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Abstract

This thesis focuses on the difficulties and approaches needed to measure qubit

decay rates both quickly and accurately—a fundamental metric in assessing

superconducting quantum processors. As one of the leading platforms for

scalable quantum computing, superconducting qubits experience decoherence

and relaxation phenomena that constrain their performance, especially prob-

lematic when trying to scale to size of the system. The primary contribution

of this thesis involves creating and deploying a new measurement protocol to

improve the efficiency of determining T1, the parameter that indicates qubit

relaxation time.

A key feature of this research is the integration of continuous, real-time qubit

state monitoring with refined statistical methods. This combined strategy

negotiates the balance between fast measurements and reliable data, accom-

plished by fine-tuning experimental timing and minimizing the variance of

measurement outcomes.

In addition, this work examines several well-established decay rate measure-

ment techniques, each tailored to different case study, such as fixed-duration

experiments with and without active reset. Through numerical simulations

and theoretical proofs, these methods are shown to significantly lower the

statistical uncertainties associated with T1 extraction, while at the same time

proviving the fastest experimental time. The results not only highlight gains in

qubit performance assessment but also deepen our understanding of the core

physical mechanisms driving qubit relaxation.
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1Introduction

Quantum computing is quickly becoming a growing domain in computational

science, promising breakthroughs in cryptography, materials discovery, and

solving intricate computing challenges. Within the wide range of technologies

under development, superconducting qubits have probably got a strong push

due to their potential for large-scale development and compatibility with al-

ready established manufacturing methods. These type of qubits, which are

based on principles of superconductivity and quantum mechanics, are at the

base of the fundamental components of quantum processors. However, their

performance is often limited by decoherence, an unavoidable phenomenon

where quantum information is partly lost through interactions with the sur-

rounding environment.

A fundamental part of decoherence is energy relaxation, measured by the

thermal relaxation time, T1. This parameter represents the average duration

for which a qubit remains in its excited state before falling to its ground state

In this sense T1 is a key for evaluating qubit quality and reliability, i.e. the

qualify of quantum information. However, achieving accurate measurements

of T1 is not easy, as it requires careful advanced equilibrium between preci-

sion and speed—both of which are essential for practical scaling in quantum

technologies.

1.1 Thesis Targets

This thesis focuses on developing novel strategies to enhance the efficiency

of T1 decay rate estimations. The motivation behind these strategies comes

from the related fluctuations of T1, which can change over time – and across

different frequencies. Such fluctuations are frequently attributed to two-

level system (TLS) defects, i.e. localized states in the qubit’s environment

that intermittently absorb and release energy. Understanding the impact of

these defects is key to building scalable quantum architectures, which in turn

1



Figure 1.1: Spatially and temporally resolved T1 fluctuations observed by Klimov et
al. in a flux tunable qubit [6]

underlines the importance of robust and swift T1 measurement techniques

[6].

The work presented here has its roots in the framework of circuit quantum

electrodynamics (cQED). By leveraging cQED capabilities of measurements,

this research introduces innovative approaches for T1 measurements, combin-

ing real-time qubit state monitoring with advanced statistical methods. Such

techniques aim to optimize the often competing requirements of measurement

speed and fidelity, surpassing the limitations of standard protocols.

The thesis also delves into the theoretical analysis of qubit dynamics under

continuous measurements, showing the relationship between quantum jumps

and T1 decay with various derivations. Through numerical simulations and

analytical models, scenarios that are not easy to implement experimentally

can be explored, offering a deeper view of the trade-offs of T1 estimation.

Overall, this thesis contributes to the broader objective of robust qubit char-

acterization, laying a path toward developing scalable quantum processors,

and scalable characterization proocesses. As the quantum computing field

progresses, rapid and precise T1 measurements will remain indispensable for

advancing device performance and size.

The following chapters outline the theoretical foundations of quantum jumps

and T1 dynamics, introduce the new measurement protocols proposed, and

verify their efficacy through derivations and simulations.

2 Chapter 1 Introduction



2Introduction to T1,
Measurements, and
Lindblad Dynamics

In this chapter, we introduce the basics for discussing relaxation time and its

dynamics, as well as other phenomena involving qubit systems, particularly

in the context of quantum jumps. To do so, it is important to recall the basic

definition of a qubit, how it is represented geometrically, and how noise and

the surrounding environment can lead to degradation of the qubit state, i.e.

quantum information over time. We then introduce the concept of vertical

relaxation, which is the core topic of this thesis, and also commonly referred to

as energy relaxation or T1 relaxation time. Then we’ll briefly discuss how these

processes can be modeled using the density matrices and the Lindbladian, to

determine the dynamics of our system.

2.1 Basics of Quantum Computing

2.1.1 Classical Bits vs. Qubits

Traditional (classic) computing is based on the concept of bits, which can take

the discrete values 0 or 1, building information upon that, in what is known

as binary system. In contrast, a quantum bit, i.e. the qubit, is a two-level

quantum system that can exist in any superposition of the logical states |0⟩
and |1⟩. Mathematically, the state of a qubit can be written as [13]

|ψ⟩ = α |0⟩ + β |1⟩ , where α, β ∈ C , |α|2 + |β|2 = 1. (2.1)

where the normalization condition |α|2 + |β|2 = 1 ensures that the total

probability of measuring the qubit in state |0⟩ or |1⟩ sums to unity, i.e. 100%

of the cases.

3



The fact that a qubit can be in a continuum of superposed states (not just |0⟩
or |1⟩) is what allows quantum computing to deliver significant computational

advantages compared to classical systems. However, this same feature also

makes qubits more susceptible to unwanted interactions with the environment,

leading to decoherence and relaxation processes [13].

2.1.2 Bloch Sphere Representation

A particularly useful way to visualize a single qubit we just introduced is via

what’s called the Bloch sphere. With this method, it is possible to represent a

pure qubit state |ψ⟩ as a point on the surface of a unitary sphere. In spherical

coordinates, which is an easier way to represent a point on a sphere, we can

write the previously introduced qubit in terms of [12]

|ψ(θ, ϕ)⟩ = cos
(
θ

2

)
|0⟩ + eiϕ sin

(
θ

2

)
|1⟩ , (2.2)

where θ is the polar angle measured from the north pole, which corresponds

to |0⟩, and ϕ is the azimuthal angle on the equatorial plane of the sphere. In

spherical coordinates, the boundaries 0 ≤ θ ≤ π and 0 ≤ ϕ < 2π also need to

be respected.

In general, every pure state can be visualized on the Bloch sphere as a point on

the surface. Mixed states which are states for which we do not have complete

information or equivalently that represent statistical ensembles, can still be

represented in this framework but correspond to points inside the Bloch sphere

rather than on its surface, i.e. bypassing the normalization condition [12].

2.2 Noise, Decoherence, and Relaxation
(T1)

2.2.1 Interactions with the Environment

In an ideal, perfectly isolated quantum system, a qubit prepared in a whatever

state |ψ(θ, ϕ)⟩ would remain in that state for an infinite time. However, real

4 Chapter 2 Introduction to T1, Measurements, and Lindblad Dynamics



(a) Bloch sphere representation in
spherical coordinates. Credits:
Wikipedia [12]

(b) Relaxation process visualized on the Bloch
sphere. Credits: Krantz et al. [7] (edited)

physical qubits, such as those implemented in our lab, are inevitably coupled

and affected by various environmental degrees of freedom [7]. These inter-

actions give rise to different type of errors [7]: Systematic errors, which are

often due to imperfect control system, imperfect calibration of operations, or

unwanted residual couplings, and Stochastic errors, such as thermal noise or

random fluctuations in the environment.

As we previously mentioned, these noise sources reduce the fidelity of quantum

operations and cause the qubit to lose its initial state information over time.

Two important timescales to characterize the qubit’s loss of information over

time are [7]:

1. Decoherence time (T2), related to the loss of phase information (transverse

relaxation) in the qubit state.

2. Relaxation time (T1), related to energy exchange with the environ-

ment, typically causing the qubit to decay from the excited state |1⟩
to the ground state |0⟩.

For the purposes of this thesis, we will focus only on relaxation (T1) and will

not address decoherence (T2) in detail, even though further studies including

it can help improve the quality of our novel methods.

2.2 Noise, Decoherence, and Relaxation (T1) 5



2.2.2 Vertical (Energy) Relaxation: T1

Energy relaxation, which is also known as vertical relaxation in Bloch sphere

terms due to its visualization, corresponds to transitions between the state

|0⟩ and |1⟩. On the Bloch sphere, a decay from |1⟩ to |0⟩ can be pictured as a

downward motion from the north pole, which corresponds to the excited state,

to the south pole, which corresponds to the ground state [12].

In more formal quantum mechanics terms, these processes can be described

using Lindblad jump operators [8]. We will talk about them more specifically

later on, but we briefly introduce them now to understand T1. Specifically, for

a single qubit interacting with a thermal bath at a finite temperature, we can

define the jump operators as

L↓ =
√

Γ↓ |0⟩ ⟨1| , L↑ =
√

Γ↑ |1⟩ ⟨0| , (2.3)

where Γ↓ is the downward decay rate from |1⟩ to |0⟩ and Γ↑ is the upward

excitation rate from |0⟩ to |1⟩ [8].

Thermal excitations can on the other side push the system from |0⟩ to |1⟩,
competing with the "natural" decay, so that the total energy relaxation rate can

be written as

Γ1 = Γ↓ + Γ↑, (2.4)

and the characteristic relaxation time can be written as its inverse

T1 = 1
Γ1
. (2.5)

This T1 time represents the average timescale on which the excited state

population decays due to both decay and thermal excitation effects. In practice,

improving Γ1 (reducing it), and thus T1 (increasing it), is an ongoing challenge

in device engineering and materials science. From the quantum information

and control perspective, we can measure and model these processes to design

error mitigation methods and optimize measurements, which we will introduce

now.

6 Chapter 2 Introduction to T1, Measurements, and Lindblad Dynamics



2.3 Two-level system Measurements

So far, we have implicitly considered pure states, where the state of the

system is perfectly known, i.e. a point on the Bloch sphere. In reality, due to

noises, partial measurements, or lack of complete information, quantum states

are often described more accurately by mixed states, i.e. points inside the

sphere. One way to handle these situations is via the density matrix (or density

operator), which we’ll introduce following manzano et al. [8]. A general

quantum state can be written as a combination of pure states, such as

ρ =
∑

i

pi |ψi⟩ ⟨ψi| , where
∑

i

pi = 1 and pi ≥ 0. (2.6)

here the newly introduced density matrix ρ must satisfy two conditions:

Tr(ρ) = 1 , i.e. normalization, and ρ ≥ 0 , i.e. positivity.

A complete discussion of quantum dynamics and Hilbert spaces is beyond

our immediate target, but it is important to clarify how measurements are

described and applied to the specific case of T1 measurements. I.e., whenever

we speak of knowing the state of the system, we assume that an experimental

procedure has been performed to measure that state. Therefore, we must

understand both how we can carry out measurements and how the act of mea-

surement itself affects the quantum state, and more in general our system.

2.3.1 Generic Measurements Process

Measurements in quantum mechanics are represented (and performed) by

what’s known as observables, which mathematically are Hermitian operators

acting on the system’s Hilbert space. A general observable M can be written in

its spectral form as

M =
∑

i

ai |ai⟩⟨ai| , (2.7)

where ai are the eigenvalues of the observable M , and |ai⟩ are the correspond-

ing normalized eigenvectors [8].

When the system is in a pure state |ψ⟩, the probability of obtaining a partic-

ular eigenvalue ai upon measurement is given by the square module of the

2.3 Two-level system Measurements 7



projection of the state on the eigenstate corresponding to the eigenvalue as

[8]

P (ai) =
∣∣∣⟨ai|ψ⟩

∣∣∣2. (2.8)

Immediately after the measurement that yields the result ai, the system col-

lapses -in the projective measurement sense- to the corresponding eigenstate

|ai⟩. In other words, the post-measurement state can be written as [8]

|ψpost⟩ = |ai⟩⟨ai|ψ⟩√
P (ai)

. (2.9)

Let’s now put this aside, because as said before, mixed states are more relevant

for our T1 case analysis. To consider also mixed states in our definition, it is

possible to generalize the previous statement, and rewrite the probability as

the trace of [8]

P (ai) = Tr{|ai⟩ ⟨ai| ρ} . (2.10)

This definition will be useful later on to define the probability of certain

outcomes in quantum jumps. Before applying it to a more complicated scenario,

we first try to use it in a simple system like the one suggested in the next

paragraph.

2.3.2 Two-Level System Case

We now focus on the two-level system that is relevant to qubit physics and

T1 measurements. Following the derivation in Manzano et al. [8], let us now

consider the measurement operator

H = E0 |0⟩ ⟨0| + E1 |1⟩ ⟨1| , (2.11)

where E0 and E1 are the eigenvalues corresponding to the basis states |0⟩ and

|1⟩, respectively. Assume the state to be measured is defined as

|ψ⟩ = α |0⟩ + β |1⟩ , with |α|2 + |β|2 = 1. (2.12)

8 Chapter 2 Introduction to T1, Measurements, and Lindblad Dynamics



In this system, the probability of measuring E0, i.e., finding the system in |0⟩ is

given by P (E0) = |α|2, while respectively, the probability of measuring E1,

i.e., finding the system in |1⟩ will be P (E1) = |β|2.

This simple two-level example shows how measurement probabilities in a

two-level system are directly determined by the amplitude coefficients of the

superposition state. For T1 measurements, one typically tracks the probability

of finding the qubit in the ground state |0⟩ (energy E0) as a function of time,

thereby extracting the characteristic decay time of the excited state population

[8]. We will talk further about T1 measurement protocols in the next chapter.

2.3.3 Operations Beyond Measurement

Until now, our discussion has mainly concerned the measurement of a quantum

state. However, to perform a wide range of manipulations (including novel

methods introduced later in this thesis), one must also apply operations other

than measurements. In a typical qubit implementation, these operations can

be visualized as rotations on the Bloch sphere. This is one of the reasons

why the density matrix proves so useful: any rotation on the sphere can be

expressed as a matrix, i.e. an operator, acting on the density matrix itself. We

will not delve into the details, but we need to differentiate between different

transformations, so that we know the conditions they imply.

A common basis for such transformations involves the Pauli matrices, which

allow one to construct any rotation or, in general, any unitary transformation.

We can generally distinguish between two classes of transformations [8]:

Unitary transformations , which preserve the probability amplitudes, i.e.,

|α|2 + |β|2 = 1 remain true, which indicates that no information is lost

to the environment. These transformations describe the evolution of an

isolated quantum system [8].

Non-unitary transformations on the other side, do not conserve the state

normalization in the same way, reflecting processes where information is

lost to the environment. Such transformations can lead to mixed states

and prevent the exact recovery of the original state. Dissipative effects,

2.3 Two-level system Measurements 9



including relaxation and decoherence, are modeled by this non-unitary

dynamics [8].

In the context of T1 measurements, understanding non-unitary transforma-

tions is crucial because they capture the key dissipation processes that cause

population decay or excitation in a two-level system. So let us now apply this

knowledge to an open quantum system, in order to understand its dynamics

when environment and measurements interfere with it.

2.4 Lindblad Dynamics

With the density matrix formalism we previously introduced, useful to handle

pure and mixed states, a strategy for measurement, and the notion of applying

transformations, we are now equipped to describe the evolution of an open

quantum system. Following Manzano et al. [8], an open quantum system

interacting with its environment is governed by the so-called Lindblad master
equation. This equation extends the closed-system Schrödinger equation by

including interaction terms that model energy exchange and decoherence

processes due to interaction with the local environment. In short, the master

equation evolves the density matrix ρ while accounting for dissipative effects.

The Master Equation reads [8]:

dρ

dt
= − i

ℏ
[H, ρ] +

∑
k

(
Lk ρL

†
k − 1

2

{
L†

kLk, ρ
})
. (2.13)

Here, the Hamiltonian term governs the unitary (closed-system) evolution,

as for in the Schrödinger equation, while the second sum term incorporates

all relevant dissipative effects through the so-called Lindblad jump operators
Lk. These operators include processes such as relaxation and decoherence by

describing the system’s coupling to external degrees of freedom [8].

From the standpoint of T1 measurements, the dissipative part of the Lindblad

equation is particularly important, as it is responsible for transitions between

|0⟩ and |1⟩. As we described earlier, jump operators model upward and

downward transitions, which together define the energy relaxation rate for

the qubit. In principle, it is also possible to introduce additional Lindblad

operators to model other phenomena such as thermalization or dephasing.

10 Chapter 2 Introduction to T1, Measurements, and Lindblad Dynamics



For our purposes, we will focus on jump processes corresponding to two-level

dissipation, since these alone suffice to model T1 relaxation in a qubit.

2.4.1 Vertical Relaxation in the Lindblad
Framework

Having introduced the necessary tools for describing open quantum systems,

in the specific case of vertical relaxation, we can now analyze it in the Lindblad

formalism. Recalling from earlier discussions that the overall relaxation rate

can be written as

Γ1 = Γ↓ + Γ↑,

where Γ↓ denotes the decay rate from |1⟩ to |0⟩, and Γ↑ denotes the corre-

sponding excitation rate from |0⟩ to |1⟩. Within this framework, we define the

Lindblad jump operators as:

L↓ =
√

Γ↓ |0⟩⟨1| , L↑ =
√

Γ↑ |1⟩⟨0| .

When these jump operators act on the density matrix ρ(t), the equation gov-

erning the system’s dynamics can be written as

ρ̇(t) = D[L↓] ρ(t) + D[L↑] ρ(t), (2.14)

where D[L] represents the Lindblad dissipator 1 [8]. We will not focus on the

detailed steps of solving these equations; instead, we note that for a two-level

system (i.e., a 2 × 2 density matrix), one can solve the corresponding set of

differential equations to find ρ(t).

As an illustrative example, the population of the ground state |0⟩, denoted by

ρ00(t), follows an exponential behavior [8]:

ρ00(t) = Γ↓

Γ1
+
[
ρ00(0) − Γ↓

Γ1

]
e− Γ1 t. (2.15)

1For an operator L, the dissipator is typically defined as

D[L]ρ = L ρ L† − 1
2
{

L†L, ρ
}

.

2.4 Lindblad Dynamics 11



The other matrix elements exhibit similar exponential dependencies, reflecting

the balance between relaxation and excitation processes. What is important

to remember here is that all the elements of the density matrix have an expo-

nential dependency. In general, we operate with low-temperature experiment

setups, where thermal excitations are strongly suppressed (Γ↑ ≈ 0), which

implies Γ1 ≈ Γ↓. Under such conditions, the qubit’s excited-state population

primarily decays toward |0⟩, yielding the well-known exponential decay form

central to T1 measurements [1].

12 Chapter 2 Introduction to T1, Measurements, and Lindblad Dynamics



3Quantum Jumps
Measurements in SC
Qubits

3.1 Continuous Measurements in
Quantum Jumps

Quantum jumps, which are transitions observed in quantum systems, have been

a fundamental concept in quantum mechanics since their first postulation. In

the context of superconducting qubits, these jumps are particularly significant

as they provide insights into quantum measurement processes and the intrinsic

dynamics of qubits relaxation, which is the focus of this work. following, we

try to explain the nature of quantum jumps, and the continuos maesurment

protocol we need to apply to monitor them in real-time. To do taht, we’ll

focus on key experiments by Vijay et al. [11] and elaborates on the derivation

from the Lindblad master equation to quantum jumps of Jordan and Siddiqi

[4]. We wil also make use of Jacobs et al. [2] to introduce the framework for

continuous measurements, and Jordan et al. [5] for in depth derivations.

3.1.1 Continuous Monitoring with cQED

The circuit quantum electrodynamics (cQED) architecture offers an elegant

solution for continuous monitoring. By detuning the frequency of the qubit

and cavity, it is possible to continuously probe the dynamics without destroying

the qubit state. The microwave photons resulting from qubit transitions are

not emitted into free space but are efficiently coupled into a one-dimensional

waveguide, which is connected to a superconducting parametric amplifier

[4].

13



3.1.2 Non-destructive Measurements

We just named "without destroying the qubit state", which is also known as

the concept of continuous or weak measurements. While the standard T1

experiment protocol involves a sequence of prepare-and-measure steps where

each measurement projects (and thereby destroys) the current state, our goal

now is to consider measurement schemes that extract information more gently,

so that we leave the qubit state partially intact. This weaker measurement

scheme will be a enabling key for the novel methods developed in the following

chapter.

Let us now suppose we wish to measure the qubit state without causing a

full projective collapse. Such non-destructive measurements require that the

coupling between the measurement apparatus and the qubit to be sufficiently

weak, so the qubit remains coherent, i.e. information is not completely lost. In

return, the measurement outcome provides only partial information about the

state [2].

We then need to introduce a parameter s that characterizes the strength of the

measurement, representing the information extraction rate in a given time

interval ∆t, as we repeat the measurement for a certain amount of time: if

s = 0 it implies that no information is acquired (no coupling), and the qubit

state remains completely untouched. If s = 1, it corresponds to a projective

measurement, yielding maximal information but fully collapsing the state.

Intermediate values 0 < s < 1 thus represent weak measurements that strike a

balance between preserving coherence and gaining information

3.1.3 Weak Gaussian Measurements

To start, let’s consider a continuous variable x that is being observed with

Gaussian resolution, having mean α and variance determined by s∆t. During

a short time interval ∆t, the relevant measurement operator can be written as

[2]

Ωg(α) =
(

4 s∆t
π

)1/4 ∫
dx exp

[
− 2 s∆t (x− α)2

]
|x⟩⟨x| , (3.1)

14 Chapter 3 Quantum Jumps Measurements in SC Qubits



where |x⟩ are eigenstates of the (continuous) observable x. The exponential

factor indicates a Gaussian weighting centered at x = α. This operator form

will be relevant in subsequent chapter when we describe a specific realization

of continuous measurement in qubit systems [2].

3.1.4 Transitioning to the Poisson Case

We know that jump statistics is not Gaussian, i.e. continuos but Poissonian,

i.e. discrete, as the event itself manifests as an improvised "jump". So we can

say that a Poissonian measurement protocol, can well capture zero, a single

or multiple events in it’s statistic. So in this case we can consider a discrete

variable n and suppose that in the interval ∆t, the average number of detection

is γ∆t, i.e. γ is the detection rate. In this case, it is possible to define the

measurement operator as

Ωp(n) =
√

(γ∆t)ne−γ∆t

n! |n⟩ ⟨n| (3.2)

where |n⟩ are the eigenstates of the discrete variable. Let’s notice that we

lost s in this transition. That is because in this case γ implicitly dictates

how "strong" the measurement is, as higher γ means "more jumps", i.e. more

opportunities for the system to collapse into the “jumped” state. The observable

acts on the state, driving it towards a new state. In this "jump", it is more

interesting talking about probabilities, as the state will stay the same or jump.

In Poissonian probability, if γ is the detection rate, then is a small interval of

time ∆t we can say that the probability of detecting no event in the t + ∆t
timeframe is approximately

p0 ≈ e−γ∆t (3.3)

that for small ∆t can be expanded as p0 = 1 − γ∆t+ O(∆t2) . Equivalently, if

in that timeframe one event has occurred, then the probability, in case of small

timeframes, can be written as pj ≈ γ∆t, excluding higher orders. These results

will be useful later on, when will apply them to Lindbladian dynamics.
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3.2 Vijay’s Protocol for Observing
Quantum Jumps

In 2011, Vijay et al.[11] developed an experiment with the purpose of ob-

serving these quantum jumps in a transmon qubit. This has been done by

continuously monitoring the emission of the qubit, and associating them to

quantum jumps.

As illustrated in Figure 3.1a [11], the process of detecting these quantum

jumps begins by driving the qubit with a brief resonant pulse, pushing it

into its excited state. Subsequently, a projective measurement of the qubit is

performed by sending the photons through a cavity. The microwave signal

leaving the cavity picks up a phase shift dependent on whether the qubit

is excited or not. This phase-sensitive signal is then captured, and a mixer

translates the high-frequency oscillations recorded into a constant voltage for

analysis.

Displayed in Figure 3.1b [11] are three representative voltage traces. Two of

these follow a π-pulse, which excites the qubit, while the third trace results

from a 2π-pulse, returning the system to the ground state. Under steady

conditions, a low voltage reading corresponds to the qubit’s ground state.

However, a π-pulse initially drives the voltage to a higher level, characteristic

of the excited state, before it swiftly settles back to the ground state value—a

clear indication of a quantum jump.

A steady, low-voltage output signifies that the qubit is in its ground state. When

π pulses are applied, the voltage quickly rises, reflecting the qubit’s transition

to the excited state, before dropping back to the ground-state level—an event

that indicates a quantum jump. As seen in Figure 3.2a, the duration of time the

qubit remains excited decays exponentially, mirroring the lifetime measured in

a standard T1 sequence [4].
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(a) (b)

(c) (d)

Figure 3.1: (a) The pulse sequence used to generate single shot measurement traces.
(b) Voltage output showing quantum jumps following a π (red and green)
and 2π (blue) pulse. (c) The pulse sequence used to readout. (d) A single
trace of the qubit jumping between the ground and excited state. [11]
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(b) Simulated data as a function of T1, de-
rived from the analysis conducted in
the following chapter.

Figure 3.2: Histograms of jump times from the excited state to the ground state
extracted from individual measurements.
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3.3 A Feedback Protocol for Quantum
Jumps

Recent advancements in quantum control protocols have allowed for not only

the observation of quantum jumps but also their manipulation. Minev et al.

[9] leveraged advanced quantum control to reveal the continuous nature of

quantum jumps.

The experiment involved two superconducting transmon qubits strongly cou-

pled to create a V system with a ground state |G⟩ and two excited states |B⟩
and |D⟩ [9]. The |B⟩ state is strongly coupled to the environment (bright

state), and the |D⟩ state is isolated (dark state). The transition to the |B⟩
state causes a significant shift in the cavity frequency, allowing for effective

detection of the |B⟩ state while leaving |D⟩ undisturbed. This configuration

enabled continuous monitoring of quantum jumps.

The continuous monitoring and control were facilitated by a complex feedback

loop, enabling the experimenters to suppress or enhance specific transitions.

The setup effectively utilized the Quantum Zeno Effect, where frequent mea-

surements inhibited the transition between states, effectively "freezing" the

system in its current state [4].

3.4 Quantum Jumps’ Measurements
Framework

To understand quantum jumps from a theoretical perspective, we start with

the previously introduced Lindblad master equation [8], which describes the

time evolution of the density matrix ρ of an open quantum system:

dρ

dt
= −i[H, ρ] + L[ρ], (3.4)

where H is the system Hamiltonian and L is the Lindbladian superoperator.

The Lindbladian can be written as [8]:
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L[ρ] =
∑

j

(
LjρL

†
j − 1

2{L†
jLj, ρ}

)
, (3.5)

where Lj are the Lindblad operators representing different decoherence chan-

nels. We can now transition to the formalism for quantum jumps.

In the previous section, the master equation was derived under the assumption

of both Gaussian and Poisson statistics, where respectively a continuous or

discrete variable is measured. However, jump statistics are not Gaussian but

Poissonian. As we said, Poisson statistics naturally describe quantum jumps,

since they give the probability for a certain number of events to occur at a rate

γ within a time interval dt [4].

Assume that dt ≪ γ−1, so that the observation timescale is much shorter than

the characteristic timescale of the events. Recalling that the density matrix

evolves according to

ρfinal = ΩρΩ†

Tr(ΩρΩ†) (3.6)

with Ω as the measurement operators, we see that there are two possible

outcomes for the system: a jump event or a no-jump evolution [4]. Then the

density matrix will evolve accordingly to some specific measurement operators

Ω0 (no jump) and Ωj (jump) as [5]

ρ
dt−→


Ω0 ρ Ω†

0

Tr
(

Ω0 ρ Ω†
0

) with probability p0 = Tr
(
Ω0 ρΩ†

0

)
,

Tr
(

Ωj ρ Ω†
j

)
Ωj ρ Ω†

j

with probability pj = Tr
(
Ωj ρΩ†

j

)
.

Assuming a Lindladian evolution, the state evolves, if no jump occurs (0

counts), primarily under the Hamiltonian H with a small non-unitary dissipa-

tion. A generic strategy to describe the Kraus operator (obervable) in this case,

is through a suitable ansatz as [4]:
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Ω0 = 1 − iHdt+ Adt , (3.7)

where A is some unknown Hermitian operator1. Otherwise, in the case of

jumps, we can write an observable that scales with time by recalling the

probability of a jump and defining the probability condition

pj = Tr
[
ΩjρΩ†

j

]
(3.8)

the Kraus operator for the jump can be written as [4]:

Ωj =
√
dtLj (3.9)

3.4.1 Ansatz Derivation

Even thpugh we defined the operators, we also need to find the mising part of

the ansatz, i.e. A. By imposing the unitary condition

Ω†
0Ω0 +

∑
j=1

Ω†
jΩj = I,

we can find the form of the unknown operator A as in Jordan et al [5]. To do

it, let’s recall the ansatz we provided just above in the previous paragraph:

Ω0 = I − iH dt + Adt, (3.10)

Ωj =
√
dt Lj, (3.11)

Substituting these forms into the unitary condition we just defined, we can

determine Ω†Ω for the two separate terms of the equation, discarding all the

higher order terms in dt as [5]

1Hermitian so to provide correct normalization and consistency with the Linblad form
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Ω†
0Ω0 =

(
I + iH dt+ Adt

)(
I − iH dt+ Adt

)
(3.12)

≈ I + iH dt − iH dt + 2Adt = I + 2Adt, (3.13)

Equivalently, for the jump operators Ωj:

∑
j

Ω†
jΩj =

∑
j

(√
dt Lj

)†(√
dt Lj

)
=
∑

j

dt L†
jLj = dt

∑
j

L†
jLj. (3.14)

Then the unitary condition becomes

(
I + 2Adt

)
+ dt

∑
j

L†
jLj = I, (3.15)

which implies (to first order in dt)

2Adt+ dt
∑

j

L†
jLj = 0 =⇒ A = −1

2
∑

j

L†
jLj. (3.16)

Then expanding Eq. 3.4 to first order in dt, it is possible to find the two distinct

classes of evolution [4], using the two kraus operators we just found.

3.4.2 Jump and No-Jump Evolutions

The no-jump (nj) evolution corresponds to the deterministic part of the Lind-

blad equation we provided above, given by [4]:

ρnj(t+ dt) = ρnj − i[H, ρ] − dt

2 {ρ,
∑

j

L†
jLj} + dt

∑
j

Tr
(
L†

jLjρ
)
ρ (3.17)

This part of the equation represents the smooth, continuous evolution of the

quantum state under the influence of the Hamiltonian H and the dephasing

effects introduced by the environment [4].
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If a jump occurs (j), the state of the system is projected by one of the Lindblad

operators Lj, and the density matrix is uopdated as [4]:

ρj =
LjρL

†
j

Tr(L†
jLjρ)

. (3.18)

The probability of a jump occurring in a short time interval dt is proportional

to dt, and the state evolution can be described by a stochastic Schrödinger

equation. Combining these results, we can describe the dynamics of quan-

tum jumps using a precise deterministic process, where the system evolves

deterministically between jumps and stochastically updates upon a jump [4].

3.4.3 Probability Derivation

As in the previous paragraph we derived the formulas for the measurement

operators Ω0 and Ωj, as well as the the evolutions dynamics in two cases,

we can then determine the probability with which each of these scenarios

occur. Above we defined the no-jump probability as p0 = Tr
(
Ω0 ρΩ†

0

)
in the

timeframe (t+ dt). Recalling that the result of the operation Ω†
0Ω0 in the limit

dt → 0 is

Ω†
0Ω0 = I − dt

∑
j

L†
jLj

(3.19)

and using the cycling property, we find that

p0 = Tr
[
ρΩ†

0Ω0

]
≈ Tr

[
ρ
(
I − dt

∑
j

L†
jLj

)]
= 1 − dt

∑
j

Tr
[
L†

jLj ρ
]
. (3.20)

We can then say that the probability of no-jump during time interval dt is

[4]:
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Pnj = 1 −
∑

j

Tr(L†
jLjρ)dt . (3.21)

Equivalently, recalling that we defined the jump measurment operator as

Ωj =
√
dt Lj, the probability of observing a jump then becomes

pj = Tr
[
Ωj ρΩ†

j

]
= Tr

[
dt Lj ρL

†
j

]
= dt Tr

[
Lj ρL

†
j

]
. (3.22)

and then the probability of a jump occurring is given by [4]:

Pj = Tr(L†
jLjρ)dt. (3.23)

Thus, the state of the system after time interval dt can be summarized as [4]:

ρ(t+ dt) =


LjρL†

j

Tr(L†
jLjρ)

with probability Pj,

ρ− dt
(
i[H, ρ] + 1

2
∑

j{L†
jLj, ρ}

)
with probability Pnj.

(3.24)

3.5 Inefficient Measurements and SME

Beyond measurement strength s, or measurement rate γ, there is often an

efficiency factor η that captures how much of the emitted signal is actually

detected. In many experimental setups, not all the available information

reaches the detector. This situation can be modeled by what’s known as the

stochastic master equation, or SME in short, which generalizes the standard

master equation previously introduced by including noise terms that represent

partial measurement outcomes. The stochastic master equation reads [2],

dρ = − i [H, ρ] dt + D[c] ρ dt + ηH[c] ρ dW, (3.25)

where H is the system Hamiltonian, c are the jump (or collapse) operators

relevant to the case we are trying to study, D[·] denotes the usual Lindblad
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dissipator we defined in the previous chapter, H[·] is a superoperator capturing

the measurement backaction on the qubit, dW is a what’s called the Wiener

increment, and η ∈ [0, 1] is the measurement efficiency. This last term is the

one we are going to analyze more in-depth in this section.

In this way, η interpolates between situations where all measurement records

are perfectly acquired (η = 1) and where only a fraction of the signal is

detected (η < 1).

This formalism for continuous, weak and inefficient measurements for de-

tecting quantum jumps will form the basis for the method proposed in later

chapter, wherein we try to use partial, non-destructive readout measurements

to track the qubit state and characterize energy relaxation in real-time. For

now, let’s just try to put this in action, to try to understand how it works in our

quantum jumps case.

3.5.1 Noisy Traces Integration

To calculate the jump times from the excited state to the ground state, which

we extract from individual measurements, we must first process the so-called

raw traces. These traces, which represent the voltage output showing quantum

jumps, are often dominated by noise, making the signal difficult to distinguish

at first glance (as illustrated in Figure 3.1). Our simulation of this scenario,

previously shown in Figure 3.2b, highlights the importance of accurately

determining these jump times.

To simulate the raw traces, we solve the stochastic master equation using

QuTiP[3] for a two-level quantum system. This approach incorporates two

types of collapse operators: Ci and Sn. The first set, Ci, represents environmen-

tal dissipation, while the second set, Sn, corresponds to monitoring operators.

For our two-level system, the relevant collapse operators are c1 =
√

Γ1σ− and

c2 =
√
κa, where σ− is the lowering operator that transitions the state from |1⟩

to |0⟩, and a (or σ+) is the raising operator that transitions the state from |0⟩
to |1⟩.

Our monitoring operator, s1 = √
ησz, projects our measurement onto the |0⟩

and |1⟩ states with an efficiency η. By simulating this system, we generate a
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noisy trace, which corresponds to the simulated measured signal (Figure 3.3).

The significant level of noise in the trace is immediately apparent, suggesting

that the method and length of integration play a crucial role in generating a

clean trace from which accurate jump times can be extracted.

While the choice of thresholding method also influences the results, this

discussion will focus on the integration process. To determine the optimal

integration window, we perform multiple integrations on the same measured

signal, generating different binary traces for each integration window. From

these traces, we extract the T1 times by analyzing individual decay events and

plotting the results (Figure 3.4, left plot). This analysis allows us to identify

the best integration window for processing noisy traces.

Furthermore, we investigate how varying the measurement efficiency η affects

the signal. The efficiency parameter η acts as a measure of the signal’s clarity;

increasing η results in a cleaner trace before integration. Consequently, a

cleaner initial trace reduces the impact of the integration window on the final

clean trace, which we use to determine T1 values. This effect is clearly visible

in Figure 3.4, right plot, where higher efficiencies correspond to a broader

optimal integration window.

3.6 Feedback Control Protocols

Quantum control protocols play a crucial role in manipulating quantum jumps.

Advanced techniques allow for the precise control of qubit states, enabling

the suppression or enhancement of quantum jumps. These protocols are

essential for quantum error correction and the development of robust quantum

computing systems.

Feedback control involves real-time adjustments to the system based on mea-

surement outcomes. In the context of quantum jumps, feedback control can

be used to suppress unwanted transitions or to stabilize desired states. This

approach is crucial for maintaining the coherence of qubits in a quantum

processor.
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Figure 3.3: From top to bottom: The expectation value of the stochastic master equa-
tion; the simulated noisy trace representing the voltage output showing
quantum jumps; the clean signal obtain by integration of the noisy trace;
the binary trace, obtained as mean value threshold of the clean signal.
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Figure 3.4: (Left) Linear plot showing extracted T1 times as a function of different
integration windows for different measurement efficiency η. (Right)
Logarithmic scale plot illustrating the impact of varying measurement
efficiencies η on the optimal integration window. The optimal integration
window is identified where the T1 values stabilize. Higher efficiencies
result in a wider range of integration windows that yield stable T1 values.
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4
Enhancing Qubit Decay
Rate Estimation with Fast
Measurements

The decay of the superposition of quantum states poses a significant limitation

to the execution of complex quantum algorithms. This phenomenon, known as

quantum decoherence, is typically characterized by measuring two key parame-

ters: T1 (thermal relaxation time) and T2 (dephasing time). A major challenge

in this field is the stabilization of these energy-relaxation times, which can

fluctuate unpredictably over time and frequency. Klimov et al. (2018) [6]

utilized qubits as spectral and temporal probes of individual two-level-system

(TLS) defects, providing direct evidence that T1 decays are responsible for the

most significant fluctuations.

Numerous studies, including the ones mentioned in the previous chapter, have

demonstrated that the largest fluctuations can be attributed to TLS defects and

time-dependent variations in their transition frequencies—a phenomenon re-

ferred to as spectral diffusion. However, the microscopic nature of TLS defects

remains poorly understood. These fluctuations are particularly noteworthy,

as T1 has been shown to vary by up to an order of magnitude, with abrupt

changes occurring over 15-minute timescales and across 5 MHz frequencies

[6]. Consequently, achieving precise T1 measurements with minimal uncer-

tainty could provide valuable insights into the underlying phenomena driving

qubit relaxation. In this chapter we delve into the mathematical derivation

and the numerical simulation of the fastest T1 measurements, achieving the

highest precision (in terms of standard deviation) within the shortest time.
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Figure 4.1: The top plot shows a simulated single clean qubit trace as a function
of time. The following plots show a set of simulated clean qubit traces
(trajectories), averaged 5, 15, and 904 times. The bottom plot shows how
the averaging of many trajectories, lead to the exponential decay.

4.1 T1 : Populations and Probabilities

Thermal relaxation time, T1, is defined as the time required for a qubit to

transition from the excited state |1⟩ to the ground state |0⟩. This process

can be described by the density matrix ρ = α|ψ⟩⟨ψ| + β|g⟩⟨g|, where α is the

probability of the qubit being in state |ψ⟩ and β is the probability of the qubit

being in the ground state |g⟩. Over time, β approaches 1. Experimentally, T1 is

defined as the time at which the population of the excited state decays to 1/e
of its initial value, following the relation P1(t) = P1(0)e−t/T1.
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Figure 4.2: Simulated data from an experiment determining a T1 decay time (a), and
the pulse sequence use to do a T1 experiment (b).

4.2 Standard T1 Measurement Protocol

Experimentally, the value of T1 is determined through the following sequence

of operations:

1. Prepare the qubit in the excited state by applying a π-pulse.

2. Wait for a specified time t.

3. Measure the state of the qubit (0 or 1).

4. Allow the qubit to thermally reset.

5. Repeat the process for different values of t and average the results at

each t.

6. Determine T1 by fitting an exponential decay curve to the data.

This is similar to flipping a coin: while each individual flip results in either

heads or tails, the likelihood of getting heads or tails can be determined by

flipping the coin multiple times and calculating the average outcome over all

those flips.

4.2 Standard T1 Measurement Protocol 29



It is evident that T1 measurements are strongly dependent on time, both in

terms of the duration required to complete the measurement and the time

needed for the qubit to reset to its original state. Different methods of measur-

ing T1 do not affect its intrinsic value, which is determined by the fabrication

and overall experimental setup of the qubit. However, this study aims to

emphasize the precision of these measurements, specifically the uncertainty σ

with which these measurements are conducted. As discussed, improving the

precision of T1 measurements could provide deeper insights into the physics

driving the process and offer a novel method for benchmarking quantum

processors. At the same time, it will also provide the fastest measurment of

T1 as with the sequence outlined above, allowing us to better track how T1

evolves over time.

4.3 Tracking the Qubit State in Real-Time

Assuming continuous monitoring and control as described in Chapter 3, we

can observe discrete transitions of a qubit over time, known as quantum jumps.

This process, referred to as real-time tracking of the qubit, allows us to know

the qubit’s state at every point in time. Consider that the signal is an ideal step

function, with every trace of noise meticulously eliminated. Additionally, let us

assume a perfect and instant feedback system, enabling immediate control and

knowledge of the state, and the ability to perform operations instantaneously

based on the measurement outcomes. Under these assumptions, we have a

system where the qubit can be ’continuously measured,’ resulting in a perfect,

clean trace with no noise, where transitions between |0⟩ and |1⟩ are clearly

distinguishable. From such a trace (Figure 4.3, top), we can measure T1

by observing the time the qubit remains in state |1⟩ before decaying to |0⟩.
Although this method resembles the standard approach for measuring T1,

it represents a completely different experimental process. To push to the

theoretical limits, we assume that every time the qubit state drops to the

ground state, we can instantly reset it to its excited state with another π pulse,

with no delay (Figure 4.3, bottom). This approach increases the number of

T1 measurements we can obtain from a trace of the same length, as we are

continuously collecting information about the system without waiting. While

such a system is idealized, it allows us to explore the theoretical limits of our

measurements.
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Figure 4.3: Real-time tracking of a qubit state showing discrete transitions, also
known as quantum jumps. The top trace represents an ideal clean trace
with no noise, allowing clear differentiation between states |0⟩ and |1⟩
(top). The qubit’s lifetime in state |1⟩ before decaying to |0⟩ can be
measured to determine T1. The bottom trace illustrates an idealized
system where the qubit is instantly reset to its excited state each time it
drops to the ground state, increasing the number of T1 measurements
within the same trace length, i.e. observing time.

4.4 Exponential Distribution’s MLE
Derivation

In this section, we derive the maximum likelihood estimator of the parameter

of an exponential distribution. We do this in order to determine how the

uncertainty on the estimated parameter (T1) scales accordingly to the number

of of samples taken. We take for granted the maximum likelihood estimation

(MLE) theory needed to understand the proofs.

4.4.1 Model Statement

Let X1, X2, . . . , Xn be random samples from an exponential distribution with

parameter γ > 0. Experimentally these samples would correspond to the

results of the T1 sequence previously illustrated. Here, instead of fitting the
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data, we estimate the parameters of the assumed probability distribution, given

a sample. The probability density function (PDF) of Xi is given by [10]:

f(x; γ) =

γe
−γx x ≥ 0,

0 x < 0.

The likelihood function L(γ) for the sample is:

L(γ) =
n∏

i=1
γe−γxi = γne−γ

∑n

i=1 xi .

The log-likelihood function ℓ(γ) is:

ℓ(γ) = lnL(γ) = n ln γ − γ
n∑

i=1
xi.

To find the maximum likelihood estimator (MLE) of γ, we take the derivative

of ℓ(γ) with respect to γ and set it to zero:

dℓ(γ)
dt

= n

γ
−

n∑
i=1

xi = 0.

Solving for γ, we obtain:

γ̂ = n∑n
i=1 xi

. (4.1)

4.4.2 Asymptotic Variance and Standard Deviation

The asymptotic variance of the MLE γ̂ is given by the inverse of the Fisher

information [10]:

Var(γ̂) = γ2

n
. (4.2)

which gives a standard deviation of:

Std(γ̂) = γ√
n

(4.3)

This demonstrates how the standard deviation of T1 measurements, repre-

sented here by its reciprocal γ, scales with the number of samples n. However,
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Figure 4.4: Comparison of numerically simulated T1 measurements with theoretical
predictions. The left panel shows the T1 values obtained from the first
decay of multiple trajectories, ensuring that the number of trajectories
matches the number of samples. The right panel illustrates the uncer-
tainty in T1 measurements for increasing number of samples, comparing
the numerical results to the analytical solution, demonstrating the align-
ment between our theory and experimental data.

describing it as a function of n is not particularly effective for our purposes.

Since each measurement is taken at a specific time t, the total measurement

time is more relevant than the number of samples. Later in this chapter we

will reintroduce the standard deviation of T1 as a function of time.

4.4.3 Numerical Verification

However, we can compare it to some numerically simulated data to demon-

strate that our theory aligns with the experiment. For simplicity, instead of

generating an actively resetting trace, we generate multiple trajectories and

consider one sample per trajectory, specifically the first decay as a T1 mea-

surement. This approach ensures that the number of trajectories matches the

number of samples. We then measure T1 (Figure 4.4, left) and its uncertainty

(Figure 4.4, right) for different number of sample and compare these results

to the analytical solution.

4.5 Single-Parameter Optimization Solver

In this section, we will explore another mathematical derivation aimed at

determining how the precision of our decay rate measurements, specifically

the standard deviation, scales with the number of measurements performed
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during an experiment, with a different approach This analysis focuses on the

"1-point shot" method, which involves repeated measurements at the same

sampling time t. These repeated measurements are averaged to produce

a single data point, which is then used to estimate the parameter γ of the

exponential distribution:

f(x) = exp[−γx] (4.4)

To do this, I want to estimate γ provided an estimate of f at some point x. In

particular, I’m interested in determining which x will give the small variance

on my estimate of γ. In this equation x corresponds to the sampling time t we

discussed above, which is the time at which our points are sampled. Now let

the point be (y0, x0). My estimate of γ is found by inverting f(x) as:

γ = − log(y0)
x0

(4.5)

The uncertainty on γ is then determined by differentiating Eq. 4.5 as:

∂γ =
∣∣∣∣∣ ddy0

(
− log(y0)

x0

)
∂y0

∣∣∣∣∣ (4.6)

Calculating the derivative, we find:

∂γ = 1
y0x0

∂y0 (4.7)

Assuming we are measuring a qubit where N is the number of shots, the

uncertainty of y in (x0, y0) due to binomial statistics is given by:

⟨∂y0⟩ =
√
y0 − y2

0
N

(4.8)

We observe that the uncertainty of the sampled point decreases towards zero

as y0 approaches 0 and 1. This occurs respectively when x0 approaches inf and
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0, which are the limiting cases where we would always measure the qubit in

state |0⟩ or |1⟩. Thus, the uncertainty in γ becomes:

⟨∂γ⟩ =

√
y0 − y2

0

y0x0
√
N

= 1
x0

√
N

√
y−1

0 − 1 (4.9)

By inserting y0 = f(x0), we get:

⟨∂γ⟩ = 1
x0

√
N

√
exp[γx0] − 1 (4.10)

This expression describes the evolution of the uncertainty on the exponential

parameter as function of the number of samples N , and the sampling time x0.

Now we want to minimize this expression to obtain the lowest uncertainty

possible To find the optimal sampling point x0 that minimizes the uncertainty

in γ, we solve the equation:

d

dx
⟨∂γ⟩ = 0 (4.11)

The optimal x0 is found to be:

xopt = LambertW(−2 exp(−2)) + 2
2γ (4.12)

Where the Lambert W function, also known as the product logarithm, is a set

of functions, defined as the inverse relation of f(w) = wew.

Approximately, the optimal value is:

xopt ≈ 0.795γ−1 (4.13)

Using Eq. 4.10, the minimal uncertainty in γ is then:
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⟨∂γ⟩opt = γ

0.795
√
N

√
exp[0.795] − 1 ≈ 1.386 γ√

N
(4.14)

This result, which expresses the lowest achievable uncertainty as a function

of the number of samples, presents a challenge. Specifically, our optimization

was based on a fixed number N of samples. However, each measurement is

inherently time-dependent, as it is conducted at specific sampling interval.

Therefore, it is more appropriate to introduce a time-dependent description

rather than one based solely on the number of samples. Let’s explore this

scenario in more detail.

4.5.1 Fixed experiment time case

In order to solve the problem depicted above, we have to define a new param-

eter for the total experimental time, T . We now fix the total experiment time

to be T = Nx0, thus N = T
x0

. Then, the new expression for ⟨∂γ⟩ (Eq. 4.10) is

given by:

⟨∂γ⟩ = 1
x0
√

T
x0

√
exp(γx0) − 1 = 1√

x0T

√
exp(γx0) − 1 (4.15)

Repeating the same optimization previously performed through Eq. 4.11, we

try to determine the best sampling time x0 to minimize ⟨∂γ⟩. In this case,

⟨∂γ⟩ does not have a local minimum with respect to x0. The optimal strategy

becomes to take samples with as small x0 as possible (Figure 4.6a). In the

limit as x0 → 0, we have:

⟨∂γ⟩ → 1√
x0T

√
γx0 =

√
γ√
T

(4.16)

Thus, in the limit of x0 → 0, ⟨∂γ⟩ simplifies to
√

γ√
T

, indicating that the precision

of the measurement improves as the total sampling time T is increased. This

result is equivalent to Eq. 4.31, reducing this case to the limit of MLE. We’ll

1in the case where x0 ≈ 1/γ
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Figure 4.5: Pulse sequence used to perform a T1 experiment, emphasizing the mod-
eled parameter t.

refer to these as ’instant measurements’, as there’s no time lost in between

each measurement.

4.5.2 Reset Time Case

The limit of perfect measurements, i.e. instant measurements, is quite a case

limit, seeing no real applications in experiments. To introduce delays given

by different factors, such as reset time, or readout time, we introduce a new

parameter t to the equation:

T = N(x0 + t) (4.17)

where t is the generic term for a time delay between a measurement and the

other. This can be for example the active reset time, to actively reset the qubits

to their original state, imagining we have a feedback control system that can

perform real-time adjustments to the system based on measurement outcomes,

or alternatively, a wait time to passively reset it, or others. This time parameter

is purely a generic factor, and can include whatever process can be included

between following measurements. I.e. t = treset + ...+ treadout. Providing this

substitution in terms of x0 to Eq. 4.10, then Eq. 4.11 reads:

Tx2
opt

√
t+xopt

T x2
opt

·
(

1
2T x2

opt
− t+xopt

T x3
opt

)√
eγxopt − 1

t+ xopt
+
γ
√

t+xopt

T x2
opt
eγxopt

2
√
eγxopt − 1

= 0 (4.18)
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Figure 4.6: (a) The optimization curve for the fixed experiment time with t = 0
(blue), showing no minimum compared to solutions with small t. (b)
Set of normalized curves for the fixed experiment time with reset time,
showing the shift of the peak for the optimized sampling point.

Multiplying this equation by
√
T eliminates the dependence on the total time,

providing valuable insight into the optimal sampling points for T1 measure-

ments to minimize their standard deviation, given a time interval t between

measurements. Although there is no analytical solution to this equation, nu-

merical solutions reveal a local minimum. This local minimum shifts towards

higher optimal times, xopt, as the interval t increases (Figure 4.6b). This sug-

gests that the exponential curve should be sampled at longer times when the

interval between measurements increases.

We can now visualize the spacing between these results to determine which

method yields better T1 measurements, specifically aiming for a smaller stan-

dard deviation given the same total experimental time T (figure 4.7). Com-

pared to the previously shown MLE solution, we now plot all the solutions in

terms of total experimental time instead of the number of trajectories. This

approach is taken because the sampling time dictates how many measurements

can be conducted within that timeframe. As previously discussed, the MLE

solution is equivalent to the analytical single-point solution in the simplified

case where t = 0. As we expected, these different single-point solutions result

in the same scaling of our σT1 , but with some offset between them. To illustrate

this, we plot the results, splitting the solution parameterized by t into two

cases. The first case is defined as active reset, where we fix t = 0.01T1 ≡ treset.

This approach aims to demonstrate how active reset, i.e. short delay times,

compares to our first Maximum Likelihood Estimation (MLE) solution, which

assumes perfect measurements with t = 0. In an active reset protocol, the
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qubit is reset to its excited state after the observed decay. More frequently,

due to the advanced performance and knowledge required to track and reset

the qubit and the necessity for high-quality quantum control platforms, re-

searchers resort to passive reset. In passive reset, a certain amount of time

is allowed for the qubit to thermally reset (cool) itself. In our example, we

set t = 10T1 ≡ twait, eliminating the need for direct manipulation of the qubit.

This approach is more practical and commonly implemented in experimental

setups. To verify our theoretical solutions, we turn to simulations. The first

step in this process involves obtaining our sampling point. We achieve this

by generating a series of binary choices (0 or 1) at the optimized sampling

point xopt, with the probability of these choices derived from the assumed

exponential distribution evaluated at that point as

p = f(xopt) = exp (−γxopt) (4.19)

 |0⟩ , with probability 1 − p

|1⟩ , with probability p
(4.20)

By averaging these binary choices, we obtain the single-shot point in xopt.

This single-shot point allows us to fit the exponential distribution from which

we sampled. Through this fitting process, we can determine the exponential

parameter and its associated uncertainty. This method ensures that our the-

oretical models are accurately represented and validated through empirical

data.

4.6 3-Parameter Optimization Solver

Previously, we assumed a perfect exponential distribution characterized by

a single parameter. This assumption is quite strong and does not account

for other possible effects. To conduct a more comprehensive study, we now

consider a three-parameter exponential function. The improved exponential

decay function is given by:

f(x) = A exp[−Bx] + C (4.21)
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Figure 4.7: Comparison of T1 measurement methods, visualizing the spacing between
different approaches to determine which yields better T1 measurements
with a smaller standard deviation given the same total experimental time
T . The results show that all solutions have the same scaling for σT1 ,
but with different offsets. The plot includes two cases parameterized by
t. The first case, active reset, fixes t = 0.01T1 ≡ treset, illustrating how
active reset (short delay times) compares to the Maximum Likelihood
Estimation (MLE) solution, and the single shot solution assuming perfect
measurements with t = 0. In active reset protocols, the qubit is reset
to its excited state after decay. In passive reset, the qubit is allowed to
thermally reset over time, with t = 10T1 ≡ twait in this example, avoiding
direct manipulation of the qubit.
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where B is the parameter whose uncertainty we are interested in, analogous

to γ in our previous calculations.

To determine the parameters A, B, and C of the curve, we need to establish

new initial conditions. Since one point is insufficient to determine three

parameters, we require three points instead. Let these points be yi = f(xi) for

i = . . . 0, 1, 2. Then:

yi = A exp[−Bxi] + C (4.22)

Let’s now try to isolate the parameter B in the exponential. First, we eliminate

C by considering the differences between the function values at different

points as:

y0 − y1 = A(exp[−Bx0] − exp[−Bx1]) (4.23)

y1 − y2 = A(exp[−Bx1] − exp[−Bx2]) (4.24)

Next, we eliminate A by taking the ratio of the above equations:

y0 − y1

y1 − y2
= exp[−Bx0] − exp[−Bx1]

exp[−Bx1] − exp[−Bx2]
(4.25)

Now we need to solve for B. Since an analytical solution to this equation

appears to be unavailable, a numerical approach is necessary. However, our

primary interest is not in determining the value of B itself, but in calculating

its standard deviation. Solving the equation numerically would not provide

analytical insights into how the standard deviation scales with time. To achieve

this, we need to change our perspective and focus on directly determining the

uncertainty of B using a different approach, rather than the standard approach

of calculating B.

Similar to the one-point solution, let’s begin by first determine a solution with

no fixed time. Let us also define our three sampling points (x,y) in vector

form.

Define y =


y0

y1

y2

 and x =


x0

x1

x2

. Let b = b(y0, y1, y2) be a function for our

exponential parameter.

4.6 3-Parameter Optimization Solver 41



If the points are distributed accordingly to Eq.4.22, equation 4.25 can be

written as:
e−x0b − e−x1b

e−x1b − e−x2b
− y0 − y1

y1 − y2
= 0 (4.26)

Here to determine the derivative of b, we need the single derivative with

respect to each variable. Taking the derivative of the equation with respect to

y0:
∂

∂y0

(
e−x0b − e−x1b

e−x1b − e−x2b
− y0 − y1

y1 − y2

)
= 0 (4.27)

and solving for ∂b
∂y0

we get:

∂b

∂y0
=

(
ex1b − ex2b

)2
e−(−x0+x1+x2)b

F
(4.28)

where

F =x0y1e
x1b − x0y1e

x2b − x0y2e
x1b + x0y2e

x2b

− x1y1e
x0b + x1y1e

x2b + x1y2e
x0b − x1y2e

x2b

+ x2y1e
x0b − x2y1e

x1b − x2y2e
x0b + x2y2e

x1b

(4.29)

Let’s set aside the result of this equation. We will now consider the derivatives

with respect to the remaining variables, y1 and y2, though the results will not

be displayed as they do not provide additional information to the reader.

Instead, let’s assume we have calculated all the derivatives with respect to

each variable and evaluate them at the points yi = e−xi for i = 0, 1, 2, i.e.,

∂b

∂yi

∣∣∣∣∣
yi=e−xi

= fi(x, b) for i = 0, 1, 2 (4.30)

If the uncertainties in yi are attributable to binomial statistics, we can extend

Eq.4.8 as follows:

∂yi =
√
yi − y2

i

N
(4.31)
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Now, assuming we calculated all the terms of ∇b(y0, y1, y2),we can now deter-

mine the total uncertainty on b as a simple error propagation. Let us the define

the function ∂b(x) as:

∂b(x) =

√√√√√ 2∑
i=0

 ∂b

∂yi

∣∣∣∣∣
yi=e−xi

2

(∂yi)2

∣∣∣∣∣
yi=e−xi

(4.32)

or equivalently in matrix form as:

∂b(x) =
√√√√(∇b(y))2 · (∂y)2

∣∣∣∣∣
y=e−x

(4.33)

assuming we represent the gradient ∇ as a row vector. Note that this expression

depends not only on the sampling points x but also on the value of b itself, as

seen in the gradient factor (Eq.4.28), and on the number of shots N (Eq.4.8).

To find the optimal point to minimize ∂b, we need to calculate the derivative

and set it to 0. Since this has no analytical solution, we solve it numerically.

Our goal is to find the minimizing combination of sampling points, meaning

we want to place our 3 sampling points so that the error on the parameter

b, defined as ∂b, is the lowest. By plotting the optimized function on a cube

(Figure 4.8) as a function of the 3 sampling points, we can verify our modeling

by observing certain hints. For example, we expect symmetry with respect

to each xi = xj diagonal, on every face of the cube, which means swapping

two sampling points should not affect the final uncertainty. Another hint

of correctness is given by looking at the diagonals. Sampling with diagonal

elements means two of the three sampling points approach eachother, wasting

the measure since we already have information about the curve in that area.

Diving deeper and changing the scale range of values, we see that our opti-

mized point lies on one face of the cube, not inside it (Figure ??), indicating

that one of the optimized sampling points is 0. Further analysis reveals that

the other two optimal sampling points are around 1T1 and 4.5T1. This makes

sense as the spacing between the points allows us to fit the curve well and

obtain the parameters with minimal uncertainty. Let’s now examine how

reintroducing the parameter t affects the evolution of the optimized point and

the uncertainty.
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Figure 4.8: Optimized function on a cube as a function of the 3 sampling points,
showing the optimal sampling point xopt = (0, 1.091, 4.519)T1.

Figure 4.9

4.6.1 Reset Time Case

As already discussed for the 1-point solver, the limit of perfect measurements,

i.e. instant measurements, is quite a case limit, seeing no real applications

in experiments. To introduce delays given by different factors, such as reset

time, or readout time, we again introduce a new parameter t to the equation,

which is a generic term for a time delay between one measurement and the

other. This time parameter is purely a generic factor, and can include whatever

process can be included between following measurements. This time, we have

to add the 3 different sampling times, and our substitution reads:

T = N

( 2∑
i=0

xi + 3 · t
)

(4.34)

where T is the total experimental time. Then Eq.4.32 can be written consider-

ing yi = e−xi as

∂b(x, b, t, T ) =

√√√√√ 2∑
i=0

(
∂b

∂yi

(xi, b)
)2

·
(e−xi − e−2xi)

(∑2
i=0 xi + 3 · t

)
T

(4.35)
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We now have a comprehensive understanding of how the uncertainty of b

scales with the total time T , given three sampling points x, a reset time t, and

the value of b itself, which corresponds to our previously described γ, i.e., the

decay rate. First, we aim to determine how the displacement of our sampling

points x influences our uncertainty. Specifically, we seek the combination xopt

that minimizes this uncertainty. Again, minimizing this equation does not

yield an analytical solution, so it is necessary to solve it numerically. To do

this, we observe that we can remove the dependence on T , as it acts as a

multiplicative factor. After removing T , we also need to remember that b = γ

by definition. Additionally, we must fix our most relevant parameter, t. In the

following analysis, we will examine different examples with various values of

t to compare different decay rate measurement methods.

Let’s now analyze the scenarios we discussed earlier for the single point solver,

specifically at times t = 0.01T1 ≡ treset and t = 10T1 ≡ twait. We observe

that the first sampling point remains stationary at zero throughout the cases.

The optimal midpoint, which initially starts at xopt,0 ≈ 1T1 in the reset case

(see Figure 4.10a), evolves towards approximately 1.5T1 as time progresses to

t → 10T1 (refer to Figure 4.10b). As illustrated in the sliced cube (Figure 4.12),

where each slice is taken at the respective optimal coordinate, the final optimal

sampling point xopt,2 undergoes a more rapid evolution, shifting from around

5T1 to over 8T1. To gain a comprehensive understanding of the evolution of

our sampling points, we can also examine the trajectory of the optimal point in

R3 (Figure 4.13). This figure clearly shows that while one coordinate remains

constant, the other two coordinates evolve, with one scaling more rapidly than

the other.

After determining the optimized sampling points for different cases, xopt, we

can use Eq. 4.35 to calculate the uncertainty associated with these optimal

combinations. As expected from the analytical derivation, the scaling of σT1

over time is consistent with other solutions, reducing the comparison to other

curves to an offset. The spacing between the treset and twait solutions for the

3-point solver is narrower compared to the same spacing for the single-point

solver (figure 4.14). This suggests that the dependence on the parameter t in

the 3-point solver is weaker, as the sampling points already occupy most of the

time, and adding a waiting time influences the total uncertainty less. Besides

comparing the spacing between treset and twait, we can also compare the spacing

between the 3-point solver solutions and the single-point solver solutions. The
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(a) Optimized function on a cube as a func-
tion of the 3 sampling points for treset,
showing the optimal sampling point
xopt = (0, 1.094, 4.531)T1.

(b) Optimized function on a cube as a func-
tion of the 3 sampling points for twait,
showing the optimal sampling point
xopt = (0, 1.5, 7.131)T1.

Figure 4.10: Evolution of the optimized function over two different times. (a) shows
the cube at treset, and (b) shows it at twait.

Figure 4.11: Sliced view of the cube at the respective optimal coordinates for treset,
showing the optimal sampling point.

Figure 4.12: Sliced view of the cube at the respective optimal coordinates for twait,
showing the optimal sampling point.

46 Chapter 4 Enhancing Qubit Decay Rate Estimation with Fast Measurements



Figure 4.13: Evolution of the optimal sampling point in R3.

former lies significantly above the latter, as achieving the same uncertainty

with 3 parameters requires a longer time compared to the single-point solver.

To verify our theoretical solutions, we turned to simulations. However, this

time we needed to generate 3 points and use the 3-parameter exponential curve

as a reference. This method ensures that our theoretical models are accurately

represented and validated through empirical data. While the simulations

correctly verify our analytical solutions for all other methods, in the 3-point

solution for the twait case, at shorter timescales, our model seems to deviate

from the analytical solution. This could be due to multiple factors. For example,

consider the extreme left part of the plot, where the total time is T ≈ 100T1.

A single optimal T1 measurement in the twait case takes
∑2

i=0 xi + 3t ≈ 40T1,

meaning that, on average, we can only obtain two values of T1, out of which we

determine σT1—a relatively small sample size for reliable data. This problem

also affects the relative error bars, which are calculated using bootstrapping.

Since bootstrapping assumes that the original sample is representative of the

overall population, if the original sample does not adequately represent the

population, as in our case, the bootstrap samples will also fail to capture the

true population characteristics. However, in general, for longer timescales, our

model remains reliable in all cases, as shown.
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Figure 4.14: Comparison of the uncertainty scaling for different solver approaches
over time. The plot illustrates the differences between the 3-point and
single-point solvers, particularly in the spacing between treset and twait
and the overall uncertainty. Note the deviation at shorter timescales for
the 3-point solution, likely due to insufficient sampling, as discussed in
the text.
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5Conclusions and Outlook

Throughout this thesis, we have demonstrated both theoretically and numeri-

cally how our newly developed method can significantly enhance qubit decay

rate measurements. In the initial chapters, we introduced the fundamentals of

quantum computing and examined the mechanisms underlying qubit decay

and relaxation. To facilitate this understanding, we covered measurement pro-

cesses applied to two-level systems and explored various operations relevant

to qubit dynamics. We then introduced the Lindbladian formalism to describe

open quantum system behavior, providing a solid foundation for studying qubit

relaxation.

Building on these concepts, the second chapter focused on quantum jumps,

which form the core of our novel decay rate measurement technique. We in-

troduced the concept of weak continuous measurements, first in the context of

Gaussian variables and later within a Poisson framework to accurately model

quantum jumps. Vijay’s protocol for continuous quantum jump measurements

was also discussed, along with its mathematical underpinning via the Stochas-

tic Master Equation, which enabled us to track the time evolution of a ’jumping’

qubit. In addition, we clarified and simulated the analysis required to convert

raw measurement data into cleaner signals, highlighting the crucial role of

measurement efficiency.

In the final chapter, we presented our new method for achieving the fastest

and most accurate decay rate measurements. Through rigorous mathematical

derivations, we proposed a novel model and protocol capable of outperforming

standard and specialized measurement techniques. Numerical simulations

were employed to compare these different methods, thereby quantifying the

advantages offered by our approach.

This work opens several promising avenues for future exploration. Further

research into continuous qubit monitoring may lead to deeper insights into

quantum measurement theory and the development of advanced control proto-
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cols. Additionally, integrating machine learning techniques with the methods

developed here could enhance real-time analysis and prediction of qubit be-

havior, ultimately enabling even faster and more precise measurements.
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