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Abstract

This thesis sets out to explain why experiments with the gatemon qubit have
yielded lower than predicted 𝑇1 times. To do this it gives a short introduction
to circuit QED and the transmon qubit. Then it presents two different models
for the InAs nanowire junction used in gatemons. One model was derived by
C.W.J. Beenakker which uses scattering matrix formalism to derive the energies
of the bound states. The other one was derived by D.V. Averin and models the
nanowire as a quantum point contact that can be Coulomb blocked. Multiple
sources of noise are considered, both general types of noise such as 1/𝑓 and ohmic,
and circuit specific sources from components coupled to the qubits. To solve
these models numerical methods are presented as the models are not analytically
solvable.

In investigating the general types of noise we found that with equal capacitive
energy and the same operating frequency Averin’s model results in a lower 𝑇1
time. When the transmission is low then the difference in 𝑇1 time is a factor 3 to
4 which is consistent with what experimentalists have found. This indicates that
the discrepancy between the current theory and experiments could stem from the
fact that the nanowire acts as a quantum point contact and is therefore better
described by Averin’s model than Beenakker’s, which is the one widely use now.

In doing circuit analysis it was found that any loss from adding a drive line
to a high frequency qubit can mitigated by increasing the capacitive coupling to
ground. There is no evidence that this limits the gatemon, and so it might be a
useful insight for other high frequency qubit designs.
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Chapter 1

Introduction

As we are pushing the performance of our computers further and further, and
making transistors smaller and smaller, we are approaching the quantum mechan-
ical regime where what we have classically done starts to break down. For many
decades the improvements in classical computers has followed Moore’s law which
states that the amount of transistors on an integrate circuit will double every
two years. We are reaching a point where this is no longer possible because the
transistors are getting so small that effects such as quantum tunnelling become
a real concern. But even though the size of our transistors are reaching a limit,
the complexities of our problems are not. As we want to solve more and more
complex problems in medicine, cryptography among other fields the performance
of current supercomputers cannot keep up. It is simply not feasible to continue
designing new computers where the cost of computation goes up exponentially
with computation complexity[1].

Quantum computers have the potential to solve these incredibly complex prob-
lems for us since performance of quantum computers scale exponentially, not lin-
early with the addition of extra qubits. An example of such a problem is protein
folding. This is hard because of the many ways a protein can fold up on it self and
the shape is essential for the proteins function. Even in simplified models this NP
hard problem is extremely difficult for classical computers[2]. Protein folding is not
the only field within medicine that can benefit from quantum computers. They
could help us design better cancer therapy[3]. Since 1997 when Peter W. Shor
came up with Shor’s algorithm for prime factorisation, the possibility of quantum
computers breaking all our current encryption protocols has loomed[4]. But they
also offer new types of encryption with quantum encryption protocols such as the
BB84 protocol[5].

A quantum computer does not operate with only 1’s and 0’s. What sets them
apart is the possibility of putting a quantum bit (qubit) in a superposition of 1
and 0. So now we have |1⟩ and |0⟩ and any linear combination of them 𝛼 |0⟩ +
𝛽 |1⟩. This gives us the advantage of being able to use quantum effects such
as entanglement and interference. But the unfortunate fact is that these qubits
are very delicate and it is easy disturb them and ruin the computation. So we
have a fundamental trade-off when designing qubits, which is that for them to be
stable they need to be isolated, but if they are completely isolated then we cannot
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use them for computation. So to use the qubits properly we need to understand
how the surrounding environment affects them so we can isolate them as much as
possible and still interact with them when we need to. The problem of keeping a
qubit stable, so longer and more complex computations can be completed, can be
compared to trying to balance a pencil on your finger in a storm. If we do nothing
the pencil will quickly tip over, but if we isolate it by going inside, then it will stay
up a bit longer.

There are many prospective platforms for realising quantum computers. Trapped
ions, spins, quantum dots and superconducting qubits are all possible candidates
for a quantum computer[6]. Superconducting qubits which show great promise
are the focus of this thesis. These qubits work by engineering a mesoscopic cir-
cuit and then use the mesoscopic wavefunction in superconducters. Manipulating
this mesoscopic wavefunction we can get quantum mechanical behaviour in much
larger systems than we are used to.

The transmon is one of the most succesful designs for superconducting qubits
and is used extensively by for example IBM to build their quantum computers[7].
The disadvantage of transmons is that to be able to tune their frequency we need to
introduce a SQUID which is controlled through an external magnetic field. This
introduces an extra source of noise from the magnetic fields. Using the pencil
analogy again this is like now also standing next to a busy road in addition to the
windy weather.

The gatemon is an interesting alternative because it offers the possibility of
having a tunable qubit without the need of an external magnetic flux. It is ex-
tremely practical to have qubits where you can tune the operating frequency. This
means that they can be tuned in and out of resonance with each other.

Gatemons get around this by introducing a semiconductor into the circuit
which by controlling the transmission coefficients, gives us control of the frequency
such that we avoid external magnetic fields. The transmission can be controlled
through a gate voltage which changes the current carrier density. When gatemons
have been manufactured and tested it turns out that they have significantly lower
𝑇1 times than predicted. Depending on the device their coherence times are 2 to
5 times lower than what the current theory by Beenakker predicts.

In this thesis we investigate how noise affects the Gatemon qubit and what
could be the source of the lower than expected coherence time. Looking at images
of gatemon circuits we will construct a circuit model that represents the surround-
ing environment to see how it affects 𝑇1. We will also be investigating ohmic and
1/𝑓 noise which in the pencil analogy is understanding which way the wind is
likely to blow so we can shield the pencil from it.
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Chapter 2

Circiut QED and qubits

2.1 cQED
Circuit quantum electrodynamics (cQED) is the field of physics describing the be-
haviour of quantum mechanical electrical circuits. cQED springs from cavity QED
where one places an atom into a cavity couples to the system through photons[8,
9]. The cavity ensures that the atom is mostly isolated from the environment. In
cavity QED this can be an optical cavity which will reflect any photons trying to
escape, back to the atom. cQED uses a similar language as the discrete energy
spacing in mesoscopic superconducting qubits can be mapped to the energies of
an atom. For this reason superconducting qubits are sometimes called artificial
atoms. To describe the dynamics of quantum systems we need a Hamiltonian. In
this chapter we will derive expressions for the energy of a capacitor, inductor and
Josephson junction, and how to combine them to construct the Hamiltonian.

When describing these superconducting circuits we use the lumped element
model. In the lumped element model it is assumed that the wavelength of the op-
erating frequency of the circuit is much larger than the circuit. If this was not true
and the distance across a capacitor was larger than the operating wavelength of the
system, the dynamics become significantly more complicated and we would have
to use the full machinery of Maxwell’s equations. The lumped element approxima-
tion is valid in the circuits that we will look at in this thesis because the circuits
we are interested in are operated in the gigahertz range which gives a wavelength
on the order of centimetres, which is several orders of magnitude larger than the
circuit size which is on the order of micrometers. This means that we will lump all
the resistances, inductances and capacitances into ideal components that are then
connected by perfect wires that have zero resistance, inductance and capacitance.

To derive the energies we define a variable 𝜙 that is the generalised coordinate
for the circuit,

𝜙(𝑡) = ∫
𝑡

−∞
𝑉 (𝑡′)𝑑𝑡′, (2.1.1)

where 𝑉 (𝑡′) is the voltage over a given component like a capacitor or a resistor. 𝜙
is called the generalised flux and Equation (2.1.1) gives us the change in it over a
given component, like an inductor or a resistor. When applied to an inductor this
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is essentially Faraday’s law, but here we extend it to all components, that is why
it is the generalised flux instead of the magnetic flux. For an ideal linear capacitor
the voltage is across it is[10],

𝑉 (𝑡) = 𝑄(𝑡)
𝐶 . (2.1.2)

𝐶 is the capacitance and 𝑄(𝑡) is the charge on the capacitor which can vary in
time. Using Equation (2.1.1) we get the following equation for the generalised flux
over a capacitor,

̇𝜙(𝑡) = 𝑉 (𝑡) = 𝑄(𝑡)
𝐶 . (2.1.3)

The boundary term at −∞ vanishes because we assume that at 𝑡 = −∞ the
system was in a state with no voltages and no stored energy. With the charge we
can calculate the electrical current, which is the time derivative of charge,

𝐼(𝑡) = 𝐶 ̈𝜙(𝑡). (2.1.4)

We now have everything we need to describe how much energy is stored in the
capacitor as a function of 𝜙. The power is given by 𝑃(𝑡) = 𝑉 (𝑡)𝐼(𝑡) and we then
integrate it from −∞ to 𝑡 to find out how much energy is stored in the component.
The integral can be solved using integration by parts and using the fact that the
boundary term vanishes we arrive at,

𝐸Cap. = ∫
𝑡

−∞
𝑑𝑡′𝑉 (𝑡′)𝐼(𝑡′) = 𝐶 ∫

𝑡

−∞
𝑑𝑡′ ̈𝜙 ̇𝜙 = 1

2𝐶 ̇𝜙2, (2.1.5)

which is the capacitive energy also called the charging energy. A similar calculation
can be carried out for an ideal linear inductor with inductance 𝐿 which has the
current-flux relation,

𝐼(𝑡) = 1
𝐿𝜙(𝑡). (2.1.6)

Using this and Equation (2.1.1) on the form ̇𝜙 = 𝑉 (𝑡) the energy stored in the
inductor can be found to be,

𝐸Ind. = ∫
𝑡

−∞
𝑑𝑡′𝑉 (𝑡′)𝐼(𝑡′) = 1

𝐿 ∫
𝑡

−∞
𝑑𝑡′ ̇𝜙𝜙 = 1

2𝐿𝜙2. (2.1.7)

The last component that we will use is our circuits is the Josephson junction. To
do that we us the two Josephson relations[11],

𝐼 = 𝐼𝑐 sin(𝜙) and 𝑉 = ℏ
2𝑒

d𝜙
d𝑡 → 𝜙 = 2𝑒𝑉

ℏ 𝑡. (2.1.8)

𝐼𝑐 is the critical current of the superconductor, 𝑒 is the electron charge and ℏ is
the reduced Planck’s constant. With that we can calculate the energy just as in
Equation (2.1.5) and (2.1.7).

𝐸Jos. = ∫
𝑡

−∞
𝑑𝑡′ d𝜙

d𝑡′ 𝐼𝑐
ℏ
2𝑒 sin(𝜙) = −𝐸𝐽 cos(𝜙), (2.1.9)
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where 𝐸𝐽 = 𝐼𝑐Φ0/2𝜋 = 𝐼𝑐ℏ/2𝑒 is the Josephson energy and Φ0 = ℎ/2𝑒 is the
superconducting magnetic flux quantum, which has a factor of two as opposed to
the normal magnetic flux quantum ℎ/𝑒. This is because in the superconductor all
the electrons are coupled in Cooper pairs so the effective charge quantum is 2𝑒
instead of 𝑒.

Now we have expressions for the energy in the components as a function of the
change in the generalised fluxes. But when we construct the Lagrangian for a given
circuit we have to keep in mind that these fluxes are not completely independent.
If we have two components in parallel the flux difference is the same over both
because the voltage drop is the same over both. If they are in series then there is
one flux difference over the first component and then a second flux difference over
the second component and the total flux difference over both components is the
sum of the individual flux differences. See for example the LC circuit in Figure
2.1a, the difference in flux is the same over both the capacitor and the inductor. It
is very similar to how we work with voltages in classical circuit theory. We will not
delve into further details on this subject as further discussion of it is not relevant
for the simple circuits that we concern ourselves with in this thesis. Methods on
how to analyse more complicated circuits can by found in Aumann et al. and Vool
& Devoret[12, 13].

2.2 The transmon and other qubits
2.2.1 LC circuit
One of the simplest circuits we can construct is the LC circuit. The LC circuit as
the name implies simply consists of an inductor and a capacitor in an loop as seen
in Figure 2.1a. There is just one flux difference which is the difference between
the bottom and top parts of the circuit. We then use Equation (2.1.5) and (2.1.7)
to write the Lagrangian, where the capacitive energy takes the role of the kinetic
energy and the inductive energy takes the role of the potential energy. In the
LC circuit it does not matter what we choose, but later when we introduce the
Josephson junction it will be the natural choice to let the capacitive energy take
the role of kinetic energy.

𝐿 = 1
2𝐶 ̇𝜙2 − 1

2𝐿𝜙2. (2.2.1)

We then use a Legendre transformation to find the conjugate variable,

𝜕𝐿
𝜕 ̇𝜙

= 𝐶 ̇𝜙 = 𝑄, (2.2.2)

and the Hamiltonian of the system is,

𝐻 = ̇𝜙𝑄 − 𝐿 = 1
2𝐶 ̇𝜙2 + 1

2𝐿𝜙2 = 1
2𝐶 𝑄2 + 1

2𝐿𝜙2. (2.2.3)

This is simply the harmonic oscillator as we would expect from classical circuit
theory, and if we promote 𝑄 and 𝜙 to operators we get the quantum harmonic
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oscillator. The Hamiltonian for the quantum harmonic oscillator can be rewritten
as,

𝐻H.O. = ℏ𝜔 (𝑎†𝑎 + 1
2) , (2.2.4)

which has evenly spaced discrete energies ℏ𝜔 apart. This is a problem though.
Because the quantum harmonic oscillator has evenly spaced energies means that
it makes a terrible qubit. When designing a qubit we want an isolated two-level
system to define our qubit state |0⟩ and |1⟩. One might think that we can simply
pick the ground and first excited state and ignore the high energy states, but the
even energy spacing makes this impossible. When resonantly driving the quantum
harmonic oscillator from the ground state to the first excited state we simulta-
neously drive higher transitions, for example from the first to the second excited
state. One way to avoid this problem would be if the distance from the ground
state to the first excited state is not the same as from the first to the second excited
state, in short 𝐸1 − 𝐸0 ≠ 𝐸2 − 𝐸1. If this is the case then the driving pulse that
excites the circuit from the ground state to the first excited state will not be able
to excite the circuit further because the pulse is off resonance. This helps us to
stay in the computational subspace spanned by the two lowest energy states. To
break the harmonicity we can switch one of the linear components to a non-linear
one. Then the system is no longer a harmonic oscillator and the energy levels will
not be evenly spaced any more.

𝐶 𝐿

(a)

𝐸𝐶 𝐸𝐽

𝜙

(b)

Figure 2.1: (a) A LC circuit with capacitance 𝐶 and inductance 𝐿. (b) A trans-
mon circuit with the capacitive and Josephson energy marked. The generalised
flux is zero at ground and 𝜙 at the top, so the generalised flux over the components
is 𝜙 − 0 = 𝜙.

2.2.2 Transmon
A circuit that is not harmonic can be achieved if we switch out conventional linear
inductor (which in normal circuits could be for example a coil) and add in a
Josephson junction[14]. A Josephson junction is two superconductors with a thin
layer of insulating material between them which allows for the tunnelling of Cooper
pairs, but not the flow of conventional current.
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We can once again write the Lagrangian and find the Hamiltonian, but since
there is no difference in the term that contains ̇𝜙, the calculation is the same as in
equation (2.2.3) except switching 𝜙2/2𝐿 to −𝐸𝐽 cos(𝜙). So the Hamiltonian for
the circuit is,

�̂�𝑡 = 4𝐸𝐶(𝑛 − 𝑛𝑔)2 − 𝐸𝐽 cos(𝜙), (2.2.5)

where 𝐸𝐶 = 𝑒2/2𝐶 is the charging energy of he capacitor, 𝑛 = 𝑄/2𝑒 is number
operator for the Cooper pairs, 𝑛𝑔 = 𝐶𝑔𝑉𝑔/2𝑒 is the offset voltage in units of 2𝑒
and 𝜙 is difference in the generalised flux over the junction.

The off-set charge 𝑛𝑔 can come from either a deliberately designed electrode
which sets an offset voltage or just from capacitively coupling to the environment
around the qubit island. 𝐶𝑔 is the capacitive coupling and 𝑉𝑔 is the voltage to
either ground of the electrode. For example if there is a high voltage around the
island, then it can ”push” Cooper pairs off the island and change the equilibrium.
If 𝐸𝐽/𝐸𝐶 is of the order unity then the circuit is called a Copper pair box. The
reason that it is called a Cooper pair box is that as illustrated in Figure 2.1b the
bottom part of the circuit is grounded and then the top part acts as an island
or box for Cooper pairs where they can only escape if they tunnel through the
Josephson junction.

(a) (b)

Figure 2.2: The energies of a transmon at two different values of 𝐸𝐽/𝐸𝐶.
(𝐸0=blue, 𝐸1=orange and 𝐸2=green).

When 𝐸𝐽/𝐸𝐶 ≫ 1 the circuit is called a transmon, for most transmons
𝐸𝐽/𝐸𝐶 ≈ 50. The name transmon comes from the fact that in Koch at al.’s
original paper the Cooper pair box is places in a transmission line and that is how
they increased the capacitance and therefore increased 𝐸𝐽/𝐸𝐶 [14]. When oper-
ated in the transmon regime the transition energies are exponentially insensitive
to charge noise. We also loose anharmonicity, but this decrease is only polynomial,
so we win more than we loss by increasing 𝐸𝐽/𝐸𝐶. This decrease in the sensitivity
to charge noise can be seen in Figure 2.2 as bands the bands getting flatter as a
function of 𝑛𝑔 as 𝐸𝐽/𝐸𝐶 increases.
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Charge noise i.e. random fluctuations in the charge environment of the qubit,
leads to variations in the voltage 𝑉𝑔 and in turn (through the capacitive coupling)
of the charge offset 𝑛𝑔. Looking at figure 2.2a we see that even small variations in
𝑛𝑔 can lead to large variations in the qubit frequency 𝜔𝑞 = 𝐸1 − 𝐸0. This is bad
because to use the qubit and perform operations we need to drive it at the right
frequency, but if that frequency randomly changes all the time, that becomes very
difficult.

A good thing about the 𝐸𝐽/𝐸𝐶 ≈ 1 regime is that the anharmonicity is very
high. Anharmonicity is a measure for how different the transition energies 𝐸21 =
𝐸2 − 𝐸1 and 𝐸10 = 𝐸1 − 𝐸0 are, and is defined as 𝛼 = 𝐸21 − 𝐸10. So for example
the harmonic oscillator has 𝛼 = 0 because all the energy levels are evenly spaced
and 𝐸21 = 𝐸10. On the other hand looking at Figure 2.2a we see that at for
example 𝑛𝑔 = 0 the anharmonicity is very high. The consequence of this is that
is when driving the qubit the chance of accidentally driving it further up into 𝐸2
and beyond are virtually non-existent.

Because of their insensitivity to charge noise transmons have enjoyed consider-
able success and are being used as a major platform for superconducting qubits by
big tech companies like Google and IBM[7, 15]. Transmons have many beneficial
properties, but the simple transmon in Figure 2.1b has one major shortcoming. It
has a fixed frequency set at fabrication. When building quantum computers we
want to use many qubits to perform complicated computations. This means that
the qubits will need to be coupled together to perform two-qubit gates to entangle
them. But we do not want them coupled all the time. Sometimes we need to per-
form operations on them separately. So we need to be able to turn the coupling on
and off. This can be done by turning the coupler on and off, as Google does[15].
In practice it is easier to build a coupler that is on at all times and then tune the
qubits. This works because if the qubits are operating at different frequencies they
will not “see” each other. We can then tune the frequencies so they match when
we need to perform two-qubit gates and tune them away from each other when
the operation is done. One way to do this is with flux tunable transmons. These
are transmons with two Josephson junctions so they form a SQUID. Changing the
external magnetic flux through the SQUID will then change the qubit frequency.
The problem with this approach is that it introduces the need to control the mag-
netic flux through the SQUIDs and this flux will in itself be a new source of noise,
flux noise.
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Chapter 3

The Gatemon

The Gatemon is almost the same as the transmon. The only difference is that the
Josephson junction has been changed. In the transmon there is a conventional
Josephson junction, which is two superconductors with a thin layer of insulating
material between them which allows for the tunnelling of Cooper pairs. In the
Gatemon the insulating layer has been substituted with a semiconductor. This
could be an indium arsenide(InAs) nanowire (NW)[16–18]. The thing that funda-
mentally changes is that when the middle layer is no longer insulating conventional
current can to some extent flow. In a semiconductor we can control the transmis-
sion by applying a voltage. This is possible because in a semiconductor we can
control the carrier density with an electric field. Varying the transmission of the
semiconductor will then give us the ability to change the qubit frequency as I will
outline below. With this we can now tune the frequencies of our qubits without
the need for an external magnetic field, completely eliminating it as a source of
noise.

Below I will describe two different approaches to derive the Hamiltonian of the
gatemon qubit. One was derived by C.W.J. Beenakker[19] and the other by D.V.
Averin[20]. The model that is most often used at the moment is Beenakker’s. We
will also see if the Averin’s model offers a better explanation of the lower than
expected coherence times.

3.1 Beenakker
In Beenakker’s paper he models the Superconducting-Normal metal-Superconduct-
ing (SNS) junction with two perfect Normal metal-Superconducting (NS) bound-
aries and then a normal scattering region in between as seen in Figure 3.1. Perfect
in this context means that at the NS boundary there is no normal scattering and
only Andreev reflections are possible. An Andreev reflection happens when an
electron is propagating in a normal metal with less energy than the supercon-
ducting gap and then hits the NS boundary. In that case the electron does not
have enough energy to exist as an electron in the superconductor and immediately
couples to another electron and forms a Cooper pair[21]. This bonding to another
electron results in a hole being reflected back with the same momentum as the
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first electron but in the opposite direction. In between these two NS boundaries
he has a region in the normal metal where normal scattering can occur. Normal
scattering is like when billiard balls scatter on a billiard table. An electron will
come in and hit something and get reflected of into some other direction.

𝑆1 𝑆2𝑁1 𝑁2

𝑥 = 𝐿/2𝑥 = 𝐿/2 𝑥 = 0

Scattering region

Figure 3.1: Diagram of Beenakker’s model with two superconductors 𝑆1 and 𝑆2
with and normal metal in between with either end being the two normal leads 𝑁1
and 𝑁2.

This scattering is caused by the fact that the normal metal is not a perfect crys-
tal, but in reality will have impurities and domain walls. This spacial separation
of the two different scattering processes is the key approximation in Beenakker’s
model. The next step that he takes is then to find the wavefunctions on either side
of the boundary. The wavefunctions are two-component wavefunctions because
they come from solving the Bogoliubov-de Gennes equation. On the normal side
of the boundary there is no potential and no superconducting order parameter Δ
so it is just the free particle which in the basis of electrons and holes can be written
as,

Ψ±
n,e = (1

0)Φ𝑛
𝑘𝑒𝑛

exp [±𝑖𝑘e
𝑛(𝑥 + 𝐿/2)],

Ψ±
n,h = (0

1)Φ𝑛
𝑘ℎ𝑛

exp[±𝑖𝑘h
𝑛(𝑥 + 𝐿/2)],

(3.1.1)

in the 𝑁1 lead. Φ𝑛(𝑦, 𝑧) is the transverse mode, 𝑛 is the mode index, 𝑘e,h
𝑛 =

√2𝑚/ℏ2× √𝐸𝐹 − 𝐸𝑛 + 𝜎𝑒,ℎ𝜀 and 𝜎𝑒 = 1 and 𝜎ℎ = −1. 𝜀 is the eigenvalue
of the Bogoliubov-de Gennes Hamiltonian, 𝐸𝑛 is the threshold energy and 𝐸𝐹 is
the Fermi energy. The ± denotes the direction of propagation and for the other
normal lead (𝑁2) Beenakker switches the sign of 𝐿. The assumption about the
superconducting order parameter Δ(𝑥) that Beenakker uses is,

Δ(𝑥) =
⎧{
⎨{⎩

Δ0𝑒−𝑖𝜙/2 for 𝑥 < −𝐿/2
0 for |𝑥| < 𝐿/2
Δ0𝑒+𝑖𝜙/2 for 𝑥 > 𝐿/2

(3.1.2)

One the other side of the boundary in the 𝑆1 superconductor the wavefunction is,

Ψ𝑛,e = ( 𝑒𝑖𝜂𝑒/2

𝑒−𝑖𝜂𝑒/2) 1
√2𝑞e𝑛

1
(𝜀2/Δ2

0 − 1)1/4
Φ𝑛
𝑘𝑒𝑛

exp [±𝑖𝑞𝑒
𝑛(𝑥 + 𝐿/2)] (3.1.3)
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with 𝑞n,h
𝑛 = √2𝑚/ℏ2√𝐸𝐹 − 𝐸𝑛 + 𝜎n,e√𝜀2 − Δ2

0 and 𝜂e,h = 𝜙/2+𝜎e,h arccos(𝜀/Δ0).
For 𝑆2 he switches 𝜙 → −𝜙 and 𝐿 → −𝐿. The wavefunction in the superconductor
is a superposition of an electron and a hole.

A particle entering the normal region can be a right moving electron or hole in
the left lead (𝑁1) or a left moving electron or hole in the right lead (𝑁2). So any in-
coming wavefunction can be described as a superposition of these possibilities and
therefore a complete incoming wavefunction can be described by four coefficients
𝑐in = [𝑐+

𝑒 (𝑁1), 𝑐−
𝑒 (𝑁2), 𝑐−

ℎ (𝑁1), 𝑐+
ℎ (𝑁2)]𝑇 . After the scattering the wavefunction

will then in general end up as a superposition of outgoing wavefunctions described
by 𝑐out = [𝑐−

𝑒 (𝑁1), 𝑐+
𝑒 (𝑁2), 𝑐+

ℎ (𝑁1), 𝑐−
ℎ (𝑁2)]𝑇 . These two states are then coupled

via a scattering matrix which has the constraint that normal scattering does not
couple electrons and holes, think back to the example with the billiard balls. When
a billiard ball hits the edge of the board a new hole does not suddenly appear.
So for example an electron coming from the left lead (𝑁1) and moving right can
either be reflected back and become a left moving electron in the left lead (𝑁1), or
it can pass through the scattering region and become a right moving electron in
the right lead(𝑁2), but it cannot become a hole. This means that the scattering
matrix in the normal region is block diagonal and can be written as,

𝑆𝑁(𝜀) = (𝑠0(𝜀) 0
0 𝑠∗

0(−𝜀)) where 𝑠0 = (𝑟11 𝑡12
𝑡21 𝑟22

), (3.1.4)

where 𝑟11, 𝑡12, 𝑡21 and 𝑟22 all depend in 𝜀. 𝑟 is the reflection amplitude. It tells
us how likely a particle is to be reflected back the way it came from and 𝑡 is
the transmission amplitude and tells us how likely a particle is to pass through
the scattering region. So this matrix connects the two states in such a way that
𝑐out = 𝑆𝑁𝑐in. Now the wavefunction as been scattered of some impurity in the
normal region and is propagating out towards the NS boundaries. If 𝜀 > Δ it
will simply pass through into the superconductor, if 𝜀 < Δ then particle does not
have enough energy to exist one its own in the superconductor. Since the electron
does not have enough energy then it will be Andreev reflected. Andreev reflections
couple electrons to holes and visa versa. The boundary is assumed perfect there
is no normal scattering and the scattering matrix becomes,

𝑆𝐴 = 𝛼(𝜀)( 0 𝑟𝐴
𝑟∗

𝐴 0 ) where 𝑟𝐴 = (𝑒𝑖𝜙/2𝟙 0
0 𝑒−𝑖𝜙/2𝟙), (3.1.5)

for 𝜀 < Δ. This matrix operates on a superposition of outgoing states, so 𝑐out,
and the states get reflected back towards the normal region which is described by
𝑐in. This means that it connects the outgoing to the incoming states such that
𝑐in = 𝑆𝐴𝑐out.

Beenakker then combines 𝑐out = 𝑆𝑁𝑐in and 𝑐in = 𝑆𝐴𝑐out to find that a bound
state must satisfy 𝑐bound = 𝑆𝐴𝑆𝑁𝑐bound. This is true because a bound state
by definition transitions through a closed loop of states and then must return
to the same state again at some point. 𝑐bound = 𝑆𝐴𝑆𝑁𝑐bound is the eigenvalue
problem with eigenvalue 1 and thus implies det(𝟙 − 𝑆𝐴𝑆𝑁) = 0. The expression
can be generalised to 𝑁 channels by expanding 𝑟11, 𝑡12, 𝑡21 and 𝑟22 to 𝑁 ×
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𝑁 matrices. Now he has a partitioned matrix and there exists an identity for
partitioned matrices that simplifies the determinant[22].

Given 𝑍 = (𝐴 𝐵
𝐶 𝐷) then det(𝑍) = det(𝐴𝐷 − 𝐴𝐶𝐴−1𝐵). (3.1.6)

Using this relation he rewrites the determinant

det(𝟙 − 𝑆𝐴𝑆𝑁) = det(𝟙 − 𝛼2𝑟∗
𝐴𝑠0(𝜀)𝑟𝐴𝑠0(−𝜀)∗) = 0. (3.1.7)

Beenakker then makes the approximation that the normal scattering does not
change significantly with in the gap so 𝑠0(𝜀) = 𝑠0(−𝜀)∗ = 𝑠0(0) to get,

det(1 − 𝜀2

Δ2 − 𝑡12𝑡†
12 sin(𝜙

2 )
2
) = 0. (3.1.8)

When there is only one channel then this is a 1 × 1 matrix and solving for 𝜀,

𝜀 = Δ√1 − 𝑇 sin(𝜙/2)2. (3.1.9)

where 𝑇 = 𝑡12𝑡†
12. If there are several channels the coefficients 𝑡12 and 𝑡†

12 becomes
matrices themselves. This can be solved in terms of the eigenvalues 𝑇𝑖 of the 𝑡12𝑡†

12
matrix and the bound state energy becomes,

𝜀 = ∑
𝑖

Δ√1 − 𝑇𝑖 sin(𝜙/2)2. (3.1.10)

This is the major result from Beenakker’s paper, the energy of a Andreev bound
state in a SNS junctions. We can then add the capacitive energy between the two
superconductors to get the full Hamiltonian of the gatemon qubit,

𝐻𝐵 = 4𝐸𝐶(𝑛 − 𝑛𝑔)2 − Δ ∑
𝑖

√1 − 𝑇𝑖 sin(𝜙/2)2. (3.1.11)

This is the Hamiltonian that the experimentalists currently use. It is this equation
that predicts the higher 𝑇1 times than are currently observed.

3.2 Averin
Another way of looking at the system is that the nanowire acts as a quantum point
contact because it is a constriction between the ground plate and the Cooper pair
island. The nanowires are less than the 200nm wide[18] and the effects of quantum
point contacts have been observed in constrictions as wide as 360nm[23]. Because
the nanowire is a semiconductor we can Coulomb blockade it, which is the system
that Averin solved.
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We still have a superconductor on either side and they will generally have
different superconducting phases. In Averin’s model he uses a step-like supercon-
ducting phase[20]. Since its is only the difference in phase on either side that has
a physical effect the superconducting order parameter can be written as,

Δ(𝑥) = {Δ for 𝑥 < 0
Δ𝑒𝑖𝜙 for 𝑥 > 0 . (3.2.1)

He then solves the Bogoliubov-de Gennes equations for both left and right moving
particle with this pair potential and finds that the Hamiltonian is,

𝐻 = 4𝐸𝐶 (𝑛 − 𝑛𝑔)2 + ∑ 𝜀(𝜙) + 𝑉 , (3.2.2)

where 4𝐸𝐶 (𝑛 − 𝑛𝑔)2 like in the transmon Hamiltonian is the capacitive energy
between the superconductors. Solving the Bogoliubov-de Gennes equations he
finds that there exists two sub gap states 𝜀±(𝜙) = ∓Δ cos(𝜙/2). 𝑉 is the back
scattering which depends on the shape of the potential 𝑈(𝑥) cross the contact.
With this he finds that the only terms of importance in the back scattering are

⟨Ψ−|𝑉 |Ψ+⟩ = 𝑖𝑟Δ sin(𝜙/2), (3.2.3)

where 𝑟 = −𝑖𝑈(2𝑘𝐹 )/ℏ𝑣𝐹 and |Ψ±⟩ are the sub gap states with energy ±Δ cos(𝜙/2).
𝑈(2𝑘𝐹 ) is the Fourier transform of the potential 𝑈(𝑥). Now the Hamiltonian in 𝜙
space is,

𝐻𝐴 = 4𝐸𝐶(𝑛 − 𝑛𝑔)2 ⊗ 𝐼2 + Δ( cos(𝜙/2) −𝑖𝑟 sin(𝜙/2)
𝑖𝑟 sin(𝜙/2) − cos(𝜙/2) ), (3.2.4)

where 𝐼2 is the 2 × 2 identity matrix.
We originally wanted to try and extend Averin’s Hamiltonian to more channels

with different transmission coefficients just like Beenakker did. We thought that
we could take the Kronecker sum by assuming that there was no scattering between
channels and therefore they would be independent. Taking the Kronecker sum for
two channels would be 𝐻𝑡𝑜𝑡 = 𝐻𝑇1

⊗ 𝐼2 + 𝐼2 ⊗ 𝐻𝑇2
or 𝐻𝑡𝑜𝑡 = 𝐻𝑇1

+ 𝐻𝑇2
. The

problem with this is the both 𝐻𝑇1
and 𝐻𝑇2

depend on the same phase difference
𝜙. This means that they are not as independent as we first thought and solving
this non-trivial problem to combine the Hamiltonians was beyond the scope of this
thesis.
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Chapter 4

Analytical Calculations

4.1 Comparison in the limits
To get a better understanding of the Hamiltonians it is illustrative to look at the
behaviour in the limits. We will look at the heavy limit as it is in this regime
that the gatemon is operated. To get a sense of the behaviour when we vary the
transmission 𝑇 of the junction, we will investigate the limits of high and low 𝑇 .
The behaviour in all these limits will be used to verify the validity of the numerical
solutions.

4.1.1 The heavy limit
When speaking of the “weight” or “how heavy” a system is we are drawing on the
analogy of a mechanical system. Taking the capacitive term (the term containing
𝐸𝐶) to be the kinetic energy, then 𝐸𝐶 = 1/𝑚. So a heavy system is one where
𝐸𝐶 is small. We take Averin’s Hamiltonian (3.2.4) in the limit 𝐸𝐶 ≪ Δ. In this
limit we can temporally ignore the kinetic term because it is small compared to
the potential and find the eigenvalues of the potential.

0 = det ∣cos(𝜙/2) − 𝜆 −𝑖𝑟 sin(𝜙/2)
𝑖𝑟 sin(𝜙/2) − cos(𝜙/2) − 𝜆∣

0 = − cos(𝜙/2)2 + 𝜆2 − 𝑟2 sin(𝜙/2)

𝜆 = ±√1 − 𝑇 sin(𝜙/2)2,

(4.1.1)

with 𝑟 =
√

1 − 𝑇 . So when 𝐸𝐶 ≪ Δ we recover Beenakker’s potential from
Averin’s potential if we remove the kinetic term, diagonalise and then reintroduce
the kinetic term on the diagonal afterwards. This approach relies on the assump-
tion that any of diagonal terms that would appear from doing the transformation
on the kinetic term are very small, which they are for Δ ≫ 𝐸𝐶. We will derive
these off diagonal terms in Section 4.2.
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4.1.2 𝑇 limits
We can also look at the limits of 𝑇 . In the small 𝑇 limit where the normal metal
becomes almost insulating. We Taylor expand Beenakker’s Hamiltonian around
𝑇 = 0 to find,

Δ√1 − 𝑇 sin(𝜙/2)2 =Δ (1 − 𝑇 sin(𝜙/2)2

2 ) + 𝒪(𝑇 2) (4.1.2)

=Δ (1 − 𝑇 1−cos(𝜙)
2

2 ) + 𝒪(𝑇 2) (4.1.3)

=Δ𝑇
4 cos(𝜙) + Δ (1 − 𝑇

4 ) + 𝒪(𝑇 2). (4.1.4)

Doing that we see in the small transmission limit that Beenakker’s Hamiltonian re-
sembles the transmon Hamiltonian, except for a constant term that has no impact
on the dynamics of the system. This result is exactly what we would expect since
when we have a junction with arbitrary transmission and if we let that trans-
mission go to zero, then the junction effectively becomes insulating because no
conventional current can flow and only Cooper pairs can tunnel through. But this
is just a conventional Josephson junction, so when the transmission 𝑇 goes to zero
we recover the transmon Hamiltonian.

We can also take the opposite limit and set 𝑇 = 1 so that current can flow
freely. In that case Beenakker’s potential becomes,

Δ√1 − 𝑇 sin(𝜙/2)2 → ±Δ cos(𝜙/2), (4.1.5)

and setting 𝑇 = 1 for Averin’s Hamiltonian,

Δ( cos(𝜙/2) −𝑖𝑟 sin(𝜙/2)
𝑖𝑟 sin(𝜙/2) − cos(𝜙/2) ) → Δ(cos(𝜙/2) 0

0 − cos(𝜙/2)). (4.1.6)

Here the two quasiparticles in Averin’s Hamiltonian completely decouple and
we get two separate systems. These two system correspond to the solutions of
Beenakker’s Hamiltonian, so the models are equal, just in slightly different rep-
resentations. This makes physical sense because if 𝑇 = 1 the scattering normal
region in Beenakker’s model does not affect the particles and it is only the An-
dreev reflections that play a part. But the Andreev reflection only depends on 𝜙.
Likewise, in Averin’s model 𝑟 = −𝑖𝑈(2𝑘𝐹 )/ℏ𝑣𝐹 so if 𝑟 = 0 then 𝑈(2𝑘𝐹 ) must be
zero. The potential plays no role and the only thing left to affect the quasiparticles
is the phase difference 𝜙.

4.2 Unitary transformation
We will now derive the extra terms that appear from transforming the kinetic
term that we ignored in Section 4.1.1. We know from Equation (4.1.1) that we
can diagonalise the the potential part of Averin’s Hamiltonian to get Beenakker’s
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potential. This means that there exists a unitary transformation 𝑈 that solve the
following equation,

𝑈( cos(𝜙/2) −𝑖𝑟 sin(𝜙/2)
𝑖𝑟 sin(𝜙/2) − cos(𝜙/2) )𝑈† = ⎛⎜

⎝

√1 − 𝑇 sin(𝜙/2)2 0
0 −√1 − 𝑇 sin(𝜙/2)2

⎞⎟
⎠

.

(4.2.1)
The unitary transformation that accomplishes this is constructed from the or-
thonormal eigenvectors,

v+ = (𝑓1(𝜙)
𝑓2(𝜙)) and v− = (−𝑓2(𝜙)

𝑓1(𝜙) ), (4.2.2)

where 𝑓1(𝜙)2 + 𝑓2(𝜙)2 = 1 for all 𝜙. To satisfy this constraint we introduce a new
variable 𝑦(𝜙) and let 𝑓1(𝜙) = cos(𝑦) and 𝑓2(𝜙) = sin(𝑦) so that the eigenvectors
become,

v+ → (cos(𝑦)
sin(𝑦)), v− → (− sin(𝑦)

cos(𝑦) ). (4.2.3)

Which satisfy the above requirements for any function 𝑦(𝜙) and therefore

𝑈 = (cos(𝑦) − sin(𝑦)
sin(𝑦) cos(𝑦) ) = 𝑒𝑖𝜎2𝑦 (4.2.4)

where 𝜎2 is the second Pauli matrix. We will drop the (𝜙) on 𝑦(𝜙) in equations to
make them less cluttered but 𝑦 still has a 𝜙 dependency. So there exists a function
𝑦(𝜙) such that Equation (4.2.1) is true. To find it we can use the fact that 𝑈 by
construction obeys the following equation,

𝑈𝐴𝑈† = 𝐸𝐵𝜎3. (4.2.5)

Where 𝐴 is the potential in Averin’s Hamiltonian (3.2.4) and 𝐸𝐵 is the potential
in Beenakker’s Hamiltonian (3.1.11). Rewriting this equation we get,

( cos(𝜙
2 ) 𝑟 sin(𝜙

2 )
𝑟 sin(𝜙

2 ) − cos(𝜙
2 )) = 𝐴 = 𝐸𝐵𝑈†𝜎3𝑈 = √1 − 𝑇 sin(𝜙

2 )
2
(cos(2𝑦) sin(2𝑦)

sin(2𝑦) − cos(2𝑦))

(4.2.6)
Matching elements in the matrix we can find and solve for 𝑦(𝜙),

𝑦(𝜙) = 1
2 arccos⎛⎜⎜

⎝

cos(𝜙/2)
√1 − 𝑇 sin(𝜙/2)2

⎞⎟⎟
⎠

, (4.2.7)

With Equation (4.2.4) and (4.2.7) we can now do the transformation. One thing to
keep in mind when we work with operators, is to remember to carry them through.
We will use the notation that if the derivative is “empty” on top, then it operates
on everything to the right whereas if it is “occupied” then it only operates on what
is on the fraction line. For example,

𝜕
𝜕𝜙𝐴𝐵𝐶 operates on everything, 𝜕𝐴

𝜕𝜙 𝐵𝐶 only operates on 𝐴.
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Keeping this in mind we can transform the kinetic term,

𝐻 =𝑈 𝜕2

𝜕𝜙2 𝑈† (4.2.8)

=𝑈 𝜕
𝜕𝜙 (𝜕𝑈†

𝜕𝜙 + 𝑈† 𝜕
𝜕𝜙) (4.2.9)

=𝑈 𝜕2𝑈†

𝜕𝜙2 + 𝑈 𝜕𝑈†

𝜕𝜙
𝜕

𝜕𝜙 + 𝑈 𝜕𝑈†

𝜕𝜙
𝜕

𝜕𝜙 + 𝑈𝑈† 𝜕2

𝜕𝜙2 (4.2.10)

= 𝜕2

𝜕𝜙2 + 𝑈 𝜕2𝑈†

𝜕𝜙2 + 2𝑈 𝜕𝑈†

𝜕𝜙
𝜕

𝜕𝜙. (4.2.11)

Equation (4.2.11) does not immediately look Hermitian, but it can be rewritten
by decomposing the last term into a Hermitian and an anti-Hermitian part. We
use the fact that two operators 𝐴 and 𝐵 can be decomposed into a Hermitian and
anti-Hermitian part as follows,

𝐴𝐵 = 1
2(𝐴𝐵 + 𝐵†𝐴†) + 1

2(𝐴𝐵 − 𝐵†𝐴†). (4.2.12)

Using this equation we can rewrite Equation (4.2.11) to be,

𝐻 = 𝜕2

𝜕𝜙2 + 𝑈 (𝜕2𝑈†

𝜕𝜙2 ) + (𝑈 𝜕𝑈†

𝜕𝜙
𝜕

𝜕𝜙 + 𝜕
𝜕𝜙𝑈 𝜕𝑈†

𝜕𝜙 )

+ (𝑈 𝜕𝑈†

𝜕𝜙
𝜕

𝜕𝜙 − 𝜕
𝜕𝜙𝑈 𝜕𝑈†

𝜕𝜙 ) (4.2.13)

= 𝜕2

𝜕𝜙2 + 𝑈 (𝜕2𝑈†

𝜕𝜙2 ) + (𝑈 𝜕𝑈†

𝜕𝜙
𝜕

𝜕𝜙 + 𝜕
𝜕𝜙𝑈 𝜕𝑈†

𝜕𝜙 )

+ 𝑈 𝜕𝑈†

𝜕𝜙
𝜕

𝜕𝜙 − 𝜕𝑈
𝜕𝜙

𝜕𝑈†

𝜕𝜙 − 𝑈 𝜕2𝑈†

𝜕𝜙2 − 𝑈 𝜕𝑈†

𝜕𝜙
𝜕

𝜕𝜙 (4.2.14)

= 𝜕2

𝜕𝜙2 + (𝑈 𝜕𝑈†

𝜕𝜙
𝜕

𝜕𝜙 + 𝜕
𝜕𝜙𝑈 𝜕𝑈†

𝜕𝜙 ) − 𝜕𝑈
𝜕𝜙

𝜕𝑈†

𝜕𝜙 . (4.2.15)

Here the first and the last term are clearly Hermitian and the middle term is
Hermitian by construction. Now that we have the Averin Hamiltonian in the basis
of the Beenakker Hamiltonian we calculate 𝜕𝑈†/𝜕𝜙 using Equation (4.2.4).

𝜕𝑈†

𝜕𝜙 = 𝜕
𝜕𝜙𝑒−𝑖𝜎2𝑦 = 𝑒−𝑖𝜎2𝑦 (−𝑖𝜎2

𝜕𝑦
𝜕𝜙) = 𝑈† (−𝑖𝜎2

𝜕𝑦
𝜕𝜙) . (4.2.16)

With these equations we can now write the full Averin Hamiltonian in the basis of
Beenakker’s Hamiltonian by inserting Equation (4.2.16) into (4.2.15) and adding
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in the transformed potential which by construction is Beenakker’s potential.

𝐻𝐴 = 𝐸𝐶𝜎0
𝜕2

𝜕𝜙2 + Δ𝜎3√1 − 𝑇 sin(𝜙
2 )

2

− 𝐸𝐶𝜎0 ( 𝜕𝑦
𝜕𝜙)

2
− 𝐸𝐶𝜎2 (𝑖 𝜕

𝜕𝜙 ( 𝜕𝑦
𝜕𝜙) + ( 𝜕𝑦

𝜕𝜙) 𝑖 𝜕
𝜕𝜙)

⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟
Difference from Beenakker

, (4.2.17)

where we have used the fact that 𝜎2
2 = 𝜎0. The derivative of 𝑦(𝜙) is,

𝜕𝑦
𝜕𝜙 =

√
1 − 𝑇

4 (1 − 𝑇 sin(𝜙
2 )2)

. (4.2.18)

Here we can see that if 𝑇 = 1 the there is no difference between Averin and
Beenakker as we would expect. In the 𝑇 = 0 limit the derivative reduces to 1/4
and writing the derivatives in charge basis, so 𝑖𝜕/𝜕𝜙 → 𝑛, the part that separates
Averin and Beenakker can be written as,

𝐻diff. = ( 1/16 −𝑖/4 ⋅ 𝑛
𝑖/4 ⋅ 𝑛 1/16 ) for 𝑇 = 0. (4.2.19)

Unfortunately this theoretical work does not really tell us much. Equation (4.2.19)
would be significantly more helpful if we had an analytical expression for the
wavefunctions for either Averin or Beenakker, because then we could operate on
that wavefunction and find an approximate expression for energy difference. In
this entire calculating we have assumed 𝑛𝑔 = 0. We could include 𝑛𝑔 and we would
end some off diagonal term of the form 2𝑛𝑔𝑖𝜕/𝜕𝜙. But we would still be stuck
with 𝐻diff. not being able to calculate any further.
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Chapter 5

Numerics

The Hamiltonians from Beenakker and Averin are not analytically solvable so we
have to resort to numerical methods. One of the most straight forward ways of
solving differential equations is the finite difference method. The finite difference
method takes a partial differential equation (PDE) and turns it into a system of
linear equations, which can be written as a matrix and solved on a computer.

5.1 Finite Difference Methode
We solve the time-independent Schrödinger equation by using the finite difference
method similarly to Aumann et al.[13]. In the finite difference method the vari-
ables, for example space or time, are discretised 𝑥 → [𝑥0, 𝑥1, ..., 𝑥𝑁 ], where there
is a finite difference between each point 𝑥1 − 𝑥0 = 𝛿. The interval over which the
PDE is solved should be such that at the cut-off values 𝑥0 and 𝑥𝑁 , the solution
is essentially zero. The closer it is to zero, the less we loss from truncating the
space over which we solve the PDE. The cut-off value depends on the parameters
of the differential equation, as they control how spread out the solution is, but the
number of solutions of interest also plays a role. For many systems the solution
with the lowest eigenvalue is well localised in a minima and solutions with larger
eigenvalues will be more spread out. So if we are only interested in the solution
with the lowest eigenvalue then we might be able to choose a smaller cut-off value
than if we are interested in the lowest 15 solutions.

Another consideration is that the distance between points should not be so big
that any important detail is lost. So when we solve our differential equations we
have two parameters that we need to keep in mind if we want accurate solutions,
the cut-off values and the resolution. But there is no equation to determine what
resolution and cut-off value we need to choose. We just have to try a couple of
times until we find some values that ensures that the solutions converge.

Once we have discretised the space we need to find out how to represent the
derivatives. This can be done by taking the definition of the derivative and taking
the limit to 𝛿 instead of 0.

𝜕𝑓(𝑥0)
𝜕𝑥 = lim

ℎ→𝛿
𝑓(𝑥0 + ℎ) − 𝑓(𝑥0)

ℎ ⇒ 𝜕𝑓𝑛
𝜕𝑥 = 𝑓𝑛+1 − 𝑓𝑛

𝛿 , (5.1.1)

19



where 𝑓𝑛 is the function value at 𝑥𝑛. This first order approximation of the deriva-
tive will run into a problem with extrema. If it is at a perfect extrema where
𝑓𝑛+1 = 𝑓𝑛−1 ≠ 𝑓𝑛 then it will not equal zero as we would expect. To fix this we
can make it balanced, as opposed to being biased to the right as it is right now. To
make it balanced we take the points on either side of the one where the derivative
is acting and increase the denominator to be 2𝛿 to reflect the new distance between
the chosen points. So the first derivative becomes,

𝜕𝑓𝑛
𝜕𝑥 = 𝑓𝑛+1 − 𝑓𝑛−1

2𝛿 . (5.1.2)

A similar calculation can be done for the second derivative and we find that,

𝜕2𝑓𝑛
𝜕𝑥2 = 𝑓𝑛+1 − 2𝑓𝑛 + 𝑓𝑛−1

𝛿2 . (5.1.3)

If we write the function as a vector 𝑓(𝑥) →= [𝑓0, 𝑓1, ..., 𝑓𝑁 ]𝑇 the derivatives can
be written as matrices,

𝜕
𝜕𝑥 = 1

2𝛿
⎛⎜⎜⎜⎜
⎝

0 1
−1 0 1

−1 0 1
−1 0

⎞⎟⎟⎟⎟
⎠

and 𝜕2

𝜕𝑥2 = 1
𝛿2

⎛⎜⎜⎜⎜
⎝

−2 1
1 −2 1

1 −2 1
1 −2

⎞⎟⎟⎟⎟
⎠

. (5.1.4)

Here we have not dealt with the boundary conditions and naively cut of any values
outside [𝑥0, 𝑥𝑁 ]. In our case with 𝜙 being a 2𝜋 periodic variable we need periodic
boundary conditions. Using periodic boundary condition allows us to not worry
about cut-off values because our coordinate does not go from −∞ to ∞, it is only
defined on [0, 2𝜋] and loops back on itself. So now we only have to worry about
the resolution. We implement this by taking mod𝑁 of all the indices (which is
the discretised version of taking mod2𝜋). The first derivatives at the ends then
become,

𝜕𝑓𝑁
𝜕𝑥 = 𝑓𝑁+1 − 𝑓𝑁−1

2𝛿 ⇒ 𝑓0 − 𝑓𝑁−1
2𝛿 and 𝜕𝑓0

𝜕𝑥 = 𝑓−1 − 𝑓1
2𝛿 ⇒ 𝑓𝑁 − 𝑓1

2𝛿 , (5.1.5)

and likewise for the second derivative. The derivatives with periodic boundary
conditions in matrix form are,

𝜕
𝜕𝜙 = 1

2𝛿
⎛⎜⎜⎜⎜
⎝

0 1 −1
−1 0 1

−1 0 1
1 −1 0

⎞⎟⎟⎟⎟
⎠

and 𝜕2

𝜕𝜙2 = 1
𝛿2

⎛⎜⎜⎜⎜
⎝

−2 1 1
1 −2 1

1 −2 1
1 1 −2

⎞⎟⎟⎟⎟
⎠

. (5.1.6)

We can now discretise the entire Hamiltonian. Take for example the transmon
Hamiltonian in flux basis,

[4𝐸𝐶
𝜕2

𝜕𝜙2 − 𝐸𝐽 cos(𝜙)] Ψ = 𝐸Ψ, (5.1.7)

20



where the cos(𝜙) operator is,

cos(𝜙) ⇒
⎛⎜⎜⎜⎜⎜⎜
⎝

cos(𝜙0)
cos(𝜙1)

⋱
cos(𝜙𝑁−1)

cos(𝜙𝑁)

⎞⎟⎟⎟⎟⎟⎟
⎠

. (5.1.8)

Now finding the the wavefunctions and the energies are as simple as finding the
eigenvectors and eigenvalues of the matrix inside the brackets in Equation (5.1.7).

5.1.1 Basis switch
When solving Hamiltonians, the initial basis that it is given in, might not be the
most efficient way to solve it. Generally if we can choose a basis where the matrix
has a lot of zeros in it will becomes easier and quicker to solve. In our case with
superconducting qubits we can either use flux basis where our principle variable
is 𝜙 or charge basis where our principle variable is 𝑛. Often the Hamiltonians
are written in the 𝜙 basis because non-linear capacitors are rarely used in super-
conducting qubits, but they do exist[24]. This means that all the capacitors are
linear capacitors with 𝑛2 terms. The 𝑛2 terms become second derivatives in the
flux basis. So now the Hamiltonian contains a second derivative that looks like
the kinetic energy and some other terms that look like a potential. This gives us
an intuitive way to think about the system, but this might not be the best way of
solving it.

In flux basis we have periodic boundary conditions so we only need to worry
about the resolution. We do not have that in charge basis where 𝑛 goes from
−∞ to ∞ so we have to choose appropriate cut-off values. But because flux is a
compact variable then the conjugate variable is discretised. So the charge basis
can only take specific values. This means that we do not have to worry about
making the spacing between points as small as possible because we know the exact
spacing. In this case the spacing is 1. So in one basis we only need to worry about
the resolution being small enough that we do not loss detail and in the other we
only need to worry about the cut-off value and how much of the wavefunction we
are throwing away.

If we want to solve the Hamiltonians in charge basis we need to transform
the cos(𝜙) operator into charge basis. We do this by inserting the identity 𝟙 =
1/2𝜋 ∫𝜋

−𝜋 𝑑𝜙 |𝜙⟩⟨𝜙| and integrating out 𝜙,

⟨𝑛|cos(𝜙)|𝑚⟩ = 1
2𝜋 ∫

𝜋

−𝜋
𝑑𝜙 ⟨𝑛|𝜙⟩ cos(𝜙) ⟨𝜙|𝑚⟩ (5.1.9)

= 1
2𝜋

1
2 ∫

𝜋

−𝜋
𝑑𝜙 (𝑒𝑖(𝑚−𝑛+1)𝜙 + 𝑒𝑖(𝑚−𝑛−1)𝜙) (5.1.10)

= − 1
2𝜋 (sin((𝑚 − 𝑛)𝜋)

𝑚 − 𝑛 + 1 + sin((𝑚 − 𝑛)𝜋)
𝑚 − 𝑛 − 1 ) (5.1.11)

=1
2𝛿𝑚,𝑛±1 for 𝑚, 𝑛 ∈ ℤ (5.1.12)
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Figure 5.1: The cos(𝜙) operator in charge basis. The function plotted is Equation
(5.1.11). Here we can see that the only non-zero integer values are ±1.

The reason the last equality holds is that sin(𝜋𝑘) = 0 for 𝑘 ∈ ℤ, but at 𝑚−𝑛 = ±1
we have a zero divided by zero expressions. Evaluating Equation (5.1.11) in the
limits 𝑚 − 𝑛 = 1 and 𝑚 − 𝑛 = −1 we find that they are both 1/2. Using the fact
that 𝑚 and 𝑛 can only be integers the cos(𝜙) operator only has non-zero values
on the longest off diagonals,

cos(𝜙) ⇒ 1
2

⎛⎜⎜⎜⎜⎜⎜
⎝

0 1
1 0 1

⋱
1 0 1

1 0

⎞⎟⎟⎟⎟⎟⎟
⎠

. (5.1.13)

We can also transform cos(𝜙/2) into charge basis,

⟨𝑛|cos(𝜙/2)|𝑚⟩ = 1
2𝜋 ∫

𝜋

−𝜋
𝑑𝜙 ⟨𝑛|𝜙⟩ cos(𝜙/2) ⟨𝜙|𝑚⟩ (5.1.14)

= 1
2𝜋

1
2 [∫

𝜋

−𝜋
𝑑𝜙𝑒𝑖(𝑚−𝑛+1/2)𝜙 + ∫

𝜋

−𝜋
𝑑𝜙𝑒𝑖(𝑚−𝑛−1/2)𝜙] (5.1.15)

= 1
4𝜋 (𝑒𝑖(𝑚−𝑛)𝜋 + 𝑒−𝑖(𝑚−𝑛)𝜋

𝑚 − 𝑛 + 1/2 + −𝑒𝑖(𝑚−𝑛)𝜋 − 𝑒−𝑖(𝑚−𝑛)𝜋

𝑚 − 𝑛 − 1/2 )
(5.1.16)

= 1
4𝜋2 cos(𝜋(𝑚 − 𝑛)) ( 1

𝑚 − 𝑛 + 1/2 − 1
𝑚 − 𝑛 − 1/2) (5.1.17)

= − 2 cos(𝜋(𝑚 − 𝑛))
𝜋(4(𝑚 − 𝑛)2 − 1). (5.1.18)

A similar calculation can be carried out for sin(𝜙/2) where we find that,

⟨𝑛|sin(𝜙/2)|𝑚⟩ = −4𝑖(𝑚 − 𝑛) cos(𝜋(𝑚 − 𝑛))
𝜋(4(𝑚 − 𝑛)2 − 1) . (5.1.19)
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5.2 Convergence
5.2.1 Basis dependent convergence
Before we start investigating the behaviour of the Hamiltonians we will figure
out what basis is the most efficient to work in, because down the line some of
these matrices had the possibility of getting very big. This turned out to be less
of a concern after we found out that we would not be able to extend Averin’s
Hamiltonian into the multichannel regime as discussed in Section 3.2. But there
is still value in implementing the Hamiltonians in both bases. The reason is that
implementing the system in both bases we can check whether or not they converge
to the same values. If they converge to the same values it is a strong indication
that we have implemented them correctly.

The first Hamiltonian that we implemented was the transmon1. The most
important thing when choosing a resolution to work with is that all the values of
interest have converged to their final value. So plotting the 4 lowest eigenvalues as
a function of the resolution we can find out how low we need the spacing to be for
the eigenvalues to converge. In Figure 5.2 we can see the difference in convergence
between the two bases. In Figure 5.2b we see that the eigenvalues converge at
matrices of size 12 to 15 and that it takes around a millisecond to calculate. From
this figure we can also see the fact that the lower eigenvalues converge faster then
the higher ones. These calculation time will vary from computer to computer
so the absolute time is not very useful. They can only tell us something when
compared to other computational times on the same computer.

On the other hand, in Figure 5.2a we see that for the lowest 3 eigenvalues we
need a resolution of 20 to 25 and if we want to calculate the 4th eigenvalue as
well, we need a resolution of around 30 and the computational time becomes 3-4
millisecond. So for the transmon charge basis is the most efficient basis because
we can use matrices half the size and the computation takes one fourth of the time
compared to using the flux basis.

We can make a similar plot for the gatemon solving Averin’s Hamiltonian. We
have not implemented Beenakker’s Hamiltonian in charge basis because if 𝑇 is not
1 or 0 then the basis change is an elliptic integral which does not have an analytical
solution and then we would have to do element wise numerical integration to do
the change of basis. This would be too computationally intensive and we would
loose the potential advantage of switching bases. Figure 5.3 is similar to Figure
5.2 but the x-axis is the resolution of the cos(𝜙/2) and sin(𝜙/2) matrices so the
full matrix being solved is twice as big. The reason for that is that (3.2.4) can be
written as,

�̂�𝐴 = 4𝐸𝐶(�̂� − 𝑛𝑔)2 ⊗ ̂𝐼2 + Δ [cos(𝜙/2) ⊗ 𝜎3 + sin(𝜙/2) ⊗ 𝜎2] , (5.2.1)

where 𝜎2 and 𝜎3 are the Pauli matrices. In charge basis the cut-off values have to
be so large that the wavefunction is essentially zero at that point, so we loose as

1Github repository where the code to generate the plots is stored: https://github.com/
Shellf1sh/Speciale
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(a) Flux basis (b) Charge basis

Figure 5.2: Convergence of the 4 lowest eigenvalues for the transmon(2.2.5) at
different computational resolutions with 𝐸𝐽/𝐸𝐶 = 50 and 𝑛𝑔 = 0. The grey
dashed line is the value of the last point (i.e. the highest resolution). (a) Transmon
in flux basis. Since the flux is periodic, the resolution 𝑛 corresponds to a spacing
between points which is 2𝜋/𝑛. (b) Transmon in charge basis. Because the spacing
is exact in charge basis a resolution of 𝑛 corresponds to a cut-off value of (𝑛 −
1)/2(We only solve for 𝑛 odd so that it is symmetric around 0.).

little information as possible by truncating the calculation. This means that in the
very heavy limit we can run into problems with the charge basis. The reason for
that, is in the heavy limit the system is narrowly localised in flux space, but that
means that it is almost completely delocalised in charge space due to the fact that
Fourier transforming a narrow function from one space creates a wide function in
the conjugate space. An extreme example of this is that the Fourier transform of
the delta function is the constant function, the narrowest possible function Fourier
transforms into the widest possible function. This means that the wavefunction
will not go to zero before the cut off value and then the solutions cannot be trusted.
One might think that we would then get the same problem with the flux basis in
the very light limit, because there it is opposite. The wavefunction is localised in
number space, but delocalised in 𝜙 space. But this delocalisation does not cause
a problem because in the flux basis we have periodic boundary conditions so it is
not am issue that the wavefunction extends all the way to boundary.

In Figure 5.3 we see charge basis is still the most efficient basis to solve the
Hamiltonian because we do not need as big of a matrix for convergence of the
solutions. But compared to Figure 5.2, we see that in 5.3, for similar sized matrices
flux basis is now more efficient. The reason is that the Fourier transform of the
cos(𝜙/2) and sin(𝜙/2) matrices are not mostly zero. Equation (5.1.18) and (5.1.19)
do not have a lot of zero like (5.1.11). This means that we loss the advantage of
using numerical methods like scipy.sparse in Python that are specifically design
to work effectively on sparse matrices (matrices that contain mostly zeros).
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(a) Flux basis (b) Charge basis

Figure 5.3: The 4 lowest eigenvalues for Averin’s Hamiltonian(3.2.4) at different
computational resolutions with 𝛽 = 5, 𝑛𝑔 = 0 and 𝑇 = 0.8. The grey dashed line
is the value of the last point (i.e. the highest resolution). (a) Gatemon in flux
basis. Since the flux is periodic the resolution 𝑛 corresponds to a spacing between
points the is 2𝜋/𝑛. (b) Gatemon in charge basis. Because the spacing is exact in
charge basis a resolution of 𝑛 corresponds to a cut-off value of (𝑛 − 1)/2(We only
solve for 𝑛 odd so that it is symmetric around 0.).

5.2.2 Scaling
Now that we have chosen the appropriate size and basis to solve our Hamiltonian
we can now compare models. When we want to compare models we need to scale
them correctly so that we can see where they are different and where they for all
practical purposes are the same. The transmon has one characteristic parameter,
the energy ratio 𝐸𝐽/𝐸𝐶. We will define this parameter to be 𝛽. Using that and
rescaling the transmon Hamiltonian (2.2.5) it can be written as,

𝐻𝑇 = 4 1
𝛽(𝑛 − 𝑛𝑔)2 − cos(𝜙). (5.2.2)

Now the energy is scaled to the depth of the potential. We will also rewrite
Beenakker’s Hamiltonian to be scale to the depth of the potential. We do this by
using the Taylor expansion from Section 4.1.2 so Equation (3.1.11) becomes,

𝐻𝐵 ≈ 4𝐸𝐶(𝑛 − 𝑛𝑔)2 − Δ𝑇
4 cos(𝜙) − Δ (1 − 𝑇

4 ) . (5.2.3)

In this Hamiltonian Δ𝑇 /4 is the effective Josephson energy ̃𝐸𝐽 . That means that
for Beenakker’s Hamiltonian 𝛽 = ̃𝐸𝐽/𝐸𝐶 = Δ𝑇 /4𝐸𝐶. We then use this to insert
𝐸𝐶 = Δ𝑇 /4𝛽,

𝐻𝐵 ≈ 4Δ𝑇
4𝛽 (𝑛 − 𝑛𝑔)2 − Δ𝑇

4 cos(𝜙) − Δ (1 − 𝑇
4 ) . (5.2.4)
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In Equation (5.2.2) the prefactor in the cosine term is 1. So the get the Hamilto-
nians on the same energy scale we multiply Equation (5.2.4) with 4/Δ𝑇 .

𝐻𝐵 ≈ 4 1
𝛽(𝑛 − 𝑛𝑔)2 − cos(𝜙) − 4

𝑇 (1 − 𝑇
4 ) . (5.2.5)

When we now compare the transmon and Beenakker’s model they will agree in
the low transmission limit as we would physically expect. As we increase 𝑇 we
can see how they differ. With this scaling and correction Beenakker’s Hamiltonian
becomes,

𝐻𝐵 = 4 1
𝛽(𝑛 − 𝑛𝑔)2 − 4

𝑇
√1 − 𝑇 sin(𝜙/2)2 + 4

𝑇 (1 − 𝑇
4 ) . (5.2.6)

This version of Beenakker’s Hamiltonian will give the same results as the transmon
in the small 𝑇 limit. We also apply this scaling to Averin’s Hamiltonian so that
Beenakker and Averin agree at 𝑇 = 1.

5.2.3 Comparison
Now we are in a situation where we can compare the Hamiltonians on similar
energy scales to see how they differ. The first comparison we do is to plot the the
two different gatemon models and the transmon with the same 𝛽, on the same
energy scale and vary 𝑇 .

Figure 5.4: The eigenvalues of the three different models with 𝛽 = 10. The
transmon is flat because 𝑇 does not appear in the transmon Hamiltonian.

In Figure 5.4 we can see that in the small 𝑇 limit, the transmon and Beenakker’s
Hamiltonian agree as we have scaled them to do. In the high 𝑇 limit we see that
Averin and Beenakker agree. This is because for 𝑇 = 1 then 𝑟 = 0 and the
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two subspaces in Averin’s Hamiltonian decouple and become the two solutions of
Beenakker’s Hamiltonian we saw in Section 4.1.2. So Figure 5.4 makes sense insofar
as the limits are what we expect them to be. This together with the convergence
of eigenvalues in Section 5.2.1 is strong evidence that the numerical methods have
been implemented correctly.

The apparent degeneracy in the transmon model comes from the fact that for
states with high energy the potential is just a small perturbation, so they are
essentially free particles with periodic boundary conditions. This system is ”the
particle on a ring” and its states are double degenerate except for the ground state.
The Hamiltonian for the particle on a ring is,

𝐻𝑟𝑖𝑛𝑔Ψ = − ℏ2

2𝑚
𝜕2Ψ
𝜕𝜙2 = 𝐸Ψ with Ψ(0) = Ψ(𝐿), (5.2.7)

where 𝐿 is the circumference of the ring. The solution to this Hamiltonian is the
complex exponential,

Ψ(𝜙) = exp{𝑖
√

2𝑚𝐸
ℏ 𝜙}. (5.2.8)

We then have to look at the periodic boundary conditions. Ψ(0) = 1 so therefore
Ψ(𝐿) = 1 which means that 𝐿

√
2𝑚𝐸/ℏ = 𝑛𝜋 where 𝑛 ∈ ℤ. Rearranging, the

energy of the states are,

𝐸 = 𝜋2

2𝑚𝐿2 𝑛2, (5.2.9)

which is doubly degenerate except for all 𝑛 except 𝑛 = 0, which is the unique
ground state. This is why we see that the transmon is almost degenerate for high
energy, and the splitting gets smaller the higher in energy we go.

Another way to illustrate this is to make a plot where we keep 𝑇 constant
and then vary 𝛽. In Figure 5.5 we have the three lowest eigenvalues as a function
of 𝛽 for four different transmissions. The first thing to note here is that for the
top plots where 𝑇 is small we see that the transmon (filled line) and Beenakker’s
Hamiltonian (dashed line) agree at all weights as predicted in Section 4.1.2.

We also see that in all cases when the energies rise in the low 𝛽 limit, the
first and second excited states converge to the same value for the transmon and
Beenakker. This is consistent with the particle on a ring model in the light regime.
Also the ground state goes to zero which again is consistent with Equation (5.2.9).
This is because lowering 𝛽 increases the kinetic energy while keeping the potential
energy constant. That is equivalent to keeping the kinetic energy constant and
lowering the potential energy and as the potential energy gets smaller and smaller
the system becomes more like a particle on a ring.

A third thing which we see from the inserts in Figure 5.5 is that the in the
heavy limit, for all 𝑇 , Beenakker’s Hamiltonian and Averin’s Hamiltonian agree
as predicted in Section 4.1.1. We see in Figure 5.5 that everything is well behaved
and gives the predicted behaviour. So this is another good indication, on top of the
convergence in different bases in Section 5.2.1 that the numerical implementation
is correct.
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Figure 5.5: The eigenvalues of the three different models at four different trans-
mission. The filled line is the transmon, the dashed line is Beenakker and the
dotted line is Averin. 𝐸0=blue, 𝐸1=orange and 𝐸2=green.

5.3 Multichannel Beenakker
So far we have been solving Beenakker’s Hamiltonian with only one channel. But
there is nothing stopping us from solving it with more channels. In the flux basis,
which is the only one available to us for Beenakker’s Hamiltonian, the potential
term is diagonal so the discretisation is straight forward. In Figure 5.6 we have
plotted the qubit frequency of Beenakker’s Hamiltonian with four channels as they
progressively open up.

This smaller and smaller increase in qubit frequency can be explained by using
some of the same approximation that are used with the transmon. To justify
this we use that in the heavy limit the system is similar to the transmon in the
fact that it is a weakly anharmonic oscillator. Bearing this in mind we will use
the same approximation for the qubit frequency that Koch et al. uses[14]. By
taking the transmon as a weakly anharmonic oscillator and then expanding the
cos(𝜙) term to 4th order in 𝜙 they get a Duffing oscillator which they use to
calculate the correction to the harmonic oscillator energies. Using that they find
that 𝜔𝑞 ∝ √𝐸𝐶𝐸𝐽 . For every open channel we add the effective 𝐸𝐽 increases by
≈ Δ so for the multichannel Beenakker Hamiltonian in the heavy limit 𝜔𝑞 ∝

√
𝑁

where 𝑁 is the number of open channels, which is why we see a smaller and smaller
increase in qubit frequency in Figure 5.6 for every channel we open up.

One of the challenges of characterising the gatemon is that we do not actually
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Figure 5.6: Along the x-axis is an arbitrary voltage which is supplied through the
drive line. As this voltage is changed more channels will open up. In the top plot
the qubit frequency is plotted as a function of the voltage as these channels open.

know how many channels are open. At a given voltage it will vary between samples
as it is highly dependent on specific structure of the sample such as impurities and
domain walls. It is not impossible to figure out how many channels are how open,
it is just very hard to do on the gatemon circuit. Hart et al.[25] managed to
characterise a nanowire by using a aluminium ring with a part of it cut out and
replaced by the nanowire. They then had another loop above it to measure the
magnetic flux and a third ring to induce an external magnetic field. They did
this because knowing the magnetic flux they can find the super current. From
Beenakker[19] they have the super current as a function of the change in density
of states with respect to the superconducting phase,

𝐼 = −2𝑒
ℏ 2𝑘𝐵𝑇 ∫

∞

Δ0

𝑑𝜀 ln(2 cosh(𝜀/2𝑘𝐵𝑇 ))𝜕𝜌
𝜕𝜙. (5.3.1)

The density of states can be found from,

𝜌 = 1
2𝜋𝑖

𝜕
𝜕𝐸 Tr{ln(𝑆)} = 1

2𝜋𝑖
𝜕

𝜕𝐸 ln(det{𝑆}). (5.3.2)

The derivation of this equation can be found in appendix A. They then simplify
the expression so they get,

𝐼(𝜙) = −2𝑒
ℏ sin(𝜙)

𝑁
∑
𝑝=1

𝑇𝑝
𝜀𝑝

tanh
𝜀𝑝

2𝑘𝐵𝑇 . (5.3.3)

They first induced a magnetic field with the third ring. This magnetic field
threaded the ring with the nanowire on and tuned the phase difference 𝜙. That
then generated a super current that induced a new magnetic field that the second
ring could be measured. With the phase-current relation measured they then fit
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Equation (5.3.3) to the measured phase-current relation with the 𝑇𝑝’s as param-
eters. This works when the nanowire is not used for anything else, but the extra
rings and the loop with the nanowire are not feasible to do on the gatemon circuit.
So because we do not know how many channels there are and we have found no
fundamental difference in the dynamics when adding the the extra channels when
calculating the 𝑇1 times in Section 6 then we will just use one channel. This also
enables a more one to one comparison with Averin’s Hamiltonian.
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Chapter 6

Noise

In real systems there will be unpredictable interactions with the environment that
will affect the system. These effects will introduce noise into the system. In qubits
this noise is detrimental to the lifetime of the qubit because these noise fluctuations
will cause stimulated emission and increase the decay rate of the qubit. Noise can
be categorised into different types. Some of the most pervasive and common types
of noise that will be the focus of this thesis are 1/𝑓 noise and ohmic noise.

6.1 Ohmic
Our qubit can unfortunately not be completely isolated from the environment.
There is a continuum of states in the environment that it couples to, and that
reduces our coherence time. So now we need to find the spectral density that
describes this coupling. The spectral density is defined as[26],

𝑆𝑓(𝜔) = 2𝜋ℏ ∑
𝛼,𝛾

𝜌𝛼𝛼| ⟨𝛼|𝑓|𝛾⟩|2𝛿(𝜀𝛾 − 𝜀𝛼 − ℏ𝜔), (6.1.1)

where 𝑓 is the operator responsible for the noise and 𝜌 is the density matrix. The
way we will model it is as if the qubit is capacitively coupled to an infinitely long
transmission line. Voltage fluctuations in the end of the transmission line will
take the role as voltage fluctuations around the qubit. These fluctuations induce
stimulated emission of the qubit and that increases the relaxation rate of the qubit
so that excitations can escape through the transmission line and and never return.

The transmission line has inductance 𝑙 per unit length and capacitance 𝑐 per
unit length. The Lagrangian for the transmission line is[26],

ℒ = ∫
∞

0
𝑑𝑥 𝑙

2𝑗2 − 1
2𝑐𝑞2, (6.1.2)

where 𝑗(𝑥, 𝑡), the current density, and 𝑞(𝑥, 𝑡), the charge density, are functions of
time and place and the obey the continuity equation 𝜕𝑥𝑗 + 𝜕𝑡𝑞 = 0. To make sure
that the continuity equation is satisfied, we introduce a new variable 𝜃 which we
define as,

𝜃(𝑥, 𝑡) = ∫
𝑥

0
𝑑𝑥′𝑞(𝑥′, 𝑡). (6.1.3)
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Then 𝑞(𝑥, 𝑡) = 𝜕𝑥𝜃 and 𝑗(𝑥, 𝑡) = −𝜕𝑡𝜃 will always satisfy the continuity equation.
We can then write the Lagrangian as a function of 𝜃,

ℒ = ∫
∞

0
𝑑𝑥 𝑙

2(𝜕𝑡𝜃)2 − 1
2𝑐(𝜕𝑥𝜃)2. (6.1.4)

We can then use the Euler-Lagrange equation to get the wave equation,

𝜕ℒ
𝜕𝜃 = 𝜕

𝜕𝑥
𝜕ℒ

𝜕(𝜕𝑥𝜃) + 𝜕
𝜕𝑡

𝜕ℒ
𝜕(𝜕𝑡𝜃) ⇒ 0 = 𝑙 𝜕2𝜃

𝜕𝑥2 − 1
𝑐

𝜕2𝜃
𝜕𝑡2 . (6.1.5)

For now we make the transmission line a finite length 𝐿, later we will extend it to
infinity again later. The proper boundary conditions for 𝜃 are 𝜃(0, 𝑡) = 𝜃(𝐿, 𝑡) = 0.
This is because,

𝜃(0, 𝑡) = ∫
0

0
𝑑𝑥′𝑞(𝑥′, 𝑡) = 0 and 𝜃(𝐿, 𝑡) = ∫

𝐿

0
𝑑𝑥′𝑞(𝑥′, 𝑡) = 0. (6.1.6)

The transmission line is neutral so the total charge in the line is zero, so the second
integral is zero. With these boundary conditions the general solution to the wave
equation can be written as a sum of the normal modes[27],

𝜃(𝑥, 𝑡) = √ 2
𝐿

∞
∑
𝑛=1

𝜙𝑛(𝑡) sin(𝑘𝑛𝑥), (6.1.7)

with 𝑘𝑛 = 𝑛𝜋/𝐿. We now carry out the integration in Equation (6.1.4) for each
of the two terms.

∫
𝐿

0
𝑑𝑥′ 𝑙

2 (𝜕𝜃
𝜕𝑡 )

2
= 𝑙

2 ∫
𝐿

0
𝑑𝑥′ 2

𝐿 (
∞

∑
𝑛=0

𝜕𝜙𝑛
𝜕𝑡 sin(𝑘𝑛𝑥′))

2

(6.1.8)

= 𝑙
2

2
𝐿 ∫

𝐿

0
𝑑𝑥′ (

∞
∑
𝑛=1

(𝜕𝜙𝑛
𝜕𝑡 )

2
sin(𝑘𝑛𝑥′)2) (6.1.9)

= 𝑙
2

2
𝐿

∞
∑
𝑛=1

(𝜕𝜙𝑛
𝜕𝑡 )

2
∫

𝐿

0
𝑑𝑥′ sin(𝑘𝑛𝑥′)2 (6.1.10)

= 𝑙
2

2
𝐿

∞
∑
𝑛=1

̇𝜙𝑛
2 (𝐿

2 + 𝐿
2𝜋𝑛

sin(2𝜋𝑛) − sin(0)
2 ) (6.1.11)

= 𝑙
2

∞
∑
𝑛=1

̇𝜙𝑛
2. (6.1.12)

In Equation (6.1.9) we can move the exponent inside the brackets because the
sine functions are an orthonormal basis so any cross term from squaring the sum
will vanish once we do the integral. Similarly the second term in Equation (6.1.4)
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becomes,

∫
𝐿

0
𝑑𝑥′ 1

2𝑐 ( 𝜕𝜃
𝜕𝑥)

2
= 1

2𝑐 ∫
𝐿

0
𝑑𝑥′ 2

𝐿 (
∞

∑
𝑛=1

𝜙𝑛𝑘𝑛 cos(𝑘𝑛𝑥′))
2

(6.1.13)

= 1
2𝑐

2
𝐿

∞
∑
𝑛=1

𝜙2
𝑛𝑘2

𝑛 ∫
𝐿

0
𝑑𝑥′ cos(𝑘𝑛𝑥′)2 (6.1.14)

= 1
2𝑐

∞
∑
𝑛=1

𝑘2
𝑛𝜙2

𝑛. (6.1.15)

Putting Equation (6.1.12) and (6.1.15) into (6.1.4) we find that,

ℒ =
∞

∑
𝑛=1

𝑙
2

̇𝜙𝑛
2 − 1

2𝑐𝑘2
𝑛𝜙2

𝑛 (6.1.16)

So now we have rewritten the Lagrangian to be a sum of independent harmonic
oscillators. This sum of harmonic oscillators mimic the continuum. If the sum is
large enough with many different 𝑘𝑛’s then the energy splitting will be so small
that it is effectively a continuous spectrum. We find the conjugate variables by
doing the Legendre transformation and the Hamiltonian is,

𝐻 =
∞

∑
𝑛=1

1
2𝑙𝑝

2
𝑛 + 1

2𝑐𝑘2
𝑛𝜙2

𝑛. (6.1.17)

𝜙𝑛 and 𝑝𝑛 can be written as raising and lowering operators,

𝜙𝑛 = √ ℏ
2𝑙Ω𝑛

(𝑎† + 𝑎) and 𝑝𝑛 = 𝑖√ℏ𝑙Ω𝑛
2 (𝑎† − 𝑎) (6.1.18)

with Ω𝑛 = 𝑘𝑛/
√

𝑙𝑐. We know evaluate the voltage at the end of the transmission
line, which is what the qubit “sees”. First the voltage is given by,

𝑉 = 𝑞(0, 𝑡)
𝑐 = 1

𝑐
𝜕𝜃(0, 𝑡)

𝜕𝑥 = 1
𝑐

√ 2
𝐿

∞
∑
𝑛=1

𝑘𝑛𝜙𝑛 = 1
𝑐

√ 2
𝐿

∞
∑
𝑛=1

𝑘𝑛√ ℏ
2𝑙Ω𝑛

(𝑎† + 𝑎).

(6.1.19)
Inserting this into Equation (6.1.1) we get

𝑆𝑉 (𝜔) = 2𝜋ℏ 2
𝐿

∞
∑
𝑛=1

ℏΩ𝑛
2𝑐

√
𝑙𝑐

ℏ

× [∣√𝑛𝐵(ℏΩ𝑛) + 1∣
2
𝛿(ℏΩ𝑛 − ℏ𝜔) + ∣√𝑛𝐵(ℏΩ𝑛)∣

2
𝛿(ℏΩ𝑛 + ℏ𝜔)] , (6.1.20)

where, since the transmission line is in thermal equilibrium, the occupation of
states is given by the Bose-Einstein distribution 𝑛𝐵. We now make the transmis-
sion line infinite again and in that process we can convert the sum to an integral
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over 𝑘 using 2𝜋/𝐿 ∑ → ∫ 𝑑𝑘 when 𝐿 → ∞. We switch variables 𝑑𝑘 →
√

𝑙𝑐 𝑑Ω
and the delta functions becomes Heaviside functions,

𝑆𝑉 (𝜔) = 2𝑅0ℏ [𝜔(𝑛𝐵(ℏ𝜔) + 1)Θ(𝜔) − 𝜔𝑛𝐵(−ℏ𝜔)Θ(−𝜔)] , (6.1.21)

where 𝑅0 = √𝑙/𝑐. The positive and negative frequency parts of this equation can
be combined to a simpler expression,

−𝜔𝑛𝐵(−ℏ𝜔) = −𝜔
𝑒− 𝜔ℏ

𝑘𝐵𝑇 − 1
= 𝜔

1 − 𝑒− 𝜔ℏ
𝑘𝐵𝑇

for 𝜔 > 0, (6.1.22)

𝜔(𝑛𝐵(ℏ𝜔) + 1) = 𝜔 𝑒 𝜔ℏ
𝑘𝐵𝑇

𝑒− 𝜔ℏ
𝑘𝐵𝑇 − 1

= 𝜔
1 − 𝑒− 𝜔ℏ

𝑘𝐵𝑇
for 𝜔 < 0. (6.1.23)

The spectral density becomes,

𝑆𝑉 (𝜔) = 2𝑅0ℏ𝜔
1 − 𝑒− 𝜔ℏ

𝑘𝐵𝑇
. (6.1.24)

We now look at the limits. In the ℏ𝜔 ≪ 𝑘𝐵𝑇 we Taylor expand the exponential
to first order. 2𝑅0ℏ𝜔

1 − 𝑒− ℏ𝜔
𝑘𝐵𝑇

≈ 2𝑅0ℏ𝜔
1 − 1 + ℏ𝜔

𝑘𝐵𝑇
= 2𝑅0𝑘𝐵𝑇 . (6.1.25)

This is Johnson-Nyquist noise also called thermal noise because it is directly pro-
portional to the temperature. This was first observed by J.B. Johnson and de-
scribed by H. Nyquist[28, 29]. The other limit 𝜔 ≫ 𝑇 is the one that is relevant
for superconducting qubits as they are placed in cryostats. In that case the expo-
nential becomes vanishingly small and the spectral density reduces to,

𝑆𝑉 (𝜔) = 2𝑅0ℏ𝜔. (6.1.26)

This expression is what is called ohmic noise and the model of the continuum as
a sum of harmonic oscillators is called an ohmic bath. It as first proposed by
Caldeira and Leggett for dissipation in quantum systems[30].

6.2 1/𝑓
One of the most universal types of noise is low frequency noise that has the power
spectral function 1/𝑓𝛼, where 𝛼 is close to unity (for brevity this kind of noise
is called 1/𝑓 noise even when 𝛼 ≠ 1). This kind of noise appears in a surprising
amount of different system. It appears in electronic system such as thin metal
films, superconductors, semiconductors and MOSFET’s but also other types of
system such as cells, the cardiovascular system, the neural network of the brain
and in the number of daily trades of stocks[31, 32].

An important thing to note about 1/𝑓 is that the spectrum cannot follow a
1/𝑓 power law for the entire range of frequencies. If that is the case the spectrum
will diverge in either the low or high frequency limit (or in both for 𝛼=1). This
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would mean that there is infinite energy in the noise which is non-physical. To
ensure that the the noise source is physical the power spectrum must go to zero
faster than 1/𝑓 in the high frequency limit and it must diverge slower than 1/𝑓
in the lower frequency limit such that the total power is finite. But it turns out
that for any physically realisable frequencies from 10−5Hz (Which corresponds
to over a day. So for most experiments this will simply be a constant offset.)1

to 1023Hz which is orders of magnitude lower than the time it takes for light to
cover the distance of an atom, the total power of the fluctuations in a 50Ω resistor
will be around 10−5W[33, 34]. So even if we extend the spectrum to all physical
frequencies we can introduce cut off frequencies outside anything measurable to
ensure convergence.

1/𝑓 spectra can be realised as an emergent phenomenon from the sum of pro-
cesses with exponential decays if the relaxation rates of these processes are uni-
formly distributed[35, 36]. A single exponential relaxation process can be written
as,

𝑁(𝑡) = {𝑁0𝑒−𝜆𝑡 for 𝑡 > 0
0 for 𝑡 < 0 , (6.2.1)

where 𝑁0 is a normalisation constant and 𝜆 is the relaxation rate. If this for
example is a charge trap, then it will repeatedly trap electrons at different times
𝑡𝑘 as electrons move past it. This will happen 𝐾 times within a given time 𝑇 .
Taking the Fourier transform of all of these processes,

ℱ [∑
𝑘

𝑁(𝑡 − 𝑡𝑘)] = ∫
∞

−∞
𝑑𝑡𝑁0 ∑

𝑘
𝑒−𝜆(𝑡−𝑡𝑘)𝑒−𝑖𝜔𝑡 = 𝑁0

𝜆 + 𝑖𝜔 ∑
𝑘

𝑒𝑖𝑡𝑘𝜔. (6.2.2)

With the Fourier transform we find the power spectral function[37],

𝑆(𝜔) = lim
𝑇 →∞

1
𝑇 ∣ℱ [∑

𝑘
𝑁(𝑡 − 𝑡𝑘)]∣

2

= 𝑁2
0

𝜆2 + 𝜔2 lim
𝑇 →∞

1
𝑇 ∑

𝑘,𝑘′
𝑒𝑖(𝑡𝑘−𝑡𝑘′ )𝜔. (6.2.3)

The last sum reduces to the number of events 𝐾. This is because ∑𝑘 𝑒𝑖𝑘𝑥 averages
out to zero if the 𝑘’s are random. Thinking of the geometric interpretation of
complex numbers it is the sum of random points on a circle and if we have enough
of them the they average out to zero. But in our case 𝑡𝑘 − 𝑡𝑘′ is not completely
random. 𝑡𝑘 and 𝑡𝑘′ are the same list of random numbers, so there are 𝐾 terms
where 𝑡𝑘 = 𝑡𝑘′ . When 𝑡𝑘 = 𝑡𝑘′ that term in the sum is 1. The rest of the terms
are random because when 𝑘 ≠ 𝑘′ then 𝑡𝑘 and 𝑡𝑘′ are uncorrelated so they cancel
out and we are left with the sum ∑𝐾

𝑘 1 = 𝐾. 𝐾/𝑇 is the rate and as 𝑇 → ∞ this
becomes the average rate 𝑛. So the power spectral function is,

𝑆(𝜔) = 𝑁2
0 𝑛

𝜆2 + 𝜔2 . (6.2.4)

1Even if lower the cut off to something like 10−12Hz then it would not make a big difference
because the total power goes as ln(𝜔upper/𝜔lower).

35



If the relaxation rates are randomly distributed we can then find the expecta-
tion value by integrating over 𝜆 with the appropriate probability density function
(PDF). Assuming that the relaxation rates are uniformly distributed between 𝜆1
and 𝜆2 the PDF is 𝑃𝑢(𝜆) = 1/(𝜆2 − 𝜆1). The new power spectral function is then,

𝑆(𝜔) = ∫
𝜆2

𝜆1

𝑑𝜆𝑆(𝜔)𝑃𝑈(𝜆) (6.2.5)

= 𝑁2
0 𝑛

𝜆2 − 𝜆1
∫

𝜆2

𝜆1

𝑑𝜆 1
𝜆2 + 𝜔2 (6.2.6)

= 𝑁2
0 𝑛

𝜆2 − 𝜆1

arctan( 𝜔
𝜆2

) − arctan( 𝜔
𝜆1

)
𝜔 (6.2.7)

If 𝜔 ≪ 𝜆1 then arctan(𝜔/𝜆1) ≈ 0 and if 𝜔 ≫ 𝜆2 then arctan(𝜔/𝜆2) ≈ 𝜋/2. So in
that case the spectral function reduces to,

𝑆(𝜔) ≈ 𝑁2
0 𝑛𝜋

2(𝜆2 − 𝜆1)
1
𝜔 for 𝜆1 ≫ 𝜔 ≫ 𝜆2 (6.2.8)

which is the 1/𝑓 spectrum, but only on the interval 𝜆1 ≫ 𝜔 ≫ 𝜆2 which also solves
our problem of divergence because all the Lorentzian have a finite total power, so
a average of many Lorentzians will also have a finite total power.

6.3 Relaxation Time
𝑇1 time is the characteristic time it takes for a qubit to decay from the excited
state |1⟩ to the ground state |0⟩. The general way to calculate these 𝑇1 times is
to use Fermi’s Golden Rule[38].

Γ𝜆
1 = 1

ℏ2 ∣ ⟨1|𝜕𝜆�̂�|0⟩∣2𝑆𝜆(𝜔) (6.3.1)

where 𝜆 is the source of noise, for example charge 𝑛𝑔 or flux Φ𝑒𝑥𝑡. The 𝑆𝜆(𝜔)
is the spectral function which depends on what kind of noise it is and what the
source of the noise is. That could be either 1/𝑓 , ohmic or something else. To find
the total relaxation time we take the inverse of the sum of the relaxation rates
𝑇1 = (∑𝜆 Γ𝜆

1 )−1. The spectral functions which we derived in Section 6.1 and 6.2
can be written as [38],

𝑆1/𝑓
𝜆 (𝜔) = 2𝜋𝐴2

𝜆Hz
|𝜔| , 𝑆Ω

𝜆 (𝜔) = 𝐵2
𝜆𝜔

2𝜋 ⋅ 1GHz , (6.3.2)

where all the constants have been collected into one constant that can be exper-
imentally determined. The commonly used litterateur values for these constants
are 𝐴𝑛𝑔

= 10−4𝑒/
√

Hz and 𝐵𝑛𝑔
= 5.2⋅10−9𝑒/

√
Hz[38–41]. These might be slightly

different in different devices, but we will assume that they are close enough that
we can use the same constants for both transmons and gatemons. In general there
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will be several sources of noise, for example charge noise or flux noise which are the
two most common. Flux noise is a concern in circuits where a persistent current
can flow. In our circuits that is not the case because of the capacitor where current
cannot flow across. In for example a flux-tunable transmon a persistent current
can flow around the SQUID so fluctuations in the magnetic field will affect the
current and therefore the qubit frequency.

For charge noise the operator in Equation (6.3.1) is the same for all three
Hamiltonians (apart from a ⊗𝐼2 which we will suppress here for ease of notation).

𝜕𝐻
𝜕𝑛𝑔

= 8𝐸𝐶(�̂� − 𝑛𝑔) (6.3.3)

There are a lot of constants that can be collected in these formulas. The first thing
to note is that in the numerical solutions all the energies are in units of GHzℏ. We
then define ̃𝐸𝐶 = 𝐸𝐶 ⋅ 10−9/ℏ where ̃𝐸𝐶 is the capacitive energy in units of GHz.

Starting with 1/𝑓 charge noise we insert the constants and Equation (6.3.3)
into Equation (6.3.1),

Γ1/𝑓
𝑛𝑔 = 1

ℏ2 ∣⟨1∣−8𝐸𝐶
2𝑒 (�̂� − 𝑛𝑔)∣0⟩∣

2 2𝜋𝐴2
𝑛𝑔

Hz
|𝜔| (6.3.4)

=∣⟨1∣−8
̃𝐸𝐶 ⋅ 10−9

2𝑒ℏ (�̂� − 𝑛𝑔)∣0⟩∣
2
2𝜋10−8𝑒2

|𝜔| (6.3.5)

=2 ⋅ 64𝜋 ⋅ 10
4|�̃�|

̃𝐸𝐶
2∣⟨1∣(�̂� − 𝑛𝑔)∣0⟩∣2, (6.3.6)

where �̃� is the qubit frequency in GHz. We do a similar calculation for the ohmic
noise.

ΓΩ
𝑛𝑔

= 1
ℏ2 ∣⟨1∣−8𝐸𝐶

2𝑒 (�̂� − 𝑛𝑔)∣0⟩∣
2 𝐵2

𝑛𝑔
�̃�

2𝜋 ⋅ 1GHz (6.3.7)

=∣⟨1∣8 ̃𝐸𝐶(�̂� − 𝑛𝑔)∣0⟩∣2 1018(5.2 ⋅ 10−9)2𝑒2/Hz
4𝑒2 ⋅ 2𝜋

�̃�
1GHz (6.3.8)

= (5.2 ⋅ 8)2

4 ⋅ 2𝜋109GHz
�̃�

1GHz
̃𝐸𝐶

2∣⟨1∣(�̂� − 𝑛𝑔)∣0⟩∣2. (6.3.9)

These are the expressions that we have implemented in code. The reason that they
have been rewritten so everything is in gigahertz is that it minimises the chance
of rounding errors. When working with computers there is only a finite amount of
memory so by using extremely big and very small numbers can give unexpected
inaccuracies from rounding errors.

6.4 Results
When calculating the 𝑇1 times we have used a similar scaling as in Section 5.2.3,
but instead of starting from 𝐸𝐽 we instead start from Δ because it is a material
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constant. For aluminium Δ ≈ 160meV which converted to gigahertz becomes
roughly 40GHzℏ[42]. This means that for Beenakker and Averin 𝐸𝐶 = Δ/𝛽 and
for the transmon 𝐸𝐽 = Δ𝑇 /4 and 𝐸𝐶 = Δ𝑇 /4𝛽.

In Figure 6.1 the first thing we see is that the heavier circuits have better
𝑇1 times than their light counterparts. This might not necessarily be due to
insensitivity to charge noise. That is because the insensitivity to charge noise
mainly protects against dephasing. Dephasing will lower the 𝑇2 time of the qubit.
This has not been a topic of discussion in this thesis because currently the gatemons
being fabricated are 𝑇1 limited, so that is the limiting factor. We also see that the
gatemon is limited by ohmic noise. This not a surprise because the gatemon is a
high frequency qubit usually designed to operate in the 4-6GHz range.

Figure 6.1: The 𝑇1 times from both ohmic and 1/𝑓 noise is plotted at four different
weights as a function of transmission 𝑇 .

The diverging behaviour of Beenakker’s Hamiltonian in the light, low trans-
mission limit is because there is not two bound states in that case. In Beenakker’s
Hamiltonian the difference between the maximum and the minimum of the poten-
tial is ≈ 𝑇 /2. So in the low transmission limit we have a vary shallow potential.
Combining this with the fact that when the system is light then the states do not
lay deep in the potential. This means that as the transmission 𝑇 is lowered then
suddenly there is a point where the first excited state is not bound anymore and
it quickly goes from a localised state to something that resembles a free particle.
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This will drastically change the matrix element | ⟨1|𝑛|0⟩|2 and the model breaks
down.

At 𝛽 = 1 in Figure 6.1 we see that the 𝑇1 time for Averin’s Hamiltonian
actually increases as 𝑇 goes to 1. We would expect it agree with Beenakker as
we have specifically scaled to system so that is the case. What is going in here is
that when 𝛽 is high, then states lay deep in potential for Beenakker and in Averin
lowest couple of state lay mostly in the same subspace. But as 𝛽 decreases then
the states from the other subspace get ”pulled” down. So now when 𝑇 → 1 the
two lowest states are almost in completely different subspaces. Those two states
completely decouple at 𝑇 = 1 so the matrix element goes to zero because,

⟨1|𝐴|0⟩ = (Ψ, 𝟘)(𝑎 ⊗ 𝐼2)( 𝟘
Ψ′) = 0, (6.4.1)

where 𝑎 is any linear operator. This vanishing of the matrix element is the reason
that the 𝑇1 time diverges for Averin’s Hamiltonian.

Generally across all four plots in Figure 6.1 Averin has a lower 𝑇1 time than
Beenakker in the low transmission limit. This might be the explanation for the
fact that the experimentalists get a lower than expected 𝑇1 time, because they
use Beenakker to model their gatemons. So it is tempting to say we have found
the source of the discrepancy in the coherence times. But before we jump to that
conclusion we have to make sure that this is the appropriate way of comparing
the two models. What we have done here is all well and good from a purely
theoretical perspective. But when the experimentalists build these devices they
are not necessarily be able to tune the same parameters as we have been changing
so far.

6.4.1 Experimentalist comparison
It turns out that in reality it is hard to know 𝐸𝐽 . So when designing transmons
the experimentalists parameterise the qubits by their capacitive energy 𝐸𝐶 and
the qubit frequency 𝜔𝑞 and then they calculate the Josephson energy 𝐸𝐽 . They
can do this because the transmons is heavy, so the wavefunction is localised around
𝜙 = 0. We can then expand the cos(𝜙) potential to 4th order to get the Duffing
oscillator[14]. Treating the 4th order term as a perturbation Koch et al. finds an
approximate equation for the qubit frequency,

𝜔𝑞 ≈ √8𝐸𝐶𝐸𝐽 − 𝐸𝐶 ⇒ 𝐸𝐽 ≈ (𝜔𝑞 + 𝐸𝐶)2

8𝐸𝐶
. (6.4.2)

So to do the same kind of comparison we choose an 𝐸𝐶 and since we know Δ we
solve Averin’s and Beenakker’s Hamiltonians. Then using equation (6.4.2) and the
qubit frequency from Beenakker’s Hamiltonian we find what the appropriate 𝐸𝐽
is so that we have a transmon with the same 𝐸𝐶 and the same qubit frequency.
The reason that we calculate 𝐸𝐽 from Beenakker’s Hamiltonian and not Averin’s is
that the experimentalists use Beenakker’s Hamiltonian so that is what they would
do. We then solve Beenakker’s and Averin’s Hamiltonian for a range of 𝐸𝐶 from
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Figure 6.2: The frequency of the comparable transmon plotted against the fre-
quency from Beenakker’s Hamiltonian to test the validity of equation (6.4.2). The
dashed line is 𝜔𝑞,𝐵 = 𝜔𝑞,𝑇 . The bottom plot is the weight of the comparable
transmon.

𝐸𝐶 = Δ/5 to 𝐸𝐶 = Δ/60. The first thing we do is then to test how well the
approximation in Equation (6.4.2) works. As we can see in the top plot of Figure
6.2 the approximation works very well for 𝜔𝑞,𝐵 > 5GHz which is 𝛽 > 10. So we
have a gatemon and a transmon with the same 𝐸𝐶 and approximately the same
frequency. We can now make a proper comparison of the transmon and the two
gatemons. Looking at figure 6.3 we can see that Averin’s Hamiltonian has a worse
𝑇1 time, but it seems most pronounced at low transmission. At low transmission
it is a factor 2 to 3 which is pretty close to the factor 3-4 difference that the
experimentalists find.

But when working with the gatemons 𝐸𝐶 is not a parameter we can change
after we have built the device. In Figure 6.4 we have plotted only the 𝑇1 time
from ohmic noise as we can see from Figure 6.3 that it is the limiting noise source.
We can see that as long as we stay in the low transmission regime, then Averin’s
Hamiltonian gives significantly worse 𝑇1 time.

We have not plotted the transmon her because the qubit frequency depends on
the transmission. So for any 𝑇 there is a corresponding transmon so it would not
make sense to plot along side the two gatemon models in Figure 6.4. With this
plot we can see that Averin’s Hamiltonian has a wore 𝑇1 time for a large range of
frequencies. For 𝐸𝐶 = Δ/50 and Δ ≈ 160meV this range is exactly the operating
range for gatemon qubits[17, 18, 43].
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(a) (b)

Figure 6.3: The 𝑇1 times for the three models with the same 𝐸𝐶 and 𝜔𝑞. The
qubit frequency is varied by varying 𝐸𝐶 from Δ/5 to Δ/60.

6.5 Circuits
Even though we have found a discrepancy in the 𝑇1 times there might still be other
effects that disproportionally affect the gatemon. When looking at possible sources
of decoherence in qubits we cannot ignore the surrounding circuit’s effect on the
qubit. There is more to the environment than a general ohmic bath. Components
like resonators or drive lines affect the qubit in very different ways. The first thing
we do is restrict our selves to the two lowest energy states, so we can approximate
the qubit as a harmonic oscillator. We do this because the harmonic oscillator is a
system that we can solve exactly and we can use classical circuit theory with only
resistors, indicators and capacitors to do this. The LC circuit that represents the
qubit is put in parallel with an impedance that represents the environment. This
is the method used by Houck et al.[44].

6.5.1 Circuit theory
To see where the equations Houck et al. uses come from, especially 𝑅 = 1/Re {𝑌 },
it is illustrative to first look at the impedance of a regular LCR circuit. The
reason that we will take a closer look at the derivation, is that 𝑅 = 1/Re {𝑌 } is
generally only true when the complex part of the admittance, the susceptance, is
zero. Normally Re {𝑌 } = 𝑅/(𝑅2 + 𝑋2) But in Houck et al. this relation is used
even though the susceptance is not zero resulting in an effective resistance. The
impedances of the individual components are,

𝑍𝑅 = 𝑅 , 𝑍𝐶 = 1
𝑖𝜔𝐶 , 𝑍𝐿 = 𝑖𝜔𝐿. (6.5.1)
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Figure 6.4: 𝑇1 time from ohmic noise with 𝐸𝐶 = Δ/50. The dots indicate 𝑇 = 0.3

We also use the relations for the Q-factor and resonance frequency, 𝑄 = 𝑅𝐶𝜔0
and 𝜔0 = 1/

√
𝐿𝐶[45]. The total impedance of a parallel LCR circuit is,

𝑍 = (𝑖𝜔𝐶𝑟 + 1
𝑖𝜔𝐿𝑟

+ 1
𝑅𝑟

)
−1

= 𝜔
𝑖𝐶𝑟

(𝜔2 − 𝜔2
0 − 𝑖𝜔𝜔0

𝑄𝑟
)

−1
, (6.5.2)

and the relaxation time for the circuit is 𝑇1 = 𝑄/𝜔0 = 𝑅𝐶 because then the
last term becomes 𝑖𝜔/𝑇1 and 𝑇1 is the dampening time. The circuit diagram
for a parallel LCR circuit can be seen in Figure 6.5 in the box labelled read-out
resonator. But if we connect the LC circuit to a complex impedance instead of a
real resistance then the equation looks a bit different,

𝑍 = (𝑖𝜔𝐶𝑞 + 1
𝑖𝜔𝐿𝑞

+ 1
𝑍𝑒𝑛𝑣(𝜔))

−1

= (𝑖𝜔𝐶𝑞 + 1
𝑖𝜔𝐿𝑞

+ 𝑌𝑒𝑛𝑣(𝜔))
−1

= 𝜔
𝑖𝐶𝑞

(𝜔2 − 𝜔2
0 − 𝑖𝜔𝑌𝑒𝑛𝑣(𝜔)

𝐶𝑞
)

−1
, (6.5.3)

where 𝐶𝑞 is the qubit capacitance. We split the admittance into its real and
imaginary part 𝑌env = Re {𝑌env} + 𝑖Im {𝑌env}.

𝑍 = 𝜔
𝑖𝐶𝑞

(𝜔2 − 𝜔2
0 + 𝜔Im {𝑌env(𝜔)}

𝐶𝑞
− 𝑖𝜔Re {𝑌env(𝜔)}

𝐶𝑞
)

−1
. (6.5.4)

Comparing Equation (6.5.4) to (6.5.2) we see that the 𝜔Im {𝑌env(𝜔)} /𝐶𝑞 term
shifts the resonance frequency, whereas the 𝑖𝜔Re {𝑌𝑒𝑛𝑣(𝜔)} /𝐶𝑞 term is imaginary
so it corresponds to the 𝑖𝜔𝜔0/𝑄 = 𝑖𝜔/𝑅𝐶 term in Equation (6.5.2). From this we
can conclude that Re {𝑌env(𝜔)} corresponds to the inverse of an effective resistance
of the environment Re {𝑌env(𝜔)} = 1/𝑅eff. Using this, we calculate the 𝑇1 time
from the following equation 𝑇1 = 𝐶𝑞/Re {𝑌env(𝜔)}. One of the simplest exam-
ples of this is if the qubit is capacitively coupled to a drive line with purely real
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𝐶𝑞 𝐿𝑞

𝐶𝑔

𝐶𝑟

𝑅𝑟

𝐿𝑟

𝐶𝐽 𝑅𝐷

𝐶𝐷

Qubit

Read-out reasonator

Drive line

Figure 6.5: Circuit diagram of the qubit as a harmonic oscillator coupled to a read-
out resonator and a drive line to voltage bias the nanowire. The black dashed line
is ground.

impedance. This can be seen in Figure 6.5 as the components 𝐶𝐽 and 𝑅𝐷. When
calculating the admittance of the environment we include all components outside
the qubit box in Figure 6.5. In this case the environment includes a capacitor with
capacitance 𝐶𝐽 and a resistor 𝑅𝐷 in series. This drive line has admittance,

𝑌D(𝜔) = 1
𝑅 + 1

𝑖𝜔𝐶𝐽

= 𝑖𝜔𝐶𝐽
1 + 𝑖𝜔𝐶𝐽𝑅 = 𝜔2𝐶2

𝐽𝑅 + 𝑖𝜔𝐶𝐽
1 + 𝜔2𝐶2

𝐽𝑅2 . (6.5.5)

Re {𝑌D(𝜔)} = 𝜔2𝐶2
𝐽𝑅

1 + 𝜔2𝐶2
𝐽𝑅2 . (6.5.6)

The capacitance 𝐶𝐽 is designed to be as small as possible. On current devices
it is 𝐶𝐽 ≈ 10−16F. Combined with 𝜔 ≈ 109Hz and 𝑅 = 50Ω we can then drop
the second term in the denominator as it is on the order of 10−10. Then the
𝑇1 time from coupling to the drive line is 𝑇1,drive ≈ 𝐶𝑞/𝜔2𝐶2

𝐽𝑅. It decreases
for high frequencies because capacitors generally let high frequencies through and
block low frequencies. This can be seen in Equation (6.5.1) as the impedance of
a capacitor decreases as the frequency increases. The consequence of this is that
excitations have an easier time escaping out through the drive line if they have a
high frequency leading to the lower 𝑇1 time.

Another key component that the qubit couples to is the read-out resonator.
The resonator is used to read out the qubit state. This is done by sweeping the
frequencies and detecting the resonant frequency of the resonator. By modelling
the resonator as a harmonic oscillator that couples to a two level system we get
the James-Cummings Hamiltonian. In the James-Cummings Hamiltonian the res-
onant frequency of the resonator gets a slight shift depending on the state of the
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two level system[46]. As we have already mentioned a resonator can be modelled
as an LC circuit, but that is an ideal resonator which will never decay. A real res-
onator with a finite decay time and a finite Q-factor is modelled as an LCR-circuit.
The qubit is again capacitively coupled to this component. The admittance of a
capacitor in series with a parallel LCR circuit is,

𝑌res(𝜔) = 1
1

𝑖𝜔𝐶𝑔
+ 𝜔

𝑖𝐶𝑟
(𝜔2 − 𝜔2

0 + 𝑖𝜔𝜔0
𝑄 )−1 . (6.5.7)

The real part of this expression can then be written as,

Re {𝑌res(𝜔)} = 𝐶2
𝑔 𝜔4𝑅𝑟

((𝐶𝑟 + 𝐶𝑔)𝜔2 − 𝐶𝑟𝜔2
0)2 𝑅2𝑟 + 𝜔2

, (6.5.8)

where 𝑅𝑟 is the resistance of the LCR ciruit. Assuming 𝐶𝑔 ≪ 𝐶𝑟 which is usually
true as 𝐶𝑟 is relatively large because it is the capacitance of the longe winding
path in 6.6a. With that assumption we get,

Re {𝑌res(𝜔)} ≈ 𝐶2
𝑔 𝜔4𝑅𝑟

(𝜔2 − 𝜔2
0)2 𝐶2𝑟 𝑅2𝑟 + 𝜔2

. (6.5.9)

When 𝜔 ≫ 𝜔0 we can drop the 𝜔2
0 squared term and we get 𝐶2

𝑔 𝜔4𝑅/(𝜔4𝐶2
𝑟 𝑅2

𝑟+𝜔2).
For large 𝜔 the 𝜔4 term will dominate the denominator and we end up with
Re {𝑌res(𝜔)} ≈ (𝐶𝑔/𝐶𝑟)2/𝑅𝑟 for 𝜔 ≫ 𝜔0. So in the high frequency regime the real
part of the admittance is frequency independent. The real part of the admittance
has a maximum at 𝜔0 which is Re {𝑌res(𝜔0)} = 𝐶2

𝑔 𝜔2
0𝑅𝑟 and lastly Re {𝑌𝑟𝑒𝑠(0)} =

0. So once we take the inverse of Equation (6.5.9) the 𝑇1 time from coupling to a
resonator will have a minimum at the resonators resonance frequency which is to be
expected. If the qubit was the same frequency as the resonator then the excitation
in the qubit can easily escape and excite the resonator. A more interesting result
from this is that if the 𝜔𝑞 is significantly higher than 𝜔0 then 𝑇1 → 𝐶𝑞𝑅(𝐶𝑟/𝐶𝑔)2,
but if 𝜔𝑞 is significantly less than 𝜔0 then 𝑇1 → ∞. So driving the qubit at
a frequency lower than the read-out resonators resonance frequency is generally
better. There are some practical limitations like 𝜔𝑞 being high enough that fast
operation are still possible, which means that we cannot go to extremely low values
of 𝜔𝑞.

6.5.2 Gatemon Circuit
To draw the circuit surrounding the gatemon we will look at the gatemon on the
chip to see where there and how components couple to each other. Looking at
Figure 6.6a we can see the read-out resonator capacitively coupled to the Cooper
pair island. This is roughly the same for both transmons and gatemons, and is
used to read out the qubit state. In Figure 6.6c we can see the drive line coming in
from the top right and going under the nanowire. This is the big difference between
the transmon and the gatemon. The drive line which controls the transmission
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Figure 6.6: (a) The winding track is the read-out resonator and the oval shape is
the Cooper pair island. (b) The line from the top right is the the drive line. (c)
The orange line is the aluminium covered indium arsenide nanowire with the part
over the drive line exposed. Credit to David Feldstein Bofill for the images.

will capacitively couple to the Cooper pair island which is the left oval. We will
denote this capacitance 𝐶𝐽 as it is near the junction. The drive line is impedance
matched to 𝑅𝐷 = 50Ω. Zooming out to Figure 6.6b we can see how the drive
line cuts through the ground plate in the top right. There will be a capacitance
between the drive line and the ground plate 𝐶𝐷. Our theory is that the parasitic
capacitance 𝐶𝐽 will allow excitations to escape out to the drive line and either
propagate down through the drive line or out to the ground plate through 𝐶𝐷.
Incorporating this into the circuit analysis might yield the lower 𝑇1 time that we
have been looking for.

Drawing Figure 6.6 as a circuit diagram the qubit is represented as an LC circuit
that is capacitively coupled to an LCR circuit which is the read-out resonator. The
drive line is modelled as a capacitor and then a resistor and another capacitor in
parallel. Including 𝐶𝐷 in the circuit we calculate the admittance of the drive line
with 𝐶𝐷 and compare it to Equation (6.5.6).

𝑌D,cap(𝜔) = 1
1

𝑖𝜔𝐶𝐽
+ 1

𝑖𝜔𝐶𝐷+ 1
𝑅

, Re {𝑌D,cap(𝜔)} = 𝜔2𝐶2
𝐽𝑅

1 + 𝜔2(𝐶𝐷 + 𝐶𝐽)2𝑅2 .

(6.5.10)
From this we see that if 𝐶𝐷 < 10−11F we recover Equation (6.5.6) and it has
a negligible effect on the coherence time. One the other hand if 𝐶𝐷 > 10−11F
then we can throw away 𝐶𝐽 in the brackets as it is ≈ 10−16, but not 𝐶𝐷 in the
brackets. As we increase 𝐶𝐷 the 𝑇1 time actually improves. The reason that
it increases the 𝑇1 time is that we have inadvertently created a low-pass filter.
Low-pass filters have a cut-off frequency which is given by 𝜔cut = 1/𝑅𝐶 and with
𝑅 = 50Ω then a capacitance on the order of ≈ 10−11 will give a cut-off frequency
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Figure 6.7: 𝑇1 from the drive line with and with out 𝐶𝐷 where 𝐶𝐷 = 5 ⋅ 10−12

and 𝑅𝐷 = 50.

of 𝜔cut ≈ 2 ⋅ 109Hz and that is why we start seeing an effect at that frequency.
When the cut-off frequency becomes lower than the qubit frequency the low-pass
filter effectively blocks the excitation from escaping out through the drive line and
that is why it leads to longer 𝑇1 times. In figure 6.7 we can see 𝑇1 from just the
drive line with and with out 𝐶𝐷. 𝐶𝐷 is chosen to be 5 ⋅ 10−12 in this plot so the
cutoff frequency is 𝜔cut = 4GHz.

We then calculate the 𝑇1 time for the entire environment. We have already
done the heavy lifting of finding the real parts of the admittance for the resonator
and the drive line separately. Admittances add in parallel, which from Figure 6.5,
we can see the resonator and drive line are. So we simply add them to find the
total admittance of everything outside the qubit box in Figure 6.5 and find 𝑇1
through 𝑇1 = 𝐶𝑞/𝑌total(𝜔) with 𝑌total(𝜔) = 𝑌res(𝜔)+𝑌D(𝜔). In Figure 6.8 we have
plotted 𝑇1 from the resonator alone and the resonator with the drive line with and
without 𝐶𝐷. For the resonator alone we can see, as predicted that it is beneficial
to drive the qubit at a lower frequency than the resonators resonance frequency.
We can also see how including 𝐶𝐷 in the calculations for the drive line improves
the 𝑇1 time when the qubit frequency 𝜔𝑞 is large.

Figure 6.8: The 𝑇1 calculated from the admittance of the resonator alone and with
the drive line with and without the capacitance to ground 𝐶𝐷.
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Chapter 7

Conclusion

In this thesis we have presented two different possible models for the gatemon
qubit. We have attempted to derive an analytical expression for how they differ,
but unfortunately this did not yield any useful results. We instead turned to
numerical methods, solving the Hamiltonians with the finite difference method.
Using the finite difference method we calculated the relaxation rates from ohmic
and 1/𝑓 noise. With these results we see that when capacitive energy and operating
frequency are held constant, then Averin’s quantum point contact model results
in lower 𝑇1 times than Beenakker’s model. The difference between the models is
a factor 3 to 4 when the transmission is low. This is consistent with the difference
between what the experimentalists measure and what current theory predicts.

The gatemon has different components around it on the chip. Specifically it
has a drive line which is used to control the transmission of the nanowire. Even
though the the result of the circuit analysis did not yield lower coherence times,
we showed that increasing the capacitance between the drive line and the ground
plate increases 𝑇1 time. The gatemon does not seem to be limited by the drive
line. This insight could be useful for future high frequency qubits which might
be limited by coupling to drive lines, and then increasing the capacitance between
the drive line and ground might just be thing that improves the 𝑇1 time.

Further work is still needed to fully understand the behaviour of the gatemon.
Another noise source we have not investigated in this thesis is dielectric loss.
Dielectric loss is the loss from dissipation into the dielectric in the capacitor and
around the qubit. The reason we did not investigate it in this thesis is it is highly
material and manufacturing specific and beyond the scope of this thesis, but we
have no reason to rule it out as a source of decoherence. As the 𝑇1 times of the
gatemons improve we will need to understand dephasing as well. So this will also
need to be investigated for the gatemon to become a viable platform for a quantum
computer.

47



Appendices

A Scattering matrix & Density of states
Looking at scattering as a time dependent perturbation as in Sakurai[47] we have
the following expression for the scattering matrix

𝑆𝑛𝑖 = 𝛿𝑛𝑖 − 2𝜋𝑖𝛿(𝐸𝑛 − 𝐸𝑖)𝑇𝑛𝑖, (A.1)

which is the matrix element for scattering from an initial state |𝑖⟩ to a final state
|𝑛⟩. The 𝑇𝑛𝑖 is a matrix element of the 𝑇 -matrix which is define so that it solves
the equation,

⟨𝑛|𝑈𝐼(𝑡, 𝑡0)|𝑖⟩ = 𝛿𝑛𝑖 − 𝑖
ℏ𝑇𝑛𝑖 ∫

𝑡

𝑡0

𝑒𝑖𝜔𝑛𝑖𝑡′+𝜖𝑡′𝑑𝑡′. (A.2)

The 𝑇 -matrix can be calculated by using the Lippman-Schwinger equation[47] and
we get,

𝑇 = 𝑉 + 𝑉 1
𝐸𝑖 − 𝐻0 + 𝑖𝜀𝑇 . (A.3)

The fraction in the middle is the non-interacting retarded Green’s function 𝐺𝑅
0 =

1/(𝐸𝑖 − 𝐻0 + 𝑖𝜀). Inserting that we get the definition of the 𝑇 matrix that Souma
& Suzuki use[48], which is 𝑇 = 𝑉 +𝑉 𝐺𝑅

0 𝑇 . Using this result we can find that[49],

𝐺𝑅(𝑟, 𝑟′; 𝐸) = 𝐺𝑅
0 (𝑟, 𝑟′; 𝐸) + ∬ 𝑑𝑟1𝑑𝑟2𝐺𝑅

0 (𝑟, 𝑟1; 𝐸)𝑇 (𝑟1, 𝑟2; 𝐸)𝐺𝑅
0 (𝑟2, 𝑟′; 𝐸).

(A.4)
In the paper by Souma & Suzuki, from which this derivation is inspired by, they
start by showing that the local density of states in real space is,

𝜌(𝑟, 𝐸) = −1
𝜋 Im {𝐺𝑅(𝑟, 𝑟; 𝐸)} . (A.5)

This result can also be found in textbooks such as ”Electronic Transport in Meso-
scopic Systems” by Supriyo Datta[50]. Inserting Equation (A.4) into (A.5) there
are two parts. The first term simply gives a sum of delta function from free parti-
cles not interacting with the scattering potential. See for example equation (8.55)
in Bruus and Flensberg[51]. We are interested in the second term, because that is
the term that tells us how the local density of states chances from the introduc-
tion of the scattering potential. Since it is only the diagonal terms of the Green’s
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function (see Equation (A.5)) then we can hide away all the integrals and write it
as,

Δ𝜌(𝑟, 𝐸) = − 1
𝜋 Im { ⟨𝑟|𝐺𝑅

0 (𝐸)𝑇 (𝐸)𝐺𝑅
0 (𝐸)|𝑟⟩} . (A.6)

The change to the global density of states is then found from integrating Equation
(A.6) over the entire volume. Since this is an integral over the diagonal terms it
is the same as taking the trace.

Δ𝜌(𝐸) = ∫
𝑉

𝑑𝑟Δ𝜌(𝑟, 𝐸) = − 1
𝜋 Im {Tr{𝐺𝑅

0 (𝐸)𝑇 (𝐸)𝐺𝑅
0 (𝐸)}} . (A.7)

The rest of the derivation follows the appendix of Souma and Suzuki’s paper[48].
Now we use the cyclic property of the trace to get Tr{𝐺𝑅

0 (𝐸)𝑇 (𝐸)𝐺𝑅
0 (𝐸)} =

Tr{𝐺𝑅
0 (𝐸)𝐺𝑅

0 (𝐸)𝑇 (𝐸)}. Using the fact that the retarded Greens function can be
written as 𝐺𝑅(𝐸) = [(𝐸 + 𝑖0+) ̂𝐼 − �̂�] means that the following relation holds,

𝐺𝑅(𝐸)𝐺𝑅(𝐸) = −𝜕𝐺𝑅(𝐸)
𝜕𝐸 . (A.8)

Inserting that we have,

Δ𝐷(𝐸) = − 1
𝜋 Im {Tr{−𝜕𝐺𝑅

0 (𝐸)
𝜕𝐸 𝑇 (𝐸)}} . (A.9)

Another way of writing 𝑇 (𝐸) is, 𝑇 (𝐸) = 𝑉 ∑∞
𝑛=0(𝐺𝑅(𝐸)0𝑉 )𝑛 which then gives

us,

Δ𝜌(𝐸) = − 1
𝜋 Im {Tr{−𝜕𝐺𝑅

0 (𝐸)
𝜕𝐸 𝑉

∞
∑
𝑛=0

(𝐺𝑅
0 (𝐸)𝑉 )𝑛}} . (A.10)

collecting all the 𝐺𝑅
0 ’s using,

𝜕(𝑉 𝐺𝑅
0 (𝐸))𝑛

𝜕𝐸 = 𝑛(𝑉 𝐺𝑅
0 (𝐸))𝑛−1𝑉 𝜕𝐺𝑅

0 (𝐸)
𝜕𝐸

⇒ (𝑉 𝐺𝑅
0 (𝐸))𝑛𝑉 𝜕𝐺𝑅

0 (𝐸)
𝜕𝐸 = 1

𝑛 + 1
𝜕

𝜕𝐸 (𝑉 𝐺𝑅
0 (𝐸))𝑛+1 .

(A.11)

Changing the limits of the sum it can be written as,

Δ𝜌(𝐸) = − 1
𝜋 Im {Tr{ 𝜕

𝜕𝐸
∞

∑
𝑛=1

−1
𝑛 (𝐺𝑅

0 (𝐸)𝑉 )𝑛}} . (A.12)

This sum has a closed form solution which is,

Δ𝜌(𝐸) = − 1
𝜋 Im { 𝜕

𝜕𝐸 Tr{ln( ̂𝐼 − 𝐺𝑅
0 𝑉 )}} (A.13)

Taking the imaginary part of a complex number can be expressed as Im {𝑧} =
(𝑧 − 𝑧∗)/(2𝑖).

Δ𝜌(𝐸) = − 1
2𝜋𝑖

𝜕
𝜕𝐸 Tr{ln( ̂𝐼 − 𝐺𝑅

0 𝑉 ) − ln( ̂𝐼 − 𝐺𝐴
0 𝑉 )} (A.14)

= 𝜕
𝜕𝐸

1
2𝜋𝑖 Tr{ln(

̂𝐼 − 𝐺𝐴
0 𝑉

̂𝐼 − 𝐺𝑅
0 𝑉

)}, (A.15)
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where we’ve used that [𝐺𝑅
0 ]∗ = 𝐺𝐴

0 [51]. For the next step we’ll need that 𝑇 =
𝑉 + 𝐺𝑅

0 𝑇 ⇒ 𝑇 = 𝑉 /(1 − 𝐺𝑅
0 𝑉 ). The term with in the logarithm can then be

written as,

̂𝐼 − 𝐺𝐴
0 𝑉

̂𝐼 − 𝐺𝑅
0 𝑉

=
̂𝐼

̂𝐼 − 𝐺𝑅
0 𝑉

− 𝐺𝐴
0

𝑉
̂𝐼 − 𝐺𝑅

0 𝑉
(A.16)

=
̂𝐼 − 𝐺𝑅

0 𝑉 + 𝐺𝑅
0 𝑉

̂𝐼 − 𝐺𝑅
0 𝑉

− 𝐺𝐴
0 𝑇 (A.17)

=1 + 𝐺𝑅
0 𝑇 − 𝐺𝐴

0 𝑇 . (A.18)

So the change in the density of states is,

Δ𝜌(𝐸) = 1
2𝜋𝑖

𝜕
𝜕𝐸 Tr{ln( ̂𝐼 − (𝐺𝐴

0 − 𝐺𝑅
0 )𝑇 )}. (A.19)

Once again we will use [𝐺𝑅
0 ]∗ = 𝐺𝐴

0 and Im {𝑧} = (𝑧 − 𝑧∗)/(2𝑖). We then see that
we can rewrite the Green’s functions,

𝐺𝐴
0 − 𝐺𝑅

0 = [𝐺𝑅
0 ]∗ − 𝐺𝑅

0 = −𝑖2Im {𝐺𝑅
0 } = 𝑖𝐴0(𝐸) = 2𝜋𝑖𝛿(𝐸 − 𝐻0). (A.20)

Inserting that,

Δ𝜌(𝐸) = 1
2𝜋𝑖

𝜕
𝜕𝐸 Tr{ln( ̂𝐼 − 2𝜋𝑖𝛿(𝐸 − 𝐻0)𝑇 )}. (A.21)

But the term in the logarithm is exactly our scattering matrix from the beginning
(A.1) so we get,

Δ𝜌(𝐸) = 1
2𝜋𝑖

𝜕
𝜕𝐸 Tr{ln(𝑆(𝐸))}. (A.22)
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