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Abstract

To determine the symmetry of the superconducting ground state is a crucial task
for understanding unconventional superconductivity. The spin-lattice relaxation rate
measured by nuclear magnetic resonance on superconductors is usually thought to
be able to probe the symmetry of superconducting order parameter. Materials with
kagome lattice structure, such as the AV3Sb5 family are possible candidates for un-
conventional superconductivity. They are already very interesting in the normal state
because of the rich band structure and the unique sublattice interference effect. The
kagome superconductor was reported to exhibit a Hebel-Slichter peak in the spin-
lattice relaxation rate in the superconducting state and this result was interpreted as
an evidence for s-wave conventional superconductivity. In this thesis, a theoretical
investigation of the spin-lattice relaxation rate of unconventional kagome supercon-
ductors is performed. The result shows that despite the existence of a sign-changing
gap structure, which sums to zero over the Fermi surface, the d-wave unconventional
pairing of the kagome lattice will exhibit a Hebel-Slichter peak in the spin-lattice re-
laxation rate. This result is further explained in the thesis as an effect of the sublattice
interference effect. This thesis, together with the previous study of the robustness of
superconducting critical temperature to disorder on the kagome lattice with d-wave
order parameter, shows that the unconventional superconductivity of kagome lattice
might appear similar to conventional non-sign-changing superconductivity, and fur-
ther investigation is needed to determine the nature of the superconductivity on the
kagome lattice.

i



Acknowledgements

The last sentence in the acknowledgement of my Bachelor’s thesis was from Pascal,
’My heart inclines wholly to know where is the true good, in order to follow it; nothing
would be too dear to me for eternity.’1 Too many things happened in the past three
years after my graduation. I said goodbye to something and someone, and said hej hej
to something and someone. I miss all of them, my lovely friends, in the past or now,
or in the future, I will always miss the moments. Memories are always the source of
eternity and infinity to me. I will never hesitate to do the same thing if it happens
again. Thanks to all of my friends who made up my memory, which will never happen
again in the world, but happens every moment inside me.

First of all, big thanks to Brian and Andreas, for leading me towards this interesting
research field. I will never forget the discussions we had in the office, which always
give me a lot new ideas and inspirations. I will never forget the cakes Andreas brought
at many office nights. Thanks to Magnus, Yongtao and Hans, my office mates, who
made the office air hyggligt during the long winter. Thanks to Sofie, for the delightful
discussions as well as sharing the kagome notes with me, which helped me a lot in
this thesis. Thanks to Mercè, who offered me tremendous help in the CMT1 class and
giving me suggestions on finding the supervisor. Too many things to thank for, as
well as guiding me to use the cluster. Thanks to Roger, who gives me many useful
suggestions in the danish class on my study and thesis. Thanks to Henrik, who had a
really helpful discussion about the kagome superconductivity with me. Thanks to all
the CMT group members, who made every lunch in the meeting room interesting.

I also want to say thanks to my badminton club members, who always give me
passion and motivation to move forward. I won a lot, and also lost a lot, I will try to
remember every match.

Thank you, Yifan, for accompanying me from the first day to the last day (it will
come soon) during my master’s years. I will miss the restaurants we went to, I will
miss the voice of the Paris metro, I will also miss the concerts and museums you took
me to. All the best with your painting and music. I’m looking forward to seeing you
somewhere in a gallery or livehouse of you.

Thank you, the little cats in my little yard, as well as the big cat in 2021. This
was a non-ending story, but now we are finally able to move forward. I will always
remember, the things you may have already forgotten in the long long summer dream.
Also thank you, Sunny Fish, who is always a good friend of mine, thank you for
watching and reading my menmories.

Finally, I would like to thank my family, who always supports me with my some-
1’Pensees’, Blaise Pascal, translated by W.F. Trotter.

ii



times daydream-like decisions. I love all of you.

iii



”Kamome, Kamome, Kamome,
I want you to listen to my wish.”

— ”Kamome”, Carmen Maki

iv



Table of Contents

Abstract . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . i
Acknowledgements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ii

1 Introduction 1
1.1 Superconductivity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.2 Kagome superconductors . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
1.3 Structure of thesis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

2 NMR and spin-lattice relaxation rate 6
2.1 Introduction to NMR . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
2.2 Spin-lattice relaxation rate and spin susceptibility . . . . . . . . . . . . . 7
2.3 Hebel-Slichter peak . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
2.4 Why is there a Hebel-Slichter peak? . . . . . . . . . . . . . . . . . . . . . 13
2.5 Absence of Hebel-Slichter peak in unconventional superconductors . . . 16

3 The Hebel-Slichter peak in the square lattice 18
3.1 The lattice . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
3.2 The B factor and relaxation rate . . . . . . . . . . . . . . . . . . . . . . . 19

4 Introduction to the kagome lattice 23
4.1 Crystal and band structure . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
4.2 Tight-binding model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
4.3 Superconductivity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
4.4 Nambu formalism . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

5 The Hebel-Slichter peak in the kagome lattice 37
5.1 Multi-band spin susceptibility . . . . . . . . . . . . . . . . . . . . . . . . . 37
5.2 Relaxation rate . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41
5.3 Effective model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42
5.4 Why is there a Hebel-Slichter peak? . . . . . . . . . . . . . . . . . . . . . 43

6 Summary and Discussion 48

v



A Derivation for the general spin-lattice relaxation rate 50

B Derivation for the one-band spin susceptibility 52

C Derivation for the multi-band spin susceptibility 64

D Summing over sublattice indices 68

Bibliography 78

vi



Chapter 1

Introduction

1.1 Superconductivity

The disappearance of the electric resistivity of a material under sufficiently low
temperatures, known as the famous term ’superconductivity’, was initially discovered
in 1908 by the Dutch physicist Heike Kamerlingh Onnes in Leiden. About fifty years
later, the first satisfying microscopic theory of superconductivity was proposed by
John Bardeen, Leon Cooper and John Schrieffer in Illinois. This theory is known
as the BCS theory [3, 37], which is very successful in explaining the properties of
superconducting materials, for example energy gap, acoustic attenuation rate, elec-
tromagnetic absorption, electron tunneling and spin-lattice relaxation rate [37]. As
explained in the theory, electrons of opposite spins and momenta will form Cooper
pairs near the Fermi surface at low temperatures due to a weak attractive interac-
tion via phonon mediation. Thus the Cooper pairs with effectively zero spin and zero
momentum will act as bosons which obey bosonic statistics. Superconducting order
parameter, which is from mean-field decoupling of the attraction interaction, can be
described using Ginzburg-Landau theory, which explains that the superconducting
system shows zero electric resistivity and Meissner effect in low temperature because
of spontaneous symmetry breaking.

Even though the BCS theory has achieved a huge success in explaining the super-
conductivity, the discovery of the high Tc cuprate superconductor in 1986, however,
exhibits a case that doesn’t follow the conventional BCS regime [4]. The superconduct-
ing critical temperature of the cuprate material is much higher than the estimation
based on phonon-mediated BCS theory [42]. Moreover, unconventional superconduc-
tors show some properties that are quite different from the conventional BCS ones, for
example, the resonance peak in the neutron scattering experiment and the absence of
Hebel-Slichter peak in the nuclear magnetic resonance experiment. Great theoretical
efforts are made to understand unconventional superconductivity [40]. Some micro-
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Chapter 1 | Introduction

scopic explanations of the unconventional superconductivity other than the phonon-
mediated pairing, for example spin fluctuation, are considered as possible candidates.

Phenomenologically, unconventional superconductivity may be understood from
the perspective of symmetry of Cooper pairing. Here we briefly introduce the origin
of the superconducting order parameter. The pairing Hamiltonian that describes the
superconductor pairing can be written as

H(k) = H0(k) +∑
kk′

Vkk′c
†
k↑c

†
−k↓c−k′↓ck′↑, (1.1)

where H0 is the kinetic part of the electrons; Vkk′ is the effective pairing interaction
induced by phonons (in unconventional superconductors, the interaction can have
other origins). c†

kσ and ckσ are the fermionic creation and annihilation operators.
The interaction, which is the second term, can be decoupled using the Hartree-Fock
mean-field theory [6],

H(k) = H0(k) −∑
k

∆kc
†
k↑c

†
−k↓ −∑

k

∆∗kc−k↓ck↑, (1.2)

where

∆k = −
1

N
∑
k′
Vkk′⟨c−k′↓ck′↑⟩, (1.3)

is the superconducting order parameter, where N is the number of summed points in
the momentum space. If we write the kinetic part as H0(k) = ∑kσ ξkc

†
kσckσ, then the

Hamiltonian can be written in a matrix form

H(k) = (c†
k↑ c−k↓)

⎛

⎝

ξk ∆k

∆∗k −ξ−k

⎞

⎠

⎛

⎝

ck↑
c†
−k↓

⎞

⎠
. (1.4)

By defining the so-called Bogoliubov transformation, the Hamiltonian matrix can be
diagonalized, and the spinor becomes

⎛

⎝

γk↑
γ†
−k↓

⎞

⎠
=
⎛

⎝

u∗k vk

−v∗k uk

⎞

⎠

⎛

⎝

ck↑
c†
−k↓

⎞

⎠
. (1.5)
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Chapter 1 | Introduction

Thus Eq. (1.3) can be written as

∆k = −
1

N
∑
k′
Vkk′⟨c−k′↓ck′↑⟩

= −
1

N
∑
k′
Vkk′ [u

∗
k′vk′ (⟨γ−k′↓γ

†
−k′↓⟩ − ⟨γk′↑γ

†
k′↑⟩)]

= −
1

N
∑
k′
Vkk′u

∗
k′vk′ [1 − 2nF (Ek′)]

= −
1

N
∑
k′
Vkk′

∆k′

2Ek′
[1 − 2nF (Ek′)] ,

(1.6)

where Ek is the eigenenergies of the Bogoliubov quasi-particles γ†
kσ and γkσ, i.e. the

eigenvalues of the matrix in Eq. (1.4). The final form of Eq. (1.6) is called the BCS
gap equation.

Let’s consider the the conventional BCS assumption, that the phonon-mediated
electron-elecinteraction is independent of the momentum, which means Vkk′ = V0 is a
constant. There is a solution for V0 < 0, which is the original solution obtained by
BCS,

Vkk′ =

⎧⎪⎪
⎨
⎪⎪⎩

V0 < 0 if ∣ξk∣ and ∣ξk′ ∣ < ωc

0 otherwise
, (1.7)

where ωc is expected to be of the order of Debye frequency ωD, which characterizes
the cutoff of the phonon spectrum [43].

For the BCS gap equation, there is no non-trivial solution if V0 > 0, which stands for
the constant repulsive interaction between electrons. However, if Vkk′ is momentum-
dependent, which also results in a momentum-dependent order parameter ∆k, there
can still exist solutions to the gap equation.

The momentum dependence of the superconducting order parameters ∆k is clas-
sified based on their symmetries. Following the naming convention of the atomic
orbitals, the conventional BCS momentum-independent order parameter is called s-
wave; the different symmetries of k dependence are called p-, d-, f -wave and so on.

The type of unconventional superconductivity can be identified according to some
features. First, the conventional BCS-type s-wave order parameter is usually isotropic
and does not have node on its Fermi surface; the unconventional superconducting
order parameters, however, usually exhibit nodes on the Fermi surface. There are
nevertheless exceptions, such as the unconventional d+id order parameter which breaks
the time-reversal symmetry can also be nodeless [1]. Another classification of the
unconventional superconductivity is the parity of the order parameter. In the triplet
superconductors, the order parameter has odd parity and the total spin is s = 1;
while in the singlet superconductors the parity is even and the total spin is s = 0.
Furthermore, the unconventional superconducting order parameter will usually have
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Chapter 1 | Introduction

sign-changing in the k-space due to the requirement of the crystal symmetry.
To probe the symmetry of the superconducting order parameter, many experiments

are carried out on the superconductors. To name but a few, the heat capacity and pen-
etration depth measurements are supposed to identify the nodal structure of the order
parameter; the Knigh shift measurements are expected to identify the singlet/triplet
parity; the Tc suppression by impurities and the spin-lattice relaxation rate is believed
to be able to tell the sign-changing structure.

1.2 Kagome superconductors

Some superconductors have been identified as unconventional, such as the d-wave
cuprates superconductors and the s±-wave iron pnictide superconductors and the likely
spin-triplet superconductor Sr2RuO4. For the newly discovered superconductors, it
is always an important task to identify the symmetry of the superconducting pairing
state, especially for those which shows interesting features that indicate unconventional
superconductivity, such as the time-reversal symmetry breaking.

Kagome superconductor AV3Sb5 is such a candidate for unconventional super-
conductivity, which is already very interesting in the normal state because it shows
many unconventional electronic states [45]. AV3Sb5 mentals exhibit CDW order be-
low TCDW = 78, 104 and 94 K for A = K, Rb, Cs, respectively. In experiments, muon
spin relaxation (µSR) studies report possible time-reversal symmetry breaking (TRSB)
within the CDW state [20, 23]. And TRSB is also reported in superconducting state
[12]. Theoretical studies of the leading superconducting instabilities on the kagome
lattice suggests that the d + id symmetry which breaks time-reversal symmetry is the
most possible candidate for the unconventional superconductivity [34, 47]. These re-
sults motivate us to study the possible unconventional superconducting states in the
kagome lattice.

1.3 Structure of thesis

In this thesis, we focus on the superconductivity in the kagome lattice, which is
held by AV3Sb5 metals. Current research has suggested an singlet and anisotropic
picture of the order parameter [45]. But it is still not clear if the order parameter
has a sign-changing structure. The nuclear magnetic resonance (NMR) measurement
of the spin-lattice relaxation rate has reported a Hebel-Slichter peak in the kagome
superconductor, which is usually considered as a evidence for non-sign-changing s-wave
superconductivity. However, this conclusion may be not true for the kagome lattice.

In Chapter 2, we review the spin-lattice relaxation rate the Hebel-Slichter peak,

4



Chapter 1 | Introduction

where we explain the reason for the existence of a Hebel-Slichter peak in the conven-
tional BCS superconductors and the absence in unconventional superconductors. In
Chapter 3, we take the square lattice as a example, showing that there is a Hebel-
Slichter peak in the s-wave case and the peak is absent in the d-wave case because of
the sign-changing effect. With these preliminary knowledge of the Hebel-Slichter peak,
in Chapter 4 we introduce the exotic kagome superconductor which exhibit so-called
sublattice interference effect that render the unconventional d-wave superconductor
robust to disorder on the kagome lattice. Finally, we show in Chapter 5 that the
unconventional d-wave kagome superconductors can exhibit the Hebel-Slichter peak
despite a fully compensated sign-changing gap structure. To make the structure of
the thesis clear and easier to read, I put the long derivations in the appendices, which
may also provide necessary steps to the results.

5
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NMR and spin-lattice relaxation
rate

2.1 Introduction to NMR

Nuclear magnetic resonance (NMR) is a fundamental method of studying the su-
perconducting materials [5, 14, 43]. In NMR relaxation measurement, the sample is
placed in a static magnetic field at first. By applying a second time-dependent oscillat-
ing magnetic field, which is perpendicular to the first one, the nuclear magnetization of
the sample will precess around the second time-dependent field when this field is oscil-
lating at a certain frequency. Then by switching off the oscillating magnetic field, the
nuclear magnetization will relax back to the original thermal equilibrium state. The
relaxation time of the longitudinal component of the nuclear magnetization along the
static magnetic field is called T1, and the relaxation time of the transverse component
is called T2.

The longitudinal relaxation time T1 is also called spin-lattice relaxation time, be-
cause the relaxation process requires the redistribution of nuclear magnetic energy
levels, and the exchange of energy happens between spins and the lattice [14]. By con-
trast, the relaxation along the transverse direction does not require energy exchange,
but the dephasing by the spin-spin interaction is needed for the process. Thus T2 is
also called spin-spin relaxation time.

In this thesis, we focus on the spin-lattice relaxation rate, which is defined as the
inverse of the spin-lattice relaxation time T −11 . In many cases it is referred to as 1/T1T

both in experiments and theories [8, 27, 32], because it is proportional to the imaginary
part of spin susceptibility. Usually 1/T1T behaves very differently in the normal states
and the superconducting states, and can show the famous Hebel-Slichter peak in the
latter case.
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2.2 Spin-lattice relaxation rate and spin suscepti-
bility

In the early work by T. Moriya [25, 26, 28], he derived the relation between spin-
lattice relaxation rate and the imaginary part of spin susceptibility

α ≡
1

T1T
=
C

ω

1

N
∑
q

Imχ+−0 (q, ω), (2.1)

where N denotes the number of points summed over in the Brillouin zone (BZ). ω is
the resonance frequency which is very small. C is a constant given by

C = 2γ2
nγ

2
ekB ∣A∣

2, (2.2)

where the γn and γe are the nuclear and the electronic gyromagnetic ratios, kB the
Boltzmann constant, g the Landé factor, and µB the Bohr magneton. A is the magnetic
hyperfine coupling and is approximated to be a constant. The derivation from the
hyperfine contact Hamiltonian to Eq. (2.1) is shown in Appendix A.

We should be reminded that ω in Eq. (2.1) is very small, but it is still a finite
number. This very small but finite number is important to avoid the divergence in the
relaxation rate.

This relation reduces the calculation of 1/T1T to the imaginary part of spin sus-
ceptibility in momentum q and frequency ω

χ+−0 (q, ω)=
1

N
∑

k,E>0
[(1−

ξkξk+q+∆∗k+q∆k

EkEk+q
)
1−f(Ek)−f(Ek+q)
ω+Ek+q+Ek+iη

+(1−
ξkξk+q+∆∗k+q∆k

EkEk+q
)
f(Ek)+f(Ek+q)−1
ω−Ek+q−Ek+iη

+(1+
ξkξk+q+∆∗k+q∆k

EkEk+q
)
f(Ek)−f(Ek+q)
ω+Ek+q−Ek+iη

+(1+
ξkξk+q+∆∗k+q∆k

EkEk+q
)
f(Ek+q)−f(Ek)

ω+Ek−Ek+q+iη
] ,

(2.3)

where η is an infinitesimal positive factor arising from the analytical continuation. ξk

is the electron dispersion, ∆k the superconducting order parameter, Ek =
√
ξ2k +∆

2
k

denotes the energy of superconducting quasiparticles, and f(Ek) is the Fermi-Dirac
distribution function

f(Ek) =
1

eEk/kBT + 1
. (2.4)
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Because of the Nambu particle-hole symmetry, we can sum only over momentum points
with positive Ek. For further details on the derivation for spin susceptibility formula
and summing over positive energy, I have shown in Appendix B.

For the superconducting states, the imaginary part of the first term and the second
term vanish. To illustrate this, we take the first term in Eq. (2.3) as the example.
The last half of this term

1 − f(Ek) − f(Ek+q)
ω +Ek+q +Ek + iη

(2.5)

gives a Dirac delta function for the imaginary part according to the Cauchy’s principal
value (ω + iη)−1 = P 1

ω − iπδ(ω),

−π [1 − f(Ek) − f(Ek+q)] δ(ω +Ek+q +Ek). (2.6)

In the superconducting state, the energy of superconducting quasiparticle Ek =
√
ξ2k +∆

2
k

is always larger than a very small ω → 0. Thus the first two terms give zero. In con-
trast, they will give contribution to χ+−0 (q, ω) in the normal state when ξk = 0. Since
we mainly focus on the superconducting states which cause the Hebel-Slichter peak,
we can neglect these two terms in the discussion.

In the prevalent discussion about the Hebel-Slichter peak [42, 43], one usually
only consider the conventional superconducting pairing state. Here we follow their
discussion and use the real, momentum independent superconducting order parameter
∆ in this chapter. However, we will consider the momentum dependent unconventional
superconducting order parameters in the following chapters.

When ∆ is real, the third and the fourth term can be combined, and the imaginary
part is given by

−
2π

N
∑

k,E>0
2(1+

ξkξk+q+∣∆∣2

EkEk+q
)(f(Ek)−f(Ek+q)) δ(ω+Ek+q−Ek). (2.7)

Now we consider the relaxation rate, where we sum over both k and q. This term
only gives non-zero contribution close to the Fermi surface, in which ∆ dominate and
ξk ≈ 0. Furthermore, since Ek is homogeneous in k-space, we can convert the k-sum
to the E-integral [37]. We rename Ek and Ek+q as E and E′ for the moment. The
spin-lattice relaxation rate expression with E-integral is

αs ∝ −
1

ω ∫
∞

0
dE ∫

∞

0
dE′ (1+

∣∆∣2

EE′
) (f(E)−f(E′)) δ(ω+E′ −E)Ds(E)Ds(E

′), (2.8)

where D(E) denotes the density of states (DOS) of energy E. at superconducting
state. The factor 2π is absorbed into the constant C. This expression can be simplified

8
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by combine one of the integral and the δ function together,

2

ω ∫
∞

0
dE (1+

∣∆∣2

E(E + ω)
) (f(E)−f(E + ω))Ds(E)Ds(E + ω). (2.9)

Remember that we want ω to be very small, then (f(E) − f(E + ω))/ω just gives the
derivative of the Fermi function ∂f/∂E at energy E,

2∫
∞

0
dE (1+

∣∆∣2

E(E + ω)
)(−

∂f

∂E
)Ds(E)Ds(E + ω). (2.10)

This is the commonly agreed expression for spin-lattice relaxation rate in textbooks
[14, 37, 42, 43]. The factor

(1+
∣∆∣2

EE′
) , (2.11)

where here E′ = E + ω, is referred to as F+ coherence factor, which is relevant for
quasiparticle creation and annihilation in NMR experiment. In contrast, another
type of coherence factor (1− ∣∆∣

2

EE′) is referred to as F− for quasiparticle scattering in
ultrasound experiments [42].

2.3 Hebel-Slichter peak

In March 1959, less than two years from the publication of the groundbreaking
BCS theory in December 1957, Hebel and Slichter calculated the spin-lattice relaxation
rate using the BCS theory for the first time [15]. In this paper, they measured the
relaxation rate in the superconducting state of Aluminum. The relaxation rate in the
superconducting state increases at first as the temperature increases, but drops just
below the critical temperature.

Using the BCS theory, they calculated the relaxation rate curve and it agrees with
the experiment semiquantitatively. This is seen as an important confirmation of the
BCS theory [37].

Now we show the calculation in the books [37, 42, 43], where the approximation is
applied for Ds(E),

Ds(E)

Dn(E)
≈

E
√
E2 − ∣∆∣2

, (2.12)
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Figure 2.1: The relaxation rate measurement cited from the original paper by Hebel
and Slichter [15]. They vertical axis is the relaxation rate αs/αn, where αn is the relax-
ation rate extrapolated from the normal state. The horizontal axis is the temperature
T /Tc, where Tc is the critical temperature in the BCS theory.

and insert this into Eq. (2.10),

αs

αn

≈2∫
∞

∆
dE (1+

∣∆∣2

E(E + ω)
)(−

∂f

∂E
)

E
√
E2 − ∣∆∣2

E + ω
√
(E + ω)2 − ∣∆∣2

,

=2∫
∞

∆
dE

E(E + ω) + ∣∆∣2
√
[(E + ω)2 − ∣∆∣2] [E2 − ∣∆∣2]

⋅ (−
∂f

∂E
) .

(2.13)

The derivative of the Fermi function is

(−
∂f

∂E
) =

1

2T (1 + cosh (E/T ))
, (2.14)

and we take the temperature dependence order parameter ∆(T ) solved self-consistently
from the BCS gap equation [37],

∆k′ = −
1

N
∑
k

Vkk′
∆k

2Ek

tanh
βEk

2
, (2.15)

where β = 1/kBT .
As mentioned above, a finite but small ω is important in Eq. (2.13). If ω = 0,

the value will be divergent because of the divergence of the square of superconducting
density of states, thus a finite ω is needed to avoid the divergence.

As shown in Fig. 2.3, the relaxation rate in the superconducting states calculated
from Eq. (2.14) increases above the normal states just below Tc, which is the famous
Hebel-Slichter peak. Now let’s move our eyes from the peak. As the temperature

10
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0 Tc

T

"0

"
(T

)

Figure 2.2: T dependence of superconducting order parameter ∆ solved from BCS gap
equation.

0 0.5 1 1.5

T=Tc

0

0.5

1

1.5

,
s
=,

n

Figure 2.3: T dependence of the spin-lattice relaxation rate ratio αs/αn. The pro-
nounced Hebel-Slichter peak is shown right below the critical temperature Tc

increases from the peak, the rate drops to 1 quickly because of the fast decaying
behavior of ∆ near Tc as shown in Fig. 2.2. As the temperature decreases from the
peak and goes to T → 0, the relaxation rate drops to near 0. The reason is explained
in the next section.
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(a)

(c) (d)

(e) (f)

(b)

Figure 2.4: (a) T dependence of the relaxation rate. The black dots denote the
temperatures which are chosen for panels (b-f). (b)-(f) The distributions of the four
terms F+, −(∂f/∂E), D(E) and D(E + ω) along E axis.

12



Chapter 2 | NMR and spin-lattice relaxation rate

2.4 Why is there a Hebel-Slichter peak?

In Eq (2.13), we inserted the approximation of the density of states in the supercon-
ducting states. Combined with other terms, it simplifies the expression of relaxation
rate. However, in order to better understand why there is a Hebel-Slichter peak, we
can write down the different terms in the expression separately and look how they
contribute to the integral,

αs

αn

≈2∫
∞

∆
dE ⋅ F+(E) ⋅ (−

∂f

∂E
) ⋅D(E) ⋅D(E + ω), (2.16)

where

F+(E) =1 +
∣∆∣2

E(E + ω)
, (2.17)

(−
∂f

∂E
) =

1

2T (1 + cosh (E/T ))
, (2.18)

D(E) =
E

√
E2 − ∣∆∣2

, (2.19)

D(E + ω) =
E + ω

√
(E + ω)2 − ∣∆∣2

. (2.20)

As shown in Fig 2.4 (a), we choose some points that correspond to the certain
featured stages of the relaxation rate curve. The temperature of the first point is
0.098Tc, and the corresponding terms Eq. (2.17)-(2.20) are shown in Fig 2.4 (b). The
peaks of the density of states D(E) and D(E + ω) are split by the finite ω, thus
the product of the two terms will not be divergent. The derivative of Fermi function
∂f/∂E shows a very sharp peak at E ≈ 0 when T ≈ 0. In contrast, for larger E at
T ≈ 0, for example E = ∆, there is ∂f/∂E ≈ 0. Thus the product of three terms in
total will give zero, as ∂f/∂E is inside the gap of the DOS.

When the temperature increases, as shown in Fig 2.4 (c), the ∂f/∂E distribution
becomes broader. As a result, the tails of ∂f/∂E will pick up the peaks in the DOS,
and give a non-zero contribution to the relaxation rate. As the temperature further
increase in Fig 2.4 (d-e), ∂f/∂E spreads more out, and the gap in the DOS becomes
smaller since the order parameter decreases as the temperature increases. This means
that the peak in the DOS enters into the center of the ∂f/∂E distribution. Finally in
Fig 2.4 (f) at T = Tc, the superconducting gap closes and the system enters the normal
state.

There are two competing factos in the curve. The first one is that when the
temperature increases, the −∂f/∂E function becomes broader and will enhance the
relaxation rate together with the peak in the DOS. But there is another factor that

13



Chapter 2 | NMR and spin-lattice relaxation rate

might decrease the relaxation rate, i.e., the peaks in the DOS is becoming smaller as
the the temperature increase, and finally is wiped out as the system enters the normal
state.

I leave the conclusion of the above discussion for a second, and now let’s talk about
another factor that we haven’t considered yet, which is the coherence factor F+(E).
It is easy to see from Eq. (2.17) that there is always F+(E) ≈ 2 at E = ±∣∆∣ , which
means the coherence factor F+(E) doubles the contribution to the relaxation rate from
the energies that lies at the superconducting gap E = ±∣∆∣. However, for the energy
E further away from E = ±∣∆∣, how the enhancement to the relaxation rate from F+
varies with E is not that clearly seen from this equation. To describe the enhancement,
we can take the slope of the F+ function at E = ±∣∆∣ as a quantity that reflects the
enhancement,

∂F+(T )
∂E

∣
E=±∣∆(T )∣

=
2∆(T ) + ω

(∆(T ) + ω)2
. (2.21)

(a) (b)

Figure 2.5: (a) Zooming in of F+ in the negative side of E at T → 0, (b) at T → Tc.
The dashed line that is tangent with F+ at E = −∣∆(T )∣ is a linear function with slope
∂F+
∂E . The gray area indicates the degree of enhancement to relaxation rate from F+.
F+ shown in the left panel will give more enhancement to the relaxation rate than in
the right panel.

As shown in Fig. 2.5, ∂F+
∂E is smaller at low temperature T → 0 and large ∆(T → 0),

which gives the enhancement to a larger area in the E axis. By contrast, at T → Tc

and fast decreasing ∆(T → Tc), the slope will be very large, which means only a very
small area near E = ±∣∆∣ is enhanced. Finally at T = Tc, the slope goes to ∞, which
means there is no area got enhanced.

The temperature dependence of ∂F+
∂E is shown in Fig 2.6. At temperature below

T /Tc = 0.7, The slope does not change much and gives a relatively stable enhancement
to the relaxation rate. However, as the temperature further increase, the slope starts
increasing fast because of the fast decay of ∆. As a result, the enhancement to the
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Figure 2.6: The black curve shows the temperature dependence of αs/αn. The green
curve shows the temperature dependence of the slope of the coherence factor ∂F+

∂E at
E = −∣∆(T )∣.

relaxation rate also decreases fast.
Now we have all the factors that might contribute to the peak ready: 1) the

sharp peak of DOS, 2) the broadening of ∂f/∂E, and 3) the coherence factor F+ that
enhances the relaxation rate.

Let’s consider the DOS and the Fermi function first. By evaluating the temperature
dependence of

2∫
∞

∆
dE ⋅ (−

∂f

∂E
) ⋅D(E) ⋅D(E + ω), (2.22)

which is Eq. (2.16), but the coherence factor F+(E) is set to be 1. Figure. 2.7 shows
that there is no peak in such a function. By comparing the result of Fig. 2.7 with
Fig. 2.3, we can draw a conclusion that there will not be a Hebel-Slichter peak if we
only consider factors 1) and 2). Those two factors, however, only guarantees that the
relaxation rate at T → Tc is larger than it at T → 0, but they will not guarantee that
the relaxation rate in the superconducting state exceeds the normal state. In fact,
as we will discuss in the next section, in unconventional superconductors, where the
coherence factor is usually 1 because of the sign-changing effect, the Hebel-Slichter
peak is usually not found, which verifies the above argument.

Taking those factors together, we can now make a brief summary of the origin
of the Hebel-Slichter peak. At low temperature T → 0, the Fermi function term is
localized inside the gap of the DOS, thus the relaxation rate is greatly suppressed and
the value is almost zero. As the temperature increases, the Fermi function term start
to overlap with the peak of the DOS. Because of the enhancement from the coherence
factor, the rate is further boosted to above the normal state. Thereafter, the DOS and
the Fermi function term together continues increasing as shown in Fig. 2.7, but the
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enhancement from the coherence factor is decreasing quickly as T goes close to Tc. As
the enhancement vanishes, the relaxation rate drops back to the normal state at Tc.
Considering these processes together, it results in a peak just below Tc.

0 0.5 1 1.5

T=Tc

0

0.5

1

1.5

,
s
=
,

n

Figure 2.7: T dependence of the value in Eq. (2.22). No Hebel-Slichter peak appears.

2.5 Absence of Hebel-Slichter peak in unconven-
tional superconductors

In experiments, there are many evidences supporting the absence of Hebel-Slichter
peak in unconventional (most of them have d-wave symmetries) superconductors [2, 9,
21, 22]. The explanation for the absence of peak can be that the positive and negative
∆k cancels with each other and gives zero in total. As a result, the coherence factor
F+ is always 1 thus gives no enhancement to the relaxation rate as shown in Fig. 2.7.

However, the explanation above is not perfect. First of all, the density of states
of the unconventional superconductors are usually different from the convention ones.
Thus the approximation of density of states in Eq. (2.12) is no longer appropriate.
Usually, the DOS of unconventional superconductors are not fully gapped, while the
conventional ones does, which may cause different behaviors in the relaxation rate.
Furthermore, Eq. (2.3) is derived for the single-band BdG Hamiltonian, but for multi-
band systems, the expression may differ. In fact, as we will show in this thesis, kagome
lattice is a system that does not follow this argument that the unconventional super-
conductivity will render the absence of Hebel-Slichter peak. By contrast, the Hebel-
Slichter peak is possible to exist even though the superconducting order parameter is
sign-changing.
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Figure 2.8: The spin-lattice relaxation rate of PuCoGa5 in the normal and supercon-
ducting states. The dashed line is the relaxation rate calculated from s-wave BCS
theory. The Hebel-Slichter peak is absent in the measurement of the superconducting
state. Image from [9].
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Chapter 3

The Hebel-Slichter peak in the
square lattice

As we discussed in the end of last chapter, by directing setting coherence factor
F+ = 1, the Hebel-Slichter peak becomes absent from the spin-lattice relaxation rate.
However, this argument is not fully satisfying to explain the absence of Hebel-Slichter
peak in the d-wave superconductors, since we did not use the realistic d-wave DOS in
Eq.(2.22). In this chapter, we consider a simple lattice model, i.e. the square lattice,
and calculate the spin-lattice relaxation rate of this model. In this case, the DOS is
realistic for the square lattice and there is no approximation upon it.

Figure 3.1: Illustration of the square lattice.
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3.1 The lattice

The tight-binding model of the square lattice in momentum space is

H0 =∑
kσ

[−2t (coskx + cosky) − µ] c
†
kσckσ. (3.1)

Now we consider the superconductivity. The mean-field Hamiltonian of the super-
conducting part is

HSC = −∑
k

∆kc
†
k↑c

†
−k↓ −∑

k

∆∗kc−k↓ck↑. (3.2)

In the conventional (s-wave) BCS theory of superconductivity, the order parameter
∆k is independent of the momentum vector k. According to this, we can define the
s-wave superconducting order parameter ∆s

k = ∆0 in this lattice. However, the order
parameters, which are k dependent, are also allowed as the solutions of the BCS gap
equation Eq. (2.15) [42]. Here we take the order parameter with the dx2−y2 symmetry
∆d

k =
∆0

2 (coskx − cosky).

(a)

s-wave d-wave

(b)

Figure 3.2: The s-wave and d-wave order parameter (a) and (b) in the first Brillouin
zone. The black lines indicate the Fermi surface at µ = 0.

3.2 The B factor and relaxation rate

The spin susceptibility is calculated from Eq. (2.3), which is quite general for one-
band BCS Hamiltonian. As we have discussed in the last chapter, only the last two
terms in Eq. (2.3) are non-zero in the superconducting states. Thus we can write it as
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χ+−0 (q, ω)≈
1

N
∑

k,E>0
[(1+

ξkξk+q+∆∗k+q∆k

EkEk+q
)
f(Ek)−f(Ek+q)
ω+Ek+q−Ek+iη

+(1+
ξkξk+q+∆∗k+q∆k

EkEk+q
)
f(Ek+q)−f(Ek)

ω+Ek−Ek+q+iη
] .

(3.3)

The coherence factor, which in the expression above is

(1+
ξkξk+q+∆∗k+q∆k

EkEk+q
) , (3.4)

is the key to the spin-lattice relaxation rate, as we have explained in Chapter 2.4. Since
we have set Ek to be always positive, while ξk can be both positive and negative, ξkξk+q
will finally be cancelled. Thus only ∆∗k+q∆k remains as the important factor in this
term.

We want to see how ∆∗k+q∆k looks for the s-wave and the d-wave cases. However,
it is defined in both k and q space, so it is not convenient to directly plot it. Instead,
we can define

B(q,kn) =
∆∗kn+q∆kn

EknEkn+q
, (3.5)

where kn is chosen from the k points on the Fermi surface, which potentially gives the
largest contribution to the spin susceptibility.

As shown in Fig. 3.3, B(q,kn) is always positive in the q space for the s-wave
order parameter, since the order parameter is isotropic and non sign-changing in the
k space. In contrast, B(q,kn) is half positive and negative in q space. This is due to
the sign-changing structure of the order parameter in the k space.

As the result, the sum ∑qB(q,kn) is a finite number between 0 and 1 for s-wave
case, which will appear in the coherence factor and will give an enhancement to the
spin susceptibility and spin-lattice relaxation rate. The d-wave case is different, where
the positive and negative parts in the q space cancel each other and as a consequence
give no enhancement to the relaxation rate.

The spin-lattice relaxation rates for the square lattice are calculated according
to Eq. (2.1) and are shown in Fig. 3.4. As seen, in the d-wave case, there is no
peak as the system enters the superconducting state. This is consistent with the
experiments which report the absence of Hebel-Slichter peak in the unconventional
d-wave superconductors.

This result in this simple system tells us that the argument in Chapter 2.4 is still
valid if we directly evaluate Eq. (2.3) without the approximation of the DOS. However,
we should notice that this system is still a one-band model. In the next chapter, we
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qk(a)

s-wave

d-wave

(c)

(d)(b)

Figure 3.3: (a-b) The s-wave and d-wave order parameter in the first Brillouin zone.
The black lines indicate the Fermi surface at µ = 0. (c-d) The corresponding B(q,kn)

for s-wave and d-wave order parameters. kn is chosen from the black dot in (a) and
(b). The number below (c) and (d) indicate the sum ∑qB(q,kn) in the first Brillouin
zone.

will introduce the kagome lattice, which has the multi-band structure in the k space.
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s-wave

d-wave

Figure 3.4: The temperature dependence of the spin-lattice relaxation rate for the
s-wave and d-wave order parameters. The vertical axis is the spin relaxation rate αs

in the superconducting state divided by αn in the normal state. All cases are plotted
for N = 4 × 104 and ω = η = 0.015. As seen, there is no Hebel-Slichter peak in the
d-wave case, since the enhancement from the coherence factor is wiped out by the
sign-changing structure of the order parameter.
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Introduction to the kagome lattice

4.1 Crystal and band structure

We briefly introduce the structure of the kagome metals AV3Sb5, where A stands
for an alkali atom, which can be either potassium (K), rubidium (Rb) or Cesium (Cs)
[29].

Figure 4.1: The crystal structure of the kagome mentals A(K)V3Sb5. The purple,
yellow and red spheres denote the alkali (in the figure potassium), vanadium and
antimony atoms. The plane where the vanadium atoms are located is named as the
ab plane, and the axis perpendicular to the plane is called c. Panel (a) and (b) show
the view from the side and from above. Image from [29].

The layered structure of AV3Sb5 is illustrated in Fig. 4.1. The vanadium atoms
which lie in the ab plane form a kagome lattice. The alkali atoms which lie in another
layer of ab plane form a hexagonal lattice. The antimony atoms have two sublattices
Sb1 and Sb2. Antimony atoms in Sb1 form a hexagonal net and are in the center
of the kagome hexagons consisting of vanadium atoms. The atoms in Sb2 form a
graphene-like sheet below and above the kagome layer.

The band structure can be calculated via density functional theory (DFT), which
has an excellent agreement with the angle resolved photoemission spectroscopy (ARPES)
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Figure 4.2: The sublattice Sb1 and Sb2 which consist of antimony and vanadium
atoms. Image from [29]

measurement[7, 16]. As shown in Fig. 4.3, the Dirac cone at K point and the Van-Hove
singularity at M point are dominated by the vanadium atoms. And by comparing the
result from path in the vanadium atoms plane Γ-M-K with that from the alkali atoms
plane A-L-H, we find that there is not a significant kz dependence. Thus we can model
the AV3Sb5 metals with a 2D kagome lattice which consists of vanadium atoms.

Figure 4.3: Panel (a) shows the energy band calculated using DFT, where the high-
symmetry path is shown in panel (b). Image from [18]

4.2 Tight-binding model

To depict the normal state behaviors of the AV3Sb5 metals, it is convenient to
use a minimal tight-binding (TB) model, which describes the electrons moving on the
lattice via nearest neighbor hopping.

The kagome lattice is illustrated in Fig. 4.4, with the definition of the primitive
lattice vectors
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C A a1

a3a2

t1

t2

B

Figure 4.4: Illustration of the kagome lattice. The different sublattice sites are labeled
by A, B, C with colors orange, greeen and blue.

t1 ≡ (1 0) , t2 ≡ (
1

2

√
3

2
) . (4.1)

With the relation gi ⋅ tj = 2πδij, the primitive reciprocal lattice vectors can be
derived

g1 = 2π (1 −
1
√
3
) , g2 = 2π (0

2
√
3
) . (4.2)

With the definitions of the lattice vectors and reciprocal vectors, we can write down
the tight-binding Hamiltonian of the kagome lattice

H0 = −t ∑
R,s,s̄,σ

[c†
s̄,R,σcs,R,σ + c

†
s̄,R+2ass̄,σ

cs,R,σ] − µ ∑
R,s,σ

c†
s,R,σcs,R,σ, (4.3)

where the fermionic operators c and c† denote the creation and annihilation operator.
The subscript s denotes sites {A,B,C} in the unit cell and s̄ denotes different sites
of {A,B,C} to s also in the unit cell; σ denotes spin {↑, ↓}. The first term describes
the nearest neighbor interactions between sites in the same unit cell. The second
also describes the the nearest neighbor interactions but between the adjacent unit
cells. The last term describes the filling of the electrons, where µ denotes the chemical
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potential. The index R denotes the unit cells. The vectors that connect the three
sublattice sites are defined as

aCA =a1 ≡
1

2
(1 0) ,

aCB =a2 ≡
1

2
(
1

2

√
3

2
) ,

aAB =a3 ≡
1

2
(−

1

2

√
3

2
) .

(4.4)

AC

B

R R+2aACR+2aCA

R+2aBA R+2aBC

R+2aCB R+2aAB

Figure 4.5: Illustration of the nearest neighbor hopping of the kagome lattice. The
text labels the unit cell R and its adjacent unit cells.

By Fourier transformation

cs,R,σ =
1

N
∑

k∈BZ

eik⋅Rcs,k,σ, (4.5)

The Hamiltonian can be rewritten as

H0 = ∑
k∈BZ,σ

(c†
A,k,σ c†

B,k,σ c†
C,k,σ)H0(k) (cA,k,σ cB,k,σ cC,k,σ)

T
, (4.6)

where N denotes the number of points in the first Brillouin Zone (BZ). H0(k) is a
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matrix

H0(k) =

⎛
⎜
⎜
⎜
⎝

−µ −2t cosk3 −2t cosk1

−2t cosk3 −µ −2t cosk2

−2t cosk1 −2t cosk2 −µ

⎞
⎟
⎟
⎟
⎠

. (4.7)

Here we use the definition ki ≡ k ⋅ai. From the definition of the vectors in the unit
cell in Eq. (4.4), we can find this relation

a1 = a2 − a3, k1 = k2 − k3. (4.8)

We should note that the matrix elements in Eq. (4.7) are not periodical in the first
BZ. We could either calculate the physical properties with the size of the k-grid twice
that of the first BZ, or apply a unitary transformation T −1(k)H0(k)T (k), where

T (k) =

⎛
⎜
⎜
⎜
⎝

e−ik1 0 0

0 e−ik2 0

0 0 1

⎞
⎟
⎟
⎟
⎠

, (4.9)

and the Hamiltonian matrix in the new basis becomes

H̃0(k) = −

⎛
⎜
⎜
⎜
⎝

µ t(1+e2ik3) t(1+e−2ik1)

t(1+e−2ik3) µ t(1+e−2ik2)

t(1+e2ik1) t(1+e2ik2) µ

⎞
⎟
⎟
⎟
⎠

. (4.10)

We want to know the band structure of the model, thus we need to diagonalize
the Hamiltonian. Using relation eq. (4.8), and applying Euler’s formula e2iki + e−2iki =

2 cos(2ki), the determinant of the Hamiltonian matrix yields

ξ3−ξ(6+2[cos(2k1)+cos(2k2)+cos(2k3)])−4−2(cos(2k1)+cos(2k2)+cos(2k3))−µ=0.

(4.11)

The solutions to the equation are

ξ3(k) = 2t − µ,

ξ2(k) = t (−1 +
√
2[cos(2k1) + cos(2k2) + cos(2k3)] + 3) − µ,

ξ1(k) = t (−1 −
√
2[cos(2k1) + cos(2k2) + cos(2k3)] + 3) − µ.

(4.12)

According to Eq. (4.12), the energy bands is plotted in Fig. 4.6. As seen, the
bands feature a Van-Hove singularity [44] at the M point, which leads to a divergence
of DOS. Furthermore, at K point the middle and lower bands meet and form a Dirac
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n=3

n=2

n=1

Figure 4.6: Energy bands ξn of the kagome lattice at the filling µ = 0. The plot is
along the high-symmetry path shown in the inset. The gray lines inside the first BZ
denote the Fermi surface at µ = 0. In this plot, the M point is (π π√

3
) and the K point

is (4π3 0)

cone. Those two features match the result from the DFT calculation as shown in
Fig. 4.3.

Besides the band structure, which is mathematically the eigenvalues of the matrix
Eq. (4.7), we also want to know the eigenvectors of the this matrix, which will tell
us the information about how the matrix transform from the sublattice space to the
band space. We can define the unitary transformation that diagonalize H0 through
U−1(k)H0(k)U(k)

U(k) =

⎛
⎜
⎜
⎜
⎝

uA,1,k uA,2,k uA,3,k

uB,1,k uB,2,k uB,3,k

uC,1,k uC,2,k uC,3,k

⎞
⎟
⎟
⎟
⎠

, (4.13)

which also transform the operators from cα,k,σ to γn,k,σ via

⎛
⎜
⎜
⎜
⎝

uA,1,k uA,2,k uA,3,k

uB,1,k uB,2,k uB,3,k

uC,1,k uC,2,k uC,3,k

⎞
⎟
⎟
⎟
⎠

−1
⎛
⎜
⎜
⎜
⎝

cA,k,σ

cB,k,σ

cC,k,σ

⎞
⎟
⎟
⎟
⎠

=

⎛
⎜
⎜
⎜
⎝

γ1,k,σ

γ2,k,σ

γ3,k,σ

⎞
⎟
⎟
⎟
⎠

. (4.14)

We use the notation α to denote the sublattice indices, and n to denote the band
indices. Figure 4.7 shows the square of the eigenvectors of the middle band ∣uα,2,k∣

2

and the lower band ∣uα,1,k∣
2. As seen in the middle band, the weights on the M points

in the first BZ are perfectly localized with one of the sublattice indices. For example,
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at M1 point there are ∣uC,2,k∣
2 = 1 and ∣uA,2,k∣

2 = ∣uB,2,k∣
2 = 0. However, such property is

not held by the lower band, where two of the sublattice indices blend at the M points.

M1

M2

M3

M4

M5
M6

(a) (b)

Figure 4.7: The sublattice weights ∣uα,n,k∣
2 of the middle band and the lower band are

shown in panels (a) and (b), which is plotted along the certain path illustrated in the
inset of (b). The color refers to the sublattice indices, where the color red stands for
sublattice A, green for B and blue for C.

Apart from the unique feature with the name sublattice interference, that the
sublattice weights are nearly perfectly nest at the M points, there is a more general
feature arising together with the sublattice interference effect. As shown in Fig. 4.8,
there is area where the sublattice weights are zero in the BZ. This property is not
only at the upper Van Hove point, but quite general for the middle band. This
feature, together with the well-known sublattice interference, can lead to some unusual
behaviors, such as the robustness of sign-changing gap structures to disorder on the
kagome lattice to the impurities [17], and the presence of Hebel-Slichter peak in the
unconventional kagome superconductors.

|uA,2,k|
2 |uB,2,k|

2 |uC,2,k|
2

Figure 4.8: The sublattice weights ∣uα,n,k∣
2 of the middle band n = 2 in the first BZ.

The color refers to the sublattice indices, where the color red stands for sublattice
A, green for B and blue for C. The dashed lines sketch the area where the sublattice
weights are zero.
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4.3 Superconductivity

In 2020, the kagome mental CsV3Sb5 was reported to enter the superconducting
state at a critical temperature Tc ≈ 2.5 K [30]. The other members of the AV3Sb5

family were also reported superconductivity shortly after with Tc ≈ 0.9 K[31, 46]. One
of the tasks of understanding the nature of the superconductivity in the materials is to
determine the pairing symmetry of the superconducting order parameter. [36, 38, 45].
There are some properties of the pairing nature to be identified , e.g. singlet vs. triplet,
node vs. nodeless and sign-changing vs. non-sign-changing. In the following we will
introduce some experiments that can help determine them.

Figure 4.9: The electric resistivity measured for CsV3Sb5 mental at low temperature
with different amplitudes of magnetic field. The resistivity drops to zero at the critical
temperature Tc approximately 2.5 K [30].

Let’s first look at the experiment potentially determining nodal/nodeless gap struc-
ture. The magnetic penetration depth measurement are expected to identify the
nodal/nodeless structure of the superconducting gap. The measurement on CsV3Sb5

mental with tunneling diode oscillator technique [11] reports the T 2.9 dependence of
the penetration depth ∆λ, which deviates from a T or T 2 behavior expected for line
or point nodal structure. This result is closer to an exponential behavior, which points
to a nodeless gap structure. Another penetration depth experiment with muon spin
rotation/relaxation (µSR) technique that measures the bulk property reports nodeless
and anisotropic structure [13].

The ARPES is another tool which can directly measure the superconducting gap
structure in the momentum space. The measurement on Cs(V0.93Nb0.07)3Sb5 and
Cs(V0.86Ta0.14)3Sb5 [49] reports a fully-gapped and isotropic structure of the order pa-
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rameter. In this measurement, the doping of niobium or tantalum atoms substituting
some vanadium atoms is aimed at increasing the critical temperature, which helps
improve the accuracy of the APRES measurement. However, in a recent research, an
anisotropic, even near nodal gap is observed in CsV3Sb5 without doping [24]. Fur-
thermore, the doping is proposed to be able to change the superconducting gap from
anisotropic to isotropic [35].

Those experimental evidences have slowly pushed the understanding of the gap
structure forward to converge to a nodeless, but anisotropic picture [45], although the
doping might influence the (an)isotropic symmetry.

Another very basic property of the pairing state is the spatial parity, i.e. the total
spin s = 0 spin-singlet pairing or the total spin s = 1 spin-triplet pairing. The Knight
shift measurement is expected to probe this property. For the spin-singlet case, the
spin shift is expected to decrease upon entering the superconducting state and can
vanish at T → 0. By contrast, for the spin-triplet case, the spin shift can remain finite
or a constant along certain directions [14, 19]. Such measurements was applied to the
kagome mental CsV3Sb5 [27], and the shift for all directions decrease below Tc, which
points to the spin-singlet pairing.

Figure 4.10: The Knight shift measurement along different directions of the kagome
lattice. a and a∗ are two orthogonal directions on the kagome plane, while c is per-
pendicular to the plane. Image from [27].

Finally, the (non)sign-changing property is also a very crucial property that dis-
tinguishes conventional and unconventional superconductors. In the conventional
phonon-mediated superconductors, the order parameter ∆ is always non-sign-changing,
which represents an effectively always attractive interaction between electrons due to
the phonon mediation [37, 42]. However, if the microscopic mechanics of supercon-
ductivity is not (only) due to the phonon mediation, a sign-changing gap structure is
also allowed as a solution of the BCS gap equation.

Experimentally, it is commonly believed that the atomic-scale disorder will cause
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a strong suppression of the critical temperature Tc for the superconductors with a
sign-changing gap structure. By contrast, the conventional non-sign-changing s-wave
pairing is relatively not sensitive to disorder [17, 45]. Such experiments was carried out
for CsV3Sb5, and no significant critical temperature suppression was observed [35, 48].
Those results were explained as an evidence for a non-sign-changing gap structure
according to the conventional picture that a sign-changing gap is more sensitive to
lattice disorder. However, as shown in Fig. 4.11 (b), the recent theoretical study on
the suppression of critical temperature due to the lattice disorder suggests that the
d-wave gap structures are not sensitive to the disorders as well [17]. This unusual
behavior is due to the sublattice effect which wipes out the sign-changing effect.

Figure 4.11: The critical temperatures Tc/Tc0 as a function of amount of impurities.
(a) Experiment result on CsV3Sb5. Image from [48]. (b) Theoretical calculation for
different symmetries. Image from [17].

Moreover, the NMR spin-lattice relaxation rate measurement, as we have detailedly
discussed in the previous chapters, is another probe that is believed to be sensitive
to the sign-changing gap structure. The spin-lattice relaxation rate was measured for
CsV3Sb5, and a clear Hebel-Slichter peak was observed. This was considered as a
strong sign for a conventional non-sign-changing s-wave gap structure [27].

4.4 Nambu formalism

To theoretically study the superconducting states, it is usual to write down the
Hamiltonian using the mean-field Nambu formalism [37, 43],

H =∑
k

Ψ†
kĤ(k)Ψk, (4.15)
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Figure 4.12: Temperature dependence of the spin-lattice relaxation rate of CsV3Sb5.
Image from [27].

where

Ĥ(k) =
⎛

⎝

H0(k) −∆(k)

−∆(k)† −HT
0 (−k)

⎞

⎠
, (4.16)

and Ψ†
k = (c

†
k↑ c−k↓) with c†

kσ = (c
†
kσA c†

kσB c†
kσC
). H0 is the tight-binding Hamilto-

nian matrix defined in Eq. (4.6).
Additional to the tight-binding Hamiltonian, the order parameter ∆(k) describes

the superconducting pairing state. Different from the square lattice in (see Chapter 3),
due to the sublattice structure, the tight-binding Hamiltonian of the kagome lattice is
in a matrix form. Accordingly, the order parameter ∆(k) is also a matrix. To derive
the matrix for the order parameters with different symmetries, techniques from group
theory is used [18]. Since the experimental results points to singlet pairing, the s-wave
and d-wave stands out as the leading candidates. In the following we will only briefly
introduce the matrices of order parameters we used to describe s-wave and d-wave
pairing. Detailed group theory analysis for the kagome lattice structure is presented
in the previous works [18, 34].

The kagome lattice is exhibits D6 point group symmetry. The character table is
shown in Table 4.1. For the on-site (OS) pairing, the A1 (s-wave) and E2 (dx2−y2 and
dxy-wave) singlet pairing is allowed for the symmetry.

The order parameters can be written accroding to the lattice harmonics function

∆Γ =∆0fOS,Γ, (4.17)
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D6 E 2C6 2C3 C2 3C ′2 3C ′′2
A1 1 1 1 1 1 1
A2 1 1 1 1 -1 -1
B1 1 -1 1 -1 1 -1
B2 1 -1 1 -1 -1 1
E1 2 1 -1 -2 0 0
E2 2 -1 -1 2 0 0

Table 4.1: The character table of the D6 point group.

where [17]

fOS,s =
1
√
3

⎛
⎜
⎜
⎜
⎝

+1 0 0

0 +1 0

0 0 +1

⎞
⎟
⎟
⎟
⎠

, (4.18)

fOS,dx2−y2 =
1
√
6

⎛
⎜
⎜
⎜
⎝

+1 0 0

0 −2 0

0 0 +1

⎞
⎟
⎟
⎟
⎠

, (4.19)

fOS,dxy =
1
√
2

⎛
⎜
⎜
⎜
⎝

+1 0 0

0 0 0

0 0 −1

⎞
⎟
⎟
⎟
⎠

. (4.20)

Now we consider how to transform the order parameters from the sublattice space
to the band space. With the Hamiltonian in the Nambu formalism Eq. (4.16), if
∆(k) = 0, it is just the tight-binding Hamiltonian in another basis

Ĥ(k) =
⎛

⎝

H0(k) 0

0 −HT
0 (−k)

⎞

⎠
. (4.21)

The unitary transformation U(k) that diagonalizes the tight-binding Hamiltonian ma-
trix H0 is defined in Eq. (4.13). Then the unitary transformation in the Nambu for-
malism is defines as

U(k) =
⎛

⎝

U(k)

U∗(k)

⎞

⎠
=

⎛
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

uA,1,k uA,2,k uA,3,k

uB,1,k uB,2,k uB,3,k

uC,1,k uC,2,k uC,3,k

u∗A,1,k u∗A,2,k u∗A,3,k

u∗B,1,k u∗B,2,k u∗B,3,k

u∗C,1,k u∗C,2,k u∗C,3,k

⎞
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

. (4.22)

Before the next step, to make it clear, we can write down the Nambu Hamiltonian
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Eq. (4.16) without abbreviation

Ĥ(k) =

⎛
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

−µ −2t cosk3 −2t cosk1 −∆AA(k) −∆AB(k) −∆AC(k)

−2t cosk3 −µ −2t cosk2 −∆BA(k) −∆BB(k) −∆BC(k)

−2t cosk1 −2t cosk2 −µ −∆CA(k) −∆CB(k) −∆CC(k)

−∆∗AA(k) −∆
∗
BA(k) −∆

∗
CA(k) µ 2t cosk3 2t cosk1

−∆∗AB(k) −∆
∗
BB(k) −∆

∗
CB(k) 2t cosk3 µ 2t cosk2

−∆∗AC(k) −∆
∗
BC(k) −∆

∗
CC(k) 2t cosk1 2t cosk2 µ

⎞
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

.

(4.23)

The unitary transformation acting on the Nambu Hamiltonian results in

U†(k)Ĥ(k)U(k) =
⎛

⎝

U †(k)H0(k)U(k) −U †(k)∆(k)U∗(k)

−UT (k)∆∗(k)U(k) −UT (k)H0(k)U∗(k)

⎞

⎠
, (4.24)

where the upper right and the lower left elements are the order parameters in the band
space. Let’ look at the upper right element

−U †(k)∆(k)U∗(k)

= −

⎛
⎜
⎜
⎜
⎝

uA,1,k uB,1,k uC,1,k

uA,2,k uB,2,k uC,2,k

uA,3,k uB,3,k uC,3,k

⎞
⎟
⎟
⎟
⎠

⎛
⎜
⎜
⎜
⎝

∆AA(k) ∆AB(k) ∆AC(k)

∆BA(k) ∆BB(k) ∆BC(k)

∆CA(k) ∆CB(k) ∆CC(k)

⎞
⎟
⎟
⎟
⎠

⎛
⎜
⎜
⎜
⎝

uA,1,k uA,2,k uA,3,k

uB,1,k uB,2,k uB,3,k

uC,1,k uC,2,k uC,3,k

⎞
⎟
⎟
⎟
⎠

,

=

⎛
⎜
⎜
⎜
⎝

∆̃11(k) ∆̃12(k) ∆̃13(k)

∆̃21(k) ∆̃22(k) ∆̃23(k)

∆̃31(k) ∆̃32(k) ∆̃33(k)

⎞
⎟
⎟
⎟
⎠

,

(4.25)

which is the order parameter in the band space. Since we usually choose the filling of
the Fermi surface crossing only the middle band, we can mainly focus on the intra-band
pairing ∆̃22(k). Figure 4.13 shows the order parameter on the middle band.

Figure 4.13: The on-site order parameters with different symmetries in the first BZ of
the k space. The black lines denote the Fermi surface at the filling µ = 0.

Nearest-neighbor pairing should also be taken into account. However, since we are
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mostly interested in the d-wave pairing which corresponds to the E2 irreducible repre-
sentation, and the nearest neighbor pairing will not contribute to the order parameter
near the Fermi surface as seen in Fig. 4.14, we can consider only the on-site d-wave
pairing terms.

Figure 4.14: The nearest neighbor order pairing with E2 irreducible representation.
(a-b) the real space pairing interaction; (c-d) the momentum space order parameters.
Image from [18].
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Chapter 5

The Hebel-Slichter peak in the
kagome lattice

In the previous chapters, we introduced the origin of the Hebel-Slichter peak, and
explained the reason for its absence in the unconventional superconductors. However,
those analyses were only carried out on the one-band model, such as the monoatomic
square lattice. The kagome lattice, as we introduced in the last chapter, can be
described with three sublattice indices, which results in three energy bands and the
3 × 3 matrix structure of the Hamiltonian and order parameter. The question is very
simple: is there a Hebel-Slichter peak in the kagome lattice, even with unconventional
superconducting order parameters? To answer this question, in this chapter, we will
first start by introducing the expression for the spin susceptibility with multi-bands
structure. Then we will derive an effective one-band model to explain the underlying
physics.

5.1 Multi-band spin susceptibility

As we have introduced in the last chapter, we can write the Hamiltonian of the
kagome lattice with Nambu formalism

H = ∑
k∈BZ

Ψ†
kĤ(k)Ψk, (5.1)

where the matrix Ĥ(k) is shown in Eq. (4.23) ,and the corresponding basis is

Ψ†
k = (c

†
A,k,↑, c

†
B,k,↑, c

†
C,k,↑, cA,−k,↓, cB,−k,↓, cC,−k,↓) ,

Ψk = (cA,k,↑, cB,k,↑, cC,k,↑, c
†
A,−k,↓, c

†
B,−k,↓, c

†
C,−k,↓)

T
.

(5.2)

We have shown in the tight-binding model of the kagome lattice, that the Hamilto-
nian is not periodical in the first BZ. Thus we can apply a unitary transformation such
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that the matrix is periodical in the first BZ. The unitary transformation is defined as

TNambu(k) =
⎛

⎝

T (k) 0

0 T T (−k)

⎞

⎠
, (5.3)

where T (k) is defined in Eq.(4.9). Then the Hamiltonian under the new basis
T −1Nambu(k)Ĥ(k)TNambu(k) can be written explicitly

˜̂
H(k) =

⎛
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

−µ −t(1+e2ik3) −t(1+e−2ik1) −∆AA(k) −∆AB(k) −∆AC(k)

−t(1+e−2ik3) −µ −t(1+e−2ik2) −∆BA(k) −∆BB(k) −∆BC(k)

−t(1+e2ik1) −t(1+e2ik2) −µ −∆CA(k) −∆CB(k) −∆CC(k)

−∆∗AA(k) −∆∗AB(k) −∆∗AC(k) µ t(1+e−2ik3) t(1+e2ik1)

−∆∗BA(k) −∆∗BB(k) −∆∗BC(k) t(1+e2ik3) µ t(1+e2ik2)

−∆∗CA(k) −∆∗CB(k) −∆∗CC(k) t(1+e−2ik1) t(1+e−2ik2) µ

⎞
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

.

(5.4)

To diagonalize the Hamiltonian, we can define the Bogoliubov transformation

Uk =

⎛
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

u∗A,1,k u∗A,2,k u∗A,3,k −vA,1,k −vA,2,k −vA,3,k

u∗B,1,k u∗B,2,k u∗B,3,k −vB,1,k −vB,2,k −vB,3,k

u∗C,1,k u∗C,2,k u∗C,3,k −vC,1,k −vC,2,k −vC,3,k

v∗A,1,k v∗A,2,k v∗A,3,k uA,1,k uA,2,k uA,3,k

v∗B,1,k v∗B,2,k v∗B,3,k uB,1,k uB,2,k uB,3,k

v∗C,1,k v∗C,2,k v∗C,3,k uC,1,k uC,2,k uC,3,k

⎞
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

, (5.5)

such the Hamiltonian is diagonalized

U∗kĤ(k)Uk =

⎛
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

ξ1

ξ2

ξ3

−ξ1

−ξ2

−ξ3

⎞
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

, (5.6)
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with new basis

Ψ̃k =

⎛
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

γ1,k,↑
γ2,k,↑
γ3,k,↑
γ∗1,−k,↓
γ∗2,−k,↓
γ∗3,−k,↓

⎞
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

=U†
kΨk =U

†
k

⎛
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

cA,k,↑
cB,k,↑
cC,k,↑
c†
A,−k,↓
c†
B,−k,↓
c†
C,−k,↓

⎞
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

. (5.7)

With the definition, We can find the relation of the Bogoliubov transformation

cα,k,↑ =∑
m

(u∗α,m,kγm,k,↑ − vα,m,kγ
†
m,−k,↓)

c†
α,−k,↓ =∑

m

(v∗α,m,kγm,k,↑ + uα,m,kγ
†
m,−k,↓)

c†
α,k,↑ =∑

m

(uα,m,kγm,k,↑ − v∗α,m,kγ
†
m,−k,↓)

cα,−k,↓ =∑
m

(vα,m,kγm,k,↑ + u∗α,m,kγ
†
m,−k,↓)

(5.8)

Now we consider the spin susceptibility. The expression for the spin susceptibility
with sublattice indices in the momentum space is

χ+−0,αβ(q, τ) =
1

N 2∑
kk′
⟨Tτc

†
α,k+q↑cα,k↓c

†
β,k′−q↓(τ)cβ,k′↑(τ)⟩. (5.9)

We insert the relation of the Bogoliubov transformation Eq. (5.8) into the expression
above, and after some calculation as shown in Appendix C, we can finally derive the
spin susceptiblity for the multi-band system with sublattice indices

χ+−0,αβ(q, τ) =
1

N
∑

k,m,m′

[(v∗α,m,k+qvβ,m,k+qu∗α,m′,kuβ,m′,k−v
∗
α,m,k+quβ,m,k+qu∗α,m′,kvβ,m′,k)

1−f(Ek+q,m)−f(Ek,m′)

iωn+Ek+q,m+Ek,m′

+ (uα,m,k+qu∗β,m,k+qu
∗
α,m′,kuβ,m′,k+uα,m,k+qv∗β,m,k+qu

∗
α,m′,kvβ,m′,k)

f(Ek+q,m)−f(Ek,m′)

iωn +Ek,m′−Ek+q,m

+ (v∗α,m,k+qvβ,m,k+qvα,m′,kv∗β,m′,k+v
∗
α,m,k+quβ,m,k+qvα,m′,ku∗β,m′,k)

f(Ek,m′)−f(Ek+q,m)
iωn+Ek+q,m−Ek,m′

+(uα,m,k+qu∗β,m,k+qvα,m′,kv
∗
β,m′,k−uα,m,k+qv∗β,m,k+qvα,m′,ku

∗
β,m′,k)

f(Ek+q,m)+f(Ek,m′)−1

iωn−Ek+q,m−Ek,m′
] .

(5.10)

Another question is that when calculating the spin susceptibility in a system with
sublattice indices, how the summation over the sublattice indices works. The different
ways of defining the basis will influence the result of the summation. We discuss this
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question in Appendix D, where we have shown that by choosing the proper basis, the
spin susceptibility is obtained with the summation over sublattice indices. However,
some basis choice will introduce an extra phase factor, which will lead to a wrong
result. In the correct basis, we define the spin susceptibility

χ+−0 (q, τ) =∑
αβ

χ+−0,αβ(q, τ). (5.11)

In the kagome lattice, in order to check which basis used in Eq. (4.23) and (5.4)
is proper, we define the spin susceptibility calculated with Eq. (4.23) as χ+−0,AB(q, ω),
and with Eq. (5.4) χ̃+−0,AB(q, ω). As shown in Fig. 5.1, the use of the basis Eq. (5.4)
breaks the C2 symmetry by a rotation of π around the principal axis [10]. By contrast,
as shown in Fig. 5.1 (a), the spin susceptibility Imχ+−0,AB(q, ω) is invariant under a C2

rotation.

q(a) (b) q

Figure 5.1: Panel (a) displays Imχ+−0,AB(q, ω) with the basis Eq. (4.23). Panel (b) dis-
plays Im χ̃+−0,AB(q, ω) with the basis choice of Eq. (5.4). (a) conserves the C2 symmetry
by a rotation of π around the principal axis; (b) breaks this symmetry.

However, by including a phase factor

χ+−0,αβ(q, ω)=

⎛
⎜
⎜
⎜
⎝

χ̃+−0,AA ei(q2−q1)χ̃+−0,AB e−iq1χ̃+−0,AC

ei(q1−q2)χ̃+−0,BA χ̃+−0,BB e−iq2χ̃+−0,BC

eiq1χ̃+−0,CA eiq2χ̃+−0,CB χ̃+−0,CC

⎞
⎟
⎟
⎟
⎠

, (5.12)

one can recover the correct spin susceptibility. This symmetry breaking by an inap-
propriate choice of basis is also discussed in Ref. [41]. Thus we can use the basis in
Eq. (4.23) with the size of the k-grid twice that of the first BZ. Alternatively, we can
use the basis in Eq. (5.4) to calculate the spin susceptibility, and consider the phase
factor to get the correct one.
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5.2 Relaxation rate

The spin-lattice relaxation rate of the kagome lattice is also proportional to the spin
susceptibility, where the only difference is the summation over the sublattice indices.
It can be written as

α ≡
1

T1T
=
C

ω

1

N
∑
q,αβ

Imχ+−0,αβ(q, ω), (5.13)

As shown in Fig. 5.2, both the s-wave and d-wave cases show the Hebel-Slichter peak.
This is quite surprising, since the peak is expected to be wiped out due to the sign-
changing effect. To explain this, we want to look at the coherence factors, since they
are the key to the Hebel-Slichter peak as we have discussed before. However, it is hard
to define such a coherence factor in a multi-band model Eq. (5.10), since we can not
find a analytical expression for the u and v in the Bogoliubov transformation. This
drives us to derive a effective model, by which we can define the effective coherence
factor and understand why the unconventional d-wave kagome superconductor shows
the Hebel-Slichter peak.

Figure 5.2: Temperature dependence of the spin-lattice relaxation rate ratio αs/αn for
superconductivity on the kagome lattice. The label ’complete’ means it is calculated
with the three-band model using Eq. (5.10). The results are plotted for N = 1 × 104.
ω = η = 0.015 is applied in the calculation.
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5.3 Effective model

We know that only the energies which are close to the Fermi level contribute to
the spin susceptibility. For the kagome lattice, only the middle band is expected to
contribute to the it when we are working on the upper Van Hove point. Having this
argument, we can choose solely the middle and define an effective Hamiltonian,

Heff(k) =
⎛

⎝

ξ2(k) −∆̃22(k)
−∆̃∗22(k) −ξ2(k)

⎞

⎠
, (5.14)

where ∆̃22 is the order parameter defined in Eq. (4.25), and here we only consider the
intra-band interaction of the middle band.

Now let’s consider the spin susceptibility. Equation (5.9) is written in the sub-
lattice space, while the effective Hamiltonian is defined in the band space. Thus a
unitary transformation from the sublattice space to the band space is required for
the expression of spin susceptibility. The unitary transformation that transforms the
tight-binding Hamiltonian from the sublattice space to the band space is defined in
Eq. (4.13). However, the transformation will not directly diagonalize the Hamiltonian
like in the tight-binding model because of the off-diagonal components ∆(k); instead,
it will transform the order parameter to the band space. To avoid confusion, we write
the fermionic operators in the band space as cn,k,σ instead of γn,k,σ as Eq. (4.14)

⎛
⎜
⎜
⎜
⎝

uA,1,k uB,1,k uC,1,k

uA,2,k uB,2,k uC,2,k

uA,3,k uB,3,k uC,3,k

⎞
⎟
⎟
⎟
⎠

⎛
⎜
⎜
⎜
⎝

cA,k,σ

cB,k,σ

cC,k,σ

⎞
⎟
⎟
⎟
⎠

=

⎛
⎜
⎜
⎜
⎝

c1,k,σ

c2,k,σ

c3,k,σ

⎞
⎟
⎟
⎟
⎠

, (5.15)

which gives the relation

cα,k,σ =∑
m

u∗α,m,kcm,k,σ. (5.16)

The expression of the spin susceptibility Eq. 5.9, can be split into two terms ac-
cording to Wick’s theorem,

χ+−0 (q, τ)=
1

N
∑
k,αβ

[−⟨Tτc
†
α,k+q↑c

†
β,−k−q↓(τ)⟩⟨Tτcα,k↓cβ,−k↑(τ)⟩

+⟨Tτc
†
α,k+q↑cβ,k+q↑(τ)⟩⟨Tτcα,k↓c

†
β,k↓(τ)⟩].

(5.17)

We insert the relation Eq. (5.16) into the equation above with the approximation that
only the middle band n = 2 is considered, and the first term which accounts for the
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superconducting state gives an extra factor

gs,αβ(k,q) = uα,2,k+quβ,2,k+qu∗α,2,ku
∗
β,2,k. (5.18)

The second term gives another factor

gn,αβ(k,q) = uα,2,k+qu∗β,2,k+qu
∗
α,2,kuβ,2,k. (5.19)

The expression thus becomes

χ+−0 (q, τ)=
1

N
∑
k,αβ

[−gs,αβ(k,q)⟨Tτc
†
2,k+q↑c

†
2,−k−q↓(τ)⟩⟨Tτc2,k↓c2,−k↑(τ)⟩

+gn,αβ(k,q)⟨Tτc
†
2,k+q↑c2,k+q↑(τ)⟩⟨Tτc2,k↓c

†
2,k↓(τ)⟩].

(5.20)

Under the basis choice Eq. (4.23), there is gs,αβ(k,q) = gn,αβ(k,q) because the
eigenvectors are real. Thus we can write them as gαβ(k,q). After the same derivation
as in Appendix B, the spin susceptibility is given by

χ+−0 (q, ω)=
1

N
∑

k,E>0

⎛

⎝
∑
αβ

gαβ(k,q)
⎞

⎠
[(1−

ξkξk+q+∆∗k+q∆k

EkEk+q
)
1−f(Ek)−f(Ek+q)
ω+Ek+q+Ek+iη

+(1−
ξkξk+q+∆∗k+q∆k

EkEk+q
)
f(Ek)+f(Ek+q)−1
ω−Ek+q−Ek+iη

+(1+
ξkξk+q+∆∗k+q∆k

EkEk+q
)
f(Ek)−f(Ek+q)
ω+Ek+q−Ek+iη

+(1+
ξkξk+q+∆∗k+q∆k

EkEk+q
)
f(Ek+q)−f(Ek)

ω+Ek−Ek+q+iη
] ,

(5.21)

where we have used the notation ξk ≡ ξ2(k) and ∆k ≡ ∆22(k) for simplicity. This
expression is the same expression as for the square lattice, except for an extra factor
∑α,β gαβ(k,q) arising from the transformation.

We can now evaluate the model. The result from the effective model is very
similar to the complete one as seen in Fig. 5.3. The result from the complete model
is slightly larger than the effective one, because the other bands also have a very
small contribution. Despite the small difference, the result shows that it is enough to
describe the behavior of the relaxation rate with the effective model.

5.4 Why is there a Hebel-Slichter peak?

In Chapter 3, we have defined the so-called B factor to explain the absence of the
Hebel-Slichter peak with the unconventional d-wave superconducting order parameter
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Figure 5.3: Temperature dependence of the spin-lattice relaxation rate ratio αs/αn

for superconductivity on the kagome lattice. The effective models and the complete
models are plotted for N = 4 × 104 and N = 1 × 104, respectively. And ω = η = 0.015
is used in both cases. The blue and purple lines show the results calculated from the
effective Hamiltonian Heff(k). The respective lines with open symbols show the results
obtained from the complete three-band Hamiltonian Ĥ(k).

in the square lattice . Similarly, we can define a dressed coherence B factor given by

Bd(q,kn) =
∑αβ gαβ(kn,q)

Z

∆∗kn+q∆kn

EknEkn+q
, (5.22)

where Z is a normalization factor defined by

Z =
1

N 2∑
k,q

∑
αβ

gαβ(k,q). (5.23)

For comparison, we also define a bare coherence factor without the matrix element
dressing from gαβ(k,q)

Bb(q,kn) =
∆∗kn+q∆kn

EknEkn+q
. (5.24)

As seen in Fig. 5.4, we present both the bare and dressed B factors for the s- and
d-wave order parameters of the kagome lattice. Let’s first consider the conventional A1

s-wave case in Fig. 5.4 (a,d,g). The dressing factor ∑α,β gαβ(k,q) indeed changes the
distribution of Bb(q,kn) in q space. However, the summed value∑qBd(q,kn) remains
substantial and unchanged. Therefore, the corresponding spin-lattice relaxation rate
1/T1T also remains unchanged, both showing a Hebel-Slichter peak in the bare and
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qk(a)

s-wave

dx2-y2

dx2-y2

(d) (g)

(e) (h)

(f) (i)

(b)

(c)

q

Figure 5.4: The s-wave order parameter (a) and the dx2−y2 order parameter (b)-(c)
in k-space in the first BZ for the kagome lattice. The black lines indicate the Fermi
surface at µ = 0. Panel (d) displays the bare Bb(q,kn) for the s-wave order parameter
in q-space and panels (e)-(f) are for the dx2−y2 order parameter. Panel (g) displays the
dressed Bd(q,kn) in q-space for the s-wave order parameters and panels (h)-(i) are
for the dx2−y2 order parameter. The chosen kn for (d)-(i) is indicated by the black dots
in (a)-(c) in the same row. The numbers below (d)-(f) and (g)-(i) display the summed
values ∑qBb(q,kn) and ∑qBd(q,kn), respectively.

dressed cases as expected for s-wave superconductivity.
for the d-wave case the dressing factor gαβ(k,q) originating from the sublattice

to band space transformation becomes crucial as seen from comparing Fig. 5.4(e,f)
to Fig. 5.4(h,i). There we compare the coherence factors Bb(q,kn) and Bd(q,kn)

for the two k-points highlighted in Fig. 5.4(b,c). Evidently, gαβ(k,q) destroys the
compensation (the near cancellation between positive and negative regions) seen in
Fig. 5.4(e,f) and leads to substantial summed values of ∑qBd(q,kn), as seen from
Fig. 5.4(h,i). This implies that while the bare d-wave case should not exhibit a Hebel-
Slichter peak, the full (dressed) case should. Indeed, as seen from Fig. 5.5 this is the
case. As a result, there exists a pronounced Hebel-Slichter peak in the case of d-wave
superconductivity on the kagome lattice. This explains why there is a Hebel-Slichter
peak in the kagome lattice.

The above conclusions are valid for the order parameters with dx2−y2 and dxy sym-
metries, which are the nodal d-wave cases However, for d+ id superconductivity, ∆d+id
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is a complex number. Thus, in principle, the imaginary part of B(q,k) might con-
tribute to χ+−0 (q, ω). If only the real part of B(q,k) contributes to χ+−0 (q, ω), then only
the imaginary part of the Fermi function term, which is only non-zero near the Fermi
surface, contributes to the imaginary part of χ+−0 (q, ω), which is the basic condition
of our analysis. Thus we want to check if it is true. To this end, we define

∆k =∆
′
k + i∆

′′
k, (5.25)

where ∆′k and ∆′′k denote the real and imaginary parts of ∆k. Both ∆′k and ∆′′k have
the time-reversal symmetry, while ∆k breaks the time-reversal symmetry. B(q,k) can
be written as

B(q,k) =
(∆′k+q − i∆

′′
k+q)(∆

′
k + i∆

′′
k)

EkEk+q
, (5.26)

and the imaginary part is

ImB(q,k) =
∆′k+q∆

′′
k −∆

′′
k+q∆

′
k

EkEk+q
. (5.27)

Since we sum over k in χ+−0 (q, ω), we can do k → −k − q for the first term of Eq.
(5.27). Due to the even parity property ∆′k = ∆

′
−k, ∆′′k = ∆′′−k and Ek = E−k together,

the imaginary part gives zero. Thus for ∆d+id, we can still only consider ReB(q,k).
Let’s go back our discussion as the conclusion is also proved to be valid for the

d + id case. As seen from Fig. 5.4, the summed values ∑qBd(q,kn) are smaller in
the dressed d-wave cases as compared to the s-wave case, resulting in slightly smaller
Hebel-Slichter peaks in d-wave cases. This, however, is only a quantitative difference,
the important point being that unlike the bare case or d-wave order on the square
lattice, the Hebel-Slichter peak is not wiped out despite the sign-changing gap.

In summary, because of the kagome sublattice structure, more specifically, the
sublattice interference and localization of the sublattice weight, which appears as
the dressing factor gαβ(k,q), the enhancement factor ∑qBd(q,kn) in χ+−0 (q, ω) be-
comes substantial and d-wave superconductivity supports a Hebel-Slichter peak on the
kagome lattice, as seen from Fig. 5.5.
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Figure 5.5: Temperature dependence of the spin-lattice relaxation rate ratio αs/αn for
superconductivity on the kagome lattice. All cases are plotted for N = 4 × 104 and
ω = η = 0.015. The solid lines show the results calculated from the full χ+−0 (q, ω), while
the dashed lines display the results obtained from the spin susceptibility without the
dressing factor gαβ(k,q). As seen, gαβ(k,q) restores the Hebel-Slichter peak even for
the d-wave cases.
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Chapter 6

Summary and Discussion

In this thesis, we investigated the spin-relaxation rate in the unconventional kagome
superconductors. Surprisingly, the d-wave kagome superconductor will exhibit a Hebel-
Slichter peak in the superconducting state despite a fully compensated sign-changing
structure of the superconducting order parameter.

In previous studies, Hebel-Slichter peak was explained as a combined effect of the
divergence of the DOS in superconducting state and the enhancement from coherence
factor. In Chapter 2, we reviewed the spin-lattice relaxation rate and derived the
coherence factor of relaxation rate from spin susceptibility. Then we investigated the
role of each terms in the expression of spin-lattice relaxation rate, and found that
the coherence factor is the key to the Hebel-Slichter peak in conventional BCS super-
conductors. Experimental results suggest that Hebel-Slichter peak should be absent
in unconventional superconductors; thus in Chapter 3, we used the square lattice to
explain the absence of the peak due to the coherence factor. Chapter 4 reviewed the
model and the experiments of the kagome superconductors. Owing to the unique
sublattice structure of the kagome lattice, the d-wave unconventional superconductiv-
ity can be unexpectedly robust to disorder on this lattice. Finally in Chapter 5, we
calculated the spin-lattice relaxation rate of the kagome lattice, and proved the exis-
tence the Hebel-Slichter peak in the kagome lattice with d-wave symmetries of order
parameters.

High sensitivity of critical temperature to disorder and absence of Hebel-Slichter
peak are considered as strong evidences pointing to a sign-changing structure of order
parameter. By contrast, superconductors which are not sensitive to disorder and
exhibit Hebel-Slichter peak are always considered as conventional, non-sign-changing
ones. However, this thesis together with Ref. [17] suggests that the special sublattice
structure of kagome lattice may render these probes invalid in identifing the sign-
changing gap structure on this lattice. Thus some of the current conclusions that the
kagome superconductivity is the conventional BCS-type should be reconsidered. Just
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like Søren Kierkegaard wrote in his book ’Fear and Trembling’, the knight of infinity
renounces the thing he loved most through the infinite resignation, but the knight
of faith retrieves it by the power absurdity; the d-wave superconductor, through the
sign-changing gap, abandons the Hebel-Slichter peak, but the kagome lattice, with
the unique sublattice structure, recovers the Hebel-Slichter peak in the spin-lattice
relaxation rate.

Currently, the nature of the superconductivity of the kagome lattice remains con-
troversial. Experimental results can not clearly identify the nodal/nodeless structure
of the kagome lattice. Besides, the experiments of the suppression of the critical tem-
perature due to disorder on the lattice and the existence of the Hebel-Slichter peak,
according to our work, can not serve as evidences for a non-sign-changing structure.
Therefore, more probes are needed in the future in order to distinguish the supercon-
ducting states of the kagome lattice.
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Appendix A

Derivation for the general
spin-lattice relaxation rate

In this appendix, we derive the general expression of the spin-lattice relaxation
rate. The relaxation process originates from the fluctuation of the nuclear energy
level. The perturbation interaction can be described by the hyperfine Hamiltonian
between a nuclear spin I and electron spins S [14, 25, 26, 28].

Hhf = −
8π

3
γnγeI ⋅ Sδ(r), (A.1)

where only the contact interaction is taken into account. In this expression, we have
already set Planck constant ~ = 1. γn and γe denotes the nuclear and the electronic
gyromagnetic ratios. In general, the spin-lattice relaxation rate is defined by the
fluctuation of the energy levels

1

T1

= 2∫
∞

−∞
dτ cos(ω0τ)⟨{H

+
hf(τ),H

−
hf(0)}⟩, (A.2)

where ω0 is the nuclear Larmor frequency. The operator is defined as {A,B} = (AB +
BA)/2. In the second quantization representation, the Hamiltonian can be written as

H±hf = −
1

N
∑
q

γnγeAqS
±
q , (A.3)

where N is the number of q space points. Ak,k+q is defined as

Ak,k+q ≡
8π

3
u∗k(0)uk+q(0), (A.4)
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where uk is the wave function of the conduction electron at nuclear spin. We assume
Ak,k+q is independent of k and is denoted by Aq. The electronic spin operators are
defined as

S+q =
1

N
∑
k

c†
k+q↑ck↓,

S−q =
1

N
∑
k

c†
k+q↓ck↑.

(A.5)

Now insert the hyperfine Hamiltonian into Eq. (A.2) and it yields

1

T1

= 2γ2
nγ

2
e ∫

∞

−∞
dτ cos(ω0τ)∑

q

⟨{S+q(τ), S
−
−q(0)}⟩AqA−q. (A.6)

According to the fluctuation-dissipation theorem, we can finally write the spin-lattice
relaxation rate as

1

T1

=
2γ2

nγ
2
e(kBT )

ω0
∑
q

AqA−qImχ(q, ω0). (A.7)

Normally, when measuring the relaxation rate on the lattice site, the form factor Aq

can be taken as a constant. Nevertheless, if the nearest neighbor effect to the wave
function is taken into account, the form factor can show a q dependence and act as a
filter for certain regions of the Brillouin zone [14, 33]. Previous studies have discussed
the derivation of form factor [39] to explain the difference of the NMR spin-lattice
relaxation rate measurement on different atom sites. The form factor can be derived
from the position of the nearest atom sites. But we argue that the form factor will not
influence the absence of the Hebel-Slichter peak in unconventional superconductors.
This is because that the factor should act as a filter of certain q regions, which can
potentially break the sign-changing compensation of unconventional order parameters
and the superconductors are more likely to exhibit Hebel-Slichter peak. However, in
experiments Hebel-Slichter peak is always absent in unconventional superconductors,
which indicate that the form factor doesn’t break the sign-changing structure. The
form factor is more likely to select same areas of the positive region and the negative
region of the q space as shown in Ref. [39]. Thus we can in principle ignore the form
factor when discussing Hebel-Slichter peak.
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Appendix B

Derivation for the one-band spin
susceptibility

Fourier transform for homogeneous state

The definition for spin susceptibility is

χ+−0 (ri, rj, τ) = ⟨Tτ Ŝ
+
i (0)Ŝ

−
j (τ)⟩, (B.1)

where the operators Ŝ+i and Ŝ+i are defined as

Ŝ+i = c
†
i↑ci↓; Ŝ−i = c

†
i↓ci↑. (B.2)

And there is relation

(Ŝ+i )
† = Ŝ−i . (B.3)

If we assume the state is homogeneous, we can define a Fourier transformation

Ŝ+(q) = ∫ driŜ
+
i e

iqri ; Ŝ−(q) = ∫ driŜ
−
i e
−iqri , (B.4)

and then

χ+−0 (q, τ) = ∫ dr1∫ dr2⟨Tτ Ŝ
+
i (0)Ŝ

−
j (τ)⟩e

i(ri−rj)q

= ∫ dr1∫ dr2⟨Tτc
†
i↑ci↓c

†
j↓(τ)cj↑(τ)⟩e

i(ri−rj)q.
(B.5)

Next we perform the Fourier transform for the operators c and c†,

c†
i =

1
√
N
∑
k

c†
ke
−ikri ; ci =

1
√
N
∑
k

cke
ikri , (B.6)
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where N is the number of k space points. Insert into the equation above we get

χ+−0 (q,τ) =
1

N 2∫ dr1∫ dr2 ∑
k1k2k3k4

⟨Tτc
†
k1↑ck2↓c

†
k3↓(τ)ck4↑(τ)⟩e

i(k2−k1)riei(k4−k3)rjei(ri−rj)q

=
1

N 2 ∑
k1k2k3k4

δ(k2 − k1 + q)δ(k4 − k3 − q)⟨Tτc
†
k1↑ck2↓c

†
k3↓(τ)ck4↑(τ)⟩

=
1

N 2∑
kk′
⟨Tτc

†
k+q↑ck↓c

†
k′−q↓(τ)ck′↑(τ)⟩.

(B.7)

Let’s use Wick’s theorem,

χ+−0 (q, τ) =
1

N 2∑
kk′
[⟨Tτc

†
k+q↑ck↓⟩⟨Tτc

†
k′−q↓(τ)ck′↑(τ)⟩

−⟨Tτc
†
k+q↑c

†
k′−q↓(τ)⟩⟨Tτck↓ck′↑(τ)⟩

+⟨Tτc
†
k+q↑ck′↑(τ)⟩⟨Tτck↓c

†
k′−q↓(τ)⟩].

(B.8)

The first term simply gives zero. The second term is non zero when k = −k′, and it
yields

−
1

N 2∑
kk′
⟨Tτc

†
k+q↑c

†
k′−q↓(τ)⟩⟨Tτck↓ck′↑(τ)⟩

= −
1

N
∑
k

⟨Tτc
†
k+q↑c

†
−k−q↓(τ)⟩⟨Tτck↓c−k↑(τ)⟩.

(B.9)

The third term is non-zero when k′ = k + q, then it gives

1

N 2∑
kk′
⟨Tτc

†
k+q↑ck′↑(τ)⟩⟨Tτck↓c

†
k′−q↓(τ)⟩

=
1

N
∑
k

⟨Tτc
†
k+q↑ck+q↑(τ)⟩⟨Tτck↓c

†
k↓(τ)⟩.

(B.10)

Finally the susceptibility in momentum space reads

χ+−0 (q, τ) =
1

N
∑
k

[−⟨Tτc
†
k+q↑c

†
−k−q↓(τ)⟩⟨Tτck↓c−k↑(τ)⟩ + ⟨Tτc

†
k+q↑ck+q↑(τ)⟩⟨Tτck↓c

†
k↓(τ)⟩].

(B.11)
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Bogoliubov transformation

Let’s consider the Bogoliubov transformation. Assume the Hamiltonian is non-
diagonal and can be written as

Hk =
⎛

⎝

ξk ∆k

∆∗k −ξk

⎞

⎠
, (B.12)

and the basis

Ak =
⎛

⎝

ck↑
c†
−k↓

⎞

⎠
, (B.13)

where we assumed the symmetry ξk = ξ−k.

The unitary transformation defined in Bogoliubov transformation reads

Uk =
⎛

⎝

u∗k −vk
v∗k uk

⎞

⎠
, (B.14)

by which we can diagonalize the Hamiltonian

U†
kHkUk =

⎛

⎝

Ek 0

0 −Ek

⎞

⎠
, (B.15)

where

∣uk∣
2 =

1

2
(1 +

ξk
Ek

) , ∣vk∣
2 =

1

2
(1 −

ξk
Ek

) , (B.16)

Ek =

√

ξ2k + ∣∆k∣
2. (B.17)

The change of basis gives new eigenvector for the new diagonalized Hamiltonian

Bk =
⎛

⎝

γk↑
γ†
−k↓

⎞

⎠
=U†

kAk =
⎛

⎝

uk vk

−v∗k u∗k

⎞

⎠

⎛

⎝

ck↑
c†
−k↓.

⎞

⎠
(B.18)

From that we can derive the relation for Bogoliubov transformation

ck↑ = u∗kγk↑ − vkγ
†
−k↓,

c†
−k↓ = v

∗
kγk↑ + ukγ

†
−k↓,

c†
k↑ = ukγ

†
k↑ − v

∗
kγ−k↓,

c−k↓ = vkγ
†
k↑ + u

∗
kγ−k↓,

(B.19)
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where u2
k =

1
2
(1 + ξk

Ek
) and v2k =

1
2
(1 − ξk

Ek
).

Wake up in a lovely morning and do the calculation

Let’s consider first the first term in eq. (B.11),

−
1

N
∑
k

⟨Tτc
†
k+q↑c

†
−k−q↓(τ)⟩⟨Tτck↓c−k↑(τ)⟩

= −
1

N
∑
k

⟨Tτ [uk+qγ
†
k+q↑ − v

∗
k+qγ−k−q↓][v

∗
k+qγk+q↑(τ) + uk+qγ

†
−k−q↓(τ)]⟩⋅

⟨Tτ [u
∗
kγk↓ + vkγ

†
−k↑][u

∗
kγ−k↑(τ) − vkγ

†
k↓(τ)]⟩

= −
1

N
∑
k

[−v∗k+quk+q⟨Tτγ−k−q↓γ
†
−k−q↓(τ)⟩ + uk+qv∗k+q⟨Tτγ

†
k+q↑γk+q↑(τ)⟩]⋅

[−u∗kvk⟨Tτγk↓γ
†
k↓(τ)⟩ + vku

∗
k⟨Tτγ

†
−k↑γ−k↑(τ)⟩]

=
1

N
∑
k

v∗k+quk+qu∗kvk[−⟨Tτγ−k−q↓γ
†
−k−q↓(τ)⟩⟨Tτγk↓γ

†
k↓(τ)⟩ + ⟨Tτγ−k−q↓γ

†
−k−q↓(τ)⟩⋅

⟨Tτγ
†
−k↑γ−k↑(τ)⟩+⟨Tτγ

†
k+q↑γk+q↑(τ)⟩⟨Tτγk↓γ

†
k↓(τ)⟩−⟨Tτγ

†
k+q↑γk+q↑(τ)⟩⟨Tτγ

†
−k↑γ−k↑(τ)⟩],

(B.20)

and use these relations

⟨Tτγn(τ)γ
†
n⟩ = (1 − f(En))e

−Enτ ,

⟨Tτγ
†
n(τ)γn⟩ = f(En)e

Enτ ,

⟨Tτγnγ
†
n(τ)⟩ = −f(En)e

Enτ ,

⟨Tτγ
†
nγn(τ)⟩ = −(1 − f(En))e

−Enτ ,

(B.21)

which can be obtained under Heisenberg picture γn(τ) = e−Enτγn, since the the Hamil-
tonian under the γ basis are diagonalized. Further, we assume there is spin degeneracy.
Here f(En) = 1/(eEn/kBT + 1) is the Fermi-Dirac distribution. Then we get

=
1

N
∑
k

v∗k+quk+qu∗kvk[ − f(Ek+q↓)f(Ek↓)e(Ek+q↓+Ek↓)τ

+ f(Ek↓)(1 − f(Ek+q↑))e(Ek↓−Ek+q↑)τ

+ f(Ek+q↓)(1 − f(Ek↑))e(Ek+q↓−Ek↑)τ

− (1 − f(Ek+q↑))(1 − f(Ek↑))e−(Ek+q↑+Ek↑)τ ].

(B.22)
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We can further use these relations to simplify the result

f(x)f(y)b(x + y) = 1 − f(x) − f(y),

(1 − f(x))(1 − f(y))b(−x − y) = f(x) + f(y) − 1,

f(x)(1 − f(y))b(x − y) = f(y) − f(x),

(B.23)

where b(x) = exβ − 1. Then the first term becomes

1

N
∑
k

v∗k+quk+qu∗kvk [−
1−f(Ek+q↓)−f(Ek↓)

e(Ek+q↓+Ek↓)β−1
e(Ek+q↓+Ek↓)τ+

f(Ek+q↑)−f(Ek↓)
e(Ek↓+Ek+q↑)β−1

e(Ek↓−Ek+q↑)τ

+
f(Ek↑)−f(Ek+q↓)
e(Ek+q↓−Ek↑)β−1

e(Ek+q↓−Ek↑)τ−
f(Ek+q↑) + f(Ek↑)−1
e−((Ek↑+Ek+q↓))β−1

e−(Ek+q↑+Ek↓)τ] .

(B.24)

Transform to Matsubara frequency,

1

N
∫

β

0
dτ eiωnτ∑

k

v∗k+quk+qu∗kvk [−
1 − f(Ek+q↓) − f(Ek↓)

e(Ek+q↓+Ek↓)β − 1
e(Ek+q↓+Ek↓)τ

+
f(Ek+q↑) − f(Ek↓)
e(Ek↓−Ek+q↑)β − 1

e(Ek↓−Ek+q↑)τ

+
f(Ek↑) − f(Ek+q↓)
e(Ek+q↓−Ek↑)β − 1

e(Ek+q↓−Ek↑)τ

−
f(Ek+q↑) + f(Ek↑) − 1
e−((Ek↑+Ek+q↑))β − 1

e−(Ek+q↑+Ek↑)τ]

(B.25)

=
1

N
∑
k

v∗k+quk+qu∗kvk [−
1 − f(Ek+q↓) − f(Ek↓)
iωn +Ek+q↓ +Ek↓

+
f(Ek+q↑) − f(Ek↓)
iωn +Ek↓ −Ek+q↑

+
f(Ek↑) − f(Ek+q↓)
iωn +Ek+q↓ −Ek↑

−
f(Ek+q↑) + f(Ek↑) − 1
iωn −Ek+q↑ −Ek↑

] .

(B.26)
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Next, we consider the second term

1

N
∑
k

⟨Tτc
†
k+q↑ck+q↑(τ)⟩⟨Tτck↓c

†
k↓(τ)⟩

=
1

N
∑
k

⟨Tτ [uk+qγ
†
k+q↑ − v

∗
k+qγ−k−q↓][u

∗
k+qγk+q↑(τ) − vk+qγ

†
−k−q↓(τ)]⟩⋅

⟨Tτ [u
∗
kγk↓ + vkγ

†
−k↑][v

∗
kγ−k↑(τ) + ukγ

†
k↓(τ)]⟩

=
1

N
∑
k

[∣vk+q∣2⟨γ−k−q↓γ
†
−k−q↓(τ)⟩ + ∣uk+q∣2⟨γ

†
k+q↑γk+q↑(τ)⟩]⋅

[∣uk∣
2⟨γk↓γ

†
k↓(τ)⟩ + ∣vk∣

2⟨γ†
−k↑γ−k↑(τ)⟩]

=
1

N
∑
k

[∣vk+q∣2f(Ek+q↓)eEk+q↓τ + ∣uk+q∣2(1 − f(Ek+q↑))e−Ek+q↑τ ]⋅

[∣uk∣
2f(Ek↓)eEk↓τ + ∣vk∣

2(1 − f(Ek↑))e−Ek↑τ ]

=
1

N
∑
k

[∣vk+q∣2∣uk∣
2f(Ek+q↓)f(Ek↓)e(Ek+q↓+Ek↓)τ

+ ∣vk+q∣2∣vk∣2f(Ek+q↓)(1 − f(Ek↑))e(Ek+q↓−Ek↑)τ

+ ∣uk+q∣2∣uk∣
2f(Ek↓)(1 − f(Ek+q↑))e(Ek↓−Ek+q↑)τ

+ ∣uk+q∣2∣vk∣2(1 − f(Ek↑))(1 − f(Ek+q↑))e−(Ek↑+Ek+q↑)τ ]

=
1

N
∑
k

[∣vk+q∣2∣uk∣
21 − f(Ek↓) − f(Ek+q↓)

e(Ek+q↓+Ek↓)β − 1
e(Ek+q↓+Ek↓)τ

+ ∣vk+q∣2∣vk∣2
f(Ek↑) − f(Ek+q↓)
e(Ek+q↓−Ek↑)β − 1

e(Ek+q↓−Ek↑)τ

+ ∣uk+q∣2∣uk∣
2f(Ek+q↑) − f(Ek↓)

e(Ek↓−Ek+q↑)β − 1
e(Ek↓−Ek+q↑)τ

+∣uk+q∣2∣vk∣2
f(Ek↑) + f(Ek+q↑) − 1

e−(Ek+q↑+Ek↑)β − 1
e−(Ek↑+Ek+q↑)τ] .

(B.27)

Transform to Matsubara frequency,

1

N
∫

β

0
dτ eiωnτ∑

k

[∣vk+q∣2∣uk∣
21 − f(Ek↓) − f(Ek+q↓)

e(Ek+q↓+Ek↓)β − 1
e(Ek+q↓+Ek↓)τ

+ ∣vk+q∣2∣vk∣2
f(Ek↑) − f(Ek+q↓)
e(Ek+q↓−Ek↑)β − 1

e(Ek+q↓−Ek↑)τ

+ ∣uk+q∣2∣uk∣
2f(Ek+q↑) − f(Ek↓)

e(Ek↓−Ek+q↑)β − 1
e(Ek↓−Ek+q↑)τ

+∣uk+q∣2∣vk∣2
f(Ek↑) + f(Ek+q↑) − 1

e−(Ek+q↑+Ek↓)β − 1
e−(Ek↑+Ek+q↑)τ]

=
1

N
∑
k

[∣vk+q∣2∣uk∣
21 − f(Ek↓) − f(Ek+q↓)

iωn +Ek+q↓ +Ek↓
+ ∣vk+q∣2∣vk∣2

f(Ek↑) − f(Ek+q↓)
iωn +Ek+q↓ −Ek↑

+∣uk+q∣2∣uk∣
2f(Ek+q↑) − f(Ek↓)
iωn +Ek↓ −Ek+q↑

+ ∣uk+q∣2∣vk∣2
f(Ek↑) + f(Ek+q↑) − 1
iωn −Ek+q↑ −Ek↑

]

(B.28)
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Combine the two terms from eq. (B.26) and eq. (B.28) together,

χ+−0 (q, iωn) =
1

N
∑
k

[(−v∗k+quk+qu∗kvk + ∣vk+q∣
2∣uk∣

2)
1 − f(Ek↓) − f(Ek+q↓)
iωn +Ek+q↓ +Ek↓

+(v∗k+quk+qu∗kvk + ∣vk+q∣
2∣vk∣

2)
f(Ek↑) − f(Ek+q↓)
iωn +Ek+q↓ −Ek↑

+(v∗k+quk+qu∗kvk + ∣uk+q∣2∣uk∣
2)
f(Ek+q↑) − f(Ek↓)
iωn +Ek↓ −Ek+q↑

+ (−v∗k+quk+qu∗kvk + ∣uk+q∣2∣vk∣2)
f(Ek↑) + f(Ek+q↑) − 1
iωn −Ek+q↑ −Ek↑

] .

(B.29)

We can further simplify the result, and there is no approximation to be made. We
can do some translation in k space to simplify the result. Define k̃ = −k − q, then the
second term in eq. (B.29) becomes

1

N
∑
k̃

(v∗−k̃u−k̃u
∗
−k̃−qv−k̃−q + ∣v−k̃∣

2∣v−k̃−q∣
2)
f(E−k̃−q↑) − f(E−k̃↓)

iωn +E−k̃↓ −E−k̃−q↑
. (B.30)

Because of time-reversal symmetry, the above is invariant under k → −k. It can be
written as

1

N
∑
k

(v∗k+quk+qu∗kvk + ∣vk+q∣
2∣vk∣

2)
f(Ek+q↑) − f(Ek↓)
iωn +Ek↓ −Ek+q↑

(B.31)

If we insert these relations from Bogoliubov transformation,

∣uk∣
2 =

Ek + ξk
2Ek

,

∣vk∣
2 =

Ek − ξk
2Ek

u∗kvk =
∆k

2Ek

ukv
∗
k =

∆∗k
2Ek

(B.32)

Finally we get

χ+−0 (q, iωn) =
1

N
∑
k

[
1

4
(1 −

ξkξk+q +∆∗k+q∆k

EkEk+q
)
1 − f(Ek) − f(Ek+q)
iωn +Ek+q +Ek

+
1

4
(1 −

ξkξk+q +∆∗k+q∆k

EkEk+q
)
f(Ek) + f(Ek+q) − 1
iωn −Ek+q −Ek

+
1

2
(1 +

ξkξk+q +∆∗k+q∆k

EkEk+q
)
f(Ek) − f(Ek+q)
iωn +Ek+q −Ek

] .

(B.33)

In a non-interacting electron system, the equation reduces to Lindhard function.
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Nambu quasiparticle symmetry

In convention, we define the quasi-particle operators in this way,

⎛

⎝

uk vk

−v∗k u∗k

⎞

⎠

⎛

⎝

ck↑
c†
−k↓

⎞

⎠
=
⎛

⎝

γ1k

γ†
2k

⎞

⎠
, (B.34)

where in the normal state there is γ1k = c↑k and γ†
2k = c

†
↓−k

The diagonalized Hamiltonian is written as

Hγ =∑
k

(γ†
1k γ2k)

⎛

⎝

E1k

E2k

⎞

⎠

⎛

⎝

γ1k

γ†
2k

⎞

⎠

=∑
k

E1kγ
†
1kγ1k +E2kγ2kγ

†
2k

(B.35)

The E1 and E2 are directly solved from the Hamiltonian matrix, so they will not
change with the different definition of γ and γ†.

I have a look at this relation again,

⟨Tτγnγ
†
n(τ)⟩ = −f(En)e

Enτ (B.36)

We need to pay attention to what do we insert here for En. In the textbook [6],
they derived that for the free fermions, En = εnc

†
ncn. The quasi-particle we defined

here are equivalent to non-interacting fermion. Thus for ⟨Tτγ1γ
†
1(τ)⟩ we insert E1

while for ⟨Tτγ2γ
†
2(τ)⟩ we insert -E2 (actually, we have already known that for this

simple Hamiltonian there is E1 = −E2, so we can always insert E1).
However, no one can stop us from using the ’strange’ definition:

⎛

⎝

uk vk

−v∗k u∗k

⎞

⎠

⎛

⎝

ck↑
c†
−k↓

⎞

⎠
=
⎛

⎝

γ†
2k

γ1k

⎞

⎠
, (B.37)

where in the normal state there is γ†
2k = c↑k and γ1k = c

†
↓−k. This looks strange, but

there is nothing wrong.
Then from the new definition, we write the Hamiltonian as

Hγ =∑
k

(γ2k γ†
1k
)
⎛

⎝

E1k

E2k

⎞

⎠

⎛

⎝

γ†
2k

γ1k

⎞

⎠

=∑
k

E1kγ2kγ
†
2k +E2kγ

†
1kγ1k

(B.38)

As I said above, E1k and E2k are not different from eq. (B.35) because they are
diagonalized from the same matrix. However, here we should insert E2k for ⟨Tτγ1γ

†
1(τ)⟩
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and −E1k for another. This also means that we can always insert −E1k to this bra-ket.
Now let’s see what happend to the Bogoliubov relation that we insert into the

expression of spin susceptibility,
For the first definition,

γ1k = ukck↑ + vkc
†
−k↓

γ†
2k = −v

∗
kck↑ + u

∗
kc

†
−k↓

(B.39)

For another definition,

γ1k = −v
∗
kck↑ + u

∗
kc

†
−k↓

γ†
2k = ukck↑ + vkc

†
−k↓

(B.40)

We can observe that the two sets of Bogoliubov relations are replacing uk → −v∗k
and vk → u∗k. Since we have also changed the sign of the energy En we inserted, thus we
can conclude this symmetry: {uk, vk,En → −v∗k, u

∗
k,−En}. This symmetry is allowed

when we insert them into the expression of spin susceptibility.

Sum over positive energy

For the first term in eq. (B.29), it can be written as

1

N
[∑
Ek>0

∑
Ek+q>0

(−v∗k+quk+qu∗kvk + ∣vk+q∣
2∣uk∣

2)
1 − f(Ek↓) − f(Ek+q↓)
iωn +Ek+q↓ +Ek↓

+ ∑
Ek>0

∑
Ek+q<0

(−v∗k+quk+qu∗kvk + ∣vk+q∣
2∣uk∣

2)
1 − f(Ek↓) − f(Ek+q↓)
iωn +Ek+q↓ +Ek↓

+ ∑
Ek<0

∑
Ek+q>0

(−v∗k+quk+qu∗kvk + ∣vk+q∣
2∣uk∣

2)
1 − f(Ek↓) − f(Ek+q↓)
iωn +Ek+q↓ +Ek↓

+ ∑
Ek<0

∑
Ek+q<0

(−v∗k+quk+qu∗kvk + ∣vk+q∣
2∣uk∣

2)
1 − f(Ek↓) − f(Ek+q↓)
iωn +Ek+q↓ +Ek↓

].

(B.41)
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We can use the symmetry {uk, vk,En → −v∗k, u
∗
k,−En}, then the terms can be written

as

1

N
∑
Ek>0

∑
Ek+q>0

[(−v∗k+quk+qu∗kvk + ∣vk+q∣
2∣uk∣

2)
1 − f(Ek↓) − f(Ek+q↓)
iωn +Ek+q↓ +Ek↓

+(v∗k+quk+qu∗kvk + ∣uk+q∣2∣uk∣
2)
f(Ek+q↑) − f(Ek↓))
iωn +Ek↓ −Ek+q↑

+(v∗k+quk+qu∗kvk + ∣vk+q∣
2∣vk∣

2)
f(Ek↑) − f(Ek+q↓)
iωn +Ek+q↓ −Ek↑

+(−v∗k+quk+qu∗kvk + ∣vk+q∣
2∣uk∣

2)
f(Ek↓) + f(Ek+q↓) − 1
iωn −Ek+q↑ −Ek↑

].

(B.42)

The second term of eq. (B.29) can be written as

1

N
∑
Ek>0

∑
Ek+q>0

[(v∗k+quk+qu∗kvk + ∣vk+q∣
2∣vk∣

2)
f(Ek↑) − f(Ek+q↓)
iωn +Ek+q↓ −Ek↑

+(−v∗k+quk+qu∗kvk + ∣uk+q∣2∣vk∣2)
f(Ek↑) + f(Ek↑) − 1
iωn −Ek+q↑ −Ek↑

+(−v∗k+quk+qu∗kvk + ∣vk+q∣
2∣vk∣

2)
1 − f(Ek↓) − f(Ek+q↓)
iωn +Ek+q↓ +Ek↓

+(v∗k+quk+qu∗kvk + ∣uk+q∣2∣uk∣
2)
f(Ek+q↑) − f(Ek↓)
iωn +Ek↓ −Ek+q↑

].

(B.43)

The third term

1

N
∑
Ek>0

∑
Ek+q>0

[(v∗k+quk+qu∗kvk + ∣uk+q∣2∣uk∣
2)
f(Ek+q↑) − f(Ek↓)
iωn +Ek↓ −Ek+q↑

+(−v∗k+quk+qu∗kvk + ∣vk+q∣
2∣uk∣

2)
1 − f(Ek+q↓) − f(Ek↓)
iωn +Ek↓ +Ek+q↓

+(−v∗k+quk+qu∗kvk + ∣uk+q∣2∣vk∣2)
f(Ek+q↑) + f(Ek↑) − 1
iωn −Ek↑ −Ek+q↑

+(v∗k+quk+qu∗kvk + ∣vk+q∣
2∣vk∣

2)
f(Ek↑) − f(Ek+q↓)
iωn +Ek+q↓ −Ek↑

].

(B.44)
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The last one,

1

N
∑
Ek>0

∑
Ek+q>0

[(−v∗k+quk+qu∗kvk + ∣uk+q∣2∣vk∣2)
f(Ek↑) + f(Ek+q↑) − 1
iωn −Ek+q↑ −Ek↑

+(v∗k+quk+qu∗kvk + ∣vk+q∣
2∣vk∣

2)
f(Ek↑) − f(Ek+q↓)
iωn +Ek+q↓ −Ek↑

+(v∗k+quk+qu∗kvk + ∣uk+q∣2∣uk∣
2)
f(Ek+q↑) − f(Ek↓)
iωn +Ek↓ −Ek+q↑

+(−v∗k+quk+qu∗kvk + ∣vk+q∣
2∣uk∣

2)
1 − f(Ek↓) − f(Ek+q↓)
iωn +Ek+q↓ +Ek↓

].

(B.45)

Combine them together,

χ+−0 (q, iωn) =
1

N
∑
Ek>0

∑
Ek+q>0

[(−4v∗k+quk+qu∗kvk + 4∣vk+q∣
2∣uk∣

2)
1 − f(Ek) − f(Ek+q)
iωn +Ek+q +Ek

+(4v∗k+quk+qu∗kvk4∣vk+q∣
2∣vk∣

2)
f(Ek) − f(Ek+q)
iωn +Ek+q −Ek

+(4v∗k+quk+qu∗kvk + 4∣uk+q∣2∣uk∣
2)
f(Ek+q) − f(Ek)

iωn +Ek −Ek+q

+(−4v∗k+quk+qu∗kvk + 4∣uk+q∣2∣vk∣2)
f(Ek) + f(Ek+q) − 1
iωn −Ek+q −Ek

].

(B.46)

Insert this relation to the expression above,

∣uk∣
2 =

Ek + ξk
2Ek

,

∣vk∣
2 =

Ek − ξk
2Ek

u∗kvk =
∆k

2Ek

ukv
∗
k =

∆∗k
2Ek

,

(B.47)
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we get

4v∗k+quk+qu∗kvk =
∆∗k+q∆k

Ek+qEk

,

4∣vk+q∣2∣uk∣
2 = (1 +

−Ekξk+q +Ek+qξk − ξkξk+q
EkEk+q

) ,

4∣uk+q∣2∣vk∣2 = (1 +
Ekξk+q −Ek+qξk − ξkξk+q

EkEk+q
) ,

4∣vk+q∣2∣vk∣2 = (1 +
−Ekξk+q −Ek+qξk + ξkξk+q

EkEk+q
) ,

4∣uk+q∣2∣uk∣
2 = (1 +

Ekξk+q +Ek+qξk + ξkξk+q
EkEk+q

) .

(B.48)

Insert these relations and finally we arrive at the form which only sums over the
positive energy

χ+−0 (q, iωn) =
1

N
∑

k,E>0
[(1 −

ξkξk+q +∆∗k+q∆k

EkEk+q
)
1 − f(Ek) − f(Ek+q)
iωn +Ek+q +Ek

+(1 −
ξkξk+q +∆∗k+q∆k

EkEk+q
)
f(Ek) + f(Ek+q) − 1
iωn −Ek+q −Ek

+(1 +
ξkξk+q +∆∗k+q∆k

EkEk+q
)
f(Ek) − f(Ek+q)
iωn +Ek+q −Ek

+ (1 +
ξkξk+q +∆∗k+q∆k

EkEk+q
)
f(Ek+q) − f(Ek)

iωn +Ek −Ek+q
] .

(B.49)
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Appendix C

Derivation for the multi-band spin
susceptibility

Now we start to calculate spin susceptibility,

χ+−αβ(q, τ) =
1

N 2∑
kk′
⟨Tτc

†
α,k+q↑cα,k↓c

†
β,k′−q↓(τ)cβ,k′↑(τ)⟩. (C.1)

Wick’s theorem gives two terms,

χ+−αβ(q, τ)=
1

N
∑
k

[−⟨Tτc
†
α,k+q↑c

†
β,−k−q↓(τ)⟩⟨Tτcα,k↓cβ,−k↑(τ)⟩

+⟨Tτc
†
α,k+q↑cβ,k+q↑(τ)⟩⟨Tτcα,k↓c

†
β,k↓(τ)⟩].

(C.2)
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The first term

−
1

N
∑
k

⟨Tτc
†
α,k+q↑c

†
β,−k−q↓(τ)⟩⟨Tτcα,k↓cβ,−k↑(τ)⟩

= −
1

N
∑

k,m1∼m4

⟨Tτ [uα,m1,k+qγ
†
m1,k+q↑ − v

∗
α,m1,k+qγm1,−k−q↓][v

∗
β,m2,k+qγm2,k+q↑(τ)

+ uβ,m2,k+qγ
†
m2,−k−q↓(τ)]⟩ ⋅ ⟨Tτ [u

∗
α,m3,k

γm3,k↓ + vα,m3,kγ
†
m3,−k↑][u

∗
β,m4,k

γm4,−k↑(τ)

− vβ,m4,kγ
†
m4,k↓(τ)]⟩

=−
1

N
∑

k,m,m′
[uα,m,k+qv∗β,m,k+q⟨Tτγ

†
m,k+q↑γm,k+q↑(τ)⟩−v∗α,m,k+quβ,m,k+q⟨Tτγm,−k−q↓γ

†
m,−k−q↓(τ)⟩]

× [−u∗α,m′,kvβ,m′,k⟨Tτγm′,k↓γ
†
m′,k↓(τ)⟩ + vα,m′,ku

∗
β,m′,k⟨Tτγ

†
m′,−k↑γm′,−k↑(τ)⟩]

=
1

N
∑

k,m,m′
[uα,m,k+qv∗β,m,k+qu

∗
α,m′,kvβ,m′,k⟨Tτγ

†
m,k+q↑γm,k+q↑(τ)⟩⟨Tτγm′,k↓γ

†
m′,k↓(τ)⟩

− uα,m,k+qv∗β,m,k+qvα,m′,ku
∗
β,m′,k⟨Tτγ

†
m,k+q↑γm,k+q↑(τ)⟩⟨Tτγ

†
m′,−k↑γm′,−k↑(τ)⟩

− v∗α,m,k+quβ,m,k+qu∗α,m′,kvβ,m′,k⟨Tτγm,−k−q↓γ
†
m,−k−q↓(τ)⟩⟨Tτγm′,k↓γ

†
m′,k↓(τ)⟩

+ v∗α,m,k+quβ,m,k+qvα,m′,ku∗β,m′,k⟨Tτγm,−k−q↓γ
†
m,−k−q↓(τ)⟩⟨Tτγ

†
m′,−k↑γm′,−k↑(τ)⟩]

(C.3)

with the relations Eq (B.21) again, we can get

=
1

N
∑

k,m,m′
[−v∗α,m,k+quβ,m,k+qu∗α,m′,kvβ,m′,kf(Ek+q,m)f(Ek,m′)e

Ek,m′+Ek+q,mτ

+ uα,m,k+qv∗β,m,k+qu
∗
α,m′,kvβ,m′,kf(Ek,m′)(1 − f(Ek+q,m))eEk,m′−Ek+q,mτ

+ v∗α,m,k+quβ,m,k+qvα,m′,ku∗β,m′,kf(Ek+q,m)(1 − f(Ek,m′))e
(Ek+q,m−Ek,m′)τ

− uα,m,k+qv∗β,m,k+qvα,m′,ku
∗
β,m′,k(1 − f(Ek+q,m)(1 − f(Ek,m′)))e

−(Ek+q,m+Ek,m′)τ ].

(C.4)

And follow the same steps as Appendix B, we can write the first term of spin suscep-
tibility as

=
1

N
∑

k,m,m′
[−v∗α,m,k+quβ,m,k+qu∗α,m′,kvβ,m′,k

1 − f(Ek+q,m) − f(Ek,m′)

iωn +Ek+q,m +Ek,m′

+ uα,m,k+qv∗β,m,k+qu
∗
α,m′,kvβ,m′,k

f(Ek+q,m) − f(Ek,m′)

iωn +Ek,m′ −Ek+q,m

+ v∗α,m,k+quβ,m,k+qvα,m′,ku∗β,m′,k
f(Ek,m′) − f(Ek+q,m)
iωn +Ek+q,m −Ek,m′

− uα,m,k+qv∗β,m,k+qvα,m′,ku
∗
β,m′,k

f(Ek+q,m) + f(Ek,m′) − 1

iωn −Ek+q,m −Ek,m′
].

(C.5)
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Let’s calculate the second term,

1

N
∑
k

⟨Tτc
†
α,k+q↑cβ,k+q↑(τ)⟩⟨Tτcα,k↓c

†
β,k↓(τ)⟩

=
1

N
∑

k,m1∼m4

⟨Tτ [uα,m1,k+qγ
†
m1,k+q↑ − v

∗
α,m1,k+qγm1,−k−q↓][u

∗
β,m2,k+qγm2,k+q↑(τ)

− vβ,m2,k+qγ
†
m2,−k−q↓(τ)]⟩ ⋅ ⟨Tτ [vα,m3,kγ

†
m3,−k↑ + u

∗
α,m3,k

γm3,k↓][v
∗
β,m4,k

γm4,−k↑(τ)

+ uβ,m4,kγ
†
m4,k↓(τ)]⟩

=
1

N
∑

k,m,m′
[uα,m,k+qu∗β,m,k+q⟨Tτγ

†
m,k+q↑γm,k+q↑(τ)⟩ + v∗α,m,k+qvβ,m,k+q⟨Tτγm,−k−q↓γ

†
m,−k−q↓(τ)⟩]

× [vα,m′,kv
∗
β,m′,k⟨Tτγ

†
m′,−k↑γm′,−k↑(τ)⟩ + u

∗
α,m′,kuβ,m′,k⟨Tτγm′,k↓γ

†
m′,k↓(τ)⟩]

=
1

N
∑

k,m,m′
[uα,m,k+qu∗β,m,k+qvα,m′,kv

∗
β,m′,k⟨Tτγ

†
m,k+q↑γm,k+q↑(τ)⟩⟨Tτγ

†
m′,−k↑γm′,−k↑(τ)⟩

+ uα,m,k+qu∗β,m,k+qu
∗
α,m′,kuβ,m′,k⟨Tτγ

†
m,k+q↑γm,k+q↑(τ)⟩⟨Tτγm′,k↓γ

†
m′,k↓(τ)⟩

+ v∗α,m,k+qvβ,m,k+qvα,m′,kv∗β,m′,k⟨Tτγm,−k−q↓γ
†
m,−k−q↓(τ)⟩⟨Tτγ

†
m′,−k↑γm′,−k↑(τ)⟩

+ v∗α,m,k+qvβ,m,k+qu∗α,m′,kuβ,m′,k⟨Tτγm,−k−q↓γ
†
m,−k−q↓(τ)⟩⟨Tτγm′,k↓γ

†
m′,k↓(τ)⟩],

(C.6)

then

=
1

N
∑

k,m,m′
[uα,m,k+qu∗β,m,k+qvα,m′,kv

∗
β,m′,k(1 − f(Ek+q,m))(1 − f(Ek,m′))e

−(Ek+q,m+Ek,m′)τ

+ uα,m,k+qu∗β,m,k+qu
∗
α,m′,kuβ,m′,kf(Ek,m′)(1 − f(Ek+q,m))e(Ek,m′−Ek+q,m)τ

+ v∗α,m,k+qvβ,m,k+qvα,m′,kv∗β,m′,kf(Ek+q,m)(1 − f(Ek,m′))e
(Ek+q,m−Ek,m′)τ

+ v∗α,m,k+qvβ,m,k+qu∗α,m′,kuβ,m′,kf(Ek+q,m)f(Ek,m′)e
(Ek,m′+Ek+q,m)τ ].

(C.7)

And finally this term yields

=
1

N
∑

k,m,m′
[v∗α,m,k+qvβ,m,k+qu∗α,m′,kuβ,m′,k

1 − f(Ek+q,m) − f(Ek,m′)

iωn +Ek+q,m +Ek,m′

+ uα,m,k+qu∗β,m,k+qu
∗
α,m′,kuβ,m′,k

f(Ek+q,m) − f(Ek,m′)

iωn +Ek,m′ −Ek+q,m

+ v∗α,m,k+qvβ,m,k+qvα,m′,kv∗β,m′,k
f(Ek,m′) − f(Ek+q,m)
iωn +Ek+q,m −Ek,m′

+ uα,m,k+qu∗β,m,k+qvα,m′,kv
∗
β,m′,k

f(Ek+q,m) + f(Ek,m′) − 1

iωn −Ek+q,m −Ek,m′
].

(C.8)

By combining the two terms together, finally we get the expression for the spin
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susceptibility of the kagome lattice

χ+−αβ(q, τ)

=
1

N
∑

k,m,m′
[(v∗α,m,k+qvβ,m,k+qu∗α,m′,kuβ,m′,k−v

∗
α,m,k+quβ,m,k+qu∗α,m′,kvβ,m′,k)

1−f(Ek+q,m)−f(Ek,m′)

iωn+Ek+q,m+Ek,m′

+ (uα,m,k+qu∗β,m,k+qu
∗
α,m′,kuβ,m′,k+uα,m,k+qv∗β,m,k+qu

∗
α,m′,kvβ,m′,k)

f(Ek+q,m)−f(Ek,m′)

iωn +Ek,m′−Ek+q,m

+ (v∗α,m,k+qvβ,m,k+qvα,m′,kv∗β,m′,k+v
∗
α,m,k+quβ,m,k+qvα,m′,ku∗β,m′,k)

f(Ek,m′)−f(Ek+q,m)
iωn+Ek+q,m−Ek,m′

+ (uα,m,k+qu∗β,m,k+qvα,m′,kv
∗
β,m′,k−uα,m,k+qv∗β,m,k+qvα,m′,ku

∗
β,m′,k)

f(Ek+q,m)+f(Ek,m′)−1

iωn−Ek+q,m−Ek,m′
].

(C.9)
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Appendix D

Summing over sublattice indices

One dimensional chain model

In the previous appendices, we derived the general expression for spin susceptibility.
In the monoatomic lattice systems such as the square lattice, we can easily calculate
the spin susceptibility without thinking about the sublattice indices. However, when
there are sublattice indices in the system, we have to consider how the summation
over sublattice indices works, since in the end we only want to get one value of the
relaxation rate rather than a matrix. It is hard to directly illustrate the summation
in the kagome lattice, but we can start with an easy one-dimensional chain model.

We assume nearest neighbor interaction. The Hamiltonian of the 1D chain model is

H = −t ∑
r=0,a,2a,...

c†
rcr+a +H.C. + µ ∑

r=0,a,2a,...
c†
rcr. (D.1)

Define Fourier transformation

c†
r =

1
√
V
∑
k

c†
ke
−ikr; cr =

1
√
V
∑
k

cke
ikr. (D.2)

The Hamiltonian after Fourier transformation is

H = − t∑
k

c†
kcke

ika + c†
kcke

−ika + µ∑
k

c†
kck

= (2t cos(ka) + µ) c†
kck

(D.3)

Now we consider another case. If we label the particles in this lattice as A and B like
this
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Chapter D | Summing over sublattice indices

Even though there can be no difference between these two kinds of particles, we can
still do so. We can think of two ways of defining the unit cell. The first one is to define
each single particle as a unit cell.

The Hamiltonian can be written as

H = −t ∑
r=0,2a,4a,...

c†
r,Acr+a,B + c

†
r+a,Bcr+2a,A +H.C. + µ ∑

r=0,a,2a,...
c†
rcr. (D.4)

The Fourier transformation with this unit cell is

c†
r =

1
√
V
∑
k

c†
ke
−ikr; cr =

1
√
V
∑
k

cke
ikr. (D.5)

then the Hamiltonian under momentum basis is

H = −
t

2
∑
k

c†
k,Ack,Be

ika + c†
k,Bck,Ae

ika + c†
k,Bck,Ae

−ika + c†
k,Ack,Be

−ika +
µ

2
(c†

k,Ack,A + c
†
k,Bck,B),

(D.6)

it can be written in matrix form

H = (c†
k,A c†

k,B
)
⎛

⎝

µ/2 t cos(ka)

t cos(ka) µ/2

⎞

⎠

⎛

⎝

ck,A

ck,B

⎞

⎠
. (D.7)

The period is ∆k = 2π
a .

However, there are different ways of choosing unit cells, for example,
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Chapter D | Summing over sublattice indices

of which the unit cells consist of two particles. The Hamiltonian is

H = −t ∑
r=0,2a,4a,...

c†
r,A′cr,B′ + c

†
r,B′cr+2a,A′ +H.C. + µ ∑

r=0,a,2a,...
c†
rcr. (D.8)

After Fourier transformation,

H = −
t

2
∑
k

c†
k,A′ck,B′ + c

†
k,B′ck,A′e

2ika + c†
k,B′ck,A′ + c

†
k,A′ck,B′e

−2ika +
µ

2
(c†

k,Ack,A + c
†
k,Bck,B),

(D.9)

in the matrix form

H = (c†
k,A′ c†

k,B′
)
⎛

⎝

µ/2 (t/2)(1 + e−2ika)

(t/2)(1 + e2ika) µ/2

⎞

⎠

⎛

⎝

ck,A′

ck,B′

⎞

⎠
. (D.10)

The period in momentum space is smaller, ∆k = π
a The two matrix representations of

Hamiltonian in eq. (D.7) and eq.D.10) can be transformed to each other by a unitary
transformation

U =
⎛

⎝

e−i
1
2
ka 0

0 ei
1
2
ka

⎞

⎠
(D.11)

Now let’s discuss the q sum over spin susceptibility. When doing the sum, we want to
sum over each particles separately, i.e., the unit cells only contain one single particle.
So the first form of Hamiltonian can provide correct result for eigenvectors, while the
second one will lose the information of the relative phase inside the unit cell.

However, the period of the eigenvectors are smaller under the second basis, which
means we can calculate fewer momentum space points in order to obtain the physical
properties. We write the ’sublattice indices’ in the second unit cell as A’ and B’,
which means they are different from the original ’physical’ sublattice indices A and B.
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Chapter D | Summing over sublattice indices

When we calculate the physical properties, we should do the unitary transformation
to transform the basis back to the original sublattice indices A and B.

Spin susceptibility

What we are interested in is the nuclear relaxation rate. When we calculate the
relaxation rate, we sum over q for spin susceptibility χ(q, ω). Since in the real exper-
iment, one can only measure one value for the relaxation rate rather than a matrix
with sublattice indices, we want to check what operation will recover the value of spin
susceptibility χ(q, ω) without sublattice indices from the matrix χαβ(q, ω).

Monoatomic lattice

For the lattice without sublattice indices, spin susceptibility is easily calculated
from Lindhard function

χ+−0 (q, ω) =∑
k

f(Ek) − f(Ek+q)
ω +Ek+q −Ek + iη

(D.12)

where E(k) = 2t cos(ka) + µ
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Unit cell with a single atom

Now let’s look at the ’wrongly’ labeled chain with sublattice indices A and B and
see how does the spin susceptibility reduces to the single type particle case. The
Hamiltonian in the matrix form is shown in eq. (D.7), and we can define the matrix

H =
⎛

⎝

µ/2 t cos(ka)

t cos(ka) µ/2

⎞

⎠
(D.13)

The eigenvalues and eigenvectors of the matrix are

Ek,1 =
µ

2
− t cos(ka)

Ek,2 =
µ

2
+ t cos(ka)

v =
⎛

⎝

uA,1 uA,2

uB,1 uB,2

⎞

⎠
=

1
√
2

⎛

⎝

−1 1

1 1

⎞

⎠
.

(D.14)

The spin susceptibility with sublattice indices are

χ+−αβ(q, iωn) =
1

V
∑
k

∑
m,m′

u∗α,m,k+quβ,m,k+quα,m′,ku
∗
β,m′,k

f(Ek+q,m) − f(Ek,m′)

iωn +Ek,m′ −Ek+q,m
. (D.15)

Then the four elements are

χ+−AA(q, iωn) =
1

V
∑
k

(u∗A,1,k+quA,1,k+quA,1,ku
∗
A,1,k

f(Ek+q,1) − f(Ek,1)

iωn +Ek,1 −Ek+q,1

+ u∗A,1,k+quA,1,k+quA,2,ku
∗
A,2,k

f(Ek+q,1) − f(Ek,2)

iωn +Ek,2 −Ek+q,1

+ u∗A,2,k+quA,2,k+quA,1,ku
∗
A,1,k

f(Ek+q,2) − f(Ek,1)

iωn +Ek,1 −Ek+q,2

+ u∗A,2,k+quA,2,k+quA,2,ku
∗
A,2,k

f(Ek+q,2) − f(Ek,2)

iωn +Ek,2 −Ek+q,2
)

=
1

4V
∑
k

(
f(Ek+q,1) − f(Ek,1)

iωn +Ek,1 −Ek+q,1
+
f(Ek+q,1) − f(Ek,2)

iωn +Ek,2 −Ek+q,1

+
f(Ek+q,2) − f(Ek,1)

iωn +Ek,1 −Ek+q,2
+
f(Ek+q,2) − f(Ek,2)

iωn +Ek,2 −Ek+q,2
)

(D.16)
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χ+−AB(q, iωn) =
1

V
∑
k

(u∗A,1,k+quB,1,k+quA,1,ku
∗
B,1,k

f(Ek+q,1) − f(Ek,1)

iωn +Ek,1 −Ek+q,1

+ u∗A,1,k+quB,1,k+quA,2,ku
∗
B,2,k

f(Ek+q,1) − f(Ek,2)

iωn +Ek,2 −Ek+q,1

+ u∗A,2,k+quB,2,k+quA,1,ku
∗
B,1,k

f(Ek+q,2) − f(Ek,1)

iωn +Ek,1 −Ek+q,2

+ u∗A,2,k+quB,2,k+quA,2,ku
∗
B,2,k

f(Ek+q,2) − f(Ek,2)

iωn +Ek,2 −Ek+q,2
)

=
1

4V
∑
k

(
f(Ek+q,1) − f(Ek,1)

iωn +Ek,1 −Ek+q,1
−
f(Ek+q,1) − f(Ek,2)

iωn +Ek,2 −Ek+q,1

−
f(Ek+q,2) − f(Ek,1)

iωn +Ek,1 −Ek+q,2
+
f(Ek+q,2) − f(Ek,2)

iωn +Ek,2 −Ek+q,2
)

(D.17)

χ+−BA(q, iωn) =
1

V
∑
k

(u∗B,1,k+quA,1,k+quB,1,ku
∗
A,1,k

f(Ek+q,1) − f(Ek,1)

iωn +Ek,1 −Ek+q,1

+ u∗B,1,k+quA,1,k+quB,2,ku
∗
A,2,k

f(Ek+q,1) − f(Ek,2)

iωn +Ek,2 −Ek+q,1

+ u∗B,2,k+quA,2,k+quB,1,ku
∗
A,1,k

f(Ek+q,2) − f(Ek,1)

iωn +Ek,1 −Ek+q,2

+ u∗B,2,k+quA,2,k+quB,2,ku
∗
A,2,k

f(Ek+q,2) − f(Ek,2)

iωn +Ek,2 −Ek+q,2
)

=
1

4V
∑
k

(
f(Ek+q,1) − f(Ek,1)

iωn +Ek,1 −Ek+q,1
−
f(Ek+q,1) − f(Ek,2)

iωn +Ek,2 −Ek+q,1

−
f(Ek+q,2) − f(Ek,1)

iωn +Ek,1 −Ek+q,2
+
f(Ek+q,2) − f(Ek,2)

iωn +Ek,2 −Ek+q,2
)

(D.18)

χ+−BB(q, iωn) =
1

V
∑
k

(u∗B,1,k+quB,1,k+quB,1,ku
∗
B,1,k

f(Ek+q,1) − f(Ek,1)

iωn +Ek,1 −Ek+q,1

+ u∗B,1,k+quB,1,k+quB,2,ku
∗
B,2,k

f(Ek+q,1) − f(Ek,2)

iωn +Ek,2 −Ek+q,1

+ u∗B,2,k+quB,2,k+quB,1,ku
∗
B,1,k

f(Ek+q,2) − f(Ek,1)

iωn +Ek,1 −Ek+q,2

+ u∗B,2,k+quB,2,k+quB,2,ku
∗
B,2,k

f(Ek+q,2) − f(Ek,2)

iωn +Ek,2 −Ek+q,2
)

=
1

4V
∑
k

(
f(Ek+q,1) − f(Ek,1)

iωn +Ek,1 −Ek+q,1
+
f(Ek+q,1) − f(Ek,2)

iωn +Ek,2 −Ek+q,1

+
f(Ek+q,2) − f(Ek,1)

iωn +Ek,1 −Ek+q,2
+
f(Ek+q,2) − f(Ek,2)

iωn +Ek,2 −Ek+q,2
).

(D.19)
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We can see that for this special case there are χ+−AA = χ
+−
BB and χ+−AB = χ

+−
BA. We can plot

their dependence of q for the elements,

and sum the elements up, then divide them by four,

74



Chapter D | Summing over sublattice indices

Compare it with the one without sublattice indices, we can find they are the same.

Unit cell with two atoms

In the second way of defining unit cells, we have two particles per unit cell. The
matrix of the Hamiltonian is

H =
⎛

⎝

µ/2 (t/2)(1 + e−2ika)

(t/2)(1 + e2ika) µ/2

⎞

⎠
. (D.20)
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With the eigenvector

v =
⎛

⎝

uA,1 uA,2

uB,1 uB,2

⎞

⎠
=

1
√
2

⎛

⎝

−e−
1
2
ika e−

1
2
ika

e
1
2
ika e

1
2
ika

⎞

⎠
, (D.21)

we get the same eigenvalues as eq. (D.14). Now the elements of spin susceptibility are

χ+−AA(q, iωn) =
1

4V
∑
k

(
f(Ek+q,1) − f(Ek,1)

iωn +Ek,1 −Ek+q,1
+
f(Ek+q,1) − f(Ek,2)

iωn +Ek,2 −Ek+q,1

+
f(Ek+q,2) − f(Ek,1)

iωn +Ek,1 −Ek+q,2
+
f(Ek+q,2) − f(Ek,2)

iωn +Ek,2 −Ek+q,2
)

(D.22)

χ+−AB(q, iωn) =
1

4V
eiqa∑

k

(
f(Ek+q,1) − f(Ek,1)

iωn +Ek,1 −Ek+q,1
−
f(Ek+q,1) − f(Ek,2)

iωn +Ek,2 −Ek+q,1

−
f(Ek+q,2) − f(Ek,1)

iωn +Ek,1 −Ek+q,2
+
f(Ek+q,2) − f(Ek,2)

iωn +Ek,2 −Ek+q,2
)

(D.23)

χ+−BA(q, iωn) =
1

4V
e−iqa∑

k

(
f(Ek+q,1) − f(Ek,1)

iωn +Ek,1 −Ek+q,1
−
f(Ek+q,1) − f(Ek,2)

iωn +Ek,2 −Ek+q,1

−
f(Ek+q,2) − f(Ek,1)

iωn +Ek,1 −Ek+q,2
+
f(Ek+q,2) − f(Ek,2)

iωn +Ek,2 −Ek+q,2
)

(D.24)

χ+−BB(q, iωn) =
1

4V
∑
k

(
f(Ek+q,1) − f(Ek,1)

iωn +Ek,1 −Ek+q,1
+
f(Ek+q,1) − f(Ek,2)

iωn +Ek,2 −Ek+q,1

+
f(Ek+q,2) − f(Ek,1)

iωn +Ek,1 −Ek+q,2
+
f(Ek+q,2) − f(Ek,2)

iωn +Ek,2 −Ek+q,2
).

(D.25)

And the result of simply summing the elements are different from the lattice without
sublattice indices.
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To conclude, if we want to get the ’physical’ relaxation rate, we need to do the
unitary transformation to transform the eigenvectors back to the single particle unit
cell. Other wise the extra phase factors will lead to a wrong result.
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