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Abstract

The Heisenberg model is studied with the goal of finding the spin wave dispersion

relation. The classical ground state of the Heisenberg model with a Zeeman term is

found, and its equation of motion is found and linearized by considering the spin to have

small deviations from the ground state. A solution method for the linearized equation

of motion is presented in the case where the Zeeman term has no time dependency. The

1-dimensional spiral chain and the antiferromagnetic triangular lattice are solved and

their dispersion relations are shown. Finally, solution methods for a time dependent

Zeeman term are discussed.
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1 INTRODUCTION

1 Introduction

The Heisenberg model is a vector model used to describe a lattice of spins on individual

sites. An example of such a system is the triangular lattice (displayed on figure 1). The

Hamiltonian of the Heisenberg model is on the form:

H =
∑
ij

Jijsi · sj (1.1)

Where Jij describes the coupling strength between the spin on the i’th and j’th site.

For the purpose of this thesis this interaction will be a function of the distance between

the sites. Because of this it is useful to think of a site as having nearest neighbours (NN)

with the same coupling strength (J1), next nearest neighbours (NNN) with a different

coupling strength (J2) and so on. This thesis aims to present a classical method of

finding spin waves in the Heisenberg model, in particular for frustrated materials.

Figure 1: Example of a system where the Heisenberg model can be applied, This is a

triangular lattice which has ferromagnetically ordered spins. The nearest neighbour (J1)

and next nearest neighbour (J2) interactions of the middle site are shown.

A system is said to be frustrated if not all terms in its Hamiltonian can be minimized si-

multaneously. Frustration can be introduced in a system with antiferromagnetic (AFM)

coupling through, for example, the geometry of the material or through the system

having both ferromagnetic (FM) and antiferromagnetic couplings. Examples of both

of these types of materials are treated in this thesis, in the form of a one dimensional

chain with both an FM and AFM coupling, and the AFM triangular lattice.

Frustration can also be introduced into a system through applying a magnetic field,

which gives the Hamiltonian a Zeeman term. In a non-ferromagnetically ordered sys-

tem the magnetic field will not only introduce frustration into the system, but also
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2 GROUND STATES OF THE HEISENBERG MODEL

break the rotational symmetry of the entire system, as the Hamiltonian will not only

depends on the angle differences of the spins, but also their angle to the magnetic field.

Frustrations in the Heisenberg model often give rise to interesting properties of the sys-

tem, including nontrivial magnetic ordering of the ground state[1] and order-by-disorder

phenomena[2]. The spin wave dispersion can be measured through neutron scattering[3]

and can be used to predict order-by-disorder[2], among other things.

If the magnetic field is oscillating in time, it can drive the spin waves giving rise to a

variety of new properties[4]. The driven Heisenberg model is treated with an approach

for finding the spin waves in the limit, where the Zeeman Hamiltonian is small com-

pared to the Heisenberg Hamiltonian. A more general approach is also discussed, but

it wasn’t finished due to the time constraint of this project.

2 Ground States of the Heisenberg Model

In the Heisenberg Model with an external magnetic field B(t), the Hamiltonian is given

by:

H =
∑
i,j

Ji,jsi · sj −
∑
i

giµBsi ·Bi(t) (2.1)

To find the ground state of this Hamiltonian, it is convenient to use the Fourier trans-

form of both the spin and the external magnetic field:

si =
∑
q

sqe
iRi·q Bi =

∑
qB

BqB
eiRi·qB (2.2)

For the sake of ease of reading I will split (2.1) into the Heisenberg part (HJ) and the

Zeeman part (HB). Inserting (2.2) into each Hamiltonian:

HJ =
∑
q,q′

sq · sq′

∑
i,j

Ji,je
i(q·Ri+q′·Rj)

=
∑
q,q′

sq · sq′

∑
i,j

Ji,je
−iq′·(Ri−Rj)

∑
i

eiRi·(q+q′)

=
∑
q

J(q)sq · s−q (2.3)

Where J(q) is given by[5]:

J(q) =
∑
i,j

Ji,je
iq·(Ri−Rj) (2.4)

As for the Zeeman part of the Hamiltonian:

HB = −µB
∑
q,qB

sq ·BqB

∑
i

gie
iRi·(q+qB) (2.5)
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2 GROUND STATES OF THE HEISENBERG MODEL

In the case where gi is uniform (as is the case in monoatomic materials), the last sum

is simply a delta function and (2.5) reduces to:

HB =
∑
q

−gµBsq ·B−q (2.6)

And the total Hamiltonian becomes:

H =
∑
q

sq · (J(q)s−q − gµBB−q) (2.7)

With no magnetic field the way to find the ground state is to minimize J(q) with respect

to q[5, 6]. The ground state then becomes:

si,0 = sQe
iQ·Ri + s−Qe

−iQ·Ri
∂J(q)

∂q

∣∣∣∣∣
Q

= 0 (2.8)

As it is clear from (2.4) that if Q is a solution to (2.8) then so is −Q. Note that because

si,0 must be real and have norm |si,0| = 1 at B = 0, s±Q must be on the form:

s±Q =
û± iv̂

2
(2.9)

Where û and v̂ are any orthonormal unit vectors. There are exceptions to the rule that

the ground state corresponds to the minimum of J(q)[5], but those won’t be treated in

this thesis.

However when there is a magnetic field the ground state becomes a linear combination

of (2.8) and the sq(’s) which couple to the magnetic field. In other words:

si,0 = α
(
sQe

iQ·Ri + s−Qe
−iQ·Ri

)
+
∑
qB

βqb
sqB

eiqb·Ri |si,0|2 = 1 (2.10)

2.1 Uniform magnetic field

In the case of a uniform magnetic field the coupling happens between the minima of

(2.3) and s0. The spin vector si,0 is then:

si = αisi,B=0 + βiB̂ (2.11)

si,B=0 = sQe
iQ·Ri + s−Qe

−iQ·Ri = cos(Q ·Ri)û + sin(Q ·Ri)v̂ (2.12)

û and v̂ are defined in (2.9), and B̂ is the unit vector of the B-field. In general the

Hamiltonian (2.7) should be minimized under the normalization constraint:

si,0
2 = α2

i + β2
i + 2αiβisi,B=0 · B̂ = 1 (2.13)

Page 3 of 25



3 EQUATION OF MOTION

Since sQ doesn’t couple to the magnetic field, you are free to choose û and v̂ indepen-

dently. While the choice of û and v̂ impacts the spin configuration of the ground state,

they are all degenerate. The simplest choice is then û · B̂ = v̂ · B̂ = 0, in which case

(2.7) should be minimized under the constraint:

si,0
2 = α2 + β2 = 1 (2.14)

This solution assumes that Q 6= 0. If Q = 0 the ground state is trivial, since there

is no longer a difference in the minimum energy state for the Heisenberg term and the

Zeeman term in the Hamiltonian. In this case, the spins will be aligned with the B-field.

It is convenient to rewrite (2.7) on the form

H = α2(J(Q) + J(−Q))sQ · s−Q + β2J(0)|s0|2 − βgµB|B| (2.15)

s0 is the Fourier transform with q = 0, and shouldn’t be confused with the ground state.

Finding the minimum can be done through Lagrange multipliers, and the solution will

be:

β =
gµB|B|

2(J(0)|s0|2 − (J(Q) + J(−Q))sQ · s−Q)
(2.16)

And α chosen such that (2.14) holds. A more detailed derivation of this result is shown

in appendix A.

(a) β = 0

B

(b) β = 0.1

B

(c) β = 0.5

Figure 2: Ground state of the 1D AFM chain, plotted for different values of β.

Figure 2 shows how the ground state of the 1D AFM chain becomes a linear combination

of sQ and s0. The AFM chain has Q = π
a
x̂, but as a magnetic field is applied the Q

configuration starts to mix with the q = 0 configuration from the magnetic field. Note

that because the magnetic field is orthogonal to sQ, it is sufficient to use (2.14) as

normalization constraint.

3 Equation of Motion

Consider the Hamiltonian (2.1) again:

H =
∑
i,j

Ji,jsi · sj −
∑
i

giµBsi ·Bi(t) (3.1)
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3 EQUATION OF MOTION

The equation of motion for the spins si can be found using Heisenberg equation of

motion:
dsi
dt

= − i
~

[si,H] +
∂si
∂t

(3.2)

The partial derivative of si is 0, so all that’s left is to evaluate the commutator. I

will show the calculation for a single component, which should make it clear how this

generalizes. First it is convenient to define the local field H and rewrite the Hamiltonian:

H =
∑
i

Hi · si Hi = −giµBBi(t) +
∑
j

Ji,jsj (3.3)

Here Hi is the local field on site i. To solve this you also need the commutator relations

for spin:

[sxi , s
y
i ] = i~szi [syi , s

z
i ] = i~sxi [szi , s

x
i ] = i~syi (3.4)

Taking the commutator for the x component:

− i
~

[sxi ,H] = − i
~

[sxi , H
x
i s

x
i +Hy

i s
y
i +Hz

i s
z
i ] = Hy

i s
z
i −Hz

i s
y
i (3.5)

Which is recognized as the x-component of a cross product. Generalizing this to all

three components:
dsi
dt

= Hi × si (3.6)

This result can also be found through Hamiltons equations, and it is shown how in

appendix B. Since Hi includes a sum over sj, (3.6) is a nonlinear differential equation.

I’m not interested in solving this equation in general, as I’m only interested in the spin

waves. Let σi be a small deviation from the ground state configuration, in which case

the spin vector can be written as:

si = si,0 + σi |si,0| � |σi| (3.7)

Letting Hi,0 be the local field from the ground state and any external magnetic field

and Hi,σ be the local field generated by the spin waves the equation of motion for the

spin waves is found to be:

dσi

dt
= Hi,σ × si,0 + Hi,0 × σi (3.8)

Note that there technically is a term with Hσ
i and σi, but it is negligible since it is of

order |σi|2. So (3.8) is the equation of motion of the spin waves. The normalization

requirement for si is:

1 = |si|2 ' |si,0|2 + 2si,0 · σi ⇒ si,0 · σi = 0 (3.9)
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3 EQUATION OF MOTION

The solution from (3.8) must fulfill (3.9). Boundary conditions can be chosen to fulfill

the requirement at t = 0, in which case it is sufficient to show that:

dσi · si,0
dt

=
dσi

dt
· si,0 + σi ·

dsi,0
dt

=
dσi

dt
· si,0 = 0 (3.10)

The second term is 0 because the magnetic field is assumed to be constant in time, and

thus the ground state is as well. Using (3.8), (3.10) becomes:

dσi

dt
· si,0 = (Hi,σ × si,0 + Hi,0 × σi) · si,0 = (si,0 ×Hi,0) · σi = 0 (3.11)

The spiral order of the ground state makes Hi,0 parallel to si,0, assuming the magnetic

field is periodic in space. To prove this, consider first the spin part of Hi,0. The sum

can be split into sums over the sites at Ri±a, where a is any vector between two lattice

sites. If I choose my coordinate system such that si,0 = û then the sum over these two

elements can be written as:

(cos(Q · a) + cos(−Q · a)) û + (sin(Q · a) + sin(−Q · a)) v̂ = 2 cos(Q · a)û (3.12)

Which is parallel to si,0. The same argument holds in the case where the ground state

is a superposition of q’s and the argument also holds for the B-field part of H. So

normalization holds under the assumption that the B-field is constant in time, periodic

in space, and that σi is small as compared to si,0.

3.1 Solution for a time invariant magnetic field

I want to use the translational symmetry of the ground state to solve equation (3.8),

which means using the Fourier transform, because a translationally invariant system

conserves k. In order to solve (3.8) I introduce a unit cell (typically the smallest one

possible) such that there is translation symmetry between all unit cells. Let σn
i be

the deviation on the n’th site in the i’th unit cell, σn,mi be the m’th component of the

same vector, and let ρi be the coordinate of the i’th unit cell. In that case the Fourier

transform of σn
i is on the form:

σn
i =

∑
k

σn
ke

i(k·ρi−ωt) (3.13)

It is also convenient to introduce Ji,j-matrices, where Jn,mi,j is the J coupling between

the n’th atom in the i’th unit cell and the m’th atom in the j’th unit cell. Using this

notation and expanding (3.8) you get the equation:

dσn
i

dt
= −giµbBi

n × σn
i +

∑
j

∑
m

Jn,mi,j (σm
j × si,0

n + sj,0
m × σn

i ) (3.14)
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3 EQUATION OF MOTION

Where Bi
n and si,0

n is the B-field/spin on the n’th atom in the i’th unit cell (similar

to σn
i ). Using (3.13), (3.14) goes on the form:

−i
∑
k

ωσn
ke

i(k·ρi−ωt) =
∑
k

ei(k·ρi−ωt)

(
−giµbBi

n × σn
k +

∑
j

∑
m

Jn,mi,j

(
eik·(ρj−ρi)σm

k × si,0
n + sj,0

m × σn
k

))
(3.15)

Because I have chosen my unit cell such that there is translation symmetry between

them, there is no coupling between the different parts of the sum over k. In other

words, each part of the sum is equal to the same part on the other side of the equation.

So (3.15) simplifies down to:

−iωσn
k = −gµbBi

n × σn
k +

∑
j

∑
m

Jn,mi,j

(
eik·(ρj−ρi)σm

k × si,0
n + sj,0

m × σn
k

)
(3.16)

When looking at (3.16) it might seem arbitrary that you have to use the ground state

and B-field of the i’th unit cell. But since the unit cell is chosen such that there is

translational symmetry in the ground state, it is true in general that Bi
n = Bj

n and

si,0
n = sj,0

n for all values of i and j.

It might not be clear yet, but (3.16) is an eigenvalue equation. Consider the vector ζk

which, for a unit cell with N atoms, has 3N components, which are equal to the x, y

and z components of each individual σn
k in the unit cell. (3.16) can then be written on

the form:

−iωζk = W(k)ζk (3.17)

Where the matrix W(k) can be found from (3.16). The eigenvalues of W(k) are

the dispersion relations for the spin waves. This approach for finding the dispersion

relation of the spin wave is particularly efficient when the ground state has translational

symmetry within a very small number of atoms. If you require a unit cell with more

than 2 or 3 atoms, you might have to find the eigenvalues numerically, as opposed to

finding them analytically.

Since W(k) is a 3N×3N matrix it will have 3N eigenvalues. With no magnetic field, the

spins in the system can all be turned by an arbitrary angle φ, since the Hamiltonian only

depends on the difference of their angles, but the magnetic field breaks this symmetry,

as the Hamiltonian now also depends on the angle the spins have with respect to B.

The symmetry in the case with no Zeeman term means you can introduce spin waves

with no energy, corresponding to N eigenvalues of W equal to 0. But when a Zeeman

term is introduced, this is no longer possible.
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4 ONE DIMENSIONAL SPIRAL CHAIN

4 One Dimensional Spiral Chain

The setup for this particular problem is a 1D chain with a FM coupling to its nearest

neighbor (J1 < 0), and an AFM coupling to its next nearest neighbor (J2 > 0). J(q) is

then:

J(q) = 2(J1 cos(q · a) + J2 cos(2q · a)) (4.1)

Where a is the lattice vector. I choose my coordinate system such that a = ax̂. If the

AFM coupling is stronger than a fourth of the FM coupling the ground state of this

system will be a spiral. In this case, Q can be found to be:

cos(Q · a) = − J1

4J2

(4.2)

4.1 Spin waves with no magnetic field

Q " a

Figure 3: Ground state of the 1D spiral chain with no magnetic field. This particular

example is for Q · a = 2π
7

A crucial part of the solution method outlined in section 3 is that the ground state has

translational symmetry. At arbitrary values of J1 and J2, Q · a could be an irrational

fraction of 2π. So for this particular method to work on this system, it is required that:

Q · a =
2mπ

N
≤ π

2
m,N ∈ Z (4.3)

When this requirement is fulfilled a unit cell consisting of N atoms can be chosen, and

there will be translational symmetry. When actually solving this problem it is also

much preferred that the value of N is as low as possible since the W(k) matrix from

equation (3.17) is 3N×3N .

Just as in figure 3, the spin wave dispersion relation I will show is for Q · a = 2π
7

. The

dispersion relation can be seen in figure 4. Despite the fact that the W(k) matrix from

equation (3.17) has 21 eigenvalues, there are only 7 non-zero bands. In general it is the

case that, when no magnetic field is applied, the 3N×3N matrix will have N eigenvalues

equal to 0 and the other 2N will be degenerate in pairs of 2.
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4 ONE DIMENSIONAL SPIRAL CHAIN

-0.4 -0.2 0.2 0.4
kx

0.5

1.0

1.5

2.0

2.5

3.0

ω

Figure 4: Spin wave dispersion relation for the 1D spiral chain with no magnetic field.

This example is for Q · a = 2π
7

, meaning a unit cell of 7 atoms, and 7 bands in the

dispersion relation.

4.2 Applying a magnetic field

In the case where a magnetic field is applied to the chain, the ground state from (4.2)

needs to be slightly modified. Following the method laid out in section 2.1, the Hamil-

tonian (2.7) can be written as:

H = 2α2J(Q)sQ · s−Q + β2J(0)− βgµB|B|
= 2α2(J1 cos(Q · a) + J2 cos(2Q · a)) + 2β2(J1 + J2)− βgµB|B|

= α2

(
−2J2 −

J2
1

4J2

)
+ 2β2(J1 + J2)− βgµB|B| (4.4)

For convenience I define:

EQ = −2J2 −
J2

1

4J2

E0 = 2(J1 + J2) EB = −gµB|B| (4.5)

And I choose sQ’s plane to be perpendicular to the magnetic field, so I have to minimize

(4.4) under the constraint (2.14). This gives two different solutions depending on the

values of (4.5):

β =
−EB

2(E0 − EQ)
α2 = 1− E2

B

4(E0 − EQ)2
(4.6)

β = 1 α = 0 (4.7)
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5 TRIANGULAR LATTICE

-0.4 -0.2 0.2 0.4
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(a) Dispersion relation for β = 0.05

-0.4 -0.2 0.2 0.4
kx

0.5
1.0
1.5
2.0
2.5
3.0
3.5

ω

(b) Dispersion relation for β = 0.5

Figure 5: Spin wave dispersion relations for the 1D spiral chain in an external magnetic

field. This figure shows the dispersion relation for both a small magnetic field and a

large one.

(4.6) breaks down when |EB| > 2|E0−EQ| (since α must be real), and so (4.7) becomes

the solution for big B-fields, whereas (4.6) is the solution for smaller fields. Figure 5

shows the dispersion relation of the spin waves with two different values of β. For the

small β (figure 5a) you can see how the degeneracy of the dispersion relation (figure

4) is lifted, but it still looks very similar to figure 4. Whereas when you apply a large

field (figure 5b), so the ground state is significantly different, the original shape of the

dispersion relation is lost.

5 Triangular Lattice

The triangular lattice is a 2D lattice arranged in equilateral triangles. I will consider

a model with an antiferromagnetic coupling to the nearest neighbor (J1) and the next

nearest neighbor (J2). In other words, J1 > 0 and J2 > 0. The Fourier transform of J ,

as defined in equation (2.4), can be found to be:

J(q) =J1

(
2 cos(qxa) + 4 cos

(
qxa

2

)
cos

(√
3qya

2

))

+J2

(
2 cos

(√
3qya

)
+ 4 cos

(
3qxa

2

)
cos

(√
3qya

2

))
(5.1)

Q will depend on the ratio α = J2
J1

. The ground state of the triangular lattice will have

two different forms, depending on α. I will treat the solutions for α < 1
8

(low NNN

coupling) and for 1
8
< α < 1 (high NNN coupling)[1].
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5 TRIANGULAR LATTICE

5.1 Low NNN coupling

Figure 6: The ground state of the triangle lattice for α < 1
8
. The rectangles are unit

cells, all of which have couplings to the middle cell.

For low NNN coupling the ground state can be chosen to be on the form Q = 4π
3a

x̂.

This corresponds to a 120◦ magnetic order. The ground state is plotted on figure 6.

As shown in the figure, I choose a unit cell with 3 atoms, since that’s the smallest unit

cell possible. With the selection of the unit cell shown in figure 6, the lattice vectors

are a1 =
√

3aŷ and a2 = 3
2
ax̂ +

√
3

2
aŷ. This selection makes the Brillouin zone a regular

hexagon with sides of length |K| = 4π
3
√

3a
. The dispersion relations are plotted in figure

7 and 8.

Previous studies of the triangular lattice have found the Brillouin zone to contain three

Goldstone nodes[7, 8]. In those studies the unit cell is taken to only include 1 atom,

in which case they have one band with two of the Goldstone nodes are found on the

K points in the Brillouin zone and one in Γ. Because I choose a larger unit cell, I find

all three Goldstone nodes in Γ, one for each of the bands I find. This is because their

K points have the same coordinates as my reciprocal lattice vectors. So when their

Brillouin zone is translated into mine, all their K points are translated to Γ. This is

described in greater detail in appendix C.

5.2 High NNN coupling

In the case where 1
8
< α < 1 the ground state can be chosen to be Q = 2π√

3a
ŷ[1]

and the resulting ground state is plotted in figure 9. As with every other Heisenberg

model the ground state is degenerate when you rotate all spins by the same angle. This

particular ground state has a further degeneracy (also plotted in figure 9), which can
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5 TRIANGULAR LATTICE
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Figure 7: Contour plots of the Spin wave dispersion relations in the triangular lattice

with no magnetic field. The edge of the Brillouin Zone is marked with a black line.

First row: Dispersion relations for the three bands with α = 0. Second row: Dispersion

relations for α = 1
8
.

Γ K M Γ
k

0.5

1.0

1.5

2.0

2.5
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ω(k)

Figure 8: Cut through the Brillouin zone of the triangular lattice for α = 0

Page 12 of 25



5 TRIANGULAR LATTICE

3
3

3
3

Figure 9: The ground state of the triangular lattice for 1
8
< α < 1 (High NNN coupling).

The chosen unit cell is plotted with the ground state. Left: Unit cell choice at θ = 0.

Right: Unit cell choice at arbitrary θ

be parameterized by an angle θ[1]. This symmetry leads to there being only 2 bands,

instead of the expected 4.

In the case where θ = 0 the Brillouin zone is a rectangle with sides |K1| = 2π
a

x̂ and

|K2| = 2π√
3a

ŷ. The dispersion relations for this choice of unit cell is plotted in figure 11.

The θ degeneracy comes from the fact that the sum of the cosines of all the angle

differences is θ independent. However if θ = nπ
2

(n ∈ Z), then it is again possible to

choose a unit cell with only 2 atoms and still have translation symmetry. Due to this

degeneracy in the ground state, it is a candidate for looking for order-by-disorder, and

to do so I need to find the entropy of the ground state as a function of θ[2]. The part

of the entropy of the ground state which is related to the spin waves is given by:

S(θ) = const− 2π2

√
3a2

∫
dk2 log(ω(k, θ)) (5.2)

Which is the integral over the Brillouin zone[2]. Since the ground state is identical

for θ and θ + π
2
, it is sufficient to only consider θ to be in the interval of [0, π

2
]. The

results of this integral (for α = 1
8
) is plotted on figure 10, and it is clear that the states

which maximize entropy are those at θ = nπ
2

. The ground state will be the state which

minimizes the free energy F = E − TS, which for T > 0 are the states with maximum

entropy. These are exactly the states at θ = nπ
2

as is consistent with previous studies

results[1].
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Figure 10: Entropy of the ground state plotted for select values of the parameter θ. The

entropy was found through numerical integration over the Brillouin zone.
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Figure 11: Contour plots of the spin wave dispersion relations in the triangular lattice

with no magnetic field. The four different plots have α values of: a) α = 1
8
, b) α = 1

4
,

c) α = 1
2
, d) α = 1 and all have θ = 0, as is clear from the shape of the Brillouin zone.

Page 14 of 25



6 SOLUTION FOR TIME DEPENDENT MAGNETIC FIELD

6 Solution for time dependent magnetic field

To find the ground state, the time dependency of α and β in equation (2.10) must

be found for the case where the magnetic field is time dependent. For the sake om

simplicity, I will consider the case where the magnetic field is uniform in space, and I

will also assume it is periodic in time. In that case the magnetic field can be written

on the form:

B(t) = B0τ(t) (6.1)

Where τ(t) is a periodic function of t. Minimizing (2.15) under the constraint (2.14),

α and β are on the form:

β =
−EB

2(E0 − EQ)
α2 = 1− E2

B

4(E0 − EQ)2
(6.2)

Where I have defined

EQ = (J(Q) + J(−Q))sQ · s−Q E0 = J(0)|s0|2 EB = −gµB|B| (6.3)

It is now clear that β is proportional to B, meaning it is also proportional to τ(t). In

this case α and β can be written on the form:

β = β0τ(t) α =
√

1− β2 =
√

1− β2
0τ(t)2 ' 1− β2

0τ(t)2

2
(6.4)

The Taylor expansion is only true under the assumption that β � 1. The equation of

motion from section 3.1 is:
dζk

dt
= W′(k, t)ζk (6.5)

Where W′(k, t) is defined as in (3.17). Since W′ is assumed to be periodic Floquet

theory[9] says that the solution must be on the form:

ζk = e(χ+iω)tP(t) (6.6)

Where P(t) is periodic in t with the same period as τ(t). For normalization to hold I

have to ensure that χ ≤ 0, since if not my assumption that |si,0| � |σi| no longer holds

for all values of t. If W is an 3N × 3N matrix, then there are 3N solutions all with

different values of χ and ω. Floquet theory also states that:

T

N∑
n=1

µn =

∫ T

0

dt′Tr(W′(k, t′)) (6.7)

Where T is the period of W′, and µn = χn + iωn. Since W′ is traceless (because all

terms in (3.16) are cross products), the set of µn must sum to 0, meaning that if there

are any solutions with χ > 0 there must also be solutions which are dampened by the
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6 SOLUTION FOR TIME DEPENDENT MAGNETIC FIELD

oscillating field. Since the solutions can be driven by the magnetic field, it is necessary

to introduce a damping term into the equation of motion (3.6). (6.5) is rewritten to

include said term:
dζk

dt
= W′(k, t)ζk − γζk (6.8)

Then e−γtζk is a solution (as can be seen from inserting it into (6.8)), and the γ can

be manually fitted to stop any of the solutions from having an exponentially scaling

amplitude. Furthermore since P(t) (as defined in (6.6)) is periodic, it can be expanded

in the basis of einωBt where ωB = 2π
T

and n is some integer. The general solution will

then have ω’s which couple to the ωB of the B-field.

As in Section 3, to ensure the normalization holds, it is necessary to require si,0 ·σi = 0.

In the time independent case this was done by choosing σi to be orthogonal to the

ground state at some point t0, and then showing that
dsi,0·σi

dt
= 0. All the arguments

made in that case still hold in the time dependent case with the exception that
dsi,0
dt

= 0,

which is no longer true.

This means
dsi,0·σi

dt
=

dsi,0
dt
·σi, which means that for this derivative to be 0, σi must be

simultaneously orthogonal to si,0 and ˙si,0. One can deduce that this requirement can

only hold if:

σ̇i × (si,0 × ¨si,0) = 0 ⇒ σ̇i · ¨si,0 = 0 (6.9)

Since σ̇i is known from (3.14), this dot product can be evaluated and it is in general not

equal to 0. However, because si,0 and σi have the same period (with the exception of the

exponential function in equation (6.6)), you can choose them to be orthogonal at some

time t0 and then they will also be orthogonal at all times t = t0 + nT . Furthermore, if

χ− γ ≤ 0 the amplitude of σi will either remain constant or fall exponentially.

6.1 Perturbation approach

To solve (6.5), rewrite (3.8) on the form:

dζk

dt
= (W(k) + ηΓ(k, t)) ζk (6.10)

Where all time dependent elements of W(k) (as defined in equation (3.17)) have been

pulled out, and will be treated as a perturbation. η is then some (small) dimensionless

quantity used to track the order of the perturbation. In other words, the solution ζk

should be on the form:

ζk =
∑
m

ηmζk,m (6.11)

The 0’th order solution is the same solution as that in (3.17). Collecting first order

terms you get the equation:

dζk,1

dt
= W(k)ζk,1 + Γ(k, t)ζk,0 (6.12)
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6 SOLUTION FOR TIME DEPENDENT MAGNETIC FIELD

Since ζk,0 is already known from the 0’th order equation, the last term is completely

independent of ζk,1. This is, in other words, a inhomogeneous linear differential equa-

tion. The homogeneous solution is identical to that from equation (3.17), so it doesn’t

add anything to the overall solution (6.11). The inhomogeneous solution can be found

using the method of varying constants (this method is described in appendix D). Let

the matrix Φ(k, t) have the solutions to the homogeneous problem (the eigenvectors of

W(k) multiplied by eλt where λ is an eigenvalue of W) as columns. In that case the

inhomogeneous solution will be on the form:

ζk,1 = Φ(k, t)

∫ t

dt′Φ−1(k, t′)Γ(k, t′)ζk,0 (6.13)

The process of finding ζk,m can be done iteratively since in general:

dζk,m

dt
= W(k)ζk,m + Γ(k, t)ζk,m−1 ⇒ (6.14)

ζk,m = Φ(k, t)

∫ t

dt′Φ−1(k, t′)Γ(k, t′)ζk,m−1 (6.15)

It is worth noting that Φ(k, t) is always on the same form, since the solution to the

homogeneous equation is the same for all m (and its columns are also the general

solution for ζk,0).

This method is most efficient when solving for a time dependent magnetic field which is

very weak. But if the magnetic field has a very simple time dependency (B ∝ cos(ωBt)

for example) the integral from equation (6.15) will always be on a simple form since all

time dependency in Φ will be on the form eiωt (although in general ω will not be the

same for all columns). This also means the the rows in Φ−1 will have time dependency

on the form e−iωt, with the ω from the corresponding column in Φ.

An example of a solution is plotted on figure 12. This particular solution is of a 1D AFM

chain with a driving frequency ωB ten times higher than the ω of the time independent

solution. The β0 (as defined in equation (6.4)) is 1
8

and the solution is evolved to the

third order in η. It is especially evident from the y-coordinates of the spin waves how

the time independent frequency combines with the frequency of the magnetic field. The

driving of the magnetic field can also be seen in the form of an amplitude increase, again

especially evident in the y-coordinates.

6.2 Fourier approach

Similar to the approach in the time independent problem, this approach takes advantage

of the Fourier transform to turn (3.14) into an algebraic equation. But because the

ground state and the magnetic field are now time dependent it is convenient to Fourier
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Figure 12: Example solution of the time dependent problem using the perturbation ap-

proach. This is a solution of the AFM 1D chain, evolved to the third order in η with no

damping term.

transform both the spin wave itself, but also the magnetic field and the ground state:

σn
i =

∑
k

∫
dωσn

k(ω)ei(k·ρi−ωt) (6.16)

Bi
n(t) =

∫
dωBi

n(ω)e−iωt (6.17)

si
n(t) =

∫
dωsi

n(ω)e−iωt (6.18)

This way the time dependency of σn
i is trivial. These Fourier transforms can be used in

equation (3.14), but in order to do so the cross products need to be evaluated. I will do

this on component form, using the antisymmetric symbol, instead of doing it on vector

form since it makes the integrals easier to evaluate:

(Bi
n × σn

i )u = εuvw
∑
k

eik·ρi

∫∫
dωdω′Bn,v

i (ω)σn,wk (ω′)e−i(ω+ω′)t

= εuvw
∑
k

eik·ρi

∫
dΩe−iΩt(Bn,v

i ∗ σ
n,w
k )(Ω) (6.19)

Where (Bn,v
i ∗ σ

n,w
i ) is the convolution between the v’th coordinate of Bi

n(ω) and the

w’th coordinate of σn
i . The other cross products from (3.14) can be evaluated in the

same way. If the B-field is periodic (with period T ), the Fourier transform is a sum of

Dirac delta functions:

Bi
n(ω) =

∑
η

Bi
n
,ηδ(ω −

2ηπ

T
) η ∈ Z (6.20)
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7 CONCLUSION

The same argument applies for the ground state. For shorthand I will introduce ωB =
2π
T

. The convolutions from the cross products will couple the ω of the spin wave itself

to ω+ ηωB (similar to the result from the perturbation approach). Using these results,

(3.14) collapses to:

−iωσn,uk (ω) = εuvw
∑
η

(
−gµBBn,v

i,η σ
n,w
k (ω + ηωB) +

∑
j

∑
m

Jn,mi,j

(
eik·(ρj−ρi)sn,wi,0,ησ

m,v
k (ω + ηωB) + sm,vj,0,ησ

n,w
k (ω + ηωB)

))
(6.21)

I have not found a way to solve this equation, but it is likely the best approach for

finding an exact solution as opposed to an approximate solution, as is done in the

perturbation approach.

7 Conclusion

The Heisenberg model was studied with the goal of finding spin waves in frustrated

systems. As the spin waves are small deviations from the ground state, it was necessary

to find the ground state of the frustrated system. The ground state was found through

a Fourier transform of the Hamiltonian, both with and without a Zeeman term from

an external magnetic field.

The equation of motion of the Heisenberg model was derived and linearized through

only considering small deviations from the ground state. By assuming no time de-

pendency of the Zeeman term, the differential equation was turned algebraic through

a Fourier transform, and the translational symmetry of the ground state was used to

diagonalize the spin wave in k-space. The, now linearized and algebraic, equation was

shown to be on the form of an eigenvalue equation, with the spin waves given by the

eigenvectors and the dispersion relation given by the eigenvalues.

The equation of motion was solved for the 1D spiral chain and the antiferromagnetic

triangular lattice. Through the solution of the 1D spiral chain, it was shown how the

Zeeman term breaks the rotational symmetry of the Heisenberg Hamiltonian, and gives

rise to three times as many bands as the Heisenberg model without a Zeeman term

does. The triangular lattice was, through the dispersion of the spin waves, shown to

have order-by-disorder when 1
8
< J2

J1
< 1.

Finally, the case of a time dependent Zeeman term was discussed. Issues with normal-

ization of the spin vectors were shown, and partially solved through the introduction

of a damping term in the equation of motion. Two methods of solving the equation

of motion were discussed, one based on treating the time dependent Zeeman term as a

perturbation and another Fourier transformed the time coordinate in order to turn the
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Sci. Ecole Norm. Sup., 12, 1883.

Page 20 of 25



B CLASSICAL DERIVATION OF THE EQUATION OF MOTION

A Finding the Ground State through Lagrange Mul-

tipliers

Minimizing (2.15) under (2.14) can be done through the method of Lagrange Multipliers.

Consider the function:

L(α, β, λ) = α2(J(Q) + J(−Q))sQ · s−Q + β2J(0)|s0|2 − βgµB|B| − λ(α2 + β2 − 1)

The α, β and λ which solve the equation ∇L = 0 is then a local extremum of (2.15)

under the constraint of (2.14). Solving this requires solving three equations with three

unknowns, namely:

2α((J(Q) + J(−Q))sQ · s−Q − λ) = 0

2β(J(0|s0| − λ)− gµB|B| = 0

α2 + β2 − 1 = 0

The first equation has two possible solutions, namely λ = (J(Q) +J(−Q))sQ · s−Q and

α = 0. Since α = 0 is the local maximum (unless the magnetic field is strong enough),

let’s consider the case where α 6= 0. Using the value of λ in the second equation, one

can find:

β =
gµB|B|

2(J(0|s0| − (J(Q) + J(−Q))sQ · s−Q)

Once this value of β is found, α can be found through the third equation.

B Classical Derivation of the Equation of Motion

In this classical model I will consider the spin to be an angular momentum, which means

it must be on the form

si = ri × pi

And so in accordance with Hamilton’s equations the time derivative must be:

ṡi = ṙi × pi + ri × ṗi =
∂H
∂pi

× pi − ri ×
∂H
∂ri

Just as in the quantum mechanical derivation (section 3.1) it is convenient to define

the local field (3.3). This section will make use of the antisymmetric symbol (εijk) and

of Einstein notation. The following identity will also come in handy a couple of times:

εijkεimn = δjmδkn − δjnδkm

Having defined the local field, the Hamiltonian can be written on the form:

H =
∑
i

εuvwH
u
i r

v
i p

w
i
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C TRANSLATING THE BRILLOUIN ZONE OF THE TRIANGULAR LATTICE

And the l’th component of ṡi:

ṡi
l = εlmn

(
∂H
∂pmi

pni − rmi
∂H
∂rni

)
= εlmn (pni εuvmH

u
i r

v
i + rmi εuvnH

u
i p

v
i )

Using the above identity this expression can be collapsed to the form:

ṡi
l = pni

(
Hn
i r

l
i −H l

ir
n
i

)
+ rni

(
pniH

l
i − pliHn

i

)
= Hn

i

(
rlip

n
i − rni pli

)
It might not be immediately obvious that this is the cross product from (3.6) so in order

to explicitly show that lets rewrite (3.6) to the same form:

sni = εnuvr
u
i p

v
i ⇒ ṡi

l = εlmnH
m
i s

n
i = εlmnεnuvH

m
i r

u
i p

v
i = Hn

i

(
rlip

n
i − rni pli

)
So you can find the equation of motion without having to involve quantum mechanics.

C Translating the Brillouin Zone of the Triangular

Lattice

The spin wave dispersion relation that I find for the triangular lattice is compared to

previously found dispersion relations in section 5. Because I used a different unit cell

from the results I’m comparing to, the Brillouin zone (BZ) from the previous studies

has to be translated so it can be compared with mine.

Figure 13: Plot of both the Brillouin zone of the unit cell with 1 atom (Big BZ) and the

unit cell with 3 atoms (small BZ). The colored areas on the figure indicate which parts

of the big BZ become which bands in the small BZ.

Both of the Brillouin zones are plotted on figure 13. Because the K points of the Big

BZ are reciprocal lattice vectors for the small BZ, all the K points from the big BZ will

be translated into the center point Γ.

The important thing to keep in mind when comparing the two BZ is that the big BZ
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E MATHEMATICA CODE FOR THE TRIANGULAR LATTICE

describes the phase change of the spin waves between each site, whereas the small BZ

describes the phase change between each unit cell. The K points for the big BZ have

k such that there is translational symmetry every 3 atoms, which is exactly why they

correspond to Γ in the small unit cell. The k vectors in the small BZ describe the phase

that the spin waves pick up between unit cells, and so if there is translational symmetry

every 3 atoms the spin waves shouldn’t pick up a phase between unit cells.

Another way of thinking about this is that in the small BZ, the eigenvectors of W have

the spiral order within the unit cell built into it. Because the eigenvectors have 9 entries

corresponding to the x-, y- and z-components of each atom in the unit cell, they can

have the spiral order from the K points in the big unit cell built into them, so it is

unnecessary to take phase changes that happen within the unit cell into consideration

when building the Brillouin zone.

D Short Introduction to Lagrange’s Method of Vari-

ation of Constants

This method can be used when solving problems on the form:

ẋ = Ax + f(t)

Where A is some constant matrix. The solution to the homogeneous problem will span

the solution space, meaning the solution can be written as a linear combination of these

solutions:

x = Φc(t)

Where the columns of Φ are the solutions to the homogeneous problem and c(t) is the

column vector with the (time dependent) expansion coefficients. Using the solution on

this form on the original problem, you find:

Φ̇c(t) + Φ ˙c(t) = AΦc(t) + f(t)

Since Φ is the solution for the inhomogeneous problem, this equation simplifies down

to:

Φ ˙c(t) = f(t) ⇒ ˙c(t) = Φ−1f(t)

The solution to the differential equation can, through integration, be found to be on

the form:

x = Φ

∫ t

dt′Φ−1f(t′)

E Mathematica Code for the Triangular Lattice
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Clear["Global`*"]

(*Define the number of atoms in the unit

cell and the number of unit cells it couples to*)

nuc := 3;

nmatrix := 9;

(*Write out all the J_ij Matrices as defined in section 3.1 of the thesis*)

Jmat0 := {{0, J1, 0}, {J1, 0, J1}, {0, J1, 0}};

Jmat1 := {{J2, 0, 0}, {J1, J2, 0}, {J1, J1, J2}};

Jmat2 := {{J2, 0, 0}, {0, J2, 0}, {0, 0, J2}};

Jmat3 := {{J2, J1, J1}, {0, J2, J1}, {0, 0, J2}};

Jmat4 := {{0, 0, 0}, {0, 0, 0}, {J1, 0, 0}};

Jmat5 := {{0, 0, J1}, {0, 0, 0}, {0, 0, 0}};

Jmat6 := {{J2, 0, 0}, {J1, J2, 0}, {J1, J1, J2}};

Jmat7 := {{J2, 0, 0}, {0, J2, 0}, {0, 0, J2}};

Jmat8 := {{J2, J1, J1}, {0, J2, J1}, {0, 0, J2}};

JFull = {Jmat0, Jmat1, Jmat2, Jmat3, Jmat4, Jmat5, Jmat6, Jmat7, Jmat8};

(*Define the ground state of each atom in the unit cell with no B field*)

θ[m_] := 4 * π  3 * m - 1;

ϕ[m_] = π  2;

sQ[m_] := {Sin[θ[m]] Cos[ϕ[m]], Sin[θ[m]] Sin[ϕ[m]], Cos[θ[m]]};

(*Define the ρ vectors which are the coordinates of the unit

cell. These should be in the same "order" as the J_ij matrices*)

a1 := {0, Sqrt[3]};

a2 := 1  2 * {3, Sqrt[3]};

avec := {{0, 0}, a1 - a2, a1, a2, a1 - 2 * a2, -a1 + 2 * a2, -a2, -a1, -a1 + a2};

(*Define matricies which correspond to the front factor in H_σ and H_0 respectively*)

Jσmat[kx_, ky_] := Sum[JFull[[k]] * Exp[-I * avec[[k]].{kx, ky}], {k, nmatrix}];

Js0mat := Sum[JFull[[k]], {k, nmatrix}];

(*The σ's here are used to keep track of which coordinates of ς couple to which*)

σ := Table[ds[i, j], {i, nuc}, {j, 3}];

(*Define the strength and direction of the B field*)

B0 := 0;

sB := {0, 0, 1};

B := B0 * sB;

Bmat := {{0., B[[3]], -B[[2]]}, {-B[[3]], 0., B[[1]]}, {B[[2]], -B[[1]], 0.}}

Bfullmat := ArrayFlatten[Table[Bmat * KroneckerDelta[i, j], {i, nuc}, {j, nuc}]];

(*The relevant energies for calculating β and

α are found from the J(q) for the triangular lattice*)

EQ := -3 * J1 + 6 * J2;

E0 := 6 * J1 + J2

EB := -B0;

(*Note that this normalization assumes that sB is orthogonal to sQ*)

β := Min-EB  2 * E0 - EQ, 1;

α := Sqrt[1 - β^2];



(*The final ground state is found*)

s0[m_] := α * sQ[m] + β * sB;

(*Find the equation of motion for the a'th atom in the unit cell*)

hmat[a_, kx_, ky_] := Sum[Js0mat[[b, a]] * Cross[s0[b], σ[[a]]] +

Jσmat[kx, ky][[b, a]] * Cross[σ[[b]], s0[a]], {b, nuc}];

(*Gather all these equations of motion up into one big vector*)

hmatbig[kx_, ky_] := Table[hmat[a, kx, ky], {a, nuc}];

(*Pull out the coefficients of the σ matrix to find the W'matrix*)

Wmat[kx_, ky_] = TransposeTableCoefficientFlatten[hmatbig[kx, ky]],

dsFloora - 1  3 + 1, Mod[a - 1, 3] + 1, {a, 3 * nuc} - Bfullmat;
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