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Abstract

We investigate the microscopic eigenvalue spectrum of two quenched chiral systems coupled
in such a way that we preserve a common chiral symmetry. The coupling gives rise to a unique
term in the lowest order effective Lagrangian and also links the topology of the two systems,
which allows exact zero modes to cancel each other if they are of opposite chirality. The would-
be zero modes spread out on either side of the origin as near-zero modes. For small coupling,
the near-zero modes are distributed according to a finite size chiral random matrix model
where the width scales as the inverse square root of the volume.

This is done for both the chiral unitary ensemble and the chiral orthogonal ensemble, and
we consider the two coupled flavours in both two separate gauge fields and in the same gauge
field.

We also introduce a random two-matrix model with the same coupled chiral symmetry. It
agrees with the effective theory in the microscopic limit, both analytically and numerically, for
all considered cases.
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Chapter 1

Introduction

Because the Hamiltonian of a p-wave superconductor carrying Majorana fermions belongs
to the symmetry class BDI (chiral orthogonal) [1, 2], it is possible that interactions between
these Majorana fermions may be described as the coupling of two quenched chiral orthogonal
ensembles, provided that coupling preserves a combined chiral symmetry.

The chiral orthogonal ensemble is well-described both in mathematical and high energy
physics [3, 4, 7, 5, 8], which opens up the possibility of calculating any property uniquely deter-
mined by the symmetries of the solid state system with high energy techniques. This proposed
connection between high energy and solid state physics was the motivation for considering the
consequences of applying such a coupling to two chiral systems.

In this thesis, we lay the groundwork for treatment of coupled chiral ensembles by consid-
ering the effect of the coupling on the small eigenvalues and especially the topological eigen-
values in exact zero.

Chiral theories and chiral symmetry breaking has been studied in great detail in the low-
energy regime of QCD [9, 10, 11, 12, 13]. The massless Lagrangian of QCD allows for separate
transformations of left- and right-handed quark fields. The spontaneous breaking of this sym-
metry

SULeft(Nf )× SURight(Nf )→ SUVector(Nf ) (1.1)

where Nf is the number of quark flavours, gives rise to Goldstone modes [13]. As the symme-
try is also broken explicitly, these modes are light rather than massless and therefore technically
pseudo-Goldstone particles rather than proper ones. They are, however, significantly lighter
than the rest of the composite particles, and this mass gap allows us to set up a low-energy ef-
fective theory in terms of these light pseudo-Goldstone modes only, see Figure 2.2 in Chapter
2.

In a quenched ensemble we have added a bosonic determinant with the same mass to
cancel each fermionic determinant in the QCD partition function. In QCD, this approximation
suppresses virtual quark loops [14], but still allows us to derive many aspects of QCD. In solid
state physics, this is not an approximation, because the entries of the Hamiltonian, unlike the
massless Dirac operator, are not weighted with the determinant of the entire operator. The
quenched ensemble is also significantly simpler to treat numerically. For further discussion of
the quenched approximation, see [14, 15, 16].

Our primary concern is the eigenvalue spectrum in and around zero, which is universal for
any system that displays a spontaneous breaking of chiral symmetry [4, 7, 8, 10, 11, 12, 13, 17,
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CHAPTER 1. INTRODUCTION 2

18, 19]. Because of this universality, we may calculate the spectrum in an effective low-energy
theory if it breaks chiral symmetry the same way as the underlying theory.

In QCD, this study of chiral symmetry breaking through effective Lagrangians has also
lead to calculation of propagators and loop diagrams of the aforementioned pseudo-Goldstone
modes [9] and a greater understanding of the QCD chemical potential [20, 21, 22, 23], apart
from the derivation of the microscopic eigenvalue spectrum. This microscopic is in turn con-
nected to the spontaneous breaking of chiral symmetry [24].

The spectrum is obtained as follows: We start with the full, partially quenched partition
function

Z(m,m′) =

∫
dA

det
(
− i /D +m

)
det
(
− i /D +m′

) e−SYM (A) (1.2)

where /D = γµ(∂µ + Aµ) is the massless Dirac operator, m and m′ are the masses of quark and
the bosonic ghost field respectively, SYM (A) is the Yang-Mills action, and A is the gauge field
we integrate over. We may use this as a generating function for the quenched chiral condensate

Σ(m) =
1

V
∂m lnZ(m,m′)

∣∣
m=m′

=
〈 1

−i /D +m

〉
. (1.3)

The eigenvalue spectrum is finally obtained as the discontinuity across the imaginary axis of
the quenched chiral condensate [11, 12]

lim
ε→0

[
Σ(iλ+ ε)− Σ(iλ− ε)

]
=
〈
δ(−i /D + iλ)

〉
=
∑
k

〈
δ(λ− λk)

〉
≡ ρ(λ), (1.4)

where λk are the eigenvalues of /D. Calculating (1.2) is the challenging part, and this is where
we use the effective field theory. Once we have an expression for (1.2), the rest is a straight-
forward calculation, although not necessarily simple. Note that we in QCD are interested in
the eigenvalues of the massless Dirac operator i /D, whereas we in solid state physics want the
spectrum of the Hamiltonian H . The procedure is, however, the same.

The coupling should preserve a combined chiral symmetry of the two systems, so we con-
struct an effective Lagrangian containing all possible terms that link left- and right-handed
fields respectively of the two ensembles. There are of course an infinite amount of these
terms, but, by establishing a counting scheme, we can consider the lowest order terms only,
where there is a unique term to describe the chiral coupling. We work in a counting scheme
that favours the light pseudo-Goldstone modes, which corresponds to the low-energy regime
where the generating function can be calculated in its entirety [10, 12].

The numerical counterpart to these analytical techniques is random matrix theory. The
study of random matrices and their eigenvalues originates in mathematical statistics, but has
since found its applications in physics [5]. As with effective field theory, the basis of random
matrix theory is the symmetries of the underlying theory. By creating a large amount of ma-
trices with the given symmetries, we may find the universal part of the eigenvalue spectrum.
The partition function of a chiral random matrix theory takes the form [5, 17, 25, 26, 27, 28]

Zn,ν(m) =

∫
dWP (WW †) detNf

(
m iW
iW † m

)
(1.5)
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where W are general (n + ν) × n matrices, and ν is the number of exact zero modes. The
choice of weight P (WW †) is arbitrary in the microscopic limit n → ∞ as long as it supports a
non-zero density of eigenvalues around the origin [18].

As the microscopic eigenvalue density depends on the symmetries only, we can make a
two-fold investigation of it; numerical and analytical. The chiral orthogonal ensemble (chOE),
of which we wish to create a coupled version, corresponds to real entries in (1.5). In the lan-
guage of effective field theory, complex entries (called the chiral unitary ensemble or chUE)
correspond to the standard chiral symmetry break of QCD, seen in (2.17). The chiral orthogo-
nal ensemble follows the pattern [7]

U(2Nf )→ Sp(2Nf ) (1.6)

where Sp is the symplectic group. This gives the orthogonal ensemble a larger broken group,
which makes integration over the Goldstone manifold more complicated. We therefore de-
velop much of our framework in the more simple case of the unitary ensemble, before we turn
to the orthogonal one.

The main focus of this thesis is to analyse the effect on the exact zero modes of coupling
two chiral ensembles to lowest order. The amount of these exact zero modes are equal to the
absolute value of a topological invariant called the winding number [29], so, by analysing the
zero modes, we implicitly see the combined topology of the coupled system. The eigenvalue
density of two coupled unitary ensemble can be seen in Figure 6.2 in Chapter 6, where we run
through different coupling strengths of the corresponding random matrix ensemble.

We there see what we show throughout this thesis: For zero coupling, the total density is
merely the sum of the two single ensembles with the amount of exact zero modes preserved.
For small, but non-zero, coupling, the exact modes are smeared out as near-zero modes if
the zero modes are of opposite chirality. These would-be zero modes follow a well known
distribution, namely that of finite size chiral random matrix ensemble (1.5) with a Gaussian
weight. This may come as a surprise, as the finite ensemble, unlike the full coupled partition
function, is not universal because of the arbitrary weight. The Gaussian weight is, however,
a direct consequence of the quadratic nature of the unique coupling term and is therefore
universal.

As the coupling strength increases, the topological modes become part of the bulk eigen-
values. In the strong coupling limit the coupled system behaves as a single, uncoupled system,
but with λ → 2λ. The most important result to take from this is that the total amount of exact
zero modes is counted with sign, and, even to lowest order, any coupling of chiral systems that
preserves a combined chiral symmetry will couple the topology of the two systems.

We apply the coupling to two very distinct cases. First we consider two separate single-
flavour ensembles that are completely independent before the coupling, by which we mean
that the partition function factorises. This also implies that they interact with two different
gauge fields, and so they may have different topologies. Otherwise the ensembles are taken to
be identical when averaged over gauge configurations.

We then consider an ensemble with an inbuilt two-flavour structure. Here we have the
option of rotating the flavour basis, which gives rise to an extra symmetry that is only partially
broken by coupling the two flavours. These two flavours are born in the same gauge field,
which forces them to have the same topological charge. The aforementioned cancellation of
topological zero modes can therefore only occur if we couple the left part of one flavour to the
right part of the other. Although these two cases have different physical interpretations, the
effect of the coupling on the microscopic eigenvalue spectrum is to a large extend the same.
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Some differences between coupled chiral orthogonal ensembles and the superconductors
carrying Majorana modes are still present. The most important distinction is that, in the super-
conductor, only the zero modes are Majorana modes, whereas as the bulk modes are regular
Dirac modes [30]. This is not the case for the chiral orthogonal ensemble where all modes are
Majorana. We therefore require a different approach. We briefly discuss alternative ways of
treating the superconductor system in random matrix theory by adding a substructure to the
matrices.

The thesis is organised as follows: First, in Chapter 2 we examine the relevant mathematics,
including effective field theory, random matrices, and topological zero modes. In Chapter 3
we introduce the coupling and derive its properties from symmetry considerations. This is the
groundwork for the calculation of the eigenvalue spectrum in Chapters 4 and 5. We finally
compare these analytical results to numerics in Chapter 6 and summarise our conclusions in
Chapter 7.

The chapter on the mathematical framework should be considered a review, while the new
contribution is the treatment of coupled chiral systems with a coupling that preserves a com-
bined chiral symmetry. The main results of this thesis have also been published in [31].



Chapter 2

Mathematical Framework

Let us begin by reviewing the relevant mathematics. This chapter should be considered a
toolbox, which we in Chapter 3 and onwards apply to the coupled system.

We start out by going through the terminology and properties of symmetry. We then intro-
duce low-energy effective field theory and discuss the role of exact zero modes. During most
of the thesis, we will treat topology and the amount of exact zero modes as two sides of the
same coin, but in Section 2.3 we give a short introduction to topology in QCD to show some
of its origin. We then elaborate on the partition function’s role as a generating function of the
eigenvalue spectrum, which shall be our analytical stepping stone.

We also need the understanding of topology before turning to chiral random matrix theory,
as we will calculate one topological sector at a time. These chiral random matrix ensembles also
have a close relation to the ensembles of effective field theory, which we return to in Chapter
3. We use random matrices as the backbone of our numerical analysis in Chapter 6.

We finally compare Majorana modes in high energy physics and solid state physics with
the intention of establishing a working model of the superconductor system that first inspired
this coupled chiral system.

2.1 Symmetry

For the purpose of later discussions, let us begin by briefly reminding ourselves of the termi-
nology and properties of symmetry. Similar discussions can be found in [32] or any other book
on the subject (or on Wikipedia).

A symmetry is a transformation that leaves some quantity invariant. Since parts of a system
are uniquely determined by symmetries and the breaking thereof, we can gain a lot of infor-
mation through this analysis. We will consider invariances of the Lagrangian and partition
function, and how they affect the microscopic eigenvalue spectrum.

Breaking of Symmetry

Let us consider two classic examples: The charged particle in a uniform magnetic field and the
so-called Mexican hat potential. We look at these two systems, because they are good examples
of explicit and spontaneous breaking of symmetry respectively.

5
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Explicit Break: Consider the Hamiltonian of a 2D free particle with charge q

Hfree =
p2

2m
. (2.1)

This is invariant under rotation(
px
py

)
→
(

cos(φ) − sin(φ)
sin(φ) cos(φ)

)(
px
py

)
. (2.2)

If we apply a magnetic field

Hmag =
p2

2m
+ q

~p

m
× ~B, (2.3)

we break this invariance. This is called an explicit break, because it changes the equations of
motion. The explicit break will often remove degeneracies of the system. In this case, the spin
degeneracy will be lifted. (We have not included the spin-part in (2.3), but it would be a term
proportional to ~S · ~B.)

Spontaneous Break: Consider a system, whose equations of motion have a symmetry that
the ground state does not. This could be a ball sitting atop a rotationally invariant potential
with a ground state further downhill, see Figure 2.1. This is called a spontaneous break, be-
cause the equations of motion are left unchanged. To investigate this mathematically, we make
a small perturbation of the system and see if the ball remains stationary.

Figure 2.1: Example of a spontaneously broken symmetry. A ball in the Mexican hat potential where
the midpoint is an unstable equilibrium. The equations of motion are rotationally invariant,
but the ground state at the bottom of the well breaks this symmetry.

Nambu-Goldstone Theorem

The Nambu-Goldstone theorem states that if a system has a spontaneously broken continuous
symmetry, there exists a massless mode for each broken generator [13]. By writing our theory
in terms of these Goldstone modes, we may calculate results otherwise impossible in QCD.
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The Goldstone modes can be viewed intuitively as the freedom to move along the bottom
of the potential well in Figure 2.1. Mathematically speaking, this potential corresponds to a
Lagrangian of the form1

L = −∂µφ†∂µφ−
1

2
m2φ†φ− 1

4
g(φ†φ)2 (2.4)

where φ is a complex scalar field. This has an obvious global U(1)-symmetry

φ→ eiαφ. (2.5)

Assuming m2 to be negative, we have the right potential. The potential has the minimum

φ(x) =
1√
2
veiθ , v =

√
4|m|2
g

(2.6)

where θ is an arbitrary phase.
If we use the parametrisation [33]

φ(x) =
1√
2

(v + ρ(x))eiχ(x)/v, (2.7)

where ρ and χ are real fields, we get the Lagrangian

L = −∂µρ∂µρ−
(

1 +
ρ

v

)2
∂µχ∂µχ−

1

4
m2(v + ρ)2 − 1

16
g(v + ρ)4. (2.8)

Notice that a U(1)-transformation of φ corresponds to a shift in χ and that χ has no mass
term. We can interpret this as a massless field along the broken symmetry. Note that we have
only shown this for a broken U(1)-symmetry. To show that this holds for all symmetries is
beyond the scope of this work, see [32] for more details or [34] for the original article.

2.2 Effective Field Theory

Now that we understand symmetry and the consequences of a spontaneous break, let us apply
it to effective field theory (EFT). EFT was first introduced in [35], and the idea is to construct
a Lagrangian containing all terms that satisfy the symmetries of a given system and, by estab-
lishing a counting scheme, take the terms of lowest order. With this, we can express the world
in terms of the lightest composite particles, which allows us to access the non-perturbative
regimes of a theory like QCD.

The basic principle is as follows:
The effective Lagrangian must satisfy the same symmetries as the original theory, but must
also break any broken symmetries the same way. Which terms are picked is based on the
chosen counting scheme. This approach defines the effective theory up to constants that
must be determined by experiments.

EFT based on the chiral symmetry breaking in QCD is often called chiral perturbation the-
ory (chPT) and is used to describe the low-energy limit of QCD, because the full partition
function of QCD cannot be solved perturbatively in this regime. Instead of expressing our
theory in terms of the quark fields, we express it in terms of the light Goldstone modes, which
dominate the spectrum at low energy.

1This derivation follows chapter 32 of [33] quite closely.
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Figure 2.2: Mass spectrum of the lightest
composite particles of QCD.
The mass gap between the pi-
ons and the rest is what al-
lows us to express the low-
energy theory in terms of the
pions only. The masses are
taken from [36].

For it to be meaningful to make a cut-off at low en-
ergy, a well defined mass gap is necessary. This is also
the case: The kaons, the lightest hadrons after the pi-
ons, are roughly a factor of 3.6 heavier than the pions
[36], see Figure 2.2. Because the quarks only appear
in deeply bound states, we need only consider them
in terms of pions. Note that kaons and η-mesons are
pseudo-Goldstone modes as well, so our approxima-
tion is really that only the two lightest flavours exist
and that they can form pions only.

In this case, we require the quark mass to break chi-
ral symmetry in the effective Lagrangian the same way
as it does in QCD.

Counting Schemes

Taking the low-energy limit corresponds to taking the
two limits mq → 0 and V → ∞. A counting scheme
is introduced to control the relation between mq and
V while taking these limits. There are two common
choices here: [10, 13]

• p-counting:

1

β
= O(p) ,

1

L
= O(p) , Mπ = O(p) (2.9)

• ε-counting:

1

β
= O(ε) ,

1

L
= O(ε) , Mπ = O(ε2) (2.10)

where L3 × β is the 4-volume of our box and Mπ is the mass of the pion. We let ε, p→ 0.
As we can see, the difference lies in how the mass is counted. These choices are illustrated

in Figure 2.3.

The choice of counting scheme is a central part of our analysis:
Because we look at zero modes and near-zero modes, the low-momentum modes dominate
and we therefore work in ε-counting [10, 12].

This counting scheme factorises the derivatives and mass part of the partition function, so
we may treat the derivatives as normalisation. This opens up the possibility of calculating the
partition function in its entirety and use it as a generating function of the eigenvalue spectrum.
We show this below in Equation (2.23).
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Chiral Perturbation Theory

The effective field theory used to calculate the chiral coupling is an extension of chiral pertur-
bation theory, so let us establish the principle. Because there is a large mass gap between pions
and other composite particles, they dominate the spectrum at low energy. We can therefore
write our theory in terms of these Goldstone modes.

Figure 2.3: Illustration of the two counting
schemes. Because the wavelength of
our Goldstone mode goes as the inverse
mass, taking O(Mπ) = O(L−1), the
wavelength becomes the same order of
magnitude as the size of the box, and
the kinetic part of the Goldstone particle
becomes significant. On the other hand,
taking O(Mπ) = O(L−2) freezes out the
dynamics of the system and allows us
to consider the mass part alone.

Construction of the Lagrangian works as
follows: Consider the chiral transformations

qR → gRqR , gR = e
1
2
i(1+γ5)θR

qL → gLqL , gL = e
1
2
i(1−γ5)θL (2.11)

where θR, θL areNf ×Nf hermitian, traceless
matrices. These are a symmetry of the mass-
less QCD Lagrangian

LQCD = −iq̄ /Dq + LYM (2.12)

where LYM is the gluon field part, which we
will omit in the following. These would also
be a symmetry of the Lagrangian with mass

LQCD = q̄(−i /D +mq)q (2.13)

if the mass transformed like

mq → gLmqgR
† (2.14)

at the same time. (Recall that we can write
out the mass term as (

q̄L q̄R
)(mq 0

0 m†q

)(
qR
qL

)
(2.15)

in chiral basis.) This approach is called the spurion technique and (2.14) the spurion transfor-
mation of the mass, see for instance [13].

Introducing the Goldstone field U which transforms as [13]

U → gLUgR
†, (2.16)

we can construct a Lagrangian consisting of invariant Goldstone terms. The chiral symmetry
breaking takes the form [13]

SUR(Nf )× SUL(Nf )→ SUV (Nf ) (2.17)

so the Goldstone modes live on the manifold

U ∈ SU(Nf )× SU(Nf )/SU(Nf ) ∼ SU(Nf ) (2.18)

Since Tr(UU †) = Nf , the basic building blocks are

LEFT =
f2

4
Tr[∂µU

†∂µU ] + Σ0Tr[m†qU +mqU
†] (2.19)
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where f and Σ0 are the aforementioned constants that cannot be determined by symmetries.
(In QCD, f can be found through scattering experiments [13]. Σ0 is related to the spontaneous
breaking of chiral symmetry.2)

To identify how the quark mass should be counted, we must first find the relation between
it and the pion mass. With the parametrisation U = ei

√
2Π/f [13], where Π is the pion field, we

can expand the last term to

Σ0Tr[m†qU +mqU
†] ≈ Σ0Tr[2mq −

2mq

f2
Π2], (2.20)

making the pion mass Mπ =

√
4mqΣ0

f [10, 37, 38]. The important part of the result is of course
mq = O(Mπ

2).
To see the factorisation of derivatives and low-momentum modes, let us now split U into a

local and a global part [10]

U = ueiξ(x)u (2.21)

with uu† = 1. Inserting this, we can expand (2.19) to

LEFT =
f2

4
Tr[u∂µξ(x)eiξ(x)uu†∂µξ(x)e−iξ(x)u†] +

Σ0mq

2
Tr

[
u2 + u†

2 − uξ2(x)u

2
− u†ξ2(x)u†

2

]
=

f2

4
Tr[∂µξ(x)∂µξ(x)] +

Σ0mq

2
Tr
[
U0 + U †0

]
− Σ0mqξ

2(x)

4
Tr
[
U0 + U0

†
]

(2.22)

where U0 = u2.3 The action is

SEFT =

∫
d4xLEFT

=
f2

4

∫
d4xTr[∂µξ(x)∂µξ(x)] +

V Σ0mq

2
Tr
[
U0 + U †0

]
(2.23)

−Σ0mq

4

∫
d4xξ2(x)Tr

[
U0 + U0

†
]
.

Since f = O(1),Σ0 = O(1),
∫
dx = O(ε−1), ∂µ = O(ε), and mq = O(ε4), the first term forces

ξ = O(ε) if the action should stay convergent for ε → 0. Knowing this, the first two terms are
both O(1) and the last is O(ε2). So for ε→ 0, the last term is suppressed. If we only care about
the low-momentum modes, we can treat the first term as normalisation.

From here on we omit the subscript on U0. We let V → ∞ and mq → 0, while keeping
V Σ0mq ≡ m constant. So our EFT partition function is

ZEFT (m) =

∫
SU(Nf )
dU exp

{
1

2
Tr[M †U +MU †]

}
(2.24)

2This can be realised by considering the chiral condensate Σ(m) = δm lnZ, where Σ(0) is a measure of the
strength of the spontaneous chiral break. The derivative pulls out a Σ0 in front, for Σ(0) 6= 0, the scale of the break
is determined by Σ0.

3It is not completely obvious that the first order terms cancel in the last trace of the first line, but because
U + U† = 2<[U ], the imaginary terms must cancel.
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where we have introduced the mass matrix M = m1Nf . Notice this change of variables to the
dimensionless variable m. We work in these dimensionless variables throughout this work.
We later find the numerical equivalent.

Let us generalise this result. Given a Lagrangian of the form

LQCD = L0
QCD + q̄γµ(vµ + γ5aµ)q − q̄(s− iγ5p)q (2.25)

where q̄, q are the quark fields, and vµ, aµ, s, p are external hermitian fields, we can write up
the most general effective theory in p-counting [13]

LEFT =
f2

4
Tr
[
DµU

†DµU + U †χ+ χ†U
]

(2.26)

where

DµU = ∂µU − i(vµ + aµ)U + iU(vµ − aµ)

DµU
† = ∂µU

† + iU †(vµ + aµ)− i(vµ − aµ)U †

χ = 2B0(s+ ip) (2.27)

and f and B0 are constants that are not determined by symmetries (f is the same as in (2.19)).
We can obtain the same result in ε-counting by simply setting the derivatives to 0. We can

quickly verify that considering a source of the kind q̄mqq leads us to (2.24) with B0 = V Σ0
f2 .

2.3 Topology and Zero-modes

The exact zero modes play a crucial role in our system, so let us start by illustrating why they
are special. A chiral operator Ω anti-commutes with some operator η that squares to unity

{Ω, η} = 0 , η2 = 1. (2.28)

This means we can rewrite the eigenvalue equation Ω |ψ〉 = λ |ψ〉 as

ηΩ |ψ〉 = ηλ |ψ〉 ⇒ −Ωη |ψ〉 = λη |ψ〉 ⇒ Ω |ψ′〉 = −λ |ψ′〉 (2.29)

where |ψ′〉 = η |ψ〉. So all eigenvalues λ appear in pairs, symmetric around zero, unless λ = 0,
which is why the topological zero modes stand out. In QCD, the chiral operator is the massless
Dirac operator Ω = /D, which anti-commutes with η = γ5.

The number of exact zero modes in a given system is equal to the absolute value of the
winding number ν, which is a topological invariant [28, 29, 33]. This is why we can treat the
number of zero modes and topology on equal footing. Because the topology of a system is not
easily changed, it is often fruitful to consider topological quantities. We shall briefly discuss
the role of topology in QCD, but our main focus will be zero modes.4

4For a thorough treatment of the winding number in QCD, [29] is highly recommended.
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2.3.1 Topology in QCD: Winding Number and Vacuum Angle

In QCD, the winding number stems from the U(1)-axial anomaly as follows: The massless
QCD Lagrangian

L = −iq̄ /Dq − 1

4
GaαβG

a
αβ (2.30)

has a classical axial symmetry

q̄ → q̄eiθγ5

q → eiθγ5q, (2.31)

by which we mean that the Lagrangian is invariant under this transformation. For now, θ is
just a transformation parameter. However, a change of variables shows that this is not a true
symmetry of the theory, because the partition function is not invariant. This is what we call an
anomaly. Regularisation of the Jacobian leads to the term [33]

∆L =
θ

32π2
εαβρσGaαβG

a
ρσ (2.32)

in the Lagrangian. Here θ is called the vacuum angle. Interestingly, this is an exact term (not
subject to higher order corrections). So the full partition function with mass is

Z(m, θ) =

∫
Dq̄DqDA exp

{
i

∫
d4xq̄(−i /D +mq)q

}
(2.33)

× exp

{
−1

4
GaαβG

a
αβ +

θ

32π2
εαβρσGaαβG

a
ρσ

}
.

Because the additional term can be rewritten as

θ

32π2
εαβρσGaαβG

a
ρσ =

θ

16π2
∂µ

(
εµνρσ

(
Aaν∂ρA

a
σ +

1

3
fabcA

a
νA

b
ρA

c
σ

))
, (2.34)

it appears as a total derivative, and therefore a surface integral of the field in infinity. It is
tempting to neglect the contribution of this term in the action, because one would expect the
gauge field to be 0 at infinity, but this turns out not to be the case. The contribution to the
action from this term is the aforementioned winding number [28, 29, 33]∫

d4x
1

32π2
εαβρσGaαβG

a
ρσ = ν, (2.35)

which is a topological invariant and equal to the number of exact zero modes of /D in the given
background field [28, 29, 33].

Inserting the integral over the additional term in the partition function, we find

Z(mq, θ) =

∫
Dq̄DqDA exp

{
i

∫
d4xq̄(−i /D +mq)q −

1

4
GaαβG

a
αβ

}
eiθν . (2.36)

In the full partition function, we integrate over all gauge field configurations, so we im-
plicitly sum over all topologies. We wish to consider ensembles with a given number of zero
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modes, which makes it important to understand how they appear in the partition function.
Define

∫
ν DA as an integral over all gauge field configurations that have ν zero modes, we

may write

Z(mq, θ) =
∞∑

ν=−∞
eiθν

∫
ν
Dq̄DqDA exp

{
i

∫
d4xq̄(−i /D +mq)q −

1

4
GaαβG

a
αβ

}

≡
∞∑

ν=−∞
eiθνZν(mq), (2.37)

which means we can switch between the full ensemble and an ensemble with a specific number
of zero modes with a Fourier transformation.

Relation to the Quark Mass

As we shall see, a change in the vacuum angle θ corresponds to a U(1) transformation of the
quark mass.

Consider an ensemble with certain topological configuration, where we integrate out the
quark fields (see Appendix A.1) and write /D in terms of its eigenvalues

Zν(mq) =

∫
ν
DA detNf (−i /D +mq)e

SYM =

∫
ν
DA

∏
k

(−iλk +mq)
Nf eSYM (2.38)

where Nf is the number of flavours with equal mass, and SYM is the Yang-Mills action.
Defining

∏
k
′ as the product over non-zero eigenvalues and remembering that the system

has |ν| zero modes, we may write

Zν(mq) =

∫
ν
DA

∏
k

′
(λkλ

∗
k +mqm

∗
q)
Nfm

Nfν
q eSYM . (2.39)

For ν < 0 the factor mNfν
q is replaced by (m∗q)

−Nfν [29].
Making a U(1) transformation of the mass, we can see it transforms the partition function

in the following way:

Zν(mqe
iθ0) = eiθ0νNf

∫
ν
DA

∏
k

′
(λkλ

∗
k +mqm

∗
q)
Nfm

Nfν
q eSYM = eiθ0νNfZν(mq) (2.40)

This makes

Z(mqe
iθ0 , θ) =

∞∑
ν=−∞

ei(θ+Nfθ0)νZν(mq) = Z(mq, θ +Nfθ0)

⇒ Z(mq, θ) = Z(mqe
iθ/Nf , 0), (2.41)

which is why it is the sum

θ + arg(det(M)) (2.42)

we should consider, rather than θ alone. M is the quark mass matrix also used in the rest of
this thesis [39]. Because of this relation, however, we shall refer to them collectively as θ. We
will use the U(1) transformation property of the mass from Equation (2.40) later to analyse the
effective partition function.
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2.3.2 Zero Modes in EFT

To analyse zero modes, we must incorporate them explicitly in the effective theory. The effec-
tive theory we derived in (2.24) is for all topologies. Reversing (2.37) and applying it to (2.24),
we may write

ZνEFT (m) =

∫
dθeiθνZEFT (meiθν , 0)

=

∫
dθeiNfθν

∫
SU(Nf )
dU exp

{
1

2
Tr[M †e−iθU +MeiθU †]

}
(2.43)

We can combine the two integrals to a U(Nf )-integral by absorbing a phase eiθ into U and
rewriting the exponential as detν(U). (The determinant of the SU(Nf ) part is always 1.) Note
that this changes the manifold of U . So the partition function is

ZνEFT (m) =

∫
U(Nf )
dUdetν(U) exp

{
1

2
Tr[M †U +MU †]

}
. (2.44)

This shows that the zero modes appear as detν(U), which we shall also see later.
Returning to the representation in (2.39), the zero mode part can also be written as the

determinant of the mass matrix M = m1Nf

m
Nfν
q = detν(M) , ν ≥ 0 (2.45)

This will lead to a νδ(λ) term in the spectrum of eigenvalues as wanted. For ν < 0 this must
be det−ν(M †), if the amount of zero modes is to be positive while retaining the transforma-
tion property from (2.40). We will use this relation later on to remove the zero modes from
ensembles.

2.3.3 Distribution of Topologies

We mainly look at ensembles with a specific topology, but let us examine how the different
topologies should be weighted in the total ensemble. This weighting depends on the vacuum
angle.

Notice that θ = 0 simply yields the sum of all Zν . Because of this, we may interpret the
probability of a certain topology ν as

p(ν,mq) =
Zν(mq)

Z(mq, θ = 0)
(2.46)

We can also identify the mean topology and topological susceptibility

∂θZ(θ,mq)

Z(θ,mq)

∣∣∣∣
θ=0

=
∑∞
ν=−∞ iνeiθνZν(mq)

Z(mq ,θ)

∣∣∣∣
θ=0

= i〈ν〉 (2.47)

∂2
θZ(θ,m)

Z(θ,mq)

∣∣∣∣
θ=0

=
∑∞
ν=−∞−ν2eiθνZν(mq)

Z(mq ,θ)

∣∣∣∣
θ=0

= −〈ν2〉. (2.48)
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Let us derive an example. Consider a single fermionic flavour with the parametrisation of the
U(1) Goldstone field given by U = eiα. The partition function of the single ensemble is

ZνchUE,1(m) =

∫ π

−π

dα

2π
detν(eiα)em cos(α)

=

∫ π

−π

dα

2π
eiανem cos(α)

=

∫ π

0

dα

π
cos(αν)em cos(α)

= Iν(m). (2.49)

The full partition function Z(m, θ) is best found in the integral representation of Iν(m)

ZchUE,1(m, θ) =
∞∑

ν=−∞
eiθν

∫ π

−π

dα

2π
eiανem cos(α) =

∫ π

−π

dα

2π

∞∑
ν=−∞

ei(α+θ)νem cos(α)

=

∫ π

−π
dα

∞∑
n=−∞

δ(α+ θ − 2πn)em cos(α) =

∞∑
n=−∞

em cos(θ−2πn) (2.50)

where n is some integer. We can of course disregard the 2πn. We can also ignore the sum,
because it just appears as an overall factor (even though it is infinite). So

ZchUE,1(m, θ) = em cos(θ) (2.51)
⇒ p1(ν) = Iν(m)e−m (2.52)

with

〈ν〉 = 0 , 〈ν2〉 = m (2.53)

This discussion of topology is highly relevant because we want to consider the fate of the
topological zero modes, when we couple two systems. It is also necessary to understand zero
modes before we move on to random matrix theory, because these matrix theories have a fixed
amount of zero modes (and therefore also a fixed topological charge).

2.4 Supersymmetric Ensemble as Generating Functional

The primary goal of our analysis is to calculate the quenched microscopic eigenvalue spectrum
of the Dirac operator with the given terms in our effective Lagrangian.

Because the spectrum is prohibitively difficult to calculate analytically from first principle,
we instead calculate it from the effective theory of a partially quenched ensemble. This is done
for uncoupled chUE in [12].

The eigenvalue spectrum is obtained as follows: Consider first the full theory of a partially
quenched ensemble

Zν1|1(m,m′) =

∫
DA

det(−i /D +m)

det(−i /D +m′)
e−SYM . (2.54)
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For m = m′, this can be normalised to 1. We can find the quenched chiral condensate by
deriving with respect to one of the masses and setting m = m′.

Σ(m) =
1

V
∂m ln(Z(m,m′))

∣∣∣∣
m=m′

. (2.55)

Because

∂m det(−i /D +m) = Tr

(
1

−i /D +m

)
det(−i /D +m), (2.56)

we can write the chiral condensate in the eigenvalue representation as

Σ(m) =
1

V

〈∑
k

1

−iλk +m

〉

=
1

V

∫
dλ

ρ(λ)

−iλ+m
, (2.57)

where λk are the eigenvalues of /D, and ρ(λ) is the density of eigenvalues.
We isolate the eigenvalue spectrum by considering the discontinuity across the imaginary

axis

1

V
lim
ε→0

[
Σ(iλ+ ε)− Σ(iλ− ε)

]
=

1

V
lim
ε→0

∑
k

〈
1

−iλk + iλ+ ε
− 1

−iλk + iλ− ε

〉
=

1

V
lim
ε→0

∑
k

〈
ε2

(λk − λ)2 + ε2

〉
= 2π

∑
k

〈δ(λk − λ)〉

= 2πρ(λ). (2.58)

The challenge is to calculate (2.54), which we do in the effective theory. The structure of the
partially quenched ensemble is very similar to (2.44), except we will integrate over a different
group.

2.4.1 Symmetry Group of Graded Partition Function

The Goldstone manifold of (2.54) involves the possibility of both fermionic and bosonic Gold-
stone modes, so we write our EFT as a supersymmetric ensemble. Let us outline the conse-
quences of this for the group integration. This section follows Section 2 of [12] quite closely.5

Since our fields are not a priori related by complex conjugation, we no longer have the
identity q̄ = q†γ0. So our theory is no longer unitary, and symmetry group of the massless
Lagrangian is extended to general linear symmetry [16]

qR,L → GR,LqR,L , q̄R,L → q̄R,LG
−1
R,L (2.59)

5Further discussion of the nature of the supersymmetric group integrals is beyond the scope of this work. It is
discussed in details in [12] and [16].
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with G ∈ Gl(Nf |Nb), where Nf and Nb are the number of fermionic and bosonic flavours
respectively.

This is not necessarily a symmetry of the partition function. Like before, we lose the pos-
sibility of making the left and right transformation independently of each other for non-zero
mass. Convergence of the bosonic integrations reduces this symmetry breaking to [12]

SlR(Nf |Nb)× SlL(Nf |Nb)→ SlV (Nf |Nb), (2.60)

which makes the Goldstone manifold Sl(Nf |Nb). Including the axial break, it becomes Sl(Nf |Nb)⊗
Gl(1). It turns out that this is not a super-Riemannian manifold, and that the proper domain is
Gl(Nf |Nb). This restricts the fermion-fermion block to the compact domain SU(Nf ), whereas
the boson-boson block is restricted to the non-compact domain Gl(Nb)/U(Nb) [12].

The important conclusion to be drawn here is that the effective theory of an ensemble with
Nf fermions and Nb bosons is [12]

ZνchUE,Nf |Nb(M) =

∫
Gl(Nf |Nb)
dU Sdetν(U) exp

{
1

2
Str[M †U +MU−1]

}
. (2.61)

We will often take M to be real and diagonal. We use this to calculate the eigenvalue spectrum
of the coupled ensemble in Chapter 4.

2.5 Random Matrix Theory

In this section, we introduce random matrix theory (RMT) as a numerical tool for calculating
universal properties of a given system.6 We will for now focus on the theoretical part of RMT
and save description of the practical implementation for Chapter 6.7

RMT has its origin in mathematical statistics, but was first applied to physics in neutron
resonance [5]. It was combined with QCD in [17], [3], and [7].

The basic principle is as follows:
We construct the most general matrix possible that obeys the same symmetries as the op-
erator we want to investigate. The universal properties of the operators eigenvalues (and
eigenvectors) can then be obtained by numerically generating a (large) number matrices
with of random variables that obey the given set of symmetries.

In chiral systems such as QCD, the microscopic eigenvalue spectrum is uniquely deter-
mined by the symmetries [12], which is why we can calculate it numerically this way. We
can consider three different kinds of ensembles: Orthogonal, unitary, or symplectic with real,
complex, and quarternion components respectively.

Let us consider the chiral unitary ensemble a with Gaussian weight to ensure convergence
as an example. The partition function reads [3, 7, 17]

Zn,νchGUE(mR) =

∫
dWdetNf

(
mR iW
iW † m∗R

)
e−nTr[WW †] (2.62)

6Note that the eigenvalues of random matrices can also be calculated analytically, but that is beyond the scope
of this work. We will, however, show the relation between RMT and chPT analytically.

7For detailed treatments, see [5] and [6] for books on the subject. Reviews can also be found in [25, 26, 27, 28].
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whereW are random complex (n+ν)×nmatrices for ν ≥ 0 (n×(n−ν) matrices for ν < 0), and
mR is a dimensionless parameter that is relatable to the physical mass by V Σ0mq = 2nmR.8

The notation ν is intentionally suggestive. As we shall see below, (2.62) does indeed have |ν|
eigenvalues equal to zero.

Comparing to the QCD partition function

ZQCD =

∫
dAdetNf (−i /D +m)e−SYM (2.63)

we see that the matrix (
mR iW
iW † m∗R

)
= i

(
0 W
W † 0

)
+

(
mR 0
0 m∗R

)
(2.64)

corresponds to −i /D+m, and the weight corresponds to the gluon part of the QCD-action. We
have written the operator in chiral basis as becomes apparent below.

The structure of (2.64) incorporates three conditions:

(i /D)† = −i /D
{i /D, γ5} = 0 (2.65)

and that the mass should break chiral symmetry the same way as (2.17). The first two are easily

realised, as γ5 =

(
−1 0
0 1

)
in chiral basis. The third can be realised by writing the determinant

as a Gaussian integral

det

(
mR iW
iW † m∗R

)
= exp

{(
ψ
φ

)†(
mR iW
iW † m∗R

)(
ψ
φ

)}
(2.66)

and identify ψ and φ as left and right parts of the quark fields respectively. The mass couples
left and right and so breaks chiral symmetry in the right way.9 This identification of chiral
sectors will be important later when we introduce the coupling.

For later use, we also note that (2.62) also can be written as [7, 17]

Zn,νchGUE(mR) =

{∫
dAdetn+ν(A† +MR)detn(A+M †R)enTrAA† ν ≥ 0∫
dAdetn(A† +MR)detn−ν(A+M †R)enTrAA† ν < 0

(2.67)

where MR = mR1Nf and A is an arbitrary complex matrix of the same size.
That ν really is the amount of zero modes becomes evident when considering the transfor-

mation properties. Let us just consider ν ≥ 0.

Zn,νchGUE(mRe
iθ) =

∫
dAdetn+ν(A† +MRe

iθ)detn(A+M †Re
−iθ)enTrAA†

= eiνθ
∫
dAdetn+ν(A†e−iθ +MR)detn(Aeiθ +M †R)enTrAA†

= eiνθZn,νchGUE(mR). (2.68)
8This is derived in [7], but we also see it in Section 3.2.
9There is a subtlety here: It looks like the mass links the same chiral sectors to each other, which would be in

violation with (2.15), but we have neglected a γ0 =

(
0 1
1 0

)
, which can be introduced at the expense of a sign in

(2.62).
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In the last line we have absorbed a phase into the arbitrary complex matrix A.
We can also see this directly by considering the eigenvalue equation for mR = 0.

0 . . . 0 iW11 . . . iW1n
...

. . .
...

...
. . .

...
0 . . . 0 iWn+ν1 . . . iWn+νn

iW ∗11 . . . iW ∗1n+ν 0 . . . 0
...

. . .
...

...
. . .

...
iW1n . . . iWnn+ν 0 . . . 0





v1
...
...
...

v2n+ν


=



0
...
...
...
0


(2.69)

If we let vn+ν+1, . . . , v2n+ν = 0, we obtain n equations with n+ ν free parameters. This system
must have at least ν solutions, making ν the number of zero modes. We shall denote the
eigenvalues of the RMT model λR. Again, these are relatable to the physical eigenvalues by
2nλR = V Σ0λ ≡ u.

Let us summarise: We now know that (2.62) has the same symmetries, amount of zero
modes, and transformation properties as QCD with Nf flavours, and we should therefore be
able to calculate the microscopic eigenvalue spectrum from it. We have, however, neglected
one thing: The Gaussian weight is not universal, which is the next step.

Universal Limit

It turns out that in the microscopic limit n → ∞ the choice of weight becomes arbitrary as
long as it supports a non-zero eigenvalue distribution around zero [18]. We choose a Gaussian
weight because it is convenient, and we shall denote the limit n→∞ as Z(ν)

chUE .
The universality of this limit also has other consequences. Because this model has the same

symmetries as QCD, it of course has the same low-energy effective theory [7, 17]. If we keep
M ≡ 2nMR constant while letting n→∞, we directly regain the EFT from (2.44), because it is
constructed with a specific amount of zero modes ν.

So

Zn→∞,νchGUE (mR =
m

2n
) ≡ Z(ν)

chUE(M) =

∫
U(Nf )
dUdetν(U) exp

{
1

2
Tr[M †U +MU †]

}
. (2.70)

A simulation of the quenched version of (2.62) in the microscopic limit compared to the eigen-
value spectrum of the corresponding effective theory can be found in Figure 6.1.

It turns out the unitary ensemble is the simplest to work with, so we shall develop much
of the framework in chUE, before turning our attention to chOE.

2.6 A Note on Majorana Modes

The coupling of chiral systems treated in this thesis is inspired by superconductors carrying
Majorana modes, so let us go through the properties of Majorana fermions in high energy and
solid state physics. High energy and solid state physics have two different approaches to Ma-
jorana modes, which is also why the coupled theory of this thesis needs further improvements
before it is directly applicable to the solid state system.
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This section therefore stands slightly apart from the rest of the chapter in the sense that it
is not necessary for the understanding of the coupled chiral system. It should more be consid-
ered the ground work needed to bridge the gap between our coupled model and the physical
system.

The most notable difference is that, in the superconductor, only the zero modes are Ma-
jorana modes, whereas the bulk are Dirac modes [1, 2, 30, 40]. This will not be the case in
our model, where bulk modes and zero modes are the same. This section is largely based on
[30, 40, 41].

In Appendix C.1, we outline what structure a random matrix model should have to incor-
porate this property.

2.6.1 High Energy: Fundamental Majorana Fermions

In high energy physics, Majorana fields are found as the real solutions to the Dirac equation.
Let us start from the free Dirac equation

(−iγµ∂µ +m)Ψ = 0, (2.71)

and write this as a real equation. This requires a basis, where all γ-matrices are purely imagi-
nary. We require [41]

{γµ, γν} = 2gµν (2.72)
γ0γµγ0 = γµ

†. (2.73)

A solution to these conditions, which we shall call the Majorana basis and denote by γ̃µ, is [41]

γ̃1 =

(
iσ1 0
0 iσ1

)
, γ̃2 =

(
0 σ2

−σ2 0

)
, γ̃3 =

(
iσ3 0
0 iσ3

)
, (2.74)

γ̃0 =

(
0 σ2

σ2 0

)
, γ̃5 =

(
σ2 0
0 −σ2

)
,

where σj are the Pauli matrices in the usual basis where σ2 is imaginary. This choice makes
(2.71) real, and we are therefore able to find real solutions to it. These solutions represent
Majorana fermions, and in the Majorana basis they satisfy

Ψ̃ = Ψ̃∗. (2.75)

The Majorana basis is in no way unique, but if two representations of the γ-matrices both
satisfy (2.72) and (2.73), they are related by a similarity transformation with a unitary matrix
[41]. So a general representation of the γ-matrices can be obtained through

γµ = Uγ̃µU † (2.76)

where U is a unitary matrix. This also implies that if Ψ̃ is a solution to the Dirac equation, then
the solution in this general representation is

Ψ = UΨ̃. (2.77)
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When referring to (2.75) in any basis, we call it the Majorana condition. Let us write it in
our general representation. Inserting (2.77) in (2.75) we find

U †Ψ =
(
U †Ψ

)∗
Ψ = UUTΨ∗. (2.78)

It is customary to write this as

Ψ = γ0CΨ∗

≡ Ψc, (2.79)

where Ψc is called the charge conjugate of Ψ.
Let us examine the object UUT = γ0C. It is unitary and symmetric and satisfies

(UUT )∗ = U∗U † = (UUT )† = (UUT )−1. (2.80)

In chiral basis, we know C to be [7, 42]

C = iγ0γ2

γ0C = iγ2

=

(
0 iσ2

−iσ2 0

)
. (2.81)

One quickly verifies that iγ2 has the same properties as UUT . Notice also that since iγ2 is real,
symmetric, and unitary it must square to 1, which can also be shown explicitly. This is not
at all surprising, since flipping the sign of charges twice should leave any system invariant
(although any UUT not necessarily squares to 1). That a Majorana fermion is invariant under
charge conjugation also means that it must have neutral charge.

Chiral Majorana Modes

As the normal zero modes of chUE are purely left- or right-handed modes, and as the Hamil-
tonian of the superconductor is chiral [1, 2], one might ask the question: Can this be the case
for a Majorana mode? The answer is no, as can be shown directly in chiral basis. Consider a
field in chiral basis

Ψ =

(
ψL
ψR

)
. (2.82)

The Majorana condition reads(
ψL
ψR

)
=

(
0 iσ2

−iσ2 0

)(
ψL
ψR

)∗
=

(
iσ2ψ

∗
R

−iσ2ψ
∗
L

)
. (2.83)

Remember that iσ2 is real and squares to −1, so this is just one condition

ψL = iσ2ψ
∗
R, (2.84)
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which means the components of ψL and ψR are related by(
ψaR
ψbR

)
=

(
0 −1
1 0

)(
ψaL
ψbL

)∗
=

(
−ψbL

∗

ψaL
∗

)
. (2.85)

If we chose a purely right- or left-handed field (ψL = 0 or ψR = 0 respectively), we would find
that the Majorana condition sets both part equal to zero.

This can also be realised without choosing a basis. Considering (say) a left-handed field
[41]

(1 + γ5)Ψ = 0. (2.86)

We apply the charge conjugation operation to it, recalling that γ5 is hermitian, so γ∗5 = γ5
T

γ0C
(
(1 + γ5)Ψ

)∗
= 0

(1 + γ0Cγ5
T )Ψ∗ = 0. (2.87)

Let us briefly consider [41]

C−1γµC = U∗U †γ0γµγ0UU
T

= U∗U †γµ
†UUT

= U∗
(
UγµU

)†
UT

= U∗γ̃µ
†UT

=
(
Uγ̃µ

∗U †
)T
. (2.88)

In Majorana basis, γµ is imaginary, so γ̃µ∗ = −γ̃µ

C−1γµC = −
(
Uγ̃µU

†
)T

= −γµT (2.89)

or equivalently

Cγ5
T = γ5C. (2.90)

Inserting this in (2.87), we find

(1 + γ0γ5)CΨ∗ = 0. (2.91)

Using the anti-commutator relations for the γ-matrices, we arrive at

(1− γ5)Ψc = 0. (2.92)

So if Ψ is left-handed, then Ψc is right-handed. We therefore conclude that the charge conju-
gation exchanges the roles of the right- and left part. If we want to construct a mode that is
invariant under charge conjugation (i.e. a Majorana mode), we must have both a left- and a
right-handed part. Equation (2.85) comes from the spinor indices, which we have not consid-
ered in this last part.
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2.6.2 Solid State: Majorana Modes as Quasi-particles

Though such a particle has yet to be found among elementary particles, Majorana quasiparti-
cles have been used in solid state physics for many years [30, 40]. There is, however, a huge
difference between the solid state and high energy versions of a Majorana fermion. The high
energy Majorana particle is just a fermion with a real Dirac equation and thus obeys Fermi-
Dirac statistics, whereas the solid state Majorana fermion is a non-Abelian anyon, which means
it obeys non-commuting exchange-operations [30]. Anyons are particles that obtain any phase
under parity (instead of just ±1). These can only exist in 2+1 dimensions.

Let us examine the solid state case in more detail. Here, a Majorana mode is any fermionic
operator γi that obeys [30]

[H, γi] = 0 , {γi, γj} = 2δij . (2.93)

Note that the second condition is the usual {γ†i , γj} = 2δij for γ†i = γi. It is therefore more a
mode of a particle than a particle in itself.

The Majorana modes must come in pairs, because they are, in a sense, half a fermion.10 If n
pairs of Majorana operators exists, it implies the ground state is 2n-fold degenerate [40]. Such
a degenerate ground state can house quantum information [30].

That the exchange-operations are non-commuting is a very important aspect of these Ma-
jorana modes. Clockwise exchange of two operators γ1, γ2 is described by γj → B12γjB

†
12,

where

B12 =
1√
2

(1 + γ1γ2) (2.94)

is called the braiding operator [40]. The braid analogy becomes more obvious if one consid-
ers the world-lines of two exchanging Majorana fermions. In 2+1 dimensions this is a dual
helix, and for several pairs this is a braid (one pair is also a braid, but a slightly trivial one).
A consequence of this is that clockwise and counter-clockwise exchange are two topological
inequivalent operations (a left-handed helix cannot become right-handed without the world-
lines crossing or the endpoints leaving the spacial plane). This is also reflected in the exchange
relation

γ1 → ∓γ2

γ2 → ±γ1 (2.95)

where the top sign is clockwise exchange [40].
Note that the Majorana condition gives a Majorana field half as many degrees of freedom as

a Dirac field. (A Dirac fermion is usually just referred to as a fermion.) This property means we
can write the annihilation operator of a Dirac fermion as the sum of two Majorana annihilation
operators [40]

b =
1

2
(γ1 + iγ2). (2.96)

10The Majorana states are also not physically measurable, only a pair of them is [40].
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It can be seen as analogous to Majorana fermions being real fields and Dirac fermions complex
ones. The Majorana operators are hermitian, as can be seen when inverting the above11

γ1 = b† + b

γ2 = i(b† − b). (2.97)

This means that a Majorana fermion is its own antiparticle, which is arguably the defining
aspect of them in solid state physics.

2.7 Subconclusion

We have now established the mathematical tools necessary for treating the coupled chiral sys-
tem. First of all, we have have introduced symmetries, through which we will define the
coupling, and the effective field theory applied to a supersymmetric ensemble, which works
as our theoretical stepping stone for calculation of the eigenvalue spectrum. Secondly, we have
introduced random matrix theory as the numerical counterpart and described topology and
the role of exact zero modes in both effective theory and random matrices. Finally, we have
compared high energy and solid state interpretations of Majorana fermions to start bridging
the gap between the coupled chiral system and a physical superconductor.

Let us move on to the coupling itself. We will start out by ensuring that the coupled parti-
tion function indeed has the correct properties. This analysis will in large part be an extension
of the above considerations. We then use these tools to calculate the eigenvalue density and
compare it to numerics.

11This also follows directly from the anticommutator relation in (2.93).



Chapter 3

Universal Coupling of Flavours

Now that the necessary tools have been introduced, we return to the main problem at hand:
How to calculate the effect of coupling two flavours? In this chapter, we analyse the sym-
metries, effective theory, and random matrix theory of the coupling. For simplicity, we show
this for fermionic flavours and move directly to calculation of the microscopic spectrum in the
quenched cases in Chapters 4 and 5.

We approach the coupling in two different cases: Two single-flavour ensembles that are
completely independent before the coupling, by which we mean that the partition function fac-
torises, and an ensemble with the two flavours built in, where the uncoupled partition function
does not factorise.

First we must ask what characterises the coupling?
The coupling is required to preserve a locked chiral symmetry of the two flavours by cou-
pling the two right-handed and the two left-handed fields.

Let us examine this property in the language of EFT: Expanding the notation from (2.11) in
Section 2.2, we want to introduce a term in the effective Lagrangian that sets

g1R = g2R , g1L = g2L. (3.1)

This means that it must be off-diagonal in flavour space and transform like the massless Dirac
operator. (We call this a vectorial term as opposed to an axial term.) So we start out with two
coupling constants cRR, cLL that couple right-right and left-left respectively. We set these equal
to each other once we understand their transformation properties. The spurion transformation
of the coupling constants is1

cRR → g1RcRRg2R
† , cLL → g1LcLLg2L

†. (3.2)

This follows if we wish coupling terms between the sectors of same chirality. We will use (3.2)
to construct terms similar to the chPT approach. We will also argue that there are no other
possible terms. This approach used in the case of two single-flavour ensembles. This ensemble
will have the uncoupled Goldstone manifold (U(1)×U(1))2 when we have fermionic flavours
only, and each favour has its own topology and mass. We will elaborate on this below.

1As with the mass in Equation (2.14), the spurion transformation of a parameter is the transformation we would
need to make in order to still have full symmetry.
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We can also start from an ensemble with the two flavours, where the flavours can be rotated
into each other. This ensemble will have the uncoupled Goldstone manifold (U(2))2. Here we
express the coupling as an anti-hermitian vectorial source of the form

icq̄γ0τ1q (3.3)

where γ0 is the zeroth γ-matrix working in chiral space, τ1 is the first Pauli matrix working in
flavour space, and c is a parameter that decides the strength of the coupling. This coupling
parameter arises from a rescaling of cRR and cLL.

In both cases we will introduce a corresponding random matrix ensemble. The structure
of the random matrices will reflect the structure of the source (3.3), and we will regain the
effective theory in the microscopic limit. This strengthens our claim that the terms found are
the only possible ones.

Although (3.2) and (3.3) are equivalent, we stress that the two ensembles are very different:
The U(1) × U(1) ensemble consists of flavours in two independent topological sectors,
whereas the U(2) ensemble flavours are born in the same sector. This makes the U(2) case
more symmetric and gives an extra degree of freedom to integrate over. For zero coupling,
the flavours of the U(1)× U(1) partition function factorises, unlike U(2).

In this chapter, we establish the partition function of the effective theory and the random
matrix ensemble in the two cases. We also compare the U(2) and U(1)×U(1) ensembles. These
discussions of the coupling symmetries serve as a warm-up for calculating the eigenvalue
spectrum of the coupled case for both unitary and orthogonal ensembles in Chapters 4 and 5.

3.1 Two Single-Flavour Ensembles: EFT of Flavour Coupling

Let us start with the two single-flavour ensembles, each with their own topology and mass. As
mentioned above, the partition function factorises.

Zν1,ν2

chUE,1+1(m1,m2)

= Zν1
chUE(m1)Zν2

chUE(m2)

=

∫
U(1)
dU1dU2detν1(U1)detν2(U2) exp

{
1

2
Tr
[
M †1U1 +M1U

†
1 +M †2U2 +M2U

†
2

]}
(3.4)

The subscript is to distinguish it from the U(2) theory, which we shall denote ZchUE,2.
From the spurion transformations (3.2) we can construct the two hermitian coupling terms

Lcoupl = K1Tr
[
U †1cLLU2cRR

† + U1cRRU
†
2cLL

†
]

+ iK2Tr
[
U †1cLLU2cRR

† − U1cRRU
†
2cLL

†
]

(3.5)

where K1 and K2 are low-energy parameters that cannot be determined by the symmetries.
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If we make a U(1) transformation of U2, we may absorb the K2-term into the K1-term

K1Tr
[
U †1cLLU2cRR

† + U1cRRU
†
2cLL

†
]

+ iK2Tr
[
U †1cLLU2cRR

† − U1cRRU
†
2cLL

†
]

→ K1Tr
[
U †1cLLU2e

iαcRR
† + U1cRRU

†
2e
−iαcLL

†
]

+ iK2Tr
[
U †1cLLU2e

iαcRR
† − U1cRRU

†
2e
−iαcLL

†
]

= K1Tr
[
(cos(α) + i sin(α))U †1cLLU2cRR

† + (cos(α)− i sin(α))U1cRRU
†
2cLL

†
]

+iK2Tr
[
(cos(α) + i sin(α))U †1cLLU2cRR

† − (cos(α)− i sin(α))U1cRRU
†
2cLL

†
]

= Tr
[
(K1 cos(α)−K2 sin(α))U †1cLLU2cRR

† + (K1 cos(α)−K2 sin(α))U1cRRU
†
2cLL

† (3.6)

+i(K2 cos(α) +K1 sin(α))U †1cLLU2cRR
† − i(K2 cos(α) +K1 sin(α))U1cRRU

†
2cLL

†
]
.

For

α = − arctan

(
K2

K1

)
,
(
K1 cos(α)−K2 sin(α)

)
→ K1 (3.7)

the K2-term disappears.
In the full partition function, such a transformation corresponds to a difference in phase

of the masses if we absorb an overall constant in the partition function. Because we want to
examine the case where the masses of the two flavours are the same, we will set K2 = 0 and
m1 = m2 = m in the following. We will also define c̃ ≡ √cLLcRR as we no longer need the
individual transformation properties.

If we expand our counting to c̃2V K1 ≡ c2 = O(1), we may write

Zν1,ν2

chUE,1+1(M, c) =

∫
U(1)
dU1dU2detν1(U1)detν2(U2) (3.8)

× exp

{
1

2
Tr
[
M †U1 +MU †1 +M †U2 +MU †2

]
+ c2Tr

[
U1
†U2 + U2

†U1

]}
.

This is can be considered the basic coupled EFT, to which we shall return numerous times. The
structure of other ensembles will be the same, although the relevant group will change.

3.2 Two Single-Flavour Ensembles: EFT of Coupled RMT

In this section we introduce the random matrix ensemble corresponding to 3.8 and show that
they agree in the microscopic limit.

To construct a random matrix model with the symmetries of the coupling, we expand the
standard chiral RMT (2.62) by placing each single flavour in the diagonal blocks of a larger
matrix. These blocks correspond to flavour space. Off-diagonal matrices with off-diagonal
substructure are added to couple the two flavours. Note the structure from (3.3). The τ1 in

flavour space places us in the off-diagonal sub-matrices, and, because γ0 =

(
0 1
1 0

)
in chiral

basis, the coupling parameter is placed on the off-diagonal part of these. This takes the form

Zn,ν1,ν2

chGUE,1+1 =

∫
dW1dW2 det


mR iW1 0 icR
iW †1 mR icR 0

0 icR mR iW2

icR 0 iW †2 mR

 e
−nTr

(
W1W

†
1 +W2W

†
2

)
(3.9)
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where W1,W2 are complex (n + ν1) × n and (n + ν2) × n matrices respectively, and mR, cR
are dimensionless parameters we shall later relate to physical ones. There are implicit identity
matrices of appropriate sizes padded with zeros where necessary.

For instance, in the case ν1 = 0, ν2 = 1, and n = 2, the upper right-hand block is
0 0 0 icR 0
0 0 0 0 icR
icR 0 0 0 0
0 icR 0 0 0

 (3.10)

and the lower left-hand block is the transposed of this.
We shall return to the symmetries of this ensemble in chapter 3.3, where we will see that

this is indeed the correct random matrices to consider. (This is also evident from the following
derivation, where we show that it has the right low-energy effective theory, but we will show
it directly from the symmetries.)

Let us derive low-energy effective theory. The following will be analogous to the derivation
from [7] and [17], but with the extra off-diagonal terms. First, we express the determinant as
fermionic integrals:

Zn,ν1,ν2

chGUE,1+1 =

∫
dW1dW2dφ

1dφ2dψ1dψ2e
−nTr

(
W1W

†
1 +W2W

†
2

)
(3.11)

× exp



ψ1

φ1

ψ2

φ2


†

mR iW1 0 icR
iW †1 mR icR 0

0 icR mR iW2

icR 0 iW †2 mR



ψ1

φ1

ψ2

φ2


 .

We then write Wj as aj + ibj and perform the integrals over these.

Zn,ν1,ν2

chGUE,1+1 =

∫
da1da2db1db2dφ

1dφ2dψ1dψ2 exp
{
− n

(
a2

1ij + b21ij + a2
2ij + b22ij

)
+ia1ij(ψ

1
i
∗
φ1
j − ψ1

i φ
1
j
∗
) + ia2ij(ψ

2
i
∗
φ2
j − ψ2

i φ
2
j
∗
)

−b1ij(ψ1
i
∗
φ1
j + ψ1

i φ
1
j
∗
)− b2ij(ψ2

i
∗
φ2
j + ψ2

i φ
2
j
∗
)

+mR

(
ψ1
i
∗
ψ1
i + φ1

i
∗
φ1
i + ψ2

i
∗
ψ2
i + φ2

i
∗
φ2
i

)
+icR(φ1

i
∗
ψ2
i + ψ1

i
∗
φ2
i + φ2

i
∗
ψ1
i + ψ2

i
∗
φ1
i )
}

=

∫
dφ1dφ2dψ1dψ2 exp

{ 1

n

(
ψ1
i
∗
ψ1
i φ

1
j
∗
φ1
j + ψ2

i
∗
ψ2
i φ

2
j
∗
φ2
j

)
+mR

(
ψ1
i
∗
ψ1
i + φ1

i
∗
φ1
i + ψ2

i
∗
ψ2
i + φ2

i
∗
φ2
i

)
+icR(φ1

i
∗
ψ2
i + ψ1

i
∗
φ2
i + φ2

i
∗
ψ1
i + ψ2

i
∗
φ1
i )
}

=

∫
dφ1dφ2dψ1dψ2 exp

{ 1

4n

(
(3.12)

(ψ1
i
∗
ψ1
i + φ1

i
∗
φ1
i )(ψ

1
j
∗
ψ1
j + φ1

j
∗
φ1
j )− (ψ1

i
∗
ψ1
i − φ1

i
∗
φ1
i )(ψ

1
j
∗
ψ1
j − φ1

j
∗
φ1
j )

+(ψ2
i
∗
ψ2
i + φ2

i
∗
φ2
i )(ψ

2
j
∗
ψ2
j + φ2

j
∗
φ2
j )− (ψ2

i
∗
ψ2
i − φ2

i
∗
φ2
i )(ψ

2
j
∗
ψ2
j − φ2

j
∗
φ2
j )
)

+mR

(
ψ1
i
∗
ψ1
i + φ1

i
∗
φ1
i + ψ2

i
∗
ψ2
i + φ2

i
∗
φ2
i

)
+icR(φ1

i
∗
ψ2
i + ψ1

i
∗
φ2
i + φ2

i
∗
ψ1
i + ψ2

i
∗
φ1
i )
}
.
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This is a slight abuse of notation, so one should be careful here. Because cR is not neces-
sarily square, the vectors φ1 and ψ2 are not necessarily the same length. Since cR is an identity
matrix padded with zeros, it is implied that the spare entries of each vector has been removed
in the coupling terms. We make four Hubbard-Stratanovitch transformations

Zn,ν1,ν2

chGUE,1+1 =

∫
dσ1dσ2dσ̄1dσ̄2dφ

1dφ2dψ1dψ2 exp
{
− nTr(σ1σ

T
1 + σ2σ

T
2 + σ̄1σ̄

T
1 + σ̄2σ̄

T
2 )

+σ1(ψ1
i
∗
ψ1
i + φ1

j
∗
φ1
j ) + iσ̄1(ψ1

i
∗
ψ1
i − φ1

j
∗
φ1
j ) (3.13)

+σ2(ψ2
i
∗
ψ2
i + φ2

j
∗
φ2
j ) + iσ̄2(ψ2

i
∗
ψ2
i − φ2

j
∗
φ2
j )

+mR

(
ψ1
i
∗
ψ1
i + φ1

i
∗
φ1
i + ψ2

i
∗
ψ2
i + φ2

i
∗
φ2
i

)
+icR(φ1

i
∗
ψ2
i + ψ1

i
∗
φ2
i + φ2

i
∗
ψ1
i + ψ2

i
∗
φ1
i )
}
,

where σj , σ̄j are arbitrary real matrices [7]. See Appendix B.1 for an introduction to the Hubbard-
Stratanovitch transformation. Defining Aj = σj + iσ̄j and A†j = σj − iσ̄j , we find

Zn,ν1,ν2

chGUE,1+1 =

∫
dA1dA2dφ

1dφ2dψ1dψ2 exp
{
− nTr(A1A

†
1 +A2A

†
2) (3.14)

+ψ1
i
∗
(A1 +mR)ψ1

i + φ1
j
∗
(A†1 +mR)φ1

j

+ψ2
i
∗
(A2 +mR)ψ2

i + φ2
j
∗
(A†2 +mR)φ2

j

+icR(φ1
i
∗
ψ2
i + ψ1

i
∗
φ2
i + φ2

i
∗
ψ1
i + ψ2

i
∗
φ1
i )
}
.

We first do the n + ν1 and n + ν2 integrals over ψ1 and ψ2 respectively, and thereafter the n
integrals over φ1 and φ2, keeping in mind that the cR-part only has n integrals for each

Zn,ν1,ν2

chGUE,1+1 =

∫
dA1dA2dφ

1dφ2detn+ν1(A1 +mR)detn+ν2(A2 +mR) exp
{
− nTr(A1A

†
1 +A2A

†
2)

+c2
Rφ

2
i
∗
(A1 +mR)−1φ2

i + φ1
j
∗
(A†1 +mR)φ1

j

+c2
Rφ

2
i
∗
(A2 +mR)−1φ2

i + φ2
j
∗
(A†2 +mR)φ2

j

}
=

∫
dA1dA2 exp

{
− nTr(A1A

†
1 +A2A

†
2)
}

detn+ν1(A1 +mR)detn+ν2(A2 +mR)

×detn
(
A†1 +mR + c2

R(A2 +mR)−1
)
detn

(
A†2 +mR + c2

R(A1 +mR)−1
)

=

∫
dA1dA2 exp

{
− nTr(A1A

†
1 +A2A

†
2)
}

detν1(A1 +mR)detν2(A2 +mR)

×detn
(
(A2 +mR)(A†1 +mR) + c2

R

)
detn

(
(A1 +mR)(A†2 +mR) + c2

R

)
=

∫
dA1dA2 exp

{
− nTr(A1A

†
1 +A2A

†
2)
}

detν1(A1 +mR)detν2(A2 +mR) (3.15)

×detn
((
mRA2 +mRA

†
1 +A2A

†
1 + c2

R

)(
mRA1 +mRA

†
2 +A1A

†
2 + c2

R

))
.

We have ignored terms ofO(m2
R). In the following, we also ignore terms of the kind c2

RmR and
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c4
R, as these are O(n−2)

Zn,ν1,ν2

chGUE,1+1 =

∫
dA1dA2 exp

{
− nTr(A1A

†
1 +A2A

†
2)
}

detν1(A1 +mR)detν2(A2 +mR)

×detn
(
mRA2A1A

†
2 +mRA2A

†
1A
†
2 +mRA2 +mRA

†
2 + c2

R(A2A
†
1 +A1A

†
2) + 1

)
=

∫
dA1dA2 exp

{
− nTr(A1A

†
1 +A2A

†
2)
}

detν1(A1 +mR)detν2(A2 +mR) (3.16)

× exp
{
nTr

[
ln
(
mRA2A1A

†
2 +mRA2A

†
1A
†
2 +mRA2 +mRA

†
2 + c2

R(A2A
†
1 +A1A

†
2) + 1

)]}
.

We diagonalise with the unitary matrices Aj = UjΛjVj . Using a saddle point approximation
we find that the Gaussian term sets Λ ∝ 1, see Appendix B.2. The Gaussian term is dominant
since it is O(n), whereas all other terms are no higher than O(1). We then absorb V in U and
expand the logarithm.

Zn,ν1,ν2

chGUE,1+1 =

∫
dU1dU2detν1(U1 +mR)detν2(U2 +mR)

× exp
{
nTr

[
ln
(
mRU2U1U

†
2 +mRU2U

†
1U
†
2 +mRU2 +mRU

†
2 + c2

R(U2U
†
1 + U1U

†
2) + 1

)]}
=

∫
dU1dU2detν1(U1 +mR)detν2(U2 +mR)

× exp
{
nTr

[
mRU2U1U

†
2 +mRU2U

†
1U
†
2 +mRU2 +mRU

†
2 + c2

R(U2U
†
1 + U1U

†
2)
]}

=

∫
dU1dU2detν1(U1 +mR)detν2(U2 +mR) (3.17)

exp
{
nTr

[
mRU1 +mRU

†
1 +mRU2 +mRU

†
2 + c2

R(U2U
†
1 + U1U

†
2)
]}

.

Letting n → ∞ while keeping m = 2nmR and c2 = nc2
R constant yields our final effective

partition function.

Zν1,ν2

chUE,1+1 =

∫
dU1dU2detν1(U1)detν2(U2)

× exp
{m

2
Tr
[
U1 + U †1 + U2 + U †2

]
+ c2Tr

[
U2U

†
1 + U1U

†
2

]}
(3.18)

This is also where we see the relations for chUE

mqV Σ0 = 2nmR ≡ m
λV Σ0 = 2nλR ≡ u
c̃2V K1 = nc2

R ≡ c2 (3.19)

that become especially important in the numerical verification in Chapter 6. The eigenvalues
must be scaled the same way as the mass, which leads to the second line. These relations were
first calculated (although not explicitly stated) in [7]. We refer to (3.19) as the correspondence
scheme between chPT and RMT. Note that this scheme is not the same for the unitary and
orthogonal ensembles. The correspondence scheme for the chiral orthogonal ensemble may be
found in (3.68).
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3.3 Two Single-Flavour Ensembles: Symmetries

Let us review the symmetries of the coupled ensemble more explicitly. We know the massless
QCD-Lagrangian has a U(Nf )×U(Nf )-symmetry in flavour space for a fixed topology, which
is broken to U(Nf ) for non-zero mass. We want the coupled system to share this property.
Let us approach this through the random matrix ensemble. Since we have just shown that the
theory

Zν1,ν2

chUE,1+1 =

∫
dW1dW2dφ

1dφ2dψ1dψ2e
−nTr

(
W1W

†
1 +W2W

†
2

)
(3.20)

× exp



ψ1

φ1

ψ2

φ2


†

mR iW1 0 icR
iW †1 mR icR 0

0 icR mR iW2

icR 0 iW †2 mR



ψ1

φ1

ψ2

φ2




has the desired effective theory, any symmetry we can show here, will also be a symmetry of
the effective theory. Since the weight is invariant under any unitary transformation, we will
only look at 

ψ1

φ1

ψ2

φ2


†

mR iW1 0 icR
iW †1 mR icR 0

0 icR mR iW2

icR 0 iW †2 m



ψ1

φ1

ψ2

φ2

 , (3.21)

which may be directly interpreted as the quark part of the action.
It is worth repeating that each section of the matrix has a well defined interpretation. If

viewed as the outer product of two 2 × 2 matrices, the large structure corresponds to flavour
space and the small structure to chiral space.

Let us consider the following transformations: Vectorial U(1), axial U(1) for both mR = 0
and mR 6= 0, vectorial U(1)× U(1), and vectorial U(2).

The vectorial U(1)-symmetry is merely the addition of a phase to all quark fields, so it
follows quite easily for both mR = 0 and mR 6= 0.

Let us instead look closer at the breaking of the axial symmetry for non-zero mass. For
m = 0 we can make the axial U(1)-transformation

ψ1

φ1

ψ2

φ2

→ eiθ5γ5


ψ1

φ1

ψ2

φ2

 =
(

cos(θ5)12 + i sin(θ5)γ5

)
⊗
(

1 0
0 1

)
ψ1

φ1

ψ2

φ2

 (3.22)

where γ5 works in chiral space. In chiral basis γ5 =

(
−1 0
0 1

)
.

Note that we have neglected a 12γ0 in the theory, because the massless Dirac operator is q̄ /Dq
rather than q† /Dq. It disappears in the determinant, but if we are to identify the left and right
fields as we have written them in our Grassmann integral, the transformation of the hermitian



CHAPTER 3. UNIVERSAL COUPLING OF FLAVOURS 32

conjugated fields must be
ψ1

φ1

ψ2

φ2


†

→


ψ1

φ1

ψ2

φ2

 eiθ5γ5 =


ψ1

φ1

ψ2

φ2

( cos(θ5)12 + i sin(θ5)γ5

)
⊗
(

1 0
0 1

)
(3.23)

because γ5 anticommutes with γ0.
We apply this transformation to equation 3.21 form = 0 and neglect the vectors for compact

notation:

(
cos(θ5)12 + i sin(θ5)γ5

)
⊗
(

1 0
0 1

)
0 iW1 0 icR

iW †1 0 icR 0
0 icR 0 iW2

icR 0 iW †2 0

( cos(θ5)12 + i sin(θ5)γ5

)
⊗
(

1 0
0 1

)

= cos2(θ5)


0 iW1 0 icR

iW †1 0 icR 0
0 icR 0 iW2

icR 0 iW †2 0

− sin2(θ5)


0 −iW1 0 −icR

−iW †1 0 −icR 0
0 −icR 0 −iW2

−icR 0 −iW †2 0



+i cos(θ5) sin(θ5)




0 iW1 0 icR
−iW †1 0 −icR 0

0 icR 0 iW2

−icR 0 −iW †2 0

+


0 −iW1 0 −icR

iW †1 0 icR 0
0 −icR 0 −iW2

icR 0 iW †2 0




=


0 iW1 0 icR

iW †1 0 icR 0
0 icR 0 iW2

icR 0 iW †2 0

 (3.24)

Expressed in words, the transformation leaves the matrix unchanged.
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For m 6= 0, this symmetry is broken

(
cos(θ5)12 + i sin(θ5)γ5

)(1 0
0 1

)
mR iW1 0 icR
iW †1 mR icR 0

0 icR mR iW2

icR 0 iW †2 mR

( cos(θ5)12 + i sin(θ5)γ5

)(1 0
0 1

)

= cos2(θ5)


mR iW1 0 icR
iW †1 mR icR 0

0 icR mR iW2

icR 0 iW †2 mR

− sin2(θ5)


mR −iW1 0 −icR
−iW †1 mR −icR 0

0 −icR mR −iW2

−icR 0 −iW †2 mR



+i cos(θ5) sin(θ5)




mR iW1 0 icR
−iW †1 −mR −icR 0

0 icR mR iW2

−icR 0 −iW †2 −mR

+


mR −iW1 0 −icR
iW †1 −mR icR 0

0 −icR mR −iW2

icR 0 iW †2 −mR




=


2mR 0 0 0

0† −2mR 0 0
0 0 2mR 0
0 0 0 −2mR

 6=

mR iW1 0 icR
iW †1 mR icR 0

0 icR mR iW2

icR 0 iW †2 mR

 , (3.25)

which shows that the coupling breaks symmetry in the right way. Note that a coupling matrix

of the kind
(
mR icR
icR mR

)
would also break symmetry in the same way, but would gives rise to

a higher order term of m in the effective theory.
The coupling should force any chiral transformation to be the same for the two flavours.

We have already seen how the axial part behaves in chiral space, so let us just look at the
breaking of individual vectorial symmetry U(1)× U(1)→ U(1)

e−iθ1 0 0 0
0 e−iθ1 0 0
0 0 e−iθ2 0
0 0 0 e−iθ2



mR iW1 0 icR
iW †1 mR icR 0

0 icR mR iW2

icR 0 iW †2 mR



eiθ1 0 0 0
0 eiθ1 0 0
0 0 eiθ2 0
0 0 0 eiθ2



=


mR iW1 0 icRe

i(θ2−θ1)

iW †1 mR icRe
i(θ2−θ1) 0

0 icRe
i(θ1−θ2) mR iW2

icRe
i(θ1−θ2) 0 iW †2 mR

 (3.26)

So for c 6= 0 we require θ1 = θ2.
Let us finally consider the larger symmetry group U(2). Remember that two single flavours

do not have this symmetry. Only if the flavours are part of the same theory are they invariant.
This is also reflected in the RMT: As long as W1 6= W2 the theory does not have this symmetry.

The vectorial U(2)-transformation can be parametrised by exp
{∑3

k=0 iθkτk

}
, where the

Pauli matrices work in flavour space. We can consider one generator at a time. See for instance
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the k = 1 part:

12

(
cos(θ1)

(
1 0
0 1

)
− i sin(θ1)

(
0 1
1 0

))
0 iW1 0 0

iW †1 0 0 0
0 0 0 iW2

0 0 iW †2 0


×12

(
cos(θ1)

(
1 0
0 1

)
+ i sin(θ1)

(
0 1
1 0

))

= cos2(θ1)


0 iW1 0 0

iW †1 0 0 0
0 0 0 iW2

0 0 iW †2 0

+ sin2(θ1)


0 iW2 0 0

iW †2 0 0 0
0 0 0 iW1

0 0 iW †1 0



+i cos(θ1) sin(θ1)




0 0 0 iW1

0 0 iW †1 0
0 iW2 0 0

iW †2 0 0 0

−


0 0 0 iW2

0 0 iW †2 0
0 iW1 0 0

iW †1 0 0 0




6=


0 iW1 0 0

iW †1 0 0 0
0 0 0 iW2

0 0 iW †2 0

 . (3.27)

The other generators fail in similar fashion.
The W1 = W2 case corresponds to having the two flavours in the same gauge field config-

uration, which is the next case we consider.

3.4 Two-Flavour Ensemble: EFT of Flavour Coupling

Let us now turn to the case of two coupled flavours, where the flavours can be rotated into
each other, because they interact with the same gauge field. As for the two single-flavour
ensembles, we analyse its properties for fermionic flavours for the sake of simplicity.

Using the source from (3.3) we can adapt the general solution of the Lagrangian from (2.26)
to the lowest order ε-counting. We ignore the mass terms in the following.

LEFT =
f2

4
Tr
((
∂µU

† − cU †δ0µτ1 + cδ0µτ1U
†
)

(∂µU + δ0µτ1U − Uδ0µτ1)
)

=
f2

4
Tr
(
∂µU

†∂µU + 2c2
(
τ1Uτ1U

† − 1
)

+ c
(
∂0U

†τ1U + U †∂0Uτ1 − ∂0U
†Uτ1 − U †τ1∂0U

))
(3.28)

We use the parametrisation from before U = ueiξ(x)u. We remind ourselves that ξ = O(ε), so
we can ignore the higher order terms when expanding the exponential. The remaining terms
are

LEFT =
f2

4
Tr
(
∂µξ∂µξ + 2c2

(
τ1u

2τ1u
†2 − 1

)
+ 2c

(
i∂0ξuτ1u

† − i∂0ξu
†τ1u

))
(3.29)
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Although the last two terms are the same order as first two, they appear as a total derivative
of the field ξ. They therefore disappear when we integrate over the four volume, if the field is
well behaved at the border.

Absorbing a constant into c, our effective partition function becomes

ZchUE,2(M) =

∫
SU(2)
dUe

1
2

Tr(MU+MU†)+c2Tr(τ1Uτ1U†−1). (3.30)

This is for all topologies. The individual topological sectors can be found through a Fourier
transform of Z(M, θ) = Z(Meiθ/Nf , 0) ≡ Z(Meiθ/Nf ) as discussed in (2.37). In this case Nf = 2

ZνchUE,2(M) =

∫
dθe−iνθ

∫
SU(2)
dUe

1
2

Tr(M†e−iθ/2U+Meiθ/2U†)+c2Tr(τ1Uτ1U†−1). (3.31)

Let us now interpret the factors of eiθ/2 as belonging to U . Such a phase disappears in the
coupling term, and the factor in front is written as a determinant. This means we extend the
integral to be over U(2) rather than SU(2)

ZνchUE,2(M) =

∫
U(2)
dU detν(U)e

1
2

Tr(MU+MU†)+c2Tr(τ1Uτ1U†−1). (3.32)

The determinant of the SU(2) part of U is always 1. One quickly verifies that the sign of θ and
factors of 2 are consistent.

The vector source calculation involves a U(2)-integral as seen in (3.32). We would like to
compare the U(2)-integral to the integral over U(1)× U(1) from (3.8) in Section 3.1. Adapting
the parametrisation from [43] we can write the U(2)-matrix as

U =

(
u1 0
0 u2

)(
eiφ 0
0 1

)(√
1− µ2 µ

µ −
√

1− µ2

)(
e−iφ 0

0 1

)

=

(
u1

√
1− µ2 u1µe

iφ

u2µe
−iφ −u2

√
1− µ2

)
(3.33)

where u1, u2 ∈ U(1), φ ∈ [0, 2π], and µ ∈ [−1, 1]. The Jacobian is [43]

J = 2
√

1− µ2 (3.34)

The determinant part of partition function reduces to

detν
(
U
)

= detν(u1)detν(u2), (3.35)

the mass term is

1

2
Tr
(
MU +MU †

)
=

√
1− µ2

2
Tr
(
mu1 +mu†1 −mu2 −mu†2

)
, (3.36)

and the coupling term is

c2Tr
(
τ1Uτ1U

† − 1
)

= c2Tr

((
−u2

√
1− µ2 u2µe

−iφ

u1µe
iφ u1

√
1− µ2

)(
u†1
√

1− µ2 u†2µe
iφ

u†1µe
−iφ −u†2

√
1− µ2

)
− 1

)
= c2

(
µ2(u1u

†
2e

2iφ + u2u
†
1e
−2iφ)− (1− µ2)(u1u

†
2 + u2u

†
1)− 2

)
= c2

(
µ2 cos(2φ)(u1u

†
2 + u2u

†
1) + iµ2 sin(2φ)(u1u

†
2 − u2u

†
1) (3.37)

−(1− µ2)(u1u
†
2 + u2u

†
1)− 2

)
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So the partition function can be written as

ZνchUE,2(M) =

∫ 2π

0
dφ

∫ 1

−1
dµ

∫
U(1)
du1du2

√
1− µ2 detν(u1u2) (3.38)

× exp
{√1− µ2

2

(
mu1 +mu†1 −mu2 −mu†2

)
+c2

(
µ2 cos(2φ)(u1u

†
2 + u2u

†
1) + iµ2 sin(2φ)(u1u

†
2 − u2u

†
1)

−(1− µ2)(u1u
†
2 + u2u

†
1)− 2

)}
.

The integral over φ is known. We use an analytical continuation of an integral in [44]. The
limits are not the same, but the periodicity makes the difference an overall factor, which we
absorb in Z.

ZνchUE,2(M) =

∫ 1

−1
dµ

∫
U(1)
du1du2

√
1− µ2detν(u1u2)J0

(
− ic2µ2

√
(u1u

†
2 + u2u

†
1)2 − (u1u

†
2 − u2u

†
1)2
)

× exp
{√1− µ2

2

(
mu1 +mu†1 −mu2 −mu†2

)
− c2

(
(1− µ2)(u1u

†
2 + u2u

†
1) + 2

)}
=

∫ 1

−1
dµ

∫
U(1)
du1du2

√
1− µ2detν(u1u2)I0

(
2c2µ2

)
(3.39)

× exp
{√1− µ2

2

(
mu1 +mu†1 −mu2 −mu†2

)
− c2

(
(1− µ2)(u1u

†
2 + u2u

†
1) + 2

)}
Numerics confirm this. If we want to regain a form similar to (3.8), we must let u2 → −u2

ZνchUE,2(M) =

∫ 1

−1
dµ

∫
U(1)
du1du2

√
1− µ2detν(u1u2)I0

(
2c2µ2

)
(3.40)

× exp
{√1− µ2

2

(
mu1 +mu†1 +mu2 +mu†2

)
+ c2

(
(1− µ2)(u1u

†
2 + u2u

†
1)− 2

)}
The µ-integral can then be interpreted as an integral over mass and coupling scales. For µ = 0
(3.40) is equal to (3.8). Numerics suggest that, while the maximum of the integrand is indeed
in µ = 0, it does not decrease fast enough for a saddle-point approximation. We therefore
primarily evaluate this ensemble numerically, see Chapter 6.

3.5 Two-Flavour Ensemble: EFT of Coupled RMT

The derivation of the effective theory of Z2 from the corresponding random matrix ensemble
is completely analogous to the derivation of Z1+1, except that we start from the theory

Zν2 =

∫
dW det


m iW 0 icR
iW † m icR 0

0 icR m iW
icR 0 iW † m

 e−NTr(WW †) (3.41)

We reach the same result as in (3.32)

ZνchUE,2(M) =

∫
U(2)
dUdetν(U)e

1
2

Tr(MU+MU†)+c2Tr(τ1Uτ1U†) (3.42)
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except that RMT cannot capture the extra factor of e−2c2 , because it does not influence the
symmetries. The details of the derivation can be found in Appendix C.2.

3.6 Two-Flavour Ensemble: Symmetries

Let us make the same analysis for Z2 as we did for Z1+1 in Section 3.3. Now that the two
flavours interact with the same gauge field, we can make a full U(2)-transformation for c = 0.
We only consider the flavour transformation, because we understand the behaviour in chiral
space well. Let us start from the matrix corresponding to the uncoupled ensemble

m iW 0 0
iW † m 0 0

0 0 m iW
0 0 iW † m

 . (3.43)

Because the matrix is proportional to identity in flavour space for c = 0, it follows quite trivially
that it is invariant under any transformation. If we wanted to do the full calculation, we would
use the same procedure as we did in Equation (3.27) for all the Pauli matrices. One finds the
same result.

Let us now turn on the coupling
m iW 0 ic
iW † m ic 0

0 ic m iW
ic 0 iW † m

 . (3.44)

We can already see from the source term (3.3) that the U(2)-symmetry is broken, because
[τi, τj ] 6= 0. The first order transformations is for instance

icq̄γ0τ1q → icq̄τ2γ0τ1τ2q

= −icq̄τ2τ2γ0τ1q

= −icq̄γ0τ1q (3.45)

and equivalent for τ3 and the higher order terms. This can also be seen from the matrix with
the parametrisation of U(2) given by exp

{∑3
k=0 iθkτk

}
. One finds θ2 = θ3 = 0, because the

source allows for the transformation eiθ1τ1 .

3.7 Difference Between U(2) and U(1)× U(1)

Let us summarise what we know of the two ensembles. The action of the two partition
functions has the same kind of terms, but the greater symmetry of two flavours introduces
a weighting of different choices of mass- and coupling scale up to m and c.

Two Single-Flavour Ensembles ZchUE,1+1

ZchUE,1+1 comprises two flavours that are completely unconnected to each other until we cou-
ple them, by which we mean that the uncoupled partition function factorises. The two flavours
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interact with two different gauge fields, which allows for different topology. They can only in-
teract through the coupling, which also couples the topology. Once we turn on the coupling,
chiral transformations of the fields must to be done simultaneously, so the coupling breaks the
massless Lagrangian in the pattern

U(1)4 → U(1)2. (3.46)

The individual axial- and vectorial transformations break into combined ones.

Two-Flavour Ensemble ZchUE,2

ZchUE,2 comes from a single ensemble, where the two-flavour structure of the theory is built
in. We can therefore rotate the flavour basis, and the partition function does not factorise for
c = 0. The two flavours interact with the same gauge field with a single topology, and so the
zero modes cannot cancel.2 For c 6= 0, the flavours cannot be rotated in the same way, but two
of the generators are broken explicitly. So the coupling breaks the massless Lagrangian in the
pattern

U(2)2 → U(1)2 × U(1)2 (3.47)

The full axial- and vectorial transformations break to locked chiral symmetry and exchange of
the fields, which comes from the final U(2) generator.

Note that in Chapters 4 and 5, we primarily look at the coupled single-flavour ensembles,
which for quenched chUE is Gl(1|1)×Gl(1|1). These are the simplest to calculate, but also the
only case, where we can see a coupling of topology.

The two flavour theory requires an integral over Gl(2|2). A parametrisation of this is avail-
able in [45], but the partition function involves too many terms to be practical. This is briefly
sketched in Section 4.3.

3.8 Topology in Coupled Systems

Since the two flavours of the U(2) ensemble already are in the same topological sector, the
coupling does not influence the topology, so let us just consider the topology of the two single-
flavour ensembles.

We can get a sense of the common topological charge of the coupled sectors by looking at
mass transformation properties. Recall the transformation properties from (2.40)

Zν(meiθ) = eiθνNfZν(m). (3.48)

Let us briefly return to them1 6= m2 case to see the individual transformation of the masses.
Without the coupling we can rotate the masses independently of each other

Zν1,ν2

chUE,1+1(eiθ1m1, e
iθ2m2, c = 0) = eiθ1ν1+iθ2ν2Zν1,ν2

chUE,1+1(m1,m2, c = 0). (3.49)

The coupling term Tr
[
U1U

†
2 + U2U

†
1

]
is only invariant for θ1 = θ2, so the couple partition

function transforms as

Zν1,ν2

chUE,1+1(eiθm1, e
iθm2, c) = eiθ(ν1+ν2)Zν1,ν2

chUE,1+1(m1,m2, c) (3.50)

so it is natural to assume the coupled system has ν1 + ν2 zero modes.
2We can redefine left and right for one of the flavours and thus achieve cancellation. We treat this ensemble

numerically in Chapter 6.
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3.8.1 Distribution of Topologies in Coupled Systems

Because the uncoupled partition function of U(1) × U(1) ensemble factorises, we can express
the partition function for all topologies as

ZchUE,1+1(θ, θ′,m1,m2, c = 0) =
∑
ν1,ν2

ei(θν1+θ′ν2)Zν1,ν2

chUE,1+1(m1,m2, c = 0). (3.51)

For c 6= 0 we must have θ = θ′, if the Lagrangian is to be invariant under a U(1) transfor-
mation of the quark mass. This leaves us with

ZchUE,1+1(θ,m1,m2, c) =
∑
ν1,ν2

eiθ(ν1+ν2)Zν1,ν2

chUE,1+1(m1,m2, c) (3.52)

which is to be expected from the transformation properties of the coupled partition function.
If we want a form similar to (2.37), we must define a partition function that only depends

on the common topology ν = ν1 + ν2. We can rewrite (3.52) as

ZchUE,1+1(θ,m1,m2, c) =
∑
ν

eiθνZνchUE,1+1(m1,m2, c) (3.53)

where

ZνchUE,1+1(m1,m2, c) =
∑

ν1+ν2=ν

Zν1,ν2

chUE,1+1(m1,m2, c). (3.54)

Let us evaluate this as in Section 2.3.3 with the parametrisation of U(1) given by Uj = eiαj

Zν1,ν2
1+1 (m1,m2, c) =

∫ π

−π
dα1dα2 detν1(eiα1) detν2(eiα2)em1 cos(α1)+m2 cos(α2)+2c2 cos(α1−α2).

It is convenient to use
∑

ν

∑
ν1+ν2=ν =

∑
ν1,ν2

and simply deal with the double sum. We
can then make the same transformation for each topological charge

ZchUE,1+1(m1,m2, θ, c) =
∑
ν1,ν2

eiθ(ν1+ν2)

∫ π

−π

dα1

2π

dα2

2π
eiα1ν1eiα2ν2em1 cos(α1)+m2 cos(α2)+2c2 cos(α1−α2)

=
∑
ν1,ν2

∫ π

−π

dα1

2π

dα2

2π
ei(α1+θ)ν1ei(α2+θ)ν2em1 cos(α1)+m2 cos(α2)+2c2 cos(α1−α2)

=
∑
n1,n2

∫ π

−π
dα1dα2δ(α1 + θ − 2πn1)δ(α2 + θ − 2πn2)

×em1 cos(α1)+m2 cos(α2)+2c2 cos(α1−α2)

=
∑
n1,n2

em1 cos(θ−2πn1)+m2 cos(θ−2πn2)+2c2 cos(θ−2πn1−θ+2πn2)). (3.55)

Again we disregard the sum and 2πn

ZchUE,1+1(m1,m2, θ, c) = em1 cos(θ)+m2 cos(θ)+2c2 . (3.56)

Although not a main result, this is very interesting. We regain the case of two uncoupled
systems up to a factor. This means that the distributions have the same mean and width. Nu-
merics confirm that the two distributions are the same. Interestingly, the factor would cancel
with the extra factor we get in (3.31).
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3.9 Orthogonal Ensemble: EFT from RMT for Coupled chOE

Before moving on to calculation of the spectral density, let us for completeness also show the
derivation of the EFT from a coupled chOE RMT. The cases are analogous, but we arrive at a
slightly different correspondence scheme, which makes this derivation very important for the
comparison to numerics in Chapter 6.

In analogy with [7] and Section 3.2 we start from the theory

ZchOE =

∫
dW1dW2 det


m iW1 0 ic

iW †1 m ic 0
0 ic m iW2

ic 0 iW †2 m

 e−
n
2

Tr[W1W
†
1 +W2W

†
2 ] (3.57)

with Wj being n× n real matrices (for simplicity we assume ν1 = ν2 = 0).
Expressing the determinant as fermionic integrals, we find

ZchOE =

∫
dW1dW2dψ

1dψ2dφ1dφ2 exp
{
− n

2
(W1

2
ij +W2

2
ij) (3.58)

+iW1ij(ψ
1
i
∗
φ1
j − ψ1

i φ
1
j
∗
) + iW2ij(ψ

2
i
∗
φ2
j − ψ2

i φ
2
j
∗
)

+m
(
ψ1
j
∗
ψ1
j + φ1

j
∗
φ1
j + ψ2

j
∗
ψ2
j + φ2

j
∗
φ2
j

)
+ic
(
φ1
j
∗
ψ2
j + ψ1

j
∗
φ2
j + φ2

j
∗
ψ1
j + ψ2

j
∗
φ1
j

)}
.

We integrate out the Wj and define

I ≡
(

0 −1
1 0

)
, M ≡

(
0 −m
m 0

)
, C ≡

(
0 −c
c 0

)
, (3.59)

so we may write

ZchOE =

∫
dψ1dψ2dφ1dφ2 exp

{
− 1

2n

([(
ψ1
i

ψ1
i
∗

)
I

(
φ1
j

φ1
j
∗

)]2

+

[(
ψ2
i

ψ2
i
∗

)
I

(
φ2
j

φ2
j
∗

)]2
)

(3.60)

+
1

2

(
ψ1
i

ψ1
i
∗

)
M

(
ψ1
i

ψ1
i
∗

)
+

1

2

(
φ1
i

φ1
i
∗

)
M

(
φ1
i

φ1
i
∗

)
+

1

2

(
ψ2
i

ψ2
i
∗

)
M

(
ψ2
i

ψ2
i
∗

)
+

1

2

(
φ2
i

φ2
i
∗

)
M

(
φ2
i

φ2
i
∗

)
+i

(
ψ1
i

ψ1
i
∗

)
C

(
φ2
i

φ2
i
∗

)
+ i

(
ψ2
i

ψ2
i
∗

)
C

(
φ1
i

φ1
i
∗

)}
.
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The squared terms can be rewritten as [7]

ZchOE =

∫
dψ1dψ2dφ1dφ2 (3.61)

× exp
{
− 1

8n

[( ψ1
i

ψ1
i
∗

)
f

(
ψ1
j

ψ1
j
∗

)
g

+ Igg′

(
ψ1
i

ψ1
i
∗

)
g′

(
ψ1
j

ψ1
j
∗

)
f ′
If ′f

]2

−

[(
ψ1
i

ψ1
i
∗

)
f

(
ψ1
j

ψ1
j
∗

)
g

− Igg′
(
ψ1
i

ψ1
i
∗

)
g′

(
ψ1
j

ψ1
j
∗

)
f ′
If ′f

]2


+
1

2

(
ψ1
i

ψ1
i
∗

)
M

(
ψ1
i

ψ1
i
∗

)
+

1

2

(
φ1
i

φ1
i
∗

)
M

(
φ1
i

φ1
i
∗

)
+ (1→ 2)

+i

(
ψ1
i

ψ1
i
∗

)
C

(
φ2
i

φ2
i
∗

)
+ i

(
ψ2
i

ψ2
i
∗

)
C

(
φ1
i

φ1
i
∗

)}
.

Four Hubbard-Stratanovitch transformations lead to

ZchOE =

∫
dA1dA2dψ

1dψ2dφ1dφ2 exp
{
− 2nTr

(
A1A

†
1 +A2A

†
2

)
(3.62)

+
1

2

(
ψ1
i

ψ1
i
∗

)(
2A†1 +M

)( ψ1
i

ψ1
i
∗

)
+

1

2

(
φ1
i

φ1
i
∗

)(
2IA1I

T +M
)( φ1

i

φ1
i
∗

)
+ (1→ 2)

+i

(
ψ1
i

ψ1
i
∗

)
C

(
φ2
i

φ2
i
∗

)
+ i

(
ψ2
i

ψ2
i
∗

)
C

(
φ1
i

φ1
i
∗

)}
.

We let 2Aj → Aj and use the relation∫
dnθ exp

{
−1

2
θTAθ + JT θ

}
=
√

detA exp

{
1

2
JTA−1J

}
(3.63)

to do first the n integrals over φj and then ψj

ZchOE =

∫
dA1dA2dψ

1dψ2 exp
{
− n

2
Tr
(
A1A

†
1 +A2A

†
2

)
+

1

2

(
ψ1
i

ψ1
i
∗

)(
A†1 +M

)( ψ1
i

ψ1
i
∗

)
− 1

2

(
ψ1
i

ψ1
i
∗

)
C
(
IA1I

T +M
)−1

C

(
ψ1
i

ψ1
i
∗

)
+ (1→ 2)

}
×det

n
2
(
(IA1I

T +M)(IA2I
T +M)

)
=

∫
dA1dA2 exp

{
− n

2
Tr
(
A1A

†
1 +A2A

†
2

)}
×det

n
2

(
(IA1I

T +M)(A†2 +M − C
(
IA1I

T +M
)−1

C)
)

×det
n
2

(
(IA2I

T +M)(A†1 +M − C
(
IA2I

T +M
)−1

C)
)

=

∫
dA1dA2 exp

{
− n

2
Tr
(
A1A

†
1 +A2A

†
2

)}
(3.64)

×det
n
2

(
(IA1I

T +M)(IA†2I −M)− c2
)

det
n
2

(
(IA2I

T +M)(IA†1I −M)− c2
)
.
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We make a saddle point approximation that effectively sets Aj = Uj , where Uj is unitary.
We ignore terms that include m2, c4, or mc2 as these are higher order

ZchOE =

∫
dU1dU2det

n
2

((
I(U2 +M)(U †1 +M)I − c2

)(
I(U1 +M)(U †2 +M)I − c2

))
=

∫
dU1dU2det

n
2

((
U2U

†
1 +MU †1 + U2M + c2

)(
U1U

†
2 +MU †2 + U1M + c2

))
=

∫
dU1dU2det

n
2

(
1 +MU †1 + U2M +MU †2 + U1M + c2U2U

†
1 + c2U1U

†
2

)
. (3.65)

Expressing the determinant as the trace of a logarithm and expanding that logarithm, we
find

ZchOE =

∫
dU1dU2 exp

{n
2

Tr
(
MU †1 +MU2 +MU †2 +MU1 + c2U2U

†
1 + c2U1U

†
2

)}
.

(3.66)

Comparing this to the effective theory of chOE

ZchOE =

∫
dU1dU2 exp

{
1

2
Tr
(
MU †1 +MU2 +MU †2 +MU1

)
+ c2

(
U2U

†
1 + U1U

†
2

)}
,

(3.67)

we find the correspondence scheme for chOE

mqV Σ0 = nmR ≡ m
λV Σ0 = nλR ≡ u

c̃2V K1 =
1

2
nc2

R ≡ c2 (3.68)

which is used in the numerical verification in Chapter 6. Compared to (3.19), there is a factor
of 2 in both mass and coupling constant.

3.10 Subconclusion

This concludes the analysis of the coupling properties on partition function level. We found a
unique term in the effective Lagrangian

Lcoup = c2Tr
[
U1U

†
2 + U2U

†
1

]
(3.69)

with the desired symmetries, which gives us the basic partition function structure

Zν1,ν2

chUE,1+1(M, c) =

∫
U(1)
dU1dU2detν1(U1)detν2(U2) (3.70)

× exp

{
1

2
Tr
[
M †U1 +MU †1 +M †U2 +MU †2

]
+ c2Tr

[
U1
†U2 + U2

†U1

]}
of two coupled single-flavour ensembles. The coupled two-flavour ensemble has a similar
structure, but with integration over mass and coupling scales.

With this in mind we turn our attention to the calculation of the spectral densities.



Chapter 4

Spectral Density of Coupled chUE

With the partition function well understood, we turn our attention to calculation of the spectral
density. In Section 2.4.1 we established that the relevant group for quenched chUE is Gl(1|1),
so let us directly reuse the structure from (3.8). The result is

Zν1,ν2

chUE,1|1+1|1(m,m′, c) (4.1)

=

∫
Gl(1|1)
dU1dU2 Sdetν1(U1) Sdetν2(U2)

× exp

{
1

2
Str
[
M †U1 +MU−1

1 +M †U2 +MU−1
2

]
+ c2Str

[
U1U

−1
2 + U2U

−1
1

]}
where M = diag(m,m′) and Str and Sdet are graded trace and determinant.1

We will make use of the parametrisation of Gl(1|1) given by [12]

Uj =

(
eiθj 0
0 esj

)
exp

(
0 αj
βj 0

)
=

(
eiθj (1 + 1

2αjβj) eiθjαj
esjβj esj (1− 1

2αjβj)

)
(4.2)

and

U−1
j =

(
e−iθj (1 + 1

2αjβj) −e−iθjαj
e−sjβj e−sj (1− 1

2αjβj)

)
. (4.3)

Here α and β are Grassmann variables and the angular variable θ extends over [−π : π], while
s ∈ [−∞ : ∞] is non-compact, the Berezinian (a generalisation of the Jacobian) is 1 [12]. We
then evaluate the supertraces and superdeterminants and perform the integrals to find the
partition function. The spectral density is then obtained using the methods introduced in
Section 2.4.

For c = 0, the microscopic density is already known to be [12, 19]

ρνchUE,1|1(u) =
u

2

(
Jν(u)2 + Jν+1(u)Jν−1(u)

)
(4.4)

where u = V Σ0λ like in (3.19). Numerical comparison with the random matrix ensemble can
be found in Figure 6.1 in Chapter 6.

1See Appendix A for an introduction to these.
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Direct evaluation of (4.1) with the parametrisation from (4.2) gives

Zν1,ν2

chUE,1|1+1|1(m,m′, c)

=
1

(2π)2

∫
ds1ds2dθ1dθ2 e

ν1(iθ1−s1)eν2(iθ2−s2) (4.5)

× exp
[
m cos(θ1) +m cos(θ2)−m′ cosh(s1)−m′ cosh(s2) + 2c2(cos(θ1 − θ2)− cosh(s1 − s2))

]
×
(

1/4(m cos(θ1) +m′ cosh(s1))(m cos(θ2) +m′ cosh(s2)) + c2/2(cos(θ1 − θ2)− cosh(s1 − s2))

+c2/2(cos(θ1 − θ2) + cosh(s1 − s2))(m cos(θ1) +m cos(θ2) +m′ cosh(s1) +m′ cosh(s2))

−c4(sin(θ1 − θ2) + i sinh(s2 − s1))2
)
.

The full derivation can be found in Appendix C.3. We check explicitly with numerical integra-
tion that this expression equals 1 when evaluated at m = m′.

Differentiation with respect to m yields the chiral condensate

Σν1,ν2

chUE,1|1+1|1(m, c)

=
1

(2π)2

∫
ds1ds2dθ1dθ2 e

ν1(iθ1−s1)eν2(iθ2−s2) (4.6)

× exp
[
m1 cos(θ1) +m2 cos(θ2)−m1 cosh(s1)−m2 cosh(s2) + 2c2(cos(θ1 − θ2)− cosh(s1 − s2))

]
×
[
1/4 cos(θ1)(m2 cos(θ2) +m2 cosh(s2)) + 1/4(m1 cos(θ1) +m1 cosh(s1)) cos(θ2)

+(cos(θ1) + cos(θ2))
(

1/4(m1 cos(θ1) +m1 cosh(s1))(m2 cos(θ2) +m2 cosh(s2))

+c2 cos(θ1 − θ2)

+c2/2(cos(θ1 − θ2) + cosh(s1 − s2))(m1 cos(θ1) +m2 cos(θ2) +m1 cosh(s1) +m2 cosh(s2))

−c4(sin(θ1 − θ2) + i sinh(s2 − s1))2
)]
.

We can now in principle find the full eigenvalue density numerically from

ρν1,ν2

chUE,1|1+1|1(E, c) =
1

π
<
[
Σν1,ν2

chUE,1|1+1|1(iE, c)
]
. (4.7)

Equation (4.6) is a main result of this thesis, but regularisation issues arise when performing
the numerical integral. These are discussed in the second part of Appendix C.3. The expression
is in itself also rather complicated.

We can, however, obtain analytical expressions for limiting cases c� 1 and c� 1.

4.1 Strong Coupling Approximation of chUE

In the limit of large c the generating function can be evaluated by saddle point approximation,
again see Appendix B.2. We integrate out the Grassmann variables in our partition function
and identify the term in the exponential related to c. From (4.5) we find

2(cos(θ1 − θ2)− cosh(s1 − s2)). (4.8)
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The maximum of this occurs at θ1 = θ2, s1 = s2, i.e. U1 = U2. From this we obtain

Zν1,ν2

chUE,1|1+1|1(M, c� 1) =

∫
dU Sdetν1+ν2(U) eStr(M(U+U−1))

= Zν1+ν2

chUE,1|1(2m). (4.9)

Notice that the topology of the coupled system is indeed ν = ν1 +ν2 as discussed in Section 3.8
and that U → 2U compared to (2.61) Using the definitions (2.55) and (2.58) we directly obtain

ρν1,ν2

chUE,1|1+1|1(u, c� 1) = 2ρν1+ν2

chUE,1|1+1|1(2u)

= 2u
(
J2
ν1+ν2

(2u)− Jν1+ν2+1(2u)Jν1+ν2−1(2u)
)

(4.10)
+|ν1 + ν2|δ(u).

where the prefactor of 2 comes from normalisation.
A comparison with the random matrix ensemble for c � 1 can be found in Figure 6.4 in

Chapter 6. The analytical result is in agreement with the numerical one.

4.2 Weak Coupling Limit of chUE

For small coupling, the coupling only affects the exact zero modes modes, while the bulk
eigenvalues are only affected at higher order in c. The coupled ensemble again displays ν1 +ν2

exact zero modes as discussed in Section 3.8. The remaining |ν1| + |ν2| − |ν1 + ν2| would-be
zero modes from the uncoupled system will be spread out as 2n near-zero modes (n on each
side) according to a finite size chiral unitary random matrix ensemble with a Gaussian weight,
where the width is determined by c. In other words, we will prove the factorisation

Zν1,ν2

chUE,1|1+1|1(M, c� 1) = Zn
′,ν

chUE

( M

2
√
n′c

)
Z

(ν1),bulk
chUE (MM †)Z

(ν2),bulk
chUE (MM †) (4.11)

where ν = ν1 + ν2, n′ = |ν1|+|ν2|−|ν1+ν2|
2 , and the bulk-superscript means we stripped the parti-

tion function of its zero modes.
To save space we have suppressed the 1|1 + 1|1 part of the subscript. Note that the zero

modes are contained in the finite ensemble. As the argument of Z(ν),bulk
chUE (MM †) suggests, the

partition functions without zero modes are invariant under rotation of the mass.
To linearise the coupled partition function

Zν1,ν2

chUE,1|1+1|1(m,m′, c) (4.12)

=

∫
Gl(1|1)
dU1dU2 Sdetν1(U1) Sdetν2(U2)

× exp

{
1

2
Str
[
M †U1 +MU−1

1 +M †U2 +MU−1
2

]
+ c2Str

[
U1U

−1
2 + U2U

−1
1

]}
from (4.1), we make two Hubbard-Stratanovitch transformations

ec
2Str(Q2) ∼

∫
dσe−Str σ

2

4c2
+Str(Qσ) (4.13)

e−c
2Str(Q̄2) ∼

∫
dσ̄e−Str σ̄

2

4c2
+iStr(Q̄σ̄) (4.14)
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with Q =
U1+U−1

1 +U2+U−1
2

2 and Q̄ =
U1−U−1

1 +U2−U−1
2

2 , where

σ =

(
a χ
η ib

)
, σ̄ =

(
ā χ̄
η̄ ib̄

)
(4.15)

and a, b, ā, b̄ ∈ IR, again see Appendix B.1. We ignore an overall constant and get

Zν1,ν2

chUE,1|1+1|1(M) =

∫
Gl(1|1)
dU1dU2dσdσ̄ Sdetν1(U1) Sdetν2(U2) exp

[
− Str

(σ2 + σ̄2

4c2

)]
(4.16)

× exp
[1

2
Str(M †U1 +MU−1

1 ) +
1

2
Str(M †U2 +MU−1

2 )
]

× exp
[
Str
(σ

2
(U1 + U−1

1 + U2 + U−1
2 )
)

+ Str
( iσ̄

2
(U1 − U−1

1 + U2 − U−1
2 )
)]
.

We define A = σ + iσ̄ and A† = σ − iσ̄

Zν1,ν2

chUE,1|1+1|1(M) =

∫
Gl(1|1)
dU1dU2dASdetν1(U1)Sdetν2(U2) exp

[
− Str

(AA†
4c2

)]
× exp

[1

2
Str((M † +A)U1 + (M +A†)U−1

1 )

+
1

2
Str((M † +A)U2 + (M +A†)U−1

2 )
]
. (4.17)

Using the graded version of (2.70), we can write this as

Zν1,ν2

chUE,1|1+1|1(M) =

∫
Gl(1|1)
dA exp

[
− Str

(AA†
4c2

)]
Z

(ν1)
chUE(M +A†)Z

(ν2)
chUE(M +A†). (4.18)

Note that by lettingA→ 2c
√
n′A and pulling out a factor in front, we can identify the Gaussian

part of Equation (2.67) for n = n′ and MR = M . This makes the argument M
2c
√
n′

as we have
written in (4.11).

We can rewrite in terms of Z(ν),bulk
chUE (MM †) by noting that

Z
(ν)
chUE(M, c) =

{
Sdetν(M)Z

(ν),bulk
chUE (MM †) , ν ≥ 0

Sdet−ν(M †)Z
(ν),bulk
chUE (MM †) , ν < 0

. (4.19)

This follows from (2.45). The superdeterminants are then compared to (2.67). We present one
case in detail and refer to Appendix C.4 for the rest.

For ν1, ν2 ≥ 0

From Equation (4.19) we have

Zν1,ν2

chUE,1|1+1|1(M) =

∫
Gl(1|1)
dA exp

[
− Str

(AA†
4c2

)]
Sdetν1+ν2(M +A†) (4.20)

×Z(ν1),bulk
chUE ([M +A†][M † +A])Z

(ν2),bulk
chUE ([M +A†][M † +A]).

This next step is crucial and very non-trivial. Equation (4.20) is an integral of the form∫
dAf(A, c)g(A, c) (4.21)
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with

f(A, c) = Sdetν1+ν2(M +A†) exp
[
− Str

(AA†
4c2

)]
g(A, c) = Z

(ν1),bulk
chUE ([M +A†][M † +A])Z

(ν2),bulk
chUE ([M +A†][M † +A]). (4.22)

The Gaussian term setsA ∼ c, so a Taylor-expansion around c = 0 corresponds to an expansion
around A = 0. Remember that we seek the c� 1 behaviour.

The Gaussian part suppresses the constant term of f , whereas the rest stays finite. The
leading term is then the zeroth order term from g. The leading contribution from f is the first
order term. Note also that g is even in (M + A†), g′(A, 0) = 0, which means we would have
to go to even higher order to get a contribution.This is why these choices of f and g are good
ones.

We thus have the approximation

f(A, c)g(A, c) ≈ f(A, c)g(0, 0), (4.23)

which corresponds to

Zν1,ν2

chUE,1|1+1|1(M, c� 1) =

∫
Gl(1|1)
dA exp

[
− Str

(AA†
4c2

)]
Sdetν1+ν2(M +A†) (4.24)

×Z(ν1),bulk
chUE (MM †)Z

(ν2),bulk
chUE (MM †)

This step is common to all cases and is the reason for the factorisation. It is similar to the
continuum limit of Wilson fermions in [8].

Since ν1 + ν2 ≥ 0, we can directly identify n = 0 and ν = ν1 + ν2 from Equation (2.67),
which is consistent with n′ = |ν1|+|ν2|−|ν1+ν2|

2 = 0 since ν1 and ν2 has the same sign. Notice that
n = 0 is not meaningful, which shows that there is no spreading of zero modes for sign(ν1) =
sign(ν2).

Let us recap: For low coupling, we get the factorisation

Zν1,ν2

chUE,1|1+1|1(M, c� 1) = Zn
′,ν

chUE

( M

2
√
n′c

)
Z

(ν1),bulk
chUE (MM †)Z

(ν2),bulk
chUE (MM †) (4.25)

with n′ = |ν1|+|ν2|−|ν1+ν2|
2 and ν = ν1 + ν2 and the width of the finite ensemble 2

√
n′c.

This makes the chiral condensate

Σν1,ν2

chUE,1|1+1|1(m, c� 1) = ΣN,ν
chUE

(
u

2
√
n′c

)
+ Σ

(ν1),bulk
chUE (m) + Σ

(ν2),bulk
chUE (m) (4.26)

The spectral density then becomes

ρν1,ν2

chUE,1|1+1|1(u, c� 1) = ρN,νchUE

(
u

2
√
n′c

)
+ ρ

(ν1),bulk
chUE (u) + ρ

(ν2),bulk
chUE (u) (4.27)

which is why the spectrum is unchanged far away from zero. Adapting the finite n spectral
density solution from [19] and using the width calculated above, we have

ρn
′,ν
chUE(

u

2
√
n′c

) =
n′!

cΓ(n′ + ν)
e−z

2
(z2)ν+1/2

(
Lνn′−1(z2)Lν+1

n′−1(z2)− Lνn′(z2)Lν+1
n′−2(z2)

)
(4.28)
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where we have used the shorthand

z2 =
u2

2c2
(4.29)

We have normalised this to 2n′. Also note that the argument is u instead of λ, because we
already have taken the n→∞ limit when constructing the effective theory.

A comparison with the corresponding random matrix ensemble for c � 1 can be found in
Figure 6.3 in Chapter 6. As expected, the two are in agreement. Note that, while the width of
the bulk eigenvalues scale as 1

V , the width of the would-be zero modes scale as 1√
V

, see the
correspondence scheme (3.19).

4.3 Two Flavour Theory of chUE

In this section we investigate what would happen if we worked directly from a two flavour
theory similar to the one derived in Section 3.4. If we follow (2.61), the quenched ensemble
will be an integral over Gl(2|2).

We may again calculate an analytical expression for the small coupling, but finding a good
parametrisation is problematic, and therefore applying a saddle point approximation to the
strong coupling limit is ill-defined. We sketch the problem here and refer to the numerical
treatment in Section 6.3.

This theory is less interesting than the two flavours in separate backgrounds, as we do not
have cancellation of topological modes. We therefore only treat the two flavour case for chUE.

The partition function is

ZνchUE,2|2(m,m′, c) (4.30)

=

∫
Gl(2|2)
dU Sdetν(U) exp

{
1

2
Str[M†U +MU−1] + c2Str

[
Uτ1U

−1τ1

]}
.

In this case, the mass matrix isM = diag(M,M), where M = diag(m,m′).
Let us work from the parametrisation of Gl(2|2) from [45].

U =

(
w1 0
0 w2

)(√
1− ww̄ w
−w̄

√
1− w̄w

)(
w1 0
0 w2

)
(4.31)

U−1 =

(
w−1

1 0

0 w−1
2

)(
w̄−1
√

1− w̄ww̄ −w
w̄ w−1

√
1− ww̄w

)(
w−1

1 0

0 w−1
2

)
where w1, w2, w, w̄ ∈ Gl(1|1). Notice that the supermatrices do not have one block of fermion-
fermion, one block of boson-boson, and two mixing blocks, but rather four blocks, each with

this structure. This means we can take τ1 =

(
0 1
1 0

)
, without destroying the supermatrix

structure.
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Inserting (4.31) in (4.30), we find

Str
[
MU +MU−1

]
= Str

[
M
(
w1

√
1− ww̄w1 + w2

√
1− w̄ww2 (4.32)

+w−1
1 w̄−1

√
1− w̄ww̄w−1

1 + w−1
2 w−1

√
1− ww̄ww−1

2

)]
Str
[
Uτ1U

−1τ1

]
= Str

[
w1

√
1− ww̄w1w

−1
2 w−1

√
1− ww̄ww−1

2 (4.33)

+w2

√
1− w̄ww2w

−1
1 w̄−1

√
1− w̄ww̄w−1

1

−w−1
1 ww−1

2 w1ww2 − w2w̄w1w
−1
2 w̄w−1

1

]
Sdet(U) = Sdet2(w1w2)Sdet(

√
1− w̄w)Sdet(

√
1− ww̄ + w(

√
1− w̄w)−1w̄).

(4.34)

Note that each Gl(1|1) has two Grassmann integrations, which means that the full partition
function will have eight. This will contribute more terms than is realistic to handle, especially
with four coupled non-compact conventional integrals. We are also not guaranteed conver-
gence, as can be seen with the following consideration.

We set all Grassmannian variables to zero to find the exponent of the partition function
after all Grassmann integrations. This makes the Gl(1|1)-matrices

w =

(
eiφ 0
0 es

)
, (4.35)

corresponding to (4.2) without Grassmann variables.
The important part for the saddle point approximation is the coupling term, which becomes

c2
(

cos (2(φ1 − φ2)) (1− ei(φ+φ̃))− cosh (2(s1 − s2)) (1− es+s̃)
)
. (4.36)

This is problematic, as the bosonic part does not have a definite sign and therefore does not
necessarily converge. This makes the saddle point approximation ill-defined, but may change
with a different parametrisation.

Small Coupling Limit

In the small coupling limit, we may linearise the partition function with Hubbard-Stratanovitch
transformations as in Section 4.2. We find

ZνchUE,2|2(M,M†, c)

=

∫
Gl(2|2)
dU Sdetν(U) exp

{
1

2
Str[M†U +MU−1] + c2Str

[
Uτ1U

−1τ1

]}
=

∫
Gl(2|2)
dUdA Sdetν(U) exp

{
−AA

†

4c2

}
× exp

{
1

2
Str[

(
M† + τ1A

)
U +

(
M+ τ1A

†
)
U−1] + c2Str

[
Uτ1U

−1τ1

]}
=

∫
Gl(2|2)
dUdA Z

(ν)
chUE(M+ τ1A

†,M† + τ1A, c). (4.37)



CHAPTER 4. SPECTRAL DENSITY OF COUPLED CHUE 50

Let us assume ν ≥ 0, as the cases are again analogous.∫
Gl(2|2)
dUdA exp

{
−AA

†

4c2

}
Z

(ν)
chUE(M+ τ1A

†,M† + τ1A, c)

=

∫
Gl(2|2)
dUdA exp

{
−AA

†

4c2

}
Sdet

(
M+ τ1A

†
)
Z

(ν),bulk
chUE (M+ τ1A

†,M† + τ1A, c).(4.38)

For c� 1 we have the factorisation∫
Gl(2|2)
dUdA exp

{
−AA

†

4c2

}
Sdet

(
M+ τ1A

†
)
Z

(ν),bulk
chUE (M+ τ1A

†,M† + τ1A, c)

≈
∫
Gl(2|2)
dUdA exp

{
−AA

†

4c2

}
Sdet

(
M+ τ1A

†
)
Z

(ν),bulk
chUE (M,M†, c). (4.39)

Letting A→ Aτ1 we can identify n = 0 from (2.67). This is no surprise. Because we only have
one topological index from the beginning, we do not have any cancellation of zero modes. The
low coupling limit therefore has the same eigenvalue spectrum as the uncoupled case.



Chapter 5

Spectral Density of Coupled chOE

Now that we have treated the coupling of chiral unitary ensembles, we turn our attention to
the orthogonal ensemble. These results follow in analogy with Chapter 4, and we are therefore
somewhat briefer in this chapter.

The Goldstone manifold of chOE is larger, so, although the structure of the EFT is very
similar, we integrate over Σ(2|2) = U(2|2)/UOSp(2|2) rather than Gl(1|1) [8].

The single, uncoupled, quenched system is [8]

ZνchOE,2|2(M) =

∫
Σ(2|2)
dU Sdetν/2(U) e

1
2

Str(M†U+MU−1) (5.1)

with the mass matrix

M =

(
m12 0

0 m′12

)
(5.2)

and Σ(2|2) = U(2|2)/UOSp(2|2). The corresponding coupled version is

Zν1,ν2

chOE,2|2+2|2(M, c) =

∫
Σ(2|2)
dU1dU2 Sdetν1/2(U1) Sdetν2/2(U2) (5.3)

×e
1
2

Str(M†U1+MU1
−1)+ 1

2
Str(M†U2+MU2

−1)+c2Str(U−1
1 U2+U1U

−1
2 ).

Note that the partition function transformations just like chUE under rotation of the mass. So
we expect exactly the same number of exact zero modes and same small-coupling behaviour
of would-be zero modes. One can evaluate the partition function with the parametrisation [8]

Uj = diag(12, Oj)


eiϕj 0 α∗j β∗j

0 eiϕj −αj −βj
αj α∗j esj 0

βj β∗j 0 etj

diag(12, O
T
j ) (5.4)

where O ∈ O(2). We parametrise the orthogonal matrix by adding the possibility of reflection
to the common parametrisation of SO(2)

Oj =

(
cos(θj) − sin(θj)
sin(θj) cos(θj)

)(
1 0
0 −1

)kj
, θj ∈ [−π, π] , kj ∈ {0, 1}. (5.5)
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The full expression is prohibitively cumbersome because of the many combinations of Grass-
mann numbers, so we do not evaluate the full expression as we did for chUE in Appendix C.3.
For the saddle point approximation for large c2 we will need the action part of the partition
function, which can be found as in Section 4.3 by setting all Grassmannian variables to zero.
We find

4 cos(ϕ1 − ϕ2)− 2 cos2(θ1 − θ2) cosh(s1 − s2)− 2 cos2(θ1 − θ2) cosh(t1 − t2) (5.6)
−2 sin2(θ1 − θ2) cosh(s1 − t2)− 2 sin2(θ1 − θ2) cosh(t1 − s2),

which brings us to the limiting cases.

5.1 Strong Coupling Approximation of chOE

Completely analogous to chUE for large c2 in Section 4.1 we make a saddle point approxima-
tion, which corresponds to minimising (5.6). This effectively sets ϕ1, s1, t1, θ1 = ϕ2, s2, t2, θ2.
We again assume this to be the same as U1 = U2. So the generating function becomes

Zν1,ν2

chOE,2|2+2|2(M, c� 1) =

∫
dU Sdet(ν1+ν2)/2(U) eStr(M(U+U−1)), (5.7)

and it follows from the definitions of the quenched chiral condensate and eigenvalue density,
(2.55) and (2.58), that

ρν1,ν2

chOE,2|2+2|2(E, c� 1) = 2ρν1+ν2
chOE (2u) (5.8)

where[4, 46]

ρνchOE(u) = u/2
(
J2
|ν|(u)− J|ν|+1(u)J|ν|−1(u)

)
+

1

2
J|ν|(u)

(
1−

∫ u

0
dxJ|ν|(x)

)
(5.9)

is the spectral density of a single ensemble. The prefactor of 2 comes from normalisation.1

A comparison with the orthogonal random matrix ensemble for c2 � 1 can be seen in
Figure 6.7 in Chapter 6. As expected, the are in agreement.

5.2 Weak Coupling Limit of chOE

We expect the low coupling limit to behave similar to chUE. So the partition function should
factorise in the way

Zν1,ν2

chOE,2|2+2|2(M, c� 1) = Zn
′,ν

chGOE

( M√
2n′c

)
Z

(ν1),bulk
chGOE (MM †)Z

(ν2),bulk
chGOE (MM †) (5.10)

with n′ = |ν1|+|ν2|−|ν|
2 and ν = ν1 + ν2. Like before, bulk means without zero modes. These can

be found from

Z
(ν)
chOE(M) =

{
Sdet

ν
2 (M)Z

(ν),bulk
chOE (MM †) , ν ≥ 0

Sdet−
ν
2 (M †)Z

(ν),bulk
chOE (MM †) , ν < 0

. (5.11)

1Note that [46] only considers ν ≥ 0, which is why we have added the absolute value. It only makes a difference
in the last term.
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To show this factorisation, we make two Hubbard-Stratanovitch transformations on (5.4), like
we did in (4.17), except that σ, σ̄ ∈ Σ̃(2|2), which can be parametrised as [8]

σj = diag(12, Õj)


iu 0 η∗j χ∗j
0 iu −ηj −χj
ηj η∗j vj 0

χj χ∗j 0 wj

 diag(12, Õ
T
j ) (5.12)

where Õ ∈ O(2) and u, v, w ∈ IR.
We find

Zν1,ν2

chOE,2|2+2|2(M) =

∫
Σ̃(2|2)
dA

∫
Σ(2|2)
dU1dU2 Sdet

ν1
2 (U1) Sdet

ν2
2 (U2) exp

[
− Str

(AA†
4c2

)]
× exp

[1

2
Str((M † +A)U1 + (M +A†)U−1

1 )

+
1

2
Str((M † +A)U2 + (M +A†)U−1

2 )
]

=

∫
Σ̃(2|2)
dA exp

[
− Str

(AA†
4c2

)]
Z

(ν1)
chOE(M +A†)Z

(ν2)
chOE(M +A†). (5.13)

In the last line, we have used that the n→∞ limit of chGOE is [8]

Zn→∞,νchGOE (mR = m/2n) ≡ Z(ν)
chOE(M) =

∫
dU Sdet

ν
2 (U)e

1
2

Str(M†U+MU−1) (5.14)

Splitting this into zero modes and non-zero modes like before, the factors of 1
2 cancel and

we arrive directly at

Zν1,ν2

chOE,2|2+2|2(M, c� 1) = Zn
′,ν

chGOE

( M√
2n′c

)
Z

(ν1),bulk
chOE (MM †)Z

(ν2),bulk
chOE (MM †), (5.15)

with n′ = |ν1|+|ν2|−|ν1+ν2|
2 and ν = ν1 + ν2 and the width of the finite ensemble proportional

to c, by the same procedure as in Section 4.2. Note the different width, which comes from a
difference of 2 in the Gaussian weights of chGUE and chGOE

Zn,νchGOE(m) =

∫
dW detNf

(
m iW
iW † m

)
e
n
2

Tr(WW †). (5.16)

Again, the transformation properties of the mass are contained in Zn
′,ν

chOE( M√
2n′c

). This fac-
torisation makes the chiral condensate

Σν1,ν2

chOE,2|2+2|2(m, c� 1) = Σn,ν
chGOE

(
m√
2n′c

)
+ Σ

(ν1),bulk
chOE (m) + Σ

(ν2),bulk
chOE (m) (5.17)

and the spectral density

ρν1,ν2

chOE,2|2+2|2(u, c� 1) = ρn
′,ν
chGOE

(
u√
2n′c

)
+ ρ

(ν1),bulk
chOE (u) + ρ

(ν2),bulk
chOE (u). (5.18)
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The explicit results for n′ = 1, ν = 0 and n′ = 1, ν = 1 are

ρn
′=1,ν=0
chGOE (u) =

1√
4πc2

e−
u2

4c2 (5.19)

and

ρn
′=1,ν=1
chGOE (u) =

1

4c2
u e−

u2

4c2 . (5.20)

The derivation of these can be found in Appendix C.5. The full expression for even n can be
found in [4].

A comparison with the corresponding random matrix ensemble for c2 � 1 can be found in
Figure 6.6 in Chapter 6. Again, the width of the bulk eigenvalues scale as 1

V , while the width
of the would-be zero modes scale as 1√

V
, see the correspondence scheme (3.68).

5.3 Subconclusion

This concludes the analytical part of our investigation. In Chapters 4 and 5 we have applied
the coupling introduced in Chapter 3. We find a complicated expression for the full chiral
condensate for chUE in (4.6), allowing numerical calculation of the eigenvalue density.

For both chUE and chOE we find simple, analytical expressions for the limiting cases c� 1
and c � 1. In the strong coupling limit the coupled system behaves as a single, uncoupled
system with λ → 2λ. In the weak coupling limit the partition function factorises, and the
cancelled zero modes spread out on either side of the origin as a finite size chiral ensemble with
a Gaussian weight. The bulk modes are unaffected to lowest order. The Gaussian weight is a
direct consequence of the unique quadratic term in the effective Lagrangian found in Chapter 3
and therefore universal, although the choice of weight is usually arbitrary. In all cases we find
that the total number of zero modes should be counted with sign, which allows zero modes of
opposite chirality to cancel each other.

The cancellation of zero modes and factorisation of would-be zero modes for both chUE
and chOE, (4.11) and (5.10) are the main analytical results of this thesis. In Chapter 6 we
compare these results to numerics.



Chapter 6

Comparison to Numerics

In this chapter, we use the chiral two random matrix theory introduced in Chapter 3 to numer-
ically calculate the eigenvalue density of the coupled system. We compare this to the spectrum
obtained from the effective theory in Chapters 4 and 5.

6.1 Creating a Random Matrix Algorithm

We start with the simplest case as an example: A single, uncoupled chUE.
As we are dealing with numerics, the true microscopic limit n → ∞ is of course unattain-

able. We therefore work from a finite size ensemble with a Gaussian weight

Zn,νchGUE =

∫
dW det

(
m iW
iW † m

)
e−nTr(WW †) (6.1)

whereW is a general (n+ν)×nmatrix (n× (n−ν) for ν < 0) with complex entries and simply
choose a sufficiently large n. In most cases, n ≥ 20 is plenty to see the agreement between EFT
and RMT.

The quenched version of (6.1) corresponds to removing the determinant, creating matrices
of the form (

0 iW
iW † 0

)
(6.2)

with the components of W drawn from the weight

e−nTr(WW †) = e−n(aij
2+bij

2) , W = a+ ib, (6.3)

and finding the eigenvalues λR of these matrices. For the distribution of these random matrices
to be close to the true distribution, the number of matrices calculated should be around 104 or
more.

Recall that the microscopic eigenvalue spectrum is a function of u = Σ0V λ = 2nλR, see
Equation (3.19). We therefore rescale all eigenvalues accordingly and normalise the distribu-
tion to the number of eigenvalues (2n+ |ν|).

For the most part, we use the same binning across the whole spectrum, but in the case
of small coupling, we increase our resolution around the near-zero modes. The microscopic
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Figure 6.1: Distribution of eigenvalues for a single, uncoupled chiral unitary ensemble. Plotted is eigen-
value density as a function of u = Σ0V λ = 2nλR of 105 chGUE matrices for ν = 1 and
n = 40. The theoretical curve from Equation (4.4) (black) has been plotted on top. We have
zoomed in on the

√
2n smallest eigenvalues.

eigenvalue spectrum from (4.4) is valid around |u| <
√
V [11, 47], so we zoom in on this part.

In all cases, we remove the (numerically) exact zero modes from the distribution, because it
does not make sense to compare a δ-function to numerics. In other words, we only look at
eigenvalues for 10−14 < |λR| < 1√

2n
.

We make a histogram of u and plot the theoretical curve on top. The result can be seen in
Figure 6.1. The numerical and theoretical distributions are compared by eye. We elaborate on
the possibility of a proper statistical comparison in Appendix D.

Now that we have established that our code runs as expected, we turn to the coupled case.

Table 6.1: Parameters used in random matrix theory and chiral perturbation theory for chUE and how
they correspond to each other. Notice the factor of 2 that comes from the choice of factors in
the EFT.
Notice also the difference between the parameters. λC and c̃ are physical energy and coupling
constant, whereas λR and cR are dimensionless parameters of our random matrix model.
These are relatable through the space-time volume of the system, the low-energy constants
Σ0,K1, and the size of the matrix in RMT. We have assumed Σ0 = K1 = 1 and V, n → ∞,
while keeping u, c ∼ 1.

chUE chPT RMT
u Σ0V λ 2nλR
c2 K1V c̃

2 nc2
R
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Figure 6.2: Numerical search of the coupling parameter space of two coupled chiral unitary ensembles
for ν1 = −ν2 = 1 and n = 30, as can be found in (3.9). Plotted are the eigenvalues of ran-
dom matrix simulations for different coupling strengths. For zero coupling, the topological
modes of each ensemble are unaffected. The stronger the coupling, the more the would-be
zero modes spread out on either side until they become part of the bulk. We have left the ex-
act zero modes in the spectrum to illustrate this spreading, although numerical effects place
them slightly on either side of the origin.
Centre column: The full spectrum. Left column: Zoom-in on the bulk modes. These are un-
affected for small coupling. When the coupling becomes strong enough, the would-be zero
modes become part of the bulk. Right column: Zoom-in on the modes close to the origin.
For zero coupling, the zero modes are intact. For small, but non-zero, coupling, the would-
be zero modes are distributed as discussed in Sections 4.2 and 6.2. When the would-be zero
modes become part of the bulk, there are no modes near the origin.
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6.2 Coupled Chiral Unitary Ensemble

The numerical set up of the two coupled matrices is completely analogous to the single matrix.
We work from the theory

Zν1,ν2
1+1 =

∫
dW1dW2 det


m iW1 0 icR
iW †1 m icR 0

0 icR m iW2

icR 0 iW †2 m

 e
−nTr

(
W1W

†
1 +W2W

†
2

)
(6.4)

where Wj are (n + νj) × n complex matrices. This is the same theory as in (3.9), repeated for
ease of reading. cR is a matrix that determines the coupling strength. It is proportional to unity
and for νj 6= 0, cR is padded with zeros.

For instance, in the case ν1 = 0, ν2 = 1, and n = 2, the upper right-hand block is
0 0 0 icR 0
0 0 0 0 icR
icR 0 0 0 0
0 icR 0 0 0

 , (6.5)

and the low left-hand block is the transposed of this. So we create matrices of the form
0 iW1 0 icR

iW †1 0 icR 0
0 icR 0 iW2

icR 0 iW †2 0

 (6.6)

and plot the rescaled eigenvalues along the theoretical curves. An important addition in the
coupled case is the relation between the coupling strength c of the effective theory and the
parameter cR of the random matrix theory. This can be found in Equation (3.19) and is repeated
in Table 6.1.

We may now calculate the eigenvalue spectrum numerically for any coupling strength, see
Figure 6.2. The limiting cases c� 1 and c� 1 are of special interest, because we can compare
them to the analytical distributions derived in Sections 4.1 and 4.2 respectively.

Small Coupling Limit

For cR = 0 the density simplifies to the sum of two single ensembles. For small, but non-zero
coupling the bulk modes are still unaffected, whereas the exact zero modes spread out as near-
zero modes, as can be seen in Figure 6.3. The theoretical curve for small coupling limit can be
found in Equation (4.27).

Strong Coupling Limit

The large c-limit yields the spectrum

ρν1,ν2

chUE(u, c� 1) = 2ρ
(ν1+ν2)
chUE (2u), (6.7)

the derivation of which can be found in Section 4.1.
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Figure 6.3: The small coupling limit of chUE, which is a main result of this thesis. The zero modes of
each system is counted with sign, which allows zero modes of opposite chirality to cancel
each other. For small coupling, these would-be zero modes spread out on either side of the
origin as near-zero modes. The distribution follows that of a finite chiral unitary ensemble
with a Gaussian weight. Plotted are the eigenvalues of a simulation of 105 coupled chGUE
matrices with n = 30 and ν1 = −ν2 = 1 for cR = 10−4.
Centre: The full spectrum. Left: A zoom-in on the bulk modes that are left unchanged by
the coupling. Right: A zoom-in on the would-be zero modes distributed according to a
finite Gaussian ensemble. The small c-approximation of the density from (4.27) has been
plotted on top (black). This figure has also been published in [31].

As we can see in our correspondence scheme (see Table 6.1), we can choose between large n
or large cR, as they both represent the strong coupling limit. Large cR will place all eigenvalues
in ±cR, and the W -matrices provide only small perturbations around this value. The limit
cR � 1 does therefore not support a distribution around the origin, which is a requirement
of the universal spectrum [18]. We therefore choose large n, which in this case means n =
1000. Some corners can be cut by utilising numerical methods that only compute the lowest
k eigenvalues, where we set k =

√
n. This method requires non-singular matrices, so we can

only calculate ν1 = −ν2 this way. These methods are part of standard packages in Matlab. The
result can be seen in Figure 6.4.
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Figure 6.4: The strong coupling limit of chUE. The coupled system behaves like a single, uncoupled en-
semble with u → 2u. Plotted are the rescaled eigenvalues u = 2nλR of a coupled chUE
random matrix simulation with n = 1000, ν1 = −ν2 = 1 and cR = 0.1. The large c-
approximation from (4.11) has been plotted on top (black). The result is independent of
the exact value of cR. This figure has also been published in [31].

6.2.1 Two-Flavour Theory: W1 = W2

As was treated in Section 3.4, working from a theory with the two flavours built in corresponds
to W1 = W2 in the random two matrix theory. This connection is seen even more clearly in
Appendix C.2, where we derive the effective theory of the W1 = W2-random matrix model. So
we work from the theory

Zν2 =

∫
dW det


m iW 0 icR
iW † m icR 0

0 icR m iW
icR 0 iW † m

 e−nTr(WW †) (6.8)

where W are (n+ ν)× n complex matrices. We create matrices of the form
0 iW 0 icR

iW † 0 icR 0
0 icR 0 iW
icR 0 iW † 0

 (6.9)

and compare the rescaled eigenvalues to the theoretical curves on top.
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The spectrum of this theory is slightly trivial compared to W1 6= W2, as there can be no
cancellation of topological modes (W1 = W2 implies ν1 = ν2). The strong coupling limit,
however, behaves slightly different for W1 = W2. Here we do not have u → 2u, which we
show numerically, see Figure 6.5.

Figure 6.5: The strong coupling limit of chUE for W1 = W2. The coupled system behaves like a single,
uncoupled ensemble. Compared to W1 6= W2 we do not have u → 2u. We only show this
numerically. Plotted are the rescaled eigenvalues u = 2nλR of a coupled chUE random
matrix simulation with n = 1000, ν1 = −ν2 = 1 and cR = 0.1. The distribution of a single,
uncoupled ensemble (4.4) normalised to 4n has been plotted on top (black). The result is
independent of the exact value of c.

Twisted Two-Flavour Theory: W1 = W †2

Let us examine a final case of coupled chUE. If we want cancelling of topological modes of
two flavours in the same background, we may redefine right and left for one of the flavour
sections. This corresponds to the theory

Z∗ν2 =

∫
dW det


m iW 0 icR
iW † m icR 0

0 icR m iW †

icR 0 iW m

 e−nTr(WW †). (6.10)
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One should be careful how to run this simulation, as a coupling matrix proportional to unity
simplifies the spectrum more than intended. Consider the eigenvalue condition

0 = det



−λR iW 0 icR
iW † −λR icR 0

0 icR −λR iW †

icR 0 iW −λR




= det

[(
−λR iW †

iW −λR

)((
−λR iW
iW † −λR

)
−
(

0 icR
icR 0

)(
−λR iW †

iW −λR

)−1(
0 icR
icR 0

))]

= det

[(
−λR iW †

iW −λR

)((
0 1
1 0

)(
−λR iW
iW † −λR

)(
0 1
1 0

)
− (icR)2

(
−λR iW †

iW −λR

)−1
)]

= det

[(
−λR iW †

iW −λR

)2

−
(
icR 0
0 icR

)2
]

= det

[(
−λR iW †

iW −λR

)
−
(
icR 0
0 icR

)]
det

[(
−λR iW †

iW −λR

)
+

(
icR 0
0 icR

)]
. (6.11)

From this we see that the spectrum of this naı̈vely twisted coupled ensemble reduces to the
spectrum of two single, uncoupled ensembles shifted in opposite direction by cR.

The interpretation must be as follows: Although (6.10) has the right symmetries, it does
not allow the two flavour sections to interact fully. If we instead of the normal choice of cR
(6.5) choose the elements randomly from a Gaussian distribution similar to W , the spectrum
becomes numerically identical to the W1 6= W2-case with ν1 = ν2.

One should also be careful of theU(2)-symmetry. An additional γ0 in chiral space is needed
in the transformation to account for the difference in chirality of the two flavours. If this is
added, we preserve full U(2)-symmetry.

6.3 Coupled Chiral Orthogonal Ensemble

The orthogonal ensemble is in many respects completely analogous to the unitary ensemble,
save factors of 2. We work from the theory

Zν1,ν2
1+1 =

∫
dW1dW2 det


m iW1 0 icR
iW T

1 m icR 0
0 icR m iW2

icR 0 iW T
2 m

 e−
n

2σ2 Tr(W1WT
1 +W2WT

2 ) (6.12)

where Wj are (n+ νj)×n real matrices. Note that the extra factor of 1
2 in the weight compared

to chGUE comes from the definition of the ensembles. So we construct matrices of the form
0 iW1 0 icR

iW T
1 0 icR 0

0 icR 0 iW2

icR 0 iW T
2 0

 (6.13)

with the entries of Wj chosen from a Gaussian distribution. The correspondence scheme is a
slightly different one than for chUE and can be found in Table 6.2.
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Table 6.2: Parameters used in random matrix theory and chiral perturbation theory for chOE and how
they correspond to each other. This is a reprint of Equation (3.68). Notice the differences from
the unitary ensemble.

chOE chPT RMT
u Σ0V λ nλR
c2 K1V c̃

2 1
2nc

2
R

Figure 6.6: The small coupling limit of chOE, which is a main result of this thesis. For small, but non-
zero coupling the would-be topological modes spread out on either side of the origin as a
finite chiral ensemble with a Gaussian weight. The bulk modes are unaffected to lowest
order. Plotted is the eigenvalue spectrum of a coupled random matrix simulation with n =
30, ν1 = −ν2 = 1, and cR = 10−4.
Centre: The full spectrum. Left: A zoom-in on the bulk modes that are left unchanged by
the coupling. Right: A zoom-in on the would-be zero modes distributed according to a
finite Gaussian ensemble. The small c-approximation of the density from (4.27) has been
plotted on top (black). This figure has also been published in [31].

Small Coupling Limit

Like for chUE cR = 0 reduces to the sum of two single ensembles. For small, but non-zero
coupling we find the same spreading of topological modes. The theoretical curve for small c
can be found in Equation (5.18). A plot of this can be found in Figure 6.6.
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Figure 6.7: The strong coupling limit of chOE. The coupled ensemble behaves as a single, uncoupled
ensemble with u → 2u. Plotted is the spectral density of a coupled random matrix simula-
tion with cR = 0.1, n = 1000, and ν1 = −ν2 = 1. The large c-approximation has been plotted
on top of this (black). This figure has also been published in [31].

Strong Coupling Limit

As for chUE, the strong coupling ensemble behaves like a single ensemble with u → 2u. The
expression can be found in Equation (5.8) and a plot of it in Figure 6.7.



Chapter 7

Concluding Remarks

7.1 Summary

In this thesis we have laid the groundwork for the treatment of two coupled chiral systems,
where the coupling preserves a combined chiral symmetry. We considered the effect of such a
coupling on the small eigenvalues with a special focus on the cancellation of topological modes
in exact zero and the smearing of these would-be zero modes on either side of the origin.

We started out in Chapter 3 by establishing the properties of the chiral coupling and the fol-
lowing chapters saw the calculation of its microscopic eigenvalue spectrum in different cases.

Analytically, we set up an effective theory. We here found a unique term in the effective
Lagrangian that couples the two ensembles to lowest order. The consequences of this unique
term were then investigated in Chapters 4 and 5, where we derived the microscopic eigenvalue
density. We found that the total number of zero modes is the sum of the individual zero modes
counted with sign. We also found that, for small coupling, the |ν1|+ |ν2| − |ν1 + ν2| zero modes
that do no survive the coupling spread out as near-zero modes according to a finite random
matrix ensemble with a Gaussian weight.

Numerically, we introduced a random two-matrix model with the same symmetries as
the coupled systems. This allowed us to calculate the spectrum numerically for any coupling
strength. In Chapter 6 we compared the analytical and numerical results for the limiting cases
and found good agreement between the eigenvalue densities. We also bridged the gap be-
tween the effective field theory and the random two-matrix theory further by showing that
they have the same low-energy effective theory. This is not surprising, as they have the same
symmetries, and it is therefore an important check of the analytical computations.

We did this analysis for both two coupled single-flavour theories and for two flavours in the
same background. We found that the two-flavour theory is significantly more complicated to
derive analytically, but numerics showed that it behaves very similar to the two single-flavour
ensembles. The main difference is that zero modes cannot cancel because the winding number
is tied to the gauge field background, and so the two winding numbers always have the same
sign. We considered a two-flavour ensemble, where left and right was redefined for one of
the flavours. This requires an additional transformation when rotating the flavours into each
other, but allows zero modes to cancel. This ensemble is, according to numerics, very similar
to the two single-flavour ensembles.

These results may be viewed on their own as an exercise in mathematical physics, but it
is also our hope that this understanding of coupled chiral systems will help pave the way for
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a full description of the superconductors carrying Majorana modes, which was the original
inspiration.

7.2 Outlook

The obvious avenue to pursue is the development of a random matrix model that incorporates
the Majorana condition for the zero modes only. We have already touched upon the subject in
Section 2.6 and Appendix C.1, but we have yet to construct a model that fulfils this require-
ment. It is unclear whether such a model will be born with two interacting zero modes or
whether we will have to apply the coupling as in this thesis. Whichever the case, this would
make the model directly applicable to the solid state system.

In terms of mathematics, it would also be interesting to do the same calculation for the
chiral symplectic ensemble, which has quaternion real entries instead of real or complex ones.
We expect the limiting cases to be straightforward, because the effective theories have a very
similar structure. We also expect same factorisation of near-zero modes and bulk modes for
small coupling that we found in chUE and chOE.

We would very much like to investigate the generality of the factorisation into bulk modes
and a finite Gaussian ensemble. We have seen the same behaviour in [8] for a theory with a
term of the form

LWilson = −a2 Str(U2 + U−2) (7.1)

in the a � 1 limit, so the question remains: Does this happen for any quadratic term? One
might for a start consider a term of the kind

LQuad = b2 Str(AUBU−1) (7.2)

in the limit b � 1, where A and B are general matrices. We expect constraints on A and B
will be necessary to ensure convergence. We do not expect to be able to identify all parts of the
factorised partition function as known ensembles.

If the coupling is indeed applicable to a physical system, superconductor or otherwise,
identification of the parameter c as a measurable quantity is needed. So far, we would be able
to measure it as the width of the near-zero eigenvalue distribution for small coupling, which
should scale as 1√

V
(the bulk modes scale as 1

V ). We would, however, also like to identify
it elsewhere. Our suggestion here is to review the effective Lagrangian in p-counting and
calculate the propagation and loop diagrams of the coupled system as in [9]. We conjecture
that c will appear, possibly in combination with other observables, as a scattering amplitude,
allowing us to observe it several places and compare the results.
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Appendix A

Grassmann Variables and
Supermathematics

As Grassmann variables (or Grassmann numbers) are used in our calculations of supersym-
metric ensembles, we shall here endeavour to give a short introduction. For a more thorough
treatment, the reader is referred to [48], upon which this section is also based.

A Grassmann number is a variable that anticommutes with other Grassmann numbers1

{αi, αj} = 0. (A.1)

The case i = j shows that all Grassmann variables square to 0

α2 = 0. (A.2)

They commute with conventional numbers

[x, α] = 0. (A.3)

Functions of Grassmann variables are defined as Taylor expansions

f(α) = f(0) + f ′(0)α. (A.4)

Notice that no higher than linear order contributes. We may generalise this to functions of
multiple variables, where cross-terms also appear.

Differentiation is defined as

∂α1 = 0 , ∂αα = 1 (A.5)

as usual. Again, definitions of higher orders are unnecessary. Integration is defined the same
way as differentiation ∫

dα1 = 0 ,

∫
dαα = 1 (A.6)

which may be surprising to unfamiliar readers, but merely a matter of definition. Both differ-
entiation and integration operators anticommute with Grassmann variables.

1In this appendix we shall stick to a common notation, where Grassmann variables are denoted by Greek letters
and conventional numbers by Latin ones. The also common use of Greek letters as angles (e.g. eiθ) has made this
convention impractical in the rest of the thesis.
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Supermathematics

The name supermathematics refers to mathematics containing both Grassmann variables and
conventional numbers. The main concern in this part is to ensure a consistent structure of our
linear algebra. Consider a so-called supervector with the structure

Ψ =

(
~ξ
~A

)
, (A.7)

where ~ξ contains the Grassmann numbers of the vector and ~A the conventional ones. We want
any supervector to retain this structure of separated commuting and anticommuting variables
(remember that a pair of Grassmann numbers are a commuting variable). This requires super-
matrices to have the structure

M =

(
X σ
ρ Y

)
(A.8)

where X,Y contain commuting variables and ρ, σ contain anticommuting ones. Notice that
the cross-terms switch the type of number.

We want the mechanics of the supermatrices to be similar to conventional linear algebra. If
we, for instance, want the trace to be cyclic, we must define our supertrace as

Str(M) ≡ Tr(X)− Tr(Y ). (A.9)

The corresponding superdeterminant is often defined through the relation

ln (Sdet(M)) ≡ Str (ln(M)) , (A.10)

which means

Sdet(M) = det(X − σY −1ρ) det(Y −1). (A.11)

It should be noted that, although the motivation for the definition varies in the literature, the
definition themselves are standard.

A.1 Gaussian Grassmann Integral

We use the rewriting of a Gaussian Grassmann integral as a determinant. We therefore briefly
show the derivation of this. This may also be found in most textbooks on the subject.

Given an integral of the form ∫ N∏
ij

dθ∗i dθje
−θ∗iAijθj (A.12)

where θ, θ∗ are Grassmann variables, we may write∫ N∏
ij

dθ∗i dθje
−θ∗iAijθj =

∫
dθ∗1dθ1...dθ

∗
NdθN

1

N !
(−θ∗i1Ai1j1θj1)...(−θ∗iNAiN jN θjN )

=
1

N !

∫
dθ∗1...dθ

∗
N

∫
dθ1...dθNθ

∗
i1 ..θ

∗
iN
θj1 ...θjN (−Ai1j1)...(−AiN jN )

=
1

N !

∫
dθ∗1...dθ

∗
Nθ
∗
i1 ...θ

∗
iN

∫
dθ1...dθNθj1 ...θjNAi1j1 ...AiN jN (A.13)
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The sign in the second and third line is a little subtle. Rearrange the integrals and the variables
on their own. This must give the same sign. If N is even (odd), the signs from the exponentials
gives a plus (minus), and moving the θ∗ through the dθ gives a plus (minus). So either way the
overall sign is a plus.

Exchanging two indices in or jn gives a sign. If any of the indices are the same, the integrals
give 0. Otherwise they give 1 or -1. From this we can deduce that they are Levi-Civita symbols.
So our Gaussian integral is∫ N∏

ij

dθ∗i dθje
−θ∗iAijθj =

1

N !
εi1...iN εj1...jNAi1j1 ...AiN jN

= det(A) (A.14)

where we have used one of the definitions of the determinant.
We use this when analysing the eigenvalues of the Dirac operator. Given the partition

function of QCD for a single topology

Zν =

∫
ν
Dq̄DqDA exp

{
i

∫
d4xq̄(i /D −m)q − 1

4
GaαβG

a
αβ

}
(A.15)

we can integrate out the quark fields and get

Zν =

∫
ν
DAdet(i /D −m)eSYM (A.16)

where SYM = −i
∫
d4x1

4G
a
αβG

a
αβ .



Appendix B

Various Calculation Tricks

B.1 Hubbard-Stratanovitch Transformation

The Hubbard-Stratanvitch transformation is the introduction of an auxiliary matrix to linearise
an integral

ec
2Tr(Q2) ∼

∫
dσe−Tr σ

2

4c2
+Tr(Qσ) (B.1)

e−c
2Tr(Q̄2) ∼

∫
dσ̄e−Tr σ̄

2

4c2
+iTr(Q̄σ̄). (B.2)

We ignore an overall constant when making this transformation. Notice that the Hubbard-
Stratanovitch transformation is a Gaussian integral for matrices in reverse. The difficult part
of the transformation is to determine the structure of the auxiliary matrix.

In Chapter 3, all transformation matrices are arbitrary real matrices [7].
When Q ∈ Σ(2|2), we have [8]

σ = diag(12, Õ)


iu 0 η∗ χ∗

0 iu −η −χ
η η∗ v 0
χ χ∗ 0 w

diag(12, Õ
T ) (B.3)

where Õ ∈ O(2) and u, v, w ∈ IR.
For Q ∈ Gl(1|1), we may parametrise σ as

σ =

(
a χ
η ib

)
(B.4)

where a, b ∈ IR. This can be realised by inserting Q and σ in (B.2) and performing the Grass-
mann integrals. The real parameters of σ then follow as ordinary Gaussian integrals.

B.2 Saddle Point Approximation

The saddle point approximation works as follows: Given an integral of the form1

I =

∫ ∞
−∞

f(x)e−Ng(x)dx (B.5)

1This explanation of the saddle point approximation is based on [50], but alternatives can be found elsewhere.
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we expand g(x) to second order. If N is large, and if the second order derivative exists, the
integral will be dominated by the maximum of e−Ng(x), because the function will decrease as

1√
N

away from the maximum x0.
Expanding g(x) to quadratic order around the maximum, the contribution from f(x) will

disappear very quickly away from the maximum, so we may just expand it to constant order

I ≈ f(x0)

∫ ∞
−∞

e−N(g(x0)+
g′′(x0)

2
(x−x0)2)dx = f(x0)e−Ng(x0)

√
2π

g′′(x0)
. (B.6)

This is the saddle point approximation.



Appendix C

Various Calculations

C.1 Majorana Zero Modes in RMT

In Section 2.6, investigated the differences between high energy and solid state Majorana
modes. Now we might ask the question: How to make the zero modes special? Let us revisit
the differences between Dirac modes and Majorana modes and the conditions of the random
matrix theory.

At the time of writing, this is not finished work, and we can therefore only sketch possible
approaches to this. The main idea is to establish the properties of the eigenvectors associated
with the zero modes.

Chiral Basis

This is the usual basis for chUE. Both conditions (2.65) are automatically satisfied by

i /D =

(
0 iW

iW † 0

)
, (C.1)

with W being general matrices with complex entries. If we want to make Majorana zero
modes, we require the Majorana eigenvectors to have the substructure of (2.85), corresponding
to

Ψ =


ψ1

ψ2

−ψ2
∗

ψ1
∗

 (C.2)

where ψ1, ψ2 are general column vectors with complex entries. Dirac modes can have any
substructure.

Majorana Basis

One might also approach this in Majorana basis. Here it is less clear what the matrix should
be if we require the conditions (2.65) to hold, but identification of the Majorana modes will be
easier. Let us consider a matrix of the form(

Ã W̃

−W̃ † B̃

)
(C.3)

76



APPENDIX C. VARIOUS CALCULATIONS 77

with Ã, B̃ antisymmetric and all entries real. This satisfies both antihermicity and the condition
that i /D must be real (Majorana basis).

If we require the anticommutation relation to hold, we must have

0 =

(
−σ2 0

0 σ2

)(
Ã W̃

−W̃ † B̃

)
+

(
Ã W̃

−W̃ † B̃

)(
−σ2 0

0 σ2

)
=

(
−σ2Ã −σ2W̃

−σ2W̃
† σ2B̃

)
+

(
−Ãσ2 σ2W̃

W̃ †σ2 B̃σ2

)
(C.4)

with Ã, B̃ antihermitian.
This is equivalent to

{Ã, σ2} = {B̃, σ2} = [W̃ , σ2] = 0 (C.5)

which requires the substructure

W̃ = a⊗ 1 + b⊗ iσ2 (C.6)

where a and b are general matrices with real entries acting in a subspace. We also find Ã =
B̃ = 0, because no antisymmetric matrix anticommutes with σ2 (which makes the substructure
irrelevant).

The structure of /̃D is more complicated than /D, but the identification of Majorana modes
is significantly simpler. Majorana modes are purely real, whereas Dirac modes are complex.

C.2 EFT of Flavour Coupling for Two-Flavour RMT

This result can also be obtained through random matrix theory. Consider the theory corre-
sponding to 3.3:

Zn,νchGUE,2 =

∫
dW det


mR iW 0 icR
iW † mR icR 0

0 icR mR iW
icR 0 iW † mR

 e−nTr(WW †) (C.7)

where W are complex (n + ν) × n matrices, and mR, cR are dimensionless parameters with
implicit identity matrices of appropriate sizes padded with zeros where necessary. We express
the determinant as fermionic integrals

Zn,νchGUE,2 =

∫
dWdφ1dφ2dψ1dψ2e−nTr(WW †) (C.8)

× exp



ψ1

φ1

ψ2

φ2


†

mR iW 0 icR
iW † mR icR 0

0 icR mR iW
icR 0 iW † mR



ψ1

φ1

ψ2

φ2


 .
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We write Wj as aj + ibj and do the integrals over these.

Zn,νchGUE,2 =

∫
dadbdφ1dφ2dψ1dψ2 exp

{
− n

(
a2
ij + b2ij

)
+iaij(ψ

1
i
∗
φ1
j − ψ1

i φ
1
j
∗

+ ψ2
i
∗
φ2
j − ψ2

i φ
2
j
∗
)

−bij(ψ1
i
∗
φ1
j + ψ1

i φ
1
j
∗

+ ψ2
i
∗
φ2
j + ψ2

i φ
2
j
∗
)

+mR

(
ψ1
i
∗
ψ1
i + φ1

i
∗
φ1
i + ψ2

i
∗
ψ2
i + φ2

i
∗
φ2
i

)
+icR(φ1

i
∗
ψ2
i + ψ1

i
∗
φ2
i + φ2

i
∗
ψ1
i + ψ2

i
∗
φ1
i )
}

=

∫
dφ1dφ2dψ1dψ2 exp

{ 1

n

(
ψ1
i
∗
ψ1
i φ

1
j
∗
φ1
j + ψ2

i
∗
ψ2
i φ

2
j
∗
φ2
j

+ψ1
i
∗
ψ2
i φ

2
j
∗
φ1
j + ψ2

i
∗
ψ1
i φ

1
j
∗
φ2
j

)
+mR

(
ψ1
i
∗
ψ1
i + φ1

i
∗
φ1
i + ψ2

i
∗
ψ2
i + φ2

i
∗
φ2
i

)
+icR(φ1

i
∗
ψ2
i + ψ1

i
∗
φ2
i + φ2

i
∗
ψ1
i + ψ2

i
∗
φ1
i )
}

=

∫
dφ1dφ2dψ1dψ2 exp

{ 1

4n

(
(C.9)

(ψ1
i
∗
ψ1
i + φ1

i
∗
φ1
i )(ψ

1
j
∗
ψ1
j + φ1

j
∗
φ1
j )− (ψ1

i
∗
ψ1
i − φ1

i
∗
φ1
i )(ψ

1
j
∗
ψ1
j − φ1

j
∗
φ1
j )

+(ψ2
i
∗
ψ2
i + φ2

i
∗
φ2
i )(ψ

2
j
∗
ψ2
j + φ2

j
∗
φ2
j )− (ψ2

i
∗
ψ2
i − φ2

i
∗
φ2
i )(ψ

2
j
∗
ψ2
j − φ2

j
∗
φ2
j )

+2(ψ1
i
∗
ψ2
i + φ1

i
∗
φ2
i )(ψ

2
j
∗
ψ1
j + φ2

j
∗
φ1
j )− 2(ψ1

i
∗
ψ2
i − φ1

i
∗
φ2
i )(ψ

2
j
∗
ψ1
j − φ2

j
∗
φ1
j )

+mR

(
ψ1
i
∗
ψ1
i + φ1

i
∗
φ1
i + ψ2

i
∗
ψ2
i + φ2

i
∗
φ2
i

)
+icR(φ1

i
∗
ψ2
i + ψ1

i
∗
φ2
i + φ2

i
∗
ψ1
i + ψ2

i
∗
φ1
i )
)}
.

Again we must be careful about the length of the vector in the coupling term. We make four
Hubbard-Stratanovitch transformations and get

Zn,νchGUE,2 =

∫
dσijdσ̄ijdφ

1dφ2dψ1dψ2 exp
{
− nTr(σ2

ij + σ̄2
ij) (C.10)

+σ11(ψ1
i
∗
ψ1
i + φ1

j
∗
φ1
j ) + iσ̄11(ψ1

i
∗
ψ1
i − φ1

j
∗
φ1
j )

+σ22(ψ2
i
∗
ψ2
i + φ2

j
∗
φ2
j ) + iσ̄22(ψ2

i
∗
ψ2
i − φ2

j
∗
φ2
j )

+σ21(ψ2
i
∗
ψ1
i + φ2

j
∗
φ1
j ) + iσ̄21(ψ2

i
∗
ψ1
i − φ2

j
∗
φ1
j )

+σ12(ψ1
i
∗
ψ2
i + φ1

j
∗
φ2
j ) + iσ̄12(ψ1

i
∗
ψ2
i − φ1

j
∗
φ2
j )

+mR

(
ψ1
i
∗
ψ1
i + φ1

i
∗
φ1
i + ψ2

i
∗
ψ2
i + φ2

i
∗
φ2
i

)
+icR(φ1

i
∗
ψ2
i + ψ1

i
∗
φ2
i + φ2

i
∗
ψ1
i + ψ2

i
∗
φ1
i )
}
,
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where σ are arbitrary real matrices [7]. Defining Aij = σij + iσ̄ij , A
†
ij = σij − iσ̄ij , and MR =

diag(mR,mR), we get

Zn,νchGUE,2 =

∫
dAdφ1dφ2dψ1dψ2 exp

{
− nTr(AA†) (C.11)

+

(
ψ1
i

ψ2
i

)†
(A+MR)

(
ψ1
i

ψ2
i

)
+

(
φ1
i

φ2
i

)†
(A† +MR)

(
φ1
i

φ2
i

)
+icR

((
ψ1
i

ψ2
i

)†
τ1

(
φ1
i

φ2
i

)
+

(
φ1
i

φ2
i

)†
τ1

(
ψ1
i

ψ2
i

))}
.

We first do the n + ν integrals over ψ1 and ψ2, and thereafter the n integrals over φ1 and φ2.
Again the coupling part only has n integrals.

Zn,νchGUE,2 =

∫
dAdφ1dφ2detn+ν(A+mR) exp

{
− nTr(AA†)

+

(
φ1
i

φ2
i

)†
(A† +MR)

(
φ1
i

φ2
i

)
+ c2

R

(
φ1
i

φ2
i

)†
τ1(A+MR)−1τ1

(
φ1
i

φ2
i

)}
=

∫
dA exp

{
− nTr(AA†)

}
detn+ν(A+MR)detn

(
A† +MR + c2

Rτ1(A+MR)−1τ1

)
= −

∫
dA exp

{
− nTr(AA†)

}
detν(A+MR)detn

(
(A+MR)τ1(A† +MR) + c2

Rτ1

)
= −

∫
dA exp

{
− nTr(AA†)

}
detν(A+MR)detn

(
Aτ1A

† +MRAτ1 +MRτ1A
† + c2

Rτ1

)
.

(C.12)

where we have ignored terms of O(m2
R). We have also multiplied by 1 = −det(τ1) in the third

line.
We diagonalise A = UΛV . Using a saddle point approximation we find that the Gaussian

term sets Λ ∝ 1. The Gaussian term is dominant, since it is O(n), whereas all other terms are
no higher than O(1). We then absorb V in U and multiply by 1 = ±detn(Uτ1U

†). We ignore
the overall sign.

Zn,νchGUE,2 =

∫
dUdetν(U +M)detn

(
Uτ1U

† +MRUτ1 +MRτ1U
† + c2

Rτ1

)
detn(Uτ1U

†τ)

=

∫
dUdetν(U +MR)detn

(
1 +MRUτ1Uτ1U

† +MRU
† + c2

Rτ1Uτ1U
†)

=

∫
dUdetν(U +MR) exp

{
nTr

[
ln(1 +MRUτ1Uτ1U

† +MRU
† + c2

Rτ1Uτ1U
†)
]}
.

(C.13)

We then expand the logarithm.

Zn,νchGUE,2 =

∫
dUdetν(U +MR) exp

{
nTr

[
MRUτ1Uτ1U

† +MRU
† + c2

Rτ1Uτ1U
†]}

=

∫
dUdetν(U +MR) exp

{
nTr

[
MRU +MRU

† + c2
Rτ1Uτ1U

†]} . (C.14)
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Letting n → ∞ while keeping m = 2nmR and c2 = nc2
R constant yields our final effective

partition function.

ZνchUE,2 =

∫
dUdetν(U) exp

{
1

2
Tr
[
MU +MU †

]
+ c2Tr

[
τ1Uτ1U

†
]}

. (C.15)

C.3 Full Derivation of the Coupled chUE Partition Function

We start from the partition function

Zν1,ν2

chUE,1|1+1|1(m,m′, c)

=

∫
Gl(1|1)
dU1dU2 Sdetν1(U1) Sdetν2(U2) (C.16)

× exp

{
1

2
Str
[
M †U1 +MU−1

1 +M †U2 +MU−1
2

]
+ c2Str

[
U1U

−1
2 + U2U

−1
1

]}
where M = diag(m,m′) and Str and Sdet are graded trace and determinant, and use the
parametrisation [12]

Uj =

(
eiθj 0
0 esj

)
exp

(
0 αj
βj 0

)
=

(
eiθj (1 + 1

2αjβj) eiθjαj
esjβj esj (1− 1

2αjβj)

)
(C.17)

and

U−1
j =

(
e−iθj (1 + 1

2αjβj) −e−iθjαj
e−sjβj e−sj (1− 1

2αjβj)

)
, (C.18)

where α and β are Grassmann variables and the angular variable θ extends over [−π : π],
while s ∈ [−∞ :∞] is non-compact. The change of variables is calculated with the Berezinian
(a generalisation of the Jacobian for supermatrices)1

dUj = |Sdet(Bj)|dθjdsjdβjdαj ,

Sdet(Bj) = Sdet


∂Uj11
∂sj

∂Uj11
∂θj

∂Uj11
∂αj

∂Uj11
∂βj

∂Uj22
∂sj

∂Uj22
∂θj

∂Uj22
∂αj

∂Uj22
∂βj

∂Uj12
∂sj

∂Uj12
∂θj

∂Uj12
∂αj

∂Uj12
∂βj

∂Uj21
∂sj

∂Uj21
∂θj

∂Uj21
∂αj

∂Uj21
∂β



= Sdet


0 i(1 + 1

2αjβj)e
iθj 1

2βje
iθj −1

2αje
iθj

(1− 1
2αjβj)e

sj 0 −1
2βje

sj 1
2αje

sj

0 iαje
iθj eiθj 0

βje
sj 0 0 esj


= det

[(
0 i(1 + 1

2αjβj)e
iθj

(1− 1
2αjβj)e

sj 0

)
−
(
−1

2αje
iθj 1

2βje
iθj

1
2αje

sj −1
2βje

sj

)(
e−iθj 0

0 e−sj

)(
βje

sj 0
0 iαje

iθj

)]
det

[(
e−iθj 0

0 e−sj

)]
= −i(1 + αjβj)e

iθj (1− αjβj)esje−iθje−sj

= −i. (C.19)
1This is also calculated in [12].
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We calculate parts of (C.16) one at a time

Sdetνj (Uj) = eνj Str(ln(Uj))

= exp

{
νj Str

(
ln

((
eiθj 0
0 esj

))
+

(
0 αj
βj 0

))}
= eνj(iθj−sj) (C.20)

1

2
Str(MUj +MU−1

j ) =
1

2
Str

((
m 0
0 m′

)(
2(1 + 1

2αjβj) cos(θj) αj(e
iθj − esj )

−βj(esj − e−iθj ) 2(1− 1
2αjβj) cosh(sj)

))
= m(1 +

1

2
αjβj) cos(θj)−m′(1−

1

2
αjβj) cosh(sj) (C.21)

c2Str
(
UiU

−1
j

)
= c2Str

((
eiθi(1 + 1

2αiβi) eiθiαi
esiβi esi(1− 1

2αiβi)

)
×
(
e−iθj (1 + 1

2αjβj) −e−iθjαj
e−sjβj e−sj (1− 1

2αjβj)

))
= c2

(
ei(θi−θj)(1 +

1

2
αiβi)(1 +

1

2
αjβj) + eiθi−sjαiβj (C.22)

−esi−sj (1− 1

2
αiβi)(1−

1

2
αjβj)− esj−iθiαjβi

)
.

Inserting this in (C.16), we find

Zν1,ν2

chUE,1|1+1|1(m,m′, c)

=

∫
ds1ds2dθ1dθ2dα1dα2dβ1dβ2 e

ν1(iθ1−s1) eν2(iθ2−s2)

× exp
{
m(1 +

1

2
α1β1) cos(θ1)−m′(1− 1

2
α1β1) cosh(s1) (C.23)

+m(1 +
1

2
α2β2) cos(θ2)−m′(1− 1

2
α2β2) cosh(s2)

+c2
(

2 cos(θ1 − θ2)(1 +
1

2
α1β1)(1 +

1

2
α2β2) + eiθ1−s2α1β2 + eiθ2−s1α2β1

−2 cosh(s1 − s2)(1− 1

2
α1β1)(1− 1

2
α2β2)− es2−iθ1α2β1 − es1−iθ2α1β2

)}
.

From here we expand the Grassmann part of the exponential. Only the terms that contain
all four Grassmann variables survive

Zν1,ν2

chUE,1|1+1|1(m,m′, c)

=
1

(2π)2

∫
ds1ds2dθ1dθ2 e

ν1(iθ1−s1)eν2(iθ2−s2) (C.24)

× exp
[
m cos(θ1) +m cos(θ2)−m′ cosh(s1)−m′ cosh(s2) + 2c2(cos(θ1 − θ2)− cosh(s1 − s2))

]
×
(

1/4(m cos(θ1) +m′ cosh(s1))(m cos(θ2) +m′ cosh(s2)) + c2/2(cos(θ1 − θ2)− cosh(s1 − s2))

+c2/2(cos(θ1 − θ2) + cosh(s1 − s2))(m cos(θ1) +m cos(θ2) +m′ cosh(s1) +m′ cosh(s2))

−c4(sin(θ1 − θ2) + i sinh(s2 − s1))2
)
,

where the prefactor comes from normalisation. Remember that it should be 1 for m = m′,
which we check explicitly.
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Differentiation with respect to m yields the chiral condensate

Σν1,ν2

chUE,1|1+1|1(m, c)

=
1

(2π)2

∫
ds1ds2dθ1dθ2 e

ν1(iθ1−s1)eν2(iθ2−s2) (C.25)

× exp
[
m1 cos(θ1) +m2 cos(θ2)−m1 cosh(s1)−m2 cosh(s2) + 2c2(cos(θ1 − θ2)− cosh(s1 − s2))

]
×
[
1/4 cos(θ1)(m2 cos(θ2) +m2 cosh(s2)) + 1/4(m1 cos(θ1) +m1 cosh(s1)) cos(θ2)

+(cos(θ1) + cos(θ2))
(

1/4(m1 cos(θ1) +m1 cosh(s1))(m2 cos(θ2) +m2 cosh(s2))

+c2 cos(θ1 − θ2)

+c2/2(cos(θ1 − θ2) + cosh(s1 − s2))(m1 cos(θ1) +m2 cos(θ2) +m1 cosh(s1) +m2 cosh(s2))

−c4(sin(θ1 − θ2) + i sinh(s2 − s1))2
)]
.

From here we show the issues that arise when trying to evaluate the spectral density.

Numerical Evaluation of Spectral Density

The integrand of Equation (C.25) is highly oscillating along the imaginary axis, and we there-
fore require numerical regularisation

<(Σν1,ν2

chUE,1|1+1|1(iλ, c))→ lim
ε→0
<(Σν1,ν2

chUE,1|1+1|1(iλ+ ε, c)), (C.26)

where ε → 0 is a numerical limit rather than an analytical one. The smaller ε, the smaller the
discrepancy until a certain point. By fitting a curve to the points in the reliable regime, we may
deduce the value in ε = 0. However, this value fluctuates heavily with the cut-off of the fit
even with the cut-off in the reliable regime. This is why the limiting cases are considered.

C.4 Different Cases of ν1 and ν2

For ν1, ν2 < 0 we have:

Zν1,ν2

chUE,1|1+1|1(M) =

∫
Gl(1|1)
dA exp

[
− Str

(AA†
4c2

)]
Sdet−ν1−ν2(M † +A)

×Z(ν1),nz
chUE ([M +A†][M † +A])Z

(ν2),nz
chUE ([M +A†][M † +A]) (C.27)

which for c� 1 becomes

Zν1,ν2

chUE,1|1+1|1(M) =

∫
Gl(1|1)
dA exp

[
− Str

(AA†
4c2

)]
Sdet−ν1−ν2(M † +A)

×Z(ν1),nz
chUE (MM †)Z

(ν2),nz
chUE (MM †) (C.28)

Since ν1 +ν2 < 0, we can again directly identify n = 0 and ν = ν1 +ν2 from equation (2.67).



APPENDIX C. VARIOUS CALCULATIONS 83

For ν1 ≥ 0 and ν2 < 0 we have:

Zν1,ν2

chUE,1|1+1|1(M) =

∫
Gl(1|1)

dA exp
[
− Str

(AA†
4c2

)]
Sdetν1(M +A†)Sdet−ν2(M † +A)

×Z(ν1),nz
chUE ([M +A†][M † +A])Z

(ν2),nz
chUE ([M +A†][M † +A]) (C.29)

which for c� 1 becomes

Zν1,ν2

chUE,1|1+1|1(M) =

∫
Gl(1|1)

dA exp
[
− Str

(AA†
4c2

)]
Sdetν1(M +A†)Sdet−ν2(M † +A)

×Z(ν1),nz
chUE (MM †)Z

(ν2),nz
chUE (MM †) (C.30)

Assuming ν1 + ν2 ≥ 0:
We compare this to equation (2.67) and find n = −ν2 and n+ ν = ν1, which is consistent with
n′ = |ν1|+|ν2|−|ν1+ν2|

2 .
Assuming ν1 + ν2 < 0:

We compare this to equation (2.67) and find n = ν1 and n − ν = −ν2, which is also consistent
with n′ = |ν1|+|ν2|−|ν1+ν2|

2 .

We can let ν1 ↔ ν2 and repeat the arguments.

C.5 Special Cases of Eigenvalue Spectrum for Quenched chGOE

In all cases the eigenvalue spectrum is

ρ(λR) =
∑
k

〈δ(λR − λk)〉 (C.31)

where λk are the eigenvalues of our system, which all appear along the imaginary axis.

For n = 1 and ν = 0

The special case n = 1 and ν = 0 has matrices of the form(
0 ix
ix 0

)
(C.32)

for mR = 0, making the eigenvalues

iλ± = ±ix. (C.33)

The quenched partition function is

Zn=1,ν=0
chGOE,2|2(mR) =

1

σ
√

2π

∫
dx e−

x2

2σ2 (C.34)

which makes the quenched spectrum

ρ(λR) =
1

σ
√

2π

∫
dx [δ(λR + x) + δ(λR − x)] e−

x2

2σ2

=
2

σ
√

2π
e−

λ2
R

2σ2 . (C.35)
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For n = 1 and ν = 1

The special case n = 1 and ν = 1 has matrices of the form 0 0 ix
0 0 iy
ix iy 0

 (C.36)

for mR = 0, making the eigenvalues

λ0 = 0 , iλ± = ±i
√
x2 + y2 (C.37)

The quenched partition function is

Zn=1,ν=1
chGOE,2|2(mR) =

1

2πσ

∫
dxdy e−

x2+y2

2σ2 (C.38)

which makes the quenched spectrum

ρ(λR) = δ(λR) +
1

2πσ2

∫
dxdy

[
δ(λR +

√
x2 + y2) + δ(λR −

√
x2 + y2)

]
e−

x2+y2

2σ2 (C.39)

We switch to polar coordinates r =
√
x2 + y2 and θ = arctan

( y
x

)
with the Jacobian r. The

angular integral gives 2π, and we arrive at

ρ(λR) =
1

σ2

∫
dr r [δ(λR + r) + δ(λR − r)] e−

r2

2σ2

=
2

σ2
λRe

− λ2
R

2σ2 . (C.40)



Appendix D

Statistical Test of Numerics versus
Theoretical Distribution

In this appendix, we make proper statistical comparisons between the numerical and analytical
curves. They are in obvious visual agreement in Chapter 6, so this should just be considered
a jovial addition for the single chUE ensemble to underline the comparison. We perform this
analysis for n = 40 and 105 matrices. For an introduction to the statistical tests used here, we
recommend [51].

χ2 Calculation

To estimate the error on the numerical results, we assume the numerical distribution to be a
continuous one and fit a third degree polynomial to a small section of it, see Figure D.1. The
root mean square error of the fit is used to estimate the χ2 error of the analytical curve, see
Figure D.2. We find the reduced χ2 to be

χ2
red = 0.54. (D.1)

The reduced χ2 should be around 1, which means the numerical and analytical distributions
are in very good agreement (or that we have overestimated our errors).

Kolmogorov-Smirnov Test

The Kolmogorow-Smirnow test is estimation of how much two cumulative distributions differ.
We use standard statistical packages from Matlab to calculate the associated probability that
the two curves are the same. We find the probability of the numerical and analytical distribu-
tions being the same to be 79.3%. This is lower than we would have expected, given that the
cumulative curves are indistinguishable when plotted together, but is still good agreement.
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Figure D.1: Estimation of the numerical error by polynomial fit of small section. Plotted is a small
section of the eigenvalue density of a single chUE for n = 40 and ν = 1. We find the error
to be ±0.0081.

Figure D.2: Eigenvalue density of random matrix simulation for single chUE with n = 40 and ν = 1
plotted with estimated error bars. Plotted on top is the analytical distribution. We see
that it is well within the errors bars, which suggests that we may have overestimated our
uncertainties. However, we still find χ2

red = 0.54, which is good agreement.
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