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Summary

In recent years significant progress has been made in the emerging research field of op-
tomechanics, promising to unlock the door towards exploration of micro- and nanome-
chanical objects in the quantum-regime. Advances in optomechanical coupling and, most
importantly, cooling of high-quality mechanical systems have not gone unnoticed, and
many exciting ideas on eploiting optomechanical cooling have been proposed. Among
these is a proposal by A.S. Sørensen, E.S. Polzik and collaborators, suggesting to extend
the "standard" optomechanical setup to electrical circuits. By coupling a high-quality
nanomechanical membrane to an LC-circuit, the electrical circuit can be effectively cooled.
This is the main idea presented in the paper by the above mentioned[1], and is the start-
ing point of this project.
In this bachelor’s thesis the main results of the paper are presented, and a full derivation
is carried out, both with and without the rotating-wave approximation (RWA). The oc-
cupation number of the LC-circuit is calculated using the Heisenberg-Langevin approach
to quantum damping, and the results are compared to those in the paper.
Furthermore, we review the basics of optomechanical cooling, and the quantum mechan-
ical description of damping is introduced.

Resumé

I løbet af de seneste år har der været store fremskridt inden for området optomekanik og
der er håb for at kunne være i stand til at undersøge, hvordan mikro- og nanomekaniske
objekter opfører sig kvantemekanisk. Fremskridt inden for optomekanisk køling er alt an-
det end blevet overset og der er blevet foreslået en række spændende eksperimenter, der
udnytter optomekanisk køling. Blandt disse er et forslag af bl.a. A.S. Sørensen og E.S.
Polzik[1], hvor en udvidelse af den velkendte optomekaniske opstilling bliver beskrevet.
Ved at koble en nanomekanisk membrane af høj Q-værdi til et LC-kredsløb kan man
opnå en effektiv køling af kredsløbet. Denne ide ligger til grund for denne afhandling.
I dette bachelorprojekt vil hovedresultaterne fra artiklen skrevet af A.S. Sørensen og E.S.
Polzik blive præsenteret, samt den fulde udledning for koblingen mellem den nanomekaniske
membran og LC-krødsløbet vil blive præsenteret. Disse resultater vil blive sammenlignet
med de approksimative fra artiklen.
Derudover vil der blive givet et generelt overblik over konceptet optomekanisk køling og
den kvantemekaniske beskrivelse af dæmpning vil blive præsenteret.
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1 Introduction

Since the early days of quantum mechanics, scientists have been intrigued by the differ-
ences between the classical and quantum world. Upon entering the world of quantum
mechanics, objects exhibit quite bizarre behavior, different from the everyday world. But
despite the fact that scientists have carried out countless experiments exhibiting quantum
behaviour of light and matter, one question remains unanswered: where does the clas-
sical world "end" and the quantum world "begin"? And can macroscopic objects behave
quantum mechanically? These and many other questions can potentially be answered
within a relatively new field called optomechanics.
Optomechanics is at the intersection of quantum optics and nanophysics, dealing with
the interaction of light and a mechanical oscillator (e.g. a mirror attached to a spring or
a cantilever). Due to a specific type of interaction, namely the radiation pressure force,
the center-of-mass motion of such an oscillator can be cooled.
The fact that electromagnetic radiation can exert forces on material objects can be traced
back to Maxwell, yet, there would have to go over a century before the pioneering work of
V.B. Braginsky and A. Manukin in the late 1960’s [2]. Their study of radiation pressure
effects on a mirror attached to a mechanical oscillator put the foundation for optome-
chanics as it is known today. The following is a brief overview of the basics of cavity
optomechanics.

Figure 1: Cavity with a movable end-mirror.

1.1 Cavity optomechanics

It is a well-known fact that a light beam of power P incident on a perfect reflector (e.g.
a high-quality mirror) will exert a force F = 2P/c on the object. Now, let us imagine
that our mirror is suspended on a spring and places as one of the end mirrors of a
cavity (i.e. a Fabry-Perot resonator), such that one of the mirrors is static and the other
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movable (see Figure 1). The light will be retroreflected multiple times1 before escaping
the cavity. Thus the light intensity inside of our cavity will be resonantly enhanced,
resulting in a greater radiation pressure force on the movable mirror. Ultimately we wish
to use the resonant enhancement to cool the motion of our oscillator, much like cooling
of atoms using radiation pressure. But in contrast to the optical trapping of individual
atoms, current research on cavity optomechanics is dealing with cooling of micro- or
nanomechanical oscillators consisting of approximately 1014 atoms!
We start by considering our cavity. For now let us think of the movable mirror as
static. Depending on the length of the resonator, light of certain frequencies will interfere
constructively or destructively. To be more specific, when the cavity length equals an
integer multiple of half of the wavelength, L = nλ/2, we have a standing wave inside of
the cavity. Using the relation between wavelength and frequency2, λ = c/ν, we can easily
find the "allowed" frequencies

ν =
c

2L
n (1)

One should note that the mode spacing, also known as the free spectral range (FSR), is
∆ν = c/2L.
But due to the fact that one of the mirrors in our cavity is not a perfect reflector, frequen-
cies in the vicinity of the "allowed" frequencies are present inside our cavity (see Figure
2). The full-width at half-maximum (FWHM) of each peak is related to the reflectivity
of the semi-transparant mirror and hence the life-time of photons inside the cavity [3,
p.225]. The higher reflectivity, the narrower peak.

0.5

1

0
Frequency

R
el

at
iv

e 
tr

an
sm

is
si

on

Figure 2: Relative intensity transmission for a Fabry-Perot resonator as a function of
frequency. The transmission spectra for three different reflectivities are illustrated. If an
incoming monochromatic light is on resonance (in accordance to eq. (1)), the transmitted
(i.e. output) light field will have the same intensity as the input.

1Assuming that the life-time of photons inside the cavity is comparable to or longer than the roundrip
time.

2Under the assumption that we have vacuum inside the cavity.
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The last detail in our simplified picture of optomechanical cooling is the laser, which
will be driving our cavity. We are now ready to consider the effect of an oscillating mir-
ror. Let us imagine that the laser is red-detuned3 with respect to the cavity and note
that an elongation of the cavity results in a decrease in the optical resonance frequency.
The movable mirror is originally in its equilibrium position, but as the laser is turned on,
the end-mirror starts to move. As it moves to the right (hence elongating the cavity),
the optical resonance frequency decreases, approaching the laser frequency. Similarly,
the intensity in the cavity increases and following eq. (1), so does the radiation pressure
force. But due to the finite decay time of the intercavity field, the radiation pressure force
is retarded4, meaning that the force upon the end-mirror will be at its maximum as the
mirror moves back towards the equilibrium position, hence extracting mechanical energy
from the oscillator and thereby cooling the motion of the oscillator. The intensity in the
cavity depends very sensitively on the position of the movable mirror. Thus a change
in the position affects the intercavity intensity, which in return affects the motion of the
oscillator - an effect also known as "dynamical back-action". We say that the oscillator is
coupled to the cavity (field).
Following the same line of thought, one could convince himself/herself that if the laser
was blue-detuned in relation to the optical resonance, we would have amplification in-
stead of cooling.

Despite its simplicity, the explanation above provides the basic idea to the optomechan-
ical cooling effect. We have seen that for a certain laser detuning one can actually cool
the motion of a mechanical oscillator5. And although it is not the objective of this thesis
carry out a detailed analysis of radiation pressure cooling of a mechanical oscillator, it is
important to know the basics about this.

1.2 The setup of this study

The experimental setup illustrated in Figure 1 has up to now our toy example. But now,
as we have understood the basic idea of cooling, we are ready to move on to the setup,
which will be the focus of our study throughout this thesis. To begin with, we replace
the moving mirror with static mirror and place a semi-transparent dielectric nanome-
chanical membrane inside our cavity. Although this configuration may seem significantly
different from the one previously examined, the physics is essentially the same. Finally,
we introduce two capacitor plates in this picture, one on each side of the membrane -
these will be part of an LC-circuit. One of the capacitor plates is in fact a set of wires,
which can be thought of as a "fork capacitor" (see figure below). In this configuration
the capacitance will be dependent on the membrane position6. The LC-circuit is thus
coupled to the mechanical oscillator.
Due to this coupling, the LC-circuit is being cooled alongside with the mechanical os-

3The laser is tuned to a frequency below the resonant frequency of the cavity.
4The photons are still in the cavity for a period of time, after the mirror has moved.
5Notice that optomechanical cooling does not reduce the bulk temperature, rather the effective tem-

perature of the oscillator.
6Based on simple symmetry considerations one could convince himself/herself that in the case of two

normal capacitor plates the capacitance would be independent on the position
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cillator. The reason why this setup is particularly interesting is due to the fact that
LC-circuits are used in a wide variety of settings, and cooling of such systems would
without any doubt be widely applicable.
This thesis aims to provide a quantum mechanical description of this coupling. We wish
to find out how the LC-circuit can be effectively cooled.

Figure 3: Cavity with a nanomechanical membrane, coupled to an LC-circuit.
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2 Fundamentals

In order to analyze the coupled system which we introduced in the previous section, we
need a technical approach to the question. The simple time delay description demon-
strated that we have a damped harmonic oscillator for a red-detuned laser, thus, our goal
is to develop a quantum mechanical description of dissipation.
Our starting point is the harmonic oscillator Hamiltonian

H =
p2

2m
+

1

2
mω2q2 (2)

and the equations of motion are

ṗ = −∂H

∂q
= −mω2q

q̇ =
∂H

∂p
=

p

m

Clasically, we can introduce damping into our system simply by adding a velocity depen-
dent term,

ṗ = −γp − mω2q (3)

where γ > 0.
The question is whether this simple approach can be transferred directly to quantum
mechanics. The Heisenberg equations of motion are exactly the same for the quantized
harmonic oscillator, so all that is left to do is to replace the generalized position and
momentum with the corresponding operators, q̂ and p̂. In contrast to classical mechanics,
the position and momentum operators do not commute, and we have the well-known
canonical commutation relation

[q̂, p̂] = i~ (4)

Now, let us consider the time evolution of the commutator, using the equations of motion

d

dt
[q̂, p̂] = ˙̂qp̂ + q̂ ˙̂p − ˙̂pq̂ − p̂ ˙̂q

=
p̂2

m
− q̂(γp̂ + mω2q̂) + (γp̂ + mω2q̂)q̂ − p̂2

m
= −γ [q̂, p̂]

By formal integration we arrive at the following result

[q̂(t), p̂(t)] = e−γt [q̂(0), p̂(0)] (5)

As we can see, the commutator decays in time, and, although the ad hoc approach
seemed reasonable, the description is inadequate. So the question is how we can introduce
dissipation while preserving the commutator relation.
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2.1 Brownian motion and classical Langevin equation

In order to understand why this approach is incomplete, we should consider the following
example. Let us imagine a pendulum submerged in a viscous fluid. We assume that the
massive object at the end of the rod has higher density than the fluid, thus the object
will oscillate around the equlibrium position. The oscillator is obviously damped and at
some point it will come to rest - at least, macroscopically. On the microscopic level, the
massive object will constantly be bombarded by the surrounding molecules and, despite
the fact that the contribution from the random momentum kicks is zero on average, the
object will never entirely come to rest. This example illustrates the basic idea behind
the so-called fluctuation-dissipation theorem. One could say that these two quantities,
fluctuation and dissipation, come hand in hand. Furthermore, this example illustrates
the concept of system-bath interaction, where a "system" with few degrees of freedom is
brought in contact with a "heat bath" with many degrees of freedom.
The random movement of the pendulum at "rest" is also known as Brownian motion

and was first observed by the botanist Robert Brown in the begining of 19th century.
Mathematically Brownian motion can be bescribed by the Langevin equation, which reads
[4, p.42]

mẍ = −V ′(x) − γẋ +
√

2γkTξ(t) (6)

where V (x) is a potential field and ξ(t) describes the fluctuating force. We seek to find
an analogous equation for quantum systems, but before doing so, let us once again have
a look at the concept of Brownian motion and how it relates to our work.
Once again we consider the simple optomechanical setup presented earlier. We think
of the cavity as our "system" and the world outside (the environment) as the "heat
bath"/reservoir - we say that the system is coupled to the reservoir. Since we have a
lossy cavity, electromagnetic radiation can "leak out" from it. In a similar fashion, elec-
tromagnetic radiation can randomly leak into our cavity and disturb our system, which is
basically equivalent to Brownian motion, where molecules randomly bump into a larger
object. Let us consider a different example. If we drive our cavity with a red-detuned
laser, the mechanical motion of the oscillator will be cooled. But although the motion
is effectively being cooled, the average number of photons being scattered of the mov-
able mirror fluctuates7. This resembles the random bombardement in the viscous fluid.
Following these simple examples, one would conclude that a quantum mechanical ana-
logue for the classical Langevin equation would provide one with appropriate quantum
description of our optomechanical system.

2.2 Quantum theory of beam splitters

We will now briefly recall the basics of the quantum mechanical description of beam
splitters. The purpose of this short intermezzo is to give the reader an alternative way to
think of the system/reservoir picture. Let us begin with the well known illustration of a
beam splitter (see Figure 4). The annihilation operators of the fields satisfy the bosonic

7The relative fluctuation in the number of photons is also known as shot noise.
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commutation relations
[

âi, â†
j

]

= δij

[âi, âj] =
[

â†
i , â†

j

]

= 0

Following a standard textbook example, we say that â0 is the vacuum field, while â1 is
the incoming signal (e.g. a coherent state). If we place a mirror at the end of the third
arm and regard the field operator â2 as loss, we can almost think of the setup as our
cavity. As we can see, the beam splitter picture provides us with all relevant elements:
fluctuations (noise input), input signal and loss.

Figure 4: Quantum mechanical depiction of a beam splitter.

2.3 Quantum Langevin equation

Our approach towards contructing a quantum analogue to the Langevin equation will for
now be purely phenomenological. Once again we consider the harmonic oscillator and,
traditionally, the non-Hermitian creation and annihilation operators are introduced,

â =
ωq̂ + ip̂√

2~ω
â† =

ωq̂† − ip̂†

√
2~ω

(7)

satisfying the commutator relation
[

â, â†
]

= 1. As a result, the Hamiltonian takes the
form,

Ĥ = ~ω
(

â†â +
1

2

)

(8)

and the Heisenberg equation of motion for the annihilation operator is

˙̂a(t) =
i

~

[

Ĥ, â
]

= −iωâ(t) (9)

Taking the fluctuation-dissipation theorem into account, we now add a damping and a
fluctuating term to the equation of motion

˙̂a(t) = −iωâ(t) − γâ(t) +
√

2γξ̂(t) (10)
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where γ is the damping rate and ξ(t) is the fluctuating term. We can think of the latter
as a noise input. The new equation of motion can be simplified by transforming to a
rotating reference frame

ˆ̃A(t) ≡ Â(t)eiωt (11)

(12)

where Â are the slowly varying operators (e.g. â and ξ̂). Thus the equation of motion in
the rotating frame is

˙̃̂a(t) = −γˆ̃a(t) +
√

2γ ˆ̃ξ(t) (13)

For convenience, we remove tildes from the new operators, yet keeping in mind that we
are in a rotating frame.
Before solving the equation of motion, we assume that the noise operators are delta-
correlated

[

ξ̂(t), ξ̂†(t′)
]

= Dδ(t − t′) (14)
〈

ξ̂†(t)ξ̂(t′)
〉

= Nδ(t − t′) (15)

where the constants D and N remain to be determined. Now let us consider whether
our assumption is reasonable. Eq. (14) corresponds to assuming that random forces at
different times have nothing to do with each other - they are uncorrelated. The delta-
correlation also assumes that the collision-time is very short.

We are now ready to solve the equation of motion by formal intergration

˙̂a(t)eγt = −γâ(t)eγt +
√

2γξ̂(t)eγt

d

dt

[

â(t)eγt
]

=
√

2γξ̂(t)eγt

â(t) = â(0)e−γt +
√

2γ
∫ t

0
ξ̂(t′)e−γ(t−t′)dt′ (16)

â†(t) = â†(0)e−γt +
√

2γ
∫ t

0
ξ̂†(t′′)e−γ(t−t′′)dt′′ (17)

First and foremost, we have to ensure that the commutation relation for the creation and
annihilation operators are satisfied at all times

[

â(t), â†(t)
]

=
[

â(0), â†(0)
]

e−2γt +
√

2γ
∫ t

0

[

â(0), ξ̂†(t′′)
]

e−γ(2t−t′′)dt′′

−
√

2γ
∫ t

0

[

â†(0), ξ̂(t′)
]

e−γ(2t−t′)dt′

+ 2γ
∫ t

0

∫ t

0

[

ξ̂(t′), ξ̂†(t′′)
]

e−γ(2t−t′−t′′)dt′dt′′

Assuming the commutation relations8

[

â(0), ξ̂†(t)
]

=
[

â†(0), ξ̂†(t)
]

= 0 (18)

8In the beam-splitter analogy, this corresponds to the commutator of two different input fields (e.g.
â0 and â1).
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we arrive at the following result

[

â(t), â†(t)
]

= e−2γt + 2γD
∫ t

0

∫ t

0
δ(t′ − t′′)e−γ(2t−t′−t′′)dt′dt′′

= e−2γt + 2γD
∫ t

0
e−2γ(t−t′)dt′

= e−2γt + D
(

1 − e−2γt
)

(19)

Thus the commutator of the annihilation operators are satisfied at all times for D = 1.
So far our phenomenological approach seems to satisfy our requirements.
In order to determine the constant N in eq. (14), we must consider the mean occupation
number

〈

â†(t)â(t)
〉

=
〈

â†(0)â(0)
〉

e−2γt

+ 2γ
∫ t

0

∫ t

0

〈

ξ̂†(t′′)ξ̂(t′)
〉

e−γ(2t−t′−t′′)dt′dt′′

=N0e
−2γt + N

(

1 − e−2γt
)

(20)

where N0 is the occupation number of our harmonic oscillator at the initial time.
This result is in fact very interesting and can be regarded as yet another manifestation of
the fluctiation-dissipation theorem. At time t = 0, the mean occupation number is N0, as
it should naturally be. But as time progresses, the contribution from N0 decreases along
with an increase in the contribution from N . If we let t → ∞, the system and the reser-
voir will be in thermal equilibrium. And since the population of the system in thermal
equilibrium equals the occupation number of the reservoir, the constant N is the occupa-
tion number of the reservoir at the initial time. This illustrates that due to the fact that
our system interacts with the reservoir, there is dissipation (the first term in (19)) and at
the same time excitations from the reservoir leak into our system - the "fluctuation" term.

As we can see, we have managed to construct an analogue to the classical Langevin
equation that is consistent with quantum mechanics using some rather simple assump-
tions. The downside of this approach is unfortunately that our model might not be as
transparent as we would like it to be, meaning that we might not be able to recognize the
limitations. Therefore, we will provide a very brief overview of the formal derivation of
quantum Langevin equation following the approach of C.W.Gardiner and M.J.Collett[5].
The foundation of the quantum damping theory developed by Gardiner and Collett are
the following assumptions

• the system/bath interactions are linear in the bath operators

• the rotating-wave approximation is applied to the interaction Hamiltonian

• the coupling of the system to bath is independent of frequency, and the bath spec-
trum is assumed flat

Nonlinear interactions can occur if the fluctuations are rather large. This can be avoided
by making sure that the cavity, membrane and the LC-circuit have a high-Q factor. Given
advances in optomechanics in recent years, it is safe to assume a high quality factor for
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the different components in our setup. Q-factors of the order 106 − 107[6] for the cavity
and membrane are not unusual, while for the numbers the LC-circuit are of the order
102. By assuming high-Q factors, hence weak-coupling to the reservoir, it is also safe
to apply the rotating-wave approximation (more on that later). Finally, we consider the
"flat spectrum" assumption. A flat spectrum corresponds to saying that all the different
frequencies are present in equal amounts, which is also known as white noise.
The reservoir is modeled as a large ensemble of independent harmonic oscillators, which
is rather reasonable in our case. Quantization of the electromagnetic field and elastic
waves can be shown to be exactly equivalent to such an ensemble of oscillators.
It is assumed that the modes are very close to each other and the spectrum is approx-
imated as a continuum. And finally, Gardiner and Collett introduce the first Markov

approximation, which assumes a frequency indpendent coupling constant. These approx-
imations significantly simplify the quantum Langevin equation, which ends up taking the
same form as eq. (10).
Conviced that our phenomenological approach has in fact produced a reasonable discrip-
tion of quantum damping, we are almost ready to analyse our system.

2.4 Fourier analysis

In our analysis, the equations of motion will be very similar to (12), namely first-order
ordinary differential equations. They will be solved using Fourier analysis.
In physics, we usually describe a sinusoidal wave travelling in the positive direction (in
this case positive x-direction) as follows

f(x, t) = A sin(kx − ωt)

where A is the amplitude, k is the wave vector and ω is the angular frequency. In
accordance with this convention, we define our Fourier transform as following9

F [f(t)] ≡ 1√
2π

∫ ∞

−∞
f(t)eiωtdt (21)

Consequently, the inverse Fourier transform is

F−1 [f(ω)] =
1√
2π

∫ ∞

−∞
f(ω)e−iωtdω

Finally, we recall one last important result from Fourier analysis, namely, the Fourier
transform representation of the δ-function

δ(t − s) =
1

2π

∫ ∞

−∞
e−iω(t−s)dω (22)

This expression can be shown to be true using the Fourier inversion theorem [7, p.442].

9The space-time transform is respectively f(x, t) = (2π)
−3/2 ∫∞

−∞

∫
∞

−∞

∫
∞

−∞
f(k, ω)ei(k·x−ωt)dkdω.

12



3 Analysis I: weak-coupling regime

We are finally ready to analyse the setup, presented at the beginning of this thesis (see
Figure 3). Following up on the discussion on system/reservoir interaction in the previous
section, we consider the following illustration, providing an overview of the total system
and reservoir

Figure 5: An illustration of the system-reservoir division.

The arrows indicate decay into a reservoir/noise input and couplings between the sub-
components of the total system. As indicated, we assume no interaction between the
reservoirs, which should be possible to realise experimentally.
Our analysis will only deal with the coupling of membrane to the LC-circuit and the
interaction of these components with the respective reservoirs (the coloured part of the
illustration). The full Hamiltonian in natural units (e.g. ~ = 1) is given by [1]

Ĥ = ωmâ†â + ω0b̂
†b̂ +

g

2

(

â + â†
) (

b̂ + b̂†
)

(23)

where â and b̂ are the annihilation operators for the membrane and the LC-circuit, re-
spectively. The coupling constant g is assumed to be real. Our analysis will only be
concerned with on-resonant case (e.g. ωm = ω0 = ω).
The equations of motion for the annihilation operators are

˙̂a = i
[

Ĥ, â
]

= −iωâ − i
g

2

(

b̂ + b̂†
)

˙̂
b = i

[

Ĥ, b̂
]

= −iωb̂ − i
g

2

(

â + â†
)
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3.1 The rotating-wave approximation

Similar to our approach in the previous section, we transform to a rotating frame by
introducing fast varying operators (see eq. (11)). We consider the equation of motion for
the membrane annihilation operator

˙̃̂a = −i
g

2

(

b̂eiωt + b̂†eiωt
)

= −i
g

2

(

ˆ̃b + ˆ̃b†e2iωt
)

where in the last line we have used that ˆ̃b† = b̂e−iωt (following eq. (11)). Assuming
weak-coupling regime (e.g. g � ω), the rapidly varying term can be disregarded, since
its contribution to the average is negligible. In terms of the Hamiltonian, this corresponds
to neglecting the cross terms (e.g. âb̂ and â†b̂†), meaning that we are only interested in
processes where one quantum of energy in the membrane is annihilated, while an energy
quantum is created in the LC-circuit, and vice versa.
Once again we remove tildes for convenience. Hence the equations of motion in the
rotating frame and rotating-wave approximation (along with damping and noise taken
into account) take the form

˙̂a = −γmâ +
√

2γmâin − i
g

2
b̂

˙̂
b = −γb̂ +

√
2γb̂in − i

g

2
â (24)

Here, γm is the intrinsic damping rate of the membrane, but since we are interested in
cooling the motion of the membrane by radiation pressure, γm is replaced by an effective
damping rate Γm

˙̂a = −Γmâ +
√

2γmâin − i
g

2
b̂ (25)

Eqs. (24) and (25) are the quantum Langenvin equations (also refered to as Heisenberg-

Langevin equations) that we will look at.

3.2 Simple limiting cases

In order to gain a physical understanding of the system involved, we begin with a deriva-
tion and discussion of the simple limits presented in [1]. The limits in question are the
strong- and weak-damping limits (e.g. g � Γm and g � Γm).
One can think of our system as two pendula connected with a spring. The spring con-
stant corresponds to the coupling constant g in our setup. Damping of the membrane and
the LC-circuit can be introduced into this simple picture if we imagine that the pendula
as submerged in two different viscous fluids (while the spring, coupling the pendula, is
unaffected by this). This analogy can be used to gain an understanding of the physics.

First, we consider the strong-damping limit where Γm � g, γ. In this limit the strongly
damped oscillator (e.g. the membrane) rapidly relaxes to a quasi-stationary state (on a
time scare Γ−1

m ) and, thereafter, follows the evolution of the second oscillator (e.g. the
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LC-circuit). This is essentially the idea behind a technique called adiabatic elimination

- "long-living systems slave short-living systems" [8]. In our case, the LC-circuit is the
"long-living system" (i.e. Γ−1

m � γ−1), meaning that we can adiabatically eliminate the
membrane degree of freedom. Mathematically this can be done by setting ˙̂a = 0 (e.g. the
variation of â on a time scale ∼ γ−1 is negligible)

0 = −Γmâ +
√

2γmâin − i
g

2
b̂ ⇔ â =

√
2γm

Γm

âin − i
g

2Γm

b̂

We insert the latter equation into eq. (23) to obtain

˙̂
b = −γb̂ +

√
2γb̂in − i

g

2

(√
2γm

Γm

âin − i
g

2Γm

b̂

)

= −(γ + Γ)b̂ +
√

2γb̂in − i
g

2Γm

√
2γmâin

where Γ ≡ g2/4Γm. By formal integration we obtain the following result

b̂(t) =
√

2γ
∫ t

−∞
b̂in(t′)e−(γ+Γ)(t−t′)dt′ − i

g

2Γm

√
2γm

∫ t

−∞
âin(t′)e−(γ+Γ)(t−t′)dt′

b̂†(t) =
√

2γ
∫ t

−∞
b̂†

in(t′′)e−(γ+Γ)(t−t′′)dt′′ + i
g

2Γm

√
2γm

∫ t

−∞
â†

in(t′′)e−(γ+Γ)(t−t′′)dt′′

and, using that,
〈

b̂†
in(t)âin(t′)

〉

=
〈

â†
in(t)b̂in(t′)

〉

= 0
〈

b̂†
in(t)b̂in(t′)

〉

= nbδ(t − t′)
〈

â†
in(t)âin(t′)

〉

= naδ(t − t′)

the mean occupation number of the LC-circuit is found

〈

b̂†b̂
〉

= 2γ
∫ t

−∞

∫ t

−∞

〈

b̂†
in(t′′)b̂in(t′)

〉

e−(γ+Γ)(2t−t′−t′′)dt′dt′′

+
g2

4Γ2
m

2γm

∫ t

−∞

∫ t

−∞

〈

â†
in(t′′)âin(t′)

〉

e−(γ+Γ)(2t−t′−t′′)dt′dt′′

= 2γnb

∫ t

−∞
e−2(γ+Γ)(t−t′)dt′ +

g2

4Γ2
m

2γmna

∫ t

−∞
e−2(γ+Γ)(t−t′)dt′

=
γ

γ + Γ
nb +

g2

4Γ2
m

γm

γ + Γ
na (26)

We recall that the Q-factor of the membrane is significantly larger than the one of the
LC-circuit (see section 2.3), hence γm � γ, and we disregard the last term for now.
Thus, the relative occupation number is approximately γ/(γ + Γ) and is minimised for
Γm as small as possible10. However, this calculation was done in the strong-damping limit
Γm � g and thus it is not valid for small values of Γm compared to g.

10Recall that Γ ≡ g2/4Γm.
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This brings us to the other simple limit, namely, the weak-damping limit (g � Γm).
In the pendula analogy, which we introduced in the begining of this section, this cor-
responds to having a spring with a very large spring constant. The two pendula move
"in sync", and, therefore we consider their collective motion. Quantum mechanically this
corresponds to the dressed state picture, where instead of considering â and b̂ seperately
we consider the evolution of their collective symmetric and anti-symmetric modes

˙̂a ± ˙̂
b = ∓i

g

2

(

â ± b̂
)

− Γm + γ

2

(

â ± b̂
)

− Γm − γ

2

(

â ∓ b̂
)

+
√

2γmâin ±
√

2γb̂in

We introduce the combined operators Ŝ± ≡ â ± b̂ and transform to a rotating frame with
respect to the dressed states

ˆ̃S± ≡ Ŝ±e±igt/2

The noise operators are redefined as

ˆ̃ain ≡ âine±igt/2

where the sign of the exponent depends on whether we are working with the symmetric-
or antisymmetric modes. The derivation for Ŝ+ is shown explicitely below

˙̃̂
S+ =

˙̂
S+eigt/2 + i

g

2
Ŝ+eigt/2 ⇔ ˙̂

S+ =
˙̃̂
S+e−igt/2 − i

g

2
Ŝ+

˙̃̂
S+e−igt/2 − i

g

2
Ŝ+ = −i

g

2
Ŝ+ − Γm + γ

2
Ŝ+ − Γm − γ

2
Ŝ− +

√
2γmâin +

√
2γb̂in

˙̃̂
S+ = −Γm + γ

2
ˆ̃S+ − Γm − γ

2
ˆ̃S−eigt +

√
2γm

ˆ̃ain +
√

2γˆ̃bin

≈ −Γm + γ

2
ˆ̃S+ +

√
2γm

ˆ̃ain +
√

2γˆ̃bin (27)

where we have used the rotating wave approximation in the last step. As we can see the

damping rate of the ˆ̃S+ mode is the average of the two damping rates Γm and γ. In a

similar fashion one can show that the equation of motion for the ˆ̃S− mode is

˙̃̂
S− = −Γm + γ

2
ˆ̃S− +

√
2γm

ˆ̃ain −
√

2γˆ̃bin (28)

We solve these equations of motion by formally integrating eqs. (26) and (27)

ˆ̃S± =
√

2γm

∫ t

−∞

ˆ̃ain(t′)e−(Γm+γ)(t−t′)/2dt′ ±
√

2γ
∫ t

−∞

ˆ̃bin(t′)e−(Γm+γ)(t−t′)/2dt′ (29)

Now, we wish to find the total occupation number of our system (e.g. membrane and
LC-circuit), which can be done in the following way

1

2

〈

ˆ̃S†
+

ˆ̃S+ + ˆ̃S†
−

ˆ̃S−

〉

=
〈

â†â + b̂†b̂
〉

= 2γm

∫ t

−∞

∫ t

−∞

〈

ˆ̃a†
in(t′′)ˆ̃ain(t′)

〉

e−(Γm+γ)(2t−t′−t′′)/2dt′dt′′

+ 2γ
∫ t

−∞

∫ t

−∞

〈

ˆ̃b†
in(t′′)ˆ̃bin(t′)

〉

e−(Γm+γ)(2t−t′−t′′)/2dt′dt′′

= 2γmna

∫ t

−∞
e−(Γm+γ)(t−t′)dt′ + 2γnb

∫ t

−∞
e−(Γm+γ)(t−t′)dt′

=
2γm

Γm + γ
na +

2γ

Γm + γ
nb
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Due to the fact that we are in the strong-coupling/weak-damping regime, the total occu-
pation number is distributed equally between the membrane and the LC-circuit. There-
fore, the occupation number of the LC is

γm

Γm + γ
na +

γ

Γm + γ
nb (30)

where the first term can once again be ignored, and, thus, the relative occupation number
is approximately γ/(Γm+γ). In order to achieve the lowest possible number of excitations,
Γm has to be as large as possible - while satisfying Γm � g, which draws the limit, within
which this calculation can be valid.
The illustration below combines our results from the strong- and weak-damping limits
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Figure 6: The relative occupation number of the LC-circuit
〈

b̂†b̂
〉

/nb for different values
of γ in the strong- and weak-damping limits.

One can clearly see from the expressions derived, that the minimum occupation number
is achieved for Γm = g/2. Furthermore, it is obviously desirable to have a small intrinsic
damping rate for the LC-circuit (e.g. a high-Q LC-circuit).
Now that we have understood the physics in the two simple limits, we are ready to find
the full solution for the Heisenberg-Langevin equations for our system. We put to find a
higher relative occupation number for Γm = g/2, but the question is how much higher.

3.3 Full derivation

So far we have been solving our equations of motion in the time-domain. However, solving
the equations in the frequency-domain (e.g. Fourier-space) is in fact slightly easier in our
case.
First, we write down our equations of motion in vector form





˙̂a

˙̂
b





︸ ︷︷ ︸

˙̄V

=

(

−Γm −ig
2

−ig
2

γ

)

︸ ︷︷ ︸

M̃




â

b̂





︸ ︷︷ ︸

V̄

+





√
2γmâin

√
2γb̂in





︸ ︷︷ ︸

F̄

(31)
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Following our definition of the Fourier transform in section 2.4 (see eq. (20)), it can be
easily shown (by integration by parts) that

F [f ′(t)] = −iωF [f(t)] (32)

We Fourier transform eq. (29)

−iωV̄ (ω) = M̃(ω)V̄ (ω) + F̄ (ω)
(

−M̃(ω) − iωI
)

︸ ︷︷ ︸

M

V̄ (ω) = F̄ (ω)

V̄ (ω) = M−1F̄ (ω)

where I is the identity matrix. Therefore, the first step to be taken is inverting the matrix
M, which can be done using standard inversion schemes 11

M−1 =
1

D(ω)

(

γ − iω −ig
2

−ig
2

Γm − iω

)

(33)

where D(ω) is the determinant of the matrix M

D(ω) = (Γm − iω)(γ − iω) +
g2

4
(34)

The annihilation operator (in frequency-domain) for the LC is therefore

b̂(ω) = − i

2

g

D(ω)

√
2γmâin(ω) +

Γm − iω

D(ω)

√
2γb̂in(ω)

Before proceeding, we find the correlation functions for the noise operators in Fourier-
space

â(ω′) =
1√
2π

∫ ∞

−∞
âin(t′)eiω′t′

dt′

â†(ω) =
1√
2π

∫ ∞

−∞
â†

in(t)e−iωtdt

〈

â†(ω)â(ω′)
〉

=
1

2π

∫ ∞

−∞

∫ ∞

−∞

〈

â†
in(t)âin(t′)

〉

e−iωt+iω′t′

dtdt′

=
1

2π
na

∫ ∞

−∞

∫ ∞

−∞
δ(t − t′)e−iωt+iω′t′

dtdt′

=
1

2π
na

∫ ∞

−∞
e−i(ω−ω′)tdt

= naδ(ω − ω′) (35)

where we have used eq. (21) in the last step. As we can see, the correlation functions for
the noise operators in frequency-domain are "identical" to those in the time-domain.
By inverse Fourier transformation, we obtain the following expression for b̂

b̂(t) = −i
g

2

√

2γm

2π

∫ ∞

−∞

1

D(ω)
âin(ω)e−iωtdω +

√

2γ

2π

∫ ∞

−∞

Γm − iω

D(ω)
b̂in(ω′)e−iωtdω

11http://www.cg.info.hiroshima-cu.ac.jp/∼miyazaki/knowledge/teche23.html
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Consequently, the Hermitian conjugate is

b̂†(t) = i
g

2

√

2γm

2π

∫ ∞

−∞

1

D∗(ω′)
â†

in(ω′)eiω′tdω′ +

√

2γ

2π

∫ ∞

−∞

Γm + iω′

D∗(ω′)
b̂†

in(ω′)eiω′tdω′

Thus, the mean occupation number is

〈

b̂†b̂
〉

=
g2

4

2γm

2π

∫ ∞

−∞

∫ ∞

−∞

1

D∗(ω′)D(ω)

〈

â†
in(ω′)âin(ω)

〉

ei(ω′−ω)tdω′dω

+
2γ

2π

∫ ∞

−∞

∫ ∞

−∞

(Γm + iω′)(Γm − iω)

D∗(ω′)D(ω)

〈

b̂†
in(ω′)b̂in(ω)

〉

ei(ω′−ω)tdω′dω

=
g2

4

2γm

2π
na

∫ ∞

−∞

1

D∗(ω)D(ω)
dω +

2γ

2π
nb

∫ ∞

−∞

Γ2
m + ω2

D∗(ω)D(ω)
dω

We evaluate these integrals through the method of contour integration (integration in
the complex plane). First, we find the poles (e.g. singularities of the integrands). This
corresponds to solving D(ω) = 0 for ω

ω = −i
Γm + γ

2
± 1

2

√

g2 − (Γm − γ)2 (36)

Similarly, if we solved for D∗(ω) = 0, we would find the exact same poles, only in the
upper half-plane.
The next step is to find the residues at the poles in the lower half-plane12. Since we are
working with simple poles, the residues for each of them can be found quite easily. Our
integrands have a general form of k(ω)/h(ω), thus, the residue at a given pole can be
found as follows [7, p.858]

R(ωj) =
k(ωj)

h′(ωj)
(37)

and the integrals are evaluated by summing the residues

∫ ∞

−∞

k(ω)

h(ω)
dω = 2πi

∑

j

R(ωj)

By doing so we arrive at the following expression for the occupation number13

〈

b̂†b̂
〉

=
γmg2

4Γ2
mγ + 4Γmγ2 + Γmg2 + γg2

na +
γ(4Γ2

m + 4Γmγ + g2)

4Γ2
mγ + 4Γmγ2 + Γmg2 + γg2

nb (38)

Although not as simple as the earlier expressions for the limiting cases, this expression
is manageable. Let us start by comparing this result with the approximate expressions
earlier considered (e.g. eqs. (25) and (29)). We assume approximately equal number of
excitations initially in the reservoirs (N̄ = na ≈ nb).
The figure below illustrates how the exact solution approaches the limiting case solutions

12In our case this doesn’t matter, since the poles are located symmetrically.
13Although this method of solving the integrals is fairly simple, the calculation of the residues is rather

tedious and has no special significance for our work. Therefore the residues are found using Maple.
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Figure 7: The exact relative occupation number of the LC-circuit
〈

b̂†b̂
〉

/N̄ compared

with the limiting cases. Here γ = 0.15 s−1 and γm = 10−3 s−1. See Appendix A for more
illustrations.

discussed in the previous section. Clearly, the minimum number of excitations in the
LC-circuit is higher for a given set of damping rates, γ and γm than earlier expected.
Furthermore, the optimal damping rate is slightly shifted with respect to g/2

Γ̄m = γm +
g

2

√

1 +
4γ2

m

g2
+

4γmγ

g2
+

γm

γ
(39)

However, in the limit g � γm, γ the optimal external damping rate is approximately
Γ̄m ≈ g/2. In the following, we assume this limit to be true and consider the minimum
occupation number. From eqs. (25) and (29), we find that the number of excitations for
an external damping rate g/2 is

〈

b̂†b̂
〉

N̄
=

2(γm + γ)

2γ + g
≈ 2γ

g
(40)

where we have once again used the fact that γ � γm. From the exact solution we find
that the minimum occupation number is

〈

b̂†b̂
〉

N̄
=

2(γmg + 2γg + 2γ2)

(2γ + g)2
≈ 4γ

g
(41)

As we can see there is approximately a factor of 2 difference between the minimum oc-
cupation number found in the simple limiting cases and the exact solution. This result
shows once again that in order to achieve a low number of excitations in the LC-circuit,
one must make sure to minimize the intrinsic damping rate γ and/or increase the coupling
constant g.
Finally, we evaluate the occupation number at Γm = g/2 in the approximate and exact
solutions, and consider the number of excitations as a function of the coupling constant
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Figure 8: The minimum relative occupation number as a function of the coupling constant
g. Here γ = γm = 0.2 s−1.

Clearly, the behaviour in the shaded region is somewhat strange. We find the inter-
section between the exact and approximate solutions to be at g = 2γm, corresponding
to Γm < γm, which perfectly makes sense. After all, Γm is the effective damping - the
combination of the intrinsic mechanical damping of the membrane, γm, and an external
damping rate. Thus the physics is downright wrong for Γm < γm.

We have now analysed our coupled system and compared the exact solution with the
approximate ones, with one of the main results being the lowest achievable number of
excitations (see eq. (40)). However, our calculations are only accurate when the fre-
quency of the membrane/LC-circuit is much larger than the coupling constant g. Thus
we wish to find out when the rotating-wave approximation breaks down, which will be
our motivation in the next section.
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4 Analysis II: strong-coupling regime

The objective of this section is to find out when the rotating-wave approximation breaks
down.
Our starting point is once again the Hamiltonian, which we presented in the begining
of the last section (see eq. (2)). Assuming the membrane being on-resonant with the
LC-circuit (ω̃ = ωm = ω0), the equations of motion for the creation and annihilation
operators (including damping and noise) are

˙̂a = −iω̃â − Γmâ +
√

2γmâin − i
g

2

(

b̂ + b̂†
)

˙̂a† = iω̃â† − Γmâ +
√

2γmâ†
in + i

g

2

(

b̂ + b̂†
)

˙̂
b = −iω̃b̂ − γb̂ +

√
2γb̂in − i

g

2

(

â + â†
)

˙̂
b† = iω̃b̂† − γb̂† +

√
2γb̂†

in + i
g

2

(

b̂ + b̂†
)

Once again we write the equations of motion in vector form












˙̂a

˙̂a†

˙̂
b

˙̂
b†












︸ ︷︷ ︸

˙̄V

=










−Γm − iω̃ 0 −ig
2

−ig
2

0 −Γm + iω̃ ig
2

ig
2

−ig
2

−ig
2

−γ − iω̃ 0

ig
2

ig
2

0 −γ + iω̃










︸ ︷︷ ︸

M̃











â

â†

b̂

b̂†











︸ ︷︷ ︸

V̄

+











√
2γmâin

√
2γmâ†

in√
2γb̂in

√
2γb̂†

in











︸ ︷︷ ︸

F̄

and transform to Fourier-space

−iωV̄ (ω) = M̃V̄ (ω) + F̄ (ω)

V̄ (ω) = M−1F̄ (ω)

where M = −M̃(ω) − iωI. Contrary the 2x2 matrix considered in the last section, the
entries of the inverse M−1 are rather large and space consuming. Therefore, we refer the
reader to Appendix B for the complete inverted matrix. Here, we will mainly refer to the
entries of M−1 as mi,j (e.g. i-th row and j-th column). The determinant of M is

D(ω) = (Γm + iω̃ − iω) (Γm − iω̃ − iω) (γ + iω̃ − iω) (γ − iω̃ − iω) − g2ω̃2 (42)

The creation and annihilation operators associated with the LC-circuit are

b̂(ω) =

√
2γmm3,1(ω)âin(ω) +

√
2γmm3,2(ω)â†

in(ω) +
√

2γm3,3(ω)b̂in(ω) +
√

2γm3,4(ω)b̂†
in(ω)

D(ω)

b̂†(ω′) =

√
2γmm4,1(ω′)âin(ω′) +

√
2γmm4,2(ω

′)â†
in(ω′) +

√
2γm4,3(ω

′)b̂in(ω′) +
√

2γm4,4(ω′)b̂†
in(ω′)

D(ω′)
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4.1 Looking at the general picture

Before doing inverse Fourier transformation, we have to consider a couple of details. Until
now, we have done inverse Fourier transformation to find the annihilation operators in
the time-domain. The creation operators were then simply the Hermitian conjugate of
the annihilation operators (e.g. see at the top of p. 19). However, we are now supposed to
invert a creation operator and thus have to be careful regarding the correlation functions.
We define the inverse Fourier transform of a creation operator as following

F−1
[

â†(ω)
]

≡ 1√
2π

∫ ∞

−∞
â†(ω)e−iωtdω (43)

Following this convention one can easily illustrate (similar to the calculations leading up
to eq. (34)) that the correlation function for the noise operators is now

〈

â†
in(ω)âin(ω′)

〉

= naδ(ω + ω′) (44)
〈

âin(ω)â†
in(ω′)

〉

= (na + 1)δ(ω + ω′) (45)

where the last correlation function has been found using the bosonic commutator relation.

Now, let us once again consider Figure 5, showing the various reservoirs. There is one
single detail in this illustration that we have yet to take into account: namely, the fact
that there is also a coupling between the membrane and the laser-reservoir. This means

that we have to consider an extra noise term
√

2(Γm − γm)ˆ̄ain, where Γm − γm is the
damping rate due to vacuum fluctuations. But does this mean that the calculations in
the previous section are wrong?
Luckily, the answer to this question is "no". In order to see why, let us consider the
following "effective" noise operator

√
2γmâin =

√
2γm

ˆ̃ain +
√

2(Γm − γm)ˆ̄ain (46)

We find the occupation number to be

2γm

〈

â†
in(t)âin(t′)

〉

= 2γm

〈

ˆ̃a†
in(t)ˆ̃ain(t′)

〉

+ 2(Γm − γm)
〈

ˆ̄a†
in(t)ˆ̄ain(t′)

〉

2γmnaδ(t − t′) = 2γmñaδ(t − t′) + 2(Γm − γm)n̄aδ(t − t′)

where n̄a is given by the Bose distribution

n̄a =
1

e~ω/kBT − 1

Since we are working in the optical frequencies (e.g. 1015Hz), we can approximate the
above expression as

n̄a ≈ e−~ω/kBT

Obviously, for very high frequencies14 n̄a ≈ 0 and thus our calculations in the previ-
ous section are still valid. However, now we also have to consider the correlation of

14For this reason, the laser is sometimes refered to as a reservoir with zero temperature.
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〈

â†
in(ω)âin(ω′)

〉

. Here, we can no longer neglect the vacuum contribution

〈

â†
in(ω)âin(ω′)

〉

= 2γm

〈

ˆ̃ain(t)ˆ̃a†
in(t′)

〉

+ 2(Γm − γm)
〈

ˆ̄ain(t)ˆ̄a†
in(t′)

〉

2γm(na + 1)δ(t − t′) = 2γm(ña + 1)δ(t − t′) + 2(Γm − γm)(n̄a + 1)δ(t − t′)

≈ 2γm(ña + 1)δ(t − t′) + 2(Γm − γm)δ(t − t′)

= 2γm

(

ña +
Γm

γm

)

δ(t − t′) (47)

Thus, the only change that we have to make is to replace na + 1 in eq. (44) with
na + Γm/γm.
Before we proceed with our calculations, there is one more detail to be considered. In
section 2, we listed some of the fundamental assumptions of the Heisenberg-Langevin ap-
proach to quantum damping theory. Among those, was the assumption that the reservoir
spectrum is flat. But the Planck distrubution, which we used in our argument above, is
certainly not flat. However, we know that the mechanical frequency of the membrane is
significantly lower than the laser frequency (ωm � ωL). Thus, for a given temperature T
the spectrum in the vicinity of the driving laser frequency (e.g. ωL ± ωm) is practically
flat.

4.2 Break-down of the rotating-wave approximation

We are now ready to complete our analysis. The inverse Fourier transformation of the
creation and annihilation operators are

b̂(t) =

√

2γm

2π

∫ ∞

−∞

m3,1(ω)âin(ω)

D(ω)
e−iωtdω +

√

2γm

2π

∫ ∞

−∞

m3,2(ω)â†
in(ω)

D(ω)
e−iωtdω

+

√

2γ

2π

∫ ∞

−∞

m3,3(ω)b̂in(ω)

D(ω)
e−iωtdω +

√

2γ

2π

∫ ∞

−∞

m3,4(ω)b̂†
in(ω)

D(ω)
e−iωtdω

b̂†(t) =

√

2γm

2π

∫ ∞

−∞

m4,1(ω
′)âin(ω′)

D(ω′)
e−iω′tdω′ +

√

2γm

2π

∫ ∞

−∞

m4,2(ω′)â†
in(ω′)

D(ω′)
e−iω′tdω′

+

√

2γ

2π

∫ ∞

−∞

m4,3(ω
′)b̂in(ω′)

D(ω′)
e−iω′tdω′ +

√

2γ

2π

∫ ∞

−∞

m4,4(ω′)b̂†
in(ω′)

D(ω′)
e−iω′tdω′

The mean occupation number for the LC-circuit is therefore

〈

b̂†b̂
〉

=
2γm

2π

∫ ∞

−∞

∫ ∞

−∞

m3,1(ω)m4,2(ω
′)

D(ω)D(ω′)

〈

â†
in(ω′)âin(ω)

〉

e−i(ω+ω′)tdωdω′

+
2γm

2π

∫ ∞

−∞

∫ ∞

−∞

m3,2(ω)m4,1(ω
′)

D(ω)D(ω′)

〈

âin(ω′)â†
in(ω)

〉

e−i(ω+ω′)tdωdω′

+
2γ

2π

∫ ∞

−∞

∫ ∞

−∞

m3,3(ω)m4,4(ω
′)

D(ω)D(ω′)

〈

b̂†
in(ω′)b̂in(ω)

〉

e−i(ω+ω′)tdωdω′

+
2γ

2π

∫ ∞

−∞

∫ ∞

−∞

m3,4(ω)m4,3(ω
′)

D(ω)D(ω′)

〈

b̂in(ω′)b̂†
in(ω)

〉

e−i(ω+ω′)tdωdω′
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=
2γm

2π

∫ ∞

−∞

m3,1(ω)m4,2(−ω)

D(ω)D(−ω)
nadω +

2γm

2π

∫ ∞

−∞

m3,2(ω)m4,1(−ω)

D(ω)D(−ω)
(na +

Γm

γm

)dω

+
2γ

2π

∫ ∞

−∞

m3,3(ω)m4,4(−ω)

D(ω)D(−ω)
nbdω +

2γ

2π

∫ ∞

−∞

m3,4(ω)m4,3(−ω)

D(ω)D(−ω)
(nb + 1)dω (48)

The integrals are evaluated exactly in the same manner as in section 3.3. We find the
following 4 poles for D(ω) (all the combinantions of +/−)

ω = −i
Γm + γ

2
± 1

2

√

4ω̃2 − (Γm − γ)2 ± 4ω̃
√

g2 − (Γm − γ)2 (49)

The remaining part of our analysis will be numeric, since the analytical expression for
the occupation number is huge. Due to the fact that the vacuum contribution is taken
into account in our calculations, some of the terms in the expression for the occupation
number are "independent" of the reservoir excitation numbers na and nb. Thus we con-
sider the population number for specific values of na and nb - in our case, na = nb = 106.
Furthermore, ω̃ = 10 s−1. In the following illustrations the solution without the rotating-
wave approximation is being compared to the exact solution from section 3.3 (see eq.
(37)). The latter is indicated with a green color

The first plot clearly shows a difference between the solution with and without the
rotating-wave approximation. In the corner we have zoomed in at the minimum point
and as we can see, the optimal damping rate is slightly higher than predicted by the exact
solution with the RWA.
The second illustration is quite interesting (see Figure 9), since it indicates that for
g/ω̃ ≈ 0.7 (and below) the exact solution from section 3.3 is a reasonable approximation
in the vicinity of the minimum. In fact, for g/ω̃ ≈ 0.7 the minimum occupation numbers
for the solution without RWA is approximately 10% higher (i.e. the relative percentage
difference) than the occupation number according to eq. (37).
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Figure 9: Occupation number of the LC-circuit. Here ω = 10 s−1, γm = 10−4 s−1,
γ = 0.1 s−1 and na = nb = 106.

Finally, we consider the limit g ≈ ω̃

Figure 10: Occupation number of the LC-circuit. Here ω = 10 s−1, γm = 10−4 s−1,
γ = 0.1 s−1 and na = nb = 106.

As we can see the exact solution without the rotating-wave approximation breaks down
for g > ω̃ (e.g. the solution suggests negative occupation number). A simple consid-
eration can in fact help us understand the reason why our solution is no longer valid
for g > ω̃. We recall that the time-evolution in the Schrödinger picture is a simple
exponential function[9, p.26]

e−iEt/~ = e−iωt

If we insert one of the poles from eq. (48) in the expression above, we get an exponential
decay term exp(−(Γm + γ)/2) and an oscillating term. However, for certain values of the
coupling constant g the poles can become positive complex numbers. This corresponds
to solving ω = 0 for ω̃

i
Γm + γ

2
=

1

2

√

4ω̃2 − (Γm − γ)2 − 4ω̃
√

g2 − (Γm − γ)2

ω̃ =
1

2

(√

g2 − (Γm − γ)2 +
√

g2 − (Γm0γ)2

)
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we set Γm = 0 and arrive at the following result

ω̃ =
√

g2 − γ2 ≈ g

This means that for g > ω̃ we have negative decay rates, which of course is unphysical.
Thus our solution is only valid for g < ω̃.
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5 Discussion and outlook

Although we have analysed the coupling between the membrane and the LC-circuit both
in the limiting cases as well as with and without the rotating-wave approximation, there
as still a number of possibilities for further analysis. First and foremost, an analytical
expression for the occupation number is desirable (for the calculation without RWA).
One of the most natural ways to extend our analysis would be taking the coupling between
the cavity and membrane into account. Mathematically this could be done by adding the
following two terms to our Hamiltonian in eq. (22)

Ĥcav = ωcav ĉ†ĉ +
f

2

(

â + â†
) (

ĉ + ĉ†
)

(50)

Similar to the approach in this thesis, the analysis of the cavity/membrane/LC-system
could be extended by omitting the rotating-wave approximation.
As we can see, the analysis can be extended in various ways. Each providing a more
detailed picture of our system.

6 Conclusion

The objective of this bachelor’s thesis has been to carry out a full derivation of the
LC occupation number using the Heisenberg-Langevin formalism. In the rotating-wave
approximation we showed that for g � γm, γ the optimal external damping rate Γm is
g/2, in accordance with the results presented in [1]. Furthermore, the minimum relative
occupation number was found to be 4γ/g. This result differs from the approximate
expression for the minimum occupation number by a factor of 2.
We analyzed the coupling between the mechanical oscillator and the LC-circuit without
the rotating-wave approximation. Despite the fact that we were unable to find a compact
analytical expression, we found that the derivation is only valid for g < ω (otherwise
negative decay rates are introduced). Furthermore, we found that for approximately
g/ω ≤ 0.7 the occupation number derived using the rotating-wave approximation provides
a reasonable description of the number of excitations in the LC-circuit.
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A Solutions with RWA

0 0.5 1 1.5 2
0

0.5

1

Γ
m

R
el

at
iv

e 
oc

cu
pa

tio
n 

nu
m

be
r

0 0.5 1 1.5 2
0

0.5

1

Γ
m

R
el

at
iv

e 
oc

cu
pa

tio
n 

nu
m

be
r

Figure 11: Left: γm = 10−4 s−1, γ = 0.3 s−1 and g = 1 s−1. Right: γm = 10−4 s−1,
γ = 0.5 s−1 and g = 1 s−1.
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Figure 12: Left: γm = 10−4 s−1, γ = 0.3 s−1 and g = 10 s−1. Right: γm = 10−4 s−1,
γ = 0.8 s−1 and g = 10 s−1.
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B Entries of the inverted 4x4 matrix

Here the entries of M−1 are listed

m1,1 = (Γm − iω̃ − iω) (γ + iω̃ − iω) (γ − iω̃ − iω) + i
g2

2
ω̃

m1,2 = i
g2

2
ω̃

m1,3 = i
g

2
(Γm − iω̃ − iω) (γ − iω̃ − iω)

m1,4 = i
g

2
(Γm − iω̃ − iω) (γ + iω̃ − iω)

m2,1 = −i
g2

2
ω̃

m2,2 = (Γm + iω̃ − iω) (γ + iω̃ − iω) (γ − iω̃ − iω) − i
g2

2
ω̃

m2,3 = −i
g

2
(Γm + iω̃ − iω) (γ − iω̃ − iω)

m2,4 = −i
g

2
(Γm + iω̃ − iω) (γ + iω̃ − iω)

m3,1 = i
g

2
(Γm − iω̃ − iω) (γ − iω̃ − iω)

m3,2 = i
g

2
(Γm + iω̃ − iω) (γ − iω̃ − iω)

m3,3 = (Γm + iω̃ − iω) (Γm − iω̃ − iω) (γ − iω̃ − iω) + i
g2

2
ω̃

m3,4 = i
g2

2
ω̃

m4,1 = −i
g

2
(Γm − iω̃ − iω) (γ + iω̃ − iω)

m4,2 = −i
g

2
(Γm + iω̃ − iω) (γ + iω̃ − iω)

m4,3 = −i
g2

2
ω̃

m4,4 = (Γm + iω̃ − iω) (Γm − iω̃ − iω) (γ + iω̃ − iω) − i
g2

2
ω̃
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C Solutions without RWA

Figure 13: γm = 10−4 s−1, γ = 0.1 s−1 and ω̃ = 10 s−1.

Figure 14: γm = 10−4 s−1, γ = 0.1 s−1 and ω̃ = 10 s−1.
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