half reciprocal lattice

vectors α > 1
8
the Q's move towards origin and saturates at 1

3
G.

The fact that the pitch vectors are half reciprocal lattice vectors in the interval 1
8
< α <

1 means according to the argument in section 4 that we �nd a continuous manifold of
ground states on the form 4.2 parametrised by an angle θ as seen �gure 5(a).

We will show later that when we add �uctuations and do thermodynamic calculations
the entropy per site depends on θ and speci�c values are chosen thus lifting this ground
state manifold due to an order by disorder mechanism.

5.3 FM J1 and AFM J2

In the case where we have a FM J1 and an AFM J2 we have one pitch vector, Q =
(0, 0), at small values of α ≡ J2

|J1| which is not surprising since this corresponds to a
ferromagnet. However, when α is increased the Q's begin moving away from the ori-
gin along the lines of Q = nG. The distance from the origin is this time given by
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(a) Ground state on the form 4.2

with AFM J2 and 1
8 < α < 1 and

an angle, θ, can be used as shown without

energy cost

(b) α → ∞: Q = 1
3G. The ground state again

becomes a three sublattice 120 deg. structure

between the next nearest neighbouring spins

Figure 5: Ground state spin con�gurations in the AFM J1 - AFM J2 model

(a) Ground state with 4Q ≡ 0
as is the case with FM J1 and AFM J2 when

α = 1 a periodicity of 4 is seen. The spins

are pointing only along the horizontal axes, as

depicted also

(b) Ground state con�guration with J1 = −1
J2 = 1. The ground states can be parametrised

by an angle θ

Figure 6: Ground state spin con�gurations with FM J1 and AFM J2 and α = 1

d (α) = 2√
3

arccos
(
1−α
2α

)
which gives real values when α ≥ 1

3
. So a smooth transition

happens here according to our calculations. We notice now that
(
0, 4d (1)

)
≡ 0 which

is a point of interest. This is to say that when the couplings are equal in size but op-
posite we have six non-equivalent pitch vectors corresponding to states where the spins
are only pointing along e1 or e2 and ground states are given by 4.3. We again have a
continuous ground state manifold. This is shown in �gure 6.

In the limit we of course still have
(
0, 3d (∞)

)
= G just like we had in the case of AFM

J1 and AFM J2.

6 Frustration in a square lattice with AFM J1 and AFM

J2 bonds

In this chapter we will discuss the square lattice with nearest and second nearest neigh-
bour interaction. Although quite simple in appearance this model realizes some inter-
esting phenomena of which the order from disorder mechanism is one. The energy spec-
trum in momentum space can be calculated using 2.6 and we get
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(6.1)
Jq
2J1

= cos qx + cos qy + 2α cos qx cos qy,

Where α = J2
J1
. It is easily checked that for small values of α the pitch vectors are in the

corners of the Brillouin zone i.e Q = (π, π) which this time itself is half a reciprocal lat-
tice vector but has no non-equivalent Q to coexist with. This corresponds to the Néel
state. If we increase α, we get Q1 = (π, 0) and Q2 = (0, π). We have J(π,π) = −2 + 2α
and J(π,0) = −2α which means that the transition happens at α = 1

2
. But if we take

some generic point on the Brillouin zone edge at α = 1
2
, we get J(aπ,bπ) = −1, where

−1 < b < 1 if a = 1 and vice versa. We immediately see that α = 1
2
is a special value

and we will deal will this later. In the following we brie�y discuss the ground state de-
generacy with α > 1

2

6.1 Degeneracy of the ground state con�guration with α > 1
2

When α > 1
2
we have ordering vectors which are half a reciprocal lattice vector which

means that states of lowest energy can be described by 4.2. The system thus breaks up
in its ground state and becomes two sublattices each ordered antiferromagnetically as
two interpenetrating decoupled Néel states as shown in �gure 7.

θ

Figure 7: The spins in two interpenetrating sublattices each ordered antiferromagneti-
cally with arbitrary angel θ

6.2 Degeneracy of the ground state con�guration with α = 1
2

This is, as mentioned, a very special case since every point on the Brillouin zone bound-
ary can be used as a pitch vector. The Hamiltonian can be rewritten in terms of a sum
over square plaquettes of the lattice

(6.2)
H =

∑
�

H�

= −4αN� +
1

2
α
∑
�

(S1 + S2 + S3 + S4)
2 ,

1 keeping in mind that the J1 bond is shared between two adjacent plaquettes and should
only to be counted once, see �gure 8 (a). N� is the number of square plaquettes in the
system. We thus see that every state that satis�es the zero sum condition given by

1Chandra et al. 1990

10



(6.3)S1 + S2 + S3 + S4 = 0,

on every square plaquette is a ground state of the system. With two dimensional spins
this gives an in�nite degeneracy of the ground states with AFM lines either vertically or
horizontally as described in section 4. This is illustrated in �gure 8 (b) where a ground
state could be obtained by any set of {θi}.

(a) The zero sum condition visualised with

four spins on a plaquette summing to zero.

The dotted red line is a J1 bond shared

between two adjacent plaquettes and is

only to be counted once

(b) The zero sum condition visualised

with four spins on a plaquette summing to

zero with AFM lines vertically. A ground

state could be a set of θi's.

Figure 8

In a later chapter we will see how adding a ferromagnetic third nearest neighbour cou-
pling lifts this in�nite degeneracy by �xing third nearest neighbour spins such that
θRi = θRi+(2,0) = θRi+(0,2) in the ground state.

7 Low temperature thermodynamics and Order by

Disorder

Having established that a ground state at speci�c values of the coupling constants can
have a continuous degeneracy let us now turn to look at the low temperature thermo-
dynamics of such systems. Speci�cally we will calculate the spin wave spectra in the
two cases considered above. We want to add small �uctuations from the ground state
de�ned by the parameter θ to the Hamiltonian and expand around this con�guration
expressed by

{
φ0
i

}
in terms of angles. We rewrite the ground state Hamiltonian 2.1 as,

H =
1

2

∑
ij

Jij cos(φi − φj), (7.1)

and introduce deviations by φi → φ0
i + δφi. Now we can expand to second order which

gives
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(7.2)
H =

1

2

∑
ij

Jij cos(φ0
i − φ0

j + δφi − δφj)

≈ 1

2

∑
ij

Jij

[
cos(φ0

i −φ0
j)−sin(φ0

i −φ0
j)
(
δφi−δφj

)
− 1

2
cos(φ0

i −φ0
j)
(
δφi−δφj

)2]
.

The �rst term inside the sum when summed over i and j is just the ground state en-
ergy. It follows from translational invariance that the second term vanishes because,

(7.3)

∑
ij

Jij sin
(
φ0
i − φ0

j

) (
δφi − δφj

)
=
∑
i

∑
l

Jl sin (∆φl) (δφi − δφi+l)

=
∑
l

Jl sin (∆φl)

∑
i

δφi −
∑
i

δφi+l


= 0.

Because the last i sum may just be shifted by l. Had the linear term not been zero we
could not be sure whether we were actually at a minimum. We have now that, H ≈
H(0) + δHθ where,

(7.4)δHθ =
1

4

∑
ij

Jij cos
(
φ0
i − φ0

j

)(
2δφiδφj − δφ2

i − δφ2
j

)
,

which upon Fourier transformation inside the sum, i.e., substituting in δφi = 1
N
∑

q δθqe
iRi·q

into 7.4, can be linearised to give

(7.5)δHθ =
1

2

∑
q∈BZ

Aq (θ)
∣∣δφq

∣∣2 .
The �uctuation spectrum Aq (θ) can be obtained by inserting the Jij which is a func-
tion of the geometry of the lattice. We also have to know what the ground state spin
con�guration looks like, which in our case, is the same as knowing the ground state pa-
rameter θ. Such a calculation is carried out in detail in 7.1.

We can now calculate the partition function by evaluating the integral

Z = e−βE0

∫ ∏
q

(
dδθq

)
e−

1
2
β
∑

q Aq|δθq|2 , (7.6)

which is a product of Gaussian integrals and can readily be carried out

Z = e−βE0

∏
q

(
βAq

2π

)− 1
2

. (7.7)
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The Helmholtz free energy can be found by calculating F = − 1
β

ln (Z) which yields

F (θ, T ) = E0 +
1

2
T
∑
q∈BZ

ln
Aq

2πT
. (7.8)

The entropy can now be calculated as S = ln (Z)− β
Z
∂Z
∂β
, which gives

(7.9)S (θ, T ) =
N

2
− 1

2

∑
q∈BZ

ln

(
Aq

2πT

)
,

where the constant depends on the system size. We can thus write the free energy per
site as

(7.10)f (θ, T ) =
E0

N
+

1

2
T − T S (θ)

N
.

7.1 Order by disorder with α > 1
2 in the J1-J2 square lattice

model

Based on the above it is clear that if we want to say something about the behaviour of
the ground state con�guration when �uctuations are added to the system it is necessary
to calculate 7.11 for a particular system. We Fourier transform inside the sum 7.4 to
get

(7.11)Aq (θ) =
1

2

1

N 2

∑
ij

Jij cos
(
φ0
i − φ0

j

)(
2ei(Ri·q+Rj ·q′) − eiRi·(q+q′) − eiRj ·(q+q′)

)
.

We can now insert

(7.12)Jij = J1

(
δRj ,Ri±(1,0) + δRj ,Ri±(0,1)

)
+ J2

(
δRj ,Ri±(1,1) + δRj ,Ri±(1,−1)

)
,

when doing the sums. In �gure 7 we see that the angles between the i'th spin and its
neighbours in the ground state are φ, π and π − φ. We thus get

Aq (θ) =
1

2

1

N 2

∑
ij

J1

[
2 cos (θ) eiRi·(q+q′)+q′·(1,0) − eiRi(q+q′) − eiRi(q+q′)+(q+q′)·(1,0)

]
+ J1

[
2 cos (π − θ) eiRi·(q+q′)+q′·(0,1) − eiRi(q+q′) − eiRi(q+q′)+(q+q′)·(0,1)

]
+ · · ·
(7.13)
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Figure 9: Plot of the free energy obtained by eq. 7.8 in a small temperature interval for
the α > 1

2
square lattice. It is seen that minimisation of the free energy picks out -1 and

+1 for the ground state parameter. J1 = 1 and J2 = 0.8.

We leave the full calculation undone because the expressions become very lengthy. Af-
ter summing over i which gives delta functions δq,−q′ in every term we end up getting

Aq (ξ) = 4J2(1− cos qx cos qy) + 2J1(cos qx − cos qy)ξ, (7.14)

because δθqδθ−q =
∣∣δθq∣∣2 where we have set ξ = cos θ. We can now calculate how large

scale thermodynamic properties behave under small �uctuations from the ground state
as a function of the ground state parameter.

The selecting free energy and entropy can be calculated by using eq. 7.8 as a numerical
integral over the �rst Brillouin zone. In �gure 9 we show a plot of the free energy as a
function of temperature and ground state parameter. It shows that at �nite tempera-
ture the free energy is minimised at ξ = ±1 which corresponds to collinear states (see
�gure 7)

This shows that a collinear state in which the two sublattices line up is preferred at �-
nite temperature. This is thus an archetypal example of the order by disorder mecha-
nism and con�rms results obtained by Henley 1989 [3].

7.2 Order by disorder in the case of AFM J1 and AFM J2 with
1
8 < α < 1

By the same means as above we calculate the �uctuation spectrum. In the case of a tri-
angular lattice with nearest and second nearest neighbour bonds we can, when summing
over j insert,
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(7.15)Jij = J1

(
δRj ,Ri±(1,0) + δ

Rj ,Ri±
(

1
2
,
√
3
2

) + δ
Rj ,Ri±

(
− 1

2
,
√
3
2

))
+ J2

(
δ
Rj ,Ri±

(
3
2
,
√
3

2

) + δRj ,Ri±(0,
√
3) + δ

Rj ,Ri±
(
− 3

2
,
√
3

2

)) ,
into 7.11. And with a con�guration that looks like the one in �gure 5 (a) with the ground
state parameter denoted as ξ = cos (2θ) we get

(7.16)
1

2
Aq(ξ) = J1

[
ξa1,0 − ξa 1

2
,−

√
3

2

− a 1
2
,
√
3

2

+ 1

]
− J2

[
a 3

2
,
√
3

2

+ ξa 3
2
,−

√
3
2

− ξa0,√3 − 1

]
,

where we have invoked the notation aγ1,γ2 = cos
(
γ1qx + γ2qy

)
.Again by using eq. 7.8

and numerical integration we get a free energy behaviour that is shown in �gure 10

Figure 10: Plot of the free energy obtained by eq. 7.8 in a small temperature interval
for the 1

8
< α < 1 triangular lattice. It is seen that minimisation of the free energy picks

out -1 and +1 for the ground state parameter. J1 = 1 and J2 = 0.8.

Again we see that at �nite temperature it is minimised with ξ = ±1 which means that
θ = {0 , π

2
}. These values correspond again to stripes either horizontally or vertically.

This con�rms a result achieved by Joliceour et al..
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8 Adding an AFM or FM third nearest neighbour in

the square lattice.

In this section we will introduce a third nearest neighbour coupling and let this be both
FM and AFM. We still de�ne α = J2

J1
. We also introduce another tuning parameter

given by β = J3
J1
, which means that when we use the spiral method to draw a phase

diagram this would now be two dimensional. The energy in momentum space is found
by 2.6 and we get

(8.1)
Jq
2J1

= cos qx + cos qy + 2α cos qx cos qy + β
(
cos 2qx + cos 2qy

)
.

8.1 The phase diagram with AFM J1 ≡ 1 and J2 and J3 6= 0.

Let us now obtain the phase diagram using the spiral method. We already know the
phase diagram for the AFM J1 - AFMJ2 model. What happens if we turn on an AFM
J3? Above a certain value of β in the two regions α < 1

2
and α > 1

2
the pitch vec-

tors start to change positions and move towards the origin along the (π, π) direction.
Searching for a minimum along this line by setting the gradient to zero it can be found
that

(8.2)
(

cos (Qx) , cos
(
Qy

))
=

(
− 1

2α + 4β
,− 1

2α + 4β

)

Which means that the two dimensional spiral states are bounded by the lines

(8.3)β = ±
(

1

4
− α

2

)

According to arguments given in section 4 con�gurations corresponding to these Q′s
could be interpreted as two dimensional spiral states because moving a lattice site hor-
izontally or vertically amounts to the same "twisting" of the spin direction. (see �gure
11). In much literature this is called incommensurate spin states but in principle one
might be able to see some periodicity if the amount with which the spin direction is
"twisted" is a fraction of 2π.

When we turn on a FM J3 it physically makes sense that we have no phase transition in
the two regions α < 1

2
and α > 1

2
however large the FM J3 may be. This means that we

have three lines in paramter space separating the Néel phase, the stripe phases and the
incommensurate phases. These are drawn in the pase diagram below

We thus have three lines the phase diagram that separate these three di�erent phases.
The red line in �gure 11 corresponding to J2 = J1

2
and J3 < 0 is of special interest. Here

the in�nite degeneracy of the ground states is lifted and we have three possible pitch
vectors that can all coexist. This will be dealt with in the next section.
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Figure 11: Phase diagram with AFM J1, AFM J2 and AFM/FM J3 obtained using the
spiral method. Small squares with red dots or lines show where the pitch vectors lie.

8.2 The special case of J2 = J1
2 and J3 < 0 .

Our motivation for looking at this line in parameter space is , as touched up earlier the
fact that we can use this as a tuning knob to lift the in�nite degeneracy at α = 1

2
.

Adding a ferromagnetic J3 has a remarkable e�ect. The 'star' of Q consists of Q1 =
(0, π), Q2 = (π, 0) and Q3 = (π, π). These all satisfy 2Q ≡ 0 and can thus all coexist if
the spin dimensionality is n > 3.

si = e1 cos [Q1 ·Ri] + e2 cos [Q2 ·Ri] + e3 cos [Q3 ·Ri] (8.4)

The constraints given in 3.10 along with the zero sum condition still have to be satis-
�ed for a ground state con�guration. When J3 = 0 a ground state can be denoted by
{θi, φi} in spherical coordinates where the i′s run over every square plaquette. This is
illustrated in �gure 8(b) where the spins are two dimensional i.e. we could think of it as
the {θi, 0} groundstate.

The FM J3 coupling �xes the third nearest neighbour spins in a ground state. When
the third nearest neighbour is �xed so that it points in the same direction the energy
contribution from the J1 and J2 bonds is minimized while maximally lowering the en-
ergy from the J3 coupling.[2] . The sum of the spins on every square plaquette is van-
ishing in a ground state which means that a generic con�guration for one plaquette
could be

s1 = {1, θ, 0}, s2 = {1, θ, π}, s3 = {1, π − θ, φ}, s4 = {1, π − θ, π + φ} (8.5)

If every alternating spin is �xed then every alternating plaquette is �xed. This is illus-
trated in �gure 12 where the spins are symbolised at the sites by di�erent shapes and
alternating plaquettes are shaded. If the shaded plaquettes sum to zero the unshaded

17



Figure 12: Visualisation of how adding a FM J3 �xes the spins on every alternating pla-
quette with the zero sum condition still satis�ed

squares do to because they contain the same shapes in the corners. We then have a
�xed ground state for the full lattice parametrised by this time two numbers {θ, φ}. Re-
sults regarding a free energy selection of speci�c values of θ and φ have been studied by
Danu et al. 2016 [2]. They show that states with {θ, φ} = {0, 0} , {θ, φ} = {π

2
, π} and

{θ, φ} = {π
2
, 0} are selected corresponding to horizontal stripes, vertical stripes and the

Néel state respectively.

9 Conclusion

By realising that it is not easy to see what the ground state spin con�gurations in sys-
tems with geometrical frustration are we began our search for a way to do just that.
The local constraint 2.2 forced the ground state spin con�gurations to be planar spiral
pitched after a single vector Q that minimises the energy. More than one of these can
exist and if they are situated at special points in reciprocal space they can coexist. Co-
existence of spirals lead to a continuous parametrised manifold of degenerate ground
states. By calculating a spin wave spectrum after adding small �uctuations it was pos-
sible through thermodynamic calculations to show that the free energy and entropy
depends on this parameter. It has been shown that at �nite temperature free energy
minimisation picks out speci�c values of the ground state parameter and the continuous
ground state manifold is reduced to a discrete one. This is the order by disorder mech-
anism of which we have seen two examples in the square lattice and in the triangular
lattice respectively. In the square lattice when only including the second nearest neigh-
bour in the model we took a special point into consideration. When the interaction be-
tween the second nearest neighbour is half of what it is between the nearest neighbour
the ground state had to satisfy a zero sum condition for every plaquette. This lead to

18



an in�nitely degenerate ground state manifold. In an elegant way this could be lifted
by introducing a ferromagnetic third nearest neighbour bond �xing every alternating
plaquette and the ground state could again have a parametrisation as those looked at
earlier this time with two parameters.
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