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Abstract

High transmittance of tapered fibers is widely desired. In this project we investigate
whether this can be reached by shaping the transitions with respect to adiabatic criteria.
Through an algorithm, the shaping is simulated, both in one step, and by dividing it
into several. Three of these simulated shapes are experimentally performed, and is seen
to resembles the simulated. The simulated shapes stays below the adiabatic limit, and
our highest transmission at 97.1± 1.7%, is reached when pulling in four steps.
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1 INTRODUCTION

1 Introduction

In modern physics and engineering, optical fibers have numerous applications. Mainly their
property to guide and transmit light with very low loss over large distances has made them
useful. This low loss feature makes them exceptionally good at transporting information,
which is widely desired. Optical fibers are for example used as quantum information carriers,
for data transfer and storage, and even for HDTV using their broad bandwidth.
After discovering that optical fibers with very small diameters still guide light with low loss,
new possibilities for applications have been discovered. These nano fibers have turned out to
be useful as beam splitters, as single molecule sensors, and in integrated optics as in-couplers.
The property exploited is their ability to have light propagating on the outside of the fiber.
When light is guided through the nano section, the mode extends the thin fiber, and light
will be guided as an evanescent field. Another interesting application is to use the nano
fiber as an atomic trap. The idea is that atoms will couple strongly with the evanescent
field around the fiber. To trap the atoms around the fiber, two additional laser beams are
applied, one red-detuned and one blue-detuned with respect to the atomic transition. These
will respectively attract and repel the atoms, and when the red-detunded beam is a standing
wave, they will generate potential minima along the fiber, where the atoms will be trapped.
It is this atom trapping application that our project is targeting.
The nano section is very sensitive to environmental disturbances, therefore it is desired to
be as short as possible, and usually only a few centimeters are required to trap atoms. The
section is reached by gradually decreasing the diameter down to a few hundred nano meters.
The shape of this tapering section is very important, as it determines the transmittance
through the fiber.
The amount of transmission of the laser beam that couples to the atoms, are essential. If
there are losses, we cannot be sure to obtain sufficient information about the atoms. In the
transition before the mode extends the fiber, coupling to other modes can happen, which will
affect the transmission. Our aim is to produce fibers with transitions designed to avoid the
coupling to other modes. From mode guidance theory, such a shape can be calculated. Using
this adiabatic shape we will simulate how to create this fiber in practise, and afterwards test
it experimentally.
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2 THEORY

2 Theory

In this section, we will describe the optical step-index fiber, and give an outline of the most
important theory behind guided modes. This allows us to predict when excitations to higher
order modes happen, as the fiber is tapered down. To obtain higher transmittance through
the fibers, these excitations must be avoided, leading to a desired target shape of the fibers.
In the end, we will present the basic principles in our method to make tapered fibers.

2.1 Single-mode step-index optical fibers

An optical fiber is made of high quality silica (glass) with a diameter on the order of 0.1 mm.
In contrast to a graded-index fiber, whose refractive index changes gradually from the center
and out, a step-index fiber consists of two layers; a core and a cladding, with slightly different
refractive indices as seen in figure 1. The refractive index of the core is slightly larger than
the one of the cladding, nco > ncl, and in the ray optics picture this leads to total internal
reflection of light on the interface between the core and the cladding. This means that light
can propagate in the fiber core, if the incident angle θi is such that the internal reflection
angle θ is less than the critical angle θc. The critical angle is the maximum angle for which
total internal reflection occurs, and is given as θc = sin−1(ncl/nco) [Milonni et al. 2010]. The
relative size of the indices of refraction for the core and the cladding is therefore crucial for
how easy light can be coupled into the fiber. For a single-mode fiber, the critical angle of the
incoming light is so small that only light nearly parallel to the fiber axis is guided. Therefore
single-mode fibers are called weakly guiding.
The guided modes in a fiber at core radius ρco are governed by the core guidance parameter,
also called the V -parameter:

V =
2π

λ
ρco

√
n2

co − n2
cl, (1)

where λ is the wavelength of the incoupled light. The V -parameter only takes the core and
cladding refractive indices into account, meaning it neglect the surrounding air, and assumes
an infinite cladding region. The guided fiber-mode in a single-mode fiber is propagating in
the core, therefore also referred to as the core-mode. Also higher order cladding-modes exist,
which are the possible modes that could be guided in the cladding. When coupling into
a fiber, one has to make sure not to couple into a cladding-mode instead of a core-mode.
For single-mode fibers the core radius is chosen such that V < 2.405, where the higher order
modes are no longer guided in the core, but in the cladding instead, and only the fundamental
mode is left in the core. This is called the single-mode cutoff.
A fiber-mode is defined as a field distribution which, apart from a phase, preserves its form

θi

θ

ncl

nco

nair

z

Figure 1: Step-index optical fiber described in the ray optics picture. The core (blue), has a slightly
larger refractive index than the cladding: nco > ncl. nair is the refractive index of air and is
∼ 1. For light to be guided, it must be incident with an angle such that θ ≤ θc.
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2.2 Light propagation in tapered optical fibers 2 THEORY

while propagating along the fiber axis z. The phase is given by the last exponential in the
electric field of the mode, which in cylindrical coordinates is written as:

E(r, φ, z) ∝ E(r, φ) exp(−iβz) (2)

where E is the field amplitude, and β is the propagation constant. Assuming an infinitely
long and perfectly cylindrical symmetric fiber, β is found by solving the scalar wave equation
[Milonni et al. 2010]:

∂2E
∂r2

+
1

r

∂E
∂r

+
1

r2

∂2E
∂φ2

+
∂2E
∂z2

+
n2

λ2
E = 0, (3)

where n is the refractive index in the relevant layer. The infinite cladding assumption is
also justified here. For core-guided modes the amount of field in the cladding region are
small, and therefore this is a good approximation. After solving equation 3 separately for
the two index regions, the full solutions are constructed by requiring the radial intensity
distribution to be continuous at the borders, finite at the center and zero at infinity. Solving
the eigenvalue equation for the solutions, provides the wanted propagation constant β.
When assuming an infinite cladding region, the fundamental mode is always guided in the
core. As we will see, this infinite cladding approximation fails for very small core radii, where
the mode volume starts to increase, and extends outside the fiber core. If the finite cladding
is taken into account the fundamental mode will at some point effectively start being guided
in the cladding instead of the core.

2.2 Light propagation in tapered optical fibers

As long as the weakly guiding approximation holds, the modes propagating in the fiber can
be approximated by the LPlm-modes. These modes are Linearly Polarized, meaning that
polarization along the fiber axis is neglected. The intensity profile for the first four LPlm-
modes are pictured in figure 2, where the fundamental mode is the LP01.
Coupling between two modes can become effective when the two modes have similar az-
imuthal spatial symmetry, i.e. have the same l value. Considering figure 2 the fundamental
mode would therefore be likely to couple to the LP02 mode. Coupling to modes with different
symmetry would require breaking the azimuthal symmetry of the fiber. This could happen
by heavy bending of the fiber or, e.g. by dust particles causing scattering.

Figure 2: The transverse intensity profile for the first four LPlm-modes. The picture is taken from
[Sørensen 2013].

2.2.1 Propagation constants for the tapered fiber

The following is a qualitative outline of the most important physical aspects of the derivation
of the mode propagation constant and effective refractive indices for a tapered fiber. For a
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more thoroughly derivation one should consult [Love et al. 1991].
The electric field of a mode propagating in a tapered fiber is of the form:

E(r, φ, z) ∝ E(r, φ)e−i
∫ z
0 β(z′) dz′ , (4)

where the integral of β is the accumulated phase the field experiences during propagation.
Opposed to the case with the untapered fiber, β will now change along the fiber axis.
Before the tapered section, the fundamental mode will propagate in the core as described
in section 2.1. When entering the tapered region, where the core radius gets smaller, the
fundamental mode will propagate more and more in the cladding, affecting the effective index
of refraction the field ”feels”. This is another way of understanding the z-dependent β, since
the effective index of refraction is related linearly as

β = k0 neff, (5)

where k0 = 2π/λ is the free space k-vector. The guided modes in the tapered fiber are found,
as for the untapered fiber, by solving the scalar wave equation in cylindrical coordinates. It
is solved with the appropriate boundary conditions for each point along the z axis as if they
where infinitely long cylinders (see the blue lines in figure 3).
When solving the wave equation for the tapered fiber, the infinite cladding approximation is
no longer valid, and it must be done in all three regions of different refractive indices. The
solutions should connect continuously at the borders just as for the untapered fiber. These
continuous solutions leads to the approximate LP-modes. The propagation constants for the
modes can be found by solving the eigenvalue equation.

2.2.2 Coupling to higher order modes

The effective refractive indices for each mode can be expressed as a function of the core
guidance V -parameter. This can be done, since the ratio of the core and cladding radii is
constant, therefore the V -parameter is only proportional to the core radius. The effective
refractive indices for the two first LP0m-modes in our fiber are plotted as a function of the
V -parameter in figure 4. At large values of the V -parameter we see that both modes are
guided in the core. From V = 2.405 and down the LP02-mode is guided in the cladding,
and this is the before mentioned single-mode cutoff. The value of the V -parameter for our
untapered fiber is V = 2.34 and is indicated just below the cutoff [Sørensen 2013].
As the core radius decreases, the effective refractive index of the fundamental mode ap-
proaches the refractive index of the cladding. In contrast to the infinite cladding solution,
the value of the effective refractive index now moves below the cladding value. At some point
neff01 = ncl. This happens at V = Vcc at approximately 0.75, which is called the core-mode
cutoff for the fundamental mode. Near Vcc, the effective refractive index of the LP02 mode is
very close to the fundamental mode, and it is when the core tapers down to this point that
light can couple into the LP02 mode. The curves for the effective refractive indices of the
higher order modes are not included in the figure, but will all lie below the LP02 cladding
mode. Coupling to these modes could in principle also happen, but effectively it will not.
Only the second order LP02 mode will therefore be considered from now on when trying to
minimize coupling to any higher order modes.

2.3 Adiabatic tapering angle

The shape of the tapered section can be described by the angle Ω(z) at each point along the
axis. Ω(z) is defined as:

Ω(z) =

∣∣∣∣∂ρco(z)

∂z

∣∣∣∣ , (6)
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zt

ρco(z)

ρcl(z)

Ω(z)
z

Figure 3: One side of a tapered fiber, where Ω(z) is the local taper angle. The local taper length is
indicated by zt. ρco(z) and ρcl(z) are the core and cladding radii, respectively, along the fiber.
The blue cylinder illustrates how all values are calculated as infinite cylinders at each point
along the z axis - hence the name local.

Core-mode cutoff V (0) for our fiber Single mode cutoff

Figure 4: The effective refractive indices of the first two LP0m modes propagating in a step index
fiber as a function of the core guidance V-parameter. The calculation is done within the weak
guidance approximation and considering finite cladding.

where ρcl(z) is the cladding radius and ρco(z) is the core radius. These are all pictured in
figure 3. It turns out, that by choosing the right tapering angle along the fiber it is possible
to minimize coupling to the second order mode. In order to find an upper limiting angle,
we will compare the local taper length to the local beat length. The local taper length zt
is shown in figure 3 and is defined through Ω(z) = tan−1(ρ(z)/zt) ≈ ρ(z)/zt. In practice
Ω(z) � 1 and the approximation is justified. When the taper length is long at each point,
the tapering angle is slowly varying. The beat length between the fundamental mode and
the LP02-mode is given by zb = 2π/(β01 − β02), where the subscripts refers to the subscripts
on the LPlm-modes. If the beat length is long, the two propagation constants are similar.
This means that the two modes have almost the same phase and are therefore very sensitive
to changes along the fiber. We can understand what happens by looking at each of the field
modes [Love et al. 1991]:

E01(r, φ, z) ∝ E01(0) exp {i
∫ z

0
β01(z′)dz′}, (7)
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2.3 Adiabatic tapering angle 2 THEORY

E02(r, φ, z) ∝ E02(0) exp {i
∫ z

0
β02(z′)dz′}

∫ z

0
C(z′) exp {i

∫ z′

0
β01(z′′)− β02(z′′)dz′′}dz′, (8)

where E01 and E02 are the field amplitudes. The first exponential in both equations describe
the accumulated phase along the fiber for the respective field mode. The maintaining inte-
gral in equation 8, contains C(z), which is the coupling coefficient per unit length along the
z-axis, and an exponential depending on both propagation constants. This term describes
the amount of light from the fundamental mode that effectively will end up in the second
mode. The coupling coefficient is illustrated in figure 5, and determines the amount of light,
coupling from mode one to mode two. The exponential describes that the light coupling into
the second mode along the z-axis, will accumulate different phases compared to each other.
The integral in the exponential, arises since the propagation constants change along the fiber
axis. The integral containing C(z) will be almost zero, if we integrate over a whole number
of beat lengths z = nzb, where n is an integer, and if C(z) is approximately constant within
this integration region. In this case the E02 field will become nearly zero, and almost no
coupling occurs.

β01

β02

z0

C(z)

Figure 5: Arrows illustrate how coupling to the second order mode, happens by light leaking out of
the fundamental mode. C(z) is the coupling coefficient per unit time between the two modes.

The coupling coefficient are proportional to the local tapering angle [Love et al. 1991], mean-
ing that Ω must be slowly varying within a beat length in order to minimize the coupling.
Henceforth we require a large taper length compared to the beat length, zt � zb. In the
other case where zt � zb, a significant coupling will happen and light will be lost. Since we
are interested in minimal coupling, we can set a limit zt = zb, which we certainly have to
stay below to have an low-loss fiber. Isolating the tapering angle in this equality leads to a
boundary on the angles for an approximate adiabatic fiber:

Ω(z) =
ρco
2π

(β1 − β2) (9)

The limiting angle curve Ω(z) for our fiber is plotted as a function of the normalized core
radius in figure 6. The normalized core radius relates to the V -parameter as ρco(z)/ρco(0) =
V (z)/V (0), where V (0) = 2.34 is the V -parameter for our untapered fiber, and ρco(0) is
the untapered core radius. The minimum of the core taper angle is at ρco(z)/ρco(0) ≈ 0.55,
corresponding to V = 1.28. This point should be where the refractive indices for the LP01

and LP02 are closest, and it should approximately correspond to the place where neff01 = ncl.
This happens at V = 0.76, so actually we see a quite large difference between these two
values. At values larger than V = 0.76 the mode will propagate in the core by the core-
cladding interface, and at lower values it will increasingly propagate in the cladding. Here
the air will act as cladding for the mode. We had expected the coupling between the two
modes to happen when the two refractive indices were closest. It seems like the coupling
happens when the fundamental mode is still guided by the core.
Making fibers that stays under this curve will be the task throughout the rest of this project.
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2.4 The principle of tapering fibers 2 THEORY

Figure 6: The limiting angle curve for our fiber, which we want to stay far below to make adiabatic
fibers. The green dashed vertical line indicates the minimum of the angle curve.

2.4 The principle of tapering fibers

Now it’s time to consider how we can make tapered fibers. Tapering means to reduce the
thickness gradually, and henceforth we will have two tapered sections on each side of the
nano section. The idea is to heat up the fiber at one point, so the silica becomes viscous.
This heating is done with a small oven. The simplest way to taper a fiber, is to pull each side
of the fiber apart, with constant and equal speeds. If the heating is symmetric, the shape will
be symmetric around the heated point, when the pulling speeds are constant, and the taper
length and final fiber diameter only depends on the total pulling length and the temperature
profile of the heater. So a symmetric pull doesn’t allow for custom made tapering angles.
To control the local tapering angle, we will use an asymmetric pulling procedure with varying
speeds. In this procedure the fiber is fed, with varying velocities, into the oven, and pulled
out with constant velocity, on the other side. This asymmetric model is sketched in figure 7.
By varying the volume that enters the oven per time, it follows from mass conservation, that
we can control the volume pulled out per time. These volumes are indicated with blue in the
figure. Since the change in volume per time, can be expressed as the product of the cross-
sectional area A and the velocity v, we can mathematically describe the mass conservation
as:

Afeed(t)vfeed(t) = Apull(t)vpull (10)

We have assumed that no mass evaporates from the fiber, and that no thermal expansion
happens. Furthermore the fiber volume inside the oven is assumed to be heated instantaneous
and uniform. This is a good approximation for heaters with a small extension along the fiber
axis, and is why the oven is pictured as a plane in the figure.
As mentioned we keep the pulling velocity vpull constant, which makes the pulling length
lpull linear in time. In the end we want to express the volume change in equation 10 as a
function of lpull instead of time. Rewriting Apull as a function of lpull is straight forward,
using f̃(lpull) ≡ f(lpull/vpull), where f is the variable we want to rewrite. Afeed on the other
hand will be a function of lfeed, which again can be expressed as a function of lpull. To relate
lfeed and lpull it is useful to introduce a new parameter s, defined as the ratio between vfeed

and vpull. Using that vfeed = dlfeed/dt and equivalent for vpull, we can write s as:

s =
dlfeed

dlpull
(11)
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vfeed(t) vpull

Oven

Heated
volume

lfeed

Heated volume

lpull

Before pulling

After pulling

Figure 7: Pulling model of an asymmetric pull. The oven is pictured as a transverse plane, and the
fiber is fed in with varying velocity vfeed and pulled out with constant velocity vpull, where
vfeed < vpull. lfeed is the length, the fiber is fed into the oven, and lpull is the length pulled
out.

By isolating dlfeed, and integrating over l on both sides we arrive at the following expression:

lfeed(lpull) =

∫ lpull

0
s(l) dl, (12)

We can now write equation 10 as:

Ãfeed(lfeed(lpull))ṽfeed(lfeed(lpull)) = Ãpull(lpull)ṽpull(lpull). (13)

where lfeed(lpull) is given equation 12.
The model presented here is simplified compared to what actually happens when the fiber
is pulled through the oven. The oven we use is not simply a transverse plane, instead it has
an extension along the fiber axis where it heats with a Gaussian-like profile. Therefore fluid
dynamics must be considered in order to describe the flow of the viscous fiber. In the next
section, we will see, that this has already been done for our fiber and oven.

3 Prior work

The basis of our project is preceding work, including a pulling setup, and an algorithm or
model, which from some specified pulling parameters are capable of predicting the shape of
a fiber. In this section we give a short presentation of this setup and the results.

3.1 Prior setup and programs

The experimental setup we use to pull our fibers has been built by Heidi Lundgaard Sørensen,
and is described in great details in [Sørensen 2013]. The fiber is pulled by two motorized
stages, programmed to move at constant speeds. In the setup, the detection of the trans-
mission through the fiber is possible while pulling. This allow us to see changes in the
transmission at each length of elongation of the fiber. After pulling, the fiber can be imaged,
and the shape can be determined using an edge-detecting algorithm.
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3.2 Simulation and derivation of fluid dynamics in heated fibers

Fluid dynamics has to be considered when describing the behavior of the heated fiber, as
mentioned earlier. The continuity equation arising from mass conservation is:

− ∂

∂t
A(z, t) =

∂

∂z
(A(z, t)v(z, t)) , (14)

where A(z, t) is the cross-sectional area along the fiber, t is time and v(z, t) is the velocity
profile of each cross-sectional area A(z, t) along the fiber. If one can solve this equation for
A(z, t), the evolution of the fiber shape can be determined. To do this, v(z, t) needs to be
known. By turning the problem around, A(z, t) can be measured experimentally, and solving
the Navier-Stokes equations, the following expression for v(z, t) is found:

v(z, t) = v(z0, t) + (v+ − v−) ·

∫ z
z0

A0
A(z′,t)τ(z′) dz′∫ z+

z−
A0

A(z′,t)τ(z′) dz′
, (15)

where v+ and v− are the velocities in each direction, and τ is the fluidity profile. The fluidity
profile describes how willingly the fiber mass is to flow and corresponds to the inverse viscosity
profile. It can be determined from measurements, and v(z, t) can then be calculated. The
profile for our oven turns out to be very close to a Gaussian [Sørensen 2013].

Figure 8: Simulation of a symmetric pull divided into smaller pulls of two millimeters each, by
using the preexisting algorithm. The fiber has been simulated using constant and equal pulling
speeds, and the fiber is elongated by 36 mm. Legends are only assigned to every second curve.

Prior to our work an algorithm simulating fiber shapes based on these equations, was written.
Using this algorithm we have simulated a symmetric pull, which is elongated by 36 mm and
shown in figure 8.

3.3 Transmission and adiabaticity

The transmission for an experimentally symmetrically pulled fiber is plotted with blue in
figure 9. The fiber is elongated by 36 mm by using constant speeds of 50 µm/s. The
final transmission is ∼ 90%, and the loss seems to primary originate from the significant
oscillations starting already around elongation length l = 8 mm. An frequency analysis of
the signal has been performed using a Gabor transform, which reveals frequencies associated
with higher order modes. The frequencies connected to the higher order modes are first seen
around an elongation length l = 16 mm.
To relate these excitations with the theory of the limiting angle curve, we have calculated
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the tapering angle Ω(z) described in section 2.3, for the simulation of the symmetric pull.
We can assume the velocity of the viscous fiber mass in the core and the cladding to be
approximately the same while pulling. Henceforth the ratio of the core and cladding radii
is constant, and the tapering angle scales linearly. To calculate the angle related to the
core radius of the simulated pull is therefore straightforward. The angle curves for each of
the 2 mm pulls are plotted together with the limiting angle curve in figure 10. Between
normalized core radius ρco(z)/ρco(0) = 0.7 and ρco(z)/ρco(0) = 0.4, the angle curves of the
simulated fiber clearly crosses the limiting angle. We believe that the higher order mode
excitations seen in the transmission are caused by crossing the limiting angle curve. By
instead pulling asymmetrically with varying speeds, we hope to improve the transmission
and stay under the limiting tapering angle Ω(z).

Figure 9: Transmission curve from [Sørensen 2013] for an experimental pull, with an elongation
length of 36 mm and constant speeds. We see frequencies related to higher order modes
starting at around elongation length l = 8 mm. The Gabor transform express the present
frequencies by their wavenumber. Taken from /citeHeidi.
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4 THE ALGORITHM

Figure 10: The black curve are the limiting tapering angle for adiabatic fibers. The tapering angle
curves for each of the smaller pulls in the simulated 36 mm fiber, are plotted as with the
color scheme. The first simulated step, stating from ρ/ρ0 = 1, goes down to ∼ 0.9, and then
goes back again. This stems from both tapering sides being projected into the normalized
radius axis. All the next steps follow, and goes further and further down on the ρ/ρ0-axis.
The angle curves clearly crosses the limiting angle.

4 The algorithm

We have written an algorithm, which is able to simulate how to pull a desired fiber shape.
As it is constructed now, the algorithm probably uses one among many reasonable ways to
pull the fiber. We have focused mainly on finding a way to produce adiabatic fibers, using
the limiting angle curve discussed in section 2.3, but in principle the algorithm should be
able to simulate any shape.

4.1 Outline of the algorithm

A flow diagram of the algorithm is shown in figure 11. To simulate a fiber shape, the following
two inputs are required; the shape we want to achieve, referred to as the target shape, and the
initial shape of the fiber. Furthermore the simulation can separate the pull into several steps,
one have to decide how many. The total number of steps are denoted n, and intermediate
steps with i, where i = 1, 2, ..., n. A multiple-step fiber are simulated by alternately pulling
the fiber through the oven to the right or to the left. We generate an i’th intermediate target
shape for each step, and along with the previously simulated shape, we calculate the i’th
s-function. This s-function is the same as the s-parameter introduced in section 2.4, given
as the ratio of the velocities. The s-function along with the previously simulated shape are
used when solving the differential equations, describing the fluid dynamics of the fiber. This
provides a fiber shape solution, which now acts as the input parameter for the next iteration.
The loop continues until i = n.

4.2 Adiabatic target shape

The algorithm simulates the shape of the normalized fiber diameter. In the aim of simulate
adiabatic fiber shapes, we have inferred the shape of one transition region from the limiting
angle curve, shown in figure 12(a). As expected from the limiting angle curve in figure 6, the
slope can be steep in the beginning and the end, whereas it must be moderate in the middle.
Here the excitations to the second order mode are most likely to happen. We construct
our target shape by mirroring, as we want the same shape for both transition regions. This
shape will be the limiting shape, for which theory predicts excitations to happen. To stay
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Target profile:

dtarget(z)

Intermediate:

d
(i)
target(z)

Initial fiber

Plane oven

si ode45

Gaussian Oven

Fiber solution
i = n

Final fiber

1 < i < ni = 1

loop for i = 1, .., n

Figure 11: Flow diagram of the algorithm. The algorithm is constructed as a loop, providing an
intermediate solution in each step. The final shape is reached when i = n.

below this curve, we scale the z-axis by a factor of four. This leads to the target shape in
figure 12(b). If the scale are larger, the angle will become accordingly more moderate, and
the shape more adiabatic. Upscaling will result in a longer tapered section. Our scaling is
chosen to fit the pulling range for our stages.

(a) Limiting transition shape. To avoid excitaion of the
second order mode, the slope along this trasition should
be more moderate.

(b) Adibatic target shape generated by mirroring the
limiting transition shape. Scaled by a factor of four, to
obtain more moderate slopes.

Figure 12: The adiabatic target shape in (b) is obtained by scaling and mirroring the transition in
figure (a).

Obviously, we end up with a singularity at the minimum of the target shape. Trying to pull
such shape does not seem very physical, and one could choose to implement a flat piece with
soft edges to ensure a smooth passage in this point. We haven’t done this, since the angle
here are allowed to be steep. Furthermore, we want to keep the fiber as short as possible,
so it doesn’t exceeds the possible pulling range of our stages, while still satisfying the adia-
batic criteria. Our target shape only considers the shape of the diameter down to ∼ 10 µm,
because Ω(z) cannot be calculated further down within the weakly guiding approximation.
In order to use the fiber as an atom trap, the diameter must be ∼ 0.5 µm. Even though we
don’t know the limiting angle at these small diameters, extrapolation of the slope indicates
allowance for steep angles. To reach this diameter we suggest to pull a symmetric pull around
the minimum of the fiber shape.

4.3 The s-function

As already mentioned the ”s”-function (or the tapering function) is the ratio of the velocities.
It’s a smart connection between velocities and the shape of the fiber. Our s-function is
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inspired by [Baker et al. 2011]. For a one step pull, s is given as:

s =
vfeed

vpull
=
Apull

Afeed
. (16)

Here the feeding velocities and areas, are interpreted as parameters for the unpulled fiber,
therefore:

s(z) =
A(z)

A0
=
d2(z)

d2
0

, (17)

where d(z) is the target diameter along the fiber, and d0 is the diameter of the unpulled
fiber. Stating s this way assumes a box shaped fluidity profile of the oven used. Even though
this differs from our oven, we will calculate s this way, and only when solving the differential
equation the Gaussian oven is taken into account. As in [Baker et al. 2011], we want to
divide our pulls into several consecutive steps, so each pull can correct for the imperfections
caused by the previous one and the deviation from the target shape, can be reduced.

4.3.1 Multiple-step approach

When pulling in multiple steps, our approach is to take the (i/n)’th root of the target shape.
This way the target diameter will be reached through multiple steps. The length of the
tapered section has to be modified additionally, to avoid the final diameter profile to be
much broader than the profile for the target shape. We do this by scaling the axis of each
intermediate target profile by i/n. Calculating the intermediate target profiles this way is a
choice, which ensure that we distribute the pulling over all intermediate pulls. Putting this
into formulas the intermediate shapes are:

d
(i)
target(z) =

(
dtarget

( z

i/n

))i/n
(18)

To calculate the si-functions for the multiple steps, we divide these intermediate target
shapes with the previously simulated fiber shape. The previous solution corresponds to the
feeding cross-sectional area, discussed in section 2.4. It therefore depends on lfeed, which is
dependent of lpull. The squared target profile corresponds to the pulling cross-sectional area.
Thus the intermediate s-functions are:

si(lpull) =
A

(i)
target(lpull)

A
(i−1)
sol (

∫ lpull

0 s(l) dl)
, (19)

The profiles of the s-functions used in a 2-step pull are shown along with the intermediate
target profiles in figure 13.
When calucalating the s-functions in this way, the si(lpull) will try to correct for the errors
made, when simulating the previous solutions. If the previous iteration has simulated the
diameter profile too broad, the next s-function will suggest to compress the fiber. Since we
are not interested in compressing the fiber, the algorithm shifts the position of the target
function along the fiber axis, relative to our intermediate target profile. Looping over different
shifting values, the s-function that suggests to compress the fiber the least, is chosen.

4.4 The differential equations

The differential equation we solve to simulate the fiber pulling, is based on the preexisting
differential equations 14 and 15. We simulate asymmetric pulls in both directions, so we
have split the differential equations into two. We can express these differential equations in
terms of s. By changing the ratio of the velocities we can control the output shape of the
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(a) The s1-function along with the d
(1)
target(z) shape for

a 2-step pull.
(b) The s2-function along with the d

(2)
target(z) shape for

a 2-step pull.

Figure 13: The two intermediate profiles for s and dtarget in a 2-step pull.

fiber. We can rewrite the two equations in the same way as was done in section 2.4, and the
resulting differential equation for pulling to the right, becomes:

− ∂

∂lpull
Ã(z, lpull) =

∂

∂z

(
Ã(z, lpull)ṽ(z, lpull)

)
, (20)

where

ṽ(z, lpull) = 1 + (1− s(lpull))

∫ z
∞

τ(ζ)

Ã(ζ,lpull)
dζ∫∞

−∞
τ(ζ)

Ã(ζ,lpull)
dζ
. (21)

When solving equation 20 for Ã(z, lpull), we obtain the shape of the pulled fiber. For a
multiple-step pull, the solution will be input for the next iteration of the loop, until iteration
n. In MATLAB, the differential equation is solved using the ode45-function.

4.5 Simulation results

The algorithm produces simulated fiber shapes, and in the following we will see how well
they resemble the target shapes. To see whether the discrepancy from the target shape is
reduced, when performing multiple-step pulls, the deviation is calculated for a 1-step up to a
20-step pull. The deviation is shown in figure 14, and calculated by integrating the absolute
difference between the normalized simulation and normalized target shape:

∫
|dtarget−dsol|dz.

If the two are perfectly consistent this value should be zero.
We see a clear improvement between pulling in one step and four steps. From the 4-step
pull to around the 10-step pull the deviation almost doesn’t change, and after ten steps the
deviation seems to slowly grow again. The 4-step pull provides one of the smallest deviations,
and is still within the experimental manageable range. Therefore we have chosen a 4-step
pull to be the one we test experimentally along with a 1-step pull. For now we will look into
how well these resemble the target shape, and whether stay below the limiting angle curve.
A 1-step and a 4-step fiber shape is plotted along with the target shape in figure 15. Both

simulated shapes resembles the target shape well. The deviations are respectively 4.25 and
1.95, and this improvement is also clear when comparing figure 15(a) and figure 15(b).
The 1-step is asymmetric, with its minimum displaced to the left compared to the target
minimum. This asymmetry is caused by the asymmetric pulling procedure. If instead the
pull was simulated to the left, the asymmetry would be at the other side. In the middle
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Figure 14: Deviation of the simulated shapes with respect to the target shape, as a function of the
number of steps.

of the left transition, the slope is much steeper than the slope of the target shape. In the
end this could be vital for the adiabaticity of the fiber, since this is exactly in the critical
area. For the 4-step, the asymmetry has been smoothed out, and might therefore be more
adiabatic. In both cases the final simulated shape is a bit wider than the target shape. This
extra width stems from our oven having an extension along the fiber axis, and since our
method to calculate s, does not take this into account, additional modification must be done
to avoid this.

(a) 1-step pull compared to the target shape. (b) 4-step pull compared to the target shape.

Figure 15: Simulated fiber shapes compared with the target shape. The 4-step pull is chosen to be
compared to the 1-step pull, as there is a significant reduction in deviation compared to the
target shape.

It is interesting that the deviation at some point becomes slightly larger again. When
comparing the shape of a 20-step pull to the target shape, the simulation becomes a little
too wide. An explanation could be that it is difficult for the algorithm to divide the pull into
this many steps. A plot of the 20-step pull can be found in the appendix.

4.5.1 Comparing to the limiting tapering angle

As in section 3, we will compare the simulated shapes to the limiting tapering angle. This is
plotted in figure 16. We see that both curves stay below the limiting angle curve. The steep
angle in left side of the 1-step pull distinguishes itself by being closer to the limiting curve.
Looking at the intermediate solutions for the 4-step pull, reveals that also this fiber was at
some point close to the limiting curve, as seen in figure 17.
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Even though both simulations come close to the limiting curve, they seem to stay below.
When testing these pulls experimentally, it will become evident whether the angle curves
stay far enough below the limiting curve. If this is the case, we should avoid excitations of
the higher order modes and get a reasonable transmission.

Figure 16: The angle curves corresponding to a 1-step and a 4-step pull.

Figure 17: Intermediate angle curves for a 4-step pull. This reveal that none of the intermediate
pulls, intersects with the limiting curve, even though two of them come close.

5 The experiment

Aiming for a higher transmission through the fibers, we have looked through modal theory
of fibers and thereby calculated a limit, by which we can avoid coupling into other modes.
This has led to a desired target shape of the fiber. Through an algorithm using differential
equations describing the fluid dynamics of the flow in a heated fiber, we have obtained a
simulation resembling the target shape. We now want to test whether we can produce this
simulated shape experimentally, and in the end obtain the higher transmission. First we will
outline the setup, and afterwards we will present our achievements.
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5.1 Experimental setup

The setup is schematically pictured in figure 18. The fiber is 125± 2 µm in diameter with a
5.5±0.5 µm core. A 852 nm laser is permanently coupled into one end of the fiber, while the
other end can be coupled into a photo detector, in order to measure the transmission. After
stripping off a protective plastic coat and cleaning that part of the fiber, it is placed in two
clamps, approximately 10 cm apart. On the outer side of these, magnetic clamps are holding
the unstripped fiber in two V-shaped grooves. The clamps holding the fiber, are sitting on
top of two mounts, each of which are standing on a motorized stage. These stages are placed
on top of each other, which means that the bottom stage translates the fiber, while the top
stage does the actual pulling.
An oven (electric ceramic micro heater) is connected to the system with a motorized rail,
and can be driven in between the clamps, to heat the fiber. The mounts and the oven are
aligned with respect to each other, so the pulling is approximately in one dimension. After
the pulling, the oven is driven out and a CCD camera can be placed instead, to image the
fiber shape. The entire setup is placed in a flow box, in order to minimize dust particles.
For a more detailed description of the setup see [Sørensen 2013].

(1)

(1)

(2) (2)

(3) (3)(4) (4)

(7)

(5)

(6)

(8) (9)

Figure 18: Schematic drawing of the setup. The stages (1) are stacked i.e. the bottom stage trans-
lates the fiber (7), while the top stage does the actual pulling. On the mounts (2) are
magnetic clamps on V-grooves (3) along with the new clamps (4), which hold the fiber. The
laser (8) is coupled into the fiber in one end, and a photo detector (9) is coupled to the other
end. The oven (5) and the camera (6) are indicated with dotted lines, as only one of them
can be in the setup at a time.

5.1.1 Our contribution to the experimental setup

While working with this project, there are mainly four points, where we have changed the
setup compared to the one existing.

1. New clamps: The V-shaped grooves holding the fiber with strong magnetic clamps,
are from the original setup. In these grooves the unstripped fiber is placed. The
positioning of the fiber is therefore sensitive to variations in the size of the protecting
coat, and could give rise to transverse tension. To improve the accuracy of holding the
fiber, we have applied two new clamps holding on the stripped part.

2. Oven temperature: After experiencing the fiber slipping under the clamps and mag-
nets, we found that the previously used power (100 W) applied to the oven, didn’t
provide the necessary temperature to heat the fiber anymore. We haven’t identified
the reason for this, but it could be that the oven is getting old. After a simple test with
a light weight in the end of a heated fiber, we have raised the power to P = 113 W.
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3. Reference detector: We have applied a reference detector, by splitting the laser
beam, before it is coupled into the fiber. This allows us to see any instabilities in the
laser.

4. Stages program: The program that controls the stages has been rewritten1, so it
can follow a given trajectory, requiring varying velocities during one pul, which are
provided by our algorithm as data tables.

5.1.2 Performing the experiment

Cleaning procedure
According to [Hoffman et al. 2014] the cleaning procedure is very important, for the result-
ing transmission. If a dust particle gets heated with the fiber, it can melt into the glass, and
cause the laser light to scatter away, or even break the fiber.
After stripping the fiber, the remaining plastic and other impurities are wiped away, and it
is checked for dust using the camera. Only when no dust particles are left on the fiber, it is
declared ready for pulling.
We have cleaned using tissues and technical grade ethanol as in [Sørensen 2013], and oc-
casionally this provided troubles. At some point we switched to technical grade acetone
instead, with similar results. We tried to improve our cleaning procedure by wiping with
acetone and tissues followed by spectroscopic grade ethanol and lens paper. This procedure
didn’t enhance the results, it actually seemed like it provided a lot more dust particles to
the fiber. With this observation we have returned to using acetone and tissues, and just
wipe several times until the fiber is clean. A last improvement was done using hairnet when
cleaning, this seemed like it had a significant effect, but as we have only tried this a few
times, it’s hard to draw a final conclusion on this. Tension and alignment
When placing the fiber in the clamps, we make sure to stretch the fiber, so it does not bend.
We ensure proper stretching by moving the top stage ∼ 0.09 mm back, while watching if the
fiber moves on the camera. If it does not move, it is stretched. We have experienced, that
when we drive the oven in and out, without pulling, the fiber gets deformed. This can be seen
on the fiber in figure 20, just before the tapering section to the left. An explanation could
be that the fiber is over tensed, and as it is heated it is relaxed. Therefore we release the
tension by one fifth of the stretching length. Since we still see the effect, other explanations
can be misalignment, which we also have tried to improve, or that the fiber is bending from
sitting on a spool. As long as the deformation doesn’t affect the transmission, this should
not be a problem.
After we have pulled a fiber, it is usually bending a bit. Before imaging the fiber, it is there-
fore stretched, to make it stay in focus along the whole fiber length. Pulling in multiple
steps
When we pull in multiple steps, we pull several individual pulls consecutively i.e. we upload
a new pulling trajectory to the stages between each pull. This happens while the oven is
still in. The trajectory is written such that the stages accelerate before entering the actual
trajectory producing the tapering section. Furthermore, the algorithm has introduced a shift
between each step, so this has to be taken into account too. This whole procedure, could
probably be optimized quite a lot, so the whole procedure happens in one take.

5.2 Experimental results

Based on the deviation plot in figure 14, we decided to experimentally pull a 1-step fiber
and a 4-step fiber. Since the laser used to measure the transmission made a mode-jump
during the tapering of the 1-step pull, we decided to make another 1-step pull with the laser

1by Jürgen Appel.
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properly stabilized. The two 1-step fibers make it possible to test if the shape of the fiber
is reproducible. A picture of the 4-step fiber and the first 1-step fiber are shown in figures
19 and 20. The pictures are composed2 of many individual CCD camera frames stitched
together. A picture of the second 1-step fiber can be seen in the appendix.

Figure 19: A picture of the 4-step fiber. Note the extreme difference in scale on the transverse and
longitudinal axis.

Figure 20: A picture of the first 1-step fiber. Note the extreme difference in scale on the transverse
and longitudinal axis.

5.2.1 The fiber shapes compared to the simulations

To see whether our tapered fibers are adiabatic, we want to compare them to their respective
simulated fiber shapes. In figure 21 the second 1-step fiber and the 4-step fiber are plotted
with their simulated fiber shapes. In both cases, the experimental shapes resemble the
simulated. We see that especially our 1-step pull matches well, though the depth differs
by 5.6 %. The experimental 4-step pull unfortunately deviates from the simulated shape in
precisely the critical region. In each single step errors can enter. Therefore the deviation in
the 4-step pull can be due to accumulation of such errors. This deviation can possibly be
reduced by optimizing the multiple-step procedure. The 4-step pull is also not perfect, but
a little better, as the deviation is 5.2 %.

5.2.2 Reproducibility of the fibers

To see whether we are capable of reproducing the shapes, the two 1-step pulls are compared
in figure 22. The two shapes are very similar except for the small deviation at the beginning
of the tapered section. This could be due to the problems we have had with the small
deformation in the left side of the fiber. The deformation of the fiber can also be seen in
figure 20 in the far left side. The deviation in the depth between the two pulls are only 1.0

2The pictures are generated by an imaging algorithm described in [Sørensen 2013].
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(a) The experimentally tapered 1-step fiber compared
with the simulated 1-step fiber.

(b) The experimentally tapered 4-step fiber compared
with the simulated 4-step fiber.

Figure 21: The shapes of the experimentally pulled fibers follow the shape of the simulated fiber well.

Figure 22: The two experimentally pulled 1-step fibers compared, in order to check reproducibility.

%, meaning that it seems like the experimental shapes are reproducible.

5.2.3 Transmission

The essential quality of our adiabatic shaped fibers are their transmittance. The transmis-
sion detected during the three experimental pulls is presented in figures23, 24 and 25. The
percentage transmissions are 93.2 ± 1.4%, 96.5 ± 1.5% and 97.0 ± 1.7% respectively. These
are calculated from the mean values at each end, delineated by the red lines in the figures.
The errors are obtained through error propagation using the standard deviations in the same
delineations. The transmission is normalized with respect to the mean value in the left de-
lineation. We see that the signals don’t get to stabilize in the end, as we never pull all the
way down to the nano section. This means that our transmission results are not to be taken
as final values, but is seems like we have past the critical part of the tapering with a high
transmission.
Using our pulling method we seem to achieve relatively high transmissions. Comparing to
the transmission for the symmetrical pull in figure 9, all the fast oscillations are avoided, and
it seem like we almost don’t couple to higher order modes. Although, in both of the 1-step
transmissions we see some slow oscillations. We cannot immediately address these as higher
order modes, and their origin is still to be found.
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Figure 23: Normalized transmission for the first 1-step fiber. The red vertical lines indicate the
60,000 points in each end used to calculate the transmission.

Figure 24: Normalized transmission for the second 1-step fiber. The red vertical lines indicate the
60,000 points in each end used to calculate the transmission.

1. step

3.6 mm

2. step

8.6 mm

3. step

11.3 mm

4. step

12.7 mm

Figure 25: Normalized transmission of 4-step fiber. The transmission during each step has been
recorded independently, and manually appended. The red vertical lines indicate the 130,000
points in each end used to calculate the transmission.

For the 4-step the transmission are recorded individually in each step. These steps are
appended and indicated with vertical dashed lines in figure 25. In addition to the slow oscil-
lations, the transmission of the first 1-step pull in figure 23 are constantly decreasing. The
reference signal is shown in figure 26, and as this signal do not decrease, this is probably
due an unstable incoupling to the fiber. The reference signal clearly jumps at some point,
which indicates a mode jump in the laser. Thus having a reference detector is necessary, as
the laser can be unstable. In this case the transmission is not reliable. After pulling the first
1-step fiber, we hoped to address the oscillations to this instability in the laser, but almost
identical oscillations showed up in the second pull.
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6 CONCLUSION AND OUTLOOK

Our theory only considers excitation to modes with the same azimuthal symmetry. Coupling
to modes with other azimuthal symmetry could happen, if the fiber becomes slightly asym-
metric during the pulling. The observed slow oscillations in the transmission could stem
from this.

Figure 26: Normalized reference signal transmission for the first 1-step fiber. Note the different
scale in the vertical axis, compared to the signal in the previous transmission figures.

6 Conclusion and outlook

We have improved the transmittance of our tapered fibers though shaping them adiabati-
cally. Our best achievement are 97.1 ± 1.7%. Using our algorithm, we are able to simulate
the changing ratio of velocities, needed to pull the adiabatic target shape. The shaping is
performed well by the asymmetric feeding and pulling procedure.
Based on our considerations, this approach could with time become a significant contribu-
tion, in the production of fibers for atomic traps. When comparing the adiabatic target shape
to the simulation, and the simulation to the experimentally produced shape, they resemble
well. This implies that the structure of the algorithm are pointing in the right direction,
but are still to be optimized. For example the calculation of the intermediate target shapes,
could be interesting to explore.
The algorithm is constructed to take any target shape as input. Therefore it might be pos-
sible to incorporate our algorithm in the production of nano fibers for other applications.
The slow oscillations observed in the transmission, implies that we still couple to higher or-
der modes. Apart from break in the azimuthal symmetry of the fiber, the oscillations could
somehow be connected to the discrepancy seen in section 2.2.2, between the minimum of the
limiting angle curve and the core-mode cutoff for the fundamental mode. This discrepancy
should be thoroughly investigated.

A great thanks to: Heidi Lundgaard Sørensen, Jörg Helge Müller, Stefan Christensen and
JB for their valuable time and support.
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Appendix: Fibers

Appendix figures included in the same order as they are mentioned in the main text:

Figure 27: 20-step pull along with the target shape
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Figure 28: A picture of the second 1-step fiber, made out of several pictures, taken with the CCD
camera, and merged together. Note the extreme difference in scale between the horizontal
and the vertical axis.
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