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Abstract

This project utilizes the ray-tracing program McStas to rediscover and quantify

an error on the Continuous Angle Multiple Energy Analysis (CAMEA) spec-

trometer. The current setup uses a slit 8 cm from the end of the guide as

a virtual source for Rowland geometry, however, previous tests show that the

beam naturally focuses at 47 cm from the end of the guide. An analysis of the

beam profile shows that moving the slit to the focus point allows for a 22% in-

crease in neutron flux. In the process of finding the full effect of this error, the

simulations fail to establish consistency. The inconsistency is then by diagnosti-

cal simulations traced back to a fault in the Rowland Geometry of the MCStas

component Monochromator curved. The instruction manual does not match the

calculations in the source code. A way to get optimal focusing from the com-

ponent is to use the Rowland radii as input parameters Rv and Rh rather than

the Radius of Curvature that the manual suggests. Because of the time spent

finding the error, this project does not yet offer a full solution to the initial error.
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1. Introduction
One of the finest skills of the physical sciences is the ability to reliably build knowledge upon

foundations laid by others. This requires extreme dedication to transparency and recreata-

bility but creates an environment where the collective knowledge is ever-growing.

Continuing in the spirit of collaboration, this project starts where another ended. In a

project from November, Kristine Krighaar found a concerning flaw in the setup of the

CAMEA neutron spectrometer. A flaw that most certainly can be mitigated, and thus in-

crease the efficiency of the neutron scattering instrument. [1]

In recent years the technique of neutron scattering has gained a lot of popularity in engineer-

ing, and biology on top of its usual followers from crystallography[2]. It has thus become

increasingly important to create effective neutron experiments.

The Continuous Angle Multiple Energy Analysis (CAMEA) spectrometer is one of such facil-

ities and is located at the Paul Scherrer Institute in Switzerland. CAMEA is groundbreaking

in the sense that it combines a lot of new technologies such as the prismatic analyzer con-

cept, multiplexing, and the double-focusing monochromator. This allows it to collect wider

ranges of data at a fraction of the time. This instrument has tremendous potential and has

yet to be fully optimized.

This project seeks to quantify the error found in [1] and the potential winnings of its so-

lutions, by experimenting on a virtual copy of the CAMEA spectrometer. The ultimate

goal is to provide enough knowledge on the error to decide if and how to modify the real

instrument.

”If I have seen further than

others, it is by standing upon the

shoulders of giants.”

Isaac Newton, 1675
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2. Theory

2.1 Theory of Neutron Scattering

The neutron is an electrically neutral particle with mass mn = 1.6749× 10−27 kg. Neutrons

do not exist naturally in free form as they will decay into a proton, electron, and electron

anti-neutrino with a decay time τn > 14 min, and since a standard scattering experiment

takes less than a second, the lifetime is not something that will be further considered.

Neutrons interact with nuclei through the strong nuclear force and the electromagnetic

force. The electromagnetic interaction is because of neutrons’ magnetic moment. These

interactions have a very small radius and make neutrons ideal for probing the bulk of crystals

or very light atoms like hydrogen.

Neutrons are subatomic particles and therefore abide by the rules of Quantum mechanics.

This puts the uncertainty principle into consideration

∆x∆p ≥ ℏ
2

(2.1)

A quick calculation reveals that this is not going to be an issue at all. The neutrons

move on the order of 103 m/s, they weigh on the order of 10−27 kg and the interactions

happen on the order of millimeters (10−3 m ). Revealing 10−27 ≥ 10−34 kg m2/s , we pass

by order of millions of ℏ. This puts us in the semi-classical regime meaning that we can

think of the neutron as classic particles, but quantum mechanics dictate the intricacies of

the interactions.

2.1.1 Neutron as waves

An incoming neutron is generally described by complex plane-wave[3]

ψi(r) =
1√
Y
eiki·r (2.2)

Here Y is a normalization constant, it is here to be consistent with general QM results,

but will eventually cancel out. k is the wavevector which points in the direction of velocity.

More specifically k is represented with the following relations.

k =
2π

λ
=
mnv

ℏ
(2.3)

In the case of such a neutron wave hitting a single atom you get a spherical diffraction
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2.2 Statistical

Figure 2.1 Neutron scattering of a single nuclei. The plane wave of the initial neutron
(green) with wave number ki scatters of the nuclei (purple), creating a spherical scatted
wave with wave number kf [4]

as shown in fig. 2.1. Such a scattered wave would relate to the incoming wave by eq.28

ψf = ψi
−bj

|r− rj|
eikf |r−rj| (2.4)

2.2 Statistical

This section closely follows derivations from Chapter 2 in [3]. In the case of neutron beams,

we want to examine how eq. 2.4 translates into multiple neutrons. We replace a single

neutron with a neutron flux, which we define as

Φ =
# neutrons per second

surface area perpendicular to beam
[
n

m2
] (2.5)

From this, we get the scattering cross-section naturally as

σ =
#of neutrons scattered

Φ
[m2] (2.6)

This quantity is central to neutron scattering because it describes the probability of an

incoming neutron scattering off a sample. It does this with a unit of area, which for a single

atom will roughly equal the cross-section of the nucleus. It is often useful to compare the

cross-section with experiments, but since we rarely see detectors completely surrounding the
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2.2 Statistical

sample, it is effective to use the differential scattering equation.

dσ

dΩ
=

1

Φ

#Number of neutrons scattering into dΩ

dΩ
(2.7)

dΩ is a section of the sphere surrounding the sample such that if we were to integrate

over 4π it would completely enclose the sample as illustrated in fig. 2.2. This means that

the differential cross-section and scattering cross-section is related (rather trivially) by.

σ =

∫
4π

dσ

dΩ
dΩ (2.8)

Figure 2.2 An illustration of incoming neutron, labeled ki, scattering off a sample in the
center and leaves as outgoing neutron kf . It scatters with the scattering angle 2θ (dθ shows
the plane in which it is measured) and azimuthal angle ϕ. dA represents a detector and dΩ
is the associated solid-angle. [3]

we have now established two fundamental concepts in neutron scattering; the scattered

neutron spherical wave and the differential scattering equation, and it is time to unite the

two. In Quantum Mechanics the density of a neutron wave is |ψ|2, which means that the

flux is |ψ|2 v dA. Seeking to fuse with eq. 2.7 we use the defining expression for the solid

angle dΩ = dA
r2

and the expression of flux through an area v |ψ|2dA, combining these we get

#neutrons into dΩ pr. sec = v|ψ|2r2dΩ. Recalling the wavefunction from 2.4 we get

#neutrons into dΩ pr. sec = v |ψi(r)
−bj

|r− rj|
eikf |r−rj| |2 r2dΩ (2.9)

Putting the origin of coordinates inside the sample typically gives rj ≃ 1µm and r ≃
1 m, making it reasonable to remove rj from the equation. Taking the absolute value of

complex exponentials returns 1, which leaves us with only b2j , v, and the normalization

4



2.2 Statistical

constant from ψi.

#neutrons into dΩ pr. sec = v
b2j
Y
dΩ (2.10)

isolating v in eq. 2.3 gives v = kℏ
mn

#neutrons into dΩ pr. sec =
kfℏ
mn

b2j
Y
dΩ (2.11)

In this example, we assume a fixed target and thus ki = kf , which we can utilize to

substitute in an expression of total flux Φ = vi |ψi|2 = kiℏ
mn

b2j
Y

#neutrons into dΩ pr. sec = Φ b2j dΩ (2.12)

#neutrons into dΩ pr. sec

Φ dΩ
= b2j (2.13)

lastly, we substitute in eq. 2.7 to get a the beautifully simple expression:

dσ

dΩ
= b2j (2.14)

2.2.1 Inelastic scattering

In some scattering processes the neutron delivers or absorbs energy, these are often the most

interesting when probing a sample. If we differentiate our measurements based on energy,

meaning we only count neutrons with a certain energy, our theory needs to account for that

as well. We denote energy transfer as

∆E = Einitial − Efinal = ℏω (2.15)

When a detector measures a neutron with a given energy, what it actually measures is the

amount of neutrons passing through the detectors solid angle, called Partial differential

cross section.

dσ2

dΩ dEf

=
1

Φ

#flux trough dΩ with energies ∈ [Ef ;Ef + dEf ]

dΩ
(2.16)

We get the regular differential cross section by integrating over all energies

dσ

dΩ
=

∫ ∞

0

dσ2

dΩ dEf

dEf (2.17)

5



2.3 Crystal Diffraction

2.3 Crystal Diffraction

Figure 2.3 Incoming neutron wave hits lattice planes and reflects. d denotes the distance
between lattice planes, and θ is the scattering angle.

In our experiments, we usually interact with crystal lattices. Imagine a crystal lattice as

shown in fig. 2.3 an incoming plane wave hits the first layer and is partly reflected, other

parts of the wave penetrate the first layer, but are reflected at the next lattice plane. The

deepest wave will now have traversed a longer distance equal to 2d sinθ. This gives rise

to interference, which will be constructive if the extra distance equals an integer of the

wavelength. Braggs law.

nλ = 2dsinθ (2.18)

This will prove to be incredibly useful when picking out and narrowing down the energy

resolution of neutron waves.

2.4 Triple-Axis-Spectrometer

Recalling from the inelastic scattering that we are often interested in the energy deposited

in the sample. To measure this we need to know as precise as possible both the initial energy

and the final energy. Triple-axis-Spectrometers (TAS) can offer this from a continuous beam

of Neutrons, contrary to other experiments which requires a ’chopper’ to block off 95% of

the beam to choose energy based on Time of Flight measurements.

TAS chooses energies by utilizing braggs law since different energy neutrons have dif-

ferent scattering angles (see eq. 2.18). This reflective apparatus is (very fittingly) called a

monochromator. Moving on the neutron hits and scatters of the sample with a scattering

angle depend on the q-vector (read more in [3]). The Neutrons now hit an analyzer, similar

to the monochromator the neutrons scatter at different angles according to their energy.

This allows us to measure multiple final energies and still differentiate between them. The

three axes are capable of, first singling out initial energy, secondly rotating the sample, and

lastly rotating analyzers to measure multiple final energies and thus also deposited energies.

6



2.5 Rowland Geometry

2.5 Rowland Geometry

Figure 2.4 (left) [5] A) the dotted line shows the Rowland circle on which a focus point
in (D) will mimic the focusing of a source or slit (B), C) is Spherical Bent Analyzer or
Monochromator. (Right) Shows the relation between the Rowland circle (solid) and the
Radius of Curvature of the diffraction grating (dotted).

Rowland geometry is crucial in optimizing intensity and energy resolution for neutron scat-

tering. A study from 2012 found increases up to 43% increase in intensity and energy

resolution, and a general increase for all cases (the study varied the asymmetry of distance

from source to monochromator and monochromator to sample)[6]. Rowland geometry dic-

tates geometrically, that a source with distance R to a monochromator will focus a distance

R after reflecting if the monochromator is spherically bent to a curvature of 2R as illustrated

in fig. 2.4

Often we won’t have direct knowledge of the radius of the Rowland circle, but by geom-

etry we can deduce the radius R of the circle that contains the source, monochromator and

target in its peripheral. [5]

R =
L

sinθ
(2.19)

where L is the distance from the source to the monochromator. Since the scattering angle is

determined by bragg-scattering it depends on the wavelength which is proportional to the

energy of the neutrons. We can then determine the radius of the Rowland circle by.

R = Lsin(θ) , θ = arcsin
1

0.1106
√
Ei 2 d

(2.20)

Where Ei is the energy of incoming neutrons, and d is the distance between lattice planes.

0.1106 is a conversion factor from inverse wavelengths in Å−1 to squreroot of energy in

meV
1
2 .[3] Remember now that the radius, R, above is the Rowland circle, and the optimal

radius of curvature for focusing is 2R.[3]
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3. Methods
This project is a series of analyses determining the effects of changes on a virtual copy

of the CAMEA instrument. Some are motivated by theories regarding optimizing energy

resolution, and other simulations are for diagnostical purposes following unexpected results.

The analyses are Monte-Carlo Simulations in the Ray-tracing program McStas.

3.1 McStas

MCStas is a program, that does Monte-Carlo simulations of neutrons as ray tracings. It

runs as a C-code program but is fully accessible through a Graphical User Interface (GUI).

MCStas is perfect for this project because it combines the practical reality of an experimental

setup, with the intricacies of microscopic adjustments. Through the GUI you can build a

virtual neutron scattering setup by placing components by their coordinates in a virtual

landscape. The GUI contains a large menu of components I.E: Sources, Samples, Guides,

Monochromators, and PSD (positional sensitive detectors). Each of these components is

equipped with extensive customizability.

3.1.1 McStas Calculations

A standard neutron facility can emit up to 1015 neutrons per second. Which is much more

than any standard computer can simulate in a year[7]. For this reason, it is advantageous

to simulate a single ray containing multiple neutrons. We denote this as pi describing the

amount of neutrons in the i’th ray. Imagine now this ray interacting with a component,j,

and some neutrons may be lost, we assign a weight multiplier,ωj to the interaction that

changes pi.

pi,j = ωj pi,j−1 , ωj fmc,b = PB (3.1)

Here the equation to the right expresses the correlation between ω, the probability of

event B, PB, and the sampling probability fmc,b

We can now define the intensity at a certain point as the sum of p-values for all the rays

at this point in the experiment [7]

Ij =
N∑
i=1

pi,j−1 (3.2)

We can determine the uncertainty on the Intensity by the following derivation. Imagine

M rays each with probability Pd of reaching the intensity detector. The number of rays will

be normally distributed with mean value N̄ = MPd and variance σ2(N) = M Pd(1 − Pd) ,

8



3.2 CAMEA-Setup

in our experiments we can always expect pd¡¡1 and M ¿¿ 1. This leads us to an expression

for std. [8]

σ(N) =
√
M Pd ≃

√
N (3.3)

Where N is the best observed measurement for a mean. Now if all p-values are equal,

meaning the path to the detector is distinct, eq. 3.2 transforms to the following with the

corresponding variance

I = Np , σ2(I) = Np2 (3.4)

Which generalizes to

I =
N∑
i=1

pi , σ2(I) =
N∑
i=1

p2i (3.5)

Which is easier for the program to store, by summing the pi and p
2
i while running.

3.2 CAMEA-Setup

The CAMEA instrument is a cutting-edge neutron spectrometer and is very technical in

every aspect, but to keep relevance I will only go into explicit detail with the monochromator.

Neutrons are released from accelerated protons colliding with lead. A surrounding layer

of deuterium slows the neutron down to manageable energy levels [3,14]meV. A monolith is

then used to single out neutrons with the desired energy and let them enter the guide. The

guide utilizes double elliptical geometry to increase the critical reflection angle and maximize

neutron flux. [9] [10]. The elliptical shape of the guide gives rise to a virtual source, a point

of focus, between the end of the guide and the monochromator. [10]

8 cm from the end of the guide is a slit that serves to block out pollution from higher-order

scattering. It is adjustable in its opening [3]

160 cm from the end of the guide is a monochromator, specifically a large double-focusing

monochromator. It is made up of 15 x 15 x 2 mm3 Highly ordered Pyrolytic Graphite

(HOPG) single crystals with a d-spacing of 3.355 Å. The crystals are arranged with a

mosaicity of 0.6◦− 0.8◦, arranged in 11 rows and 17 columns, spanning a total area of 173 x

262 mm2. The monochromator is flat but can approximate the Rowland focusing by tilting

each plate accordingly. [10]

160 cm downstream from the monochromator is the sample, from where the neutron

are scattered onto analyzers. The CAMEA-spectrometer is fairly unique in the sense that

multiple analyzers are spread out like a fan and layered to probe a larger range of Q-values

or Energies depending on the experiment.

The detectors themselves are helium tubes using Time of Flight to determine energy

levels. [10]

9



4. MC Simulations of CAMEA-Setups
The motivation for this project is based on earlier findings from Kristine Krighaar, where

an analysis by Positional Sensitive Detector (PSD) showed that the placement of the slit

does not align with the focus of the beam, which could be a cause for concern. We start the

optimization process by rediscovering the misalignment.

4.1 Analyzing the Beam Profile

To visualize the beam and possibly discover a misalignment of components, I want to get

a visualization of the beam. I place a PSD, which can be thought of as a non-interacting

chessboard perpendicular to the beam that measures intensity in each square. The PSD is 20

x 20 cm2 and 100 x 100 pixels. Then all real-world obstructions are removed and 100 of these

PSD are placed between the end of the guide and the monochromator (1.6m downstream).

To visualize the data in a readable manner, I sum the intensity on all y-columns and plot

it as a color plot as a function of the x-axis and the distance from the guide-end. This will

visualize as the beam intensity seen from above as shown in fig. 4.1

Figure 4.1 (left) This figure shows the intensity of the beam between guide-end and
monochromator as seen from above. The intensity shown is the sum of the intensity in
the vertical columns gained from a Positional Sensitive Detector. (Right) Shows an illustra-
tion of how the data was gained, the blue square illustrates a PSD.
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4.1 Analyzing the Beam Profile

From fig. 4.1 it looks as if a 1 cm opening at an 8 cm distance will block a substantial

amount of neutron flux, which will amount to less experimental data and be sub-optimal.

To get quantification on the matter we make two slices through fig. 4.1 as close to 8 cm (7.4)

as possible and another slice where the peak in center intensity is the highest (47.4 cm).

We then plot it intensity as the y-axis and the x-axis as the spatial dimension. We then

make binned integral, summing up the intensities between -0.5 cm and 0.5 cm, to find the

intensity passing through a 1cm slit. The ratio between these intensities is the percentage

increase we expect to gain if the slit is placed 40 cm further downstream. This is illustrated

in fig. 4.2.

Figure 4.2 This figure shows intensity profiles of a Ei = 5 meV neutron beam at 47.4 cm
(blue) and 7.4 cm (orange) downstream from the guide-end. The intensity is the sum of
all the vertical intensity for each pixel along the x-axis. The dotted red line illustrates the
part of the profile that would pass through a 1 cm slit. The ratio calculated is the summed
intensity inside the dotted line with 7.4 cm as the denominator.

4.1.1 partial-discussion

We have now shown that moving the slit 40 cm downstream can increase the intensity of

the flux by 22% on the first part of the neutron beam. This does not necessarily increase

the flux on the sample by this amount. We have yet to determine how this affects and plays

together with the rest of the setup.
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4.2 Scan of Slit-opening

4.2 Scan of Slit-opening

In an attempt to gain knowledge on how a moved slit will affect the sample position, we put

an energy monitor on the sample position that measures intensity and energy resolution. I

will then create a setup with only a slit and a monochromator, and let the slit gradually

open. I will do this experiment for both the 8 cm and 46 cm distances respectively. In both

cases, there will be 1.6 m between the slit and monochromator as well as monochromator

to sample to make a symmetric Rowland geometry.

Figure 4.3 This figure shows Intensity (top) and energy resolution (bottom) as a function
of gradually opening a slit at respectively 8 cm (blue) and 46 cm (orange) downstream
from guide-end. simulation is done at Ei = 5 meV The right side is an illustration of the
simulation.

4.2.1 Partial discussion

From this simulation we only see very little difference between placing the slit at 46 cm

compared to the current 8 cm. Between a 1cm opening and 2.5 cm opening the slit furthest

downstream gives rise to a small increase in intensity, nowhere near the 22%. Between 1.9

cm and 3.5 cm opening, the resolution is better for the 46 cm slit. This effect is expected

since we know that a larger flux passes through, though we would expect this effect to

diminish before reaching a 3cm opening. The fact that the 22% does not translate to the

sample suggests two things. First whatever causes this, affects the experiment with the slit

at 46 cm more than it affects the experiment with the slit at 8cm, since it skews the ratio

12



4.3 Scan of Monochromator Curvature

between these two. Secondly, the monochromator, and propagation length are the only

things introduced, so likely one of them plays a role in this effect.

4.3 Scan of Monochromator Curvature

The monochromator was the only thing added when the difference in slit placement no

longer made a significant impact. Because of this, we examine the Rowland geometry more

closely. The Rowland geometry hinges on the radius of curvature being right and is nor-

mally calculated by eq. 2.17, in this simulation we bypass the calculation and use 21 given

values for the radius of curvature. For each one, we measure the intensity on the sample

position. We then see if the best radius of curvature matches what is normally calculated.

We measure intensity with an e-monitor 2x2 cm2 at the sample position.

Figure 4.4 This figure shows intensity at a sample position when varying the radius of
curvature on the monochromator, a red line indicates the calculated curvature that would
lead to best focusing. To the right is a sketch of the setup with measurements.

The radius of curvature that yields the highest intensity does not match our calculations.

We simulate a symmetric Rowland setup and with Ei = 5 meV, where the distance from

a virtual source to monochromator and monochromator to sample both are 1.6 m. The

datapoint with the highest intensity has a radius of curvature (RoC) of 2.8 while calculations

by eq. 2.17 (using 3.355 Å as d-spacing and 5 meV as energy) yields 5.3 m as RoC.

4.3.1 partial discussion

From the eq. 2.17 there are only two things I decide when simulating; the incoming energy

and the distance to the monochromator. When reading out the data, during this simulation,

the incoming energy was set to 5 meV all the time. Which leads us to believe that something

is wrong with the geometry of the setup. Calculating backwards with 2.8 m as RoC gives

0.85 m as the symmetric distance to the monochromator. For good measure, I will share

the calculations here:

13



4.4 2-D Scan of Placement and Opening of Slit

θ = arcsin
1

0.11056
√
5× 2× 3.355

= 0.647rad (4.1)

RoC =
2× 1.6

sinθ
= 5.3m (4.2)

The backward calculation:
2.8

2
sin(θ) = 0.85 (4.3)

Now I can’t find any physical reason for these divided results, but I will speculate. The

2.8 max isn’t very accurate since the gap between data points is almost 0.5 m, if we imagine

the actual maximum is at RoC = 2.65 m we are exactly a factor 2 from the calculations,

likewise, it would change the backward calculation to 0.8 m a factor 2 off from the actual

distance. We know from Chapter 2.5 that there is a factor 2 between Rowland Radius and

Radius of Curvature, which could’ve easily been mixed up.

After thoroughly combing through the McStas code, I can say with confidence that the

virtual monochromator is used as intended. This indicates that the component manual and

the actual source code does not match. I speculate that when programming the RoC it got

mixed up with the Rowland Radius.[11].

4.4 2-D Scan of Placement and Opening of Slit

Throughout the project, there has been a lot of scanning over parameters, thus far one at a

time. In this last simulation, the aim is to do one simulation that reveals the best place and

opening width of a slit. This requires scanning over two parameters simultaneously, which

can be achieved with a shell script. This shell script is a piece of code that runs the McStas

program back-to-back, this way the McStas only scans one parameter, but as soon as it is

done it starts again but with another parameter slightly changed. We do distance from the

guide-end 5 cm to 55cm with 5 cm steps For each distance, we scan from 0 to 5 cm slit

opening For all parameter combination the intensity and resolution is measured at sample

position by a 2 x 2 cm2 E-monitor. This experiment keeps symmetric Rowland Geometry

by always keeping 1.6 m between the slit and monochromator. The results are shown in

fig. 4.5

The 3-d plot shows no distinct optimal point, but the 2-d plot shows slightly better

results for the 45 cm. Especially around 2 cm opening where the 45 cm has both higher

intensity and lower Energy resolution.
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4.4 2-D Scan of Placement and Opening of Slit

Figure 4.5 This figure shows intensity (top-left) and energy resolution (bottom-left) at the
sample position measured with a 2x2 cm2 E-monitor, it shows how these vary when a slit
gradually opens at different distances from the guide-end. The Right side shows the same
data, but as 2-d plot for 5 cm and 45 cm.

4.4.1 partial discussion

If moving the slit downstream would make an impact, we would see the color change being

diagonal, which we do not. However, there is a small difference that can be seen on the 2-D

plot albeit far from 22% but in line with the beam being more compressed at 45 cm than at

5 cm. It would seem that something happens at the monochromator which doesn’t equally

affect a simulation with a slit 5cm from the guide-end and a simulation 45 cm from the

guide-end, since we see a reduction in the percentage diff in intensity. A quick speculation

could be that moving the monochromator further downstream would allow the beam to

spread more which might have a negative effect on the focusing. If this is the case then we

would see the effect for all slit-opening sizes, but the data seem to converge on the right side

of the plots in fig. 4.5, which debunks the theory.
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5. Discussion
Having done multiple simulations it is now time to look at what they collectively point at.

At first, we saw that moving a 1cm open slit from 8 cm to 47.4 cm downstream of the guide

will increase the neutron flux by 22%. This effect almost completely disappeared when we

introduced the monochromator, leading us to believe something was wrong. By simulating

a large range of Radius of Curvature and matching them with what we normally would use

by calculating, we find a clear misalignment of a factor 2.

When we use L = 1.6 m we get RoC = 5.3, the simulations show optimal RoC = 2.8 cor-

responding to L=0.85. Already here I speculated that the instructions and calculations on

the component manual were wrong because of the almost perfect factor 2 difference.

From fig. 4.3 and fig. 4.5 we no longer see a 22% increase in flux. This indicates that the

error affects the 45cm harder than the 5 cm. Which fits the RoC theory very well. Recalling

from fig. 4.1 that the beam naturally focuses around 47 cm, we can imagine that introducing

a slit upstream of this focus doesn’t remove the focal point, what does change is the actual

distance from the focus to the monochromator. The setup is such that the distance from slit

to monochromator is 1.6 m which makes the distance from focus to monochromator 1.19 m

for a 5 cm slit (1.6m + 0.05 m - 0.46m = 1.19) which puts us closer to the optimal L value

of 0.85. This theory is illustrated in fig. 5.1

We must consider that the second argument fig. 5.1 now deals with asymmetric Rowland

geometry. In (Skoulatos, 2012) they simulate asymmetric Rowland and use R = L1+L2

2sinθ
[6].

Which in this case yields a RoC of 4.6 m instead of 3.9 m. Which fits very well. This theory

seems to offer an explanation across multiple simulations, which makes it convincing

Reading out the nearest data point from fig. 5.1 gives RoC = 5.3 ⇒ I = 0.69e7, and RoC =

4.6 ⇒I = 7.8e7 . This would result in an equalizing effect of 6.9
7.8

Which means that instead

of seeing 22% increase, we should see 1.22 × 6.9
7.8

= 1.079. A 7.9% increase in intensity by

moving the slit downstream, if the program is off by a factor of 2. Looking at fig. 4.3 and

taking the ratio between the data points with a 1.1 cm opening we get 4.19e6
3.90e6

= 1.074. This

shows that the theory establishes coherence between the simulations. Which then reinforces

the idea that the methods used are correct beside the faulty calculations.

The faulty Radius of Curvature and its relation to all of the simulations was first realized

within the last 48 hours of the project, the time restriction on the project dictates that there

is no time to redo the simulations. To correctly find and quantify the optimal setup for the

frontend slit we should use the Rowland radius as the input parameters for the component
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Figure 5.1 This figure illustrates a theory of how keeping the slit close to the guide-end
causes better neutron flux because of faulty Rowland calculations. Upper left is a table
showing the connection between distance from focus to monochromator (L) and Radius of
Curvature (RoC) for 5meV and d-spacing = 3.355 Å. At the lower left is shown how intensity
1.6m downstream of the monochromator varies with RoC. The right side illustrates the setup
with measurements.

monochromator curved. Given as following

Rh =
L

sin(θ)
Rv = L× sin(θ) (5.1)

Rh denotes the horizontal rowland radius, and Rv is the vertical rowland radius.
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6. Conclusions
From analyzing the the beam profile between the guide-end and monochromator we find

that the beam focuses around 47 cm downstream after the guide-end. If, instead of placing

a slit at 8 cm like the current setup, the slit is moved to 47 cm, it would allow for a 22%

increase in the Intensity of the neutron flux. Measuring the intensity at the sample position

1.6 m downstream of the monochromator does not seem to replicate the same result. This

leads us to believe something is wrong with the virtual monochromator.

A further investigation unveils this fault to be a mismatch between the instruction manual

and the source code of the component ”monochromator curved”. More specifically the

manual asks to use the Radius of Curvature as input parameters but calculates according

to Rowland radius. The relation between these two is RoC = 2×Rrowland.

Because a slit can be thought of as a virtual source, we set up symmetric Rowland geom-

etry by keeping an equal distance, equal to 1.6m, between slit and monochromator, and

monochromator and sample. However because the beam naturally focuses at 46 cm down-

stream of the guide-end, a slit placed upstream of this point will have an actual shorter

distance between the virtual source and monochromator, leading to a more accurate Row-

land Geometry when using the faulty input parameters. As an example if a slit at 46 cm

allows for an immediate 1.22 times more neutron flux than a slit at 5cm. The monochro-

mator will focus better in the 5cm scenario and reduce this ratio to 1.068. This explains

why measurements on the sample position failed to replicate the same increase in flux from

moving the slit downstream.

To find the optimal placement of a slit between guide-end and monochromator, the input

parameters Rv and Rh of component Monochromator curved need to be the radius of the

corresponding Rowland circle, not the Radius of Curvature.

Rhrowland =
L

sinθ
, Rvrowland = L× sinθ (6.1)

6.0.1 Future Work

First and foremost this fault in the component manual of MCStas will be reported to the

MCStas team as a bug.

The future work on optimizing the CAMEA spectrometer, in regards to the slit position

will be quantifying the potential gain in intensity and energy resolution on the sample

position when moving the slit downstream and using correct Rowland geometry. Then in

correspondence with the people at PSI figure out if and how this could be implemented.
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