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Abstract
This thesis introduces a novel methodology that utilizes data from the RAMSES and MESA frame-
works to employ machine learning techniques. The aim is to predict essential stellar parameters,
namely temperature, stellar luminosity, radius, and accretion luminosity. The predictions used as
inputs are based on values of mass, age, and accretion rate. These input values can be obtained read-
ily in models of a realistic molecular cloud environment. The stellar structure models from MESA
diverge from traditional methods that solely rely on mass and age.
The investigation resulted in the implementation of several machine learning models. Using the
results from these models, an extensive examination of their strengths and weaknesses was carried
out. Furthermore, a comprehensive comparative analysis was conducted, directly contrasting these
models with traditional methods like those presented in the literature by DM97 [1]. Based on this
comparison, it can be concluded that machine learning methods exhibit high effectiveness as inference
algorithms for predicting stellar structure parameters, especially in a dynamic accretion scenario, and
exceed the performance of the DM97 model in this context.
An inference module was developed for Python and Fortran, enabling easy integration into simulation
frameworks like RAMSES. Additionally, comprehensive documentation was also created to facilitate
the incorporation of the models from this thesis into any other programming language. Finally, this
thesis investigates potential improvements for the obtained models, outlining different perspectives
such as enhancing data quality and investigating alternative machine learning architectures.
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Chapter 1

Introduction

The study of stellar structure is a subject of great interest to astrophysicists. The star’s evolution
originates with the gravitational attraction that draws gas and dust from vast regions of space
into a dense core, in which the life of the star begins. After a star is born, it grows through mass
accretion, while maintaining hydrostatic equilibrium. In this thesis, the accretion rate is of particular
importance due to its impact on stellar properties like stellar luminosity and temperature. In cases
of episodic accretion, the fluctuations in these key properties become inherently complex. The stellar
structure can be modeled with modern stellar evolution codes, but the time scale for the evolution
of the surface layers is tied to the time scale for significant mass growth and to fluctuations in the
accretion rate, making the modeling very costly.
Traditional methods have significantly contributed to our understanding of stellar structure. How-
ever, as our knowledge of astrophysical phenomena expands and computational capabilities advance,
there is a growing need for modern techniques to tackle the complexities inherent in stellar evolution.

In recent years, machine learning (ML) has emerged as a powerful tool to address complex scientific
problems. ML methods offer the potential to unlock new insights and improve our ability to model
and predict complex systems. In astrophysics, ML methods have already shown promising results
in diverse areas, including galaxy classification [2], exoplanet detection [3], and gravitational wave
detection [4], to mention a few. This thesis focuses on studying the capabilities of ML algorithms to
predict key stellar properties within realistic molecular cloud environments.

Molecular clouds are the birthplaces of stars, within these, intricate physical processes dictate the
formation and evolution of stars, leading to the emergence of a diverse range of stellar structures.
Capturing the complex dynamics and interactions in such environments poses significant challenges
for traditional modeling techniques. ML algorithms offer a unique opportunity to navigate these
complexities, as they excel at identifying non-linear patterns and dependencies in large data sets.

Starting from the collapse of a molecular cloud, to the moment when nuclear fusion begins in the
star’s core, it can be millions of years. While the direct observation of stars over millions of years is
beyond our capabilities, is possible to obtain observation of stars in different stages of their evolution,
thus obtaining a precise picture of star evolution. However, stellar evolution simulations are capable
to compute the stellar structure of individual stars over millions of years. Making simulations an
important tool to understand key properties like accretion. Therefore data obtained from reliable
computer simulations was used, in order to train and test the ML models.

The aim of this thesis is to build, train and test ML algorithms using the simulated data, in order to
produce reliable results. This will allow astrophysicists to have a modern method to infer the stellar
structure. In addition to this, the ML models can be implemented as a part of a simulation, making
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them more comprehensive and improving their overall utility.

To achieve our goal, we start in chapter 2, where a general overview of the necessary physics to
understand the key concepts of star formation is presented, along with ML concepts and terminology.
In addition to this, a brief explanation of current techniques used to obtain the stellar structure is
explained along with their limitations. In chapter 4 the methods used in order to manipulate the
data, train, and test the ML models are described. Moreover, the methods to analyze the ML models,
and results, along with the limitations of the ML are described. Chapter 5 presents the results of
the ML model’s predictions, including a description of the error distribution per input parameter,
confidence intervals categorized by star class and age, a comparison of HR diagrams, and an analysis
of the machine learning models. In chapter 6 the models were compared between them along with
the result from inference using the DM97 model. Furthermore, a discussion on the overall model
prediction performance and their particularities was done. Chapter 7 a comprehensive description of
the code implementation was introduced through pseudo code, accompanied by detailed explanations
to facilitate the integration of the obtained models into any preferred programming language. Chapter
8 outlines an account of the future perspectives for improving the ML model predictions, as well as
recommending ML techniques that were not utilized in this thesis. Finally, Chapter 9 presents a
summary of the project’s findings, along with the corresponding conclusions.

1.1 Data Availability
The data set used for this project, along with various versions resulting from its manipulation, has
been saved within the astro cluster at the science high performance computing center, access to these
data sets can be granted upon request.
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Chapter 2

Background

In order to understand star formation along with the important parameters that form the stellar
structure, a brief explanation of these concepts is presented. In addition to this, current methods to
model the stellar structure are discussed alongside their downsides as the luminosity spread.

2.1 Star Formation
Stars are formed in the cold, molecular dense parts of the interstellar medium. These regions, known
as molecular clouds, have a supersonically turbulent plasma [5], with a constant temperature. As a
result, they exhibit a filamentary distribution of matter, with significant variations in density. In the
intersection of these filaments, density fluctuations become gravitationally unstable, which leads to
star formation [6]. The process of self-gravity effectively condenses material from a core that spans
about 10,000 astronomical units (AU) down to a much smaller fraction of an AU. Additionally, due
to the conservation of angular momentum, a protoplanetary disk forms around these young stars.
These disks are the initial stages of the planetary system, where planets and other celestial bodies
may eventually form.
The proto-star evolution depends on possible mass loss or accretion of matter. The process of
accretion, which involves the accumulation of matter onto a forming star, does not follow a smooth
and continuous pattern. Instead, it is characterized by intermittent and unpredictable variations.
Observations of embedded protostars, as well as PMS (pre-main sequence) stars like FU Orionis
and Ex-Lupin types, provide compelling evidence of dynamic accretion occurring during both the
protostellar and PMS phases [7].

Figure 2.1: VLA capture of HL Tau and its protoplanetary disk [8].
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The contraction of the proto-star continues until the temperature in its core gets sufficiently high
for nuclear reactions to start in the core. At this point, the star begins to fuse Hydrogen atoms
into Helium. Once the nuclear fusion of hydrogen begins, the contraction of the star stops. At this
point, stars are in the so-called main sequence. After Hydrogen has been exhausted in the core,
the star contracts again, as the temperatures in the core are not sufficient to burn Helium. Due to
the pressure change, the temperatures are high enough in the star shells to burn hydrogen. This
process repeats until the temperatures are high enough in the core for the fusion of helium to begin,
and subsequently to heavier elements. In fact, all heavier elements are produced either during the
evolution of the stars, at the end of their life in supernovas, or in the merge of dense celestial objects
like neutron stars [9]. The evolution of a star involves a dynamic interplay between gravity and
pressure gradients, which arises from an equilibrium between energy generated by nuclear reactions
and energy dissipated through radiation at the surface of the star.

2.2 Main Sequence
Stars spend most of their life in the main sequence, specifically in the hydrogen main sequence. Once
in the main sequence, the stars are in hydrostatic equilibrium, where the pressure of the gravitational
collapse from the outer layers is balanced by the thermal pressure of the core. A distinctive trait
of the main sequence stars is that they can be localized in a band of stars that appears on plots of
temperature against luminosity. These types of plots are known as Hertzsprung–Russell diagrams
(HR diagrams) after their developers, Ejnar Hertzsprung and Henry Norris Russell.

Figure 2.2: HR diagram featuring 22,000 stars sourced from the Hipparcos Catalogue [10], alongside 1,000 low-
luminosity stars (red and white dwarfs) obtained from the Gliese Catalogue of Nearby Stars [11]. The Main Sequence,
a diagonal band stretching from the top-left to the bottom-right, represents ordinary hydrogen-burning stars like the
Sun. On the upper-right side, giant stars form a distinct cluster. Above them, is possible to find the much rarer bright
giants and supergiants. The lower-left portion of the diagram is occupied by a band of white dwarfs [12]
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HR diagrams depict the primary surface characteristics of stars, the effective temperature Teff , and
the stellar luminosity Ls. The basic characteristics of a photon leaving the stellar surface, are given
by Teff and Ls. Therefore, these properties play a crucial role in characterizing the observable traits
of young stars and their impact on the surrounding environment. One of these properties is the
effective stellar radius R by the relation given in equation 2.1.

Ls = 4πσT 4
effR

2 (2.1)
Where σ is the Boltzmann constant.
The HR diagrams are also known as color-magnitude diagrams, as the color index is predominantly
determined by the surface temperature of the star [13]. The apparent magnitude is a measure of the
brightness of a star observed from Earth and is related to the apparent magnitude if the distance
d is known. When radiation is emitted isotropically and there is no absorption between the star, is
possible to relate the magnitude to distance as follows [13]:

l =
Ls

4πd2
(2.2)

In order to obtain an HR diagram one can plot the color index and apparent magnitude for a group
of stars, in a star cluster, thus obtaining the whole spectrum of star spectrum in the given cluster.
Once an HR diagram of a cluster is known is possible to know the age of the cluster. As the cluster
ages, the massive stars, exhaust their fuel first turning it into a red giant. Consequently, the star,
shifts in its position on the HR diagram. Main sequence stars follow a diagonal line on the HR dia-
gram, whereas red giant stars form a horizontal line known as the red giant branch. As more massive
stars enter the red giant branch, the upper portion of the main sequence vanishes, referred to as the
main sequence turnoff. By understanding how a star’s mass influences its fuel consumption rate and
position on the diagram, we can determine the cluster’s age using the main sequence turnoff [14]. In
addition, the HR diagrams help to determine the reddening towards the star group. Reddening refers
to the absorption and scattering of light as it passes through interstellar dust and gas. HR diagrams
can also assist in estimating the distance to a star group. By comparing the observed luminosity of
stars in the group with their calculated intrinsic luminosity, is possible to determine their distance.
Metalicity is another important property that HR diagrams are used to estimate. Metallicity refers
to the abundance of heavy elements in a star. As stars with different metallicity exhibit distinct
positions on the HR diagram, it becomes possible to assess the metallicity of a group of stars using
their positions on the diagram.

2.3 Stellar Structure
Stellar structure models offer a comprehensive insight into a star’s internal composition, providing
predictions related to its luminosity, temperature, and evolutionary path. As a result of differences
in elemental composition and energy transport mechanisms, stars of various classes and ages exhibit
unique internal structures.
Stars are classified by analyzing the absorption features in stellar spectra, we can categorize stars
into different spectral types based on their temperatures. The current system widely used is the
Harvard spectral classification scheme, originally formulated at Harvard College Observatory in the
late 1800s. Annie Jump Cannon later refined and published the scheme in its present form in 1924
[15]. The stellar classification with its associated temperature can be seen in table 2.1
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Stellar Classification.
Class Temperature 103(K)
O > 25
B [11, 25]
A [7.5, 11]
F [6, 7.5]
G [5, 6]
K [3.5, 5]
M < 3.5

Table 2.1: Temperature in K for each star class [16].

In order to understand the changes in stellar structure is necessary first to understand the timescales
at which this occurs. The first of these is the so-called dynamic timescale (tdynamic). One can define
the dynamic timescale as the duration it would take for a star to undergo a substantial collapse in
the absence of pressure within the star, otherwise known as free-fall. Thus the dynamic timescale
can be mathematically described as the time taken for a particle to fall under the gravitational field
of the star, therefore after some mathematical manipulation [17] is possible to obtain tdynamic given
by equation 2.3.

tdynamic =

√
R3

GM
(2.3)

Where G is the gravitational constant, and M is the mass of the star. In the majority of cases, we
observe no evidence of motion with such timescales in stars. This suggests that the forces acting on
the star are in hydrostatic equilibrium [13].
Furthermore is possible to define the thermal timescale (tKH). Also known as the Helmholtz-Kelvin
contraction it represents the duration a star would take to collapse if a star has no internal sources
of energy, and it radiates energy at the same rate [18]. The radiated energy is a consequence of the
loss of gravitational potential energy [19], thus the thermal timescale is given by the relation 2.4.

tKH =
GM2

RLs

(2.4)

The period during which a star remains on the main sequence, i.e. the time at which hydrogen
is fused to helium is generally referred to as the main-sequence nuclear timescale tnuclear. In this
context, the energy available from this reaction is determined by the mass difference between the
reactants and products of the nuclear reaction, as expressed by E = Mc2, where c is the speed of
light. It is estimated that the energy loss from the fusion of hydrogen into helium is ∆E

E
≈ 0.007 [20],

therefore the nuclear timescale is given by equation 2.5

tnuclear ≈ 0.007
Mc2

Ls

(2.5)

In order to get an idea of the range of these timescales we can calculate the case of the Sun with
M⊙, L⊙, and R⊙, such timescales are given in table 2.2

Sun Timescales.
Timescale Time≈
tdynamic 1600s
tKH 3× 107yr
tnuclear 1011yr

Table 2.2: Calculated timescales for the Sun.

Up to this point, we have established the star’s classification and the timescales in which the stellar
structure undergoes transformations. Now, we can introduce the equations governing stellar struc-
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ture. When there are no significant changes occurring in the stellar structure within the timescales
defined by the dynamic timescale, it indicates that the star is in hydrostatic equilibrium [13]. Achiev-
ing hydrostatic equilibrium requires a delicate balance between the pressure gradient inside the star
and the gravitational force pulling inward, therefore is necessary to have a relation describing the
change of pressure with respect to its size, given in equation 2.6.

dP

dR
= −GM(R)ρ(R)

R2
(2.6)

where P is the pressure and ρ is the density of the star. Another crucial aspect to understand
alterations in the stellar structure within the dynamic timescale involves understanding the variations
in the star’s mass. In other words, the process when the star is not in hydrostatic equilibrium. This
can be referred to as the process of mass transfer from one shell within the star to another, described
by the mass continuity equation 2.7.

dM

dR
= 4πR2ρ (2.7)

In the context of the thermal timescale, the star’s thermal energy is transferred by two primary mech-
anisms: radiation and convection. Radiation involves the transmission of thermal energy through the
star. The efficiency of radiation relies on the mean free path of photons and particles [21]. If photons
are frequently absorbed, the radiative transport efficiency decreases, and the extent of absorption in
the star is characterized by its opacity(κ). We can relate the change of temperature with respect to
the radius as seen in equation 2.8.

dT

dR
= − 4κρL

64πR2σT 3
(2.8)

In equation 2.8 is possible to see that the radiative transfer is directly proportional to the opacity,
density, and luminosity flux. Consequently, an increase in any of these factors will lead to a higher
temperature gradient, in such case thermal transfer by convection occurs [21]. In an ideal gas, when
convection is adiabatic the energy transfer is given by equation 2.9.

dT

dR
=

(
1− 1

γ

)
T

P

dP

dR
(2.9)

where γ is the ratio of the specific heats γ = cP
cV

.
Throughout most of the star’s evolution, the primary source of energy comes from nuclear reactions.
However, additionally, energy is released through gravitational contraction. Thus the general energy
production can be derived from the first law of thermodynamics [13], yielding equation 2.10.

dL

dR
= 4πR2

[
ρϵ− ρ

d

dt

(
u

ρ

)
+

P

ρ

dρ

dt

]
(2.10)

Where ϵ is the rate of energy production per unit mass, t is time, and u is the internal energy per
unit volume.
Equations 2.6, 2.7, 2.8, 2.9, and 2.10 collectively describe the stellar structure. By examining these
equations, it becomes evident that crucial parameters influencing the stellar structure include tem-
perature, star luminosity, radius, mass, and naturally, time. Nonetheless, the equations mentioned
above assume a constant mass, but in a realistic molecular cloud environment, a proto-star mass in-
crease through accretion. As a result, it becomes necessary to incorporate the dynamics of accretion
to accurately describe the evolving stellar systems.

The process of accretion is non-steady and involves multiple variables, such as the properties of the
interstellar medium (ISM) in which the star is forming, the angular momentum of the accreting
matter [22] among others. To study stellar accretion in a realistic molecular cloud environment,
numerical simulations, and models are often used. These simulations take into account factors such
as gravitational contraction, feedback from massive stars, and the dynamics of gas accretion onto
young stars. These models help in understanding the complex interplay between accretion and
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feedback in the process of star formation within molecular clouds [7]. The accretion process gives
rise to several observable properties in stars, including magnetic activity [23], variations in their
observed brightness due to accretion luminosity, and the occurrence of bipolar outflows [24]. For the
interest of this thesis, we will focus on the accretion luminosity. The accretion luminosity (Lacc), is
not precisely part of the stellar structure, however, the observed luminosity is not only coming from
the star but from the sum of Ls and Lacc:

LTot = Ls + Lacc (2.11)
Where the accretion luminosity is defined by:

Lacc =
GM(t)MṀα

2R
(2.12)

The terminology used in this context aligns with the one proposed by Baraffe et al. (2009). [25] for
the energy transfer at the accretion shock. The accretion luminosity is then divided into two terms,
one for the energy radiated away from the proto-star and one for the energy that is injected into the
proto-star:

Lout
acc = ϵ(1− γ)

GMṀ

R
(2.13)

Lin
acc = ϵγ

GMṀ

R
(2.14)

where M is the proto-stellar mass, α is the thermal efficiency parameter, G is the gravitational con-
stant, and Ṁ is the accretion rate. The factor depends on the details of the accretion process, with
ϵ ≤ 1 for gravitationally bound material and ϵ ≤ 0.5 for boundary layer accretion from a thin disc.

Finally is possible to clarify what is meant by stellar structure as the parameters needed to study the
evolution of a star in an HR diagram, the observable parameters, alongside the parameters needed
to calculate any of these parameters in equations 2.1,and 2.13. Specifically in the rest of this thesis,
we refer to the stellar structure parameters as Teff , Ls,R, Lacc, M , Ṁ and star age.

2.4 Luminosity Spread
The luminosity spread refers to the variation in the brightness or luminosity of a group of stars or
an individual star. As a simple classical approximation, a group of young stars is assumed to form
simultaneously with their final mass. In the context of the main sequence, such a group of stars
would trace a distinct line in the HR diagram, a so-called isochrone, which solely relies on the age
and metallicity of the group. In reality, as mentioned before proto-stars do not evolve in isolation
from the interstellar medium but grow through accretion [7]. Moreover, while age can be defined
for a star-forming region, the ages of individual stars in the region will vary. The combined effect of
a proto-stellar age spread and time-varying proto-stellar accretion for individual proto-stars is one
of the explanations, why stars in young clusters do not follow an isochrone but have a significant
luminosity spread [7]. Additionally, the presence of binary or multiple star systems in these clusters
can also contribute to the luminosity spread, as their combined light can affect the overall brightness
observed [26]. According to the classical understanding, when there are significant differences in
luminosity among stars, it suggests an ongoing star formation process that takes place over an
extended period of tens of millions of years. This notion favors a slow-paced star formation scenario,
which contradicts the observed and modeled lifetimes of star formation regions [27]. Baraffe et al.
[25], [28] have suggested that the apparent age spread in star-forming regions could be explained by
accreting star-forming models, specifically models featuring time-varying accretion rates.
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Figure 2.3: Image of a proto-star enclosed by a protoplanetary disk. Within this disk, material flows along the star’s
magnetic field lines and settles onto the surface of the star. Upon impact, the material illuminates the star. Image
credit: NASA/JPL-Caltech [29].

2.5 Protostellar Evolution Models
As mentioned before traditional stellar structure calculations that do not involve accretion result in
clearly defined isochrones. These isochrones have been employed for many years to estimate the ages
of regions where stars are formed, and in model calculations of star-forming regions to characterize
the stellar feedback. However, the significant variation in luminosity observed within these popula-
tions has raised concerns [7]. Modeling young stars with a time-varying accretion is possible, but
expensive. Including a time-varying accretion rate complicates the endeavor, and makes the problem
higher-dimensional in nature. This has been done by Sigurd et al. [7] by creating a simulation using
RAMSES [30] [31]. Using adaptive mesh refinement (AMR), RAMSES efficiently solves numerical
algorithms for the equations of magnetohydrodynamics [32], a well-suited theory to describe the evo-
lution of ISM and star formation. AMR is a technique used in numerical simulations to dynamically
adjust the resolution of a computational mesh based on the local features of the solution. It allows
for the efficient allocation of computational resources by concentrating computational effort where it
is most needed. The RAMSES code used in this implementation is the modified version by Haugbølle
et al. (2017) [33], which includes the incorporation of random turbulence driving, sink particles to
serve as a sub-grid model for protostars, technical enhancements enabling efficient scaling to multiple
thousand cores, and an upgraded solver that maintains stability even in supersonic flows featuring
high Mach numbers.
The results from Sigurd et al. can be seen in figure 2.4, where is possible to see the evolution of the
model at different stages, up to 2.5× 106yr. As a result, the model achieves a well-developed stellar
population, with a considerable number of pre-main-sequence stars undergoing contraction towards
the main sequence along the Hayashi track. This result becomes comparable in age to some of the
youngest nearby star-forming regions. Towards the end of the simulation, 214 stars are found to be
over a million years old, while 328 stars exhibit an accretion rate of less than 10−7M⊙yr

−1, indicating
the completion of their primary accretion phase.
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4 Jensen & Haugbølle

Figure 1. Column density from left to right and top to bottom at t = 1.6, 1.9, 2.2 and 2.5 Myr after the formation of the first star. The red circles mark the
positions of stars with masses M < 0.5M� , brown triangles are stars with 0.5M� < M < 1.5M� , while orange squares indicate stars with M > 1.5M� .
Numbers refer to the stars shown in Fig. 4.

universal for low- and intermediate-mass stars (Vaytet & Haugbølle
2017) and we have chosen to use cores with this mass for our
simulations. We have not fixed the initial radius and due to the
di�erences between the opacity tables we have utilised in ����
and those of Vaytet & Haugbølle (2017) we get an initial radius of
R = 0.64R� .

The composition of the core is uniform and the mass fractions
for the essential elements of the protostar are based on the values for
the local interstellar medium (Ferrière 2001; Tosi 2000; ProdanoviÊ
et al. 2010): X = 0.70, Y = 0.28, 2H = 2 ⇥ 10�5 and 3He =
2.98 ⇥ 10�5. For the heavier elements we use the mass fractions

of Grevesse & Sauval (1998). We accrete matter with the same
composition as the initial core.

2.2.2 Modeling energy transfer at the accretion shock

The accretion shock near the surface of the protostar is a crucial
part of accreting star formation models, but our understanding of
the energy transfer at the shock remains limited.

We have adopted the terminology of Bara�e et al. (2009) for
the energy transfer at the accretion shock. The accretion luminosity
is divided into two terms, one for the energy radiated away from the

MNRAS 000, 1–18 (2017)

Figure 2.4: Evolution of the model from [1.6, 2.5]× 106yr. Stars are categorized by mass where red circles showcase
stars with masses M < 0.5M⊙, brown triangles stars in the range [0.5, 1.5]M⊙, and orange squares stars with M >
1.5M⊙. The numbering relates to the accretion profiles shown in figure 2.5. [7].

The accretion rate profile of selected stars is shown in 2.5 where is possible to see the accretion
history of 6 stars in the mass range [0.7, 0.8]M⊙ at an age of 2.3× 106yr.
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Figure 2.5: Plot showing the gas distribution in the evolution from the birth of the star, up to [2.3 × 106yr]. The
right-hand side panel shows the accretion rate history.[7].

As seen in figure 2.5 RAMSES is able to produce the accretion profiles produce along with some
of the stellar parameters, namely the mass M , and accretion rate Ṁ , as a function of stellar age.
In combination with an initial condition, a protostellar seed with a mass similar to that of Jupiter,
these profiles serve as valuable input for stellar structure calculations. This implementation has been
integrated into the Module for Experiments in Stellar Astrophysics (MESA) [34], one of the most
extensively utilized codes in this field. By utilizing a particular time series of mass accretion, this
method is a viable approach in order to gain a better understanding of how accretion affects the
protostellar phase. However, its implementation comes with several challenges:

• MESA is a complicated code to run, and allowing for time-varying accretion requires extra
customization

• Running a single stellar track requires a substantial amount of computational resources, taking
up to a CPU core-year. Because of the limited scalability of MESA, this results in a wall-clock
run-time of up to a month for a single star.

• MESA represents an extensive software infrastructure, composed of over a million lines of code
and incorporating several gigabytes of tabulated data relevant to various microphysics aspects,
including nuclear reaction rates, multi-wavelength opacities, and realistic equations of states.

• Coupling MESA with simulations codes like RAMSES, in order to allow co-evolution of proto-
stars and the surrounding material is highly non-trivial.
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In this thesis, we use the data set obtained from 321 realistic large-scale simulations of a molecular
cloud fragment (4 pc) with precisely recorded mass accretion rates specifically mass M , accretion
rate M⊙, and age. In addition to these parameters, we used Teff , Ls, R, and Lacc obtained with
MESA for their associated RAMSES stellar tracks.

2.6 Existing Infreance Methods
As mentioned in section 2.5 obtaining the stellar structure parameters using MESA comes with
complications, however, lightweight stellar structure inference methods do exist. A classic example
of this is the one created by D’Antona and Mazziteli (DM97) [1] which interpolates the Teff and
Ls, using tables of know values. However, this model considers a classical star evolution with no
accretion, producing misleading results due to the luminosity spread among other problems.
In addition to this, the DM97 is outdated, as it doesn’t use any modern statistical method to make
predictions. In recent years new predicting methods using machine learning have proven to be very
successful. Therefore a new modern way of using ML to predict the stellar evolution parameters is
indispensable.

The aim of this thesis is to investigate ML methods, along with their implementation in the prediction
of Teff , Ls, R, and Lacc, given a M , Ṁ and star age. As discussed in this section modern methods
that take into account the full picture of the stellar evolution are needed. Moreover, a successful ML
model can be easily implemented in simulation codes like RAMSES, as the inference process is only
a few lines of code, that can be translated into practically any programming language. Finally, ML
models are fast to execute adding an almost negligible overhead in their implementations.
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Chapter 3

Machine Learning

Machine learning (ML) algorithms build models using data samples in order to predict a desired out-
come. One of the most important aspects of ML is the quality of the data, therefore it is important
to analyze the data, along with modifying it in order to produce a quality data set.
Machine learning algorithms can be classified into supervised, unsupervised, and reinforcement learn-
ing, for this thesis, supervised learning is used, in particular a regression algorithm. In supervised
learning, the algorithm learns by example. A known data set with the input parameters M , Ṁ and
star age, is given to the algorithm, with a known output Teff , R, Ls, and Lacc as a method to train
the ML algorithm. The algorithm learns a method to arrive at the outputs given the inputs. Re-
gression is a method of analyzing the connection between input parameters and output parameters.
It is often used in machine learning to predict continuous parameters by creating a line of best fit
through the data points, where the distance between each point and the line is minimized.

3.1 Exploratory Data Analysis for Machine Learning
Exploratory Data Analysis (EDA) is a crucial step in the data analysis process for ML. EDA involves
analyzing data sets to gain insights and identify patterns, anomalies, and relationships. It is helpful
to understand the main characteristics of the data before making any assumptions and can guide
the selection of appropriate statistical techniques for further analysis or modeling. Some common
techniques and best practices for conducting EDA are:

• Identifying the input and output parameters, along with their relationships.

• Visualisation of the data distribution.

• Identifying types of data classes and their distributions.

• Detecting outliers.

Using EDA in this project helped us to understand the distributions of the data set, allowing us to
decide how to split the data in order to obtain relevant data set for each phase in the stellar evolution
as explained in detail in section 4.1.1.

3.2 Feature Engineering
In ML it is common to modify the data in order to obtain extra parameters, or to make the data
better suitable for the ML algorithm. Some common feature engineering techniques are:

• Feature selection: Selecting the relevant input parameters.
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• Feature scaling: Common scaling techniques are standardization, subtracting the mean and
dividing by the standard deviation, or normalization.

• Feature transformation: A common one is to obtain the log 10 of the feature.

• Feature extraction: Involves creating new data points for example adding previous data points
as a way to add time-dependent information on the current state.

In particular in this thesis feature engineering was used, to scale the necessary parameters by nor-
malizing the data, and modifying the data entries to include temporal data as explained in sections
4.1.5 and 4.1.6 respectively.

3.3 Hyper parameter Tuning
In order to obtain the best possible prediction, it is necessary to adjust the ML algorithm parameters,
this process is known as hyperparameter tuning (HPT). Hyperparameters are the parameters of the
model that are not learned during the training process but rather are set by the user before training.
Examples of hyperparameters include the learning rate of an optimization algorithm and the number
of hidden layers or neurons in a neural network.
Selecting the optimal values for these hyperparameters is important because they can have a signifi-
cant impact on the performance of the model. HPT involves systematically testing different values of
the hyperparameters and evaluating the performance of the model on a validation set. This process
can be done manually, by adjusting the values of the hyperparameters and evaluating the model’s
performance, or automatically, using algorithms such as grid search [35], random search [36], or
Bayesian optimization [37].

3.4 Gradient Boosting
Decision trees are supervised machine learning algorithms used for both classification and regression
tasks. The decision tree algorithm works by recursively partitioning the data into subsets based
on the values of different input features. It creates a tree-like structure where each internal node
represents a decision based on a specific feature, and each leaf node corresponds to a predicted
outcome or value. Gradient boosting is a framework that uses an ensemble of weak learners to
improve the accuracy of predictions. It works by iteratively training decision tree models on the
residuals of the previous trees. The residual is the difference between the predicted value and the
true value.
The process begins with an initial model, usually a simple model such as a decision tree with a single
node or a constant value, and uses this model to make predictions.
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Figure 3.1: The first predictions for a gradient boosting decision tree involves predicting taking the mean indicated
by the red line [38].

The errors or residuals of this initial model are then calculated.

Figure 3.2: Calculation of residuals involves obtaining the difference of the data point with the mean indicated by
the blue lines [38].

A new decision tree is trained to predict these residuals.

Figure 3.3: New decision tree is created and new predictions are calculated [38].

This new decision tree is added to the ensemble, and the predictions from all the trees in the ensemble
are combined to make the final prediction.

F1 = F0 + νγ1 (3.1)

where F0 is the initial prediction, γ1 is the second layer of predictions, based on the first branching
of the tree as seen in figure 3.3, and ν is a scaling factor known as the learning rate. The learning
rate is used to avoid overfitting and ranges between 0 and 1.
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The process is repeated multiple times, with each new tree being trained to correct the mistakes of
the previous trees. The final ensemble model is a combination of all the decision trees, where each
tree contributes a prediction in the form of a vote or a weighted average.
The trees are grown with the goal of minimizing the overall prediction error, this is done by using an
optimization algorithm such as gradient descent to find the best parameters of the tree, this process
is also known as boosting.
In this project, the first supervised learning algorithm we have decided to use is a Gradient boosting
algorithm called Light Gradient Boosting Machine (LightGBM) released by Microsoft in 2017 [39].
LightGBM is a gradient-boosting framework that uses tree-based learning algorithms. It is designed
to be efficient and scalable and is particularly well-suited for large-scale data sets. LightGBM is
faster than traditional gradient-boosting libraries, such as XGBoost, giving equal accuracy with up
to 10 times less training speed [40].

3.5 Deep Neural Networks
First proposed in 1944 by Warren McCullough and Walter Pitts, neural networks (NN) are a means
of doing machine learning, in which a computer learns to perform some task by analyzing training
examples [41]. Generally, neural network models consist of layers of neurons densely interconnected.
Each neuron might be connected to several neurons in the previous layer, from which it receives data,
and several neurons in the next layer, to which it sends data. A diagram of a neural network can be
seen in figure 3.4.

Figure 3.4: Neural network diagram[42].

In figure 3.4 is possible to see the so-called architecture of a simple NN. The architecture terminology
is the following:

• Neuron: The basic unit of a NN. A neuron takes inputs, applies weights and biases, computes
the weighted sum, and passes the result through an activation function to produce an output.

• Input layer: This is the first layer in a neural network. The number of neurons in the input
layer corresponds to the dimensionality of the input data.

• Hidden Layers: They are intermediate layers between the input and output layers. Each hidden
layer consists of multiple neurons, and the connections between these layers carry the weighted
and biased information from the previous layer.
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• Output layer: The final component in the NN architecture, depending on the problem at hand
can have one or more neurons, and the type of activation function used may vary. In this layer
is where the prediction of the NN is obtained.

The feed-forward process is the basic operation of the NN and, refers to the flow of information
through the NN from the input layer to the output layer. The feed-forward process starts with the
input layer, which receives the initial data or features that need to be processed. Each connection
between the input layer, the hidden layers and the output layer has an associated weight w and a
bias b. The w and b are the components of the NN that are adjusted during the learning process.
The input data is multiplied by the w and added to the b. Then the incoming data for each neuron
is aggregated into a weighted sum as shown in equation 3.2.

b+
n∑

i=1

xiwi (3.2)

After calculating the weighted sum of w and b at each neuron, an activation function f is applied
to introduce non-linearity into the NN. A typical f in regression problems is a Rectified Linear Unit
(ReLU) defined mathematically as follows:

ReLU(x) = max(0, x) (3.3)
where x is the input to the activation function, and the output of ReLU is the maximum of 0 and x.
Finally, the mathematical representation of the outputs in each neuron is:

f(b+
n∑

i=1

xiwi) (3.4)

The output of the NN ȳ is compared to the ground truth y using a loss function E, which quantifies
the difference between them. In this thesis we use as loss function the mean absolute log error given
by:

MALE =
1

N

N∑
i

| log10(yi)− log10(ȳi)| (3.5)

In the first forward pass, w and b are assigned a random value, which is then adjusted by the process of
backpropagation. This algorithm propagates the gradients of E backward through the network. This
process involves computing the gradients of the E with respect to the network parameters, in order
to update the parameters accordingly. In other words, computing the gradient allows the algorithm
to find the relation between the change in w, b, and f with respect to E. Naturally, the smaller
the output of E the better the NN is. Finally, after the gradients are computed an optimization
algorithm is used, commonly known as gradient descent, where the w and b are updated using the
gradients information, in an attempt to minimize E as shown in figure 3.5.
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Figure 3.5: Gradient descend through backpropagation, where the purple dots represent the value achieved after
each learning step, and the yellow dot represents the local minima. [43].

Stochastic gradient descent is an efficient way to perform gradient descent. This algorithm updates
the parameters using a random subset of the data set to approximate the loss function. There-
fore, introducing some randomness in the process hence the stochastic. In this project, we use
Adam (Adaptive Moment Estimation) to perform the gradient descent. Adam is an extension of the
stochastic gradient descent algorithm that aims to overcome some of its limitations, such as the need
for manual tuning of the learning rate[44].

3.6 Machine Learning Summary
Machine learning involves several steps, from preparation and curation of the input data, and selection
of algorithm to hyperparameter tuning. Each of these steps involves a range of details that can change
the performance of the desired outputs. Therefore it is possible to think about the ML process as an
experimental one, where a range of different data sets, HPT algorithms, optimizers, etc, are tested.
In the following chapter, the process to perform these experiments is outlined in detail, in order
to achieve reproducibility. In addition to this results were carefully recorded for each experiment,
obtaining useful information to achieve better and faster results in subsequent experiments.
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Chapter 4

Machine Learning Methods

4.1 Data Analysis
In machine learning projects, it is usual to analyze data in various ways to comprehend its peculiarities
and make informed decisions about how to approach the ML problem. In the following section, we
offer an overview of the data analysis methods utilized in this thesis.

4.1.1 Data Distribution

Understanding the data distribution of both the input and predicting parameters is essential. Conse-
quently, an analysis of this distribution was carried out. Additionally, an investigation was conducted
to determine the proportion of data with accretion mass M⊙ > 0 and M⊙ = 0. The importance
of this investigation lies in the fact that when M⊙ = 0, the mass remains constant, fundamentally
changing the input vector’s nature, as the star’s age becomes the only variable

4.1.2 Splitting Data set

To conduct supervised machine learning, it is necessary to evaluate the ML algorithm using an unseen
data set with known truth values. This process helps confirm the accuracy of the model’s predictions.
Therefore the data set was split into a training set and a testing set. Naturally, the ideal training
and testing sets need to be representative of the whole data set, including stars in all ranges of mass,
age, and accretion rate. To achieve this goal, the simulation data was categorized into four groups
based on the final mass of each simulation. The testing set was subsequently obtained by selecting
a percentage of the simulations from each mass category.
For the testing set approximately 16% of the simulations was chosen, with approximately 9.5X106

or 27% of the total data points. After splitting the data sets the distributions of the training and
testing sets were compared to get an overview, of the full range of the input parameters.

4.1.3 Balance Training set

In order to prepare the data for the training a common practice for classification problems is to
balance the training data set. Balancing a data set in machine learning refers to the process of
adjusting the proportion of different classes or categories in a data set to ensure that each class has
a similar number of examples. In other words, if we have a data set containing 100 samples, with 90
samples belonging to class A and only 10 samples to class B, it indicates an imbalanced data set. To
address this, balancing the data set can be achieved by either removing some samples from class A or
adding more samples to class B, in order to ensure a more balanced distribution of samples between
the two classes. Balancing a data set is important in ML because many algorithms perform poorly
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when the data set is imbalanced. For example, a classification algorithm trained on an imbalanced
data set may become biased towards the majority class and perform poorly on the minority class. By
balancing the data set, we can ensure that the algorithm is trained on a more representative sample
of the data and is more likely to generalize well to new examples. Even though this is common
practice for classification, is possible to do for regression [45], showing promising results.

80.0%

15.0%

5.0%

Imbalanced Dataset

30.0%

32.0%

38.0%

Balanced Dataset

Class 1
Class 2
Class 3

Figure 4.1: The plot on the left-hand side illustrates an example of an imbalanced dataset, while the one on the
right-hand side shows a balanced dataset.

Based on the results from the distribution analysis, it became evident that balancing the training set
could be advantageous. This balancing process aims to enhance the accuracy of predictions while also
reducing the dataset size to improve the training time of the ML algorithms. Therefore a balanced
of the data was performed in the following way:

• Binning the data.

• Identifying the size of the second smallest bin, denoted as bin2. This choice is made to avoid
losing valuable data information by selecting the smallest bin.

• Keeping the whole data in the smallest bin.

• Taking a random sample of size bin2, for the remaining bins.

• Creating a new data set containing the data from the smallest bin and the random samples
obtained in the previous step.

4.1.4 Reduce Training set

By analyzing the simulation data, it was observed that there are certain data points where the stellar
evolution exhibits minimal change, indicating a stable stellar structure. Consequently, it becomes
feasible to reduce the data set by excluding these points where no significant alterations in the stellar
structure occur. The process is as follows:
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• Obtaining the difference ∆ between consecutive points of the prediction parameters.

• Establishing a significant difference for each of the parameters ∆sig.

• Removing the point if ∆ < ∆sig.

The following ∆sig for each parameter was used:

• teff∆sig = 100.001K

• Lstar∆sig = 100.0009L⊙

• R∆sig = 100.0005R⊙

• Lacc∆sig = 100.0007L⊙

Following this procedure enables us to obtain a different dataset for experimentation, with almost
no loss in information. Additionally, it reduces the training time of the ML algorithms.

4.1.5 Scaling Data

A common practice in ML is to normalize the data and bring it to a common scale. It is particularly
useful when the data has different ranges and units. Machine learning algorithms can benefit if all
features have similar magnitudes. By scaling the features to a fixed range, is possible to ensure that
no particular feature dominates the learning process due to its larger values. Another reason why
feature scaling is applied is that few algorithms like Neural network gradient descent converge much
faster with feature scaling than without it [46]. Therefore we used a scaling method based in the
MinMaxScaler from sklearn [47], a method that scales the values between [0, 1] using the following
equation:

xscaled =
x− xmin

xmax − xmin

(4.1)

This scaling method works well for not Gaussian distributions, and is sensitive to outliers.

4.1.6 Feature Engineering

An important aspect of stellar evolution is its history, this naturally becomes more important due to
the fact of accretion. Extended periods of accretion or periods with a high accretion rate, can have a
great impact on stellar evolution. Moreover, an episodic accretion can induce changes in the stellar
structure, even after the episodic accretion phase has concluded [48].
It was confirmed that it is indeed possible to create this type of data set during a simulation like
RAMSES, which is crucial for data preparation. As integrating the ML results into a simulation
constitutes one of the primary objectives of this thesis. In order to create a realistic temporal data
set the following steps were taken:

• Splitting the data into two subsets: one containing stars with ages age0 < 2000yr and the other
containing stars with ages age1 ≥ 2000yr.

• Extracting samples from the age0 set within the range [agecurrent − (∆t × 2), agecurrent − ∆t]
until the age0 set was fully processed. The process then continued with the age1 set. The
introduction of the parameter ∆t× 2 was necessary to reproduce the age variability present in
the data obtained from the simulation.

• Choosing a random state vector with mass, age, and accretion rate from the previously obtained
sample.
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• Using the state vector obtained in the previous step and the current state vector, interpolation
was performed to estimate the mass and accretion rate at the desired age if there was no data
available in the desired age range in age0 or age1 sets.

Following these steps another data set type was created taking the input parameters with a time
difference ∆t equal to 10, 100, and 1000 years.

4.1.7 Shapley Additive Explanations

Shapley additive explanations (SHAP), is a method based on cooperative game theory used to
increase the transparency and interpretability of machine learning models [49]. They provide insights
into the contribution of each feature to the final prediction.
Shapley additive explanations quantify the contribution that each feature brings to the prediction
made by the model, using the marginal contribution of each feature. SHAP values are based on the
idea that the outcome of each possible combination of features needs to be considered in order to
determine the importance of a single feature [50]. By considering all possible feature combinations and
their contributions, SHAP values provide a consistent way to allocate a value among the features. The
number of possible feature combinations is given by 2F where F is the number of input parameters.
The SHAP algorithm trains a predictive model for each of the feature combinations using the same
hyperparameters and input data as the final model. Therefore there are 2F sets of models, trained
with every possible combination of features, this includes the empty set with no features, being the
"prediction" in this set the average value of all the predictions. Naturally, each set of models is
expected to be better the more features are included, in order to quantify how the model improves
in every set.
The marginal contribution is defined as the difference between a prediction within a model set with
respect to the prediction in the previous model set that does not include the desired input, and can
be calculated as follows:

Mcfs,(fsk)(x) = predfs(x)− predfsk(x) (4.2)

Where fs is the feature in the current set, fsk is the feature in the previous set that do not include
fs, and pred(x) is the prediction given an input feature x. Each feature has Mc =

(
F
f

)
, where f

is the number of features in each model set. The marginal contributions are combined through a
weighted average, where the sum of the weights (w) is equal to 1. As an illustration for our case, one
could choose the mass as shown in figure 4.2.
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Figure 4.2: Marginal contribution diagram for mass.

Finally, the SHAP values can be obtained using the formula as explained by Slundberg and Lee [51].

SHAPf (x) =
∑
f

(f ×
(
F

f

)
)−1Mcfs,(fsk)(x) (4.3)

.
By examining the SHAP values for a specific prediction, it is possible to gain insights into which
features contribute the most and in what direction. This enables us to explain the model’s decision-
making process and identify critical factors affecting the prediction. In this work, the SHAP framework
for Python was used [52] in order to calculate the SHAP values of the LightGBM model.

4.2 Error Metrics
In order to quantify the accuracy of the ML models the predictions can be compared with the known
values calculating the absolute log error given by:

ALE = | log10(y)− log10(ȳ)| (4.4)
Where y is the known value, and ȳ is the one obtained by the model.
In order to evaluate the overall performance of the ML model on the test data set, the median of
the absolute log errors (MedALE) was computed, as it was judged the most informative metric.
Furthermore, it was essential to incorporate additional error metrics to gain insights into the behav-
ior of the ML models, especially in extreme cases where the models predict significantly inaccurate
values. To accomplish this, the maximum absolute log error (Max(ALE)) was determined for each
individual simulation, and subsequently, the median of these values (MedMaxALE) was computed
as a secondary error metric.

In the case when the machine learning predictions for accretion luminosity, fall below 10−5.99, an
adjustment is made to set Lacc = 10−6.1L⊙. This is necessary because accretion luminosity values
smaller than Lacc = 10−5.99L⊙ do not exist and therefore, this manual correction can be applied.
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Consequently, it becomes essential to align the simulation values accordingly. This method guarantees
a more precise quantification of accuracy for the accretion luminosity.
This is done because there is no accretion luminoisty smaller than Lacc = 10−5.99L⊙ therefore is
possibkle to make a manual correction in the ML predictions by considering all the predicted values
lower than Lacc = 10−5.99L⊙ as a constant value Lacc = 10−6.1L⊙ allowing us to accuratley quantify
the accuracy in a correct maner.

4.3 Bayesian Optimisation
Bayesian optimization is a powerful technique for optimizing functions, where the objective func-
tion’s analytical form or gradients are unknown. It is particularly useful in machine learning for
hyperparameter tuning (HPT).
Bayesian optimization combines Bayesian inference and optimization to iteratively explore the search
space efficiently. It employs probabilistic models, such as Gaussian processes, to model the unknown
objective function and guide the search toward regions of interest,[53].
In this project, the following steps were performed:

• Specifying the range and type of hyperparameters to be optimized.

• Defining the function to be optimized.

• Initializing the surrogate model by selecting a probabilistic model to represent the objective
function.

• Choosing an acquisition function that balances exploration to guide the search.

• Selecting new points to evaluate based on the acquisition function and updating the surrogate
model.

• Iteratively sampling new points, evaluating, and updating the surrogate model until the end of
the training process.

The algorithm was implemented using the Optuna framework [54], which offers a high-level interface
for efficient implementation and execution of Bayesian optimization.

4.3.1 Optuna Features

Using Optuna following features the HPT was performed:

• Automatic algorithm selection: Optuna automatically selects and configures appropriate algo-
rithms based on the defined problem.

• Pruning: It supports the early stopping of unpromising trials to allocate computational re-
sources effectively.

• Visualization: It provides visualization tools to analyze and understand the optimization pro-
cess.

Optuna based Bayesian optimization provides several advantages, including efficient exploration of
the search space and a reduction in the number of function evaluations required.
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4.3.2 Cross Validation

The best ML model is a model that can generalize, and adapt to new unseen data, one common
technique to make this possible is cross-validation. The basic idea behind cross-validation is to divide
the data set into two parts: a training set, which is used to train the model, and a validation set,
which is used to evaluate the model’s performance. Nonetheless, a single split of the data set into
training and validation sets may not fully represent the model’s performance on unseen data. To
overcome this limitation, cross-validation requires multiple splits of the data set into training and
validation sets, with each split utilizing a distinct subset of the data as the validation set.
The most common form of cross-validation is k-fold cross-validation [55], which involves dividing the
data set into k equally sized folds. In the first iteration, the model is trained on the k1 fold and
evaluated on the remaining fold. This process is repeated k times, with each fold serving as the
validation set once. The results of each fold are then averaged to obtain an overall estimate of the
model’s performance.

Figure 4.3: Cross validation example where 25% different partitions of the data are taken as a testing set for every
fold [56].

In this thesis, the cross-validation was implemented with K = 3, during the Bayesian optimization
algorithm. The mean of the results of the cross-validations was taken in order to return a single
minimum value to minimize.

4.4 Model Selection
After completing the hyperparameter tuning process, it becomes possible to train a machine learning
model using the best hyperparameters. This training was done for 400 epochs on each of the data
sets. To identify the best model, the following data processing pipeline was constructed:

• Splitting the data into accretion M⊙yr
−1 > 0, and non-accretion M⊙yr

−1 = 0.

• Scaling both training data sets to obtain a scaler for normalization.

• Using the accretion data set to create three additional data sets: one with the balanced method,
another with the reduced method, and a third with the full data set.

• Combining the no accretion set with the previously mentioned data sets to create a mixed set.

• Performing HPT using Bayesian optimization and cross-validation with all the data sets.
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• Using the best HP obtained with the Bayesian optimization to train a model.

• Scaling the test data set using the training scaler.

• Making predictions on the test set using the trained model.

The accretion pipeline method can be summarized in figure 4.4

Figure 4.4: Data pipeline, to obtain the best machine learning models for the accretion set .

In order to choose the best model the ALE was computed for each y ȳ pair for both the whole data
set and for the individual simulations. Then the MedALE was calculated for the whole test data set.
It was noted that relying solely on the MedALE metric led to instances where models performing
well overall were chosen, but they exhibited higher values in the max(ALE) metric. Therefore, for
the 53 individual test simulations, the MedMaxALE was calculated in order to obtain models that
perform well overall and try to minimize the maximum errors.

4.5 LightGBM
LightGBM is a great framework to use as a starting point, given that is simple to use, is fast, and
doesn’t require GPUs. Consequently, it presents a favorable option for establishing a workflow that
can be readily applied to future models.

4.5.1 LightGBM Parameters

There are several parameters that affect the model performance as it is possible to see in the of-
ficial LightGBM documentation [57]. For this project, the HPT was performed with the following
parameters:

• num_leaves: The parameter that controls the number of decision leaves in a single tree. The
decision leaf of a tree is the node where the decision happens.
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• max_depth: The parameter that controls the maximum distance between the root node of each
tree and a leaf node, is a key parameter to avoid overfitting.

• learning_rate: Step size parameter of the gradient descend, Controls the learning speed.
Typical values lie between 0.01 and 0.3 [53].

• n_estimators: The parameter that controls the number of decision trees. Set to constant
n_estimators = 3000.

• subsample: Specify the percentage of rows used per tree-building iteration. That means some
rows will be randomly selected for fitting each tree. This improved generalization and training
speed [58].

Using this parameter in combination with Bayesian optimization the best parameters of each model
were found.

4.6 Pytorch Neural Network
Neural networks are a powerful tool for regression tasks, allowing us to predict continuous numeric
values based on input features. In a regression neural network, the network learns to approximate
the underlying mapping between input variables and the target variable.
The pipeline to finding the best models for the NN is the same as outlined in section 4.4 and in
figure 4.4, with the difference that only the reduced and balanced data sets were used, and not the
complete data sets. This could be a harmful factor to find the best model using all the available
resources, however, results from the LightGBM model indicate that it is not necessary to use the
complete set to obtain the best results. Thanks to this result it was possible to optimize the time
and usage of the GPUs.

4.6.1 Neural Network Parameters

The neural network architecture is determined by the HPT resulting in slight variations in each
NN’s architecture. However, the general architecture consists of a sequence of input and hidden
layers, with a customizable number of neurons in each of these. The tunable parameters include the
following:

• First layer size: The number of nodes or neurons that the input vector is multiplied by.

• Hidden Layer Size: The number of nodes or neurons in each hidden layer of a neural network.

• Learning Rate: A hyperparameter that controls the step size at each iteration during the
training of a neural network. It determines how quickly the model adjusts its weights based
on the calculated gradients. A higher learning rate may result in faster convergence but risks
overshooting the optimal solution, while a lower learning rate may lead to slower convergence
or getting stuck in local minima.

• Batch Size: The number of training samples or data points processed in a single forward
and backward pass during one iteration of training. It affects the speed and efficiency of the
learning process. Smaller batch sizes allow for more frequent weight updates but may lead to
noisy gradients, while larger batch sizes provide smoother gradients but require more memory.

• Gamma: Decrease the learning rate after a certain amount of epochs have been completed. It
reduces overshooting and allows the algorithm to converge.
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• Number of Hidden Layers: The total count of hidden layers in a neural network architecture.

Apart from these variables, the neural network architecture also includes certain fixed parameters.
Specifically, the activation function utilized is a ReLU function. The selected loss function for this
project is the mean(ALE) (MALE). Finally, during the backpropagation phase, the optimization
algorithm employed is the Adam optimizer.

4.6.2 Number of Parameters Convergence

The number of parameters Nparams in a neural network can be quantified by counting the weights
and biases. To calculate the number of w, the following approach is used:

Nparams(w) = I ×H0 +
n−1∑
i=0

Hi ×Hi+1 +Hn ×O (4.5)

where I represents the number of neurons in the input layer, H0 is the number of neurons in the first
hidden layer, n is the number of hidden layers and O is the number of neurons in the output layer.
Then the number of b is calculated:

Nparams(b) = I +
n∑

i=0

Hi (4.6)

Finally adding both:
Nparams = Nparams(w) +Nparams(b) (4.7)

An analysis of the optimal number of parameters was performed by simply adding Number of Hidden
Layers to the best models obtained in section 4.6, and calculating the MedALE and MaxMedALE
on the testing set.

4.7 Temporal Neural Network
The temporal neural network (TNN) was trained using the feature-engineered data and the state
vectors described in section 4.1.6. The same workflow as described in section 4.6 was employed for
this training process. However, the no accretion set was used without incorporating the temporal
state vectors, as it was concluded that adding these vectors would not provide any supplementary
information. Instead, for the no accretion predictions, the Number of Hidden Layers was increased
in the Bayesian optimization, restricting to values within the range of [10, 20]. Consequently, due to
the disparity between the accretion and no accretion sets in this experiment, the mix set was not
employed in addition to the already not used complete set. Therefore the only two remaining sets to
use were the balanced and the reduced set.

4.8 Models Analysis
In addition to obtaining a trustworthy model to predict the stellar structure, it results interesting to
analyze the ML models, in order to understand what is the importance of the input parameters, and
state vectors.

4.8.1 Confidence Intervals

To establish a reliable model and obtain confidence intervals, a method that takes a 1
1000

random
sample of the testing set with replacement 2000 times was employed. Subsequently, predictions are
made for each sample, and the MALE of the predicted sample is computed.
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More detailed confidence intervals separated by star age and mass class using the Morgan–Keenan
(MK) system, were done. In order to perform this analysis, the same procedure as before was used,
but splitting the simulations first by mass class, and then by age. The age spread of the sample is
not uniform between simulations, therefore in order to obtain the mean a normalization by age was
done as follows:

X̄ =

∑n−1
i=1 xi∆ti∑n−1
i=1 ∆ti

(4.8)

where x̄ is the mean of the sample, ∆t is the age difference of each point defined by ∆t = tn+1−tn−1

2
.The

first and last data points were excluded from the calculation, causing negligible impact. To obtain
X̄, 500 random samples were acquired from each data split with a sample size of 0.01. Each sample’s
mean X̄ was then calculated.

4.8.2 HR Diagrams

In addition to the earlier error analysis, the predicted values of Teff and Ls were plotted on HR
diagrams alongside their corresponding simulation counterparts. This comparative analysis was
performed for four stars, each belonging to one of the star classes AB, GF , K, and M . This was a
necessary part of the analysis as obtaining the HR diagrams is arguably the most important aspect
of predicting the stellar structure. In addition to this, the previous metrics to quantify the errors
could be deceiving, and the true behavior of the predictions can be observed in these diagrams.

4.8.3 Hyperparametrs Importance

Using Bayesian optimization with Optuna, it became possible to analyze the importance of hyper-
parameters. This analysis is valuable for understanding the mechanism of the ML model, enabling
a focus on the parameters that the neural network relies on more heavily to make predictions. As a
result, the hyperparameter importance of each network was determined and visualized through plots.
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Chapter 5

Results

The objective of this thesis is to develop a machine learning model that can predict temperature,
star luminosity, and accretion luminosity based on the star’s mass, age, and accretion rate. In
order to show the model’s results, several analyses were done. This includes the outcomes obtained
through data manipulation, the results from various machine learning models, including confidence
intervals, and the model analysis using SHAP values and hyperparameter importance. All results
were obtained by following the method outlined in section 4.

5.1 Exploratory Data Analysis
The stellar structure parameters utilized as inputs for the machine learning model and obtained
from RAMSES include mass, accretion rate, and star age. Figure5.1 illustrates their corresponding
distributions.
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Figure 5.1: Distribution of mass, age, and accretion rate obtained from RAMSES.

As shown in figure 5.1, the majority of data points correspond to stars with masses ranging from 0
to 2M⊙. Additionally, the distribution of star ages indicates a concentration in the range of 102.5
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to 106 years, followed by a significant decline. Moreover, the plot reveals a prevalent high accretion
rate, reaching its peak at 10−5M⊙yr

−1. In addition to this, there is an uneven distribution of data,
with a disproportionate amount of instances having accretion compared to those without it. This
particularity of the data set can be seen clearly in figure 5.2. In order to deal with this problem the
data was split into accretion and non-accretion sets. For each of these sets a ML model was trained.

98.9%
1.1%

Accretion Imbalance
Accretion
No Accretion

Figure 5.2: Proportion of data with accretion rate vs no accretion rate. The blue section, which contains 99% of
the data, represents star evolution points with an accretion rate greater than M⊙yr

−1 > 0, while the orange section
represents points with an accretion rate of M⊙yr

−1 = 0

In order to familiarize ourselves with the data set it is important to understand the distributions
shown in figure 5.3, where it is possible to see interesting distinct features of each parameter.
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Figure 5.3: The distributions of temperature, star luminosity, radius, and accretion luminosity are represented in the
plot. The blue curve shows the distribution of accretion data, while the orange curve represents the distribution of data
with no accretion. For visualization purposes, the no accretion set, which has an accretion luminosity Lacc = 0L⊙, is
positioned at Lacc = 10−7L⊙ in the bottom-right panel of the accretion luminosity distribution.

In the case of the accretion set in the four cases, there is a clear imbalance in the lower and upper
limits of the distributions. An important feature to take into account is the minimum accretion
luminosity with Lacc = 10−5.99L⊙, this value is important in order to accurately calculate the errors
in the Lacc as mentioned in section 4.2. In the case of the no-accretion data set, it is interesting to
observe that the range of values for Teff , Ls, and R is larger compared to the accretion data sets,
with R showing the most significant difference, being approximately twice as large as the accretion
data set. Furthermore, the no-accretion data set exhibits a better balanced and uniform distribution
when compared to the accretion data set. Due to this characteristic and the smaller size of the
no-accretion set, no additional data manipulation was necessary for this subset.

5.1.1 Spliting the Data Set

In an attempt to split the training and testing set as evenly as possible the data set was divided into
4 categories as seen in figure 5.4. From each of these subsets, a proportion of the simulations was
randomly chosen as training and testing sets.
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Figure 5.4: Percentage of data per star categories. The left-hand side shows the percentage of data points per class,
while the right-hand side represents the percentage of simulations in the respective class.

After the splitting a comparison of the full training and testing data set can be seen in figure 5.5.
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Figure 5.5: The full, training, and testing distributions are depicted in blue, orange, and green, respectively. In
the left panel, the plot shows the mass distribution, the center panel represents the star age distribution, and the
right-hand side shows the accretion rate distribution. For each of these plots, the mean and standard deviation were
calculated to compare the splittings.

Comparing the data sets in figure 5.5 is possible to see that the mass in the training set does not
represent the full range of masses, this is because, there is only one simulation in the highest mass

37



range with M = 11.3M⊙, and by the randomness of the data splitting, this simulation is in the testing
set. In the case of star age, it is noticeable that the training and testing sets are more comparable
between them, with the testing set containing values within the same range as the training set.
Finally, in the case of the accretion rate test set, it can be observed that there are a few missing
values in both the upper and lower ends of the range. However, the number of these missing points
is so minimal that their impact is negligible.
The means (x̄) of all the distributions were calculated to provide a quantitative basis for comparing
them with the respective values displayed in figure 5.5. By using x̄, we can observe a strong agreement
between the different splits.

5.1.2 Balancing and Reducing Training set

Figure 5.3 illustrates that the accretion data set displays a noticeable underrepresentation of certain
output values, particularly at the extremes. Therefore, balancing the data set seems to be the
appropriate approach, as explained in Section 4.1.3. Additionally, a second modified dataset for
the accretion set was created by eliminating data points where no significant change in the stellar
structure was observed, as detailed in Section 4.1.4. From this point onward in the thesis, we will
refer to these data sets as the balanced and reduced datasets, respectively.
The resulting training data set sizes are shown in table 5.1.

Accretion Data Sets Size by Output Parameter.
Data Type Teff Ls R Lacc

Complete 34.1× 106 34.1× 106 34.1× 106 34.1× 106

Reduced 5.8× 106 7.6× 106 3× 106 6.2× 106

Balanced 1.4× 106 1.8× 106 2.5× 106 1.9× 106

Table 5.1: Resulting accretion data sizes before and after applying reduction and balance methods.

As mentioned earlier, the no accretion set did not require any further manipulation, hence, the
training no accretion set remains unchanged, containing approximately 0.41× 106 data points.

5.1.3 Parameter Importance SHAP Analysis

Using the models obtained from LightGBM, a SHAP analysis was performed following the method
outlined in section 4.1.7. The results of this analysis are presented in figure 5.6.
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Figure 5.6: The SHAP values analysis was conducted for the predictions of temperature, star luminosity, radius, and
accretion rate. In the left-hand side panel, the importance of mass is indicated in blue, and log star age is represented
in brown for the no accretion set. In the right-hand side panel displays the accretion set parameter importance with
Mass in blue, star age in brown, and accretion rate in pink.

The magnitude of a Mean Absolute SHAP Value represents the importance of the feature influence
on the model’s outputs. It is crucial to understand that SHAP values are computed independently
for each feature, leading to variations in scales and magnitudes. Additionally, the total sum of mean
absolute SHAP values across all features does not hold any predetermined relationship to a specific
value or percentage [59].
Equations 2.8, 2.9, and 2.10 establish the relationships between luminosity, radius, and temperature
during the radiative transfer, convection, and energy production processes in a star. These relation-
ships highlight the significance of mass as a crucial factor influencing changes in these parameters.
Therefore, as seen in figure 5.6 it is not surprising that once again, in both the accretion and no
accretion sets, the SHAP analysis identifies mass as the most important input parameter for Teff ,
Ls, and R.
In the case of the Lacc case, the accretion rate was the most important feature, again the explanation
of this can be seen in the relation on equation 2.12. This analysis confirms the known physics facts
about the stellar structure and provides confidence in the validity of the data sets.

5.1.4 Benchmark HR diagrams

Among the test simulations, one of each star class was chosen as a benchmark to compare with the
ML predictions. These stars have the following final masses:

Final Mass Benchmark Stars.
Star class Mass (M⊙)
AB 5.9
GF 1.6
K 0.6
M 0.4

Table 5.2: Star classes final mass in solar masses M⊙.
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Each of these stars exhibits interesting characteristics that will aid us in identifying consistently
challenging areas for the ML models to predict. Therefore an HR diagram of these stars was obtained
and shown in figure 5.7.

Figure 5.7: The top left-hand side panel of the HR diagram displays an AB star as one of the four benchmark stars.
The top right-hand side panel shows a GF star, while the bottom left-hand side panel depicts a K star, and finally,
the bottom right-hand side panel shows an M star. In each panel, the light blue points correspond to stellar evolution
without accretion, whereas the darker blue points represent stellar evolution with accretion.

The stars of class GF , K, and M seen in figure 5.7 were selected because of their significant variability
in accretion, as evident from the spread in their luminosity. Predicting these star types is particularly
interesting, as it aligns with the main objective of this thesis.
In the case of the AB star, the accretion rate is more uniform during its evolution. However, the
no accretion section indicates a long evolution after the star has entered the main sequence, moving
past the hydrogen fusion phase. The uniqueness of the AB star’s evolution makes it intriguing since
there is no other star with a similar profile in the training set. Consequently, it becomes interesting
to examine whether the ML models can generalize beyond the boundaries of the training set.

5.2 LightGBM
The machine learning results presented in this section were obtained using LightGBM, as described
in sections 3.4 and 4.5. This model serves as an initial step to explore the capabilities of ML models,
as it is a powerful yet straightforward method to implement.

5.2.1 Models Selection LightGBM

To select the optimal model for each parameter, we utilized the best models obtained from hyper-
parameter tuning, as seen in appendix B.1.
The best models for the different data types were chosen among all the tests as seen in appendix A.1
using the previously defined MedALE and MedMaxALE metrics. The results for the best models
in the accretion section and the no accretion section are presented in tables 5.3 and 5.4, respectively.
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Best Parameters NN Error Analysis Accretion Set
Errors Teff Ls R Lacc

MedALE 0.0098 0.0976 0.0279 0.0326
MedMaxALE 0.085 0.587 0.159 0.300

Table 5.3: MedALE and MedMaxALE for TNN all prediction parameters.

In the accretion section, for Teff , Ls, and Lacc, the best models were obtained using the balanced
set. Specifically, the mix set was the best for Teff and Lacc. As for Ls, the best model was the one
from the accretion set. The decision to select this particular model was based on the fact that the
combination of MedALE and MedMaxALE falls at an intermediate point among the rest accuracy
results. Finally, the R, best model was obtained using the complete accretion set.

Best Parameters NN Error Analysis No Accretion Set.
Errors Teff Ls R
MedALE 0.0035 0.0256 0.0141
MedMaxALE 0.046 0.330 0.152

Table 5.4: MedALE and MedMaxALE for TNN all prediction parameters.

In the case of the no accretion section the R best model was obtained using the reduced mix set,
whereas the Teff , and Ls the no accretion sets.

5.2.2 Errors Distributions per Input Parameter LightGBM

After selecting the best models, the initial step involves examining the error distribution concerning
the input parameters. To achieve this, a 2D histogram was created, as illustrated in the figures.5.8,
5.9, 5.10, and 5.11.
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Temperature Abolute Log Error Distributions by Inputs LightGBM

Figure 5.8: Temperature absolute error distribution comparison between input parameters obtained using the Light-
GBM. The top left-hand side panel illustrates the distribution of ALE. In the top right-hand side panel, the ALE
distribution per accretion rate is displayed, with the section below the dashed line representing the region where
M⊙yr

−1 = 0. The bottom left-hand side panel showcases the distribution of ALE per star age, and lastly, the bottom
right-hand side panel demonstrates the distribution of ALE per mass.

Regarding temperature, figure 5.8 reveals that the worst errors in the accretion section occur in
areas with high accretion rates ranging between [10−10, 10−5]M⊙yr−1. However, the overall decrease
in accuracy is observed in the no accretion section. In the accretion section, the errors tend to
concentrate between ages of [103, 106] years, with the largest errors occurring at 108 years, which
corresponds to the no accretion set. Concerning errors by mass, it is interesting to note three
distinct areas with errors around [0, 1]M⊙, 4M⊙, and the most substantial errors around 6M⊙.
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Star Luminosity Abolute Log Error Distributions by Inputs LightGBM

Figure 5.9: Star luminosity absolute error distribution comparison between input parameters obtained using the
LightGBM. The top left-hand side panel illustrates the distribution of ALE. In the top right-hand side panel, the
ALE distribution per accretion rate is displayed, with the section below the dashed line representing the region where
M⊙yr

−1 = 0. The bottom left-hand side panel showcases the distribution of ALE per star age, and lastly, the bottom
right-hand side panel demonstrates the distribution of ALE per mass.

For luminosity, figure 5.9 shows a more significant spread of errors. The worst errors concerning
accretion rate exhibit a distributed pattern, covering all values for both the accretion and no accretion
sections. However, there is a high concentration of errors around 10−6M⊙yr−1.
Regarding errors by age, they tend to concentrate between [104, 106] years, with these errors being
larger than those in the no accretion section at 108 years.
Concerning errors by mass, the most significant errors are observed in the low mass range of [0, 4]M⊙.
Additionally, there is a notable concentration of errors around 6M⊙.
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Radius Abolute Log Error Distributions by Inputs LightGBM

Figure 5.10: Radius absolute error distribution comparison between input parameters obtained using the LightGBM.
The top left-hand side panel illustrates the distribution of ALE. In the top right-hand side panel, the ALE distribution
per accretion rate is displayed, with the section below the dashed line representing the region where M⊙yr

−1 = 0.
The bottom left-hand side panel showcases the distribution of ALE per star age, and lastly, the bottom right-hand
side panel demonstrates the distribution of ALE per mass.

In the case of the radius, figure 5.10 shows a concentration of errors occurring in the area with high
accretion rates around 10−6M⊙yr−1. However, the model less accurate predictions are overwhelmingly
present in the area with no accretion, spanning more than twice the number of errors observed in
the accretion section.
The concentration of errors by age begins to increase between [103, 106] years, with the most sig-
nificant errors appearing at the higher end, around 108 years, corresponding to the no accretion
section.
Similar to previous observations, the less accurate predictions are focused on the 106M⊙ range, with
an additional area of errors spanning [0, 4]M⊙.
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Accretion Luminosity Abolute Log Error Distributions by Inputs LightGBM

Figure 5.11: Accretion luminosity absolute error distribution comparison between input parameters obtained using
the LightGBM. The top left-hand side panel illustrates the distribution of ALE. In the top right-hand side panel,
the ALE distribution per accretion rate is displayed, with the section below the dashed line representing the region
where M⊙yr

−1 = 0. The bottom left-hand side panel showcases the distribution of ALE per star age, and lastly, the
bottom right-hand side panel demonstrates the distribution of ALE per mass.

Finally, for the accretion luminosity in Figure 5.11, there is a specific concentration of significant
inaccuracies in the regions with low accretion rates, particularly around [10−18, 10−12]M⊙yr−1. How-
ever, in the area with high accretion rates, errors exhibit an increase with two distinct peaks around
10−8M⊙yr−1 and 10−6M⊙yr−1.
Moreover, it is noticeable that the maximum errors occur when the star reaches the main sequence
at 106 years. Interestingly, the biggest inaccuracies in mass occur at different intervals, with areas
spanning [0, 5]M⊙, and a distinct peak at 6M⊙.

In general, the distribution of the errors is expected as the majority happens in sections with high
accretion rates, which are the areas with less predictability. However the no accretion section presents
the worst errors overall, this result was not expected, as stars with no accretion corresponding to main
sequence stars, have well-known behavior due to the mass-luminosity relation [13]. A particularity
present in all the parameters is the distribution around 106M⊙. At first glance, this could indicate
that the model has problems making predictions in one or a few simulations from the testing set,
due to a lack of data in that range. In the next sections, a more in-depth analysis of this behavior
will be done.

5.2.3 LightGBM Confidence Intervals

Following the method described in section 4.8.1, the confidence intervals of each result were obtained.
The results of this analysis is shown in figure 5.12.
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Figure 5.12: Confidence intervals for temperature, star radius luminosity, and accretion luminosity, were obtained
by utilizing the absolute log error in the LightGBM predictions on the test set.

As seen in figure 5.12, the results align with the patterns observed in tables 5.3 and 5.4. The best
performing prediction parameter remains Teff , while Ls exhibits the poorest performance.

Furthermore, the confidence intervals are categorized based on mass and age. The results of these
analyses are displayed in figures 5.13, 5.14, 5.15, and 5.16.
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Figure 5.13: The confidence intervals of temperature, grouped by star class and age brackets, are shown in the
figure. These intervals were derived using the absolute log error in the LightGBM predictions on the test set. The
y-axis shows the age brackets, with the last number representing the upper limit of each bracket. For instance, the
first bracket represented by 2 corresponds to stars with ages between 100 and 102 years.

The findings from figure 5.13 reveal that, concerning temperature, the most significant errors occur
in the GF , K, and M stars within the age range of [105, 106]yr. This aligns with the accretion set,
particularly towards the end of this phase. However, the most substantial errors are observed in stars
of class AB with significant errors spanning from [106, 108]yr. These results corroborate the findings
obtained in section 5.2.2.
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Figure 5.14: The confidence intervals of star luminosity, grouped by star class and age brackets, are shown in the
figure. These intervals were derived using the absolute log error in the LightGBM predictions on the test set. The
y-axis shows the age brackets, with the last number representing the upper limit of each bracket. For instance, the
first bracket represented by 2 corresponds to stars with ages between 100 and 102 years.

Figure 5.14 shows the star luminosity, where it is evident that the predicted MALE begins to
increase at a star age of 104 years. Similarly, for Teff , the peak errors are concentrated in the age
range [105, 106] years. Once again, in the no accretion section, the age range of [107, 108] years
displays poor accuracy, primarily observed in the star class AB.
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Figure 5.15: The confidence intervals of radius, grouped by star class and age brackets, are shown in the figure.
These intervals were derived using the absolute log error in the LightGBM predictions on the test set. The y-axis
shows the age brackets, with the last number representing the upper limit of each bracket. For instance, the first
bracket represented by 2 corresponds to stars with ages between 100 and 102 years.

Regarding the radius confidence intervals, as shown in figure 5.15, the MALE of stars M and K
exhibit the least accuracy in the age range of [105, 106]yr. Additionally, they display a greater variance
at a young stage of [102]yr. For stars GF and AB, the largest errors occur at an age of 107yr, once
again corresponding to the no accretion section, with these errors representing the most significant
discrepancies.
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Figure 5.16: The confidence intervals of accretion luminosity, grouped by star class and age brackets, are shown in
the figure. These intervals were derived using the absolute log error in the LightGBM predictions on the test set. The
y-axis shows the age brackets, with the last number representing the upper limit of each bracket. For instance, the
first bracket represented by 2 corresponds to stars with ages between 100 and 102 years.

Finally, in the case of accretion luminosity, as shown in figure 5.16, it is evident that the least accu-
rate predictions are observed in stars AB and M , with the worst errors occurring at an age of 106
years. Similarly, for stars GF and K, the most substantial errors for these classes are also present
at an age of 106 years. Additionally, the stars GF display a wide variance at lower ages.

An intriguing aspect of this analysis is the consistency in errors at the end of the accretion set.
Moreover, the worst errors in stars AB are consistent across all parameters in the no accretion
section.

5.2.4 HR Diagram Analysis LightGBM

As mentioned in the preceding section, the most significant errors occur within the star age range
of [105, 107]yr. Additionally, figures 5.9, 5.10, and 5.8 suggest the possibility of some problematic
simulations. Therefore, an analysis of the individual simulations was conducted using the benchmark
HR diagrams, displayed in figures 5.17, 5.18, 5.19, and 5.20.

50



Figure 5.17: Test simulation AB star, with final mass M = 5.9M⊙. The top panels display HR diagrams, with the
left-hand side representing the diagram obtained from MESA data and the right-hand side showing the one obtained
through LightGBM predictions. The bottom left-hand side presents the luminosity as a function of age, showing both
the MESA values and the predictions for comparison. Similarly, the bottom right-hand side displays the temperature
evolution of the star, with both MESA and predicted values overlaid for comparison.

As seen in figure 5.17, the HR diagrams reveal that the model faces challenges in making predictions
when the star reaches the main sequence. The lower right plot highlights the reason behind this error,
as the ML model fails to predict the drop in temperature once the star reaches the main sequence.
For Ls, the predictions in this range are relatively better, but they still struggle to accurately model
all the features present in the simulated data. In the accretion section, the ML model manages to
reproduce the overall shape of the simulated HR diagram. However, the resolution of the predictions
is poor, as it fails to accurately reproduce sections of the curve, which is evident in the temperature
range [103.8, 104.1]K. This is probably caused by a lack of training data but it is easily addressed
because the post-main sequence evolution is exactly the part that is accessible with classical stellar
evolution models.

51



Figure 5.18: Test simulation GF star, with final mass M = 1.6M⊙. The top panels display HR diagrams, with the
left-hand side representing the diagram obtained from MESA data and the right-hand side showing the one obtained
through LightGBM predictions. The bottom left-hand side presents the luminosity as a function of age, showing both
the MESA values and the predictions for comparison. Similarly, the bottom right-hand side displays the temperature
evolution of the star, with both MESA and predicted values overlaid for comparison.

For the GF star, illustrated in figure 5.20, we observe a similar behavior where the model encounters
challenges in accurate predictions once the star reaches the main sequence. However, the error in
this case occurs in the luminosity prediction, as evident in the lower left panel. Although the ML
model manages to provide a general overview of the HR diagram, the resolution remains poor.
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Figure 5.19: Test simulation K star, with final mass M = 0.6M⊙.The top panels display HR diagrams, with the
left-hand side representing the diagram obtained from MESA data and the right-hand side showing the one obtained
through LightGBM predictions. The bottom left-hand side presents the luminosity as a function of age, showing both
the MESA values and the predictions for comparison. Similarly, the bottom right-hand side displays the temperature
evolution of the star, with both MESA and predicted values overlaid for comparison.

Figure 5.19 displays the HR diagram for the K star. It is clear that the ML model can roughly predict
all features of the curve, yet the resolution remains poor. Specifically, in the accretion section, there
is a good agreement with the overall shape of the Teff and Ls curves. However, in the age range of
[104, 105]yr, fluctuations in both Teff and Ls occur, which the ML model was not able to predict.
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Figure 5.20: Test simulation of a star with final mass M = 0.358M⊙. The top panels display HR diagrams, with the
left-hand side representing the diagram obtained from MESA data and the right-hand side showing the one obtained
through LightGBM predictions. The bottom left-hand side presents the luminosity as a function of age, showing both
the MESA values and the predictions for comparison. Similarly, the bottom right-hand side displays the temperature
evolution of the star, with both MESA and predicted values overlaid for comparison.

Finally, for star class M in figure 5.20, the predictions are similar to the previous cases. We observe
that the predictions align with the overall curves of Teff and Ls. In this case, the predictions manage
to follow, to some extent, the increase in Teff and Ls observed at [104.7, 105] years.

Despite failing to capture some of the most interesting features in certain cases, overall, the ML
model results manage to predict the general shape of the curves. However, an important observation
is the lack of resolution present in the results of all four tests.

5.2.5 Hyper Parameters Importance LightGBM

As discussed in section 4.5.1, the hyperparameters for the LightGBM model include subsample,
num_leaves, learning rate, and max depth. To determine the significance of these hyperparame-
ters in making predictions, a Bayesian optimization method with Optuna was employed. The results
of this analysis are presented in figure 5.21.
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Figure 5.21: The importance of hyperparameters for temperature, star luminosity, radius, and accretion luminosity
LightGBM models. The top panel displays the parameter importance of accretion models, while the bottom panel
represents the parameter importance for no accretion models.

Figure 5.21 shows that for most parameters, the most crucial hyperparameter varied. However, the
num_leaves consistently emerged as the most important for Teff and R in the no accretion set, and
for Lacc in the accretion set. Additionally, the analysis shows that subsample has little importance
for most parameters, except for Ls in the accretion set, where it gains significance.

5.3 Neural Network
The following section presents the results from an implementation of a neural network, following the
methodology described in section 4.6. The obtained results were subsequently analyzed using the
same procedure as in section 5.2.

5.3.1 Models Selection Neural Network

One crucial finding from the previous analysis is that, while using the complete data set yields the
best results in some instances it is not the case for most scenarios. Moreover, even in cases where
the complete data set shows slight superiority, the difference is not substantial enough to justify
the necessity of using the complete data set. This aspect is particularly significant for the hyper
parameter tunning (HPT) and training of the NN. Given that the complete data set can be up to
24 times larger in certain cases, the training and HPT overhead becomes significantly high for the
minimal or negligible benefit it provides. Therefore, for the NN, only the reduced and balanced sets
were employed.
The results obtained from the optimization with Optuna are presented in the appendix B.2. Addi-
tionally, all models were evaluated using our error metrics MedALE and MedMaxALE on the test
set, as shown in appendix A.2. The best results of this analysis are displayed in tables 5.5, and 5.6
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Best Parameters NN Error Analysis Accretion Set.
Errors Teff Ls R Lacc

MedALE 0.0069 0.0736 0.0237 0.0289
MedMaxALE 0.077 0.555 0.160 0.199

Table 5.5: MedALE and MedMaxALE for NN accretion set, for all prediction parameters.

In all the cases in the accretion set the best NN models come from the balanced set, with the
exception of Lacc where the reduced mix set yields the best accuracy. Interestingly, the results of this
experiment exhibit a similar pattern to the ones conducted in section 5.2. Specifically, the model
achieving the best performance is the one designed for Teff predictions, followed by the model for R
predictions, then the model for Lacc predictions. Lastly, the model for Ls predictions appears to be
the least successful performer.

Best Parameters NN Error Analysis No Accretion Set.
Errors Teff Ls R
MedALE 0.0033 0.01073 0.0028
MedMaxALE 0.021 0.171 0.082

Table 5.6: MedALE and MedMaxALE for NN no accretion set, for all prediction parameters.

Within the group of models not involving accretion, no successful model was achieved when employing
the mixed set. The most accurate outcomes were consistently derived from the utilization of the no-
accretion set. An important fact in this result is that the MedALE of R is actually smaller than
for Teff . However, if we look at the MedMaxALE, the pattern of the results resembles the one
obtained in section 5.2.1.

5.3.2 Errors Distributions per Input Parameter Neural Network

Using the best NN models obtained by the analysis done in section 5.3.1, the analysis of the error
distribution per input parameter was done. Results of this analysis can be seen in figures 5.22,5.23,
5.24, and 5.25.
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Temperature Abolute Log Error Distributions by Inputs NN

Figure 5.22: Temperature absolute error distribution comparison between input parameters obtained using the NN
model. The top left-hand side panel illustrates the distribution of ALE. In the top right-hand side panel, the ALE
distribution per accretion rate is displayed, with the section below the dashed line representing the region where
M⊙yr

−1 = 0. The bottom left-hand side panel showcases the distribution of ALE per star age, and lastly, the bottom
right-hand side panel demonstrates the distribution of ALE per mass.

In the temperature ALE distribution, seen in figure 5.22, it is evident that the poorest accuracy
occurs in the non-accretion set, particularly in stars with a mass of 6M⊙ and towards the end of
the simulation, within the range of [106, 108]yr. This section of the distribution corresponds to the
no accretion set. In the accretion section, the area with the highest density of errors concentrates
within the age range of [104, 106]yr and in areas with a high accretion rate, approximately within
[10−8, 10−6]M⊙yr

−1.
Regarding the ALE distribution per mass, shown in the lower right-hand side plot of figure 5.22, there
are two distinct peaks that correspond to the accretion set. The peak with the poorest accuracy is
associated with low masses, around [0, 1]M⊙, while the second peak, with relatively better accuracy,
corresponds to masses around [3, 5]M⊙.
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Figure 5.23: Star luminosity absolute error distribution comparison between input parameters obtained using the
NN model. The top left-hand side panel illustrates the distribution of ALE. In the top right-hand side panel, the
ALE distribution per accretion rate is displayed, with the section below the dashed line representing the region where
M⊙yr

−1 = 0. The bottom left-hand side panel showcases the distribution of ALE per star age, and lastly, the bottom
right-hand side panel demonstrates the distribution of ALE per mass.

Analyzing the distribution of star luminosity errors in figure 5.23, it becomes evident that there is
a high concentration of predictions with poor accuracy, particularly at a high accretion rate, with
a distinct peak around 10−6M⊙yr

−1. Additionally, the age range with the worst errors is towards
the end of the accretion set, exhibiting a distinct high concentration of errors within the area of
[104, 106]yr. Interestingly, most of the errors with high values are observed in stars with low mass.
However, the familiar peak of errors at 6M⊙ can still be observed.
In the case of the no accretion section, the Ls predictions exhibit a minor concentration of errors
beyond ALE > 0.6.
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Figure 5.24: Radius absolute error distribution comparison between input parameters obtained using the NN model.
The top left-hand side panel illustrates the distribution of ALE. In the top right-hand side panel, the ALE distribution
per accretion rate is displayed, with the section below the dashed line representing the region where M⊙yr

−1 = 0.
The bottom left-hand side panel showcases the distribution of ALE per star age, and lastly, the bottom right-hand
side panel demonstrates the distribution of ALE per mass.

The Radius ALE distribution exhibits a similar pattern to the temperature, with the poorest ac-
curacy occurring in the no accretion set, particularly for stars with a mass of 6M⊙ and towards
the end of the simulation around 108yr. Moreover, significant errors are observed in stars with low
mass, falling within the range of [1, 2]M⊙. We can see that these errors occur towards the end of
the accretion section at ages between 105 and 106 years. These error peaks correspond with areas of
high accretion rate, in particular, the peak at 10−6M⊙yr

−1.
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Figure 5.25: Accretion luminosity absolute error distribution comparison between input parameters obtained using
the NN model. The top left-hand side panel illustrates the distribution of ALE. In the top right-hand side panel,
the ALE distribution per accretion rate is displayed, with the section below the dashed line representing the region
where M⊙yr

−1 = 0. The bottom left-hand side panel showcases the distribution of ALE per star age, and lastly, the
bottom right-hand side panel demonstrates the distribution of ALE per mass.

Finally, the accretion luminosity seen in figure 5.25 presents distributions of poor accuracy that are
highly unpredictable. It’s clear from the age per ALE plot on the lower left side that the poorest
accuracy is observed at the end of the star’s accretion phase, although a minor concentration of poor
accuracy is noticeable at the very start. Regarding the mass per ALE, the worst ALE is found in
stars exceeding 8M⊙, along with a minor concentration of high errors in low mass stars, corresponding
to the values observed in the lower ages. Furthermore, the accretion rate exhibits two distinct peaks,
one at 10−8M⊙yr

−1 with shows evidence of poor accuracy, and another at 10−5.9M⊙yr
−1. The

uniqueness of these findings could suggest that there are a few simulations where the NN model has
difficulty making precise predictions.
An in-depth analysis was done confirming that in fact there were six test simulations out of the 53
presenting these errors, the maximum errors of these precise simulations can be seen in appendix C.

As an overview of these results, we saw the worst errors happening in the no-accretion phase of the
star, with the particular peak in a star with mass 6M⊙ present in Teff , R, and Ls. In addition to this,
at first glance, the Lacc errors distribution shows signs of concern. However, upon closer examination
and a detailed analysis of the predictions, it becomes clear that overall, the NN model performance
was satisfactory.

5.3.3 Confidence Intervals Neural Network

An alternative approach for analyzing the results obtained by the NN is to calculate confidence
intervals, similar to the ones obtained in section 5.2.3. The results of this analysis are shown in
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figure 5.26.
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Figure 5.26: Confidence intervals for temperature, star radius luminosity, and accretion luminosity, were obtained
by utilizing the absolute log error in the NN predictions on the test set.

The results seen in figure 5.26 follow a pattern that aligns with the findings obtained in figure 5.12.
A way to obtain more detailed information about the NN model’s performance is to perform the
confidence intervals by age, and star class described in section 4.8.1. The results of these analyses
are shown in figures 5.27 5.28, and 5.29.
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Figure 5.27: The confidence intervals of temperature, grouped by star class and age brackets, are shown in the
figure. These intervals were derived using the absolute log error in the NN predictions on the test set. The y-axis
shows the age brackets, with the last number representing the upper limit of each bracket. For instance, the first
bracket represented by 2 corresponds to stars with ages between 100 and 102 years.

In figure 5.27, it is evident that the NN predictions for Teff are most inaccurate for AB stars,
particularly in the no accretion set, with errors reaching up to 0.06 at ages around 107yr. Similarly,
for the other classes, the weakest performance occurs at the end of the accretion phase within the
range of [105, 106]yr, which aligns with the findings previously observed in section 5.3.2. Interestingly,
the M class exhibits relatively low errors during the no accretion phase, while classes K, GF , and
AB show higher errors in this particular stage of stellar evolution.
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Figure 5.28: The confidence intervals of star luminosity, grouped by star class and age brackets, are shown in the
figure. These intervals were derived using the absolute log error in the NN predictions on the test set. The y-axis
shows the age brackets, with the last number representing the upper limit of each bracket. For instance, the first
bracket represented by 2 corresponds to stars with ages between 100 and 102 years.

Figure 5.28 illustrates that the least accurate predictions for Ls occur in AB and M stars. An
interesting aspect of these results is the consistent pattern observed across all star classes. Initially,
during the early stages of star evolution, errors are minimal and concentrated at the lower end of
the spectrum. However, as age progresses, errors start to increase at around 104yr years, reaching
their peak within the age range of [105, 106]yr. In other words, the MALE exhibits a bell-shaped
distribution skewed to the left for all the star classes.
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Figure 5.29: The confidence intervals of radius, grouped by star class and age brackets, are shown in the figure.
These intervals were derived using the absolute log error in the NN predictions on the test set. The y-axis shows
the age brackets, with the last number representing the upper limit of each bracket. For instance, the first bracket
represented by 2 corresponds to stars with ages between 100 and 102 years.

In the case of the Radius, seen in figure 5.29, the worst errors are in star classes M and AB, again
when the stars begin to reach the end of the accretion phase. In this case, we can see a spread of
the MALE distributions in the age range [0, 102]yr. This is especially true in the stars GF and K,
given that, in both cases the outliers spread out to their relative maximum MALE. In this case,
the no accretion section has relatively low errors, with the exception of the GF stars, in which the
spread of the distribution at age 107, reaches the maximum MALE in its class.
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Figure 5.30: The confidence intervals of accretion luminosity, grouped by star class and age brackets, are shown in
the figure. These intervals were derived using the absolute log error in the NN predictions on the test set. The y-axis
shows the age brackets, with the last number representing the upper limit of each bracket. For instance, the first
bracket represented by 2 corresponds to stars with ages between 100 and 102 years.

Finally, the Lacc results, shown in figure 5.30 are very consistent along all star classes and ages. An
expected outcome is the spread of the distributions at the beginning of the star evolution up to
102yr due to the results seen in figure 5.25. However, the accuracy achieved in the case of AB stars,
especially toward the end of the accretion phase differs significantly from the previous predictions in
this section.

In this section, we observed that the results generally align with the anticipated patterns, but they
also provided a comprehensive validation of the limitations of the NN models. Notably, during
the initial stages of star evolution ([0, 104]yr), all parameters exhibit relatively good predictive per-
formance across all stars. Moreover, the predictions during the no-accretion phase are generally
accurate, except for a few exceptions, particularly in the case of AB stars.

5.3.4 HR Diagram Analysis for the Neural Network

Arguably the most interesting analysis is the HR diagram predictions due to the importance of the
star evolution analysis. In addition to this obtaining good results in the combined predictions of Teff
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and Ls is one of the great challenges of this thesis. Following the procedure done in section 5.2.4
using the benchmark simulations the results of this analysis are presented in figures 5.31, 5.34, and
5.32.

Figure 5.31: Test simulation of a star with final mass M = 5.951M⊙. The top panels display HR diagrams, with the
left-hand side representing the diagram obtained from MESA data and the right-hand side showing the one obtained
through the NN predictions. The bottom left-hand side presents the luminosity as a function of age, showing both
the MESA values and the predictions for comparison. Similarly, the bottom right-hand side displays the temperature
evolution of the star, with both MESA and predicted values overlaid for comparison.

Examining the predictions for the AB star in figure 5.31, we observe that the accretion set successfully
tracks both the Teff and Ls curves until the conclusion of this phase. However, at the beginning
of the no accretion section, the predicted Teff values are entirely inaccurate. Additionally, the NN
model fails to capture the temperature decrease that occurs towards the end of the simulation at
108yr. Despite these challenges, the predictions still exhibit good resolution, showing a continuous
curve along the star’s evolution.

66



Figure 5.32: Test simulation of a star with final mass M = 1.165M⊙. The top panels display HR diagrams, with the
left-hand side representing the diagram obtained from MESA data and the right-hand side showing the one obtained
through the NN predictions. The bottom left-hand side presents the luminosity as a function of age, showing both
the MESA values and the predictions for comparison. Similarly, the bottom right-hand side displays the temperature
evolution of the star, with both MESA and predicted values overlaid for comparison.

For the GF star, as shown in figure 5.32, the Teff predictions in the age range of [103.8, 104.8]yr do
not accurately capture the fluctuations present in the simulated data. Additionally, in the predicted
HR diagram, we notice an area around [103.65, 103.75]K and [100, 101.3]L⊙, where the combination of
parameter errors creates a feature that is not present in the simulation.
During the no accretion phase, the predicted Teff follows the simulation curve to some extent.
However, the predicted Ls does not match the curve pattern at the beginning of this phase. Moreover,
the Ls predictions by the NN model only manage to reproduce a linear curve at the end of this
phase, failing to capture the detailed features of the simulated curve. Despite these discrepancies, it
is notable that the overall shapes and value ranges are roughly reproduced by the NN models, even
though the finer details of the curves are not accurately reproduced.
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Figure 5.33: Test simulation of a star with final mass M = 0.613M⊙. The top panels display HR diagrams, with the
left-hand side representing the diagram obtained from MESA data and the right-hand side showing the one obtained
through the NN predictions. The bottom left-hand side presents the luminosity as a function of age, showing both
the MESA values and the predictions for comparison. Similarly, the bottom right-hand side displays the temperature
evolution of the star, with both MESA and predicted values overlaid for comparison.

The predictions for the K star, as depicted in figure 5.33, generally capture the overall shape of the
Teff and Ls curves. However, they fail to faithfully reproduce the fluctuations observed in both Teff

and Ls after 104yr. Consequently, this discrepancy is reflected in the predicted HR diagram, where
the NN models struggle to replicate some of the most interesting features around [103.5, 36]K and
[10−0.5, 100.25]L⊙.
Furthermore, in the no accretion section of the predictions, both curves are somewhat reproduced
by the NN model. However, in the predicted HR diagram, this curve is composed of linear sections,
resulting in a failure to replicate the smoothness present in the actual curve.
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Figure 5.34: Test simulation of a star with final mass M = 0.358M⊙. The top panels display HR diagrams, with the
left-hand side representing the diagram obtained from MESA data and the right-hand side showing the one obtained
through the NN predictions. The bottom left-hand side presents the luminosity as a function of age, showing both
the MESA values and the predictions for comparison. Similarly, the bottom right-hand side displays the temperature
evolution of the star, with both MESA and predicted values overlaid for comparison.

Finally, the predictions in the star M seen in figure 5.34, manage to reproduce the overall star
evolution. However, we can see that in the Ls curve there is a continuous error at the age range
[104, 105]yr. In addition to this, in the Teff curve, we can see that the decrease in temperature seen
around 105yr is not reproduced by the NN model results. Furthermore in the same age range, the
rapid increase in Teff is not reproduced fully. In this case, the no accretion phase is a simple one,
therefore the model managed to reproduce the simulation results without a problem.
In general, this section demonstrates that the predicted HR diagrams provide a reasonable approxi-
mation of the overall evolution of the stars. The predictions show continuous curves that follow the
natural progression of stellar structure evolution.
An interesting observation is that, across all stars, the predictions struggle to reproduce areas with
significant fluctuations. This is particularly evident in the case of the decrease in Teff and Ls following
an accretion burst, which is not accurately reproduced in most cases.

5.3.5 Hyper Parameter Importance Neural Network

In the case of the NN the importance of the hyper parameters mentioned in section 4.6.1 was obtained
using optuna.visualization.plot_param_importances function [60]. Results can be seen in figure
5.35.
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Figure 5.35: The importance of hyperparameters for temperature, star luminosity, radius, and accretion luminosity
NN models. The top panel displays the parameter importance of accretion models, while the bottom panel represents
the parameter importance for no accretion models.

In figure 5.35, we can observe that there is no single parameter that is generally more important
for all the stellar structure parameters in the accretion set. However, the Learning rate generally
stands out as the best performer for most parameters, except for Lacc, where the First layer size
takes the lead with a hyper parameter importance (HPI) of 0.77. The Hidden layers parameter
comes in second place in importance for this set.
On the other hand, in the no accretion set, it is evident that the most critical parameter is the Batch
size, followed by the Hidden layers parameter as the second most influential. Interestingly, the
Hidden layers size appears to be the least important parameter for both sets.

5.3.6 Number of Parameters Analysis

Given the results seen in figure 5.35, exploring the increase in hidden layers and by default the
number of parameters results in interesting. Therefore an increase in the number of parameters as
explained in section 4.6.2 was performed iteratively on the best models in order to see the influence
that this might have in the results. results of this analysis are shown in figures 5.36, 5.37, 5.38, 5.39,
5.40, 5.41,and 5.42
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Figure 5.36: The errors of the temperature accretion set are shown as a function of the number of parameters. The top
panel illustrates MedALE plotted against the number of parameters, while the bottom panel displays MaxMedALE as
a function of the number of parameters. To capture the finer details that may have been lost due to plot dimensions,
a zoom-in was performed. Within this zoomed view, the red point represents the minimum error achieved in the
experiment.

Figure 5.36 shows that the optimal number of parameters for minimizing the MedALE is 0.13 ×
106, while the default number of parameters, 0.02× 106, works best for minimizing MedMaxALE.
Notably, the model’s performance decreases significantly when the number of parameters exceeds
1.3× 106.
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Figure 5.37: The errors of the temperature no accretion set are shown as a function of the number of parame-
ters. The top panel illustrates MedALE plotted against the number of parameters, while the bottom panel displays
MaxMedALE as a function of the number of parameters. To capture the finer details that may have been lost due to
plot dimensions, a zoom-in was performed. The red point represents the minimum error achieved in the experiment.
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Regarding Teff without accretion, the most effective model was the default one with 0.016 × 106

parameters. When testing new models, their accuracy in terms of maximum errors decreased signif-
icantly, being on average 7 times worse than the minimum error. As for MedALE, the errors start
to diverge at around 0.15× 106 number of parameters increasing significantly after this.
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Figure 5.38: The errors of the star luminosity accretion set are shown as a function of the number of parame-
ters. The top panel illustrates MedALE plotted against the number of parameters, while the bottom panel displays
MaxMedALE as a function of the number of parameters. To capture the finer details that may have been lost due
to plot dimensions, a zoom-in was performed. Within this zoomed view, the red point represents the minimum error
achieved in the experiment.

In figure 5.38, we observe the most favorable outcomes in predicting Ls within the accretion segment,
it is achieved by the default model with 0.07×106 parameters. Furthermore, it becomes evident that
beyond 1.3× 106 parameters, the model errors experience a significant increase.
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Figure 5.39: The errors of the star luminosity no accretion set are shown as a function of the number of parame-
ters. The top panel illustrates MedALE plotted against the number of parameters, while the bottom panel displays
MaxMedALE as a function of the number of parameters. To capture the finer details that may have been lost due
to plot dimensions, a zoom-in was performed. Within this zoomed view, the red point represents the minimum error
achieved in the experiment.

Likewise, when considering Ls no accretion section, the optimal model remains the original one,
featuring 0.016×106 parameters. In both error analyses, the outcomes begin to diverge after reaching
0.94×106 parameters. As a result, the MedALE experienced a substantial increase of up to 89 times,
while the MedMaxALE escalated up to 10 times compared to the minimum values.
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Figure 5.40: The errors of the radius accretion set are shown as a function of the number of parameters. The top panel
illustrates MedALE plotted against the number of parameters, while the bottom panel displays MaxMedALE as a
function of the number of parameters. To capture the finer details that may have been lost due to plot dimensions,
a zoom-in was performed. Within this zoomed view, the red point represents the minimum error achieved in the
experiment.

In the figure 5.40, it is possible to see the R accretion section MedALE minimum was found using
0.06× 106 parameters. Conversely, the MedMaxALE minimum was observed in the default model,
having 0.01 × 106 parameters. Upon examining both error metrics, it becomes evident that the
models start to overfit after reaching 0.2× 106 parameters.
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Figure 5.41: The errors of the radius no accretion set are shown as a function of the number of parameters. The top
panel illustrates MedALE plotted against the number of parameters, while the bottom panel displays MaxMedALE as
a function of the number of parameters. To capture the finer details that may have been lost due to plot dimensions,
a zoom-in was performed. Within this zoomed view, the red point represents the minimum error achieved in the
experiment.

According to our error metrics, the examination of the R no accretion section indicates that the
default model performed the best, being this the model with 0.02× 106 parameters. Similarly, both
metrics diverge from the minimum area after around 0.19×106 parameters. For the MedALE metric,
we observed an average increase of up to 91 times compared to the minimum errors in this metric.
Meanwhile, in the case of MedMaxALE, there was an increase of approximately 11 times compared
to its minimum value.
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Figure 5.42: The errors of the accretion luminosity are shown as a function of the number of parameters. The top
panel illustrates MedALE plotted against the number of parameters, while the bottom panel displays MaxMedALE
as a function of the number of parameters. To capture the finer details that may have been lost due to plot dimensions,
a zoom-in was performed. The red point represents the minimum error achieved in the experiment.

In Figure 5.42, it is evident that the original model excelled in the accretion luminosity test, achieving
the best performance with 0.08× 106 parameters, as indicated by both error metrics, MedALE and
MedMaxALE. Additionally, we can see that in the MedALE metric, the errors start to increase
drastically after reaching 1.2× 106 parameters, while in the MedMaxALE metric, a noticeable dif-
ference is observed right after the original model.

The results in this section indicate that, in general, the best predictions are obtained using the
original models. This could be attributed to the fact that increasing the number of parameters
requires tuning the other parameters as well. Moreover, it was observed that adding too many
parameters leads to overfitting, suggesting that along with increasing the number of parameters, the
other hyperparameters also need to be adjusted accordingly.

5.4 Temporal Neural Network
Implementing the procedure outlined in section 4.1.6, we meticulously prepared the data by including
state vectors that capture the star’s evolution over the last 10, 100, and 1000 years at the current
point. In addition to this, the Hidden layers parameter was increased to allow a space exploration
of up to 20 Number of Hidden Layers. The following results are the ones obtained using this data
set.

5.4.1 Models Selection Temporal Neural Network

Similar to section 5.3.1, the complete dataset was not utilized in this experiment. Additionally, the
mix set was excluded due to discrepancies in the data format caused by the absence of state vectors in
the no accretion set. Nevertheless, for the no accretion set, an exploration was conducted by varying
the Number of Hidden Layers with an additional constraint in the lower bound as explained in
section 5.3.1. The results obtained from the HPT are displayed in appendix B.3. From these results,

76



the best models were evaluated using the test data set and the MedALE and MedMAxALE metrics
with the results shown in appendix A.3.
The error calculations for the best models obtained using the temporal data are presented in table
5.7.

Best Parameters TNN Error Analysis.
Errors Teff Ls R Lacc

MedALE 0.0076 0.084 0.029 0.025
MedMaxALE 0.1 0.63 0.25 0.23

Table 5.7: MedALE and MedMaxALE for TNN all prediction parameters.

In this machine learning experiment, the most optimal models were achieved by employing the bal-
anced set for Teff , Ls, and R, whereas for Lacc, the best model was obtained using the reduced set.

The result of the no accretion test with the modified Number of Hidden Layers in the HPT opti-
mization are presented in table 5.8.

Best Parameters Large NN No Accretion Error Analysis.
Errors Teff Ls R
MedALE 0.0018 0.0083 0.004
MedMaxALE 0.033 0.35 0.11

Table 5.8: MedALE and MedMaxALE for Large NN No Accretion Error prediction parameters.

5.4.2 Errors Distributions per Input Parameter Temporal Neural Net-
work

Using the best models obtained in section 5.4.1 the analysis of the errors distributions per input
parameters was done see in figures 5.43, 5.44, 5.45, and 5.46.
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Temperature Abolute Log Error Distributions by Inputs TNN

Figure 5.43: Temperature absolute error distribution comparison between input parameters obtained using the TNN
model. The top left-hand side panel illustrates the distribution of ALE. In the top right-hand side panel, the ALE
distribution per accretion rate is displayed, with the section below the dashed line representing the region where
M⊙yr

−1 = 0. The bottom left-hand side panel showcases the distribution of ALE per star age, and lastly, the bottom
right-hand side panel demonstrates the distribution of ALE per mass.

In figure 5.43, the temperature predictions exhibit a clustering of errors distributed across various
ages, except in the area of [103.3, 104]yr, where the errors are notably smaller. Regarding the accretion
rate against ALE, a dense cluster of errors is noticeable at a high accretion rate of 10−6M⊙yr

−1.
As for the mass per ALE predictions, two peaks with elevated errors are observed, one at lower
masses in the range of [0, 1]M⊙ and another around 4M⊙. When examining the no accretion phase,
it becomes evident that the predictions were the least accurate in this region, particularly due to one
simulation with a mass of 6M⊙. Nevertheless, it is worth noting that the majority of these errors are
concentrated within a low ALE range.
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 Star Luminosity Abolute Log Error Distributions by Inputs TNN

Figure 5.44: Star luminosity absolute error distribution comparison between input parameters obtained using the
TNN model. The top left-hand side panel illustrates the distribution of ALE. In the top right-hand side panel, the
ALE distribution per accretion rate is displayed, with the section below the dashed line representing the region where
M⊙yr

−1 = 0. The bottom left-hand side panel showcases the distribution of ALE per star age, and lastly, the bottom
right-hand side panel demonstrates the distribution of ALE per mass.

In the star luminosity case, as seen in figure 5.44, we observe a similar behavior to the Teff in terms
of age, where the density of errors spans across all ages, except for the initial stages of evolution and
a sudden drop at the end of the temporal set. Regarding the accretion rate per ALE plot, a high
density of errors is noticeable within the range of [10−10, 10−6]M⊙yr

−1. As for the mass per ALE
plot, it is evident that the most significant errors occur in stars with lower masses, specifically within
the range of [0, 3]M⊙. In the no accretion set, we observe that the majority of errors are concentrated
in the lower range of values.
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Radius Abolute Log Error Distributions by Inputs TNN

Figure 5.45: Radius absolute error distribution comparison between input parameters obtained using the TNN
model. The top left-hand side panel illustrates the distribution of ALE. In the top right-hand side panel, the ALE
distribution per accretion rate is displayed, with the section below the dashed line representing the region where
M⊙yr

−1 = 0. The bottom left-hand side panel showcases the distribution of ALE per star age, and lastly, the bottom
right-hand side panel demonstrates the distribution of ALE per mass.

The distribution of radius errors seen in figure 5.45 reveals that the most significant errors occur
in regions with high accretion rates, approximately around 10−6M⊙yr

−1. Concerning the ALE per
age the highest density of errors in the accretion set emerges towards the end of this set, with the
least accurate predictions concentrated around the 106yr. As for the ALE per mass, the errors
demonstrate a decreasing trend as the mass increases, with the lowest errors observed in the mass
range of [7, 11]M⊙.
Similar to the temperature predictions, the absence of accretion leads to poor accuracy, particularly
for the star with a mass of M = 6M⊙ and towards the end of the simulation. Nonetheless, it is
important to note that most errors fall within the lower range of the ALE value.
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Accretion Luminosity Abolute Log Error Distributions by Inputs TNN

Figure 5.46: Accretion luminosity absolute error distribution comparison between input parameters obtained using
the TNN model. The top left-hand side panel illustrates the distribution of ALE. In the top right-hand side panel,
the ALE distribution per accretion rate is displayed, with the section below the dashed line representing the region
where M⊙yr

−1 = 0. The bottom left-hand side panel showcases the distribution of ALE per star age, and lastly, the
bottom right-hand side panel demonstrates the distribution of ALE per mass.

Finally, the plot shown in figure 5.46 illustrates the ALE distribution of the accretion luminosity.
It exhibits a prominent concentration of errors at high accretion rates, specifically at 10−6M⊙yr

−1.
Regarding the age ALE relation, the errors appear to be somewhat evenly distributed across all age
ranges, with only a few high errors in the 106yr region. As for the ALE mass analysis, it reveals
that the density with the least accuracy falls within the range of [0, 4]M⊙, with a prominent peak
observed at 6M⊙.

During this analysis, we observed a significant decrease in accretion luminosity errors compared to the
previous two experiments. As expected, regions with high accretion rates exhibited poor accuracy,
and the low-mass stars also showed the most substantial errors.

5.4.3 Confidence Intervals Temporal Neural Netowrk

Following the usual analysis, confidence intervals were calculated for the outcomes derived from the
TNN experiment seen in figure 5.47.
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Figure 5.47: Confidence intervals for temperature, star radius luminosity, and accretion luminosity, were obtained
by utilizing the absolute log error in the TNN predictions on the test set.

During the examination of the confidence intervals results, we observe the anticipated rise in MALE
for Ls and R when compared to Teff as seen in the previous experiments. An interesting finding
from this analysis is related to Lacc. Specifically, we can observe that MALE = 0.0249 ± 0.0005,
which represents an approximate decrease of 46% from the results LightGBM and NN results shown
in figures 5.12 and 5.26 respectively.
Continuing with the familiar analysis, confidence intervals were calculated for different mass classes
and age groups. An important consideration to bear in mind during this analysis is that the age
range was limited due to the predictions starting after 103.3yr. As a consequence, the age range for
this experiment was approximately reduced to [103, 8]yr. The results of these calculations can be
seen in figures 5.48, 5.49, 5.50, and 5.51.
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Figure 5.48: The confidence intervals of temperature, grouped by star class and age brackets, are shown in the figure.
These intervals were derived using the absolute log error in the TNN predictions on the test set. The y-axis shows
the age brackets, with the last number representing the upper limit of each bracket. For instance, the first bracket
represented by 4 corresponds to stars with ages between 103.3 and 104 years.

With regards to temperature figure 5.48 reveals that the star types K and AB display the least
accurate predictions, particularly towards the end of the accretion simulation. Additionally, GF
stars exhibit notably poor errors within the age range of [104, 105]yr. On the contrary, the M class
demonstrates the best performance with its MALE range being up to half that of the other star
types. Consistently, across all cases, stars within the age range of [103, 104]yr and at the end of the
main sequence, specifically after 106yr, exhibit the best performance.
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Figure 5.49: The confidence intervals of star luminosity, grouped by star class and age brackets, are shown in the
figure. These intervals were derived using the absolute log error in the TNN predictions on the test set. The y-axis
shows the age brackets, with the last number representing the upper limit of each bracket. For instance, the first
bracket represented by 4 corresponds to stars with ages between 103.3 and 104 years.

The confidence intervals for star luminosity shown in figure 5.49 indicate that the most significant
errors occur in stars of types AB and M . Specifically, stars of type AB exhibit poor accuracy toward
the end of the accretion phase. While stars of type M displayed poor accuracy within the ages ranging
from 104 to 105 years. Similar to the Teff analysis, the age range that yields the best performance
across all star classes is [103, 104] years for the accretion phase. However, the best performance is
observed in the no-accretion phase in all cases.
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Figure 5.50: The confidence intervals of radius, grouped by star class and age brackets, are shown in the figure.
These intervals were derived using the absolute log error in the TNN predictions on the test set. The y-axis shows
the age brackets, with the last number representing the upper limit of each bracket. For instance, the first bracket
represented by 4 corresponds to stars with ages between 103.3 and 104 years.

The confidence intervals concerning the predictions of the radius as seen in figure 5.50, show a similar
pattern to the Ls case, with regards to poor performance in stars of types AB during ages [105, 106]yr,
and stars of type M during ages [104, 105]yr. On the other hand, stars of class GF demonstrate the
best performance, with the maximum MALE at the end of the accretion phase being approximately
2.8 times smaller than the maximum errors observed in AB and GF stars. In this analysis, the best
accuracy does not occur at the beginning of the test set for all stars. As observed, stars of type K
display better errors at the end of the accretion phase than in the two previous age brackets. In the
absence of accretion, we consistently observe the best results, as in the Teff ans Ls cases.
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Figure 5.51: The confidence intervals of accretion luminosity, grouped by star class and age brackets, are shown
in the figure. These intervals were derived using the absolute log error in the TNN predictions on the test set. The
y-axis shows the age brackets, with the last number representing the upper limit of each bracket. For instance, the
first bracket represented by 4 corresponds to stars with ages between 103.3 and 104 years.

The final set of confidence intervals belong to the accretion luminosity predictions, displayed in figure
5.51. Similarly to the cases of Ls and R, we observe that stars of type M and AB exhibit the poorest
performance, while stars of type GF demonstrate the best performance. Once again, it is evident
that the most favorable results for all star classes are found within the age range of [103.3, 104]yr.

5.4.4 HR Diagram Analysis Temporal Neural Network

Up until now, the weaknesses, and strengths of the trained models in this experiment have been
evident. Nevertheless, to assess the applicability of this models, it is necessary to examine the HR
diagrams. The HR diagram analysis from the benchmark simulations is illustrated in figures 5.52,
5.53, 5.54, and 5.55.
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Figure 5.52: Test simulation of a star with final mass M = 5.951M⊙. The top panels display HR diagrams, with the
left-hand side representing the diagram obtained from MESA data and the right-hand side showing the one obtained
through the TNN predictions. The bottom left-hand side presents the luminosity as a function of age, showing both
the MESA values and the predictions for comparison. Similarly, the bottom right-hand side displays the temperature
evolution of the star, with both MESA and predicted values overlaid for comparison.

The predictions for the benchmark AB star are shown in figure 5.52, which generally follows the HR
simulation curve. However, in the luminosity as a function of age plot, we notice that although the
predictions roughly follow the simulation curve up to the 105yr mark, they deteriorate thereafter,
failing to capture some of the interesting features present in the simulation. There’s a similar be-
havior observed after 105.5yr in the temperature as a function of the age plot, where the simulation
demonstrates a sharp temperature increase with a linear shape, but the predictions exhibit an er-
ratic behavior. Due to the failure of both Ls and Teff predictions within a similar age range, the
HR diagram predictions fail to faithfully reproduce the features depicted by the simulation. In the
same manner, as the previous AB HR diagrams seen in figures 5.17 and 5.31, the no accretion model
demonstrates an inability to anticipate the temperature drop that occurs after the star depletes all
the hydrogen in its core, even if it works somewhat better than the previous models.
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Figure 5.53: Test simulation of a star with final mass M = 1.165M⊙. The top panels display HR diagrams, with the
left-hand side representing the diagram obtained from MESA data and the right-hand side showing the one obtained
through the TNN predictions. The bottom left-hand side presents the luminosity as a function of age, showing both
the MESA values and the predictions for comparison. Similarly, the bottom right-hand side displays the temperature
evolution of the star, with both MESA and predicted values overlaid for comparison.

The HR predictions for the star GF , displayed in figure 5.53, demonstrate a notably erratic pattern.
Although the precise cause behind this erratic behavior is not apparent, it seems that the errors
occurring towards the end of the temperature against age curve, within the range of 103.6K to 103.8K,
are correlated with errors in the luminosity at the same age. Specifically, there is a sharp increase
in luminosity within the range of [10−0.4, 101.5]L⊙, which leads to less satisfactory HR predictions.
Regarding the no accretion section, it becomes apparent that the error originates from the luminosity
predictions. At the beginning of this phase, the luminosity predictions are lower than they should
be, leading to a discrepancy when combined with the temperature values on the Hertzsprung-Russell
diagram.
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Figure 5.54: Test simulation of a star with final mass M = 0.613M⊙. The top panels display HR diagrams, with the
left-hand side representing the diagram obtained from MESA data and the right-hand side showing the one obtained
through the TNN predictions. The bottom left-hand side presents the luminosity as a function of age, showing both
the MESA values and the predictions for comparison. Similarly, the bottom right-hand side displays the temperature
evolution of the star, with both MESA and predicted values overlaid for comparison.

Regarding the predictions of the benchmark K star, as seen in figure 5.55, there is a noticeable
widening of the HR curve. This issue becomes evident when examining the individual temperature
and luminosity curves, as the combination of errors leads to a loss of resolution, resulting in the
broadening of the sharp lines present in the simulation HR diagram. Moreover, discrepancies are
observed in both curves, a clear example of this happens between 104.25yr and 104.5yr, where the
predictions fail to accurately capture the decrease in temperature and luminosity after present after
a sharp increase of these. In this star, the predictions during the accretion phase effectively follow
the HR simulation curve.
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Figure 5.55: Test simulation of a star with final mass M = 0.358M⊙. The top panels display HR diagrams, with the
left-hand side representing the diagram obtained from MESA data and the right-hand side showing the one obtained
through the TNN predictions. The bottom left-hand side presents the luminosity as a function of age, showing both
the MESA values and the predictions for comparison. Similarly, the bottom right-hand side displays the temperature
evolution of the star, with both MESA and predicted values overlaid for comparison.

In figure 5.55, the predictions for the M star exhibit highly inaccurate luminosity estimations, par-
ticularly within the age range of [103.7, 104.5]yr. In this range, the predicted luminosity is shifted
downward and displays complex patterns that are not present in the simulation. Moreover, the HR
diagram figure clearly illustrates the issue of combined errors. For instance, if we focus on the region
with Teff ≈ 103.55K and Ls ≈ 100.25L⊙, right after 105yr, we can observe a sharp and wide increase
in Teff and Ls. Although not immediately apparent, it is possible to deduce that an erroneous
prediction in this specific region for both parameters can lead to the pronounced widening seen in
the predictions HR diagram. The predictions for the later evolution of this star effectively follow
the simulation curve, exhibiting a few exceptions that are particularly evident in the temperature
against age plot, where the curve displays some erratic patterns at around 106yr that are not present
in the simulation.
In addition to this, a notable aspect observed in these results is the presence of a discontinuity on
both the temperature and luminosity curves. This discontinuity arises from the decrease in accretion
mass during this particular stage of the star.

5.4.5 Hyper Parameter Importance Temporal Neural Network

The final aspect of this experiment involves evaluating the importance of parameters, as described
in section 4.8.3, and the results are depicted in figure 5.56.
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Figure 5.56: The importance of hyperparameters for temperature, star luminosity, radius, and accretion luminosity
TNN models. The top panel displays the parameter importance of accretion models, while the bottom panel represents
the parameter importance for no accretion models.

Figure 5.56 indicates that the most critical factors are the hidden layers and their size. Moreover, the
batch size, specifically concerning the radius and temperature, plays a crucial role in the no-accretion
models. It is worth noting that the learning rate holds relatively low importance across all cases,
except for the accretion luminosity prediction, where it becomes the second most important factor.
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Chapter 6

Models Comparison and Discussion

The models were compared using the error metrics MedALE and MaxMedALE, along with an
analysis of the HR diagram. Additionally, the DM97 model was included in the comparison to assess
how well the obtained models matched an existing model, which was a primary goal of the thesis. It’s
worth noting that the tables used in the DM97 model do not cover all possible mass and age ranges
present in the test data. Consequently, approximately 9.8% of the data points were excluded for this
model. However, the error metrics could still be applied to the DM97 model for the existing data
points. Similarly, the HR diagrams, though not complete, provided insights into how our models
compared to the DM97 model.

6.1 Machine Learning Models Comparison
To choose the best model from those obtained in the experiment, a comparison was done using the
familiar error metrics, namely MedALE and MaxMedALE. Additionally, the DM97 model was
compared with the models obtained in this project, where star luminosity and temperature were
interpolated. It is worth noting that while one could argue that R and Lacc can be obtained for
the DM97 model using equations 2.1 and 2.12 respectively, we decided to compare the predictive
capabilities of the statistical models for the specific desired parameter. Hence, the calculations
were not performed, and the comparison was made using the parameters obtained directly from the
models. The results of this analysis can be seen in figures 6.1, and 6.2 for the accretion set and no
accretion set respectively.
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Figure 6.1: The comparison of the accretion models for temperature, star luminosity, radius, and accretion luminosity
is presented in the figure. The top panel displays the median absolute log error, while the bottom panel shows the
maximum median absolute log error.

Figure 6.1 shows the comparative results of various models in the accretion set. Overall, the NN
experiment produced the best model, particularly in temperature prediction, where it outperformed
DM97 by approximately 11 times in the MedALE metric and about 2 times in the MaxMedALE
metric. Regarding the radius and star luminosity, the improvements achieved by the NN model
compared to the other tests were not as remarkable, though still better in the MedALE metric.
However, in the MaxMedALE metric, there is a slight advantage for the LightGBM model over
the NN model, but the NN model is generally considered superior, as the MedALE indicates that
the model will produce better predictions overall. When it comes to accretion luminosity, the TNN
model, as already demonstrated in section 5.4, performed the best. While the MaxMedALE metric
shows slightly better results for the NN model in this specific case, this difference is not significant
enough to open a discussion about which model is the best in general.
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Figure 6.2: The comparison of the no accretion models for temperature, star luminosity, radius, and accretion
luminosity is presented in the figure. The top panel displays the median absolute log error, while the bottom panel
shows the maximum median absolute log error.

In the comparison of the no-accretion models, as seen in figure 6.2, the top-performing models
for temperature and star luminosity are those obtained in the TNN experiment according to the
MEdALE metric. When comparing these results with the DM97 model, we observe an improvement
of approximately 97% and 94%, respectively. However, for the MaxMedALE metric, the NN model
performs the best for these two parameters. The difference in temperature prediction between the NN
and TNN models is not significant, while for star luminosity, the NN model is approximately twice
as good. If we take into consideration the results from the MedALE metric, where the difference
between the NN and TNN models is only 0.003, it becomes apparent that the NN model stands out
as the better choice for the star luminosity. As for the radius prediction, both the MedALE and
MaxMedALE metrics indicate that the NN model is the superior one.

6.2 HR Diagram Comparison
As observed in the previous sections, judging the models only on error metrics is insufficient to
fully evaluate the models performance. The combination of errors can sometimes lead to erratic
behavior in the context of the HR diagram. In addition to this the resolution of the HR diagram is
one of the factors that the errors metric fail to quantify. Therefore, in this section, we present the
HR diagrams of the benchmark simulations obtained from all the models discussed in this thesis,
including the DM97 model. As mentioned before the DM97 model does not include the entire test
dataset, making it challenging to assess its true performance. Nevertheless, it remains an interesting
aspect for analysis. The results of this HR diagram comparison are depicted in figures 6.3, 6.4, 6.5,
and 6.6.
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Figure 6.3: The HR diagrams of the AB benchmark star are displayed with an overlay of MESA values and model
predictions. The top left panel corresponds to the HR diagram obtained using LightGBM predictions. The top right-
hand side panel displays the HR diagram from the NN model predictions. Moving to the bottom left-hand side panel,
it shows the HR diagram from the TNN model predictions. Finally, the bottom right-hand side panel presents the
HR diagram from the DM97 inference.

Figure 6.3 shows the HR diagram comparison for the AB simulation. It is evident that the predictions
from the NN experiment in the accretion section exhibit greater resolution than the other models,
furthermore, it is the more consistent with regards to the simulation. However, all predictions in
the no accretion section fail to provide accurate results. As for the DM97 model, it only replicates a
small section of the HR curve, making it hard to draw any conclusive remarks.
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Figure 6.4: The HR diagrams of the GF benchmark star are displayed with an overlay of MESA values and model
predictions. The top left panel corresponds to the HR diagram obtained using LightGBM predictions. The top right-
hand side panel displays the HR diagram from the NN model predictions. Moving to the bottom left-hand side panel,
it shows the HR diagram from the TNN model predictions. Finally, the bottom right-hand side panel presents the
HR diagram from the DM97 inference.

For the GF star, as shown in figure 6.4, the NN accretion predictions once again exhibit a higher level
of resolution compared to other ML models. While it doesn’t precisely capture the temperature and
luminosity behavior, it does indicate the presence of fluctuations caused by accretion. The LightGBM
model, despite producing results with low resolution, manages to predict the overall structure better
than all other models. On the contrary, the DM97 model reproduces a smooth curve with no clear
signs of fluctuations due to accretion, which can be misleading for this specific star. Such behavior
is expected from this type of model, as it doesn’t account for the accretion rate in its predictions.
Regarding the no accretion section, the best ML model is the one obtained in the TNN experiment,
as it provides better resolution than the LightGBM model and produces a smooth curve unlike the
NN model. As for the DM97 no accretion set inference, it does reproduce a smooth curve with good
resolution but with the wrong temperature, causing it to be shifted to the left in the diagram.
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Figure 6.5: The HR diagrams of the M benchmark star are displayed with an overlay of MESA values and model
predictions. The top left panel corresponds to the HR diagram obtained using LightGBM predictions. The top right-
hand side panel displays the HR diagram from the NN model predictions. Moving to the bottom left-hand side panel,
it shows the HR diagram from the TNN model predictions. Finally, the bottom right-hand side panel presents the
HR diagram from the DM97 inference.

Figure 6.5 shows the HR curves of the M star. In this figure, it becomes evident that the LightGBM
model reproduces the star’s evolution more accurately than other ML models. However, the trade-off
is the lack of resolution in this model, which is notably high. In terms of resolution, the NN model
stands out as the best among all ML models. Nevertheless, it exhibits a shift upwards at the end of
the diagram, resulting from a luminosity shift. For the no accretion set, the NN model reproduces
the most accurate curve compared to all other models. As with previous stars, the DM97 model once
again generates a featureless curve, ignoring the fluctuations in luminosity and temperature.
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Figure 6.6: The HR diagrams of the K benchmark star are displayed with an overlay of MESA values and model
predictions. The top left panel corresponds to the HR diagram obtained using LightGBM predictions. The top right-
hand side panel displays the HR diagram from the NN model predictions. Moving to the bottom left-hand side panel,
it shows the HR diagram from the TNN model predictions. Finally, the bottom right-hand side panel presents the
HR diagram from the DM97 inference.

The final star is the K benchmark star depicted in figure 6.6, where we can see that the best model
predictions are the ones obtained with the NN model as it reproduces the overall shape and has the
best resolution. Regarding the no accretion section, the TNN model performs the best in accurately
reproducing the curve. As for the DM97 model, while it roughly follows the shape of the HR curve, the
results are shifted towards lower temperatures, and the characteristic absence of intricate structures
is quite noticeable.

6.3 Data
In sections 5.2.2, 5.3.2, and 5.4.2, we observe a consistent occurrence of high errors in a specific
simulation namely the AB benchmark simulation. This outcome was anticipated due to the findings
depicted in figure 5.4. The figure illustrates that only 15% of the simulations fall into this particular
category. Furthermore, the AB star is significantly advanced beyond the hydrogen-burning phase,
and no other star in the data set has reached this stage of evolution. This result is expected, as su-
pervised machine learning models learn from examples, and since there are no comparable examples
in the data set, the model faces challenges in handling such cases.
Another crucial point to consider is that the performance of the balanced dataset consistently out-
performed both the complete set and the reduced set, despite being consistently smaller in size. This
serves as confirmation that the widely accepted practice of balancing data sets in machine learning
is effective.

6.4 Confidence Intervals
Regarding the confidence intervals depicted in figures 5.12, 5.26, and 5.47, it is intriguing to observe
that the outcomes for Teff , Ls, and R exhibit a consistent pattern described by equation 2.1. Where
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the error propagation formula given by equation 6.1 approximately aligns with the obtained results.(
δL

L

)2

= 2

(
δR

R

)2

+ 4

(
δT

T

)2

(6.1)

This result is interesting since the predictions for each of these parameters are made independently.
Despite this independence, it appears that the relationship described by equation 2.1 is maintained.

With respect to the confidence intervals based on age and class, the temperature MALE distributions
in figures 5.13, 5.27, and 5.48 exhibit a consistent pattern across the models. Notably, the predictions
are least accurate for ages between 105 and 106 years in the accretion set, with classes AB and GF
consistently scoring the poorest results. This could potentially be attributed to insufficient data for
these types of stars, as depicted in figure 5.4. Additionally, it is worth noting that the M stars
perform best across all three models, confirming the idea that the amount of data plays a crucial
role in accuracy. Supporting the findings in section 6.1 the no accretion set, shows a remarkable
improvement observed in the TNN experiment compared to the previous two models.
Analyzing the figures 5.14, 5.28, and 5.49, we observe the accuracy of star luminosity concerning
age and class. A consistent pattern emerges, indicating a decline in model accuracy within the age
range of [105, 106] years across all three experiments. Notably, all star classes display comparable
errors, except in the NN case where the GF and K stars exhibit superior performance. This result
contradicts the hypothesis that the quantity of data was the cause of the significant errors observed.
In the predictions of radius based on class and age, as seen in figures 5.15, 5.29, and 5.50, we
consistently observe poor accuracy within the age range of [105, 106] years. However, in the case of
LightGBM and NN experiments, we notice a higher variance in the first few hundred years of the
stars. In the accretion section, the results demonstrate remarkable consistency across all experiments,
revealing the most substantial errors in the AB stars and comparatively lower errors in the K stars.
This finding challenges the hypothesis that the increase in errors is primarily due to a lack of data.
Notably, these two classes have very similar percentages of data, specifically around 15% and 16% of
the simulations, respectively.
Lastly, the analysis of accretion luminosity is presented in figures 5.16, 5.30, and 5.51. These figures
reveal inconsistent results across all models, with the NN predictions displaying the highest level of
inconsistency between the models, but relatively higher consistency within its own predictions per
class mass. In terms of the LightGBM model and the NN, the GF class exhibits the best accuracy,
followed by the K class, and lastly, the AB and M classes.

6.5 Hyper Parameter Importance
As the LightGBM Model and the neural network ones differ from each other it is not possible to
directly compare them. However, the NN and TNN models can be compared, as a significant change
was made in the architecture, specifically an increase in the Number of Hidden Layers. Although
the results in section 5.3.6 did not show any significant improvements by increasing the Number
of Hidden Layers, the optimization algorithm’s range for the Number of Hidden Layers was ex-
panded to allow broader exploration. By doing this, the no accretion set in the TNN experiment
improved its performance in terms of the error metric and the smoothness of the curve, as discussed
in sections 6.1 and 6.2. Moreover, it is interesting to note that the importance of, both Number of
Hidden Layers and Hidden Layer Size, in the TNN experiment, increased compared to the other
factors. An intriguing aspect to note in the analysis of figure 5.35 is the significant inconsistency in
results between the accretion and no accretion sections. However, in figures 5.56, we can observe a
better agreement between these two sections. This suggests that increasing the number of parame-
ters in the models, in addition to increasing accuracy, strengthens the consistency between parameter
importance.
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Chapter 7

Integration with Star Formation Models

The obtained models were published in the https://github.com/almazagit1002/Stellar-Param
eters-RMCE-ML.git GitHub repository, as unformatted sequential files. In addition to this, an im-
plementation of the NN predictions was published in Python and Fortran. Moreover, in the attempt
to make this work available for any implementation, a pseudo code along with a brief description of its
functionality is outlined in the section 7.1. To evaluate the functionality, one can use a reference input
vector [1866331.3016338805, 5.95185857, 5.196092096677678e−08], representing age, mass, and accre-
tion rate. The resulting output would be [0.2260622624173494, 4.076734103841037, 4.287999266204293, 0.38759349],
which corresponds to the logarithmic values of radius, stellar luminosity, temperature, and accretion
luminosity, respectively.

7.1 Pseudo Code
In order to implement the NN inference, the code takes an array (input_vector) with the fa-
miliar input parameters [age,M ,Ṁ ], and units [yr,M⊙,M⊙yr

−1]. The first step is to transform
the input_vector into the necessary format for the neural network. In order to achieve this the
INPUT_MANIPULATION function is used.
INPUT_MANIPULATION compute the logarithms of the star age, and the accretion luminosity when
necessary, and scaling the input_vector using the MIN_MAX_SCALER function described in equation
4.1.

FUNCTION INPUT_MANIPULATION(input_vector:array)-> input_vector:array,
acc_type:string, pred_params:array, len_pred_params:int

input_vector[0] <- log10(input_vector[0])
acc_type <- ’Acc’
IF input_vector[2] < 1e-40 THEN

input_vector <- input_vector[:2]
acc_type <- ’N_acc’
pred_params <- [’Radius’, ’Lum’, ’T_eff’]
len_pred_params <- length(pred_params)

ELSE
input_vector[2] <- log10(input_vector[2])
PRED_PARAMS <- [’Radius’, ’Lum’, ’T_eff’, ’Acc_Lum’]
len_pred_params <- length(pred_params)

END IF
input_vector <- MIN_MAX_SCALER(input_vector, acc_type)
RETURN input_vector, acc_type, pred_params, len_pred_params

100

https://github.com/almazagit1002/Stellar-Parameters-RMCE-ML.git
https://github.com/almazagit1002/Stellar-Parameters-RMCE-ML.git


FUNCTION MIN_MAX_SCALER(input_vector:array, acc_type:string)
-> scaled_vec:array

mins <- array([-4.1981, 0.01, -99])
maxs <- array([8.0, 10.567092, -3.7644])
IF acc_type == ’N_acc’ THEN

mins <- mins[:2]
maxs <- maxs[:2]

END IF
scaled_vec <- (input_vector - mins) / (maxs - mins)
RETURN scaled_vec

Once the input_vector values have been transformed, is possible to make the predictions using
PREDICT_STELLAR_PROPERTIES. This function takes the transformed input_vector, and iterates
over pred_params, in order to read the necessary NN weights, bias, and architecture, using the
function NEURAL_NETWORK_. At this stage, the FORWARD_PASS described in equation 3.4, takes the
NN parameters and the transformed input_vector, in order to return the predicted output. Finally,
the INVERSE_MIN_MAX_SCALING is applied when necessary.

FUNCTION PREDICT_STELLAR_PROPERTIES(input_vector:array, acc_type:string,
pred_params:array, len_pred_params:int) -> predictions:array

predictions <- array of zeros with length len_pred_params
FOR i IN range(len_pred_params):

layers, weights, bias <-NEURAL_NETWORK_(pred_params[i], acc_type)
pred <- FORWARD_PASS(input_vector, layers, weights, bias)
predictions[i] <- pred

IF len_pred_params > 3 THEN
predictions[3] <-
INVERSE_MIN_MAX_SCALING(predictions[3])

END IF
RETURN predictions

FUNCTION NEURAL_NETWORK_(pred_param:string, acc_type:string) -> layers:int,
weights:array, bias:array

file <- read(f’path_to_records/{pred_param}_{acc_type}_records.unf’)
layers <- read_ints(int32)
Shapes <- read_ints(int32).reshape(layers, 2)
weights <- create empty array with size layers
bias <- create empty array with size layers
FOR i IN range(layers):

weights[i] = read_reals(float).reshape((Shapes[i][0], Shapes[i][1]))
FOR i IN range(layers):

bias[i] =read_reals(float)
file.close()
RETURN layers, weights, bias

FUNCTION RELU(x:array) -> array
RETURN max(0, x)

FUNCTION FORWARD_PASS(input_vector:array, layers:int, weights:array,
bias:array) -> output:float
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FOR i IN range(layers-1):
Layer_pass <- RELU(matrix_multiplication(input_vector,

weights[i])+bias[i])
input_vector <- Layer_pass

output <- matrix_multiplication(input_vector,weights[-1]) + bias[-1]
RETURN output

FUNCTION INVERSE_MIN_MAX_SCALING(scaled_val:float)
-> inverse_scaled:float

min_value <- -99.0
max_value <- 3.170073
inverse_scaled <- scaled_val * (max_value - min_value) + min_value
RETURN inverse_scaled

The mentioned code can be run in any programming language, as it doesn’t require any external
libraries. A possible section of the code where it is necessary to be particularly careful is the matrix
multiplication in the FORWARD_PASS function. In order to be able to perform the matrix multiplication
correctly, one needs to be sure that the weights and bias have the right shape when they are read
from the .unf files.
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Chapter 8

Future Work

So far, we have explored the usefulness of using machine learning techniques to predict stellar pa-
rameters within a realistic cloud environment. These predictions have provided valuable insights into
the star’s evolution, allowing for seamless integration with existing software to gain a comprehensive
understanding of the stellar structure. Nevertheless, it is essential to recognize that the current pre-
dictions are not flawless, and there are several aspects, ranging from the training data to the model
architecture, that offer opportunities for improvement. In this section, we present some suggestions
aimed at enhancing the accuracy of the models and expanding their capability to effectively predict
a broader range of star types.

8.1 Machine Learning Architectures
Although our attempt to introduce temporal structure into our data, in the TNN model, did not
show any significant improvement compared to the NN or LightGBM models, there is evidence sug-
gesting that including such information could be beneficial. A clear example of this can be observed
in the luminosity as a function of age plot for the GF star, shown in figures 5.18, 5.32, and 5.53. At
the boundary between the accretion and no accretion sections in these plots, there is a noticeable
discontinuity, which indicates that some prior knowledge of the stellar parameters could be valuable
in this scenario. Hence, investigating ML architectures such as transformers might offer a solution
to this issue.
Transformers, which incorporate an attention mechanism, were first introduced in 2017 (Vaswani
et al., 2017) [61] and have since proven highly effective, forming the foundation for large language
models like GPT-3. The attention mechanism works by allowing the model to focus on different
parts of the input sequence during processing. For each parameter in a state vector, the model
calculates its importance or relevance with respect to all other parameters in the state vector. This
attention mechanism enables the model to efficiently capture long-range dependencies and relevant
relationships within the input data, making it effective in understanding sequential information. Such
an attention mechanism could be beneficial in order to predict the complicated fluctuations in the
parameters given by stellar evolution.
During this project, another option that received limited exploration involved creating a two-neural
network system. In this approach, the first neural network is a simpler system, similar to the ones
investigated in this thesis, while the second neural network takes predictions from the first network
alongside the regular parameters to enhance the predictions. In this manner, the second NN in the
system has an initial starting point to work with. However, it is crucial to note that such an ar-
chitecture could potentially lead to more significant errors, as any inaccuracies in the first NN layer
might propagate and worsen in the subsequent stages, potentially spiraling out of control.

A more straightforward alternative involves investigating and improving the state vectors provided
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to the TNN. As discussed in section 4.1.6, these state vectors are currently composed of data from
around 10, 100, and 1000 years prior to the target point. In a more comprehensive study, additional
temporal information could be considered, either within the same range or by extending the time
window further.

There exists a disparity between the error metrics employed for model selection and the loss func-
tion integrated into the ML architectures. The primary accuracy source for model selection is the
MedALE, while the ML algorithms loss function is the MALE. Referencing appendix B, it is ap-
parent that the ML validation scores do not always align with the inference accuracy in the test
set found in appendix A. Furthermore, the utilization of distinct metrics introduces complexity to
maintaining a coherent methodology. Aligning the error metrics is then the most effective approach
moving forward.

Finally, a simple improvement to the ML architecture could involve the incorporation of a dropout
layer. This dropout layer randomly deactivates a specified proportion of neurons in the preceding
layer during training. Consequently, for each training example, a distinct set of neurons is dropped
out, introducing randomness into the network’s computations. The primary benefit of dropout is its
ability to mitigate overfitting, where the model becomes excessively specialized to the training data,
leading to poor performance on new, unseen data [62].

8.2 Data
In this thesis, the ML models were trained using data from stars up to approximately 10M⊙. To
broaden the predictive range and include more massive stars, it becomes crucial to retrain new mod-
els with stars having masses M > 10⊙. As our current data set is constrained in the high mass range,
and it lacks any O stars.
Additionally, it would be beneficial to train machine learning models using data from each category
of stars with an equal percentage representation. In section 6, we have discussed the hypothesis that
more data is required for certain star classes. While there is not enough evidence to fully support
this hypothesis, there is also no evidence to refute it. Furthermore, in this thesis, star classes B, A,
F , and G were grouped into AB and GF classes to simplify the analysis. However, an ideal train-
ing data set should consist of approximately equal amounts of star simulations across all categories.
This balanced representation might enhance the model’s performance and accuracy in predicting star
properties across the entire stellar mass spectrum.

We have employed an effective ML technique by balancing the data set. However, there are other
widely used techniques for imbalanced data sets that involve weighted loss functions. With this
approach, higher weights are assigned to the minority class, while lower weights are assigned to the
majority class during the training process. As a consequence, the model focuses more on the minority
class, aiming to minimize errors in those instances [63]. Adopting this approach in training a ML
model has the potential to improve generalization and, consequently, the overall accuracy.
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Chapter 9

Conclusions

In this thesis, we have explored the possibility of employing machine learning techniques to predict
stellar parameters such as temperature, stellar luminosity, radius, and accretion luminosity based on
a given mass, age, and accretion rate within a realistic molecular cloud environment. We used data
obtained from RAMSES and MESA, aiming to modernize outdated methods that only consider mass
and age, like the DM97. Our research involved comparing the results of various machine learning
models developed in this study with each other and with the DM97 model. All the models created
during this research are publicly available on GitHub, along with an implementation in Python and
Fortran that can be easily integrated into stellar evolution software, such as RAMSES. Additionally,
we provided a pseudocode along with a description of its functionality for easy implementation in
any programming language.

Furthermore, we developed a methodology for comparing different machine learning models. The
study revealed that accurately predicting stellar evolution with intense accretion rates is indeed chal-
lenging. Consequently, we provided insights for improving the accuracy of ML models, suggesting
various options, ranging from data preparation to machine learning architecture. We find that the
Neural Network model performed the best according to the error metrics. The temporal neural
network showed some potential but the predictions had a large degree of fuzzyness due to the error
combination between temperature and stellar luminosity. In terms of star types the most accurate
results were found for low stellar masses, where also most training data is available. We speculate,
that if significantly larger data, within particular higher mass stars, could be created, the resulting
networks based on such data may perform better.

In conclusion, machine learning methods prove to be powerful tools for inferring stellar structure
parameters. The results surpass those obtained from the DM97 model, especially in detecting com-
plicated fluctuations caused by the accretion rate. However, while the results are promising, they
are not flawless, and further work is needed to create a model that can better align with MESA’s
results. Despite the fact that our predictions did not precisely capture the complex fluctuations in
temperature and luminosity seen in the HR diagrams, they still provide valuable insights into star
evolution, revealing areas of interest. These findings serve as good indicators of important regions
to explore further. Finally, the integration of these methods into existing codes like RAMSES was
achieved, resulting in a more robust and complete system.
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Appendix A

Appendix Test Results

A.1 LightGBM Models Results

A.1.1 Accretion

Error Analysis LightGBM Temperature Accretion Set
Data type MedALE MedMaxALE
Balanced 0.009 0.10
Reduced 0.017 0.13
Complete 0.010 0.09

Table A.1: MedALE and MedMaxALE for temperature predictions using the balanced and reduced data set with
the LightGBM model.

Error Analysis LightGBM Temperature Mix Set
Data type MedALE MedMaxALE
Balanced 0.009 0.085
Reduced 0.018 0.14
Complete 0.010 0.1

Table A.2: MedALE and MedMaxALE for temperature predictions using the balanced and reduced data set with
the LightGBM model.

Error Analysis LightGBM Star Luminosity Accretion Set
Data type MedALE MedMaxALE
Balanced 0.098 0.59
Reduced 0.109 0.54
Complete 0.100 0.60

Table A.3: MedALE and MedMaxALE for star luminosity predictions using the balanced and reduced data set
with the LightGBM model.
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Error Analysis LightGBM Star Luminosity Mix Set
Data type MedALE MedMaxALE
Balanced 0.094 0.67
Reduced 0.112 0.63
Complete 0.092 0.63

Table A.4: MedALE and MedMaxALE for star luminosity predictions using the balanced and reduced data set
with the LightGBM model.

Error Analysis LightGBM Radius Accretion Set
Data type MedALE MedMaxALE
Balanced 0.028 0.2
Reduced 0.045 0.18
Complete 0.028 0.16

Table A.5: MedALE and MedMaxALE for radius predictions using the balanced and reduced data set with the
LightGBM model.

Error Analysis LightGBM Radius Mix Set
Data type MedALE MedMaxALE
Balanced 0.033 0.24
Reduced 0.036 0.22
Complete 0.030 0.23

Table A.6: MedALE and MedMaxALE for radius predictions using the balanced and reduced data set with the
LightGBM model.

Error Analysis LightGBM Accretion Luminosity
Data type MedALE MedMaxALE
Balanced 0.033 0.42
Reduced 0.052 1.72
Complete 0.031 1.50

Table A.7: MedALE and MedMaxALE for accretion luminosity predictions using the balanced and reduced data
set with the LightGBM model.

Error Analysis LightGBM Accretion Luminosity Mix Set
Data type MedALE MedMaxALE
Balanced 0.031 0.40
Reduced 0.048 2.24
Complete 0.031 1.53

Table A.8: MedALE and MedMaxALE for accretion luminosity predictions using the balanced and reduced data
set with the LightGBM model.
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A.1.2 No Accretion

Error Analysis LightGBM Temperature No Accretion Set
Data type MedALE MedMaxALE
No accretion 0.003 0.07

Table A.9: MedALE and MedMaxALE for temperature predictions using the balanced and reduced data set with
the LightGBM model.

Error Analysis LightGBM Temperature Mix Set
Data type MedALE MedMaxALE
Balanced 0.005 0.06
Reduced 0.018 0.09
Complete 0.010 0.06

Table A.10: MedALE and MedMaxALE for temperature predictions using the balanced and reduced data set with
the LightGBM model.

Error Analysis LightGBM Star Luminosity No Accretion Set
Data type MedALE MedMaxALE
No accretion 0.026 0.33

Table A.11: MedALE and MedMaxALE for star luminosity predictions using the balanced and reduced data set
with the LightGBM model.

Error Analysis LightGBM Star Luminosity Mix Set
Data type MedALE MedMaxALE
Balanced 0.037 0.45
Reduced 0.068 0.56
Complete 0.114 0.63

Table A.12: MedALE and MedMaxALE for star luminosity predictions using the balanced and reduced data set
with the LightGBM model.

Error Analysis LightGBM Radius Accretion Set
Data type MedALE MedMaxALE
No accretion 0.014 0.15

Table A.13: MedALE and MedMaxALE for radius predictions using the balanced and reduced data set with the
LightGBM model.

Error Analysis LightGBM Radius Mix Set
Data type MedALE MedMaxALE
Balanced 0.013 0.19
Reduced 0.013 0.16
Complete 0.041 0.30

Table A.14: MedALE and MedMaxALE for radius predictions using the balanced and reduced data set with the
LightGBM model.
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A.2 NN Models Results

A.2.1 Accretion set

Error Analysis NN Temperature Accretion Set
Data type MedALE MedMaxALE
Balanced 0.007 0.08
Reduced 0.017 0.22

Table A.15: MedALE and MedMaxALE for temperature predictions using the balanced and reduced data set with
the NN model.

Error Analysis NN Temperature Mix Set
Data type MedALE MedMaxALE
Balanced 0.007 0.08
Reduced 0.016 0.93

Table A.16: MedALE and MedMaxALE for temperature predictions using the balanced and reduced data set with
the NN model.

Error Analysis NN Star Luminosity Accretion Set
Data type MedALE MedMaxALE
Balanced 0.074 0.55
Reduced 0.110 0.67

Table A.17: MedALE and MedMaxALE for star luminosity predictions using the balanced and reduced data set
with the NN model.

Error Analysis NN Star Luminosity Mix Set
Data type MedALE MedMaxALE
Balanced 0.078 0.58
Reduced 0.113 0.65

Table A.18: MedALE and MedMaxALE for star luminosity predictions using the balanced and reduced data set
with the NN model.

Error Analysis NN Radius Accretion Set
Data type MedALE MedMaxALE
Balanced 0.024 0.16
Reduced 0.044 0.19

Table A.19: MedALE and MedMaxALE for radius predictions using the balanced and reduced data set with the
NN model.

Error Analysis NN Radius Mix Set
Data type MedALE MedMaxALE
Balanced 0.028 0.18
Reduced 0.042 0.22

Table A.20: MedALE and MedMaxALE for radius predictions using the balanced and reduced data set with the
NN model.
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Error Analysis NN Accretion Luminosity
Data type MedALE MedMaxALE
Balanced 0.034 0.22
Reduced 0.035 0.37

Table A.21: MedALE and MedMaxALE for accretion luminosity predictions using the balanced and reduced data
set with the NN model.

Error Analysis NN Accretion Luminosity Mix Set
Data type MedALE MedMaxALE
Balanced 0.032 0.31
Reduced 0.029 0.2

Table A.22: MedALE and MedMaxALE for accretion luminosity predictions using the balanced and reduced data
set with the NN model.

A.2.2 No Accretion set

Error Analysis NN Temperature No Accretion Set
Data type MedALE MedMaxALE
No accretion 0.003 0.02

Table A.23: MedALE and MedMaxALE for temperature predictions using the balanced and reduced data set with
the NN model.

Error Analysis NN Temperature Mix Set
Data type MedALE MedMaxALE
Balanced 0.006 0.051
Reduced 0.012 0.75

Table A.24: MedALE and MedMaxALE for temperature predictions using the balanced and reduced data set with
the NN model.

Error Analysis NN Star Luminosity Accretion Set
Data type MedALE MedMaxALE
No accretion 0.011 0.17

Table A.25: MedALE and MedMaxALE for star luminosity predictions using the balanced and reduced data set
with the NN model.

Error Analysis NN Star Luminosity Mix Set
Data type MedALE MedMaxALE
Balanced 0.020 0.22
Reduced 0.022 0.26

Table A.26: MedALE and MedMaxALE for star luminosity predictions using the balanced and reduced data set
with the NN model.
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Error Analysis NN Radius No Accretion Set
Data type MedALE MedMaxALE
No accretion 0.0028 0.082

Table A.27: MedALE and MedMaxALE for radius predictions using the balanced and reduced data set with the
NN model.

Error Analysis NN Radius Mix Set
Data type MedALE MedMaxALE
Balanced 0.0042 0.11
Reduced 0.0072 0.44

Table A.28: MedALE and MedMaxALE for radius predictions using the balanced and reduced data set with the
NN model.

A.3 TNN Models Results

A.3.1 Accretion set

Error Analysis TNN Temperature
Data type MedALE MedMaxALE
Balanced 0.0076 0.10
Reduced 0.0084 0.09

Table A.29: MedALE and MedMaxALE for temperature predictions using the balanced and reduced data set with
the TNN model.

Error Analysis TNN Star Luminosity
Data type MedALE MedMaxALE
Balanced 0.084 0.62
Reduced 0.099 0.60

Table A.30: MedALE and MedMaxALE for star luminosity predictions using the balanced and reduced data set
with the TNN model.

Error Analysis TNN Radius
Data type MedALE MedMaxALE
Balanced 0.029 0.25
Reduced 0.034 0.25

Table A.31: MedALE and MedMaxALE for radius predictions using the balanced and reduced data set with the
TNN model.

Error Analysis TNN Accretion Luminosity
Data type MedALE MedMaxALE
Balanced 0.026 0.25
Reduced 0.025 0.23

Table A.32: MedALE and MedMaxALE for accretion luminosity predictions using the balanced and reduced data
set with the TNN model.
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Appendix B

Appendix Optimization Results

B.1 LightGBM Models Parameters

B.1.1 Temperature

LightGBM Optuna Best Parameters Temperature Complete Set
Data set Val score Num leaves Learning rate Max depth Subsample
Accretion 0.22 114 0.098 10 0.99
No accretion 0.20 17 0.008 6 0.80
Mix 0.44 85 0.53 7 0.66

Table B.1: Optuna best parameters for temperature optimization using the complete set

LightGBM Optuna Best Parameters Temperature Balanced Set
Data set Val score Num leaves Learning rate Max depth Subsample
Accretion 0.19 87 0.099 8 0.83
No accretion 0.20 17 0.008 6 0.80
Mix 0.5 119 0.021 11 0.60

Table B.2: Optuna best parameters for temperature optimization using the balanced set

LightGBM Optuna Best Parameters Temperature Reduced Set
Data set Val score Num leaves Learning rate Max depth Subsample
Accretion 0.19 13 0.05 10 0.8
No accretion 0.20 17 0.008 6 0.80
Mix 0.4 16 0.07 7 0.67

Table B.3: Optuna best parameters for temperature optimization using the reduced set
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B.1.2 Star Luminosity

LightGBM Optuna Best Parameters Star Luminosity Complete Set
Data set Val score Num leaves Learning rate Max depth Subsample
Accretion 1.53 92 0.06 6 0.61
No accretion 1.3 14 0.04 3 0.65
Mix 1.53 84 0.05 6 0.66

Table B.4: Optuna best parameters for star luminosity optimization using the complete set

LightGBM Optuna Best Parameters Star Luminosity Balanced Set
Data set Val score Num leaves Learning rate Max depth Subsample
Accretion 1.4 90 0.073 6 0.63
No accretion 1.3 14 0.04 3 0.65
Mix 1.5 87 0.093 9 0.84

Table B.5: Optuna best parameters for star luminosity optimization using the balanced set

LightGBM Optuna Best Parameters Star Luminosity Reduced Set
Data set Val score Num leaves Learning rate Max depth Subsample
Accretion 1.3 85 0.0089 6 0.92
No accretion 1.3 14 0.04 3 0.65
Mix 1.4 50 0.08 4 0.75

Table B.6: Optuna best parameters for star luminosity optimization using the reduced set

B.1.3 Radius

LightGBM Optuna Best Parameters Radius Complete Set
Data set Val score Num leaves Learning rate Max depth Subsample
Accretion 0.57 9 0.095 4 0.60
No accretion 0.55 3 0.087 11 0.62
Mix 1.085 60 0.95 11 0.80

Table B.7: Optuna best parameters for radius optimization using the complete set

LightGBM Optuna Best Parameters Radius Balanced Set
Data set Val score Num leaves Learning rate Max depth Subsample
Accretion 0.58 76 0.025 11 0.99
No accretion 0.55 3 0.087 11 0.62
Mix 0.94 120 0.095 6 0.99

Table B.8: Optuna best parameters for radius optimization using the balanced set.
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LightGBM Optuna Best Parameters Radius Reduced Set
Data set Val score Num leaves Learning rate Max depth Subsample
Accretion 0.46 7 0.007 4 0.95
No accretion 0.55 3 0.087 11 0.62
Mix 0.66 53 0.009 11 0.69

Table B.9: Optuna best parameters for radius optimization using the reduced set

B.1.4 Accretion Luminosity

LightGBM Optuna Best Parameters Accretion Luminosity Complete Set
Data set Val score Num leaves Learning rate Max depth Subsample
Accretion 10 7 0.006 4 0.85
Mix 10.1 10 0.006 9 0.98

Table B.10: Optuna best parameters for accretion luminosity optimization using the complete set.

LightGBM Optuna Best Parameters Accretion Luminosity Balanced Set
Data set Val score Num leaves Learning rate Max depth Subsample
Accretion 6.5 82 0.024 9 0.81
Mix 6.5 51 0.033 6 0.90

Table B.11: Optuna best parameters for accretion luminosity optimization using the balanced set.

LightGBM Optuna Best Parameters Accretion Luminosity Reduced Set
Data set Val score Num leaves Learning rate Max depth Subsample
Accretion 3.0 87 0.057 9 0.9
Mix 2.8 5 0.023 11 0.75

Table B.12: Optuna best parameters for accretion luminosity optimization using the reduced set

B.2 NN Models Parameters

B.2.1 Temperature

NN Optuna Best Parameters Temperature Balanced Set
Data set Val

score
Input Hidden

L
Lr Batch

size
Gamma Num

Hidden
Accretion 0.013 68 170 0.0001 300 0.40 1
No accretion 0.02 66 235 7.2 ×10−5 94 0.64 1
Mix 0.026 107 82 0.0024 429 0.17 2

Table B.13: Optuna best parameters for temperature optimization using the balanced set with NN.
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NN Optuna Best Parameters Temperature Reduced Set
Data set Val

score
Input Hidden

L
Lr Batch

size
Gamma Num

Hidden
Accretion 0.016 108 133 0.0004 370 0.098 2
No accretion 0.02 66 235 7.2 ×10−5 94 0.64 1
Mix 0.0155 45 200 0.00021 141 0.7 2

Table B.14: Optuna best parameters for temperature optimization using the reduced set with NN.

B.2.2 Star Luminosity

NN Optuna Best Parameters Star Luminosity Balanced Set
Data set Val

score
Input Hidden

L
Lr Batch

size
Gamma Num

Hidden
Accretion 0.065 48 242 0.0004 403 0.7 1
No accretion 0.021 98 160 4.6 ×10−5 238 0.77 0
Mix 0.044 66 234 0.0009 181 0.6 2

Table B.15: Optuna best parameters for star luminosity optimization using the balanced set with NN.

NN Optuna Best Parameters Star Luminosity Reduced Set
Data set Val

score
Input Hidden

L
Lr Batch

size
Gamma Num

Hidden
Accretion 0.073 109 177 0.0001 82 0.3 1
No accretion 0.021 98 160 4.6 ×10−5 238 0.77 0
Mix 0.0625 49 179 0.0004 380 0.16 2

Table B.16: Optuna best parameters for star luminosity optimization using the reduced set with NN.

B.2.3 Radius

NN Optuna Best Parameters Radius Balanced Set
Data set Val

score
Input Hidden

L
Lr Batch

size
Gamma Num

Hidden
Accretion 0.085 112 70 2.0 ×10−5 287 0.92 1
No accretion 0.017 118 89 0.0001 78 0.94 1
Mix 0.016 75 168 0.0004 150 0.27 2

Table B.17: Optuna best parameters for radius optimization using the balanced set with NN.

NN Optuna Best Parameters Radius Reduced Set
Data set Val

score
Input Hidden

L
Lr Batch

size
Gamma Num

Hidden
Accretion 0.017 87 107 0.0002 163 0.23 2
No accretion 0.017 118 89 0.0001 78 0.94 1
Mix 0.015 52 225 0.0005 491 0.16 2

Table B.18: Optuna best parameters for radius optimization using the reduced set with NN.
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B.2.4 Accretion Luminosity

NN Optuna Best Parameters Accretion Luminosity Balanced Set
Data set Val

score
Input Hidden

L
Lr Batch

size
Gamma Num

Hidden
Accretion 0.0007 33 167 7.3 ×10−5 468 0.8 2
Mix 0.0003 44 88 2.5 ×10−5 168 0.54 1

Table B.19: Optuna best parameters for accretion luminosity optimization using the balanced set with NN.

NN Optuna Best Parameters Accretion Luminosity Reduced Set
Data set Val

score
Input Hidden

L
Lr Batch

size
Gamma Num

Hidden
Accretion 0.002 116 230 4.3 ×10−5 107 0.36 2
Mix 0.016 77 180 0.0002 196 0.56 2

Table B.20: Optuna best parameters for accretion luminosity optimization using the reduced set with NN.

B.3 TNN Models Parameters

B.3.1 Temperature

TNN Optuna Best Parameters Temperature Balanced Set
Data set Val

score
Input Hidden

L
Lr Batch

size
Gamma Num

Hidden
Accretion 0.003 186 356 0.0001 741 0.32 10

Table B.21: Optuna best parameters for temperature optimization using the balanced set with TNN.

TNN Optuna Best Parameters Temperature Reduced Set
Data set Val

score
Input Hidden

L
Lr Batch

size
Gamma Num

Hidden
Accretion 0.005 116 396 0.0001 410 0.76 10

Table B.22: Optuna best parameters for temperature optimization using the reduced set with TNN.

TNN Optuna Best Parameters Temperature No accretion Set
Data set Val

score
Input Hidden

L
Lr Batch

size
Gamma Num

Hidden
No accretion 0.006 350 590 4.6×10−5 345 0.78 14

Table B.23: Optuna best parameters for temperature optimization using the no accretion set with TNN.
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B.3.2 Star Luminosity

NN Optuna Best Parameters Star Luminosity Balanced Set
Data set Val

score
Input Hidden

L
Lr Batch

size
Gamma Num

Hidden
Accretion 0.02 176 356 9.6×10−5 509 0.21 9

Table B.24: Optuna best parameters for star luminosity optimization using the balanced set with TNN.

TNN Optuna Best Parameters Star Luminosity Reduced Set
Data set Val

score
Input Hidden

L
Lr Batch

size
Gamma Num

Hidden
Accretion 0.022 176 376 6.3×10−5 277 0.3 7

Table B.25: Optuna best parameters for star luminosity optimization using the reduced set with TNN.

TNN Optuna Best Parameters Star Luminosity No Accretion Set
Data set Val

score
Input Hidden

L
Lr Batch

size
Gamma Num

Hidden
No accretion 0.003 250 750 0.00015 285 0.56 20

Table B.26: Optuna best parameters for star luminosity optimization using the no accretion set with TNN.

B.3.3 Radius

TNN Optuna Best Parameters Radius Balanced Set
Data set Val

score
Input Hidden

L
Lr Batch

size
Gamma Num

Hidden
Accretion 0.005 186 426 4.3 ×10−5 222 0.1 12

Table B.27: Optuna best parameters for radius optimization using the balanced set with TNN.

TNN Optuna Best Parameters Radius Reduced Set
Data set Val

score
Input Hidden

L
Lr Batch

size
Gamma Num

Hidden
Accretion 0.004 116 446 4.3 ×10−5 245 0.4 8

Table B.28: Optuna best parameters for radius optimization using the reduced set with TNN.

TNN Optuna Best Parameters Radius No Accretion Set
Data set Val

score
Input Hidden

L
Lr Batch

size
Gamma Num

Hidden
No accretion 0.004 420 610 9.6 ×10−5 296 0.45 12

Table B.29: Optuna best parameters for radius optimization using the no accretion no accretion set with TNN.
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B.3.4 Accretion Luminosity

TNN Optuna Best Parameters Accretion Luminosity Balanced Set
Data set Val

score
Input Hidden

L
Lr Batch

size
Gamma Num

Hidden
Accretion 0.0009 106 166 4.3 ×10−5 450 0.32 1

Table B.30: Optuna best parameters for accretion luminosity optimization using the balanced set with TNN.

TNN Optuna Best Parameters Accretion Luminosity Reduced Set
Data set Val

score
Input Hidden

L
Lr Batch

size
Gamma Num

Hidden
Accretion 0.0002 136 496 8.4 ×10−6 187 0.87 5

Table B.31: Optuna best parameters for accretion luminosity optimization using the reduced set with TNN.
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Appendix C

Appendix Accretion Luminoisty NN Errors

Lacc Problematic Simulations for NN Model
Star final mass (M⊙) MaxALE MedALE
11.28 3.9 0.092
3.87 3.0 0.067
0.40 2.9 0.006
0.13 2.8 0.112
0.61 2.6 0.022
0.11 2.5 0.118

Table C.1: MaxALE by final star mass in Lacc predictions using NN model.
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