

U N I V E R S I T Y O F C O P E N H A G E N
F A C U L T Y O F S C I E N C E

MSc in Computational Physics

Evaluation of Google TPUs for High
Performance Physics Calculations

Albert Alonso de la Fuente

aaf@di.ku.dk

Supervised by Kenneth Skovhede & Carl-Johannes Johnsen

May 2021

Albert Alonso de la Fuente

aaf@di.ku.dk

Evaluation of Google TPUs for High Performance Physics Calculations

MSc in Computational Physics, May 2021

Supervisors: Kenneth Skovhede and Carl-Johannes Johnsen

University of Copenhagen

Faculty of Science

Niels Bohr Institute

Blegdamsvej 17

Acknowledgements

I would like to express my gratitude to the eScience department, or at least the people I

had the chance to meet during this chaotic year. Special thanks to Kenneth Skovehede and

Carl Johnsen for their constant support and help, as well as to the Veros Friday meeting

for being a constant remainder that working from home did not mean working alone. I

would like to specially thank Dion Hafner for every useful comment and suggestion he has

given me during this thesis.

I am grateful to the JAX-on-TPU team that granted me access to the new alpha TPU-VMs

and replied to my queries with very insightful and extensive answers. On a similar note, I

would also like to thank the TensorFlow Research Foundation for providing me with free

access to TPUs and being extremely helpful whenever I made a mistake, such as expending

300$ on a single night by forgetting to turn off the machine. Without them this thesis

would not have happened, literally.

Finally, I am grateful to my family, whose expertise on theoretical physics and complex

mathematical abstractions have always been very insightful, and specially I want to thank

Mireia, without whom I would not have finished this thesis.

Thank you.

iii

Abstract

This thesis evaluates the use of novel AI chips as a solution for high performance large

scale scientific simulations. By looking for fast and energy efficient accelerators, we

assess the repercussions of porting physics calculations to Matrix Engines based acceler-

ators, purposely designed to run efficiently the linear algebra found on Deep Learning

workflows.

In our study, we focus on the use of Google’s in-house Tensor Processing Units (TPU) as

well as Google’s machine learning research programming library JAX, due to it’s versatility

of backends and its similarity to the most used numerical python libraries. We present

an alternative method to compute finite difference derivatives that leverages the matrix

operation capabilities of TPUs outperforming by 2 times the performance of conventional

vector approaches. Simulations whose main computing part mostly consists of matrix

multiplications are found to be up to 3 times faster when used on a single core as opposed

to their performance on a entire Graphical Processing Units.

We reproduce an implementation of the Ising Model developed on TensorFlow using our

approach on JAX which indicates that the XLA compiler may performs better when used

on TensorFlow graphs, despite JAX providing a more readable and familiar code.

Finally, we consider the viability of porting a general circulation model to make efficient

use of TPUs while we outline the reasons to consider Matrix Engines as a viable scalable

solution for certain type of physical simulations.

v

Contents

1 Introduction 3

2 Hardware Accelerators 7

2.1 Domain Specific Accelerators . 7

2.1.1 Graphical Processing Units . 8

2.1.2 Field-Programmable Gate Arrays 8

2.1.3 Application-Specific Integrated Circuit 9

2.2 Google Cloud TPUs . 10

3 JAX and Benchmarking 17

3.1 The XLA Compiler . 17

3.2 JAX: An accelerated NumPy Library . 19

3.2.1 Just-In-Time Compilation . 19

3.2.2 Single-Program Multiple-Data . 21

3.2.3 JAX on TPU . 21

3.3 Performance Analysis . 24

4 Partial Differential Equations 27

4.1 Introduction . 27

4.2 Benchmarks . 29

4.2.1 Heat Diffusion . 29

4.2.2 Wave Equation . 31

4.2.3 Shallow Water . 33

4.3 Vector Operations . 35

4.3.1 Implementation . 35

4.3.2 Results . 40

4.4 Matrix Multiplication . 42

4.4.1 Implementation . 43

4.4.2 Results . 46

4.5 Tiles Matrix . 48

4.5.1 Implementation . 48

4.5.2 Results . 50

4.6 Direct Solution by Tensor Product . 52

4.6.1 Implementation . 53

vi

4.6.2 Results . 56

4.7 Discussion . 57

4.7.1 Performance and Efficiency . 57

4.7.2 Accuracy . 59

4.7.3 Scalability . 60

5 Complex Systems: Ising Model 63

5.1 The Ising Model . 64

5.2 TPU Implementation . 65

5.3 Results . 69

5.4 Discussion . 71

6 Porting of existing simulations 73

6.1 Veros: The versatile ocean simulation . 73

6.1.1 Introduction . 73

6.1.2 Assessment for TPUs . 74

6.2 General Guidelines on Good Candidates 80

7 Conclusion 83

7.1 Future Work . 84

8 Bibliography 85

Appendices 89

A Finite Differences 89

B Hardware Specifications 91

Listings 95

Contents 1

1Introduction

Simulations based on physical phenomena are heavily used both in academia as well as

industry and most of the times rely on classical numerical methods to find approximate

finite solutions to continuous problems. Therefore, it is common to look for novel solutions

that can allow these computations to be run faster and more efficiently.

Over the last decades, the High-Performance Computing (HPC) community has embraced

the use of highly parallel accelerators, such as Graphic Processing Units (GPUs), to

outperform conventional Central Processing Units (CPUs) by exploiting their massive

parallel capabilities [1]. Despite their compelling performance improvement over more

classical general purpose systems, GPUs still present certain inefficiencies to the scientific

workflow that the community is actively trying to overcome [2]. In particular, one of the

main issues of these inefficiencies is the large amount of electricity they consume, which

makes data centers very expensive to maintain.

Several proposed solutions rely on the use of application-specialization hardware [3].

Despite not being a novel approach, since Field Programmable Gate Arrays (FPGAs) have

been used effectively on scientific workloads for years [4], it does not mean that they are

the best candidate to replace the current used processing units. For instance, FPGAs also

require domain specific knowledge in order to be programmed efficiently and therefore do

not present the commodity that current GPUs workloads do.

In recent years, the Artificial Intelligence (AI) field has seen a tremendous increase on

popularity, on academia as well as on the industry [5]. The most prominent reason

of its stunning performance, and hence, its demand, is due to their impressive results

found using Deep Learning (DL) or Deep Neural Networks (DNN) [6]. DL workloads

are characterized by a massive use of matrix operations during training, and the use

of GPUs has also been proved to be more efficient than classical computing units [7, 8].

Nevertheless, due to the massive amount of data and computing resources that the Machine

Learning (ML) workflows are exposed to, the ML community has found themselves on a

3

similar position as the scientific computing community, looking for novel solutions that

can perform similarly to GPUs on a more power efficient way. This has also lead them to

propose Application-Specific Integrated Circuits (ASIC) solutions rather successfully [9].

Since DL is the most resource intensive ML workflow, it is to expect that the most popular

candidates for novel hardware are indeed targeting DL core computation. The most

prominent calculation in DL processes is the General Matrix Multiplication (GEMM). A

common approach in order to compute them, is to create Matrix Engines (ME) based on

systolic arrays [10, 11]. Fortunately, GEMM is also a linear algebra operation commonly

found in many scientific programs [12].

Due to their high cost of production, the proposed ASIC solutions tend to be general-

purpose enough to cater to the diversity ML workflows might require. Additionally, they are

also accompanied with high productivity array-based programming frameworks for high

level programming languages such as Python/Numpy, Julia, R, etc. since the industry keeps

increasing and data scientists tend to develop proficiency on those languages. Analogously,

due to the vast amount of scientific libraries available on those high level languages, most

physicist are also comfortable on these array-based programming frameworks. In this

regard, the AI community is ahead of the scientific community as it still is common to port

Matlab/Numpy scientific simulations to low level languages such as C/C++ or Fortran in

order to gain speedups of orders of magnitudes. However, is it also common that these

portings are inefficiently implemented and with the cost of large amount of programming

time for the scientist [13]. Therefore, a scalable solution, such as the one usually found on

ML libraries, where no porting to a low level languages is required but still achieving large

speedups, would meant a more reliable, reproducible and fast development of scientific

solutions. Hence, it begs the question: Can the scientific computing community get

the advantage of using industry-backed new developments to perform their numerical

simulations, or should the AI chips remain on the ML field?

The aim of this thesis is to give an insight on whether the use of novel AI chips has a place

on large-scale long-running physics simulations. Focusing on the performance of partial

differential equations (PDEs) solvers and stencils operations. It is important to indicate

that our study will be used on the use of Google Tensor Processing Units (TPUs)[14] and

the JAX programming library [15], which serves as a frontend to the high performance

XLA compiler[16], but the general results and ideas are expected to be applicable to other

ME hardware accelerators and ML libraries, as there is a tendency to have similar features

overall.

The research will focus on the following questions in order to reach a conclusion:

• How difficult it is to make use of this novel hardware for non ML related calculation?

4 Chapter 1 Introduction

• What advantages and disadvantages does this new programming model has?

• How are long running simulations affected by the lower precision data types found

on ML accelerators?

• Are novel AI chips the solution to scale physics prototypes?

In order to answer them, an evaluation on the performances of common numerical

calculations will be carried, specifically in the finite difference method for PDE solvers.

Additionally, in an attempt to see how extensible to other types of simulations the proposed

methods are, an updated implementation of an Ising model will be made to compare with

their existing performance results.

Thesis outline

The thesis structure is as follow.

On Chapter 2, an introduction to the current state on AI ASIC hardware accelerators

will be done as well as brief contextualization of the hardware specifications of Google

TPUs. Chapter 3 begins by examining the advantages and disadvantages found on JAX,

the chose programming language, and ends with the current methodology to carry use

and benchmark TPU programs. Chapter 4 will deal with the most common approach

found on PDE solvers as well as some proposed methods to make a better utilization of the

hardware. Each method will be accompanied with benchmarks and discussions of their

strength and weakness. Chapter 5 will focus on validating results obtained on previous

studies as well as comparing them to the results obtained with our proposed methods and

tools. Since the frameworks and hardware used are still on alpha state and therefore are

subject to drastic changes, having an older paper to compare with gives us the change to

review improvement in performance of the compiler used over the last couple of years.

Lastly and based on the observation from the results, I will evaluate the viability of porting

an in-house ocean simulation to use TPUs efficiently, as well as provide a general guidance

for evaluating new translations.

5

2Hardware Accelerators

General processing units such as CPUs are great due to their vast versatility which allow

them to perform the operations needed to run a wide range of applications. However,

having to cater a large diversity of programs does presents some inefficiencies that are not

ideal for simple repetitive workloads. One of the reasons for this lack of efficiency is due

to performing the fetching and interpreting of instructions constantly, which may end up

costing thousands of times more than the what is actually required to compute it [17].

These inefficiencies however have not supposed a large inconvenience for the industry

as up until recently, in order to overcome the large overhead one could simple wait until

the performance and efficiency CPUs increased in accordance to Moore’s Law [18]. The

persistent increase in performance has facilitated the development of additional units, such

as the ones capable of performing Single Instruction Multiple Data (SIMD) instructions.

The relevance of SIMD operations is that they can be used to perform vector operations

to a memory block instead of repeating the same instruction, which has to be fetched, to

each element individually. These units are the reason why array-based frameworks such

as NumPy and Matlab can achieve execution times on the same order of magnitude as

high performance low level compiled languages such as Fortran and C++. Nevertheless

and despite discussion on whether Moore’s Law is approaching its end of life [19], it

is clear that the price increase of producing transistor-denser units makes it harder to

depend on them. For that reason, engineers and system architects are actively looking into

alternatives to the von Neumann architecture, the model that current CPUs are based on,

with most of the interest and successful results appearing in domain specific acceleration

options [20].

2.1 Domain Specific Accelerators

We define domain specific accelerators (DSA) or hardware accelerators as those physi-

cal computing engines specialized on performing specific tasks for a particular domain

7

efficiently. We will briefly introduce the three most common accelerators to establish the

current situation and understand the reasoning behind the recent surge of these novel

accelerators as proposed solutions to continue the steady improvement in computing

performance of the recent decades.

2.1.1 Graphical Processing Units

Originally designed to render images on screen, Graphical Processing Units (GPUs) are

specialized on performing element-wise floating point operations in order to represent

3D graphics on 2D surfaces. This made GPUs massive parallel computing units capable

of performing basic operations on thousands of threads simultaneously. Currently, the

number of threads on a single GPU can range from the hundreds to the ten thousands.

Figure 2.1 shows a simplistic generic scheme of a GPU in comparison with the schematics of

a CPU. While the conventional CPU has a low count of cores designed to excel at executing

sequential operations on a wide range of tasks, GPUs present more simple computing units

able to perform the same tasks on parallel, achieving massive throughput to the cost of

flexibility.

Over time and with the releases of specialized toolkits such as CUDA [21], GPUs became

general purpose processors which increase their use on scientific tasks. Due to the large

market share GPUs currently have, it does not suppose any problem to get access to them

at a relative low cost. Therefore, GPUs are a very convenient and powerful accelerator for

applications where massive parallel tasks occur.

During the last decades, new algorithms have been implemented to run on GPUs efficiently

[22, 23]. Thus, nowadays GPUs are being use extensively on physics simulations [24,

25]. Some reasons of it success are, other than its massive speedups over conventional

hardware, its power efficiency in embarrassingly parallel applications and its relatively

ease to use in comparison to other accelerators.

However, for all the simultaneous Arithmetic Logic Units (ALUs) computations, a GPU

still has to access registers or shared memory to read and write intermediate results. This

overhead can be reduced with existing techniques such as memory coalescing. However,

the reality is that most programs will not go that far as efficient GPU programming requires

high skills.

2.1.2 Field-Programmable Gate Arrays

A Field-Programmable Gate Array (FPGA) device can be programmed to remove the

overhead usually found on general purpose architectures. FPGAs allow the programmer to,

8 Chapter 2 Hardware Accelerators

HOST MEMORY

DEVICE MEMORY

CACHE

SM

CONTROL

ALU ALU ALU

ALU ALU ALU

ALU ALU ALU

ALU ALU ALU

ALU ALU ALU

ALU ALU ALU

ALU ALU ALU

CACHE

SM

CACHE

SM

CONTROL CONTROL

ALU ALU ALU

ALU ALU ALU

ALU ALU ALU

ALU ALU ALU

ALU ALU ALU

ALU ALU ALU

ALU ALU ALU CONTROL

MEMORY

PCI BUS

GPU CPU

L2

ALU

ALU ALU ALU

ALU ALU ALU

ALU ALU ALU

ALU ALU ALU

ALU ALU ALU

ALU ALU ALU

ALU ALU ALU

L1

CONTROL

ALU

L1

Figure 2.1.: Simplified block diagram of the internals of GPUs and CPUs.

from a very low level approach, control the physical connections on the integrated circuit

itself through the use of dynamic gates between transistors.

FPGAs present certain advantage to regular processors, such that, a programmer with a

high degree of knowledge, can design chips able to perform specific tasks really efficiently.

In addition, because the circuit is mainly dynamically programmed instead of built dur-

ing manufacturing, the use of the same chip can be completely changed on a moment

without any hardware modifications. This versatility is useful on scenarios where a few

different high performance workflows can be expected. Hence, it provides an option to

run simulations with very low latency as well as low power consumption in fairly stables

executions. For those reasons, FPGAs are currently being use to run several HPC physics

simulations, such as computing quantum simulations [26] or molecular dynamics [27]

among others.

Nevertheless, the main disadvantage in order to create an efficient FPGA to run your

simulation is the need of extensive knowledge that most physicists do not have. Moreover,

the unreasonably long compiling times and less than ideal working tools, make FPGAs not

suitable for being the de facto accelerator for physics calculations. Instead, GPUs offer a

lot more convince while being fairly less expensive.

2.1.3 Application-Specific Integrated Circuit

When a tasks becomes too frequent that even the versatility of an FPGAs becomes un-

necessary and you want to get rid of their performance limitations, you can start looking

2.1 Domain Specific Accelerators 9

for Application-Specific Integrated Circuit (ASIC). Despite its high initial cost and poor

programmability, ASIC accelerators provide the highest efficiency. Usually, engineers are

able to remove most of the overhead as well as to optimize memory access patterns for

the given task. This explains why, recently, large corporations are spending their sizable

budgets on developing ASIC solutions to cater all the AI computations currently running

on their data centers [14].

Therefore, we will focus our attention on ASIC hardware. Specifically, on those that make

use of Matrix Engines (ME) as their core architecture. Some examples of Matrix Engines

based accelerators are shown in Table 2.1. It is relevant to notice that most of the previous

mentioned accelerators are marketed towards AI workloads design for high performance

but also high energy efficiency. And even though they are intended to perform GEMM,

most are flexible enough to be considered general purpose units, with an accelerator

attached.

Accelerator ME Size (PE) TFlops/s TDP (W) ME Engine

IBM Power10 4x4 16.3 190 Matrix Accelerator
Google TPU v1(Chip) 256x256 92(int8) 40 Systolic Array
Google TPU v2(Chip) 128x128 46 280 Systolic Array
Google TPU v3(Chip) 128x128 123 450 Systolic Array
Huawei Ascend 910 16x16x16 320 310 Cube Engine
NVIDIA Tesla V100 4x4x4 112 300 Tensor Core
NVIDIA Tesla A100 4x4x4 312 250 Tensor Core

Table 2.1.: Overview of some of the most popular accelerators using Matrix Engines [28, 29].

2.2 Google Cloud TPUs

One of the first and more popular solutions for Deep Learning accelerator has been Google

Cloud Tensor Processing Units (TPUs). Their performance-efficiency balance as well as

their continuous record breaking reports on ML contests have given them a position of

advantage over their rivals. Being the product of one of the largest companies AI companies

in the world has also helped on their consolidation. Because of that, we have decided to

based our study on their chip, since we expect it to remain on the edge of ME accelerators

as well as to continue with a similar architecture for the years to come.

In this section, we will briefly introduce their main qualities together with what we consider

some of their limitations. For that, we will use the third generation TPU currently available

on Google Cloud. Despite some news regarding a fourth generation chip, we did not have

access to them during this thesis and all the discussions are based on v3. We expect that

most of the points will remain valid for several generations since the main focus seems to

be on increasing performance and not structural changes.

10 Chapter 2 Hardware Accelerators

Figure 2.2.: Picture of a third generation Tensor Processing Unit.

Device Architecture

As seen in Figure 2.2, a TPU Unit consists of 4 TPU chips. On each of those chips, there

are 2 TPU cores. Currently, there is no way to differentiate between cores inside a TPU

unit and it can be considered that the communication between cores inside the same chip

is as fast as the communication between cores of different chips from the same unit.

In contrast to GPUs, none of the cores share memory with each other. In a third generation

TPU, a core has 16GB of High Bandwidth Memory (HBM). That is similar to what an entire

NVIDIA V100 GPU has access to 1. Hence, using the 8 cores of a single TPU Unit would

grant you 128GB of HBM while using 32 128-bit buses to four short stacks of DRAM on

each chip (2 cores).

Inside each TPUv3 core, there are two matrix multiplication units (MXU). The MXU

consists of a 2D systolic array of 128×128 identical Processing Elements (PEs) that support

floating point fused multiply-accumulate (FMAC) arithmetic. Thus, the MXU is capable of

performing 16384 ALUs operations every clock cycle. Considering that its reported clock

cycle is 940MHz, the theoretical limit for a TPU chip can be computed as

940 · 106 cycles
s
· 2cores

chip
· 16384 FMAC

cycleMXU
· 2FLOPS

FMA
= 123TFLOPS/s

Additionally, each core has core sequencer fetcher which interprets the instructions from the

software-managed Instructor Memory and executes scalar operations using a 4K scalar data

memory and a 32 scalar registers of 32 bits. Moreover, since the interpreted instructions

used are 322-bits long (VLIW), the sequential unit is able to perform 8 operation per

1NVIDIA also offers a 32GB of HBM configuration

2.2 Google Cloud TPUs 11

fetching, such as 2 scalar, 2 vector ALU, vector load and store and queue data from the

MXUs.

As can be seen in Figure 2.3, the TPU core also has a vector processing unit (VPU) to

perform SIMD operations while also containing the vector memory of the chip, which can

hold up to 32K 128× 8 32-bit elements (16MiB), in addition the the vector registers than

can store up to 4KiB with 128× 8 dimensions.

The Transpose Permute Unit does 128×128 matrix transposes, reductions and permutations

of the VPU lanes.

Matrix

Multiply

(MXU)

Matrix

Multiply

(MXU)

Core Sequential

Unit

Transpose

Permute Unit

Vector

Unit

(VPU)

Interconnect

Router

(ICI)

HBM

Memory

16 GiB

Tensor Core

Figure 2.3.: Simplified scheme of the internal architecture of a Tensor core of a third generation
TPU

Systolic Array

Since the MXU is the main computing power of a core, and it is optimized for MAC

operations, the program should make use of it extensively in order to get the maximum

performance out of the unit.

It is interesting to understand why exactly having a systolic array inside the accelerator

allow it to perform dense matrix-matrix calculations efficiently.

As the systolic part of its names suggests, data flows through the chip at each clock cycle,

similarly to blood flowing through the heart at each heartbeat. This means that the output

from the multiplication of one PE goes as input to the following PE, where it is added to

the other multiplication.

12 Chapter 2 Hardware Accelerators

Passes the output as input to the next PE

PE

MEMORY
Loads

input

from

Memory

Saves

intermidate

results to

Memory

PE

MEMORY

PE PE PE

Loads

input

from

Memory

PE

Saves

final

result to

Memory

Figure 2.4.: Illustration of the idea behind systolic arrays in a simple scheme.

Therefore, it avoids the need of writing and reading intermediate results on the register or

the shared memory. The MXU only needs to load the matrices once to feed them into the

systolic array and save the final output. This flow of data can be seen on Figure 2.5.

Figure 2.5.: Google own MXU scheme. Do a quick graph where it kind of follows the path of the
value.

In contrast, GPUs without Tensor Cores will be able to perform operations simultaneously,

which is a great speedup with respect to conventional CPUs, but will still be bottlenecked

by their memory accesses.

Brain floating point precision

Computer systems have to save real numbers in bit representations. The precision of these

representations are determined by the number of bits and the location of the decimal point.

We will use the IEEE floating points definitions to talk about data types.

2.2 Google Cloud TPUs 13

Since machine learning research has proved that using lower precision arithmetic does not

degrade their prediction accuracy significantly, they can get away using lower precision

values to reduce their model’s memory requirements as well as to speedup their calculations

[30]. The most precise numeric representation that a third generation TPU can operate

with is single floating points (float32). Because physics simulations try to recreate real

continuum phenomena, it is common to use double floating points (float64). Hence,

it is still not clear if the precision requirements can make MXU not suitable for certain

physics workloads. The reduction is more drastic however when we make use of the MXU

inside the TPU. The MXU only works with brain-floating points (bfloat16). Namely, it

will convert the input from float32 to bfloat16 to perform the multiplication and it will

return an output of float32 for the addition. At the moment of writing this thesis, a

similar approach is used on NVIDIA Tensor Cores[31].

Some studies have shown that the use of mix precision for solving GEMM can be suitable

outside of DL computations [32, 33]. Additionally, there has been a tendency to decrease

precision on certain simulations in order to reuse the computational power to increase

their range [34]. Nevertheless, in physic simulations, low precision can lead to increasing

divergences on the results and should be studied on each application individually.

Another interesting point on the lower precision of TPUs is the use of brain floating

points instead of the standard IEEE half-floating point (float16). Brain floating points

(bfloat16) is a custom floating point format design to work on DL applications, where

the exponent has the same range as float32 while reducing the number of bits of the

mantissa part. That means that the resolution of the decimals is further reduced to 7 bits

instead of the 10 found on IEEE half-precision float16, thus, the precision is between two

and three decimal digits. A comparison can be seen on Figure 2.6.

IEEE FP16

BFLOAT 16

IEEE FP32

Mantisa

Exponent

Sign

Figure 2.6.: Comparison between standard IEEE formats and Brain floating points.

Power efficiency

One of the original reasons for TPUs conceptualization was the need to find a more

efficient accelerator to run machine learning algorithms on the data centers at Google.

As a consequence, the first TPU would only consume, based on its TDP value, 75W per

chip, which is considerably lower than any GPU. However, on the second generation, they

were able to increase performance in such capacity, that even though the TDP increased to

14 Chapter 2 Hardware Accelerators

280W , the throughput achieved made it still worth it. Similarly, when the third generation

of TPUs was release, with almost three times the performance of the previous generations

as seen in Table 2.1, which required an increase on its TDP to 450W . Hence, we assume

that the power consumption of an enteire TPU would be around ∼ 1800W .

Looking at the original paper Jouppi et al. [14], it is stated that even though the TDP on

a v1 TPU is 75W , the energy consumption measures on busy workloads was 40W . Even

though this is expected, we will be assuming TDP value as actual consumption during this

thesis as there is no way to measure actual energy consumption. As a consequence, it will

make an unfair comparison as other devices or even newer generation of TPUs may not

have such a large gap between TDP and actual consumption.

Since we know the TDP of a current generation TPU as well as its theoretical maximum

performance, we expect that a TPU will be able to produce 27.33 GFLOPS/W .

TPU Pods

Lastly, one of the main advantages of TPUs is their high connectivity between devices, as in

theory, it makes TPU highly scalable solutions. We use the term Pod to describe a collection

of TPUs devices connected over network . For a third generation TPU, a Pod provides a

maximum configuration of 256 devices for a total 2048 cores and 32 TiB of HBM memory,

with its chips on a 16× 32 2D torus form due to each chip containing 4 connections of 656

Gbits/s each as seen on Figure 2.7

The reason for having high speed connections between different devices is due to having

physical connections between the devices themselves, without the need of going through

the host. The interconnection of the devices are designed in 4 connections per chip, hence,

it is to expect that the speed between further devices is worse than between near ones.

TPU TPU TPU TPU TPU

TPU TPU TPU TPU TPU

TPU TPU TPU TPU TPU

TPU TPU TPU TPU TPU

POD16x16

Figure 2.7.: TPU v3-512 slice with a 2D Torus Topology.

2.2 Google Cloud TPUs 15

3JAX and Benchmarking

With the purpose of motivating the transition of high efficiency languages into running

large scale physical simulations, a high performance programming framework is needed.

At the moment, there are several frontends to XLA, the compiler that allows code to

be run on TPUs, such as TensorFlow, JAX, PyTorch, Nx and Julia. In this section, we

justify the decision of using JAX as our chosen frontend. Additionally, the advantages

and disadvantages of JAX are discussed along with the past and current state of TPUs in

relation to working with JAX, describing the limitations experienced during this project.

This section it is not expected to be a tutorial on JAX, but to serve as an introduction to

the basic features that will allow to understand the discussions and implementations that

will appear during the remaining parts of the dissertation.

3.1 The XLA Compiler

XLA is a high performance linear algebra compiler targeted towards accelerating the

operations found on machine learning workloads [16]. XLA is designed to improve

calculation speed by removing inefficiencies in addition to reducing the memory usage of

the program by searching and merging temporal allocations of memory.

Originally designed to work with TensorFlow graphs, XLA implements a set of operations

that are mapped to common TensorFlow functions so that, if specified, the operations

can be compiled into a High Level Operations (HLO IR) language that acts similar to a

compiler intermediate representation (IR), which then can be given as an input to the XLA

compiler.

Once XLA has been given the HLO graphs defined by the XLA operations, it compiles them

into machine instructions that can adapt to different types of hardware architectures. For

the sake of simplicity, we will only assume that those architectures are CPU, GPU and

TPU. On the CPU case, XLA uses LLVM for the machine instructions, the GPU backend

uses LLVM NVPTX on NVIDIA GPUs and in the case of TPUs, a proprietary backend with

no public information available. Therefore, despite XLA allowing the use of custom calls

17

on CPUs and GPUs by making use of frameworks such as CUDA, no custom calls can be

implemented on TPUs.

In order to provide the mentioned speedups, XLA performs a set of target-independent

as well as target-dependent optimizations before the code is even run. For instance, XLA

performs Common Subexpression Elimination (CSE) before sending the HLO code into

the device, meaning that the compiler searches for identical expressions that yield similar

results and reuses them as needed. Taking the snippet below as a showcase:

c = a/x + b
d = a/x - e

we see that the division a/x is performed twice on a short period of time. This would be

computed twice on a normal Python/NumPy program, however, since XLA is aware of

these inefficiencies, the previous snippet is translated into:

t = a/x
c = t + b
d = t - e

which reduces the computing time by dividing a over x only once.

However, the major boost in performance that XLA offers comes from fusing composable

XLA operations. Lets take the case that, in some part of the program, we are performing an

element wise addition of two vectors. The low level approach code would look something

like this:

for i in range(N):
c[i] = a[i] + b[i]

But in the case that later on the program, the same vector c needs to be multiplied by

another vector, we would also have something like

for i in range(N):
d[i] = c[i] * a[i]

When looked in terms of element wise operations, it is clear that having to loop through

the array N twice is a waste of time, but this is not that obvious when a program uses

vector operations such as

c = a + b
...
d = c * a

The power of XLA comes when it is able to identify these vector operations, since they

are written in terms of XLA operations, and fuse them together so that the low level code

performs something like this.

for i in range(N):
d[i] = (a[i] + b[i]) * a[i]

18 Chapter 3 JAX and Benchmarking

as the XLA graph allows it to see if any of this functions will be used prior to running them.

In contrast to Python/NumPy programs, XLA is able to see what will be run and therefore,

can cache recurring functions so that there is no need to interpret them again.

The second most important feature of XLA is its ability to manage memory, as the resulting

compilation would, in theory, avoid redundant memory allocations by knowing whether a

variable will be used further on the program.

With these features, XLA is capable of overcoming two of the major drawbacks that high

level dynamically-typed languages currently face. Hence, the reason it is such an appealing

solution for HPC programs.

XLA was originally designed to work with TensorFlow on Machine Learning tasks, but in

the very recent years, some support for other frontends to XLA have been developed with

the most prominent candidate of those being the JAX Python numerical library.

3.2 JAX: An accelerated NumPy Library

JAX is a high performance numerical computing Python library targeting machine learning

research that serves as a NumPy-like frontend for the XLA compiler[15]. JAX is being used

to develop high performance physics frameworks such as in the molecular dynamics field

[35] and an ocean simulations [13] as it has proven to perform competitive performances

while still making use of the flexibility Python provides. JAX main advantage over libraries

such as NumPy comes from the use of a set of transformations functions that allow them to

use the XLA compiler above common array-manipulating programs. These transformations

are Just In Time compilation, automatic vectorization, automatic differentiation, and single-

program multiple-data (SPMD) parallelism. From those, the ones we will be focusing are

the JIT compilation and the parallel execution, as the other are more targeted towards

machine learning programs.

JAX provides a simple and powerful API for writing accelerated numerical code, but

working effectively in JAX sometimes requires some additional considerations.

3.2.1 Just-In-Time Compilation

The JIT compiler transformation is based on the idea of collecting the information from the

operations inside the function as well as some information about the function inputs, so

that it can be converted to proper input for the XLA compiler to perform its optimizations.

3.2 JAX: An accelerated NumPy Library 19

The process resembles to a TensorFlow Graph transformed to HLO that makes use of XLA

predefined operations.

In order to convert the abstract NumPy-like code into XLA input, JAX uses JAX primitives.

JAX has already implemented a set of JAX primitives that map to most of the XLA operations.

By transforming the user code to those primitives, new JAX primitives need be defined.

However, JAX allows the creation of primitives by using existing ones. In reality, most of the

NumPy functions that JAX comes with are implemented by using other JAX primitives.

Once the function to run is implemented in terms of other JAX primitives, it becomes a

traceable function that can make use of all the transformations that JAX has to offer. For

instance, jit would take a traceable function and return a semantically identical function

but lazily compiled by XLA for accelerators. In order to be used on different input values,

JAX traceable functions define the input as abstract objects where information such as

the data type or the array shape is passed to the compiler but not concrete values. This

abstract information is passed the first time the function is called, hence it is to expect that

the first run will take longer to run as it needs to be compiled. Adding the jit decorator

to the function should be enough to compile it.

@jax.jit
def pitagoras (a, b, c):

return jax.numpy.sqrt(a**2 + b**2 + c**2)

The compilation time increases for large complex functions where common Python control

flows are used. However, using JAX specific approaches to substitute them usually solves

the issue. For instance, if we were to create a function that performs a for loop, XLA

would statically unroll it in order to optimize the function execution speed. Nevertheless,

JAX provides the jax.lax.fori_loop primitive that avoids unrolling the loop but still

returns traceable functions.

Similarly, defining conditions inside jitted functions yields unexpected errors as the com-

piled can not predict the exact type of the argument used in the condition, and thus

compilation is usually generic enough to adapt to different arguments. By doing so, avoid-

ing unnecessary recompilations that may results on very low performances. Hence, JAX

supports the use of jit arguments such as static_argnums where the user can specify

whether the argument type is going to change or not on different calls. If that is not the

case but you still need a conditional evaluation inside the compiled function, the use of

jax.numpy.where and jax.lax.cond is recommended.

20 Chapter 3 JAX and Benchmarking

3.2.2 Single-Program Multiple-Data

JAX allows for the same operation to be sent to different devices in order to be run on

parallel. Commonly, this is used to run different batches while training Neural Network

models, as their independence between each other makes them the perfect candidate for

parallel runs. However, the API provided is relaxed enough that can be used to perform

other type of calculation across XLA devices.

As most of the transformations proposed by JAX, the usage of pmap is fairly straight forward.

Assuming you have 8 devices, as it would be the case for a TPU unit with 8 cores, you can

run an operation on each device by creating by sending a sharded array as an input

>> x = jax.numpy. arange (8)
>> f = jax.pmap(lambda i: i+i)
>> f(x)
ShardedDeviceArray ([0, 2, 4, 6, 8, 10, 12, 14], dtype =int32)

The above computation has been performed on 8 devices simultaneously, where each has

received a single scalar from the original device and has performed the sum over just one

value. Of course, this approach is readily extensible to larger dimensions. As the name

of the resulting array indicates, after being sent to each device, the array is not collected

on the initial core as one may expect. Instead, the host collects the requested values

only to display from the XLA devices, but the arrays themselves remain on the distributed

devices.

Additionally, JAX provides access to collective operations that allow for communication

between devices without relying on passing through the host. Collective operations rely on

the use of named axes to decide which information is shared between devices. The idea

of named axes has been used as the base for the very experimental xmap transformation

which will not be covered in any of the work done on this thesis but that early testings

indicates that it will provide a powerful API to distributed code on JAX.

3.2.3 JAX on TPU

JAX gained support for running on TPUs on December of 2019. However, no significant

information has been published with regards to it since then. That is due to the complexity

of running JAX on TPUs with respect to using TensorFlow instead. In this section, the key

instructions to make use of TPUs while using JAX are outlined, as well as an introduction

of the new approach JAX has been developing on the recent months to improve their end

user experience. Some performance guidelines are given specifically for TPUs.

3.2 JAX: An accelerated NumPy Library 21

Cloud TPUs provide high performance with relative ease to use. If the code works on other

hardware, most likely works on a TPU as well. However, in order to avoid inefficiencies

specific of TPUs some prior knowledge is necessary.

Arrays on TPUs are tiled, as described on Chapter 2, the vector registers are designed to

store 128× 8 32 bits elements. Hence, when using arrays that are not multiple of those

dimensions, XLA will pad them with 0. Even though XLA does it so that the data can be

manipulated efficiently, the reality is that we are adding null information that does not

contribute in any useful manner to our program. Therefore, the best performance will

always be achieve when no padding during the compilation is involved.

Regarding the lower precision data type discussed on Chapter 2 with regards to the MXU,

XLA provides methods to avoid them, whilst to the cost of performance. With the purpose

of achieving higher precision, JAX can simulate multiplication of larger floating-point

resolutions by increasing the number of passes on the MXU. For instance, in order to

achieve roughly 16 bits of precision on the significant, JAX can force the TPU to perform

3 consecutive passes on the MXU for each multiplication. Likewise, 32 bit precision

(float32) can be achieved if the TPU performs 6× the amount of passes of a single matrix

multiplication. Clearly, having to repeat operations affects performance significantly and,

despite being the option to compute more precise matrix multiplications for specific parts

that may needed it, a lower precision requirement should be necessary if you want to run

the code on TPU with decent performance.

Despite being provided on Google Colaboratory, in order to use TPU effectively, ones needs

to use Google Engine Cloud. During half the time of this thesis, the approach to running

code on TPUs was as follows:

1. From the host machine, the user needs to start a Google Cloud virtual machine VM.

2. Once started, one connects to the remote VM to start the defined TPU associated

with the Google Account. Because TPUs are still used by TensorFlow and JAX has not

had an stable release yet, a specific version should be stated when creating the TPU.

3. Once both the VM and the TPU is running (and adding cost to the bill), the IP of

the TPU shown in the Google Cloud Console should be indicated at the start of the

JAX program so that it can connect to it. That connection can only happen from the

VM to the TPU inside Google Cloud and can not be used outside in places such as

Colaboratory.

4. Then the code is compiled on the host machine and later send to the TPU hosts,

where they send it to the TPU devices themselves and later return to the user VM.

22 Chapter 3 JAX and Benchmarking

Figure 3.1 shows a diagram of how code run through TPUs worked. Even if the VM was to

be really close to the TPU hosts machines, all the code had to be sent back and forth over

the network, making performance subpar compared to the raw power of TPUs. Luckily,

the JAX on TPU researchers were aware of the limitation of this appeal and at the end of

last year, announced a completely new workflow to deal with Cloud TPUs.

USER HOST
USER VM

gRPC

TPU HOST

TPU Unit

TPU HOST

TPU HOST

TPU HOST

TPU Unit

TPU Unit

TPU Unit

Google Data Center

Figure 3.1.: Diagram of the current JAX-TPU Cloud Infrastructure.

Although still in early stage, the researches at Google Brain gave us access to the new

proposed mechanism. In contrast to the old one, a direct connection to each TPU host

now is possible, reducing all the latency previously experienced. Moreover, there are no

workarounds that use TensorFlow backend in order to use the Cloud TPUs. In removing

the hassle of using Google Cloud VMs and the drawbacks of the previous connections, JAX

researches have been able to provide a very easy and clean experience that makes using

TPUs no harder than connecting to a typical remote desktop. Even though the porting

is not finished at still yields unexpected errors from time to time, I strongly believe that

the new access to Cloud TPUs is an improvement and removes most of the concerts that

dealing with TPUs on JAX for daily operations may have.

The new system also provides an interesting solution to dealing with multiple TPU units,

as it requires and independent ssh connection to each in order to be used as seen in Figure

3.2. JAX considers each TPU to be run independent processes in parallel, which is useful

when dealing with I/O tasks or data management. However, it requires certain tools that

allow for broadcasting commands over multiple remotes to be run on the same time.

In case of pmap, each process (or host in the default configuration), should still call the

distributed function with the sharded array only taking into account the local devices.

Local devices are all of those XLA devices connected to the same host (or process), such

3.2 JAX: An accelerated NumPy Library 23

ssh

ssh

ssh

ssh

USER HOST

TPU HOST

TPU Unit

TPU HOST

TPU HOST

TPU HOST

TPU Unit

TPU Unit

TPU Unit

Google Data Center

Figure 3.2.: Diagram of the new alpha JAX-TPU Cloud Infrastructure.

that a single TPU host would have 8 XLA local devices, despite being part of a larger

TPU Pod. This independence between hosts allows them to run different Python/JAX

code, which end up in a performance boost. However, they are not completely separated

from one another as XLA collective operations such as gather, sum and permute are still

computed over all the running devices. Hence, if a single program is to be run, the only

hassle involved is that the python script, designed to work on a single TPU, has to be run

simultaneously on each host.

3.3 Performance Analysis

Profiling is used to find bottlenecks that allow us to get the biggest performance boost

with the least amount of work by understanding the parts of the program that take the

most time to run. Therefore, if we were to find efficient approaches to speedup physics

calculations, a working profiler would be an essential tool.

Despite the mention of profiling in JAX’s official documentation and the instructions to use

TensorBoard, a TensorFlow visualization toolkit, on Google Cloud Docs [36], in addition to

plenty of opened issues on the GitHub repository and countless attempts to make it work,

it was not possible to get a usable profiling on the current system. Without a profiling tool,

we were stuck to hand measurement the performance of single functions by making use

of microbenchmarking techniques such as the timeit and time libraries. An important

note on microbenchmarking JAX functions is that they need to implement a blocker, since

JAX uses asynchronous dispatch for the functions and therefore, using %timeit may yield

the dispatch time instead of the calculation time. For instance, if we were to measure the

performance of a dot product:

24 Chapter 3 JAX and Benchmarking

>> % timeit jax.numpy.dot(x, x)
100 loops , best of 3: 37.8 us per loop

However, by indicating jax to wait until the computation has been completed to run again,

we obtain a different results

>> % timeit jax.numpy.dot(x, x). block_until_ready ()
100 loops , best of 3: 16.23 ms per loop

Because once a function gets compiled, the operations are translated to machine instruc-

tions, and despite XLA allowing for a detailed description on those instructions on other

architectures, those were not available to see when working on TPUs. Thus, there was

no possible manner of seeing what optimizations were actually happening other than

by performing small changes to the code and evaluating their repercussion on different

conditions to understand their relevance on the approach. Therefore, something that may

haven taken minutes using a profiling tool, became a task which duration could vary from

hours to days.

In the memory management analysis, the only way to know whether XLA was optimizing

properly certain operations was to predict the memory usage in a NumPy workload and

check if the system would crash when going above the theoretical limit.

For a brief moment at the end of 2020, the profiler was able to store tracings of the XLA

operations that run on TPUs. However, when visualizing them on the Profiler, the only

information displayed was regions of the code which were the result of fused operations,

as seen on Figure 3.3. In conclusion, there was no possible mapping to be done between

the tracings and the code as a single region could come from several fused operations.

Furthermore, the profiling stopped working briefly after, due to incompatibilities of the

TPU version with the current TensorFlow and TensorBoard versions, as changes in the

saving mechanics were being implemented.

Figure 3.3.: First snapshot of a simulation being caught on the profiler.

When the new alpha system was introduced, our hopes on having a working profiler raised

again, and with almost half the thesis time remaining, we could still manage to get a

steady boost on the productiveness of evaluating code. However, that was not the case

and, even though they stated that it was being worked on, the profiler on the new system

was completely missing up until a few weeks before the submission of this dissertation.

3.3 Performance Analysis 25

Even though the brief amount of remaining time does not allow us to make use of the

profiling tools, it serves to give us a glimpse at how the profiler on TPUs works and how

useful could have been in performing the evaluations. An example on what the tracings

look like now can be seen on Figure 3.4, where a lot for information on what operations

are actually being computed is displayed. Additionally, the new profiler includes a memory

analyzer as well.

Figure 3.4.: Snapshot of a simulation being caught on the newly release profiler for alpha TPUs.

26 Chapter 3 JAX and Benchmarking

4Partial Differential Equations

4.1 Introduction

Physic problems are commonly based on the description of physical phenomena in order

to understand and predict its behavior. Usually, the resulting description can be expressed

as changes on their variables, and the way to formulate those changes is with the use of

differential equations. When the physical law or equation depicts changes with regards to

variables on systems that depend on two or more independent variables, partial derivatives

are used. Therefore, these studies will lead to the formulation of partial differential

equations (PDEs) in order to describe them.

A wide range of PDEs is used in every aspect of physics and thus, one expects to frequently

encounter them when doing calculations on fields such as fluid dynamics, quantum

mechanics or electrodynamics among others. One of the most common cases on physics,

and therefore one which will have a substantial impact on our evaluation are the two

dimensional second order equations, whose general expression is as follows:

a
∂2U(x, y)
∂x2 +b

∂2U(x, y)
∂x∂y

+c
∂2U(x, y)
∂y2 +d

∂U(x, y)
∂x

+e
∂U(x, y)
∂y

+fU(x, y)+g = 0 (4.1)

Considering that we are studying whether TPUs are a straightforward drop in replacement

for existing simulations, the finite difference method (FDM), one of the most common

and versatile numerical method to solve PDEs, will be analyzed. The FDM is based on

the assumption that derivatives respect one or more of the variables in the system are

approximated by the difference between consecutive elements, also called difference

coefficient. Hence, as proved on Appendix A, we can express first order partial derivatives

as
∂U

∂x
' U(x+ ∆x, y)− U(x−∆x, y)

∆x (4.2)

and second order partial derivatives

27

∂2U

∂x2 '
U(x+ ∆x, y)− 2U(x, y) + U(x−∆x, y)

∆x2 (4.3)

where ∆x indicates the distance between two consecutive values of x. In order to simplify

notation, from now on we will use h to describe spatial distances and we will consider all

the spatial variables to be equally separated. Thus, (4.2) and (4.3) will look like

∂U

∂x
' U(x+ h, y)− U(x− h, y)

h
(4.4)

∂2U

∂x2 '
U(x+ h, y)− 2U(x, y) + U(x− h, y)

h2 (4.5)

and analogously for the y-axis

∂U

∂y
' U(x, y + h)− U(x, y − h)

h
(4.6)

∂2U

∂y2 '
U(x, y + h)− 2U(x, y) + U(x, y − h)

h2 (4.7)

Research and studies regarding the accuracy of the finite difference method have been

extensively done at this point. Therefore, we will not focus on the error between numerical

simulations and exact solutions, but instead, study the accuracy difference between TPUs

and GPUs.

Moreover, it is common to work on grid points when solving PDEs. The following expres-

sion are the discrete grid points representation of (4.4) and (4.5) respectively.

hDxui,j = ui+h,j − ui−h,j (4.8)

h2Dxxui,j = ui+h,j − 2ui,j + ui−h,j (4.9)

where Dx and Dxx indicate the first and second order derivative while i, j indicate the

coordinates on the grid.

In addition to being one of the most common problems regarding physical simulations,

FDMs are not considered to be efficient when performed using matrix multiplications.

Meaning that, if we were to achieve similar performance on TPU than on other non-matrix

based accelerators, it would indicate that TPUs will not suffer a penalization on methods

that do not use matrix multiplication explicitly.

28 Chapter 4 Partial Differential Equations

4.2 Benchmarks

In order to obtain general results that can be applied to a wide range of simulations, we

have used three distinct, well known numerical simulations that can be easily reproduced

if needed. Before explaining the different implementations and the results obtained, we

will briefly introduce each benchmark and their main characteristics. All the simulations

have been implemented using pure Python/JAX and even though not all of them will be

used for every study case, they will serve to provide a general sense of how each method

performs on simulations of varying complexities.

For the sake of simplicity, we will assume Dirichlet boundary conditions on all the bench-

marks whenever possible. However, if in order to use another boundary condition on any

of the proposed method it ought to be explained, we will clarify it on the corresponding

method section.

We will run the benchmarks on conventional hardware (CPU), the prominent current

accelerator (GPU) and in different configurations of the TPU; a TPU core, a TPU Chip (2

Cores) and a TPU Unit (4 Chips). The technical information about the used devices can be

found on Appendix B. The benchmarks are also implemented differently when only one

XLA device is in used, so that the exchange and message passing part is not considered.

Those cases are on CPU, a single GPU and a TPU Core. On the other hand, the benchmarks

run on a TPU Chip and a TPU Unit have been specially written to be very scalable, meaning

that excluding the boundaries exchanges and the collectives operations, each core will run

the same operations as in the single case. We will talk about their connectivity on each

implementation.

4.2.1 Heat Diffusion

The first and most simple benchmark we will be implementing is the Heat Diffusion

benchmark. It simulates the heat transfer on a surface represented on a 2D grid. We will

consider the Heat Equation in a steady state, thus, invariant on time. We will also assume

no internal generation of heat either, so that the PDE to solve is as simple as possible and

can be expressed as the Laplace equation.

∆T (x, y) = ∇2T (x, y) = ∂2T (x, y)
∂x2 + ∂2T (x, y)

∂y2 = 0 (4.10)

with T (x, y) being the Temperature distribution on the 2D surface. Since the steady

heat diffusion problem can not be solved with an explicit scheme, we will use an iterate

4.2 Benchmarks 29

solver. For the sake of simplicity and ease on parallelization, the Jacobi solver is used

until numerical convergence is achieved, despite the convergence rate fo the Jacobi

method being embarrassingly slow and the existence of faster convergence methods such

as the Successive Over-Relaxation (SOR) iterative solver or the Gauss-Seidel method.

Nevertheless, these more efficient methods do not translate as well as the Jacobi solver

does to vector operations.

The Jacobi method does not always converge, but it is guaranteed to converged under

conditions that are satisfied for this simulation. On its discrete form, (4.10) can be

expressed as

ti+1,j − 2ti,j + ti−1,j
∆x2 + ti,j+1 − 2ti,j + ti,j−1

∆y2 = 0 (4.11)

where i, j are the coordinates on the grid. Hence, on its implicit form and given the Jacobi

formula, the equation we will iterate will be

tn+1
i,j = 1

k

(
tni+1,j + tni−1,j

∆x2 +
tni,j+1 + tni,j−1

∆y2

)
(4.12)

where k is given by k = 2∆x2+∆y2

∆x2∗∆y2 . Applying the assumptions stated before, we will use h

to indicate the separation between grid points on both axis, meaning ∆x = ∆y = h. Thus,

k = 4/h2. This change simplifies the calculation since the h2 cancel each other on (4.12)

and we end up with the following stencil operation also visualized in Figure 4.1.

tn+1
i,j = 1

4(tni+1,j + tni−1,j + tni,j+1 + tni,j−1)

Figure 4.1.: Illustration of the discrete calculation of the Jacobi method, where the adjacent grid
points (yellow) give the value to the midpoint (green).

30 Chapter 4 Partial Differential Equations

In the case of our Boundary conditions, we assume to have Dirichlet conditions with the

following values. A visual representation of this conditions, as well as the final converged

solution can be seen in Figure 4.2.

T (0, y) = 400K T (x, 0) = 600K

T (Lx, 0) = 800K T (x, Ly) = 900K

600 K

800 K

900 K

40
0

K

(a) Sketch of the boundary conditions. White grid
points have a Temperature value of T = 0K.

0 20 40 60 80 100 120

0

20

40

60

80

100

120 48
0

56
0

640

72
0

800

880

500

600

700

800

(b) Result of the solved heat equation once it has
converged.

Figure 4.2.: Initial and final state of the Heat Diffusion Benchmark.

Finally, a quick overview of the implemented algorithm can be seen in Algorithm 1. It is

clear that the most compute intensive part of the algorithm is found on the update of the

grid points, i.e. the mean of the nearest neighbors values. Therefore, it is the operation we

will focus during our study.

We expect that any result found with this simulation can be applicable to stencil based

simulations where its compute-intensive part is also found on using the near neighbours

on a grid or lattice. We will test this expectation on Chapter 5 where the Ising Model is

implemented.

4.2.2 Wave Equation

The following hyperbolic PDE is used to simulate classical waves propagation and it is

known as the Wave Equation.

∂2U(x, y)
∂t2

= c2∆U(x, y) (4.13)

U(x, y) being the displacement on the z axis and c a coefficient that can vary depending

on the problem.

4.2 Benchmarks 31

Algorithm 1: Jacobi Solver for the Heat Diffusion Problem
Input: The original state of the temperature t0 and the convergence tolerance ε
Result: The converged temperature t distribution of the 2D grid
Initialize the temperature of the 2D grid and set a valid δ.

t← t0 δ ← ε+ 1

while δ > ε do
Update the grid position as shown in (4.12)

tnew ← 0.25× (tnorth + tsouth + teast + twest)

Compute the difference between consecutive states

δ ←
N∑
i,j

|tnew − t|

Replace the grid with the new found state.

t← tnew

end
return t

On this simulation, it is clear that the most computing intensive part are the second spatial

derivatives found on the Laplacian. The Laplacian is useful when describing the flux

or gradient flow of a function. Therefore, it is one of the most used PDEs on physics.

Because of that, we expect the results obtained with this benchmark to have a large

impact on the assessment of the viability of TPUs on physics workloads. As in the previous

benchmark, we assume a fixed Dirichlet type boundary condition, even though in this case

we consider them to be zero. However, we expect the analysis to be readily extended to

other boundaries conditions.

U(0, y) = 0 U(x, 0) = 0

U(Lx, 0) = 0 U(x, Ly) = 0

Since we will use the Leapfrog integration method to obtain stable results, the complexity

of the simulation will be larger than the used on the steady heat diffusion problem. We

will be passing and updating the velocity as well as the position of the wave. Moreover,

the simulation is very susceptible to its initial conditions. Therefore, we will use a smooth

Gaussian with null velocity as its initial state as seen in Figure 4.3.

A summary of the sequence of steps on our implementation can be seen in Algorithm 2.

32 Chapter 4 Partial Differential Equations

0 50 100 150 200 250 300 350
x

0

50

100

150

200

250

300

350

y

0.
0

0.8

1.6

2.4 3.2

4.
0

4.
8

0

1

2

3

4

5

x

0 50 100150200250 300 350 400

y

0
50

100
150

200
250

300
350

400

u

0

1

2

3

4

5

Figure 4.3.: Initial conditions for the the wave position in the form of a smooth Gaussian.

Algorithm 2: Simulation of Waves motion
Input: Gaussian parameters of the initial state µ , σ as well as integration steps ∆t

and h.

Result: Height of the waves on a 2D surface grid after K∆t time.

Initialize the 2D grid positions with a smooth Gaussian and null velocities

u0 ← N (µ, σ) v ← 0

for n← 0 to K do
Compute the acceleration with the Laplacian from the positions

ai,j ← c2∆ui,j ←
−4 ∗ ui,j + ui+1,j + ui−1,j + ui,j−1 + ui, j + 1

h2 (4.14)

Update the velocity state

vn+1
i,j ← vni,j + ai,j∆t (4.15)

Update the position of the grid

un+1
i,j ← uni,j + vn+1

i,j ∆t (4.16)

end

return (u,v)

4.2.3 Shallow Water

The last benchmark is a simulation of the water motion after a drop has been placed

on the middle of the 2D surface when the vertical distance is significantly smaller than

the horizontal one. These motions follow the Shallow Water Equations. These equations

4.2 Benchmarks 33

are derived from the Navier Stoke Equations when integrating over its depth as per the

conditions just mentioned. These equations are used to describe situations where there the

bottom of the water affects its motions, such as lakes, puddles and coasts. The latter case

having a lot of relevance for the study of phenomena such as Tsunamis as SWE simulations

are the foundation of any Tsunami warning system[37].

We assume a lake of uniform water density. For simplicity, Coriolis effects and nonlinear

terms are also ignored. Lastly, we also assume a flat bottom (h(x, y) ≡ h). With these

conditions, the Shallow Water Equation can be expressed as

∂u(x, y)
∂t

= −g∂η(x, y)
∂x

(4.17)

∂v(x, y)
∂t

= −g∂η(x, y)
∂y

(4.18)

∂η(x, y)
∂t

= −h(∂u
∂x

+ ∂v

∂y
) (4.19)

where u and v are the velocity in the x and y direction respectively, η is the elevation of

the surface on the z-axis and g is the gravity force.

In contrast to the previous simulations, this benchmarks computes the first derivatives on

a successive manner. Moreover, to demonstrate different implementation of the methods,

we will use the forward finite difference scheme to approximate these equations as follows,

also shown in Appendix A.

un+1
i,j = uni,j −∆tg

ηni,j+1 − ηni,j
∆x (4.20)

vn+1
i,j = vni,j −∆tg

ηni+1,j − ηni,j
∆y (4.21)

ηn+1
i,j = ni,j −∆tgh

un+1
i,j−1 − u

n+1
i,j

∆x −∆th
vn+1
i,j − v

n+1
i,j−1

∆y (4.22)

The model will be based on the Arkakawa C-grid, where a numerical grid is used in which

the components of velocity are found between adjacent grid points.

Similarly to the WE benchmark, we start the system with a small perturbation on a flat

surface in a Gaussian form as seen below.

34 Chapter 4 Partial Differential Equations

x

0
20

40
60

80
100

120

y

0
20

40
60

80
100

120

el
ev

at
io

n

0.0

0.5

1.0

1.5

2.0

2.5

3.0

Figure 4.4.: Initial conditions for the Shallow Water simulation. Notice how the horizontal axes
x and y are larger than the highest point of the Gaussian. The brown area below
represents the sea floor.

4.3 Vector Operations

The initial approach we want to measure is the one that is probably already implemented

on many physics simulations. As discussed on Chapter 3, the main reason that the Python

scientific computing community is thriving nowadays is due to the use of array-based

programming languages. In consequence, we will consider it to be the general current

approach and the one we will compare the other methods with. But before that, we need

to know how well it actually performs on TPUs.

4.3.1 Implementation

Vector programming is based on the idea of applying the same bitwise operation to whole

chunks of memory at the same time. Thus, circumventing the expected low performance

of dynamic loops on languages such as Python, where the computer can not predict what

instructions will need. These slice operations shine the most when replacing element-wise

operations usually done inside nested loops.

For instance, a basic Laplacian calculation, or any stencil computation for that matter,

would typically be implemented by iterating over all the elements of the grid and storing

the values on another grid with the same dimension. We will avoid mentioning padding

4.3 Vector Operations 35

when not relevant to simplify the discussions. Consider the following snippet of a laplacian

calculation in compiled language such as C.

for (int i=1; i<N -1; i++)
for (int j=1; j<M -1; j++)

lap[i][j]= -4*u[i][j]+u[i+1][j]+u[i -1][j]+u[i][j+1]+u[i][j -1]

it clearly resembles the notation used on (4.3). Likewise, if that code was to be run with

the same nested loop approach on Python, as shown below, the expected performance

would be horrible.

for i, j in itertools . product (range (1, N -1) , range (1, M -1)):
lap[i,j]= -4*u[i,j]+u[i+1,j]+u[i-1,j]+u[i,j+1]+u[i,j -1]

As previously stated, this is due to Python runtime not knowing what is inside the loop and

hence, not being able to prepare for it as a compiler would. By contrast, a vector approach

to this same calculation would be express as:

lap = -4*u[1: -1 ,1: -1]+u[1: -1 ,2:]+u[-2: ,1: -1]+u[:2 ,1: -1]+u[1: -1 ,: -2]

without the use of any loop. Regardless of the confusion caused by the slicing, we see that

Python/NumPy allow for one-linears operations that would take 2 or more nested loops in

C.

Despite the performance benefits of doing array operations being widely known by now,

Table 4.1 shows the execution times of the previous snippets.

C Python NumPy JAX with JIT (Compilation)

0.92± 0.04 ms 1220± 40 ms 4.13± 0.02 ms 0.32± 0.11 ms (254 ms)
Table 4.1.: Comparison between normal and array based computations on the same CPU (Intel(R)

Core(TM) i7-1065G7 CPU @ 1.30GHz). The table shows the timings of a Laplacian
calculation on a grid of 1000 × 1000 random floating points values on the [0,100]
range.

Looking at the results, we see that NumPy and JAX are in the same order of magnitude as

C performance wise, while native Python performs way worse, which is why we see on

these novel tensor units the opportunity to leverage high efficient array-based languages

for HPC workloads. We expect this to be known to everyone currently making physics

simulations on these languages. Thus, we assume the vector approach to be the current

standard and the one to use as baseline.

Because index slicing can be confusing for people not used to work on array operations,

Figure 4.5 illustrates the discussed Laplacian calculation. It also shows how simple and

efficient vector operations really are and why they are so appealing to work with.

Python/NumPy uses views, i.e. references to the part of the array, instead of creating copies

that would fill up memory, when working with slices. This is indeed a highly effective

36 Chapter 4 Partial Differential Equations

−4× + + + +

Figure 4.5.: Graphical representation of the slices used to compute the Laplacian as vectors without
the use of loops. The green shade correspond to the subsection, or view of the original
grid.

method to work with vector operations. However, as stated on Chapter 3, JAX arrays

are immutable outside the JIT context. Therefore, if we do not want to store 5 copies

of our N ×N array every time step and create a memory bottleneck in the process, we

need to make use of the XLA compiler. We need to indicate that the grid is going to be

overridden by the returning value and that its memory address can be reuse. Hence, we

ought to be thoughtful on using the correct JIT parameters such as donate_argnums and

static_argnums when implementing our code.

The discussion of the Laplacian calculation can trivially be extended to the stencil op-

erations on the heat diffusion problem, as well as the first derivatives on the Shallow

Water benchmark. The solver function of the Heat Equation implementation can be seen

on Listing 4.1. In spite of using some of JAX main functions discussed on Chapter 3

such as jax.jit and lax.while_loop, the implementation should look familiar to any

Matlab/NumPy user.

1 from jax import ops , lax , jit , partial
2 import jax.numpy as jnp
3
4 def stencil_op (x):
5 north = x[1:-1, :-2]
6 south = x[1:-1, 2:]
7 east = x[:-2, 1: -1]
8 west = x[2:, 1: -1]
9 return 0.25 * (north + south + east + west)

10
11 def solver_step (x_prev):
12 x = x.at [1: -1 ,1: -1]. set(stencil_op (x_prev))
13 delta = jnp.sum(jnp.abs(x - x_prev))
14 return x, delta
15
16 @partial (jit , donate_argnums =0)
17 def solve(x, epsilon):
18 cond = lambda s: s[1] > epsilon
19 loop_func = lambda s: solver_step (s[0])
20 return lax. while_loop (cond , loop_func , (x, epsilon +1))

Listing 4.1: Vector implementation of the Heat Equation solver

4.3 Vector Operations 37

One caveat of using JIT however is that we can not know how it is going to handle the

memory allocation. Using the recently released memory profiler on TPU, we can visually

check that the memory footprint of the solve function shown is 3× the amount of the

original grid.

Figure 4.6.: Memory profiler snapshot of the heat diffusion simulation. The initial conditions
array represent the initial heap allocation while the jump at ∼ 9s indicates when the
solver functions is actually run. The stack area indicates the temporal memory that
XLA uses to perform the operations where as the heap is the memory allocated to the
user defined initial grid.

Multi-Core Implementation

For the multi-core case, as seen on Chapter 3, we utilize the tools provided by JAX that

allow for high-speed message passing between XLA devices without having to go through

the host. On the current method, all three benchmarks have a fairly similar approach.

Because we are implementing operations that only rely on nearest neighbors, all three

benchmarks will deal with the same communication issues. Due to the way slicing is

intended to work, we need to use N + 2×N + 2 arrays, that way, when we want to get the

element i+ 1, we can use the slice [:-2,...], but the last element would be missing its

element-wise operation. That is why we need the padding. Nevertheless, for our case, the

padding is perfect, as we can perform a halo exchange before each calculation so that the

values are propagated across devices. Figure 4.7 shows how the halo exchange between

multiple devices works. We consider the boundary rows/columns to be ghosts, meaning

that they will only hold the information that is being passed from other devices or set as

the fixed boundary conditions, but the stencil operation will not alter them.

We create a set of functions that would allows us to adapt to any core topology. To do that,

we use CollectivePermute XLA operation, as it allow send and receive data across devices.

Considering that we do not have control on how the physical TPU cores are distributed,

we create a logical layout on our code. Even though one could implement its own method

to choose a good locality of the devices so that the code matches the logical layout, the

connection between cores inside the same TPU Unit is indistinguishable. For that reason,

we have decided not to dwell on it and just provide generic functions that would perform

38 Chapter 4 Partial Differential Equations

Core 1 Core 2 Core 3 Core 4

Core 5 Core 6 Core 7 Core 8

Figure 4.7.: Illustration of the halo exchange of each grid with their logical neighbors cores. This
figure shows a 2× 4 topology.

1 from jax import lax
2 from itertools import product
3
4 def send_up (boundary , nrows , ncols , axis_name =’x’):
5 pair = lambda i,j: ((i+1) * ncols + j, i * ncols + j)
6 goup = [pair(i,j)
7 for i,j in product (range(nrows -1) ,range(ncols))]
8 return lax. ppermute (boundary , perm=goup , axis_name = axis_name)
9

10 def send_left (boundary , nrows , ncols , axis_name =’x’):
11 pair = lambda i,j: (i * ncols + j + 1, i * ncols + j)
12 goleft = [pair(i,j)
13 for i,j in product (range(nrows),range(ncols -1))]
14 return ppermute (boundary , perm=goup , axis_name = axis_name)

Listing 4.2: Helper functions to do array permutation between Cores (or XLA devices). These
permutations consider no periodic boundaries.

this operations in every topology. For instance, Listing 4.2 shows the implementation of

sending the top row to the core above on send_up and the left column to the core on the

left on send_left. Those implementation are thought to be used for Dirichlet conditions.

The devices on the boundaries will receive an empty array instead. If, for instance, we

would like to have periodic conditions, we would make the last element of each axis to

form a pair with the first element on the left. Assuming the layout of Figure 4.7, we would

need to add (5, 8) and (1, 4) to the pair list on send_left.

On our implementation of the Laplacian, we do not want to exchange the boundaries of

the grid, but the rows and columns next to the padding, the step function includes the

exchange_boundaries before performing the Laplacian calculation. It is important that

we call the exchange_boundaries function inside the JIT context, not only because we

need it to be run on the accelerator but to avoid extra copies of the array x on every index

update.

4.3 Vector Operations 39

1 from jax.ops import index
2
3 def exchange_boundaries (x, nrows , ncols , axis_name =’x’):
4 top = send_down (x[-2 ,...] , nrows , ncols , axis_name)
5 bottom = send_up (x[1 ,...] , nrows , ncols , axis_name)
6 left = send_right (x[... , -2] , nrows , ncols , axis_name)
7 right = send_left (x[... ,1] , nrows , ncols , axis_name)
8
9 x = x.at [0 ,...]. set(new_top)

10 x = x.at [-1 ,...]. set(new_bottom)
11 x = x.at [... ,0]. set(new_left)
12 x = x.at [... , -1]. set(new_right)
13 return x

Listing 4.3: Helper function to exchange the halo boundaries between cores.

Of course, it should be said that the exchanging of boundaries varies between simulations.

Despite having the same core concept–i.e. exchange ghost cells before using them on the

slicing, simulations such as the shallow water have no need for exchanging both sides,

since the calculation is between i+ 1 and i or j + 1 and j.

4.3.2 Results

We start by simulating different grid sizes to compare how they perform on different

hardware. Figure 4.8 shows the speedup obtained when using a GPU, a TPU Core, a TPU

Chip (2 Cores) and a whole TPU Unit (4 Chips) with respect to a CPU (AMD EPYC 7501 @

2GHz). We see that the TPU Unit achieves a speedup of 350×, vastly outperforming the

maximum speedup found on the GPU by 1.8×.

2 4 8 16 32 64 128 256
Size N (128N × 128N Elements)

0

50

100

150

200

250

300

350

Sp
ee

du
p

Speedup on the Heat Equation Simulation using Vector operations
TPU Core
TPU Chip
TPU Unit
GPU

Figure 4.8.: Speedups on the running time on different accelerators of the Wave Equation Bench-
mark using Vector/Slice Operations.

40 Chapter 4 Partial Differential Equations

However, it is not fair to compare the raw power of a TPU Unit against a single GPU, since

a GPU resembles more to a single TPU Chip in terms of specifications as it can be seen on

the Table B.1 from Appendix B. By looking at the results of the TPU Chip, it is clear that a

GPU does yield faster iteration times with a fairly consistent 1.8× speedup regardless of

the problem size.

In order to get a clearer picture, we proceed to take into account the energy consumption

of each device as seen in Figure 4.9. As it was not possible to get access to Google’s internal

energy consumption metrics, we are going to assume the specified TDP as its power usage,

and because only the TDP of a Chip has been disclosed, we will also assume that it scales

linearly with the number of Chips/Cores. For this approach to be reasonable, we will

assume that in order for the chip to be using that amount of power, it needs to be at a

maximum usage of its HBM. If the amount of operations and data handling is large enough,

we can expect that it would be similar to the real application a TPU is prepared to handle.

It is important to state that because we are not using all the processing units inside the

TPU Core for this method, the results should be considered a very rough estimate, as we

can not expect to reach the TDP usage.

0 1 2 3 4 5 6 7
FLOPS/Watt 1e8

Heat Dissipation

Wave Equation

Shadow Water

 97%

 99.7%

 95.7%

 97%

 99.7%

 95.6%

 99.7%

 99.7%

 94%

 90%

 90%

 90%

Throughtput with estimated energy consumption
GPU
TPU Core
TPU Chip
TPU Unit

Figure 4.9.: Performance/Efficiency comparison between the different devices on the vector
method. The percentage value shown in each bar is the memory usage of the device.

Looking at the values from Figure 4.9, it is clear that TPUs are no match to GPUs on vector

operations. Not even considering that TPUs were designed with efficiency in mind. Of

course, that is not a surprise. As explained in Section 2, the most powerful unit inside a

TPU core is not its VPU, but the MXU. Thus, saying that the GPU, an accelerator designed

specifically to perform vector operations, is faster than an misutilised TPU is expected.

Regardless of it, using a whole TPU unit does yield an impressive performance, despite

4.3 Vector Operations 41

not using its most powerful feature. Meaning the VPU does not hold back on performance

either and can handle vector operations rather efficiently.

Another aspect to evaluate when comparing TPUs and GPU is their economic factor. Due

to only being available on Google Cloud at the moment, we can use their current pricing

to evaluate their performance on terms of amount of raw power a dollar can get you.

Assuming that Google is still making profit on both scenarios, the pricing can be a seen

as a more realistic measurement of their maintenance cost. Hence, if we only focus on

the options with a price tag and we compute the number of FLOPS per dollar spent, we

obtain Figure 4.10. The results now are much closer, despite the GPU still outperforming

the whole Unit once normalized.

0 1 2 3 4 5 6 7
FLOPS/$ 1e10

Heat Dissipation

Wave Equation

Shadow Water

GPU
TPU

Performance/Cost comparison

Figure 4.10.: Performance/Cost comparison between a GPU and a TPU Unit

By looking at the resulting charts, it should be clear that when doing vector operations,

GPUs should be the target accelerator. However, it also should be stated that we are

comparing an auxiliary unit of the TPU to the main GPU feature, and yet we still get

a decent performance for the money. Regardless, a TPU is not the best solution to run

vectorized calculations in terms of Efficiency. Therefore, we need to look into methods

that can leverage the MXUs on each TPU Core.

4.4 Matrix Multiplication

In order to make us of the systolic arrays inside each core, we need to reformulate the

finite difference method. Since only matrix multiplications will be fed to the MXU, the

most obvious and straightforward solution is to express it in terms of a system of equations.

Luckily, the finite difference method can be trivially expressed as one.

42 Chapter 4 Partial Differential Equations

4.4.1 Implementation

The second derivative shown in (4.3) can be rewritten into the following system of

equations:

h2Dxxu1 = −2u1 + u2

h2Dxxu2 = u1 − 2u2 + u3

...

h2DxxuN−1 = uN−2 − 2uN−1 + uN

h2DxxuN = uN−1 − 2uN

Hence, it can be expressed on the matrix form Ax = b as seen on (4.9).

−2 1 0 . . . 0 0 0
1 −2 1 . . . 0 0 0

...
. . .

...

0 0 0 . . . 1 −2 1
0 0 0 . . . 0 1 −2

u1

u2
...

uN−1

uN

=

Dxxu1

Dxxu2
...

DxxuN−1

DxxuN

(4.23)

Similarly, we can apply the same formulation to first derivatives (4.8)

hDxu1 = −u2

hDxu2 = u1 − u3

...

hDxuN−1 = uN−2 − uN
hDxuN = uN−1

ADx =

0 −1 0 . . . 0 0 0
1 0 −1 . . . 0 0 0

...
. . .

...

0 0 0 . . . 1 0 −1
0 0 0 . . . 0 1 0

Despite being used extensible in linear algebra, matrix multiplications are considered a

fairly expensive method to run on conventional computing systems and are usually avoided

if possible. However, because TPUs are designed specifically to compute them without any

overhead, it begs the question of whether they will yield competitive results not found on

other accelerators.

4.4 Matrix Multiplication 43

As in the previous section, we take a look at the 2 dimensional Laplacian computation.

Using matrix multiplications, we solve the whole system in two consecutive operations

by using (4.23) for each axis. We can see an example on Listing 4.4, where the laplacian

function has been rewritten to use only matrix multiplications. Consequently, we have

an implementation of the finite difference method that mostly uses the MXU and can be

expressed in a fairly simple manner.

1 import jax
2 import jax.numpy as jnp
3
4 A = jnp.eye(N, k=-1) - 2 * jnp.eye(N, k=0) + jnp.eye(N, k=1)
5
6 @jax.jit
7 def laplacian (x, A, h):
8 L = jnp.dot(x, A) + jnp.dot(A, x)
9 return L / h**2

Listing 4.4: Laplacian implementation in terms of matrix multiplications.

This reformulation gets a bit trickier on the Shallow Water simulation, where we are doing

the forward difference scheme. If, in order to save memory, we were only to define a single

matrix A , we would do it on the following way

ADx =

−1 0 0 . . . 0 0 0
1 −1 0 . . . 0 0 0

...
. . .

...

0 0 0 . . . 1 −1 0
0 0 0 . . . 0 1 −1

NxN

(4.24)

In contrast to the Laplacian and stencil matrices, AT 6= A. Hence, in order to use the same

matrix A for all the operations, we need to transpose it and change its sign. The resulting

snippet of shows how the implementation would work

1 import jax.numpy as jnp
2
3 A = jnp.eye(nx , ny , k=-1) - jnp.eye(nx , ny , k=0)
4
5 def integrate_step (state , A, depth , g, dt , dx):
6 e, u, v = state
7 u = u - dt / dx * g * jnp.dot(e, A)
8 v = v - dt / dx * g * jnp.dot(A.T, e)
9 e = e - dt / dx * depth * (jnp.dot(u,-A.T) + jnp.dot(-A,v))

10 return e, u, v

Listing 4.5: Shallow water integration step using matrix multiplications

As previously stated, the Laplacian computation using vector operations uses twice the

amount of memory required as it can make use of references to avoid redundancy. That is

not the case for our matrix multiplication. We need A in order to perform our computation.

44 Chapter 4 Partial Differential Equations

We know A to be a tridiagonal matrix, which becomes a sparser matrix the more elements

the grid contains. Therefore, we will be storing a N ×N matrix, mostly filled with zeros

in order to perform the calculation. Unfortunately for this method, TPUs systolic array

will only perform dense matrix multiplications, which means that all the operations that

involve sparse matrices and multiplying element by 0s are going to be wasted resources.

Another limitation that this approach presents is that we are using As with square shape

in order for the matrix multiplication to work. By definition, the first component on the

multiplication should have the same number of columns than rows has the second one. It

does not need them to be squared, but because we want the operation to be performed on

all the elements of the matrix, we require them to be square as well. This leaves us with a

constraint that only square grids per device can be solved with by this approach.

Boundary Conditions

We believe it is important to add a note on how the implementation is affected by a

different boundary condition. Even though we have assumed Dirichlet conditions, the

boundary conditions would also affect the matrix A or the RHS of (4.23) and not only the

grid as it is may be the case in the vectorize method from Section 4.3.

For instance, if instead of Dirichlet condition we were to have a Periodic system, we would

be using

Aperiodic =

−2 1 0 . . . 0 0 1
1 −2 1 . . . 0 0 0
...

...
...

. . .
...

...
...

0 0 0 . . . 1 −2 1
1 0 0 . . . 0 1 −2

N×N

(4.25)

These changes only affect when dealing with a single device however, as the message

passing of the boundaries between devices can not be done using the matrix.

Multi-core Implementation

When scaling to more cores, we can reuse the functions from the vector method described

in Section 4.3 as we are going to be exchanging only boundaries again. However, by the

nature of matrix multiplications, we will not be loosing two elements on each axis after

the operations. Therefore, we would like to avoid having to call padding every integration

step.

4.4 Matrix Multiplication 45

Since we still need to update the boundaries, the elements on the boundaries are going to

be missing the value of one of their neighbours after doing the multiplication. Thus, we

need to include the value afterwards. We do it by using jax.ops.index_add to modify the

already calculated value.

1 import jax.numpy as jnp
2
3 def integrate_step (...):
4 u, v = state
5
6 # Send boundaries
7 bottom = send_up (u[0,:], nrows , ncols)
8 top = send_down (u[-1,:], nrows , ncols)
9 left = send_right (u[:,-1], nrows , ncols)

10 right = send_left (u[:,0], nrows , ncols)
11
12 a = c ** 2 * laplacian (u, A, h)
13
14 # Add the adjusted values
15 a = a.at [0 ,:]. add(top/h**2)
16 a = a.at [-1 ,:]. add(bottom /h**2)
17 a = a.at [: ,0]. add(left/h**2)
18 a = a.at [: ,0]. add(right/h**2)
19
20 v = v + a * dt
21 u = u + v * dt
22 return u, v

Listing 4.6: Water Equation integration step adapted for message passing.

which should be fairly familiar to anyone who has had to work with the Message-Passing-

Interface Protocol.

4.4.2 Results

Comparing the speed of applying this method similarly to what we did with the vectorized

operations we obtain the following results, shown in Figure 4.11. In this case, we use the

speedup with respect to the GPU (NVIDIA RTX 2080Ti) instead of the CPU used previously.

By now we should be aware of the massive improvements we get from using accelerators.

As stated above, this method only works for square lattices, hence in our distributed

approach, we do not repreduce the same system, as a (N,N) square can not be split into

8 square matrices. Instead, we operate on squares matrices of size (L,L)that, combined,

contain the same number of elements as the (N,N) original square. To do so, we apply

the relation N =
√
PL, where P indicates the number of XLA devices.

Regarding the chart, we see that matrix multiplications on the TPUs core perform better

than on the GPU. Not only better, but we manage to get up to ∼ 3× times faster with a

single core and up to ∼ 400× speedup when using the whole unit, as the split also removed

46 Chapter 4 Partial Differential Equations

a lot of the sparsity of the array. As we were expecting, these results confirm us that matrix

multiplications hold the key to use TPUs efficiently, as their performance can be matched

with GPUs.

2 4 8 16 32 64 128
Problem size N (N × 128)2

0

100

200

300

400

Sp
ee

du
p

TPU Core
TPU Chip
TPU Unit

Figure 4.11.: Speedup graph of different amounts of Cores in comparison with a GPU run. All the
devices are using the same matrix implementation.

Despite the good results of the TPU with respect to the GPU, when comparing the values

from the ones obtained on the vectorized approach, we observe that after the (16 ×
128, 16×128) = (2048, 2048) grid size we stop getting any speedup and instead, it decreases

considerably, making the vector approach more appropriate for larger sizes. That result is

actually expected. As we have discussed, A is only getting sparser the more elements we

have. Therefore, the sparsity of A makes the method useless for large scale simulations.

0 50 100 150 200 250
Problem size N (N × 128)2

0.00

0.05

0.10

0.15

0.20

0.25

0.30

Av
er

ag
e

tim
e

pe
r i

te
ra

tio
n

(s
)

Matrix
Vector

2 4 8 16 32 64 128 256
Problem size N (N × 128)2

10 4

10 3

10 2

10 1

Matrix
Vector

Matrix and Vector timings of the Heat Diffusion Benchmark on a core

Figure 4.12.: Performance of the Heat Diffusion Problem using matrix multiplications as we
increase the problem size.

4.4 Matrix Multiplication 47

4.5 Tiles Matrix

In spite of the speedups observed with small sizes with respect to their vector counterpart,

it is clear that using massive sparse matrices is not a feasible solution for large-scale

simulations. Due to the locality of the FDM and some properties of matrix multiplications,

we may find a way to avoid it.

4.5.1 Implementation

As stated in Chapters 2 and 3, the current generation of MXUs found inside each TPU core

has 128 PE and the XLA compiler will pad the arrays with 0 up until a multiple of 128

in order to use it. Therefore, we expect that doing matrix multiplications with matrices

smaller than 128× 128 is not going to be very efficient. However, if we do a matrix product

for arrays multiple of 128, the systolic array is going to be used optimally. Since distant

grid points do not depend on each other when computing the partial derivative through

the finite method, we are in an ideal position to split the grid in smaller grids of size n× n
with n being a multiple of 128. Therefore, creating a grid of tiles,where each can then be

computed independently using a n× n matrix A as seen in Figure 4.13.

n

n

n

n

L

x

n

K x n

A

shape = (L,K,n,n)

Figure 4.13.: Illustration of the slip of the grid into mini-grids. The size of the stencil matrix is
also added to show the memory savings of this approach.

An obvious drawback from this approach is that now we need to update boundaries

between tiles similarly to what we have done on the distributed approach of the simple

matrix multiplication method. Nevertheless, we expect that cost of boundary exchange in

48 Chapter 4 Partial Differential Equations

elements of the same core will be outperformed by the boost of not dealing with massive

sparse matrices.

The change on our implementation does convey some tricks that needed to be worth

mentioning. It should be clear that our working grid will become a 4 dimensional array, of

size L×K × n× n, where L = N/n and K = M/n being N and M being the size of the

original grid. We also need to be sure that the reshape function works as we need to. The

correct split into tiles can be obtained using the following code

1 def tile_split (x, n):
2 L, K = x.shape
3 return x. reshape (L//n, n, K//n, n). swapaxes (1, 2)
4
5 def merge_tiles (x, N, M)
6 return x. swapaxes (1, 2). reshape (N, M)

Listing 4.7: Auxiliary functions to transform correctly a grid into tiles and vice versa.

We add the exchange on inner core boundaries to the stencil_op as seen in Listing 4.8.

We also describe our matrix multiplication as

Dxxui,j,k,q =
n∑
l=0

ui,j,k,l ·Al,q (4.26)

1 import jax.numpy as jnp
2 from jax import ops
3
4 # size of x is (L,K,n,n)
5 A = jnp.eye(n, k=-1) + jnp.eye(n, k=1)
6
7 def stencil_op (x, A):
8 c = jnp. matmul (A, x) + jnp. matmul (x, A)
9 c = c.at [1: ,: ,0 ,:]. add(x[: -1 ,: , -1 ,:])

10 c = c.at [: -1 ,: , -1 ,:]. add(x[1:,:, 0 ,:])
11 c = c.at[:,1:,:, 0]. add(x[: ,: -1 ,: , -1])
12 c = c.at [: ,: -1 ,: , -1]. add(x[:,1:,:, 0])
13 return 0.25 * c

Listing 4.8: Step function on the heat diffusion problem for the tiles approach.

The implementation above assumes Dirichlet conditions. Some difference to the exchange

boundaries should be applied for periodic conditions, similarly to a multi-core approach.

With this implementation, the restriction of a square matrix gets lifted. Albeit Nx and Ny

should be multiples of n in order to get the split correctly, but Nx 6= Ny is possible.

4.5 Tiles Matrix 49

Multi-core Implementation

Regarding the multi-core implementation, we are in a very similar situation to the case on

Section 4.4, where we will add the boundary values after the stencil operations has been

carried. The only main difference been that we are now using 4D arrays, so for instance,

when exchanging the top row, we will need to send the top row of all the mini-grids on

the top row of the large grid. For instance, a small modification should be done to Listing

4.9 such as

1 import jax.numpy as jnp
2 from jax import ops
3
4 def integrate_step (...):
5 # Send boundaries
6 bottom = send_up (u[0,:,0,:], nrows , ncols)
7 top = send_down (u[-1,:,-1,:], nrows , ncols)
8 left = send_right (u[:,-1,:,-1], nrows , ncols)
9 right = send_left (u[:,0,:,0], nrows , ncols)

10
11 a = c ** 2 * laplacian (u, A, h)
12
13 # Add the adjusted values
14 a = a.at [0 ,: ,0 ,:]. add(top/h**2)
15 a = a.at[-1,:,-1,:]. add(bottom /h**2)
16 a = a.at[:,-1,:,-1]. add(left/h**2)
17 a = a.at [: ,0 ,: ,0]. add(right/h**2)
18
19 v = v + a * dt
20 u = u + v * dt
21 return u, v

Listing 4.9: Water Equation integration step adapted for message passing.

We see that indexing starts to get a bit confusing as we increase the dimensions of the

array.

4.5.2 Results

Before comparing the results with the other methods, we need to decide on which size

of tiles would be optimal for our solvers. Rationally, the larger the size the more sparse

the matrix is going to be, so we want to remain on the lower side of the sizes. Due to

the physical limitation of 128 PE, n should not be under 128. Therefore, we proceed to

do a grid search on different values of n for different problem sizes. Table 4.2 shows the

speedups of the three benchmarks for the new tiles implementation with respect to the

vector implementation.

Looking at Table 4.2, we see that we are able to achieve a solid 20% speedup with respect

to the vector approach. The values oscillate quite a bit and that may due to the sample size.

50 Chapter 4 Partial Differential Equations

Grid
Tile (1× 128)2 (2× 128)2 (4× 128)2 (8× 128)2 (16× 128)2 (32× 128)2 (64× 128)2

Heat Diffusion

(2× 128)2 0.84 1.43 - - - - -
(4× 128)2 0.78 1.04 1.44 - - - -
(8× 128)2 0.71 0.96 1.12 1.20 - - -
(16× 128)2 0.68 0.93 1.18 1.21 0.89 - -
(32× 128)2 0.69 0.90 1.21 1.19 0.82 0.54 -
(64× 128)2 0.72 0.93 1.23 1.24 0.86 0.53 0.31
(128× 128)2 0.64 0.83 1.10 1.18 0.76 0.47 0.26
(256× 128)2 0.63 0.81 1.07 1.15 0.74 0.47 0.26

Wave Equation

(2× 128)2 0.89 1.89 - - - - -
(4× 128)2 0.73 1.06 1.57 - - - -
(8× 128)2 0.59 0.84 1.09 1.16 - - -
(16× 128)2 0.53 0.75 0.97 1.15 0.75 - -
(32× 128)2 0.51 0.66 0.93 0.99 0.68 0.40 -
(64× 128)2 0.69 0.91 1.20 1.27 0.92 0.56 0.30
(128× 128)2 0.69 0.91 1.20 1.27 0.92 0.58 0.32

Shallow Water

(2× 128)2 1.16 2.18 - - - -
(4× 128)2 1.11 1.51 1.93 - -
(8× 128)2 0.86 1.18 1.47 1.20 - -
(16× 128)2 0.95 1.29 1.65 1.49 - -
(32× 128)2 0.88 0.94 1.20 1.62 1.52 - -
(64× 128)2 1.15 1.47 1.91 1.86 1.07 0.58 0.27
(128× 128)2 0.96 1.52 1.96 1.91 1.10 0.57 0.27

Table 4.2.: Speedups of the tiles approach with respect to the vector approach for the three
benchmarks.

4.5 Tiles Matrix 51

1.2

1.4

1.0

1.5

2.0

Sp
ee

du
p

2 4 8 16 32 64 128 256
Grid size N (N × 128)2

1.5

2.0

Figure 4.14.: Observations of the speedups for different problem sizes.

The reason behind the different results when the grid size is (32× 128)2 are still unknown,

but the fact that ig happens in the three simulations begs the question if something strange

is happening on the device. Due to times constrains, each simulation has only been run 50

times in order to get the the final mean time. Regardless, the point that tiles larger than

' 1000 start to decrease the performance of the core should remain.

Figure 4.14 shows us that the speedup factors are not related to the problem size.

4.6 Direct Solution by Tensor Product

One of the reasons of the surge of AI accelerators is that matrix multiplications have

not been the most efficient method to implement on conventional hardware, despite the

impressive work done on libraries such as BLAS, which is the backbone of most the the

GEMM operations in high level libraries such as NumPy. However, a TPU performs the

best when dealing with matrix multiplications as seen from previous benchmarks. Those

results gives us the opportunity to study methods that rely on the use of tensor products to

obtain exact solutions to PDEs, which would leverage the use of the MXU without having

to perform any custom transformation. Therefore, we will briefly introduce the method

described in Lynch et al. [38], which we will compare its performance on solving the heat

dissipation problem to the results from the previous iterative methods, as well as with the

current hardware similarly to what have been doing during this whole section.

52 Chapter 4 Partial Differential Equations

4.6.1 Implementation

The main idea of the method is to obtain a system than can be expressed on the following

form

(I ⊗A+B ⊗ I)u = g (4.27)

where A and B are N ×N matrices and ⊗ indicates the Kronecker Product.

The Kronecker product, also referred as tensor product, of two matrices A⊗B returns a

NM × NM , where A is of order N × N and B is of order M ×M . For instance, if we

define ai,j as the elements of the matrix A, the resulting tensor product of A⊗B would

be

A⊗B =

a11B a12B a13B · · · a1NB

a21B a22B a23B · · · a2NB
...

...
...

. . .
...

aN1B aN2B aN3B · · · aNNB

Thus, the method relies on being able to express the PDE to study in the form of (4.27) so

that it can be directly solved. To do so, the inverted matrix (I ⊗A+B ⊗ I)−1 is obtained

by using the tensor product properties as well as their eigenvectors and eigenvalues.

We will start by assuming that we have a system described in the form of (4.27). We will

also assume A and B to be non-singular matrices and to have distinct eigenvalues. This

conditions should be reevaluated when applying the method to an specific PDE. Hence, we

can expect the eigenvectors matrices of A and B to exist and fulfil the following relations

P−1AP = λ(A) (4.28)

Q−1BQ = λ(B) (4.29)

where P and Q are the matrices with the eigenvectors of A and B respectively.

Therefore, by using the properties of the tensor product, we can express (4.27) in terms of

the eigenvectors and eigenvalues of A and B. To do so, we apply the previous relations to

the LHS so that we have the following expression

P−1 ⊗Q−1(I ⊗A+B ⊗ I)P ⊗Q = I ⊗ λ(A) + λ(B)⊗ I (4.30)

4.6 Direct Solution by Tensor Product 53

thus, using the elemental properties of tensor products we can express the inverse as

(I ⊗A+B ⊗ I)−1 = P ⊗Q(I ⊗ λ(A) + λ(B)⊗ I)−1P−1 ⊗Q−1 (4.31)

Consequently, obtaining the solution of u from (4.27) as

u = P ⊗Q(I ⊗ λ(A) + λ(B)⊗ I)−1P−1 ⊗Q−1g (4.32)

where g contains the information regarding the initial conditions as well as the boundary

conditions. In order to make it more clear, we can rewrite (4.32) in terms of the matrix

elements

ui,j =
N∑
α=1

pi,α

M∑
β=1

qj,β
1

λα(A) + λβ(B)

N∑
n=1

p′α,n

M∑
m=1

q′β,mgn,m (4.33)

which is nothing more than 4 consecutive matrix multiplications as seen below

R = rn,β =
M∑
m=1

q′β,mgn,m = (Q−1 ·GT)T (4.34)

S = sα,β = 1
λα(A) + λβ(B)

N∑
n=1

p′α,nrn,β = Λ� (P−1 ·R) (4.35)

T = tα,j =
M∑
β=1

qj,βsα,β = (Q · ST)T (4.36)

U = ui,j =
N∑
α=1

pi,αtα,j = P · T (4.37)

where U is the exact solution to the PDE, similar to the approximation we would obtain

on iterative methods such as the already discussed Jacobi iterative solver. The resolution

of this method is trivially implemented as it is shown in a generic solver on Listing 4.10.

1 import jax.numpy as jnp
2 from jax import partial , jit
3 # N x N broadcasted inverse eigenvalues matrix
4 EIVAL = 1 / (eivalA_broadcasted + eivalB_broadcasted)
5
6 @partial (jit , donate_argnums =0)
7 def solve(G, Q, P, EIVAL , IQ , IP):
8 R = jnp.dot(IQ , G.T)
9 S = EIVAL * jnp.dot(IP , R.T)

10 T = jnp.dot(Q, S.T)
11 return jnp.dot(P, T.T)

Listing 4.10: Solver of PDEs using tensor products.

54 Chapter 4 Partial Differential Equations

With the method described, we will focus on our heat dissipation benchmark, as it is the

only one that deals with convergence instead of time evolution. Since it is a steady state

problem that follows a Laplacian equation, the method can be simplified as follows

For starters, the PDE to solve is of the Laplacian form

Dxxui,j +Dyyui,j = 0 (4.38)

which, due to the independence of each D operator in regards to the other axis, it is readily

rewritten as

(I ⊗A+A⊗ I)u = g (4.39)

where g contains the initial state with the Dirichlet Boundary conditions. Therefore, we

are in the case where B = A, hence Q = P and λ(A) = λ(B).

Since the second order differential matrix with Dirichlet conditions is a fairly common

scenario, we can obtain the eigenvectors from the literature [38].

P = Q =
√

2
N + 1 sin

(
i · j · π
N + 1

)
(4.40)

for i and j with values i, j = 1, ..., N . A visualization of the pattern of P can be seen on

Figure 4.15. From the equation, as well as from the figures, we see that despite being

normalized, the eigenvectors of A are not sparse. Hence, we will be working with dense

matrices despite the sparse initial condition. The eigenvalues are found by using (4.28).

0 10 20 30 40

0

10

20

30

40

(50,50)

0 50 100 150
X

0

25

50

75

100

125

150

175

Y

(200,200)

0.15

0.10

0.05

0.00

0.05

0.10

0.15

0.075

0.050

0.025

0.000

0.025

0.050

0.075

Figure 4.15.: Visualization of the values and pattern of the Matrix P for different sizes for Dirichlet
Boundary conditions.

4.6 Direct Solution by Tensor Product 55

0 10 20 30 40 50 60
0.0

0.1

0.2

0.3

Av
er

ag
e

tim
e

to
 so

lv
e

(s
)

GPU
TPU

2 4 8 16 32 64
Problem Size (N × 128)2

0

1

2

3

4

Sp
ee

du
p

Figure 4.16.: Performance comparison of the tensor product solver using a GPU and a TPU core.
Both devices performing the same implementation of the tensor solver.

4.6.2 Results

A simple timing comparing the solver on both a TPU core and a GPU yields the results

shown at Figure 4.16. Despite the GPU performing better than a single TPU core for

smaller sizes, at N2 = (8 × 128)2 the TPU starts to outperform the GPU. It should be

clearly stated that the comparison is between a single core and the whole GPU, which the

performance of TPUs doing matrix multiplication all that impressive.

These results serve as an example to confirm what was already expected from the matrix

multiplication method results. A TPU will vastly outperform a GPU in terms of scalability.

The larger the matrix (or grid), the better will the TPU perform in comparison to the GPU.

Nevertheless, the memory footprint of this method is something to take into consideration

when looking into extending it to large scale problems, as it would seem that it uses at

least 8× the amount of memory needed to store the surface grid, as seen in Figure 4.17.

Despite not being a fair comparison to do, Table 4.3 shows the times in takes for the solver

to converge.

Because the tensor products returns the exact solution as opposed to the iterative method,

the idea is that most of the times, if there is a method that uses matrix operations, it will

likely outperform those that need transformations in order to use the MXU.

56 Chapter 4 Partial Differential Equations

Figure 4.17.: Memory profiler of the Direct Solution using Tensor Products for a grid of size
(120× 128)2. The profiler display 7 consecutive solvers which explains the red spikes
in the fragmentation. The original grid would have uses 0.9GiB, instead, there is
a report peak memory usage of 12.75GiB in the profiler, despite not being shown
in the graph. Hence, memory management of this method can not be considered
optimal

GPU Vector TPU Product

Convergence Time 1023s 0.28s
Table 4.3.: Comparison between the time it takes the vector iterative method to obtain a close

result to the direct solution by tensor product on a TPU core. The size of the problem
is of N2 = (100× 128)2

As described in the original paper, the model should not present any instability for larger

number of elements in the grid. During our testing and studying of the implementation,

no instability for larger number of grid elements was found either. Despite its performance,

the model does need a rather idealized scenario so it does not have the versatility that the

FDM has.

4.7 Discussion

After finding a method capable of providing a reasonable speedup with respect to conven-

tional methods, we proceed to summarize and evaluate all the aspects of it.

4.7.1 Performance and Efficiency

To summarize, a comparison of the performance of all the methods is done as shown in

Table 4.4. The results show how effective the tiles method is compare to the other two

for all three of the simulations. From the three benchmarks proposed, the tiles approach

continues to yield the best results on the Shallow Water solver when using every core of

the TPU.

4.7 Discussion 57

Another remarkable observation to make is that the difference in Memory usage does not

seem to be dependent on the method used. This does goes against our intuition. However,

as stated in Chapter 3, once a function is jitted, XLA is the one in charge of memory

management. And judging by these results, it would appear to be that XLA is highly

dependent on the order function are written. Hence, some more consideration should be

added to prioritize memory utilization instead of readability. Ideally, XLA should be able

to optimize even inefficient written code as long as all the functions used are traceable.

However, it does seem to perform optimization for some of the simulations. Nonetheless,

I believe that XLA may not be as powerful as it can be yet and the way of programming

needs to be careful planned to not hog memory.

In order to compute the energy consumption on each case, we use the TDP value, which

indicates the maximum Power (W = J/s) can expect on heavy workloads, and we

multiplying by the time it took the simulation to run. Hence, we end up with a rough

metric that can tell us how much energy does each method consumes.

Method
Execution Time Performance Energy Consm. Mem. usage Cloud Cost

(s) (iter/s) (kJ) (GiB) ($)

Heat Diffusion

Vectors 51.72± 0.02 19.3 93.096 24 0.1264
Matrix 319.4± 0.6 3.13 574.989 18.08 0.7808
Tiles 43.77± 0.01 22.84 78.801 16.96 0.1070

Wave Equation

Vectors 60.50± 0.03 16.53 108.903 34.16 0.1479
Matrix 311.27± 0.1 3.12 560.293 36 0.7609
Tiles 40.99± 0.02 24.39 73.790 32 0.1002

Shallow Water

Vectors 98.46± 0.06 10.16 177.225 40.2 0.2406
Matrix 623.21± 0.2 1.60 1121.773 38 1.523
Tiles 50.93± 0.01 19.36 91.677 32 0.1245

Table 4.4.: Comparison results of the three methods on the three simulations on a (131072 ×
16384) = 2.19 · 109 grid all using a single TPU unit (8 cores). In the heat diffusion
simulation, we consider 1000 iterations instead of waiting for convergence. Likewise,
we use 1000 iteration steps on the rest of time forward benchmarks.

With the tile method being the clear winner, when considering the correct tile size, it is

compared to the most performant method on GPU. Because we are comparing 8 TPU Cores

against a single GPU, the performance metrics are also normalized per power usage and

cloud pricing. Since our GPU is not listed on Google Cloud, there is no price tag for it.

Based on its half floating point performance, a similar price to the V100 has been assumed

despite being an overestimation, since the latter has yield better performance across the

board.

58 Chapter 4 Partial Differential Equations

TPU GPU

Grid Size/Core N2 GFLOPS GFLOPS/$ GFLOPs/W GFLOPs GFLOPS/$ GFLOPs/W

Heat Diffusion

(16× 128)2 360.1 40.91 0.20 122.2 47.94 0.48
(32× 128)2 390.4 44.35 0.21 131.6 51.62 0.52
(64× 128)2 390.8 44.40 0.22 134.4 52.72 0.54
(128× 128)2 392.3 44.58 0.22 135.2 53.04 0.54

Wave Equation

(16× 128)2 519.1 58.99 0.29 229.1 89.84 0.92
(32× 128)2 539.8 61.35 0.30 251.2 98.50 1.00
(64× 128)2 526.1 59.78 0.29 258.2 101.26 1.03
(128× 128)2 523.9 59.53 0.29 250.7 98.31 1.00

Shallow Water

(16× 128)2 369.7 42.02 0.21 128.3 50.32 0.51
(32× 128)2 383.1 43.53 0.21 135.5 53.15 0.54
(64× 128)2 381.5 43.36 0.21 137.6 53.97 0.55
(128× 128)2 379.5 43.12 0.21 138.2 54.18 0.55

Table 4.5.: Comparison between the best performant method on TPU against the most performance
GPU method.

Based on the final results, it is clear that computing finite difference will not be more

efficient nor economic to run on TPU instead of GPU for any size or any simulation.

However, we did not test the scaling performances on multiple GPUs and those could yield

interesting results if not they were not capable of scaling as well as TPUs.

4.7.2 Accuracy

One important aspect about the use of TPUs is their limitation on the data precision, as

the standard precision for physical simulations is usually double floating points (float64).

Because JAX allows to modify the default data format from 32 to 64 on CPUs and GPUs,

we will use a simulation on GPU using the full 64 bits to see how the different data formats

make the simulation diverge.

Despite not seeing any alteration on the simulations by performing a visual inspections

on the animated outputs, we measure the Mean Square Error of all the grid points on

different stages of the simulation to see if the error of the values remain fairly similar over

time or instead, they present a divergent behavior that may result in wrong predictions for

long running simulations.

By looking at Figure 4.18, we observes some divergences when using the TPU, and specially

the MXU, on its default configuration. Despite not being visible, on a 10,000 iterations

simulation, the difference between the double floating points simulation and the brain

4.7 Discussion 59

0 2000 4000 6000 8000
Iterations

10 15

10 13

10 11

10 9

10 7

10 5
M

ea
n

Sq
ua

re
 E

rro
r (

M
SE

)

0 2000 4000 6000 8000
Iterations

0.00000

0.00002

0.00004

0.00006

0.00008

0.00010

M
ea

n
Sq

ua
re

 E
rro

r (
M

SE
)

bfloat16 tpu float32 tensorflow32 gpu float32

Figure 4.18.: Accuracy comparison between the height of the waves of the Wave Equation bench-
mark as the iterations on the simulation go on. The MSE are with the values obtained
from a GPU run using double floating points data type.

floating paints have increased linearly. Regardless, assuming the worst case scenario where

the MXU is used on all the iterations, it does still yield good results, with only ε ≈ 10−5

as the mean square error. For simulations that use large values, this divergence would

have less noticeable and the limitation of having a lower range of values as it would be

the case for float16 would have been inferior. Nevertheless, based on this evidence, we

argue that the impacts of using lower precision would be noticeable in long simulations,

and that using lower precision would only be worth it for simulations with number of on

the hundred of thousands order of magnitude if precision was necessary, which would still

include plenty of common physics calculations. Hence, the speedup provided from using

lower precision exceeds the possible divergence on the results respect the real values, but,

should be avoided if a high fidelity is required for very long simulations, and using more

passes on the MXU yields worst performance.

4.7.3 Scalability

Scalability is a big selling point on TPUs. Due to the independence of batch operations, ML

workflows can easily distribute the workload into hundreds of different devices and still

not deal with communication issues.

However, because we need to exchange boundaries in every time step, it begs the question

if using multiple TPUs will yield the same linear scalability observed on a single unit. Thus,

Figure 4.19 shows the strong scaling performance of TPUs on using the tiles method. The

observed scalability on using 2 TPUs Unit is linear, with a very small deviation when using

16 cores, which is to expect considering that in order to be able to perform the tiles, there’s

need to be at least (8× 128)2 grid points. And at that scale, the computation happens so

fast that the TPUs end up having to wait on the exchange.

60 Chapter 4 Partial Differential Equations

2.5 5.0 7.5 10.0 12.5 15.0
Number of TPU Cores

50

100

150

200

250

300

350

400

Ite
ra

tio
ns

 p
er

 se
co

nd
 (s

)

Heat Diffusion
Linear scaling
TPUv3

2.5 5.0 7.5 10.0 12.5 15.0
Number of TPU Cores

Wave Equation

2.5 5.0 7.5 10.0 12.5 15.0
Number of TPU Cores

Shallow Water

Figure 4.19.: Strong scaling of the Tiles algorithm of a (128 × 128)2 grid. By using tiles of
m = 10242 as they proved the best performance, we can only scale up to 2 TPUs.

Looking at the weak scaling performance on Table 4.6, we see that the time to perform

100 iterations is the same regardless of the number of cores, which confirms that TPUs

scalability is one of the strong points to use. Additionally, it proves that our implementation

has no issues scaling linearly.

TPU Cores Grid Size Heat Diffusion (s) Wave Equation(s) Shallow water(s)

1 [128, 128]× 128 4.37 4.09 5.08
2 [256, 128]× 128 4.38 4.09 5.09
8 [1024, 128]× 128 4.37 4.10 5.09

10 [1280, 128]× 128 4.39 4.10 5.10
12 [1536, 128]× 128 4.38 4.10 5.09
16 [2048, 128]× 128 4.37 4.09 5.10

18 [2304, 128]× 128 4.40 4.10 5.12
20 [2560, 128]× 128 4.39 4.11 5.10
24 [3072, 128]× 128 4.39 4.12 5.11

Table 4.6.: Weal scaling performance of the new implementation. The table shows the times each
run has taken to perform 100 iterations.

4.7 Discussion 61

5Complex Systems: Ising Model

In this section we take a look at the only previous study, to our knowledge, based on the

viability of Google TPUs in HPC (Yang et al. [39]), where it is displayed the performance of

TPUs running a large scale Ising Model. As the authors motivations resemble our own, we

analyze their approach and adapt it to this thesis findings. Mainly, the aspects and issues

that we would like to touch upon on this section are:

• TensorFlow: They published their paper before TensorFlow 2.0 was released, hence

their implementation is written in TensorFlow 1. As Google does not recommend

using Tensorflow 1 anymore, it is likely that their expectations on making TensorFlow

1 a numerical methods framework will not be met. Even though porting from

TensorFlow 1 to its next version should not require extensive work, it is our opinion

that TensorFlow graph model alienates physicists whom are accustomed to array

syntax. Regardless, JAX has access to the same XLA operations in a more friendly

approach and I believe that showing their algorithm implemented on JAX may help

people interested in porting or writing stochastic simulations on TPUs.

• Tile size: On their implementation, they also realize that in order avoid sparsity,

the grid needs to be split into smaller grids. However, they reason that because 128

is the smallest size possible on the physical systolic array, it is an effective subgrid

size. That assumption contradicts the results seen on Chapter 4 for the proposed

tiled approach, where m = 128 tiles are found to be up to twice less effective than

a regular vectorized approach, regardless of not using the MXU at all. However,

larger tiles do report higher performance, thus, we analyze how tile size changes

their implementation performance.

• Wrong TDP value: Because their paper came before most of the information regard-

ing TPU was available and despite the authors working at Google, they estimated the

TDP of a v3 chip to be 200W , less than half the real reported value of 450W [40].

Hence, a correction to their estimated power consumption values is done in order to

compare it to our results.

63

• XLA advances: Lastly, we use their paper as a reference to quantify if there has

been an improvement on the XLA compilers when dealing with TPUs. From personal

experience during these months working on this project, it has seemed that XLA, and

JAX for that matter, have improved their performance drastically. Therefore, we will

use this to formally quantify that feeling.

5.1 The Ising Model

Before we implement their algorithm, we briefly introduce the physics behind it. By doing

so, we expect to show that the reasoning of its results can be extendable to other stochastic

simulations that may resemble the Ising Model.

The Ising model is an example of a lattice model where one variable is located at each site

of a regular grid and the state of the variables is determined by a function. In the Ising

model case, that function is the Ising Hamiltonian.

H = −J
∑
〈ij〉

sisj + h
∑
i

si (5.1)

Where < ij > denotes that a sum is to be carried out over all nearest-neighbor pairs of

sites i and j, and J is the coupling between these neighboring sites. It is assumed that long

range interactions are neglected due to nearest neighbor interactions being dominant in the

Hamiltonian. The quantity h represents an external magnetic field which interacts with the

magnetic moment of each spin si and it is assumed null for this simulation. Such models

have been successful in the description of critical phenomena, magnetism, models for

high-temperature superconductivity and phase diagrams, disordered and non-equilibrium

systems, etc.

Despite the 1 dimensional exact solution being relatively easy to reproduce which proves

that there is no phase transition at 1D [41], finding the solution on 2 dimensions is not

a trivial task as proved by [42]. For the 3D Ising Model no analytical solution has been

found yet. Therefore, numerical simulations provide an alternative and in some cases, the

only way, to study these systems behavior, thus its relevance in computational physics.

The Metropolis Algorithm

The Ising model is implemented using a Monte Carlo approach which would require

picking random number of states, flipping them and performing their measurements,

weighting them by their Boltzmann factor. However, this would require a large number

64 Chapter 5 Complex Systems: Ising Model

of measurements. The Metropolis algorithm provides a method on which, based on their

Boltzmann factors, the flipping of a state is chosen.

Going into more detail into the implementation of the classical metropolis alghoritm, we

have the following steps:

1. Generate a 2D lattice of size N ×N where every cell is a lattice site with spin value

si = ±1. A matrix with all initial values set to 1 is used.

2. For the model to work we need a large amount of sites N → ∞. Therefore, we

assume periodic boundaries.

3. A single lattice site is selected and flipped. If the change in energy ∆E is negative

∆E < 0, the flip is accepted and another random point is chosen. Otherwise,

if the change in energy is positive ∆E > 0, the flip is accepted with probability

exp (−∆E/κBT).

From the description above, is it clear that the Metropolis Algorithm is a sequential

algorithm that can not utilize the potential of parallel accelerators. Nonetheless, an

implementation that make use of the nearest neighbors interaction to perform the flips in

a parallel manner exists, as it is the case of the checkerboard algorithm. [25].

5.2 TPU Implementation

As we have previously stated, their implementation resembles the tiled matrix approach

discussed on this thesis. However, due to the nature of their simulation, there are a fair

share of differences that we need to mention.

They based their implementation on the checkerboard algorithm just mentioned, which

allows for the flipping of all non-interactive spins in the same step in parallel. The

checkerboard algorithm assigns each spin a color, white or black similar to the checkerboard

like pattern seen in Figure 5.1.

5.2 TPU Implementation 65

01 02 03 04 05 06 07 08

11 12 13 14 15 16 17 18

21 22 23 24 25 26 27 28

31 32 33 34 35 36 37 38

41 42 43 44

51 52 53 54

61 62 63 64

71 72 73 74

Figure 5.1.: Coloring distribution of the spin in the lattice. Green has used for aesthetics reasons
and should be consider black on when referred to it. The number display on the initial
cells are the subindexes i, j of sij

In doing so, they are able to flip all the spins of the same color using the other color value

to evaluate the energy difference of each flipping. Since the computer intensive part is the

sum of neighbors, as in our iterative solver, they apply the same matrix K.

K =

0 1 0 . . . 0 0 0
1 0 1 . . . 0 0 0

...
. . .

...

0 0 0 . . . 1 0 1
0 0 0 . . . 0 1 0

128×128

M =

1 0 1 . . . 0 1 0
0 1 0 . . . 1 0 1

...
. . .

...

1 0 1 . . . 1 0 1
0 1 0 . . . 0 1 0

128×128

(5.2)

To do it, a boolean mask M is applied so that the flip values only affect the spins of the

same color. Another difference between the implementations is that they assume and

infinite periodic system, meaning that the 2D lattice is in reality a torus. Therefore, once

the matrix multiplication has been performed the boundary values are corrected to include

the values from the neighboring subgrids. To show how simple this implementation can

be, the code is shown in Listing 5.1.

This approach, however, presents certain redundancies that are observed on the original

paper as well. In order to avoid them when computing on the whole lattice, they propose a

new algorithm. According to their experiments, this newer approach yields a 3× speedup

over the previous method. Thus, we implemented it as well in order to test if this relation

still exists.

66 Chapter 5 Complex Systems: Ising Model

1 def ising_half_step (key , x, mask , K, beta):
2 key1 , key2 = jax. random .split(key , 2)
3 prob = jax. random . uniform (key1 , mask.shape)
4
5 nn = jnp. matmul (x, K) + jnp. matmul (K, x)
6 nn = nn.at [: ,: ,0 ,:]. add(jnp.roll(x[:,:,-1,:], 1, 0))
7 nn = nn.at [: ,: , -1 ,:]. add(jnp.roll(x[:,:,0,:], -1, 0))
8 nn = nn.at [: ,: ,: ,0]. add(jnp.roll(x[:,:,:,-1], 1, 1))
9 nn = nn.at [: ,: ,: , -1]. add(jnp.roll(x[:,:,:,0], -1, 1))

10
11 acceptance_ratio = jnp.exp (-2 * beta * x * nn)
12 flips = (prob < acceptance_ratio) * mask
13 x = x - 2 * x * flips
14 return key2 , x, 1 - mask

Listing 5.1: Naive implementation of the Ising Model with the checkerboard algorithm.

The new approach is based on removing the multiplication of the mask, as it means having

to compute the sum over nearest neighbors as well as the acceptance ratio for half the grid

that does not need it. Instead, each subgrid is divided in more subgrids with the spins of

each rearranged to be in sub-blocks of the same color as seen in Figure 5.2.

01 03 02 04 05 07 06 08

21 23 22 24 25 27 26 28

11 13 12 14 15 17 16 18

31 33 32 34 35 37 36 38

41 43 42 44

61 63 62 64

51 53 52 54

71 73 72 74

Figure 5.2.: Optimized rearrangement of the spins so that all the spins with the same color inside
the sub-lattices are together.

Because of the new distribution, a new kernel, similar to the one of the forward finite

difference scheme, is used.

K̂ =

1 1 0 . . . 0 0 0
0 1 1 . . . 0 0 0

...
. . .

...

0 0 0 . . . 0 1 1
0 0 0 . . . 0 0 1

128×128

(5.3)

5.2 TPU Implementation 67

1 def ising_optim (key , s, black , K, beta):
2 key1 , key2 = jax. random .split(key , 2)
3 probs0 = jax. random . uniform (key1 , s[0]. shape)
4 probs1 = jax. random . uniform (key2 , s[0]. shape)
5
6 idx1 = jnp.where(black , 0, 1)
7 idx2 = jnp.where(black , 3, 2)
8
9 nn0 , nn1 = lax.cond(black , nn_black , nn_white , (s,K))

10
11 flips0 = probs0 < jnp.exp (-2* beta*nn0*s[idx1])
12 flips1 = probs1 < jnp.exp (-2* beta*nn1*s[idx2])
13
14 s = ops. index_add (s, ops.index[idx1], -2* flips0 *s[idx1])
15 s = ops. index_add (s, ops.index[idx2], -2* flips1 *s[idx2])
16
17 return key , s, black^True

Listing 5.2: Optim implementation of the Ising Model with the checkerboard algorithm.

1 def nn_black (s):
2 (s00 , s01 , s10 , s11), K = s
3 nn0 = jnp. matmul (s01 , K) + jnp. matmul (K.T, s10)
4 nn0.at [: ,: ,0 ,:]. add(jnp.roll(s10 [:,:,-1,:], 1, 0))
5 nn0.at [: ,: ,: ,0]. add(jnp.roll(s01 [:,:,:,-1], 1, 1))
6
7 nn1 = jnp. matmul (K, s01) + jnp. matmul (s10 , K.T)
8 nn1.at [: ,: , -1 ,:]. add(jnp.roll(s10 [:,:,0,:], -1, 0))
9 nn1.at [: ,: ,: , -1]. add(jnp.roll(s10 [:,:,:,0], -1, 1))

10
11 return nn0 , nn1

Listing 5.3: Nearest Neigbours sum for the black color

Therefore, we define the black spins as s00 and s11 whereas the white spins are s01 and

s10. The near neighbors sum is then computed as

nn00 = s01 · K̂ + K̂T · s10

nn11 = K̂ · s01 + s10 · K̂T

nn01 = s00 · K̂T + K̂T · s11

nn00 = s00 · K̂ + K̂ · s11

with the boundaries corrected using the same approach as before. The implementation, in

spite of the added complexity, can still be written in a few lines of code as seen in Listing

5.2

and the near neighbor calculations as seen on nn_black on Listing 5.3.

68 Chapter 5 Complex Systems: Ising Model

5.3 Results

We begin by performing both algorithms to check whether they get such a different

performance.

0 50 100 150 200 250

10 3

10 2

10 1

Av
er

ag
e

tim
e

pe
r i

te
ra

tio
n

(s
)

Naive
Optim

8 16 32 64 128 256
Problem Size (N × 128)2

0.0

0.5

1.0

1.5

2.0

Sp
ee

du
p

Figure 5.3.: Timing comparison between both algorithms to run the ising model.

The speedup observed is of 2× in contrast to their reported 3×. However, the quality of

the implementation can also be a factor to consider. Regardless of quality, it is clear that

their optimized approach does yield better results than the naive approach. Additionally, it

does seem that the speedup is constant regardless of the problem size, which aligns with

the expectations as you are reducing to half the computations.

In order to compare our implementation with the ones from the previous study, we perform

the same simulations with the same lattice sizes and compare their throughput as well as

their efficiency. Their Corrected TDP has been multiplied by the correction faction 2.25 so

that we consider a TDP of 250W instead of their assumed 100W .

As seen on Table 5.1, the values for our implementation are considerably lower than

the ones reported on the paper. The reason for this discrepancy is still unknown. Some

alterations to the implementation were done without any successful result. However, since

the profiling tool has just been released, we can analyze an iteration to see if there is an

specific reason for it to perform that poorly.

5.3 Results 69

Reference Our Implementation

lattice size Original Corrected TDP m=128 m=1280 Efficiency
n2 (flips/ns) (nJ/flip) (flips/ns) (flips/ns) (nJ/flip)

(20× 128)2 8.1920 27.4658 3.615 2.1786 60.4757
(40× 128)2 9.36323 24.03248 3.668 2.6737 56.7058
(80× 128)2 12.3362 18.23895 4.1101 3.2852 54.7425
(160× 128)2 12.8266 17.50417 4.1600 3.6654 54.0872
(320× 128)2 12.9056 17.43435 - - -
(640× 128)2 12.8783 17.47125 - - -

NVIDIA Tesla V100 11.3704 21.9869
Table 5.1.: Performance comparison between the original paper figures at the ones obtained on

our implementation.

Figure 5.4.: Screenshot of the trace viewer of the optimized Ising method

Figure 5.4 shows the profiler view of a single iteration from the optimized algorithm. The

initial observation from the trace viewer is that the dot product does not represent the

largest computation on a step. Instead, the functions related to the element wise operations

and random generation are the ones taking the most amount step time, alongside copying

the array. These results had not been able to be observed when trying to improve the

performance of the algorithm and gives us an idea on how to adapt it to perform better.

Aside of helpful insight on the operations each time step, it also shows a time per iteration

lower than the reported timing of our solution. Different timing techniques may explain

the performance difference between our implementation and the reported ones in the

paper, as in our case we are considering a timing on the whole simulation to later average it

with the number of steps whereas the paper’s authors only time the iteration. For instance,

using the provided time in the profiler of t = 3.573ms per iteration on a n2 = (40× 128)2

lattice, 7.3368 flips/ns is obtained, which yields twice the previous reported value and a

similar, although lower, performance to the reported one on the original paper.

70 Chapter 5 Complex Systems: Ising Model

5.4 Discussion

After comparing our implementation with the one provided on the paper, we see that the

JAX code is not able to match the performance of the TensorFlow graph. It is hard to point

whether this is due to TensorFlow being a more mature language and having better XLA

optimizations than the current state of JAX, or if the reason for the worst performance is

due to the implementation. Regardless, the readability of the JAX code is being far better

than the one of the TensorFlow approach.

From the results of profiling the function, we observe that our MXU utilization corresponds

to the 20% of the step time, in contrast to their reported 60%. Additionally, there are two

copying of arrays that use 32% of the time and that we were not aware up until seeing the

profiler. However, the most informative part of the results corresponds to the time it takes

for the pseudo-random generator to generate the uniform probabilities. Whereas in the

original paper this tasks, performed using TensorFlow tf.uniform function, takes 12% of

the time, on our implementation using JAX’s own pseudo-random number generators it

takes up to 35% of the running time.

These values need more studying but have served us to realize how informative and useful

a profiler really is.

5.4 Discussion 71

6Porting of existing simulations

Porting Veros, an ocean simulation currently being developed by Team Ocean at the Niels

Bohr Institute, to run efficiently on Google Cloud TPUs was originally the main motivation

behind this thesis. Therefore, I have spent the large part of it trying to make Veros run

efficiently on them. Due to the challenges usually found on new technologies, such as the

lack of tools, documentation and unstable implementations, in addition to the complexity

of Veros itself, I could not manage to achieve any significant result. Instead, we decided

that it would be better to take a step back and perform a study on the solution of PDEs

in a simpler scenario where there was more control over the variables involved. In doing

so, providing some guidance for future works before attempting to port an established

simulation such as Veros without any feedback on whether the changes made sense or

not.

In this section, the results obtained from the proposed approach are used to evaluate the

porting of Veros to TPUs. Its main features and core computations are assessed in order

to reach a conclusion on whether a porting is a good idea. Moreover, I will include my

suggestions on how I would approach some of Veros calculations using the experience

gained after doing this thesis.

Based on my experience, I will discuss some guidelines to consider when thinking about

supporting simulations to use Google Cloud TPU clusters as well as to express where I

believe the proposed algorithm for solving PDEs may be more appropriately used.

6.1 Veros: The versatile ocean simulation

6.1.1 Introduction

Veros is an ocean simulation completely written in pure Python developed at the Niels

Bohr Institute by the Team Ocean research group[13]. Veros is a porting of the highly used

PyOM2 library with its FORTRAN backend replaced by pure Python functions. Henceforth,

Veros tries to encompass the efforts of creating a HPC ecosystem in a high level language

73

such as Python, by providing a high performant general circulation model that is extremely

extensible, accessible, massively parallelizable and generally, easy to use.

Veros implementation is not a direct translation from FORTRAN to Python as that would

yield very slow performances and it would not be a viable solution. Instead, it is based

on the observations of vectorized approaches discussed on Chapter 4, where it is showed

that vectorized operations could reach similar performances to low level sequential code.

Similarly to the PDE benchmarks, Veros numerical solutions are calculated using finite

differences. Therefore, the assessment of Veros should resemble the approaches studied

on Chapter 4 and the resulting study will be based on whether it is feasible to apply the

proposed method to existing Veros functions.

Veros is intended to work on as many devices as possible and it is able to do so by making

use of the flexibility and abstraction that Python provides. Consequently, one consideration

to have is whether the alterations required to run them on the TPUs are not disruptive

enough for the code that will run on the other devices.

Lastly, the main motivation behind Veros aligns perfectly with the one for surge of novel

AI chips on which both target high speedups by making use of tensor operations and

abstractions instead of relying on, prone to errors, index based approaches of low level

languages. Therefore, it is to expect that a device called Tensor Processing Unit, may be

the ideal candidate for a tensor based simulation such as Veros.

6.1.2 Assessment for TPUs

Luckily for this assessment, some benchmarks of Veros had already been implemented in

order to compare different backends, which lead to the decision of adding support for JAX

as it outperformed most of the other libraries on CPU as well as on GPU[43]. In addition

to its high performance and numpy-like syntax, JAX also provided the support for multiple

architectures as stated in Chapter 3, which made it great fit with Veros motivations

of being hardware agnostic. In fact, having Veros support JAX was the main catalyst

behind choosing Cloud TPUs to study its efficiency on running numerical simulations.

The provided benchmarks encapsulate the most common operations found on Veros but

without the complexity of a full fledged ocean model. Therefore, they are the ones that I

used during my attempts to improve Veros performance.

Equation of State

The first benchmarks in the suite is the calculation of the Equation Of State with the full

48-terms based on Gibbs sea water EOS[44].

74 Chapter 6 Porting of existing simulations

1 t179 = ct * (v28 + t177)
2 t185 = v35 * ct
3 t187 = ct * (v34 + t185)
4 t189 = ct * (v33 + t187)
5 t199 = t13 * t20
6 t217 = 2.0 * t117 * t199 - t110 * t92
7 t234 = v21 + ct * (v22 + t169) +
8 sa * (v26 + ct * (v27 + t179) + v36 *
9 sa + t82 * (v31 + ct * (v32 + t189)))

10 + t217 * t20

Listing 6.1: Lines from the Equation of State benchmarks

The benchmark itself consists on thousands of array element wise floating point operations

and a snippet of some of those is shown at Listing 6.1 where the variables v# and t# are 3

or 4 dimensional arrays.

Since there is no feasible way to perform these operations making use of the MXU, e.g.

transforming it into dot operations, our only hope was that the XLA compiler on TPU

would fuse them and maybe use the MXU of the resulting merged operations. However, in

the metrics on the Google Cloud Console, running this benchmark on the initial TPUv2

yield a 0% usage of the MXU.

At some point, the profiler managed to store tracings of the TPU calculations and I could

visualize them on Tensorboard as briefly discussed on Chapter 3. Regardless of this, the

resulting profiling can be seen on Figure 6.1 where it indeed confirms us that XLA merged

most of the operations into a single one, indicated as region_2.

Figure 6.1.: Profiling screenshot of The Equation of State benchmark using TPUv2 on the Tensor-
board profiler.

In conclusion, there was no too much to do on this case. Element-wise array operations

are going to be handled by the VPU, which as seen on the results of 4.8 it does perform

reasonable fine. Be that as it may, a GPU is the best hardware for these operations and

in order to justify the use of the VPU for these calculations is if a most computational

intensive task makes use of the MXU instead and the speedup of it overcomes the lower

performance of the this part of the simulation.

6.1 Veros: The versatile ocean simulation 75

1 from jax.ops import index_update , index
2 import jax.numpy as jnp
3 ...
4 dTdy = index_update (
5 dTdy , index [:, :-1, :], maskV [:, :-1, :] * \
6 (temp [:, 1:, :, tau] - temp [:, :-1, :, tau]) \
7 / dyu[jnp.newaxis , :-1, jnp. newaxis]
8)
9 dSdy = index_update (dSdy , index [:, :-1, :], maskV [:, :-1, :] * \

10 (salt [:, 1:, :, tau] - salt [:, :-1, :, tau]) \
11 / dyu[jnp.newaxis , :-1, jnp. newaxis]
12)
13 ...

Listing 6.2: Calculation of the gradients at the north face of T cells.

Isoneutral Mixing

Assuming that the calculation of the Equation of State can not be optimized, the focus

went to the operations in the Isoneutral mixing benchmark. This benchmark simulates the

mixing in the ocean which takes place along surfaces of constant neutral density. Therefore,

Veros needs to find the locations of these neutral density surface at every time step. To

do so, it uses the finite difference scheme to compute derivatives and since it is the most

costly operation in an ocean model, it should be clear why the study on PDE solvers was

so important.

One example of the operations found on this benchmark can be seen on Listing 6.2 Despite

the initial confusion of slices and indexes, this is a prime example on how to properly use

vector operations to compute finite differences. The immutability of JAX’s DeviceArrays

does not help on the readability factor. In summary, there is a derivation on the y-axis of

two 4D arrays (temp,salt) with a 4th axis representing the time layer fixed on τ and a

not uniform spacing between elements, as seen in dyu and its broadcasting. Additionally,

a boolean mask is applied so that the derivative is only computed on parts of the grid.

Regardless, the only part here that seems that could be transform into MXU friendly code is

the difference between consecutive values similarly to the approach on the shallow water

benchmark.

The implementation of these differences are rather trickier than in the 2 dimensional case,

as matmul will operate on the last dimensions of the array. That constrain has a an easy fix

on the 2D case, where you can just change the order of the operands when multiplying.

However, that is not the case when dealing with higher dimensions D > 2D since in

order to use it we would need to apply a transformation to the array which even thought

Tensorflow says it is essentially free [45], a performance hit was indeed noticed.

76 Chapter 6 Porting of existing simulations

The only way to avoid having to transpose the axes of the matrix is to make use of the

Einstein summation conventions, such that this:

c = jax.numpy. matmul (temp. transpose (1 ,2 ,3 ,0) , A.T)

becomes this:

c = jax.numpy. einsum (’ijkl ,mi ->jkml ’, temp , A)

As a proof of concept, the benchmarks on Table 6.1 show how transposing starts to

affect performance and how einsum seems to be less affected by it. Regardless, a matmul

operation as the ones done in the 2D benchmarks is included to show how not transposing

does yield better results

JAX OPS Execution time

A[1:,:,:]-A[:-1,:,:] 35.9 ms
matmul(A.transpose(2,1,0), K.T) 20.4 ms
einsum(’ijl, ki -> jkl’, A, K) 15.4 ms

einsum(’ijl, lk -> ikj’, A, K) 12.2 ms
matmul(A, K.T) 7.15 ms

Table 6.1.: Timing comparison between methods to perform a difference between arrays of size
(8× 128)2 run on a single TPUv3 core.

As this thesis has proved, using a single matrix does not yield effective results for grid

per core larger than (8× 128)2 elements, thus, a split in tiles should also be applied here

if you need to get some speedup over the regular vector method. However, because the

derivatives are carried in the three dimensions, the tiles should also be applied on all of

them. Assuming that the time dimensions does not exists on the Listing 6.2 case, Figure

6.2 shows how the grids with the parameters, such as temp and salt should be distributed

before computing the derivatives.

(a) Current 3D array (b) 6D array using tiles

Figure 6.2.: Illustration of the tile split in 3D

Once the split has been done, we double the amount of dimensions of each array, thus

considering tiles of size m = 10242, accessing the element temp[1025,1,4106,tau] would

6.1 Veros: The versatile ocean simulation 77

become temp[1,3,0,1,1,10,tau] and so forth. It is easy to see how this method may

become unfeasible to work with when dealing with higher dimensions, which would still

require some transposing tinkering in order to perform simple finite difference methods.

Because reshaping in every calculation does involve adding a large overhead, I would

propose two different approaches to take in this case:

• Abstraction: Veros already deals with a lot of its nuisances using the abstraction

capabilities that Python provides. Hence, one could add an abstraction layer so that

there was a translation between the the index operations of a 4D array to the 7D

array without the end user noticing it. In doing so, providing a clean user experience

but still getting the performance boost of splitting the arrays into tiles. This method

would still need to be compatible with the rest of operations found on Veros.

• Constrain size: The other approach would be to limit the grid size per core. As

the performance hit of using sparse matrix usually appears after N2 ∼ (8 × 128)2,

avoiding reaching those limits would not require using the tiles method and still gain

the performance boost. However, this method would rely exclusively in increasing

the number of devices to create a larger grid size and it would not be applicable to

other architectures.

Of course both methods would need an abstraction layer to perform the derivatives using

einsum when transposing was needed, but since Veros does already provide with such

abstraction, the change here would not be as disrupted as the proposed above.

In conclusion, despite being possible, improving the performance by ∼ 20% may not be

worth it, considering all the required changes.

Turbulent Kinetic Energy

The last benchmark deals with the parameterization of turbulence in order to quantify its

effects on large-scale flows without the need of explicitly calculating it.

Other than finite difference operations similar to those on the isoneutral mixing bench-

marks, this computation involves a tridiagional matrix solver based on the Thomas Algo-

rithm. The code implementation can be seen in Listing 6.3

One thing that is not highlighted here is that a, b, c are matrices of matrices, therefore it

is not as the Thomas algorithm can be replaced with a more parallel method such as the

Augmented Block Cimmino Distributed (ABCD) method that allows the solver to use matrix

operations. Instead, the focus was on replacing the operations inside the compute_primes

to make use of the MXU, but no approach was found to report good results. In addition

78 Chapter 6 Porting of existing simulations

1 @jax.jit
2 def solve_tridiag (a, b, c, d):
3
4 def compute_primes (last_primes , x):
5 last_cp , last_dp = last_primes
6 a, b, c, d = x
7 cp = c / (b - a * last_cp)
8 dp = (d - a * last_dp) / (b - a * last_cp)
9 new_primes = jnp.stack ((cp , dp))

10 return new_primes , new_primes
11
12 diags_stacked = jnp.stack(
13 [arr. transpose ((2, 0, 1)) for arr in (a, b, c, d)],
14 axis =1
15)
16 _, primes = jax.lax.scan(compute_primes , jnp.zeros ((2, *a.shape

[: -1])), diags_stacked)
17
18 def backsubstitution (last_x , x):
19 cp , dp = x
20 new_x = dp - cp * last_x
21 return new_x , new_x
22
23 _, sol = jax.lax.scan(backsubstitution , jnp.zeros(a.shape [: -1])

, primes [:: -1])
24 return sol [:: -1]. transpose ((1, 2, 0))

Listing 6.3: Tridiagonal matrix solver with diagonals a b c and RHS vector d

to the main computation, the transposing of the matrices in order to use jax.lax.scan

was also a redundant operation and despite having a minor impact on performance on

TPUs due to the dedicated transposing unit, it was something that I could fix by adapting

jax.lax.scan to work on arbitrary axes. Hence, a patch was submitted to upstream1

which as of the writing of this thesis has not been merged yet.

In all fairness, the lack of profiler did not allow to know whether the tridiagonal solver

was a bottleneck on TPU. The profiling obtained on the brief period where it was possible

to store tracings did not indicate what operation was actually taking the most time, but the

assumption was that region.27 on Figure 6.3 corresponded to the solve_tridiagonal

function. In contrast to the profiler of the Equation of State, the TKE operations do not

seem to be as easily fused. This can be argued as being due to the current inefficiency

of the XLA compiler to optimize across operations other than consecutive pure algebraic

operations.

To conclude and regardless of my best efforts, no use of the MXU could be achieved for the

tridiagonal solver and therefore there was no method to run it on a TPU core efficiency.

1https://github.com/google/jax/pull/4591

6.1 Veros: The versatile ocean simulation 79

Figure 6.3.: Early profiler screenshot on TPUv2 of the Thermal Kinetic Energy benchmark

6.2 General Guidelines on Good Candidates

The results of the assessment point out that in order to achieve efficiency on TPUs, the

speedups would need to happen on the derivatives calculation and those speedups should

be enough to cover the reduced performance of the element wise operations. Moreover,

those speedups would only be achieved by increasing the complexity of the model. With all

of that in mind, I do not believe that Veros, despite all its merits, may be a good candidate

for using TPUs.

Henceforth it begs the question of what type of simulations could be good candidates to

be run on Cloud TPUs. Below there is an outline of several conditions that would favor the

porting to a TPU:

• Extensive matrix multiplications use: From the results of the tensor product PDE

solver, a simulation where matrix multiplication is already required would be ideal

for TPUs as no work around would need to be found. The performance difference

between performing the dot product on TPU instead of GPU are clear, and as long as

the simulation does not require high-precision results, it would greatly benefit from

the use of systolic arrays and HBM. For instance, models based on derivations using

finite elements may find on TPU a good candidate to speedup their calculations.

• 2D Lattices / Operations: As seen on the assessment of Veros, dealing with higher

dimensions may be an important factor to consider as the manipulation of arrays into

tiles gets confusing quickly since tiling involves doubling the number of dimensions.

• Highly parallelizable with repetitive tasks: One of the reason why Veros may not

be right for TPUs despite having a method to optimize the finite difference is its

versatility. If instead of a general circulation model that targets a wide range of

applications, a more focused solver that deals with less amount of variety on its

operations may find a possible way to make use of the MXU for operations with

a small space locality. Even if the operation does not yield great speedups, the

larger the number of iterations, the best it will perform at the end. Additionally and

despite the low results yield on the Ising Model, JAX take on distributed scalable

programs works perfectly with the idea of having each device generate their own

80 Chapter 6 Porting of existing simulations

arrays and share the computed metrics on the collective, and due to the impressive

high connectivity of TPUs, there is no bottleneck found for these collective operations

as you could find in more traditional clusters.

• Mixing Machine learning with numerical computations: In recent years there

has been an increasing interest on getting the advantage of using Deep Learning

to simulate fluid dynamics [46, 47]. The approach tends to rely on an mix usage

of classical numerical simulations and deep learning interference. For instance

Obiols-Sales et al. [46] uses numerical simulations to warm-up the system, then

feed it into a trained neural network and finally performs the classical numerical

iterations as refinement as seen in Figure 6.4. In contrast Kochkov et al. [47] performs

the numerical solver on a lower resolution and uses DL to interpolate the values

and achieve higher resolutions. Both methods ML parts would do perfect usage

of the MXU, however it does not seems that there is any usage when performing

the conventional solvers. Henceforth, this type of applications in addition to the

techniques described on this thesis would manage to utilize all the available power

that a TPU can offer.

Figure 6.4.: Comparison of the traditional physics solver simulation with CFDNet. CFDNet inte-
grates the domain-specific physics solver for warmup, followed by the neural network
for inferring the steady state, and the final iterative refinement stage to correct the
solution of the CNN and satisfy the convergence constraints.

Those are some of the examples where I believe TPUs would be the right candidate to be

used. Nevertheless, all the cases where some modifications were needed to make proper

use of the MXU would not perform as well on other hardware.

6.2 General Guidelines on Good Candidates 81

7Conclusion

The aim of this thesis was to evaluate whether Google Cloud Tensor Processing Units could

be a good candidate to motivate the transition of high efficiency programming languages

into large scale High Performance Computing. In spite of the initial limitations of the

tools, the constant issues found at the beginning and the lack of physical access to the

devices, we have managed to gain some insight on how TPUs perform when doing physics

calculations.

A new method for performing finite differences derivatives, which can also be applied to

similar stencil operations, has been proposed. Using three different general benchmarks of

partial derivatives equations, we have seen that our method is capable of achieving up to

a 2× speedup, e.g. 100% faster, on a single TPU with respect to the conventional vector

approach. In spite of using lower precision floating points formats, no visual discrepancy

has been found on any of the simulations preformed. Regardless, choosing to simulate

them on lower precision for a large amount of time could lead to noticeable divergences, as

its linear relation suggests. However, these discrepancies are less significant when working

with larger numbers due to the use of brain-floating points instead of standard IEEE half

floating points.

When comparing our chosen framework with a previous study that implemented an Ising

model targeting TPUs, we have found that despite the good results obtained on the partial

differential equation solvers, the outcome of the method developed in this thesis does not

yield similar good results as the reported ones with TensorFlow. Nonetheless, due to the

recent release of profiling tools, we believe that this performance gap can be reduced as

indicated by some preliminary analysis.

Finally, with the information gathered throughout this project, we make the assessment

that an existing ocean simulation, Veros, would not benefit from a porting to TPUs at this

moment, but that there are a wide range of physical simulations that would take advantage

of the TPUs capabilities.

Overall, we have proved that by applying transformations to existing algorithms we are

able to make them perform more efficiently on matrix engines. By doing so, opening the

83

door to the creation of new approaches targeting matrix multiplications as their main

computational operation, to perform non dot related calculations. As the usage of JAX

and TPUs becomes easier, we believe that now is the moment to continue evaluating

different types of calculations that would clearly define whether the computational physics

community should embrace the use of matrix engines for general physics calculations.

7.1 Future Work

We have seen the importance of matrix multiplication when using TPUs across the thesis.

Because Veros was largely dependent on the finite difference method, we based our

research on them. However, there are other calculations that rely on matrix multiplications

and do not require complex transformations in order ot make use of the specialized

hardware. If there was more time remaining, the next chapter of this thesis would

probably be the study of finite element methods, which I believe may yield impressive

performance results when used on TPU clusters.

Another interesting continuation of this thesis would be to study the effects of our results

for a single large scale long running simulation. As the profiling and tracing tools has

proven to ease the study of this implementations greatly as well as the new JAX on TPU

workflow, complex function would not require the inconvenience to map by hand where

the bottlenecks may be found and the speed of the porting would be massively reduced.

Therefore, I believe that on the current state of things, now is a good starting point for an

exploration on applying the proposed methods on practical simulations.

As mentioned at the end of Chapter 6, the surge of hybrid numerical simulations that also

rely on Deep Learning inference creates the perfect scenario for the proposed methods

which, even though they can not compete with current GPUs, they will yield better

performance that conventional methods if they already are expected to be run on Cloud

TPUs.

84 Chapter 7 Conclusion

8Bibliography

[1] John D. Owens, David Luebke, Naga Govindaraju, Mark Harris, Jens Krüger, Aaron

E. Lefohn, and Timothy J. Purcell. “A Survey of General-Purpose Computation on

Graphics Hardware”. In: Computer Graphics Forum 26.1 (2007), pp. 80–113.

[2] Norman Jouppi, Cliff Young, Nishant Patil, and David Patterson. “Motivation for

and Evaluation of the First Tensor Processing Unit”. In: IEEE Micro 38.3 (May 2018),

pp. 10–19.

[3] John Shalf. “The future of computing beyond Moore’s Law”. In: Philosophical
Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences
378.2166 (Mar. 6, 2020), p. 20190061.

[4] Hamid Reza Zohouri, Naoya Maruyama, Aaron Smith, Motohiko Matsuda, and

Satoshi Matsuoka. “Evaluating and Optimizing OpenCL Kernels for High Perfor-

mance Computing with FPGAs”. In: SC ’16: Proceedings of the International Con-
ference for High Performance Computing, Networking, Storage and Analysis. SC ’16:

Proceedings of the International Conference for High Performance Computing,

Networking, Storage and Analysis. Nov. 2016, pp. 409–420.

[5] Shaveta Dargan, Munish Kumar, Maruthi Rohit Ayyagari, and Gulshan Kumar.

“A Survey of Deep Learning and Its Applications: A New Paradigm to Machine

Learning”. In: Arch Computat Methods Eng 27.4 (Sept. 1, 2020), pp. 1071–1092.

[6] Xiaoxuan Liu, Livia Faes, Aditya U Kale, et al. “A comparison of deep learning

performance against health-care professionals in detecting diseases from medical

imaging: a systematic review and meta-analysis”. In: The Lancet Digital Health 1.6

(Oct. 1, 2019), e271–e297.

[7] D. Steinkraus, I. Buck, and P.Y. Simard. “Using GPUs for machine learning algo-

rithms”. In: Eighth International Conference on Document Analysis and Recognition
(ICDAR’05). Eighth International Conference on Document Analysis and Recognition

(ICDAR’05). Aug. 2005, 1115–1120 Vol. 2.

[8] Kyoung-Su Oh and Keechul Jung. “GPU implementation of neural networks”. In:

Pattern Recognition 37.6 (June 1, 2004), pp. 1311–1314.

[9] Kalin Ovtcharov, Olatunji Ruwase, Joo-Young Kim, Jeremy Fowers, Karin Strauss,

and Eric S Chung. “Accelerating Deep Convolutional Neural Networks Using Spe-

cialized Hardware”. In: (), p. 4.

85

[10] Volta: Performance and Programmability. URL: https://www.computer.org/csdl/

magazine/mi/2018/02/mmi2018020042/13rRUEgs2yF (visited on May 6, 2021).

[11] Heng Liao, Jiajin Tu, Jing Xia, and Xiping Zhou. “DaVinci: A Scalable Architecture

for Neural Network Computing”. In: 2019 IEEE Hot Chips 31 Symposium (HCS).

2019 IEEE Hot Chips 31 Symposium (HCS). Aug. 2019, pp. 1–44.

[12] Constantinos Evangelinos and Chris N Hill. “Cloud Computing for parallel Scientific

HPC Applications: Feasibility of running Coupled Atmosphere-Ocean Climate Models

on Amazon’s EC2.” In: (), p. 6.

[13] Dion Häfner, René Løwe Jacobsen, Carsten Eden, Mads R. B. Kristensen, Markus

Jochum, Roman Nuterman, and Brian Vinter. “Veros v0.1 – a fast and versatile

ocean simulator in pure Python”. In: Geoscientific Model Development 11.8 (Aug. 16,

2018), pp. 3299–3312.

[14] Norman P Jouppi, Cliff Young, Nishant Patil, et al. “In-Datacenter Performance

Analysis of a Tensor Processing Unit”. In: (), p. 17.

[15] James Bradbury, Roy Frostig, Peter Hawkins, et al. google/jax. Version 0.2.5. 2018.

[16] XLA: Optimizing Compiler for Machine Learning. TensorFlow. URL: https://www.

tensorflow.org/xla (visited on May 6, 2021).

[17] Evangelos Vasilakis. “An instruction level energy characterization of arm processors”.

In: Foundation of Research and Technology Hellas, Inst. of Computer Science, Tech.
Rep. FORTH-ICS/TR-450 (2015).

[18] Gordon E. Moore. “Cramming more components onto integrated circuits, Reprinted

from Electronics, volume 38, number 8, April 19, 1965, pp.114 ff.” In: IEEE Solid-
State Circuits Society Newsletter 11.3 (Sept. 2006), pp. 33–35.

[19] Thomas N. Theis and H.-S. Philip Wong. “The End of Moore’s Law: A New Beginning

for Information Technology”. In: Computing in Science Engineering 19.2 (Mar. 2017),

pp. 41–50.

[20] John M. Shalf and Robert Leland. “Computing beyond moore’s law”. In: Computer
48.12 (2015), pp. 14–23.

[21] Jason Sanders and Edward Kandrot. CUDA by example: an introduction to general-
purpose GPU programming. Addison-Wesley Professional, 2010.

[22] Martin Burtscher and Keshav Pingali. “An efficient CUDA implementation of the

tree-based barnes hut n-body algorithm”. In: GPU computing Gems Emerald edition.

Elsevier, 2011, pp. 75–92.

[23] Petr Pospichal, Jiri Jaros, and Josef Schwarz. “Parallel genetic algorithm on the cuda

architecture”. In: European conference on the applications of evolutionary computation.

Springer, 2010, pp. 442–451.

86 Chapter 8 Bibliography

https://www.computer.org/csdl/magazine/mi/2018/02/mmi2018020042/13rRUEgs2yF
https://www.computer.org/csdl/magazine/mi/2018/02/mmi2018020042/13rRUEgs2yF
https://www.tensorflow.org/xla
https://www.tensorflow.org/xla

[24] Weiguo Liu, Bertil Schmidt, Gerrit Voss, and Wolfgang Müller-Wittig. “Accelerating

molecular dynamics simulations using Graphics Processing Units with CUDA”. In:

Computer Physics Communications 179.9 (2008), pp. 634–641.

[25] Tobias Preis, Peter Virnau, Wolfgang Paul, and Johannes J. Schneider. “GPU ac-

celerated Monte Carlo simulation of the 2D and 3D Ising model”. In: Journal of
Computational Physics 228.12 (July 1, 2009), pp. 4468–4477.

[26] Xi Qin, Wenzhe Zhang, Lin Wang, Yuxi Zhao, Yu Tong, Xing Rong, and Jiangfeng

Du. “An FPGA-based hardware platform for the control of spin-based quantum

systems”. In: IEEE Transactions on Instrumentation and Measurement 69.4 (2019),

pp. 1127–1139.

[27] Chen Yang, Tong Geng, Tianqi Wang, Rushi Patel, Qingqing Xiong, Ahmed Sanaullah,

Chunshu Wu, Jiayi Sheng, Charles Lin, and Vipin Sachdeva. “Fully integrated FPGA

molecular dynamics simulations”. In: Proceedings of the International Conference for
High Performance Computing, Networking, Storage and Analysis. 2019, pp. 1–31.

[28] Domain-specific hardware accelerators | Communications of the ACM. URL: https:

//dl.acm.org/doi/abs/10.1145/3361682?casa_token=mO44yGzT1noAAAAA:

GWa9ajPlw6qI5ebjlYcmV9zXGiIVVsJKcqFgnzUZonuFg5Q1njb2G9Ver9JKSUgPfvmiwwQiChIg

(visited on May 19, 2021).

[29] Jens Domke, Emil Vatai, Aleksandr Drozd, et al. “Matrix Engines for High Perfor-

mance Computing:A Paragon of Performance or Grasping at Straws?” In: arXiv:2010.14373
[cs] (Feb. 27, 2021). arXiv: 2010.14373.

[30] Suyog Gupta, Ankur Agrawal, Kailash Gopalakrishnan, and Pritish Narayanan.

“Deep learning with limited numerical precision”. In: International conference on
machine learning. PMLR, 2015, pp. 1737–1746.

[31] Vasily Volkov and James W. Demmel. “Benchmarking GPUs to tune dense linear

algebra”. In: Proceedings of the 2008 ACM/IEEE conference on Supercomputing. SC

’08. Austin, Texas: IEEE Press, Nov. 15, 2008, pp. 1–11.

[32] Stefano Markidis, Steven Wei Der Chien, Erwin Laure, Ivy Bo Peng, and Jeffrey S.

Vetter. “Nvidia tensor core programmability, performance & precision”. In: 2018 IEEE
International Parallel and Distributed Processing Symposium Workshops (IPDPSW).

IEEE, 2018, pp. 522–531.

[33] Anumeena Sorna, Xiaohe Cheng, Eduardo D’azevedo, Kwai Won, and Stanimire

Tomov. “Optimizing the fast fourier transform using mixed precision on tensor

core hardware”. In: 2018 IEEE 25th International Conference on High Performance
Computing Workshops (HiPCW). IEEE, 2018, pp. 3–7.

[34] Implementation of IFS Cycle 47r2 - Forecast User - ECMWF Confluence Wiki. URL:

https://confluence.ecmwf.int/display/FCST/Implementation+of+IFS+

Cycle+47r2 (visited on May 20, 2021).

87

https://dl.acm.org/doi/abs/10.1145/3361682?casa_token=mO44yGzT1noAAAAA:GWa9ajPlw6qI5ebjlYcmV9zXGiIVVsJKcqFgnzUZonuFg5Q1njb2G9Ver9JKSUgPfvmiwwQiChIg
https://dl.acm.org/doi/abs/10.1145/3361682?casa_token=mO44yGzT1noAAAAA:GWa9ajPlw6qI5ebjlYcmV9zXGiIVVsJKcqFgnzUZonuFg5Q1njb2G9Ver9JKSUgPfvmiwwQiChIg
https://dl.acm.org/doi/abs/10.1145/3361682?casa_token=mO44yGzT1noAAAAA:GWa9ajPlw6qI5ebjlYcmV9zXGiIVVsJKcqFgnzUZonuFg5Q1njb2G9Ver9JKSUgPfvmiwwQiChIg
https://arxiv.org/abs/2010.14373
https://confluence.ecmwf.int/display/FCST/Implementation+of+IFS+Cycle+47r2
https://confluence.ecmwf.int/display/FCST/Implementation+of+IFS+Cycle+47r2

[35] Samuel S. Schoenholz and Ekin D. Cubuk. “JAX, M.D.: A Framework for Differ-

entiable Physics”. In: arXiv:1912.04232 [cond-mat, physics:physics, stat] (Dec. 3,

2020). arXiv: 1912.04232.

[36] Using Cloud TPU Tools. Google Cloud. URL: https://cloud.google.com/tpu/

docs/cloud-tpu-tools (visited on May 19, 2021).

[37] Donald E. Barrick. “A coastal radar system for tsunami warning”. In: Remote Sensing
of Environment 8.4 (1979), pp. 353–358.

[38] Robert E. Lynch, John R. Rice, and Donald H. Thomas. “Direct solution of partial

difference equations by tensor product methods”. In: Numer. Math. 6.1 (Dec. 1,

1964), pp. 185–199.

[39] Kun Yang, Yi-Fan Chen, Georgios Roumpos, Chris Colby, and John Anderson.

“High Performance Monte Carlo Simulation of Ising Model on TPU Clusters”. In:

arXiv:1903.11714 [physics] (Nov. 17, 2019). arXiv: 1903.11714.

[40] William J. Dally, Yatish Turakhia, and Song Han. “Domain-specific hardware accel-

erators”. In: Commun. ACM 63.7 (June 18, 2020), pp. 48–57.

[41] P. Pfeuty. “An exact result for the 1D random Ising model in a transverse field”. In:

Physics Letters A 72.3 (July 9, 1979), pp. 245–246.

[42] Lars Onsager. “Crystal Statistics. I. A Two-Dimensional Model with an Order-

Disorder Transition”. In: Phys. Rev. 65.3 (Feb. 1, 1944), pp. 117–149.

[43] Dion Häfner. dionhaefner/pyhpc-benchmarks. Apr. 16, 2021.

[44] Thermodynamic Equation of SeaWater TEOS-10. URL: http://www.teos-10.org/

software.htm (visited on May 15, 2021).

[45] Performance Guide | Cloud TPU. Google Cloud. URL: https://cloud.google.com/

tpu/docs/performance-guide (visited on May 14, 2021).

[46] Octavi Obiols-Sales, Abhinav Vishnu, Nicholas Malaya, and Aparna Chandramowlish-

waran. “CFDNet: a deep learning-based accelerator for fluid simulations”. In: Pro-
ceedings of the 34th ACM International Conference on Supercomputing (June 29,

2020), pp. 1–12. arXiv: 2005.04485.

[47] Dmitrii Kochkov, Jamie A. Smith, Ayya Alieva, Qing Wang, Michael P. Brenner, and

Stephan Hoyer. “Machine learning accelerated computational fluid dynamics”. In:

arXiv:2102.01010 [physics] (Jan. 28, 2021). arXiv: 2102.01010.

88 Chapter 8 Bibliography

https://arxiv.org/abs/1912.04232
https://cloud.google.com/tpu/docs/cloud-tpu-tools
https://cloud.google.com/tpu/docs/cloud-tpu-tools
https://arxiv.org/abs/1903.11714
http://www.teos-10.org/software.htm
http://www.teos-10.org/software.htm
https://cloud.google.com/tpu/docs/performance-guide
https://cloud.google.com/tpu/docs/performance-guide
https://arxiv.org/abs/2005.04485
https://arxiv.org/abs/2102.01010

AFinite Differences

Considering F (x) to be a well behaved function with itself and its derivative being single

valued, the Taylor theorem

F (x+ h) = F (x) + hF ′(x) + 1
2h

2F ′′(x) + 1
6h

3F ′′′(x) +O(h4) (A.1)

and likewise on the other direction

F (x− h) = F (x)− hF ′(x) + 1
2h

2F ′′(x)− 1
6h

3F ′′′(x) +O(h4) (A.2)

Therefore, if by adding them we obtain the following relation

F (x− h) + F (x+ h) = 2F (x) + h2F ′′(x) +O(h4) (A.3)

which can the be reformulated as the finite difference equation

F ′′(x) = F (x− h)− 2F (x) + F (x+ h)
h2 −O(h2) (A.4)

hence, assuming an error in the orders of h2, we have

F ′′(x) ' F (x− h)− 2F (x) + F (x+ h)
h2 (A.5)

Similarly, if we were to subtract (A.2) from (A.1), we would end up with

F ′(x) ' F (x+ h)− F (x− h)
2h (A.6)

which calculates the slope of the tangent on the B point. of Figure A.1, by using the point

A and C. Hence, (A.8) is called the central-difference scheme. Computing the slope on B

by only using one of the other points instead, we would be using the forward-difference

scheme (using C)

F ′(x) ' F (x+ h)− F (x)
h

(A.7)

89

and the backwards-difference scheme

F ′(x) ' F (x)− F (x− h)
h

(A.8)

A

B

C

x-h x+hx

f(x)

Figure A.1.: Graphical representation of the tangent of a curve.

90 Chapter A Finite Differences

BHardware Specifications

A detail of the hardware used during the benchmarks is shown.

TPU
Unit v3

TPU
Chip v3

TPU
Core v3

NVIDIA
RTX 2080 Ti

Architecture - - - Turing
Memory size (GiB) 128 32 16 12
Memory type HBM2 HBM2 HBM2 GDDR6
Memory speed (Gb/s) 900 900 900 616.0
Peak TFLOPs (16 bits) 420 123 61.5 26.90
Peak TFLOPs (32 bits) 16 4 2 13.45
TDP (Watts) 1800 450 225 250
Clock rate (MHz) 900 900 900 1350
Cloud price ($/hour) 8.80 - - -

Table B.1.: Comparison between the specifications of all the hardware used during benchmarks.

NVIDIA Tesla V100 NVIDIA Tesla P100

Architecture Volta Pascal
Memory size (GiB) 16 16
Memory type HBM2 HBM2
Memory speed (Gb/s) 897 732.2
TFLOPs (16 bits) 28.26(112) 19.05
TFLOPs (32 bits) 14.13 9.526
TDP (Watts) 300 250
Clock rate (MHz) 1245 1190
Cloud price ($/hour) 2.55 1.60

Table B.2.: Extra GPU accelerators added for reference.

91

List of Figures

2.1 Simplified block diagram of the internals of GPUs and CPUs. 9

2.2 Picture of a third generation Tensor Processing Unit. 11

2.3 Simplified scheme of the internal architecture of a Tensor core of a third

generation TPU . 12

2.4 Illustration of the idea behind systolic arrays in a simple scheme. 13

2.5 Google own MXU scheme. Do a quick graph where it kind of follows the path

of the value. 13

2.6 Comparison between standard IEEE formats and Brain floating points. . . . 14

2.7 TPU v3-512 slice with a 2D Torus Topology. 15

3.1 Diagram of the current JAX-TPU Cloud Infrastructure 23

3.2 Diagram of the new alpha JAX-TPU Cloud Infrastructure 24

3.3 First snapshot of a simulation being caught on the profiler. 25

3.4 Snapshot of a simulation being caught on the newly release profiler for alpha

TPUs. 26

4.1 Illustration of the discrete calculation of the Jacobi method, where the adja-

cent grid points (yellow) give the value to the midpoint (green). 30

4.2 Initial and final state of the Heat Diffusion Benchmark. 31

4.3 Initial condition for the wave equation benchmark 33

4.4 Initial conditions for the Shallow Water simulation. 35

4.5 Illustration of Laplacian calculation using slices. 37

4.6 Memory profiler snapshot of the heat diffusion simulation. 38

4.7 Illustration of the halo exchange of each grid with their logical neighbors cores 39

4.8 Speedup chart of the Heat Equation Benchmark with Vector Op. 40

4.9 Performance/Efficiency comparison between the different devices on the

vector method. 41

4.10 Performance/Cost comparison between a GPU and a TPU Unit 42

4.11 Speedup on the Wave Equation using matrix multiplications. 47

4.12 Performance of the Heat Diffusion Problem using matrix multiplications as

we increase the problem size. 47

4.13 Illustration of the slip of the grid into mini-grids. The size of the stencil matrix

is also added to show the memory savings of this approach. 48

4.14 Observations of the speedups for different problem sizes. 52

92

4.15 Visualization of the values and pattern of the Matrix P for different sizes for

Dirichlet Boundary conditions. 55

4.16 Performance comparison of the tensor product solver using a GPU and a TPU

core. Both devices performing the same implementation of the tensor solver. 56

4.17 Memory usage of the Tensor Product method. 57

4.18 Accuracy Comparison for different data types 60

4.19 Strong scaling of the Tiles algorithm of a (128× 128)2 grid. 61

5.1 Coloring distribution of the spin in the lattice. Green has used for aesthetics

reasons and should be consider black on when referred to it. The number

display on the initial cells are the subindexes i, j of sij 66

5.2 Optimized rearrangement of the spins so that all the spins with the same

color inside the sub-lattices are together. 67

5.3 Timing comparison between both algorithms to run the ising model. 69

5.4 Screenshot of the trace viewer of the optimized Ising method 70

6.1 Profiling screenshot of The Equation of State benchmark using TPUv2 on the

Tensorboard profiler. 75

6.2 Illustration of the tile split in 3D . 77

6.3 Early profiler screenshot on TPUv2 of the Thermal Kinetic Energy benchmark 80

6.4 Comparison of the traditional physics solver simulation with CFDNet 81

A.1 Graphical representation of the tangent of a curve. 90

List of Figures 93

List of Tables

2.1 Overview of some of the most popular accelerators using Matrix Engines [28,

29]. 10

4.1 Comparison between normal and array based computations on the same CPU

(Intel(R) Core(TM) i7-1065G7 CPU @ 1.30GHz). 36

4.2 Speedups of the tiles approach with respect to the vector approach for the

three benchmarks. 51

4.3 Comparison between convergence time of different methods. 57

4.4 Comparison results of the three methods on the three simulations on a

(131072 × 16384) = 2.19 · 109 grid all using a single TPU unit (8 cores). In

the heat diffusion simulation, we consider 1000 iterations instead of waiting

for convergence. Likewise, we use 1000 iteration steps on the rest of time

forward benchmarks. 58

4.5 Comparison between the best performant method on TPU against the most

performance GPU method. 59

4.6 Weal scaling performance of the new implementation. The table shows the

times each run has taken to perform 100 iterations. 61

5.1 Performance comparison between the original paper figures at the ones

obtained on our implementation. 70

6.1 Timing comparison between methods to perform a difference between arrays

of size (8× 128)2 run on a single TPUv3 core. 77

B.1 Comparison between the specifications of all the hardware used during bench-

marks. 91

B.2 Extra GPU accelerators added for reference. 91

94

Listings

4.1 Vector implementation of the Heat Equation solver 37

4.2 Helper functions to do array permutation between Cores (or XLA devices).

These permutations consider no periodic boundaries. 39

4.3 Helper function to exchange the halo boundaries between cores. 40

4.4 Laplacian implementation in terms of matrix multiplications. 44

4.5 Shallow water integration step using matrix multiplications 44

4.6 Water Equation integration step adapted for message passing. 46

4.7 Auxiliary functions to transform correctly a grid into tiles and vice versa. . 49

4.8 Step function on the heat diffusion problem for the tiles approach. 49

4.9 Water Equation integration step adapted for message passing. 50

4.10 Solver of PDEs using tensor products. 54

5.1 Naive implementation of the Ising Model with the checkerboard algorithm. 67

5.2 Optim implementation of the Ising Model with the checkerboard algorithm. 68

5.3 Nearest Neigbours sum for the black color 68

6.1 Lines from the Equation of State benchmarks 75

6.2 Calculation of the gradients at the north face of T cells. 76

6.3 Tridiagonal matrix solver with diagonals a b c and RHS vector d 79

95

	Acknowledgements
	Abstract
	1 Introduction
	2 Hardware Accelerators
	2.1 Domain Specific Accelerators
	2.1.1 Graphical Processing Units
	2.1.2 Field-Programmable Gate Arrays
	2.1.3 Application-Specific Integrated Circuit

	2.2 Google Cloud TPUs

	3 JAX and Benchmarking
	3.1 The XLA Compiler
	3.2 JAX: An accelerated NumPy Library
	3.2.1 Just-In-Time Compilation
	3.2.2 Single-Program Multiple-Data
	3.2.3 JAX on TPU

	3.3 Performance Analysis

	4 Partial Differential Equations
	4.1 Introduction
	4.2 Benchmarks
	4.2.1 Heat Diffusion
	4.2.2 Wave Equation
	4.2.3 Shallow Water

	4.3 Vector Operations
	4.3.1 Implementation
	4.3.2 Results

	4.4 Matrix Multiplication
	4.4.1 Implementation
	4.4.2 Results

	4.5 Tiles Matrix
	4.5.1 Implementation
	4.5.2 Results

	4.6 Direct Solution by Tensor Product
	4.6.1 Implementation
	4.6.2 Results

	4.7 Discussion
	4.7.1 Performance and Efficiency
	4.7.2 Accuracy
	4.7.3 Scalability

	5 Complex Systems: Ising Model
	5.1 The Ising Model
	5.2 TPU Implementation
	5.3 Results
	5.4 Discussion

	6 Porting of existing simulations
	6.1 Veros: The versatile ocean simulation
	6.1.1 Introduction
	6.1.2 Assessment for TPUs

	6.2 General Guidelines on Good Candidates

	7 Conclusion
	7.1 Future Work

	8 Bibliography
	Appendices
	A Finite Differences
	B Hardware Specifications
	Listings

