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Introduction

It is often said that nanostructures have become the system of choice for
studying transport over the past few years. What does this statement
mean?

First, consider transport in large, macroscopic system. Quite simply, for
the past years, emphasis in studies of transport has been on the Boltz-
mann transport equation and its application to devices of one sort or
another. The assumptions that are usually made for studies are the fol-
lowing: (i) scattering processes are local and occur at a single point in
space; (ii) the scattering is instantaneous (local) in time; (iii) the scat-
tering is very weak and the fields are low, such that these two quantities
form a separate perturbations on the equilibrium system: (iv) the time
scale is such that only events that are slow compared to mean free time
between collisions are of interest. In short, one is dealing with structures
in which the potentials vary slowly on the temporal scale of the scattering
processes.

In contrast to the above situation, it has become possible in the last
decade or so to make structures in which characteristic dimensions are
actually smaller than the free path of interest. This means that transport
in a regime in which the Boltzmann equation is clearly invalid become ac-
cessible and that new physical processes become important in the trans-
port. These devices have come to be called nanostructures, nanodevices,
or mesoscopic devices, depending upon the author.

Granted that the technological momentum is pushing to ever smaller de-
vices, and that the technology is there to prepare really small devices, it
become obvious that we must now ask whether our physical understand-
ing of devices and their operation can extrapolated down to very small

i



ii

space and time scales with out upsetting the basic macroscopic transport
physics.

In this atmosphere lays the phenomenon of Coulomb blockade. We deal
with two tunnel junctions in which the capacitance of the island is small
enough to inhibit the hopping of electrons through it until the charging
energy is overcome usually by applying a bias. This results in a stepped
current-bias diagram and gives the characteristic Coulomb blockade di-
amonds in the bias-gate diagram when we apply a gate voltage to the
island.

In my work I study at first the transport of electrons in superconducting
tunnel junctions with a one level dot. The first calculation is done for sin-
gle electron transport assuming sequential tunnelling and no coherences.
This calculation is carried on using the Orthodox model of single charge
tunnelling. This model assumes that the transmission coefficient for the
tunnelling Hamiltonian is small enough to use perturbation theory and
in particular to calculate the tunnelling rate using the Fermi golden rule.
Using a one level dot the calculation can be done analytically and in
the plot of bias versus current the step are visible and the width of the
superconducting gap.

The second and main part of my thesis deals with the calculation of the
Josephson current through the same system, at first at zero temperature
and then at finite temperature. In the Josephson current the coherent
tunnelling needs to be taken into account, this leads to a perturbation
which is of the fourth order in the tunnelling Hamiltonian. Furthermore
we need to take into account that virtually two electrons can be sitting
at the same time on the island (this couldn’t happen in the previous
calculation because we were dealing with the sequential tunnelling limit).
This results in an additional Coulomb repulsive term which can’t be
treated analytically. What we did was at first assume that only one
electron at the time could stay on the island, this was done by putting
this additional U term to infinity. In this case the calculations can be
done almost analytically giving the limit that the superconducting gap
is bigger than the thermal energy. Using the equation of motion technic
I tried to get a result for the current assuming U = 0. Third I did the
calculation numerically using Matlab.
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The last part of my thesis tries to include oscillations (phonons) in the
dot system. This is done using the independent phonons model. The
calculation can’t be done analytically so they will be done numerically
using Matlab.
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Chapter 1

The theory of Coulomb
Blockade

1.1 Coulomb Blockade

In so-called single electron transistor we have two electrodes called source(S)
and drain(D) separated by an insulating gap.

In the middle of this gap we also have a third metallic electrode called
island(Is) because it is surrounded by an insulating sea.

Figure 1.1: The quantum tunnelling of electrons between a source and a
drain can be blocked if the electrostatic energy of an excess electron on the
island is large compared to the thermal energy fluctuations
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2 CHAPTER 1. THE THEORY OF COULOMB BLOCKADE

To go from the source to the drain one electron needs to travel through
the island. We assume that the hopping from the source to the island and
from the island to the drain happens by quantum tunnelling. Further-
more, we assume that the hopping is so fast that every electron travels
alone from source to drain so that every tunnelling event is uncorrelated
to the other.

Does the presence of the island change the amplitude of the electron
current between source and drain?

When an electron is transferred from the reservoir into the island, there
is a rearrangement of charge on the island resulting in a change in the
electrostatic potential. In large systems this change in potential can
hardly be seen but in small systems, particularly at low temperature,
the potential change can be greater than the thermal energy kBT .

It was found [1, 2] that if the electrostatic energy of the excess electron on
the island was much greater than the electron thermal energy the hopping
of the electron on the island could be inhibited. In this tunnel junctions
systems the transfer of a single charge results in a gap in the energy
spectrum at the Fermi energy. This leads to the phenomenon of Coulomb
Blockade which arises from the interplay between the single charge of the
hopping electron and the other charges in the system. The tunnelling of
the electron is inhibited until the charging energy is overcome through
an applied bias voltage.

This feedback effect characterizes what is called single charge tunnelling
(SCT) phenomena. This phenomena can occur not only between normal
metals or semiconductor junction systems where the carriers are electrons
or holes but they can occur also in superconducting systems in which the
charge carriers are the Cooper pairs.

What is then the recipe to have SCT phenomena?

1. Source island and drain are regions connected only via tunnel bar-
riers.

We want more: we also want the electrons to travel one by one.
This is the so called sequential tunnelling regime or weak tunnelling
regime. Classically one electron needs an energy of at least e2

2C
,

where C is the capacitance of the capacitor (C = CS−Is+CIs−D), to
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overcome the charging barrier. Quantum mechanically the Heisen-
berg indetermination principle ∆E∆t ≥ ~

2
holds. Using this we can

say that if the electron stays on the island at most a time τQ =
~
2

e2

2C

then it has an energy uncertainty of at least e2

2C
, enough to overcome

the charging barrier.

The time to go from source to drain is of the order of RC +RC i.e.
the time to charge the capacitor S-Is and discharge the capacitor
Is-D. So, if 2RC ¿ τQ then the electron can travel from source to
drain with no feedback on the system because for a time τQ it has
virtually enough energy. In this case as said we wouldn’t have any
feedback which means also no Coulomb Blockade. What we want
to study is instead the Coulomb Blockade regime so we require that

2RC À τQ ⇒ 2RC À ~
2

e2

2C

⇒ RT À ~
2e2 = RQ

and we call RT tunnelling resistance and RQ quantum resistance.

2. EC = e2

2C
À kBT which means that the energy needed to charge the

island is much larger than the thermal fluctuations. Temperature
must be low enough and the island small enough: if we consider the
example of a conducting sphere above grounded conducting plane
we get C = 10−18F for a radius of the sphere of the order of tens of
nm assuming ε = ε0 = 1. In real structures ε > ε0 and the charging
energy should be several times larger than the thermal energy to
see clear single-electron charging effects, this means that at room
temperature we need to deal with sub-10-nm structures. That is
why most experiments are done at cryogenic temperature . 4K
like in the Park [3] experiment discussed later.

Conditions 1 and 2 assure that the charge transport from source to drain
is ruled by the Coulomb charging energy. In general the charging energy
of the island can be changed by mean of an external gate voltage, fur-
thermore the island may be reduced to a quantum dot with a discrete
energy spectrum.
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1.2 The results of Coulomb Blockade

One particular result of the Coulomb blockade phenomenon is the so
called Coulomb staircase in the Vbias − I characteristic.

0 2 4 6 8 10

1

2

3

4

5

Including charging effects

Without

I(e/2R C)t

V   (e/2C)bias

Figure 1.2: Ideal current-voltage characteristic for a double junction system
with and without the consideration of the Coulomb charging effects. For this
system C1 = C2 = C. The dotted line represents Ohm’s law: I = V/Rt

The current rises in jumps giving a stair-case appearance.The subsequent
jumps in the Vbias − I characteristic correspond to the stable voltage
regime in which one or more electron is added to or subtracted from the
island. To each plateau correspond a fixed integer number of electrons
on the island.

As mentioned before we can relate to each tunnel junction a certain
capacitance C and a certain tunnelling resistance RT so that we can
actually introduce a circuit element representing the tunnel junction.
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Vbias
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V1
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n1
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C2, Rt2

C

Rt

+

+

-

-

Tunnel junction

Figure 1.3: Equivalent circuit of an island weakly coupled to a voltage source
through two tunnel junctions with capacitance C1 and C2. Rt is the tunnel
resistance, n1 is the number of electrons that have tunnelled into the island
through junction 1, and n2 is the number of electrons that have tunnelled out
of the island though junction 2

We assume sequential tunnelling and that electrons that tunnel through
the junctions relax immediately so that resonant tunnelling is neglected.

Given the previous circuit, the capacitor charges are given by

Q1 = C1V1 (1.1a)

Q2 = C2V2 (1.1b)

the capacitance of the island is

Ceq = C1 + C2 (1.2)

and the net charge on the island would be the difference Q = Q2 − Q1.
In the absence of tunnelling Q = 0, the island would be neutral but
tunnelling allows an integer number of electron to accumulate on the
island so that

Q = Q2 −Q1 = −ne where n = n2 − n1 (1.3)

n1 being the number of electron coming on the island from junction 1
and n2 being the number of electron leaving the island through junction
2.
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The sum of the junction voltages is the applied bias voltage, Vbias, so
that using the previous relations (1.1) and (1.3) we have

V1 =
1

Ceq

(C2Vbias + ne) (1.4a)

V2 =
1

Ceq

(C1Vbias − ne) (1.4b)

The electrostatic energy stored in the system is given by

Es =
Q2

1

2C1

+
Q2

2

2C2

which we can write as

Es =
1

2Ceq

(C1C2V
2
bias + Q2)

Furthermore we need to consider the work done by the voltage source to
transfer electrons through the island

Ws = Vbias∆Q

where ∆Q includes both the total charge transferred from the voltage
source and the integer number of tunnelling charges.

When an electron tunnels out of the island we have Q′ = Q + e and
n′ = n− 1 which means that the voltage across junction 1 changes by an
amount of −e/Ceq so that the voltage source needs to compensate the
loss by a charge ∆Q = −eC1/Ceq. The total work done to tunnel n2

electron would then be

Ws(n2) = −n2eVbias
C1

Ceq

and similarly Ws(n1) = −n1eVbias
C2

Ceq

Now we can find the total energy of the system:

E(n1, n2) = Es−Ws =
1

2Ceq

(C1C2V
2
bias+Q2)+

eVbais

Ceq

(C1n2+C2n1) (1.5)
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At zero temperature a change in the system needs to lead to lower en-
ergies, therefore the tunnelling transitions which leads to higher energies
are not allowed (at least at zero temperature, thermal fluctuations weak-
ens this condition).

∆E±
2 = E(n1, n2)− E(n1, n2 ± 1) = · · · = e

Ceq

[
−e

2
± (en− VbiasC1)

]

(1.6)

∆E±
1 = E(n1, n2)− E(n1,±1n2) = · · · = e

Ceq

[
−e

2
∓ (en + VbiasC2)

]

(1.7)

These are the change in the energy of the system when a particle is
tunnelling through the second or the first junction respectively.

As we said only transitions which have ∆Ei > 0 can occur at zero tem-
perature. Considering the island initially neutral n = 0 this condition
transforms in

∆E±
1,2 = − e2

2Ceq

∓ eVbiasC2,1

Ceq

> 0 (1.8)

For C1 = C2 = C the requirement becomes |Vbias| > e/Ceq.

Below this value of Vbias tunnelling through the island is prohibited and
no current can flow. The effect on the current voltage diagram is a region
of very low conductance around zero voltage. For junctions with a large
Ceq no Coulomb blockade regime is observed since the plateau wold be
almost insistent.

We can now consider what happens increasing the voltage over the thresh-
old voltage Vth = e/2C. When we just pass Vth one electron jumps on
the island so that n = 1. The Fermi energy of the dot is raised by e2/Ceq

(remember that Ceq = 2C)and a gap appears that prohibits a second
electron to tunnel into the island until we supply energy enough. So
that when Vbias > 3e/2C a second electron can hop into the island. For
e/2C < Vbias < 3e/2C we have flow of current only when the n = 1
electron hops out so that we are back to the n = 0 situation and the
process repeats itself giving a non zero current.
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_
e

b)

bias
V   > e/2C

1 2

Island
a)

EFe /2C2

Figure 1.4: Band diagram of a double junction structure (a) in equilibrium
and (b) under an applied bias. A gap exists in the density of state of the
island system due to the Coulomb charging energy which prohibits tunnelling
into and out of the island below the threshold voltage

To increase the complexity of the system we can now couple the island
to a separate voltage source Vg.

This additional voltage modifies the charge on the island:

Q = Q2 −Q1 −Qg = −ne + QP where Qg = Cg(Vg − V2)

where QP represents random charges trapped near the junctions which
explain the asymmetry of the experimental I−Vbias characteristic around
the origin. Here we won’t write this factor anymore for simplicity.

The equivalent capacitance of the island is now

Ceq = C1 + C2 + Cg
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Figure 1.5: Equivalent circuit for a single electron transistor

Carrying on the same calculations as before we find:

∆E±
1 = E(n1, n2)− E(n1 ± 1, n2) = · · · =

=
e

Ceq

(
−e

2
∓ (en− VgCg + (Cg + C2)Vbias)

)

∆E±
2 = E(n1, n2)− E(n1, n2 ± 1) = · · · =

=
e

Ceq

(
−e

2
± (en− VgCg − C1Vbias)

)

(1.9)

The gate voltage allows to change the charge on the island and therefor
to shift the Coulomb blockade region with Vg.

As before the condition for tunnelling at low temperature is that ∆E1,2 >
0 so that the system lowers its energy after the tunnelling.

As before we find four equations for forward or backward tunnelling:

−e

2
∓ [en− VgCg + (Cg + C2)Vbias] > 0 (1.10a)

−e

2
± [en− VgCg − C1Vbias] > 0 (1.10b)

This equations for each value of n can be used to draw a stability plot in
the VbiasVg plane. Corresponding to each value of n we find a diamond-
like region in which no solution satisfy (1.10) which means that tunnelling
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is not allowed and we can see the effect of the Coulomb blockade phe-
nomenon.

3

2

1

n=0

−3e/2 −e/2 3e/2

n=−1

e/2

−1

−2

n=1
Coulomb

plateau
blockade

V /(e/C  )

C Vg

bias

g

Figure 1.6: A stability diagram for a single electron transistor for the case
C2 = Cg = C, C1 = 2C. The colored areas correspond to regions where no
tunnelling through either junction may occur, and thus they represent stable
regimes of fixed electron number.

Each of this region corresponds to a different stable number of electron
on the island which cannot change (at least at low enough temperature
where we can neglect thermal fluctuations).

For a given Vg the size of the Coulomb blockade plateau is given by the
vertical extent of the non tunnelling region.

It is easy to see that for small source-drain voltage Vbias across the junc-
tions a measurement of the current versus gate voltage draws peaks as
Igets 6= 0. Between this peaks the number of electrons on the dot re-
mains a stable integer value. As long as eVbias ¿ kBT the width of these
peaks will be given by the thermal broadening so that we would see really
large peaks or no peaks at all when the temperature is grater than the
energy scale for the Coulomb blockade regime.
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1.3 The Orthodox theory

To deal with this system we use the transfer or tunnelling Hamiltonian
approach. In the tunnelling Hamiltonian approach, the tunnelling barrier
is treated as a perturbation to the (much larger) system formed by the
left and right leads.

The current may be investigated by calculating the rate of transfer of
particle from left to right using perturbation theory. As such the per-
turbation should be sufficiently small, which in this case means that the
tunnelling transmission coefficient should be small enough: t ¿ 1.

The total Hamiltonian is written

H = HL + HR + HD + HT

where the Hamiltonians on the left and right and dot presumably are
known with eigenvectors and eigenvalues

HLψl = Elψl

HRψr = Erψr

HDψd = Edψd

and where we define

H0 = HL + HR + HD =
∑

l

Elc
†
l cl +

∑
r

Erc
†
rcr +

∑

d

Edc
†
dcd (1.11)

and

HT =
∑

l,d

(tl,dc
†
dcl + H.c.) +

∑

r,d

(t†r,dc
†
rcr + H.c.) (1.12)

Ed is the on-site energy which also can be controlled by an external gate
voltage.

c†l,r,d and cl,r,d are the fermion creation and annihilation operators of the
independent many-body state of the left (Source), right (Drain) and dot
system.
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In (1.11) the pairs operator represent the occupation or number opera-
tors:

nl = c†l cl

nr = c†rcr

nd = c†dcd

For finite temperature the expectation value of these operators averaged
over the equilibrium ground state gives either the Fermi-Dirac distribu-
tion

〈Nl,r,d〉 = nF (El,r,d) =
1

1 + e(El,r,d−µ)β
(1.13)

or the Bose-Einstein distribution

〈Nl,r,d〉 = nB(El,r,d) =
1

e(El,r,d−µ)β − 1

depending if we are dealing with fermions (f.e. electrons) or bosons (f.e.
phonons). Here we define µ as the Fermi energy of the system and
β = 1/kBT the thermal energy of the system.

To be more specific we should add to the dot Hamiltonian an interaction
part which for example arises from the charging energy of the capacitor:

HDint = EC

∑

d

(nd)
2

This is the so-called constant interaction model or capacitor model. The
charging energy of a capacitor is E = Q2/2C where Q = −eN =
−e

∑
d nd.

EC = e2/2C is the charging energy for a single electron.

The total dot Hamiltonian will then be

HD = HD0 + HDint

where HD0 is the free particle Hamiltonian of the dot.
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Equation (1.12) is the tunnelling Hamiltonian. Its first term annihilates
a particle of wave vector kl on the left side and creates it in kd on the
dot. This process corresponds to tunnelling from left lead to dot, the
tunnelling from the dot to the right lead is given by the term in the
second part of equation (1.12) which annihilates a particle of wave vector
kd in the dot and creates it in the right lead with wave vector kr. The
tunnelling from right to left is given by the other two terms which are
the Hermitean conjugates of the previous ones.

At first we restrict the calculation to the leading order, i.e. we calculate
the tunnelling rate within the golden rule approximation. We assume
that the charge equilibrium is established before a tunnelling event oc-
curs. This allows us to use the defined equilibrium states in the theoret-
ical calculation. This means also that the time between two tunnelling
processes should be larger than the charge relaxation time and that the
electrodes remain in thermal equilibrium, so that the one-particle distri-
bution functions are still in the form of (1.13). Given this we can treat
the island as an isolated system described by the distribution function
P (ν)that gives the probability to find the system in a particular state
ν. In equilibrium this would be the Boltzmann distribution function but
when we apply a bias across the system we must determine the non-
equilibrium distribution function.

As mentioned we will calculate the tunnelling rate by means of the
Fermi’s golden rule (lets have ~ = 1).

We consider HD = HD0 without taking into account the charging energy
of the island. We will find that the current follows Ohm’s law and we
will define the tunnelling resistance.

Γi→f = 2π | 〈f | HT | i〉 |2 δ(Ef − Ei)

gives the rate for transitions between the initial state | i〉 and the final
state | f〉.
In our specific case we need to calculate the transition between two states,
lets call them | a〉 and | b〉 due to tunnelling through the left junctions:

ΓL
a→b = 2π

∑

fb,ia

| 〈fb | HTL | ia〉 |2 δ(Efb
− Eia)
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where the sum runs over all configurations of the internal degree of free-
dom of the initial and final state. Once the transition rates are known
we can write the kinetic equation (master equation) for the distribution
function P (a):

dP (a)

dt
= −

∑

b

ΓabP (a) +
∑

b

ΓbaP (b) (1.14)

After the equality sign, the first part of the equation gives the rate at
which the state a decays: it is the rate of going to a different state b times
the probability that the a state is at the beginning occupied, summed
over all the possible target states b, with a minus because the process
lowers the occupation of the a state; the second part of the equation
gives instead the opposite process and takes into account all the decays
from other states to the a state.

We assume that on the island there are N electrons and we want to
calculate the rate of increasing this number by one: N + 1. In this case
ia = iN and fb = fN+1 where we can write | fN+1〉 = c†dcl | iN〉. We
should sum over all the state d of the dot and over all the states l of the
left lead to take into account all the possible configurations of the system
after the tunnelling event.

ΓL
N→N+1 = 2π

∑

d,l

∑
iN

| 〈iN | c†l cdHTL | iN〉 |2 δ(εd − εl)

= 2π
∑

d,l

∑
iN

| td,l |2| 〈iN | c†l cdc
†
dcl | iN〉 |2 δ(εd − εl)

(1.15)

In the absence of tunnelling Hamiltonian we may write the total state as
a product of the dot state and the leads state: the two subsystems are
independent and are connected to each other just through the tunnelling
Hamiltonian. So we can write:

ΓL
N→N+1 = π

∑

d,l

∑
iNd

,il

| td,l |2| 〈il | c†l cl | il〉〈iNd
| cdc

†
d | iNd

〉 |2 δ(εd − εl)

(1.16)
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〈il | c†l cl | il〉 gives the occupation of the states l for the initial state
| il〉 and is therefore either zero or one (we can forget about the square).
When we sum over all the initial configuration we have the definition of
the Fermi-Dirac distribution function:

∑
iNd

〈iNd
| cdc

†
d | iNd

〉 = 1− nF (εd − µd)
∑

il

〈il | c†l cl | il〉 = nF (εl − µl)

If we are dealing with a metallic island, we can assume that there is a
continuous density of electronic states. In this case we can replace the
sum over l and d by integrals. This results in:

ΓL
N→N+1 = 2π

∫ ∞

−∞
dεldεdρ(L)ρ(D) | td,l |2 nF (εl−µl)(1−nF (εd−µd))δ(εd−εl)

(1.17)

ρ(L) is the density of states in energy of the left lead and ρ(D) is the
density of states if the dot.

Since the main contribution from the integral is for a narrow range of
energies around the Fermi energies of the lead and the dot, the density
of states appearing in the integral may be taken constant: ρ(L,D) =
ρ0(L,D). For the same reason we neglect the variation of the tunnel
matrix element with energy and momentum so that we can take it out
of the integral.

ΓL
N→N+1 = CinL

∫ ∞

−∞
dεldεdnF (εl−µl)(1−nF (εd−µd))δ(εd− εl) (1.18)

where with CinL
we define the combined tunnelling density of states:

CinL
= 2πρ0(L)ρ0(D) | tL |2.

The delta function reduces one of the integrations such that

ΓL
N→N+1 = CinL

∫ ∞

−∞
dεnF (ε− µl)(1− nF (ε− µd)) (1.19)
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With this useful relations:

nF (ε1)[1− nF (ε2)] = nB(ε1 − ε2)[nF (ε2)− nF (ε1)]

∫ ∞

−∞
dε[nF (ε)− nF (ε + ω)] = ω

we arrive at
ΓL

N→N+1 = CinL
f(µd − µl) (1.20)

f(ε) =
ε

eβε − 1

In the same way we find the tunnelling rates out of the island:

ΓL
N→N−1 = CoutLf(µl − µd) (1.21)

f(ε) =
ε

eβε − 1

The total rates are defined as the sum of the left and right contributions:

ΓN→N∓1 = ΓL
N→N∓1 + ΓR

N→N∓1

Using the master equation (1.14) gives the recursive relation

P (N)ΓN→N−1 = P (N − 1)ΓN→N−1

Once P(N) is determined the current through the device can be found as
the current through, say, the left junction:

I = (−e)
∑
N

P (N)(ΓL
N→N+1 − ΓL

N→N−1) (1.22)

Where the first term gives the rate of tunnelling in the island and the
second term gives the rate of tunnelling out of the island.

In our calculation Γ doesn’t depend on N and by definition
∑

N P (N) = 1
so that we find, assuming CinL

= CoutL :

I = (−e)(µd − µl)CL (1.23)

if we now call V = (−e)(µd − µl) we find that
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1

CL

= RtL =
1

2πρ0(L)ρ0(D) | tL |2

Which defines the tunnelling resistance for the left junction RtL .

Writing in short we find

I =
V

RtL

This is Ohm’s law and we don’t see the effect of the Coulomb blockade.

Now we want to consider the modification of the transition rate including
the charging energy and the gate voltage:

HDint = EC

∑

d

(nd)
2 − eVgN

HD = HD0 + HDint

We find for the transition rates:

ΓL
N→N+1 =

1

RtL

f(µd − µl + E(N + 1)− E(N)) (1.24a)

ΓL
N→N−1 =

1

RtL

f(µl − µd + E(N − 1)− E(N)) (1.24b)

and again the current is given by equation (1.22).

The explicit form for the rate transitions is:

ΓL
N→N±1 =

1

RtL

∆E±

1− e−β∆E± (1.25)

The energetic arguments made in the previous section now may be stated
more quantitatively. We see that in the limit that ∆E± is positive and
much larger than the thermal energy kBT ,

ΓL
N→N±1 =

∆E±

RtL

, ∆E± À kBT

so that the tunnelling is ”allowed”. On the other and, when ∆E± is large
and negative, (1.25) shows that tunnelling is ”forbidden”:
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ΓL
N→N±1 ' 0, −∆E± À kBT. (1.26)

Thus the energetic argument leading to the qualitative explanation for
Coulomb blockade in the previous section are still valid in the limit that
| ∆E± |À kBT .

Considering the system of figure ... as an example, the change in energy
associated with forward and backward tunnelling across the junction was
given by equation ... as

∆E±
2 =

e

Ceq

[
−e

2
± (en− VbiasC1)

]
.

For zero applied bias and an initially charge-neutral island (n = 0),
∆E±

2 = −e2/2Ceq.

From (1.26), the tunnelling current is approximately zero as long as
e2/2Ceq À kBT , which sets the temperature limits for observing coulomb
blockade.

Having a look back at the distribution function P (N), we see that Coulomb
blockade for metallic island result in an oscillatory dependence as a func-
tion of the gate voltage. The optimum number of particles on the island
follows form equation ...: Nopt = eVg/2EC . When this is an integer there
is an energy gap for adding electrons, when Nopt is half integer two charge
states are degenerate and current can flow.

1.4 Park’s article

An experimental example of Coulomb blockade can be found in a paper
from Park [3].

In this paper they perform transport measurement on single molecule
(C60) transistor. Basically they measure the current, motion of elec-
trons, through the quantum dot C60 . Their results show not only the
Coulomb blockade feature given by the diamonds shape in the Vg − Vbias

characteristic but also that there is some coupling between the center-
of-mass motion of the molecule and the single electron hopping from the
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lead to C60. This coupling is visible as quantized oscillations of the C60

at 1.2THz.

Figure 1.7: Current-voltageI −Vbias curves obtained from a single-C60 tran-
sistor at T = 1.5K. Five curves taken at different gate voltage Vg are shown

The results show a stepped Vbias − I diagram. Each step is due to the
opening of a new electronic gate (a new reachable excited state) in the
molecule which allows more electrons to pass through. Also it is clearly
seen the conductance gap that changes with Vg. From the Coulomb
blockade theory we can say that the conductance gap is a consequence of
the finite energy needed to add or remove an electron from the molecule
as we have previously explained. The conductance gap changes as a
function of Vg and it increases increasing Vg. Finally in the diagrams
Vg − Vbias we see the gap conductance regions (the diamonds) and the
differential conductance ∂I/∂V peaks in the z direction.

In principle the excitations could arise from different degree of freedom
of the SMT (Single Molecule Transistor):

1. the excited electronic states of the system;

2. the internal vibrational modes of the free C60

3. the vibrational excitations of the C60 coupled to an electron tun-
nelling on and off

4. the center of mass oscillation of the C60 bounded to the surface.
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Figure 1.8: Two-dimensional differential conductance ∂I
∂V plots as a function

of the bias voltage V and the gate voltage Vg. Data were obtained from four
different devices. The dark triangular regions correspond to the conductance
gap, and the bright lines represent the peaks in the differential conductance.
The differential conductance values are represented by the color scale, which
changes from black (0nS) through pink to white (30nS)

but

1. here the excitations are the same for both charges and multiple
excitations have the same spacing while the excited electronic states
have different spacing;

2. the internal vibrational modes of the free C60 have been studied and
the lowest energy mode (deformation from a sphere to a prolate)
has a vibrational quanta of 33meV while here the excitation quanta
is 5meV ;

3. the coupling between vibrational excitations and electron tunnelling
could explain the multiple peaks with same spacing in the differen-
tial conductance resulting from an excitation of an integer number
of vibrational modes;
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4. assuming that the binding potential between C60 and the surface
is harmonic, calculations using the center of mass of the C60 give
a vibrational frequency of 1.2THz and an energy quanta of 5meV
which is in perfect agreement with the energy of the excitation
quanta found experimentally.

Figure 1.9: Diagram of the center-of-mass oscillation of C60. a) A C60

molecule is bound to the gold surface by the van der Waals and electrosta-
tic interaction. The interaction potential is shown schematically alongside.
The potential near the equilibrium position can be approximated well by a
harmonic potential with a force constant k. This harmonic potential gives
quantized energy levels with frequency f . Here M represent the mass of the
C60 and h is the Planck constant. b), When an electron jumps on to Cn−

60 the
attractive interaction between the additional electron and its image charge
on gold pulls the C60 ion closer to the gold surface by the distance δ. This
electrostatic interaction results in the mechanical motion of C60

Assuming the model of an harmonic binding potential as in (4), adding
an electron to the molecule changes its distance from the surface (im-
age charging) but doesn’t significantly change the vibrational frequency
(1.2THz). The different peaks observed in the differential conductance
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are due to electrons that hop on or off the molecule with the system
in different vibrational levels. This mechanism is similar to the Franck-
Condon process where the vibrational excitation goes together with the
electronic motion.

1.5 Franck-Condon on a simple transistor

model

In the limits of the Orthodox model we study now a single electron
transistor. In particular we want to study the island coupled to a single
vibrational mode. In [3] we see an experimental result of this coupling.
Here the single phonon mode was associated with the motion of the
molecule C60 in the confining potential created by the van der Waals
interaction with the electrodes.

We begin with the simplest model, i.e. the Franc-Condon model, which
is constituted by an electronic system with only two levels for each lattice
configuration and a one-dimensional vibrational mode for the lattice.

E

qq 0

G

B

E0

G´

B́

gE (q)

(q)E e

E0+Sκ E0
_

Sκw w

Figure 1.10: Configuration-coordinate diagram for allowed transitions be-
tween two non-degenerate electronic states (Franck-Condon model). The adi-
abatic potential surface for the ground state and the lowest excited state are
indicated as a function of a single normal coordinate q.

Consider an electronic system with two (non-degenerate)levels for any
given lattice configuration, the ground state ψg and the excited state ψe.
Let us indicate with Eg(q) and Ee(q) the energies of the corresponding
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potential, respectively; the normal coordinate q may represents the devi-
ation of the dot distance from its equilibrium value. In the ground state,
the equilibrium value of the coordinate q is assumed to be zero. With
the choice of axes and origin as in figure, we have

{
Eg(q) = 1

2
Cq2

Ee(q) = E0 + 1
2
C(q − q0)

2
(1.27)

Notice that E0 represents the energy difference between the minima of the
ground and the excited potentials, and is called ”zero-phonon transition
energy”; the elastic constant C is related to the frequency ω of the particle
motion, and the mass M by the usual equation C = Mω2. It is useful
to characterize the model by means of the dimensionless parameter S
defined as

S~ω ≡ 1

2
Cq2

0 =
1

2
Mω2q2

0 (1.28)

or equivalently

q0 =

√
2~S
Mω

(1.29)

We observe that energy difference between lower and upper levels at
q = q0 and is given by

Ee(0)− Eg(0) = E0 + S~ω (1.30)

Ee(q0)− Eg(q0) = Eo − S~ω. (1.31)

In accordance with an intuitive picture, known as Franck -Condon prin-
ciple, the particle configuration of a system cannot change during the
short time of an electron transition; in other terms, energy transitions
are vertical in the configuration diagram, because the dot doesn’t move
of any significant amount during the electronic transitions.

We can examine more closely the phonon absorption and phonon emission
processes. Consider the system initially at the minimum of the ground
state (point G in figure). During the transition from G to B the dot
position doesn’t change, leading to an absorption energy E0+S~ω. After
the absorption,in the excited curve, the dot is no more in the equilibrium
position ,and the system moves to the minimum B

′
at energy E0 releasing
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an energy equal to S~ω. We thus see that the dimensionless parameter S
takes the meaning of the average number of phonons accompanying the
transition; S~ω is the energy transferred into vibrational energy (and
then into heat). The emission from B

′
to C

′
takes place vertically leading

to emission energy E0 − S~ω; the system then relaxes from G
′

to G
releasing the energy S~ω (transformed into heat).

Quantum treatment of the optical properties of the FrancK-
Condon vibronic model.

We consider the Franc-Condon model from a quantum mechanical point
of view ,taking into consideration the motion of the dot; the energy due
to this motion is quantized in phonon quanta, which are in general much
smaller than the transition electronic energies. We introduce the stan-
dard phonon creation and annihilation operators ,a† and a, corresponding
to the harmonic oscillator of potential energy (1/2)Mω2q2, centred at the
origin q = 0 of the configurational coordinate q (the oscillator at the ori-
gin is also referred as undisplaced oscillator).
We have

a =

√
Mω

2~
q + i

√
1

2M~ω
p, a† =

√
Mω

2~
q − i

√
1

2M~ω
p (1.32)

The state of the undisplaced harmonic oscillator are

|φn〉 =
1√
n!

(a†)n|φ0〉 (1.33)

the eigenstates and eigenvalues of the vibronic system in the ground state
are

|ψg, φn〉 and Egn = Eg(0) + (n +
1

2
)~ω n = 0, 1, 2... (1.34)

For the excited states we can follow a similar treatment, except for a
proper account of the displacement at q = q0 of the minimum of the
potential energy. We introduce the phonon creation and annihilation
operators , ã†and ã, corresponding to the harmonic oscillator of potential
energy (1/2)Mω2(q − q0)

2, centred at the point q0 of the configuration
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coordinate q ( displaced oscillator ). For the displaced oscillator we have

ã =

√
Mω

2~
(q − q0) + i

√
1

2M~ω
p ≡ −

√
S (1.35)

ã† =

√
Mω

2~
(q − q0)− i

√
1

2M~ω
p ≡ a† −

√
S (1.36)

The states of the displaced harmonic oscillator are

|φ̃n〉 =

√
1√
n!

(ã†)n|φ̃0〉 (1.37)
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Figure 1.11: (a) Spectrum of absorption for the two-level single-mode model
(the system is initially in the ground electronic state and ground vibrational
state); the zero-phonon line is indicated by an arrow .(b) Spectrum of emission
for the two-level single-mode model (the system in initially in the excited
electronic state and ground vibrational state); the zero-phonon line is indicated
by an arrow.

The eigenstates and eigenvalues of the vibronic system in the excited
adiabatic surface are

|ψe, φ̃n〉 and Een = E0 + (n +
1

2
)~ω n = 0, 1, 2, ... (1.38)

To connect the states of the displaced and undisplaced oscillators, we
notice the general property of translation operators

f(q + q0) = f(q) + q0f
′
(q) +

1

2!
q2
0f

′′
+ ... = eq0∂/∂qf(q) (1.39)
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From (1.29) and (1.32) we have
√

S(a− a†) = i
√

2S/M~ωp = q0∂/∂q, it
follows

|φ̌n〉 = e−q0∂/∂q|φn = e
√

S(a†−a)|φn〉 (1.40)

We also notice the following matrix elements between displaced and
undisplaced harmonic oscillator wavefunctions

〈φ̃n|φ0〉 = 〈φn|ee−√S(a†−a)|φ0 = 〈φn|e−
√

Sa†e
√

Sa|φ0〉e−[−√Sa†,
√

Sa]/2

= 〈φn|e−
√

Sa† |φ0〉−S/2 = (−1)n

√
Sn

n!
e−S/2 (1.41)

The absorption lineshape at zero temperature (i.e. when the system is
initially in the ground electronic state and ground electronic state and
ground vibrational state ) is obtained via the golden rule

Iabs(E) =
2π

~
|〈ψe, φ̌n|T |ψg, φ0|2δ(Een − Eg0 − E) (1.42)

=
2π

~
|Teg|2|〈φ̌n|φ0|2δ(E0 + n~ω − E) (1.43)

where Teg is the matrix element between the ground electronic state and
the excited electronic state. Using (1.41), the lineshape (1.42) takes the
form

Iabs(E) =
1

n!
Sne−Sδ(E0 + n~ω − E) (1.44)

The absorption spectrum Iabs(E) is a diagram of equally spaced lines (at
energy E0 , E0 + ~ω, E0 + 2~ω...) with intensities varying according to
the Poisson distribution, as schematically shown in figure. The factor
exp(−S) gives the fractional intensity of the zero photon line. The max-
imum of the Poisson distribution occurs for n ≈ S, and the absorption
spectrum is then peaked at energy E0 + S~ω.
A quite similar analysis can be carried out when the system is initially in
the excited electronic state and ground vibrational state. The emission
spectrum is given by

Iemiss(E) =
1

2!
S2e−Sδ(E0 − n~ω − E) n = 0, 1, 2, ... (1.45)

The emission spectrum Iemiss(E) is a diagram of equally spaced lines at
energy E0, E0 − ~ω,E0 − 2~ω, and it is peaked at the energy E0 − S~ω.
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Using this relations we can calculate now as in (??) the current through
a single level quantum dot.
The tunnelling Hamiltonian is as usual

HT =
∑

lσ

(tld
†cl + H.c.) +

∑
rσ

(trd
†cr + H.c.) (1.46)

We look for the tunnelling rate Γ01 and Γ10 where the first one indicates
the tunnelling from empty dot to full dot and the second the inverse
process.

We denote

|0〉D = |0〉Del|0〉Dph

the empty state of the dot factorized in electronic and phononic part

|1〉D = |1〉DelT (q0)|n〉Dph

the full state of the dot where we inserted the

displacement operator due to the Franck-Condon effect

We need to calculate

〈f |HTL|i〉 = · · · = tl〈n|T (q0)|0〉 = tle
−S/2(−)n

√
Sn

N !

From this, using the Fermi golden rule we have

ΓL,R
10 =

2π

~
∑

kσ

|tk|2
∑

n

Sn

N !
e−SnF (ε0 + nω0~) (1.47)

ΓL,R
01 =

2π

~
∑

kσ

|tk|2
∑

n

Sn

N !
e−S (1− nF (ε0 − nω0~)) (1.48)

where the sum runs over all the possible n vibrational states, nF denotes
the Fermi distribution function and we assume that in the process energy
is conserved.
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Using these tunnelling rates we have the following I − V curves.
In both of the plots we clearly see he Coulomb blockade steps. We don’t

see the zero current plateau because for simplicity we set the energy of
the dot to zero.



Chapter 2

Superconducting leads

From now on we study the same transistor system supposing that the
leads are weak superconductors (for weak superconductor we can use
the BCS theory). In superconductors the unit particles are no more
the electrons but the Cooper pairs. In this chapter we treat the single
electron (quasiparticle) current while in the next chapter we will study
the Josephson current through the transistor.

2.1 A short review of the BCS theory

2.1.1 The screening interaction

The theory of superconductivity was formulated by Bardeen, Cooper and
Schrieffer (BCS) in 1967. It describes the superconducting properties of
weak superconductors, such as aluminium, which are weak because of
the small strength of the electron-phonon interaction. In this case the
theory, which is a mean field theory, works well.

The first hint of the BCS (Cooper 1956) theory is that the ground state
of a normal metal is unstable at zero temperature. A normal metal
is defined as one which is neither superconducting nor magnetic. The
instability is an indication that the metal prefers to be in another state, in
this case the superconducting one. The demonstration of the instability
doesn’t provide a description of the superconducting state but suggests

29
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that the instability is caused by the scattering between pairs of electron
where the scattering potential is the exchange of phonons.

If we take the bare Coulomb interaction V (r) = e2/r and carry out the
computation in the momentum space we find:

V (q) =
4πe2

q2

for a unit volume. We see that this interaction potential is always positive
so it is repulsive but we need an attractive potential to form Cooper pairs.

We can look insight a little deeper in the theory and take into account
also the dielectric function of the medium ε(q, ω). In particular we look
at the screening effect of the conduction electrons, this introduces the
screening length 1/ks. We have

V (q) =
4πe2

q2 + k2
s

The electrostatic screening eliminates the divergence at q = 0 but still
gives a positive potential. No superconductivity would result.

To have negative term we need to consider the motion of the ion cores.
The physical idea is that the first electron polarizes the medium by at-
tracting positive ions. This excess of positive charge acts as an attractive
potential toward a second electron. The total effect is that two electrons
interacts through an attractive potential. If this attractive potential is
strong enough to overcome the repulsive Coulomb interaction, we have
superconductivity. Since we are dealing with ion motion and deformation
of the lattice we can fairly assume that the characteristic vibrational, or
phonon, frequencies will play a role. For momentum conservation the
phonon must carry a momentum q = k − k′ for scattering k → k′ and
the characteristic frequency will be ωq.

It is plausible that the phonons contribution to the screening function
would be 1/(ω2 − ω2

q)
−1. We see that for frequencies ω < ωq we have

a negative potential. This means that we have negative potential when
the electron energy differences is smaller that ~ωq.
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V

Attractive region
for finite frequencies

ω
ωq

Figure 2.1: This interaction is frequency dependent and has attractive re-
gions for finite frequency. The potential is negative for frequencies to the left
of ωq. Using this part of the interaction potential, it may be possible for two
electrons to bind

So it may be possible for two electrons to bind if they can construct a
bound state wave function which uses this part of the interaction po-
tential. Not all simple metals are superconductors, so the existence of a
small attractive potential is not sufficient.

In the description of the theory we use a model interaction of the form

Vs(q, ω) =

{
−V0 for |ξq| ≤ ωD

0 for |ξq| ≥ ωD

(2.1)

which is the approximation used by Cooper in 1956.

The potential is constant and attractive (V0 > 0) up to a cutoff energy
which is of the order of the Debye energy ωD of the solid.

2.1.2 The ground state wavefunction

The basic feature of the BCS theory is that pairing occurs between elec-
trons in state with opposite momentum and opposite spins, e.g., between
states (k, ↑) and (−k, ↓). The two spins are combined into a spin sin-
glet, with S = 0. The singlet was chosen in BCS theory on the basis
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that the other choices of spin combination would lead to a triplet state
with S = 1. The latter choice implies that the superconducting state has
magnetic properties, which are in fact are absent. Thus the choice S = 0
seems most reasonable. Later work by Balian and Werthamer (1963),
who solved the BCS equations for S = 1, showed that the triplet state
had smaller binding energy and was therefor less favored.

Having seen that the Fermi sea is unstable against the formation of bound
Cooper pair when the net interaction is attractive, clearly we must then
expect the pairs to condensate until an equilibrium point is reached. This
will occur when the state of the system is so greatly changed from the
Fermi sea (because of the large number of the bound pairs) that the
binding energy for an additional pair has gone to zero.

This demanding physical and formal requirements can be adequately de-
scribed by the following BCS variational form of the ground-state wave-
function for superconductors

|ΨS〉 =
∏

k

(uk + vkc
†
kc
†
−k)|0〉 (2.2)

where |0〉 is the vacuum state, uk and vk are the real and even function of
k, chosen in such a way to minimize the ground-state energy; ckandc†k are
the annihilation and creation particle operators which obey the standard
anticommutation rules

{ckσ, ck′σ′} = {c†kσ, c
†
k′σ′} = 0, {ck,σ, c

†
k′,σ′} = δkk′δσσ′ . (2.3)

For normalization matter |uk|2 + |vk|2 = 1.
This form (2.2) of the wavefunction implies that the probability of the
pair (k ↑,−k ↓) being occupied is |vk|2, whereas the probability that it is
unoccupied is |uk|2 = 1 − |vk|2. For simplicity we can consider ukandvk

all real, but it will be important to let them differ by a phase factor eıϕ,
where ϕ is independent of k, and will turn out to be the phase of the
macroscopic condensate wavefunction.

We can see that in the superconducting ground state described by ΨS,
electrons are involved only as pairs. To notice is also that the wavefunc-
tion (2.2) of the superconductor is reduced to the wavefunction of the
normal metal
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|ΨN〉 =

k<kF∏

k

(c†k↑, c
†
−k↓)|0〉

in the particular case in which uk and vk are given by

{
uk = 0 vk = 1 for k < kF

uk = 1 vk = 1 for k > kF

(2.4)

An aspect of the wavefunction (2.2) is that the total number of electrons
is not well defined.

2.1.3 The variational method

We want to find the appropriate values for uk and vk which minimize the
energy of the ground-state wavefunction using the variational method.

We proceed to minimize the expectation value 〈ΨS|H|ΨS〉 under the
constrains 〈ΨS|Nop|ΨS〉 = N , where

Nop =
∑

kσ

c†kσckσ

is the particle number operator and N is the number of electrons in the
actual metal.

The standard method to treat minimization with one or more constraints
consist in introducing one or more Lagrange multipliers µ, minimizing
without restraint the quantity 〈ΨS|H−µNop|ΨS〉 and finally determining
µ through the condition 〈ΨS|Nop|ΨS〉 = N . It turns out that µ is the
Fermi energy, and it is the same for the normal or superconducting state.

In essence we thus arrive to the minimization of the quantity

〈ΨS|HBCS|ΨS〉 (2.5)

where HBCS = H−µNop is the so-called pairing Hamiltonian or reduced
Hamiltonian:

HBCS =
∑

kσ

ξknkσ +
∑

kl

Vklc
†
k↑c

†
−k↓c−l↓cl↑. (2.6)
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Here ξk = εk − µ = ~2k2/2m− µ is the single-particle energy relative to
the Fermi energy.

The theory presumes that this Hamiltonian includes the terms that are
decisive for superconductivity but it omits many other terms which in-
volve electrons not paired as (k ↑, −k ↓). Such other terms have zero
expectation value in the BCS ground-state wavefunction but may be im-
portant in other applications.

The expectation value (2.5) can be easily evaluated keeping in mind the
practical recipe of anticommutation for fermions (2.3).

We see at once that averaging the first term in (2.6) yields

〈
∑

kσ

ξknkσ〉 = 〈Ekinetic − µN〉 = 2
∑

k

ξk|vk|2 (2.7)

which is exactly what we expect also classically, given that |vk|2 is the
number of particles with momentum k and taking into account the double
spin state.

The interaction term gives

〈V 〉 =
∑

kl

Vklukv
∗
ku

∗
l vl (2.8)

Physically this term can be explained noting that Vkl scatters from a state
with (l ↑, −l ↓) to one with (k ↑, −k ↓). This requires the initial state to
have the l pair occupied and the k pair empty and viceversa for the final
state. The probability amplitude for such an initial state is ukvl and for
the final state it is v∗ku

∗
l , thus leading to the preceding result. We should

note that Vkl contributes nothing to the energy in the normal state. This
is obvious at T = 0 since the states are either 100 percent occupied or
empty, so that the product probability of being full and empty is zero.
At T > 0, the Fermi distribution doesn’t cutoff sharply so one might
think that there could be nonzero contribution. However, in the normal
state, the appropriate products of probability amplitudes (corresponding
to ukv

∗
ku

∗
l vl in the ordered BCS state) average to zero due to random

relative phase. Hence, the scattering terms give no contribution to the
average energy in the normal state.
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Combining the two previous equation and taking uk and vk reals, the
expectation value for the BCS Hamiltonian is

〈HBCS〉 = 2
∑

k

ξkv
2
k +

∑

kl

Vklukvkulvl (2.9)

which we need to minimize under the constrain u2
k + v2

k = 1.
This can be done representing uk and vk in polar form

{
uk = cos θk

vk = sin θk

To solve the set of self-consistent equation we define the energy gap
parameter ∆k

∆k = −
∑

l

Vklulvl (2.10)

The solution of the minimization problem together with the normaliza-
tion condition give the results

u2
k =

1

2

(
1 +

ξk√
ξ2
k + ∆2

k

)
and v2

k =
1

2

(
1− ξk√

ξ2
k + ∆2

k

)
. (2.11)

The choice of the sign for the sine and cosine (only their relative sign
is fixed) has been determined by the requirement that, for vanishing Vkl

interaction and thus for vanishing ∆k, the standard normal ground-state
described by (2.4) is obtained.

We can now substitute (2.11) into the gap equation (2.10) and after
some calculation we find a set of self-consistent equations for the gap
parameters.

∆k = −1

2

∑

l

Vkl
∆l√

ξ2
k + ∆2

k

(2.12)

A trivial solution to this equation is ∆k = 0 for every k, this correspond
to the normal metal state with the electrons filling the Fermi sea up to
kF . For ∆k = 0 we would have vk = 1 for ξk < 0 and vk = 0 for ξk > 0
(remember that ξ = ε− µ). In general equation (2.12) is not easy to be
solved. Anyway we expect a nontrivial solution which lowers the energy
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of the normal state to the superconducting energy.
We retain the model of Vkl used by Cooper and by BCS (2.1):

Vkl =

{
−V for |ξk|, |ξl| ≤ ~ωD

0 otherwise

with V > 0. (Our theoretical discussion of Vkl actually suggests that
the relevant energy is |ξk − ξl|, the energy change of the electron in the
scattering process, but to get a simple solution we need to make this
stronger restriction).
From the average potential approximation follows that

∆k =

{
∆ for |ξk| < ~ωD

0 otherwise
(2.13)

We can now simplify equation (2.12) using this approximations. We
assume the electron density of state N(0) constant in the small energy
shell around the Fermi level and we convert the sum to an integral. We
obtain

∆ =
~ωD

sinh[N(0)V ]
(2.14)

In the weak coupling limit, when N(0)V ¿ 1 we obtain

∆ = 2~ωDe−1/N(0)V (2.15)

For typical conventional superconductors, one has EF ≈ 1eV (measured
from the bottom of the conduction band) and V ≈ 0.1− 0.5eV ; the cou-
pling parameter N(0)V is thus in the range 0.1−0.5. In this range the gap
parameter ∆ ≈ 1meV is in general a small fraction (≈ 0.1−0.01) of ~ωD.

Just as a reminder: we have confined our discussion of the BCS theory of
superconductivity within the weak coupling limit (i.e. ∆ ¿ ~ωD), and
s-wave symmetry of the pairing state.

2.1.4 Ground-state energy

The condensation energy of a superconductor is defined as the energy
difference between the superconductor ground-state energy, which we
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call WS, and the normal ground-state energy WN ; its expression is

WS −WN = 2
∑

k

ξkv
2
k +

∑

kl

Vklukvkulvl − 2

k<kF∑

k

ξk. (2.16)

Using the previous relations (2.11) and (2.10) we obtain

WS −WN =
∑

k

[
2ξkv

2
k −∆kukvk

]−
k<kF∑

k

ξk (2.17)

where we also use the fact that the normal state at T = 0 correspond to
the BCS state with ∆ = 0, in which case

√
ξ2
k + ∆2

k = |ξ2
k|

After some calculations, in the average potential approximation, we find

WS −WN = 2
∑

k=|k|>kF

(
ξk − ξ2

k√
ξ2
k + ∆2

k

)
− ∆2

V
(2.18)

where the first term describes the change in kinetic energy, whereas the
term −∆2/V is the change in potential energy.
Going over to the continuum approximation, carrying out the integration
on ξ from 0 to ~ωD and using the weak-coupling-limit approximation, we
find

WS −WN =

[
∆2

V
− 1

2
N(0)∆2

]
− ∆2

V

= −1

2
N(0)∆2 (2.19)

The condensation energy (2.19) of the superconductor can be interpret
as originated by the electrons in the energy shell ∆ around the Fermi
energy which decrease their energy by about ∆ because of the pairing
mechanism.
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Figure 2.2: Schematic representation of the origin of the condensation energy
in the BCS ground-state. The electron pairs (k ↑,−k ↓) in the darker region
of k space, within an energy shell ∆ around the Fermi level, contribute to the
condensation energy of the superconductor (notice that, typically, ∆ ≈ 1meV
and EF ≈ 1eV ). The lines are a reminder of the binding energy of a Cooper
pair.

Momentum distribution and coherence length

The probability of finding an electron in a state with momentum ~k
and spin σ in the superconductor is given in terms of the single particle
number operator by

〈ΨS|c†kσckσ|ΨS〉 = v2
k =

1

2

[
1− ξk√

ξ2
k + ∆2

k

]
; (2.20)

in the normal gas, the same probability is given by

〈ΨN |c†kσckσ|ΨN〉 =

{
1 for k < kF

0 for k > kF

(2.21)

Notice also that u2
k = 1− v2

k.
We can do a similar analysis for the pair operator c†k↑c

†
−k↓ (or c−k↓ck↑).

In the superconducting ground state we have

〈ΨS|c†k↑c†k↓|ΨS〉 = ukvk =
1

2

∆k√
ξ2
k + ∆2

k

(2.22)
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Figure 2.3: Behavior of the quantities v2
k and ukvk for the superconducting

ground state and for the normal ground state. Note that v2
k approaches unity

well below the Fermi energy and zero well above, rather like the Fermi function
that is appropriate to normal metals at finite temperatures.

The above quantity is always zero in the normal state, but it is different
from zero in a small shell around kF in the superconductor state; some of
the most typical effects of superconductors (for instance Meissner effect
and Josephson tunneling) are related to this fact.
The region in reciprocal space where ukvk is different from zero has an
energy width ∆ around the Fermi energy. From the free-electron disper-
sion law E(k) = ~2k2/2m, we have the relation δE = (~2k/m)δk between
the width δk in reciprocal space and the energy width δE. With δE = ∆
and k = kF , we obtain ∆ = (~2kF /m)δk = ~vF δk. From the uncertainty
principle, we have that in real space the spatial extent ξ0 ≈ 1/δk is given
by

ξ0 =
1

π

~vF

∆
=

1

π

~2kF

m∆
(2.23)

The length ξ0 is the so-called BCS coherence length, and represents the
average distance in real space between the two electrons of the Cooper
pair. The pair coherence length is proportional to the Fermi velocity
and inversely proportional to the binding energy of the Cooper pair.
Typical values of ξ0 range from thousand Å in conventional supercon-
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ductors, to some tens Å in high-Tc superconductors. In general there is a
large number of Cooper pairs within the spatial coherence length ξ0. In
fact the density of Cooper pairs is of the order of ≈ n · (∆/EF ), where
n ≡ 1/[(3/4)πr3

sa
3
B] is the electron density of the metal, and ∆/EF is the

fraction of electrons that condensate in the ground superconducting state
with an energy gain of ≈ 2∆; we thus have that the average distance be-
tween the centers of mass of the pairs is related to the average distance
rsaB between electrons by the expression d ≈ rsaB(EF /∆)1/3. For con-
ventional superconductors, EF ≈ 1eV , ∆ ≈ 1meV , d ≈ 10rsaB ≈ 10Å.
With ξ0 of the order of 1000Å, there are million Cooper pairs within the
coherence length; the individual pairs overlap strongly in space and the
binding energy 2∆ of any pair depends cooperatively on the presence of
all the other pairs.

2.1.5 The Bogoliubov canonical transformation

Until now we have studied the ground-state of a superconductor at zero
temperature. We could study the excited states of a superconductor sys-
tem (still remaining at zero temperature) starting from the ground-state
wavefunction (2.2) |ΨS〉 =

∏
k(uk+vkc

†
kc
†
−k)|0〉, applying to it creation or

annihilation operators and elaborating the trial excited state so obtained
as done originally by BCS. A more convenient procedure was followed by
Bogoliubov and Valantin independently [5, 6] and allows one to obtain
in a single stroke the excitation spectrum of the superconductor.

We start with the observation that the characteristic BCS pair-interaction
Hamiltonian will lead to a ground-state which is some phase-coherent su-
perposition of many-body states with pairs of Bloch states (k ↑,−k ↓)
occupied or unoccupied. Because of the coherence, operators such as
c−k↓ck↑ can have nonzero expectation value bk in such a state, rather
than averaging to zero as in the normal metal, where the phases are
random. Moreover because of the large number of particles involved, the
fluctuation about these expectation values should be small. This suggests
that it will be useful to express such a product of operators formally as

c−k↓ck↑ = bk + (c−k↓ck↑ − bk) (2.24)
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where
bk = 〈ΨS|c−k↓ck↑|ΨS〉 (2.25)

and subsequently neglect quantities that are linear in the presumably
small fluctuation in the parenthesis.
Equation (2.25) defines the expectation value on the ground-state while
(2.24) defines the fluctuation operator in the parenthesis. A similar split
is performed for the product of two creation operators.
If we follow this procedure we obtain the so-called model Hamiltonian

HBCS ' HB =
∑

kσ

ξkc
†
kσckσ +

∑

kl

Vkl(c
†
k↑c

†
−k↓bl + b∗kc−l↓cl↑− b∗kbl) (2.26)

where we already neglected terms like (cc− b) or (c†c† − b∗).

If we now define
∆k = −

∑

l

Vklbl (2.27)

we can write the model Hamiltonian HB in the form

HB =
∑

kσ

ξkc
†
kσckσ −

∑

k

∆k

[
c†k↑c

†
−k↓ + c−k↓ck↑

]
+

∑

k

∆kbk (2.28)

which is a sum of term, each bilinear in the pair of operators correspond-
ing to the partners in a Cooper pair.
The model Hamiltonian can be diagonalized with a suitable canonical
transformation. Consider in fact the transformations

ck↑ = ukγk↑ + vkγ
†
−k↓ c−k↓ = ukγ−k↓ − vkγ

†
k↑

c†k↑ = ukγ
†
k↑ + vkγ−k↓ c†−k↓ = ukγ

†
−k↓ − vkγk↑ (2.29)

while the inverse transformation are

γk↑ = ukck↑ − vkc
†
−k↓ γ−k↓ = ukc−k↓ + vkc

†
k↑

γ†k↑ = ukc
†
k↑ − vkc−k↓ γ†−k↓ = ukc

†
−k↓ + vkck↑ (2.30)

The real numerical coefficient uk and vk satisfy u2
k + v2

k = 1. The linear
transformations (2.29) and (2.30) are canonical since the fermion opera-
tors γkσ and γ†kσ have the same standard anticommutation rules as those
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between ckσ and c†kσ. Note that γk↑ participate in destroying an elec-
tron with k ↑ or creating one with −k ↓; in both cases the net effect is
to decrease the system momentum by k and to reduce Sz by ~/2. The
operator γ†−k↓ has similar properties, so γ−k↓ itself decreases the system
momentum by −k and has the net effect of increasing Sz.
We now substitute these new operators in HB. The model Hamiltonian
contains now both diagonal particle number operators of the type γ†γ,
but also undesired terms of the type γγ and γ†γ†. At this stage we chose
uk and vk so that the coefficient of γγ and γ†γ† are zero and the model
Hamiltonian becomes diagonal in the particle number operators. For this
aim we require

2ξkukvk −∆k(u
2
k − v2

k) = 0 (2.31)

The solution of this equation, together with the normalization condition
u2

k + v2
k = 1, gives for uk and vk the explicit expression already reported

in (2.11).
Further comparison of the present procedure with the variational pro-
cedure, makes transparent the full equivalence of the variational BCS
approach and the Bogoliubov approach based on canonical transforma-
tion.

The model Hamiltonian can be written as

HB =
∑

k

[
ξk(u

2
k − v2

k) + 2∆kukvk

] [
γ†k↑γk↑ + γ†−k↓γ−k↓

]
+ WS

after some sobstitution

=
∑

k

√
ξ2
k + ∆2

k

[
γ†k↑γk↑ + γ†−k↓γ−k↓

]
+ WS (2.32)

where WS is the ground-state energy os the superconductor and Ek =√
ξ2
k + ∆2

k are the energies, above the ground state, of the quasiparticle

created by the fermi operators γ†k↑ and γ†−k↓.
In order to clarify the meaning of the Hamiltonian (2.32) we consider
the average gap approximation. In this case the energy gap parameters
∆k are constant and equal to ∆ (in the energy shell ±~ωD around the
Fermi energy). The quasiparticle excitation energy in the superconductor
becomes

Ek =
√

ξ2
k + ∆2

k (superconductors) (2.33)
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Figure 2.4: Energies of elementary excitations in the normal and supercon-
ducting states as functions of ξk

In the limiting case of vanishing electron-electron interaction, i.e. for
normal metals, we would have ∆ = 0 and hence

Ek = |ξk| (normal metals) (2.34)

The quasiparticle spectrum of the superconductor exhibits thus an energy
gap given by ∆. In the superconductor there are no electron-like states
with energy in the interval [EF , EF + ∆], and no hole-like states in the
energy interval [EF −∆, EF ].

Now that we have seen that the quasi-particle excitations can be de-
scribed as fermions created by the γ†k, which are in one-to-one correspon-

dence with the c†k of the normal metal, we can obtain the superconducting
density of states Ns(E) by equating

Ns(E)dE = Nn(ξ)dξ (2.35)

Because we are largely interested in energies ξ only a few millielectron-
volts from the Fermi energy, we can take Nn(ξ) = N(0), a constant. This
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leads directly to the simple result

Ns(E)

N(0)
=

dξ

dE
=

{
E

(E2−∆2)1/2 (E > ∆)

0 (E < ∆)
(2.36)

We expect a divergent state density just above E = ∆. Of course, the
total number of states is conserved because of the one-to-one correspon-
dence between the γk and the ck.

∆

2

3
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1 2 3
E

normal

N(E)
N(0)
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Figure 2.5: Density of states in superconducting compared to normal state.
All k states whose energies fall in the gap in the normal metal are raised in
energy above the gap in the superconducting state.

From the above considerations on quasiparticle excitations, we also infer
that breaking a pair, giving rise to two quasiparticles, requires at least
an energy 2∆; the quantity 2∆ can be interpreted as the binding energy
of any one pair, due to the cooperative presence of many other pairs (all
in the same quantum state of zero total spin and zero momentum) in the
superconductor ground state.

2.1.6 Finite temperature

At finite temperature the quasiparticle states of the superconductor are
thermally excited and a number of Cooper pairs are broken; this process
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is accompanied by a decrease of the energy gap in quasiparticle excita-
tions and eventually leads to the transition to the normal state.
What we want now is an expression temperature dependent for the
gap parameter and a way to find the critical temperature Tc at which
∆(T ) → 0.

Since we have identified Ek as the excitation energy of a fermion quasi-
particle, it must be a positive quantity ≥ ∆. The probability that a
quasiparticle is excited in thermal equilibrium is the usual Fermi function

f(Ek) = (eβEk + 1)−1 (2.37)

where β = 1/kBT . We see that f(Ek) goes to zero at T = 0 for all k,
including |k| < kF . From equation (2.27) ∆k = −∑

l Vklbl using the fact

that γk↑γ−k↓ and γ†k↑γ
†
−k↓ do not contribute to the average of bk and b∗k

we write

∆k = −
∑

l

Vkl〈c−l↓cl↑〉 = −
∑

l

Vklu
∗
l vl〈1− γ†k↑γk↑ − γ†−k↓γ−k↓〉 (2.38)

We find that

〈1− γ†k↑γk↑ − γ†−k↓γ−k↓〉 = 1− 2f(Ek) (2.39)

so that equation (2.27) becomes

∆k = −
∑

l

Vklu
∗
l vl [1− 2f(Ek)]

= −
∑

l

Vkl
∆l

2El

tanh
βEl

2
(2.40)

This is the desired generalization of equation (2.12) for finite temperature
and reduces to it at zero temperature.
In the average potential approximation where Vkl = V and ∆k = ∆ the
previous self-consistency condition becomes

1

V
=

1

2

∑

k

tanh βEk/2

Ek

(2.41)
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Figure 2.6: Temperature dependence of the energy gap in the BCS theory.
Strictly speaking, this universal curve holds only in a weak-coupling limit, but
it is a good approximation in most cases.

To find the critical temperature Tc we notice that when ∆(Tc) = 0 then
Ek = |ξk|. Thus Tc is found replacing Ek with |ξk| in (2.41) and solving.
After changing the sum to an integral, taking advantage of the symmetry
of |ξk| about the Fermi level and changing to a dimensionless variable of
integration, the condition becomes

1

N(0)V
=

∫ βc~ωc/2

0

tanh x

x
dx (2.42)

We find in the weak coupling limit

kBTc = 1.13~ωce
−1/N(0)V (2.43)

Inserting this into equation (2.15) we have

∆(0) = 1.76kBTc (2.44)

so that the gap at T = 0 is indeed comparable in energy to kBTc. The
numerical factor 1.76 has been tested in many experiments and found to
be reasonable.
The behavior of ∆(T ) as a function of T for T → Tc (and T < Tc) is
found to be

∆(T ) = 3.06kBTc

(
1− T

Tc

)1/2

(2.45)

where the 1/2 exponent is a characteristic feature of the mean field the-
ories.
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2.1.7 Electron tunnelling into superconductors

A central feature in the BCS theory is the presence of an energy gap in
the electron density-of-state of superconductors. A most direct evidence
of the gap and of the electron structure of the superconductors is pro-
vided by the electron tunnelling experiments.
Consider first a junction constituted by two normal metals, separated
by a thin insulating film (typically 10 ≈ 50Å). It is well known that,
if a potential difference is applied across the junction, a current flows
because of the capability of electrons to penetrate a thin barrier. For
low fields, the tunnelling current is proportional to the applied voltage
V. In fact, in quasi equilibrium conditions, the Fermi levels of the two
metals are shifted by eV . The density-of-state in the two metals, as well
as tunnelling probabilities, are practically independent of energy in the
few millielectronvolts around EF , and this leads to the ohmic behavior
of the junction.
Let us now examine the electron tunnelling across a junction formed by
normal metal-insulator-superconductor (NIS junction). In the ordinary
metal (at zero temperature) all states below the Fermi energy EF are
filled, while all states above EF are empty, with zero gap between occu-
pied and empty states. In the superconductor the quasiparticle energies
differ from the Fermi energy at least by the energy gap ∆. When a bias
voltage V is applied to a NIS junction, one-particle states are not avail-
able in the superconducting material for accepting or supplying electrons
unless the bias exceeds δ/e. When V > δ/e, the I−V characteristic and
in particular the differential conductance G = dI/dV is related to the
density-of-state of quasiparticle in the superconductor (since the density-
of-state in the metal can be taken as constant in the few millielectronvolts
of interest). Finally when V À ∆/e the ohmic behavior of the junction
is recovered.

Let us now consider the tunnelling between two equal superconductors,
of energy gap parameter ∆, separated by a thin insulating barrier (SIS
junction). At T = 0 we find that there is no quasiparticle tunnelling until
the bias voltage V exceeds 2∆/e; in the case the two superconductors
are different the threshold voltage is (∆1 + ∆2)/e.
At the threshold voltage, we expect a discontinuous jump of the current,
because of the singularity of the density-of-state of quasiparticle in the
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Figure 2.7: Schematic representation of the I−V characteristics of a normal
metal-insulator-superconductor junction at zero temperature and above the
critical temperature; ∆ is the energy gap parameter of the superconductor.
At finite temperature 0 < T < Tc the presence of thermally excited electrons
contribute to smear out and shift the strongly nonlinear T = 0 current-voltage
characteristic.

two superconductors; eventually for higher bias voltages the ohmic be-
havior is recovered.
It is important to notice that in the case of SIS junctions, besides the
quasiparticle tunnelling current discussed so far, we can have a supercur-
rent tunnelling due to Cooper pairs transfer between superconductors;
this current, called Josephson current, can be observed in SIS junctions
with extremely thin insulating layers (10 − 15Å). In this situation the
coupling between the two superconductors is sufficiently strong that a
definite phase relationship between pairs on opposite sides of the insu-
lating barrier can be maintained. We will treat the Josephson current in
the next chapter.

2.2 Single electron tunnelling through tran-
sistor my way

In this calculation we treat the island as a one level island with infinite
Coulomb interaction so that the dot can never be double occupied. We
will take into account that a bias voltage V can shift the Fermi sea of the
leads. We carry out the calculation at T = 0, a generalization to T > 0
is straight forward.

As in [4] we derive an expression for the current using the usual kinetic
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equation approach.
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Figure 2.8: Schematic representation of the system studied. We will relate,
in this and next chapter, to the leads with the letters a or α and b or β for
left and right respectively.

As we said the dot can’t be double occupied so it can have only three
states: empty, and occupied either with spin up or down. The probabil-
ities for the three states are denoted P0, P↑ and P↓, respectively.

The rate equations in equilibrium are given by:

Ṗ0 = −2Γ0→1P0 + Γ1→0P↑ + Γ1→0P↓ = 0 (2.46a)

Ṗ↑ = Γ0→1P0 − Γ1→0P↑ = 0 (2.46b)

Ṗ↓ = Γ0→1P0 − Γ1→0P↓ = 0 (2.46c)

which combined with the condition P0 + P↑ + P↓ = 1 has the solution

P0 =
Γ1→0

Γ1→0 + 2Γ0→1

, P↑ = P↓ =
Γ0→1

Γ1→0 + 2Γ0→1

(2.47)

We denote with Γ1→0 the tunnelling rate for tunnelling from a singly
occupied state to the empty state, and with Γ0→1 the reverse process.
The meaning of (2.46) is clear: the first equation for example gives the
rate of change of the empty state Ṗ0. This rate is increased by the
probability of the dot being full, with spin up or down, times the rate of
leaving the dot (which could only happen if the dot is in fact full) and
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is decreased by the probability of the dot being empty times the rate
of getting to be occupied, times a factor two which arises because there
are two way of occupying the dot, either with spin up or spin down (but
there is only one way of leaving it).
Since the electron can tunnel out of both left and right leads, both rates
have left and right contributions: Γi⇁j = ΓL

i→j + ΓR
i→j. The tunnelling

rate are calculated using Fermi golden rule which means that we treat
HT (the tunnelling Hamiltonian) as a perturbation.

The current through the dot is given by:

I = −e[2P0Γ
L
0→1 − (P↑ + P↓)ΓL

1→0] = 2e
ΓR

0→1Γ
L
1→0 − ΓR

1→0Γ
L
0→1

Γ1→0 + 2Γ0→1

(2.48)

We start looking for the expression of ΓL
0→1, the expression for ΓR

0→1 won’t
be different but for the different value of the bias applied on the left and
right lead.

To find ΓL
0→1 we set the initial state as |i〉 = |G0G〉 where with |G〉 we

denote the ground state of the superconducting lead right or left and
with |0〉 in the middle we denote the state of the dot. We suppose that
the island is initially empty.

The final state for electrons travelling through the left junction would be
given by

|f〉 = c†k′σα
†
kσ′|i〉.

This means that we are creating a single quasi particle in the supercon-
ducting ground-state breaking a Cooper pair on the left lead and that
we are transporting a particle on the dot. α and α† are the quasiparticle
annihilator and creator of the BCS theory. For T > 0 a final state could
be given also by |f〉 = c†k′σαkσ′|i〉 where we annihilate a quasiparticle in
the superconducting leas. This could be done because for T > 0 the equi-
librium state contains thermal excited states. But as we said we work at
zero temperature.

The finals states are actually four depending on the spins σ and σ′

but we will find that only two final states give a non zero contribution
to the current.
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The four states are:

|f1〉 = c†k′↑α
†
k↑|i〉

|f2〉 = c†k′↑α
†
k↓|i〉

|f3〉 = c†k′↓α
†
k↑|i〉

|f4〉 = c†k′↓α
†
k↓|i〉

The tunnelling Hamiltonian is as usual, we write just the one for the left
lead since this is the only one we need in this calculation

HT =
∑

lmσ

tlm[c†mσalσ + cmσa
†
lσ]

We calculate

HT |f1〉 =
∑

lmσ

tlm[c†mσalσc
†
k′↑α

†
k↑ + a†lσcmσc

†
k′↑α

†
k↑]|i〉

the first term creates two particles in the dot

which is not possible in my model so it is zero,

in the second term since the dot is initially empty

we need to have k′ = m and σ =↑
=

∑

l

tlk′ck′↑a
†
l↑c

†
k′↑α

†
k↑|i〉

= ck′↑c
†
k′↑|0〉

∑

l

tlk′ [ulα
†
l↑ + vlα−l↓]α

†
k↑|G〉

where we used the bilinear relation between the quasiparticle

operators of the BCS theory and the normal particles operators



52 CHAPTER 2. SUPERCONDUCTING LEADS

In the same way we find:

HT |f2〉 = ck′↑c
†
k′↑|0〉

∑

l

tlk′ [ulα
†
l↑ + vlα−l↓]α

†
k↓|G〉

= ck′↑c
†
k′↑|0〉t−kk′vkαk↓α

†
k↓|G〉 (2.49)

HT |f3〉 = ck′↓c
†
k′↓|0〉

∑

l

tlk′ [ulα
†
l↓ − vlα−l↑]α

†
l↑|G〉

= ck′↓c
†
k′↓|0〉t−kk′(−vk)αk↑α

†
k↑|G〉 (2.50)

HT |f4〉 = ck′↓c
†
k′↓|0〉

∑

l

tlk′ [ulα
†
l↓ − vlα−l↑]α

†
k↓|G〉 (2.51)

To use Fermi golden rule we need to find 〈f |HT |i〉
It is straight forward to see that for case one and four we have:

〈f1|HT |i〉 = 0

〈f3|HT |i〉 = 0

since we start from the ground state of the superconducting leads which
don’t contain excited states.

What remains are the second and third terms:

HT |f2〉 = +t−kk′ck′↑c
†
k′↑|0〉vkαk↓α

†
k↓|G〉 (2.52)

HT |f3〉 = −t−kk′ck′↓c
†
k′↓|0〉vkαk↑α

†
k↑|G〉 (2.53)

Remembering that we are dealing with a one level dot we can forget
about the k′ subscript for the dot operators.

Now we can use Fermi golden rule (as before we set ~ = 1) to find the
total rate of tunnelling through the dot. To do so we need to sum over all
configuration of the lead. This restores back the sum over k for the lead
which we lost in the previous calculation (2.49) (2.50). As we said we
apply on the lead a voltage V which shifts its the Fermi energy. We also
suppose that the tunnelling is elastic and we apply energy conservation
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Figure 2.9: Energy conservation for the process of filling the dot. In the
initial state the energy of the system is given by the electrons in the Fermi sea
which feel the bias voltage applied. The final state is given by the energy of
the electron filling the dot, the energy of the excited other pair electron and
the energy of the Fermi sea that has lost one electron

to the system.

ΓL
0→1 = 2π

∑

k

|〈f |HT |i〉|2δ(ε0 + Ek − V )

= 2π|tk|2
∑

k

v2
k(1− f(Ek))δ(ε0 + Ek − V )

we now change the sum into an integral as it is usually done and

write all the constant in one as C

= C

∫

<
dξk

1

2
(1− ξk

Ek

)(1− f(Ek))δ(ε0 + Ek − V )

=
C

2

∫

<

dξk

dEk

dEk[(1− f(Ek))δ(ε0 + Ek − V )− ξk

Ek

(1− f(Ek))δ(ε0 + Ek − V )]

using the relation between the desity of states of normal-superconducting states

=
C

2
N(0)

∫

<
dEk

Ek√
E2

k −∆2
(1− f(Ek))δ(ε0 + Ek − V )+

− C

2
N(0)

∫

<
dEk

Ek

|ξk|
ξk

Ek

(1− f(Ek))δ(ε0 + Ek − V )

the second part of the integral is an odd function so it goes to zero

=
C

2
N(0)

V − ε0√
(V − ε0)2 −∆2

[1− f(V − ε0)]Θ(V − ε0 −∆)

(2.54)
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Where we need the step function because the excitation energy of the
quasi particle is always positive and greater than the gap energy ∆ which
we took independent from the quasiparticle momentum as in the average
potential approximation: Ek > ∆ > 0

For a moment we have considered T 6= 0. Letting T = 0 we see that the
terms like 1 − f(V − ε0) get to be step functions Θ(V − ε0) which are
actually contained in the step function due to Ek > 0.

Hence

ΓL
0→1 =

C

2
N(0)

V − ε0√
(V − ε0)2 −∆2

Θ(V − ε0 −∆) (2.55)

We now need to carry out the same evaluation for the opposite rate of
tunnelling: ΓL

1→0.

In this case the initial state is given by |i〉 = |G1G〉 and the final states
that will contribute with a term different from zero are

|f1〉 = c↑α
†
k↑|i〉 or |f2〉 = c↓α

†
k↓|i〉.

We find HT = c†c|1〉tkk′ukαα†|G〉 where we omit the subscripts but
the meaning is clear.

The calculation for the tunnelling rate is the same as before where instead
of

v2
k =

1

2

(
1− ξk

Ek

)
we use u2

k =
1

2

(
1 +

ξk

Ek

)
.

So we have:

ΓL
1→0 = 2π

∑

k

u2
k(1− f(Ek))δ(V + Ek − ξ0)

= C

∫

<
dξku

2
k[1− f(Ek)]δ(V + Ek − ξ0)

= · · ·
=

C

2
N(0)

ε0 − V√
(ε0 − V )2 −∆2

Θ(ε0 − V −∆)
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Figure 2.10: Energy conservation for the process of emptying the dot

We set an asymmetric bias voltage to the leads: +V on the left lead and
−V on the right lead. The four tunnelling rate in this case are:

ΓL
0→1 =

ΓL

2

V − ε0√
(V − ε0)2 −∆2

Θ(V − ε0 −∆) (2.56a)

ΓR
0→1 =

ΓR

2

−V − ε0√
(−V − ε0)2 −∆2

Θ(−V − ε0 −∆) (2.56b)

ΓL
1→0 =

ΓL

2

ε0 − V√
(ε0 − V )2 −∆2

Θ(ε0 − V −∆) (2.56c)

ΓR
1→0 =

ΓR

2

V + ε0√
(V + ε0)2 −∆2

Θ(V + ε0 −∆) (2.56d)

where we denoted ΓL,R = 2πNL,R(0)|tl,r|2.
Now we have everything to find the current as in (2.48).

I used Mathematica 5.1 to carry out the calculations and this are some
of voltage-current characteristics assuming that the two superconductors
are equal. which means ∆l = ∆r.

What is shown in this plots is just the first step of the Coulomb blockade
theory given in chapter one. If we took into account a dot with multiple
levels we would have seen more than one step in the plot.
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Figure 2.11: ε0 = 50, ∆ =
0, 20, 50, 70, 100. We notice that the
zero current plateau is exactly ε0 +∆
in both directions of V . Also we no-
tice that for ∆ = 0 the step is sharp.
We are back to the Coulomb block-
ade treated in the previous chapter

Figure 2.12: ε0 = 10, ∆ = 0. Plot
for ∆ = 0.



Chapter 3

Josephson current

3.1 Cooper pairs tunnelling

In the pervious section we have considered tunnelling of normal electrons
(or quasiparticle) from a superconducting SIS junction, composed by the
superconducting films separated by a very thin insulating layer.
For superconducting tunnel junction with extremely thin insulating lay-
ers (10 − 15Å), the electron pair correlations extend through the insu-
lating barrier. In this situation is has been predicted by Josephson that
paired electrons can tunnel without dissipation from one superconductor
to the other superconductor on the opposite side of the insulating layer.
The direct supercurrent of pairs, for currents less than a certain critical
value IJ , flows with zero voltage drop across the junction (dc Josephson
effect). The width of the insulating barrier of the junction limits the
maximum supercurrent that can flow across the junction, but introduces
no resistance in the flow. Josephson also predicted that, in the case a
constant finite voltage V is established across the junction, an alternat-
ing supercurrent IJ sin(ωJ + φ0) flows with frequency ωJ = 2eV/~ (ac
Josephson effect).

We discuss here only the most elementary aspects of this subject, remark-
able both for its fundamental aspects and technological applications.

Consider two superconductors separated by a thin insulating barrier of

57
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Figure 3.1: Schematic representation of the direct current I − V charac-
teristics (at T = 0) of a superconductor-insulator-superconductor junction
displaying the Josephson current. For V = 0 a direct supercurrent can flow
(up to a maximum value IJ). For 0 < V < 2∆0/e an alternate supercurrent
flows with frequency ω = 2eV/~, and no direct supercurrent is observed. For
V > 2∆0/e the quasiparticle tunnelling current is reported.

width b. In the case the insulating barrier is infinitely thick, the super-
conductor on the left side would be characterized by the order parameter
ψ1, that can be written as

ψ1 = |ψ1|eiθ1 (3.1)

with |ψ1| and θ1 uniform on the whole volume of superconductor 1. Sim-
ilarly the superconductor on the right side would be characterized by the
order parameter

ψ2 = |ψ2|eiθ2 (3.2)

with |ψ2| and θ2 space independent on the volume of superconductor
2. When the two superconductors are separated by a thin insulating
barrier, we can expect that the superconducting order parameters ψ1

and ψ2 decay within the insulating region; we can guess that the order
parameter ψ(z) within the barrier can be expressed in the form

ψ(z) = ψ1e
−βz + ψ2e

+β(z−b), (3.3)

where β characterizes the damping within the barrier.

Using this all in the macroscopic Ginzburg-Landau theory we obtain for
the current density
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Figure 3.2: Schematic representation of a junction between two supercon-
ductor separated by a thin barrier of width b. The behavior of the order para-
meter wavefunction for the superconductor-insulator-superconductor junction
is indicated

JS(z) =
2~e
2m

βe−βb|ψ1||ψ2| sin(θ2 − θ1) (3.4)

We thus see that the Josephson supercurrent, that flows between two su-
perconductors separated by an insulating barrier, is related to the phase
difference γ = θ2−θ1 of the order parameters in the two superconductors
by the relation

I = IJ sin(γ) (3.5)

where IJ depends on the geometrical and physical properties of the junc-
tion. Equation (3.5) has been derived on the basis of the heuristic ap-
proach. At detailed analysis based on the microscopic BCS theory pro-
vides not only equation (3.5), but also the maximum current I = IJ ,
which can flow across the junction without dissipation. The critical value
IJ of an ideal SIS two tunnel unction is given by the current that would
flow applying a voltage equal to (π/4)(2∆/e) to the normal junction,
in the same geometrical conditions. Notice finally that our treatment
assumes that the magnetic field flux that threads the junction is negli-
gible; in general, the dependence of IJ on the magnetic field (diffractive
pattern) should be appropriately considered.

Consider now a superconducting junction biased with a (constat or time
dependent) voltage V . If a potential difference is established between
the two superconductors, the relative energy difference between Cooper
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pairs belonging to different superconductors is 2eV . In perfect analogy
with the quantum mechanical rate of change of phases of ordinary eigen-
functions (energy divided by ~), we expect for the time variation of the
relative phase

dγ

dt
=

2eV

~
(3.6)

It is now easy to see that the above equations describe both the dc
Josephson effect as well as the ac Josephson effect.

If the potential V across the SIS junction is zero, we see from equation
(3.6) that γ is constant; from equation (3.5) we have that any super-
current with intensity ranging from −IJ to +IJ can flow through the
junction (the actual value is determined by the external circuit); this is
the origin of the zero resistance spike at V = 0 in the I−V characteristics
for a Josephson junction.

Suppose that a constant potential V (0 < V < 2∆/e) is established
across the SIS junction (for simplicity e assume that an ideal voltage
source maintains a constant voltage V across the SIS junction; this in-
dependently from the normal current that could be flowing through the
circuit). Integration of equation (3.6) gives

γ(t) =
2eV

~
t + γ0 (3.7)

The phase difference is the linear function of time and the Josephson
current is

I = IJ sin

(
2eV

~
t + γ0

)
(3.8)

This pair current is oscillatory with angular frequency ωJ = 2πνJ =
(2e/~)V . The frequency νJ can be expressed as

νJ =
2e

~
V = 483.6MHz · V

µvolt
(3.9)

where V is measured in microvolt. So an alternating current of frequency
483.6MHz · V

µvolt
is expected to flow for V 6= 0, while for V = 0, a steady

current is expected, according to (3.5).



3.2. JOSEPHSON TROUGH A SINGLE LEVEL 61

3.2 Calculation of the Josephson current

trough a single level dot

In this section we will calculate the Josephson current (in the meaning
of travelling Cooper pairs) trough the transistor having the island which
is a single level dot. This time we will take into account the Coulomb
interactions between the electrons travelling trough the dot.

The model Hamiltonian is the same as usual:

H = H0 + HT (3.10)

H0 = HL + HR + HD (3.11)

where

HL =
∑

lσ

ξla
†
lσalσ −

∑

l

∆la
†
l↑a

†
−l↓ −

∑

l

∆la−l↓al↑ (3.12)

HR =
∑

lσ

ξlb
†
rσbrσ −

∑
r

∆rb
†
r↑b

†
−r↓ −

∑
r

∆rb−r↓br↑ (3.13)

HD = ξD

∑
σ

d†σdσ + Un↑n↓ (3.14)

The left and right lead are superconducting so that we need to use the
superconducting Hamiltonians, the dot is single level and we take into
account that when is double occupied there is a repulsive energy U that
highers the energy state of the island itself.

HT = H+
T + H−

T

H+
T = (H−

T )† = H+
TL + H+

TR

H+
TL =

∑

lσ

tld
†
σalσe

iφ/2

So that the total tunnelling Hamiltonian is

HT =
∑

lσ

[tld
†
σalσe

iφ/2 + H.c] +
∑
rσ

[trd
†
σbrσe

iθ/2 + H.c] (3.15)

We absorb the phase dependence of the Hamiltonian in the tunnelling
matrix element tl r so that the tunnelling Hamiltonian becomes

HT =
∑

lσ

[tld
†
σalσ + H.c] +

∑
rσ

[trd
†
σbrσ + H.c] (3.16)
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where now tl = tle
iφ/2 and tr = eiθ/2

We denote H+
T the part of the tunnelling Hamiltonian that tunnels an

electron on the dot and H−
T the one that lowers the number of electrons

on the dot.
As in the previous chapter we denote the operators relating to the left
lead with a or α (the first one is the normal particle operator and the
second one is the quasiparticle operator of the BCS theory), the operators
relating to the right lead with b or β and the operators relating to the dot
with d. To notice is that we have written explicitly the phase dependence
of the operators.

By definition the current is

I = i〈H+
Tα −H−

Tα〉 = −2Im〈H+
Tα〉 = 2Im〈H−

Tα〉 (3.17)

where α is either left or right. We work with H+
TL

Using now imaginary time theory we have

〈H+
TL〉 =

1

Z
Tr{e−βHH+

TL} =
1

Z
Tr{e−βH0U(β, 0)H+

TL} = 〈U(β, 0)H+
TL〉0
(3.18)

where U is the time evolution operator in the interaction picture and its
full form is given by

U(τ, τ ′) =
∞∑

n=0

1

n!
(−1)n

∫ τ

τ ′
dτ1 · · ·

∫ τ

τ ′
dτnTτ (HT (τ1) · · ·HT (τn)) (3.19)

where all the operators are now in the interaction picture form and where
Tτ is the time-ordering operator.

We want to find the Josephson current trough the dot, this means that
we want four particle to pass across the dot. This implies that the first
nonzero term for the Josephson current is given by a forth order per-
turbation theory. Or also we realize that since we need four steps for
the travelling electrons we need to use the tunnelling Hamiltonian four
times. We then write

〈H+
TL〉 = − 1

3!

∫ β

0

dτ1

∫ β

0

dτ2

∫ β

0

dτ3〈Tτ (HT (τ1)HT (τ2)HT (τ3)H
+
TL(0)〉0

(3.20)
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As we said we want the electrons to pass trough and the term in the
bracket gives three equivalent ways of doing it, either considering

H+H−H−H+ or H−H+H−H+ or H−H−H+H+.

This gives a factor of three to the integral.

We need now to evaluate the bracket and the the integral. We begin with
the evaluation of the bracket.
We already said that the terms needed are in the form H+H−H−H+,
in particular we look for pairs tunnelling from the left lead to the right
lead, this means that what we actually are going to study is the reduced
term

H+
TL(τ1)H

−
TR(τ2)H

−
TR(τ3)H

+
TL(0) (3.21)

where we wrote also the time dependence as appearing in (3.20).

The evaluation of 〈H+
TL(τ1)H

−
TR(τ2)H

−
TR(τ3)H

+
TL(0)〉0 is just a matter of

simple mathematics and gives the result

H+
TL(τ1)H

−
TR(τ2)H

−
TR(τ3)H

+
TL(0) =∑

l σ1
r σ2
f σ3
p σ0

tltpt
∗
rt
∗
galσ1(τ1)apσ0(0)

× b†rσ2
(τ2)b

†
fσ3

(τ3)

× d†σ1
(τ1)dσ2(τ2)dσ3(τ3)d

†
σ0

(0) (3.22)

where we moved the operators referring to same part of the system all
togethers. This can be done the average we are about to take is in re-
spect of H0. H0 is the Hamiltonian of the non-interacting subsystems.
This means that the three Hamiltonian commute and also he operators
referring to different subsystem.
Now we need to take the thermal (time ordered) average of this quan-
tity. To do so we already notice that the average is taken in respect of
H0 in which the subsystem’s Hamiltonians commute meaning that the
three subsystems (left lead, dot and right lead) are independent in that
approximation. This allows us to take three different thermal average on
the three different subsystem. Furthermore we notice that the thermal
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average taken on the superconducting parts leads us to the anomalous
Green’s functions〈
Tτ

(
c†−k↓(τ)c†k↑

)〉
=

〈
Tτ

(
ck↑(−τ)c−k↓)

)〉†

= [G(Ek, τ) + G(Ek,−τ)]
∆k

2Ek

=
∆k

2Ek

[
(θ(τ)− nF (Ek))e

−Ekτ + (θ(−τ)− nF (Ek))e
Ekτ

]

=
∆k

2Ek

[
e−Ek|τ | − 2 cosh (Ekτ) nF (Ek)

]

≡ ∆k

2Ek

fk(τ) = (F↑ ↓(τ, k))†

This anomalous Green’s function have many useful symmetry properties

F↓ ↑(τ − τ ′ k) = 〈Tτ (c−k↓(τ)ck↑(τ ′) ) 〉 = −〈Tτ (ck↑(τ)c−k↓(τ ′) ) 〉 = −F↑ ↓(τ − τ ′ k)

(F↓ ↑)† (τ − τ ′ k) =
〈
Tτ

(
c†k↑(τ)c†−k↓(τ

′)
) 〉

F↓ ↑ = (F↓ ↑)† = −F↑ ↓ = − (F↑ ↓)†

As we see from the above expression for the anomalous Green’s functions,
to have nonzero terms in our thermal average we choose

p = −l σ0 = σ1

f = −r σ3 = σ2

We notice also that for spin symmetry we can choose σ1 =↓ and have a
factor of 2 for the integral, in the same way we can choose σ2 =↑ and
have a second factor 2.

Gathering all this information together we have, so far

〈H+
TL〉 = −2

∫ β

0

dτ1

∫ β

0

dτ2

∫ β

0

dτ3

×
∑

l ↓
r ↑

tlt−lt
∗
rt
∗
−r

× F↓ ↑(l, τ1) (F↓ ↑)† (r, τ2 − τ3)

×
〈
Tτ

(
d†↓(τ1)d↑(τ2)d↓(τ3)d

†
↑(0)

)〉
0

(3.23)
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We proceed in the evaluation of the (time ordered) thermal average. The
evaluation of the thermal average is carried out in the following way

〈O〉0 =
1

Z

∑
states

〈Ψ|e−βH0 O(t)|Ψ〉

where the states |Ψ〉 form a s.o.n.c. for the Hilbert space we are working
in. We also have written the time or imaginary time dependence of the
operator (t = t or τ). We remaind that through all this calculation we
are working with imaginary time and in the interaction picture so that

{
states: |ψ̂(τ)〉 = eτH0|ψ(τ)〉
operators: Â(τ) = eτH0Ae−τH0

where H0 does not depend on time.
We remind also the relations

|0〉 = c↑c↓| ↓↑〉
| ↓↑〉 = c†↓c

†
↑|0〉

| ↓↑〉 = −| ↑↓〉
We can easily find the eigenstates and the eigenfunctions of the system
we are dealing with:

eigenstates |0〉 | ↑〉 | ↓〉 | ↑↓〉 (3.24)

eigenvalue 0 ε ε 2ε + U (3.25)

For the time ordering operator we need to carry out six different thermal
averages

0 < τ3 < τ2 < τ1 =⇒ +
〈
d†↓(τ1)d↑(τ2)d↓(τ3)d

†
↑
〉

0
(3.26a)

0 < τ2 < τ3 < τ1 =⇒ −
〈
d†↓(τ1)d↓(τ3)d↑(τ2)d

†
↑
〉

0
(3.26b)

0 < τ3 < τ1 < τ2 =⇒ −
〈
d↑(τ2)d

†
↓(τ1)d↓(τ3)d

†
↑
〉

0
(3.26c)

0 < τ1 < τ3 < τ2 =⇒ +
〈
d↑(τ2)d↓(τ3)d↓(τ1)

†d†↑
〉

0
(3.26d)

0 < τ2 < τ1 < τ3 =⇒ +
〈
d↓(τ3)d

†
↓(τ1)d↑(τ2)d

†
↑
〉

0
(3.26e)

0 < τ1 < τ2 < τ3 =⇒ −
〈
d↓(τ3)d↑(τ2)d

†
↓(τ)d

†
↑
〉

0
(3.26f)
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We find the results

0 < τ3 < τ2 < τ1 =⇒ 〈· · · 〉 = − 1

Z
eβε eε(τ1−τ3−τ3) e−τ3U (3.27a)

0 < τ2 < τ3 < τ1 =⇒ 〈· · · 〉 = − 1

Z
eβε eε(τ1−τ3−τ3) e−τ2U (3.27b)

0 < τ3 < τ1 < τ2 =⇒ 〈· · · 〉 = − 1

Z
eβε eε(τ1−τ3−τ3) e(τ1−τ2−τ3)U (3.27c)

0 < τ2 < τ1 < τ3 =⇒ 〈· · · 〉 =
1

Z
eε(τ1−τ3−τ3) (3.27d)

0 < τ1 < τ3 < τ2 =⇒ 〈· · · 〉 =
1

Z
eε(τ1−τ3−τ3)e(τ1−τ3)U (3.27e)

0 < τ1 < τ2 < τ3 =⇒ 〈· · · 〉 =
1

Z
eε(τ1−τ3−τ3)e(τ1−τ3)U (3.27f)

Where Z is the partition function Z =
∑

states〈Ψ|e−βH0|Ψ〉 and its value
is

Z = 1 + 2e−βε + e−β(2ε+U) (3.28)

We can clearly see that (3.27a) and (3.27b) are equal if we exchange τ2

with τ3 and also (3.27e) and (3.27f) if again we exchange τ2 with τ3. We
label the previous results as follows

D1 =

{
−eβε eε(τ1−τ3−τ3) e−τ3U

−eβε eε(τ1−τ3−τ3) e−τ2U

D3 = −eβε eε(τ1−τ3−τ3) e(τ1−τ2−τ3)U

D5 = eε(τ1−τ3−τ3)

D4 =

{
eε(τ1−τ3−τ3)e(τ1−τ3)U

eε(τ1−τ3−τ3)e(τ1−τ3)U

At this point we need to calculate

〈H+
TL〉 = −2

1

Z

∑
i

∫ β

0

dτ1

∫ β

0

dτ2

∫ β

0

dτ3 Di

×
∑

l ↓
r ↑

tlt−lt
∗
rt
∗
−r F↓ ↑(l, τ1) (F↓ ↑)† (r, τ2 − τ3)
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We now calculate the sums in the energy space.

∑

l↓
tlt−lF↓ ↑(l, τ1) ←→ (tl)

2ρ(EF )

∫ ∞

∆l

dEl
El√

E2
l −∆2

l

F↓ ↑(l, τ1)

= (tl)
2ρ(EF )(−)

∆l

2

∫ ∞

∆l

dEl
1√

E2
l −∆2

l

fk(τ)

in the limit ∆β À 1

' (tl)
2ρ(EF )

∆l

2

∫ ∞

∆l

dEl
1√

E2
l −∆2

l

[e−El(β−|τ1|) − e−El|τ1|]

= (tl)
2ρ(EF )

∆l

2
[K0(∆l(β − |τ1|))−K0(∆l|τ1|)]

where K0 is the modified Bessel function of the second kind.

Concluding we need to calculate

〈H+
TL〉 = − 1

2Z
ρl(EF ) (tl)

2∆l ρr(EF )(t∗r)
2 ∆r

∑
i

∫ β

0

dτ1

∫ β

0

dτ2

∫ β

0

dτ3 Di

× [K0(∆l(β − |τ1|))−K0(∆l|τ1|)]
× [K0(∆r(β − |τ2 − τ3|))−K0(∆r|τ2 − τ3|)] (3.29)

The integration can’t be done analytically.
To work analytically we need to make some approximations on the sys-
tem. Before we remaind what we are looking for not to loose the general
picture of the calculation.

I = −2Im〈H+
TL〉 (3.30)

The first approximation we make is that the dot can’t be double oc-
cupied. This corresponds to set U = +∞. Given this approximation
the only nonzero term in the dot thermal average which survives is the
term denoted by D5 = eε(τ1−τ3−τ3) and the partition function reduces to
Z = 1 + 2e−βε
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The calculation to be done is now

〈H+
TL〉 = − 2

Z

∫ β

0

dτ1

∫ β

0

dτ2

∫ β

0

dτ3

×
∑

l ↓
r ↑

tlt−lt
∗
rt
∗
−r

× F↓ ↑(l, τ1) (F↓ ↑)† (r, τ2 − τ3)

× eε(τ1−τ3−τ3) (3.31)

This gives

Iα = 2 Im
∑

l

t∗rt
∗
−rt−ltl

∆l∆r

4ElEr

C (3.32)

where

C =
1

Z

∫ β

0

dτ3

∫ τ3

0

dτ1

∫ τ1

0

dτ2 eε(τ1−τ3−τ3)

× [
(θ(τ1)− nF (El))e

−Elτ1 + (θ(−τ1)− nF (El))e
Elτ1

]

× [
(θ(τ)− nF (Er))e

−Er(τ2−τ3) + (θ(−τ2 − τ3)− nF (Er))e
Er(τ2−τ3)

]
.

(3.33)

The time integral can be carried out analytically using the full anomalous
Green’s functions and gives a long unreadable result. To make the result
more friendly we work in the limit El, rβ > ∆l, r À 1 so that we can set
e−βEl, r → 0.

Performing the integrals and letting e−El, rβ → 0, we find

C =
2 e−βξ

1 + 2e−βξ

ξ(Ep + Ek)(1 + eβξ) + (EkEp + ξ2)(1− eβξ)

(Ep + Ek) (E2
k − ξ2)

(
E2

p − ξ2
)

=
2 e−βξ

1 + 2e−βξ

(
− eβξ

(Ep + Ek) (Ek + ξ)
(
Ep + ξ

) +
1

(Ep + Ek) (Ek − ξ)
(
Ep − ξ

)
)

.

(3.34)

The current is then

I =
ΓLΓR∆L∆R

2π2
H(ξ) sin ϕ, (3.35)
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where the sin dependence comes form taking the imaginary part of the
average. ϕ = φ − θ results from the factor (tl)

2(t∗r)
2. We also assume

that the tunnelling matrix depends weakly on the states l or −l so that
tl = t−l.

At T = 0, this reduces to

C =

{ − 2

(Ep+Ek)(Ek+ξ)(Ep+ξ)
for ξ > 0,

1

(Ep+Ek)(Ek−ξ)(Ep−ξ)
for ξ < 0,

(3.36)

yielding

H(ξ) =

{ −2h(ξ) for ξ > 0,
h(−ξ) for ξ < 0,

(3.37)

where

h(ξ) =
2ArcSin ξ · ArcTan

(√
1−ξ
1+ξ

)

ξ(1− ξ2)
− 1

4ξ(1− ξ2)

(
π2ξ + 2Li2(−ξ − i

√
1− ξ2)

−2Li2(ξ − i
√

1− ξ2) + 2Li2(−ξ + i
√

1− ξ2)− 2Li2(ξ + i
√

1− ξ2)
)

(3.38)

with

Li2(x) =
∞∑

n=1

xn

n2
. (3.39)

For β∆ À 1 and βξ ' 1 the integration gives (h(0) = π − π2/4)

H(0) =
2(e−βξ − 1)

1 + 2e−βξ

∫
dεdε′

1

(E + E ′)E2E ′2 =
2(e−βξ − 1)

1 + 2e−βξ

(
π − π2

4

)
.

(3.40)

The following is the plot of (3.40). Further results will be given at the
end of next chapter where we include the phonon bath.
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Figure 3.3: The orange lines set the valid limit for this result: βξ ' 1



Chapter 4

Josephson current through a
single level oscillating dot

4.1 Oscillating dot

A step further in the understanding of the system is to let the dot oscil-
late. This is done adding the coupling to a one-mode phonon bath.
The Hamiltonian is then

H = HL + HR + HD + HDB + HB + HT (4.1)

where HL + HR + HD + HT are as in the previous chapter and

HDB = λx0(n↑ + n↓) (4.2)

HB = ω0(c
†c +

1

2
) (4.3)

where HB is the phonon bath and HDB resembles the force acting on the
charged dot (originating for example by image charges). To see it more
clearly we can rewrite last term as

HDB = λ
`0√
2
(c + c†)(n↑ + n↓) `0 =

√
~
ω0

(4.4)

this means that the force is felt by the dot only when either n↑ or n↓ are
different from zero (which means that the dot is charged) and that this

71
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force is associated with the creation or annihilation of a phonon. This
is the coupling Hamiltonian between the phonon bath and λ sets the
strength of this coupling . We denote as c and c† the boson annihilation
and creation operators.

We eliminated the coupling term HDB of the Hamiltonian by a unitary
transformation similar to the one used in the independent phonon model
[7], at the cost of introducing displacement operators in the tunnelling
term. However, since we are dealing with a somewhat more complicated
system due to the coupling to the bosonic bath, the unitary transforma-
tion has to be generalized as in [4]. We define the transformation

H̃ = esHe−s s = −i`p0nd ` =
λ

m0ω2
0

nd = n↑ + n↓ (4.5)

We remember the equalities

Ã = esAe−s = A + [s, A] +
1

2!
[s, [s, A]] +

1

3!
[s, [s, [s, A]]] + · · ·

[p0, x0] =
~
i

p0 = i(a† − a)/(`0

√
2) we set ~ = 1

Given these we calculate

d̃σ = esdσe
−s = dσ + [s, dσ] +

1

2!
[s, [s, dσ]] +

1

3!
[s, [s, [s, dσ]]] · · ·

[s, dσ] = −i`[p0nd, dσ] = i`p0dσ

[s, i`p0dσ] = (i`)2p2
0dσ

⇒ d̃σ = dσ + i`p0dσ +
(i`p0)

2

2!
dσ +

(i`p0)
3

3!
dσ · · ·

then

d̃σ = ei`p0dσ (4.6)

˜
d†σ = e−i`p0d†σ (4.7)

x̃0 = esx0e
−s = x0 + [s, x0] +

1

2!
[s, [s, x0]] +

1

3!
[s, [s, [s, x0]]] + · · · (4.8)

[s, x0] = −i`[p0nd, x0] = −`nd (4.9)

[s,−`nd] = −`[p0nd, nd] = 0 (4.10)
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then
x̃0 = x0 − `nd (4.11)

analogously we find
p̃0 = p0 (4.12)

Inserting the new operators in the Hamiltonian we find

H̃L = HL H̃R = HR

the leads don’t feel the phonon-coupling Hamiltonian

H̃D = HD = ξ0(n↑ + n↓) + Un↑n↓

H̃T =
∑

l σ

(
tle

−ip0`d†σalσ + H.C
)

+
∑
r σ

(
tre

−ip0`d†σbrσ + H.c.
)

H̃DB = λ(x0 − `nd) = λx0nd − `λn2
d

H̃B =
p2

0

2
+

1

2
ω2

0(x0 − `nd)
2 =

p2
0

2m0

+
1

2
ω2

0m0x
2
0 −m0ω

2
0x0`nd +

1

2
m0ω

2
0`

2n2
d.

We want to get rid of the Hamiltonian term HDB, for this purpose we
see that we need to set

` =
λ

m0ω0

(4.13)

If we now set

ξ̃0 = ξ0 − λ`

2
Ũ = U − λ`

H̃D = ξ̃0(n↑ + n↓) + Ũn↑n↓

The Hamiltonian is

H̃ = HL + HR + H̃D + H̃T + HB (4.14)

We omit the superscript ∼ for simplicity and we set

H0 =





HL =
∑

lσ ξla
†
lσalσ −

∑
l ∆la

†
l↑a

†
−l↓ −

∑
l ∆la−l↓al↑

HR =
∑

lσ ξlb
†
rσbrσ −

∑
r ∆rb

†
r↑b

†
−r↓ −

∑
r ∆rb−r↓br↑

HD = ξ0

∑
σ d†σdσ + Un↑n↓

HB = ω0(c
†c + 1

2
)

(4.15)
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HT =
∑

lσ

[tle
−i`p0d†σalσ + H.c] +

∑
rσ

[tre
−i`p0d†σbrσ + H.c] (4.16)

where again all the phase factors relay in the tunnelling matrix element.

The calculation of the current is the same as in the previous chapter

I = i〈H+
Tα −H−

Tα〉 = −2Im〈H+
Tα〉 = 2Im〈H−

Tα〉 (4.17)

but with an additional term related to the phonon part.

〈H+
TL〉 = −2

∫ β

0

dτ1

∫ β

0

dτ2

∫ β

0

dτ3

×
∑

l ↓
r ↑

tlt−lt
∗
rt
∗
−r

× F↓ ↑(l, τ1) (F↓ ↑)† (r, τ2 − τ3)

×
〈
Tτ

(
d†↓(τ1)d↑(τ2)d↓(τ3)d

†
↑(0)

)〉
0

× 〈Tτ

(
e−i`p0(τ1)ei`p0(τ2)ei`p0(τ3)e−i`p0

)〉0 (4.18)

G(τ1 τ2 τ3) = 〈Tτ

(
e−i`p0(τ1)ei`p0(τ2)ei`p0(τ3)e−i`p0

)〉0
is evaluated using the Feynmann disentangling model (see for example
[7]) and the result gives

G(τ1, τ2, τ3) =

exp (−g(τ3 − τ2) + g(τ3 − τ1) + g(τ3) + g(τ2 − τ1) + g(τ2)− g(τ1))
(4.19)

where

g(τ) = `2
(〈

Tτ

(
p(τ)p(0)

)〉− 〈
p2

〉)
=

g
(
nB(eω|τ | − 1) + (1 + nB)(e−ω|τ | − 1)

)
, (4.20)

and

g =
`2

2`2
0

, nB =
1

eβω0 − 1
. (4.21)
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We already performed the energy integration for the anomalous Green’s
functions with the result

∑
p

t∗pαt∗−pα

∆pα

2Epα

fpα(τ) ≈ e−iφαt2αρ

∫
dε

∆α

2E

[
e−E|τ | − e−E(β−|τ |)]

= e−iφαt2αρ

∫ ∞

∆α

dE
∆α√

E2 −∆2
α

[
e−E|τ | − e−E(β−|τ |)]

= e−iφα
Γα∆α

2π
[K0(|τ |∆α)−K0((β − |τ |)∆α)] ≡ e−iφα

Γα∆α

2π
Hα(τ),

(4.22)

where K0 is the modified Bessel function of the second kind and α is
either left(L) or right(L).

The final expression for the current thus reads

I = Ic sin ϕ, (4.23)

where

Ic =
ΓLΓR∆L∆R

2π2

∫ β

0

dτ1

∫ β

0

dτ2

∫ β

0

dτ3HL(τ1)HR(τ2−τ3)B(τ1, τ2, τ3)G(τ1, τ2, τ3).

(4.24)
where we denoted

B(τ1, τ2, τ3) =
〈
Tτ

(
d†↓(τ1)d↑(τ2)d↓(τ3)d

†
↑(0)

)〉
0

(4.25)

This result generalizes the one found in chapter 3 where no phonon/vibron
was present. Currently we are doing numerical integration of this result.
We expect that the phonon coupling diminishes the Josephson current,
but does not destroy it. This is interesting because it means that the
phonon is part of the coherence process. However if the vibron is damped
the damping might eventually destroy the coherence. Such an effect can
also be calculated within the present formalism.

In figure 4.1 we show some of the Ic − ξ characteristics. For the phonon
contribution numerical integration has been done taking again the limit
B(τ1, τ2, τ3) = D5 which means that the dot can’t be double occupied.
We see that adding the phonon part the current amplitude is strongly
decreased but still it is not destroyed.
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Magnitude of the Josephson current I
c
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Figure 4.1: Ic−ξ characteristics for the Josephson current with and without
the phonon bath. The blue curve shows the analytical result of (3.37) in the
previous chapter. The green curve represents (3.40) in its limit of validity as
in figure 3.3. The red pluses denote instead the numerical integration of (3.34)
which is quite accurate. The pink dotted line is with the contribution of the
phonon bath. Courtesy of T. Novotný.

4.2 Independent boson model

The independent boson model is very important in many-body physics.It
is an exactly solvable model which describes some relaxation phenomena.
It has become very useful for describing a wide variety of effects in solid-
state physics. We shall solve it by ordinary operator algebra.

The first Hamiltonian which will be solved is

H = c†c[εc +
∑

q

Mq(aq + a†q)] +
∑

q

ωqa
†
qaq (4.26)

The Hamiltonian describes a fixed particle of energy εc interacting this a
set of phonons with frequenciesωq. The interaction occurs only when the
state is occupied and c†c = 1. The phonons are independent bosons. By
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making a canonical transformation, the Hamiltonian may be rewritten
as

H̄ = c†c(εc −∆) +
∑

q

ωqa
†
qaq

The solution to this problem is identical with the problem of charge on
a harmonic spring in a uniform electric field. The electric field causes a
displacement of the charge to a new equilibrium position,about which it
vibrates with the same frequency as before.

The present objective is to obtain a better description of the fluctuations
about equilibrium. To study relaxation effects ,we shall also need to
understand the fluctuations. This is obtained from the following Green’s
function,

G(t) = −i〈Tc(t)c
†(0)〉 (4.27)

where a full description of the time variation is needed . We shall solve
this for the real-time Green’s function. this is permissible in the present
case because the single impurity state c†c will not alter the photon ener-
gies. When we do the thermodynamic averaging over the photon state
,the perturbation expansion for the exp(−βH) part. We begin to solve
to the Green’s function of time at it finite temperature.

4.2.1 Solution by Canonical Transformation

The Hamiltonian is first solved by a canonical transformation. A new
Hamiltonian is desired by a transformation of the type

H̄ = esHe−s = c†c(εc −∆) +
∑

q

ωqa
†
qaq (4.28)

The transformation must be done so that s† = −s.The transformation on
any product of operators is done by taking the product of the transformed
operators. The last assertion is shown by inserting 1 = e−ses between
each operator.

If we assume that any function of operators may be expressed as a power
series, then the transformation on a function of operators is just the
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function of the transformed operators:

esf(A)e−s = es

∞∑
n=0

anAne−s =
∞∑

n=0

an(Ā)n = f(Ā) (4.29)

Thus we need to consider only the transformation on each operator sep-
arately, and the transformed Hamiltonian is the old one with the new
operator. These are evaluated using

Ā = esAe−s = A + [s, A] +
1

2!
[s, [s, A]] + ...

s = c†c
∑

q

Mq

ωq

(a†q − aq)

which gives

c̄ = cX

c̄† = c†X†

ā = a− Mq

ωq

c†c

ā† = a† − Mq

ωq

c†c

We have introduced the operator

X = exp

[
−

∑
q

Mq

ωq

(a†q − aq)

]
(4.30)

Since this commutes with the c operator, then the number operator is
the same in the new representation,

c̄†c̄ = c†cX†X = c†c

since
X† = X−1

The transformed Hamiltonian is

H̄ = εcc̄
†c̄ +

∑
q

ωq

(
a†q −

Mq

ωq

c†c
)(

aq − Mq

ωq

c†c
)

+
∑

q

Mq

(
aq + a†q − 2

Mq

ωq

c†c
)

c†c



4.2. INDEPENDENT BOSON MODEL 79

which is

H̄ = c†c(εc −∆) +
∑

q

ωqaq†aq

This transformed Hamiltonian is precisely the form which was our objec-
tive. This transformation is now applied to the Green’s function (4.27).
The factor 1 = e−ses is inserted into the trace, say for t > 0:

Tr(e−βHeiHtce−itHc†e−ses)

Using the cyclic properties of the trace, we may alter this to

Tr(ese−βHeiHtce−itHc†e−s) = Tr(e−βH̄eiH̄tc̄e−itH̄ c̄†)

By using our previous theorems, we see that everything in the trace is now
changed to the transformed representation. Thus the Green’s function
may be written as (t > 0)

G(t) = −ieβΩTr(e−βH̄eiH̄tc̄e−iH̄tc̄†)

It should be emphasized that this G(t) will be exactly equal to the earlier
definition. The new equation for G(t) is just another way of evaluating
the same thing. At first glance it appears that this evaluation is now
trivial, since Hamiltonian is diagonal in the c̄†c̄ operators. But this is
untrue and misleading, since c̄ and c̄† do not commute with a or a†

because of the factor X. Thus it is necessary to stick with the c and a
representations and to put in X explicitly. The Green’s function becomes

G(t) = −ieβΩTr(e−βH̄eiH̄tcXe−ih̄tc†X†)

However, it is now possible to achieve a great simplification. Since H̄ is
diagonal in c and a, it is easy to commute it through cX and obtain the
time development of the operators:

eiH̄tcXe−iH̄t = eit(εc−∆)cX(t)

X(t) = exp

[
−

∑
q

Mq

ωq

(a†qe
iωqt − aqe

−iωqt)

]
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The phonon and electron parts of the trace may now be completely sep-
arated

G(t) = −ieβΩTr(e−βε̄cncc†)Tr[e−βΣωqnqX(t)X†(0)]

ε̄c = εc −∆

The result for G(t) has great simplification mentioned above. The parti-
cle part is trivial (assuming they are fermions),

eβΩelTr(e−βnεccc†) = 1− nF (ε̄c)

so that there remains only the problem of evaluating the photon part of
the trace.This evaluation is nontrivial ,although it may be done exactly.
The method we shall use was introduced by Feynman(1951).

4.2.2 Feynman disentangling of operators

The objective now is to evaluate the trace over the phonon distributions
of the operator:

F (t) = eβΩphTr[e−ΣqβnqωqX(t)X†(0)]

Each wave vector state q is averaged independently, and the final result
is the product over q states:

F (t) =
∏

q

Fq(t) (4.31)

Fq(t) = eβnqΩqTr{e−βnqωq exp[(−Mq/ωq)(a
†
qe

iωqt − aqe
−iωqt)]e(Mq/ωq)(a†q−aq)}

(4.32)

For each state q, the trace is merely a summation over all possible integer
values of nq between zero and infinity,

eβΩqTr() = (1− e−βωq)
∞∑

nq=0

〈nq|()|nq〉

where the prefactor is the normalization:

eβΩq =




∞∑
nq=0

e−βnqωq



−1

= 1− eβωq
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We shall simplify the present notation by first dropping all q subscripts.
We shall also use λ = Mq/ωq, so that we need to find

F = (1− e−βω)
∞∑

n=0

〈n|e−βnωexp[−λ(a†eiωt − ae−iωt)]eλ(a†−a)|n〉 (4.33)

The state |n〉 is the state with n excitations and is given in terms of the
operators as

|n〉 =
(a†)n

(n!)1/2
|0〉

The first step is to separate the operators in the exponential. This step
is where we use Feynman’s theory on the disentangling of the opera-
tors,which is as follow.

Theorem: If the operators A and B have the property that their com-
mutators C = [A,B] commutes with both A and B, then

eA+B = eAeBe−1/2[A,B] (4.34)

this theorem is used to separate the exponents in X(t) and X†(0). To
evaluate X(t), set

A = −λa†eiωt

B = λae−iωt

so that
[A,B] = λ2

and we obtain

X(t) = eA+B

= e−1/2λ2

exp(−λa†eiωt) exp(λae−iωt)

The result for X†(0) is just the Hermitian conjugate at t = 0:

X†(0) = e−1/2λ2

eλa†e−λa

X(t)X†(0) = e−λ2

e−λa†(t)eλa†e−λa

The next step is to get all the annihilation operators on the right and
the creation operators on the left. Thus we need to exchange the center
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two operators. Since they do not commute, this exchange will produce
another complex phase factor. These two operators are written as

eλa†(t)eλa† = eλa† [e−λa†eλa(t)eλa† ]

The factor in brackets has exactly the form derived earlier. Thus if we
evaluate

e−λa†ae−iωteλa† = e−iωt

(
a− λ[a†, a] +

λ2

2
[a†[a†, a]]...

)

= e−iωt(a + λ)

then

e−λa†eλa(t)eλa† = exp[λe−iωt(a + λ)] = exp(λ2e−iωt)eλa(t) (4.35)

eλa(t)eλa† = exp(λ2e−iωt)eλa†eλa(t) (4.36)

so the desired form is

F(t) = (1− e−βω) exp[−λ2(1− e−iωt)] (4.37)

×
∞∑

n=0

〈n|e−βnω exp[λa†(i− e−iωt)] exp[−λa(i− e−iωt)]|n〉 (4.38)

All the terms with a can be collected together in exponential since all
these terms commute - and likewise for all the terms with a†. Next we
wish to prove that

(1− e−βω)
∞∑

n=0

e−βnω〈n|eu∗a†e−ua|n〉 = e−|u|
2N (4.39)

N =
1

eβω − 1
(4.40)

where, for our case, u = λ(1 − e−iωt). The previous equation is proved
by expanding the exponent in powers series:

e−ua|n〉 =
∞∑

l=0

(−u)l

l!
al|n〉



4.2. INDEPENDENT BOSON MODEL 83

Recalling the properties of the destruction operator acting on a state and
that al|n〉 = 0 for l > n we have:

e−ua|n〉 =
∞∑

l=0

(−u)l

l!

[
n!

(n− l)!

]1/2

|n〉

That is way the destruction operators were arranged on the right. The
other operator may be taken to operate on the left and produces the
Hermitian conjugate of the above result.
This two results must be multiplied together. Using the basic orthogo-
nality of states we have the compact result

〈n|eu∗a†e−ua|n〉 =
∞∑

l=0

(−|u|2)l

(l!)2

n!

(n− l)!

This power series is the Laguerre polynomial of order n. The final step
is to sum the series over n. We get

(1− z)−1e|u|
2z/(z−1) =

∞∑
n=0

Ln(|u|2)zn

In our case we identify

z = e−βω

z

z − 1
= −N

When these factors are collected, this proves our thesis. The result for
F (t) is then

F(t) = e−φ(t)

φ(t) = λ2[(1− e−iωt) + N |1− eiωt|2]
We return to (4.31) and reintroduce the product over all q states. The
function F (t) contains a summation of the exponential factor:

F (t) =
∏

q

Fq(t) = exp

[
−

∑
q

φq(t)

]
= exp[−Φ(t)]

Φ(t) =
∑

q

(
Mq

ωq

)
[Nq(1− eiωqt) + (Nq + 1)(1− e−iωqt)]

Nq = (eβωq − 1)−1
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The final result for the particle Green’s function for t > 0 is

G(t) = −ie−it(εc−∆)e−Φ(t)(1− nF ). (4.41)

This is the exact result.



Chapter 5

Unpublished paper

The results presented in this thesis will be written in a paper by, K.
Flensberg, K. Flensberg and myself. In this chapter, I’ll give some of the
details to be included in the paper, which will also contain the numerical
result.

We consider Josephson through a single level in a molecular or mesoscopic
single-electron transistor. The junction becomes a π-junction when the
level energy is below the chemical potential.

5.1 The model

H = H0 + HT , (5.1)

H0 = HL + HR + HM , (5.2)

and

HT =
∑

α

(H+
Tα+H−

Tα), H+
Tα =

(
H−

Tα

)†
, H−

Tα =
∑

σ=↑,↓
H−

Tασ, H−
Tασ =

∑

k

tkαc†kασdσ

(5.3)

85
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5.2 The Josephson current

By definition:

Iα = i
〈
H+

Tα −H−
Tα

〉

= 2 Im
〈
H−

Tα

〉
.

To the fourth order in HT :

Iα = 2 Im
1

4!

∫ β

0

dτ1

∫ β

0

dτ1

∫ β

0

dτ3

〈
Tτ (HT (τ1)HT (τ2)HT (τ3)H

−
Tα)

〉
0
.

The Josephson current must involve two H+
T and two H−

T , which can
choosen in 3! ways, and hence

Iα = 2 Im
1

4

∫ β

0

dτ1

∫ β

0

dτ1

∫ β

0

dτ3

〈
Tτ (H

+
T ᾱ(τ1)H

+
T ᾱ(τ2)H

−
Tα(τ3)H

−
Tα)

〉
0
,

(5.4)
where we also used that in order to have Cooper pair tunneling, the H+

T

must be on the left of the junction. Here ᾱ means the lead opposite to
α. Because of spin symmetry we can choose the spin in last factor to up,
and thus

Iα = 2 Im

∫ β

0

dτ1

∫ β

0

dτ1

∫ β

0

dτ3

〈
Tτ (H

+
T ᾱ↓(τ1)H

+
T ᾱ↑(τ2)H

−
Tα↓(τ3)H

−
Tα↑)

〉
0

=
∑

k

∑
p

t∗pᾱt∗−pᾱ

〈
Tτ

(
cpᾱ↑(τ1)c−pᾱ↓(τ2)

)〉
0
t−kαtkα

〈
Tτ

(
c†−kα↓(τ3)c

†
kα↑

)〉
0

×
〈
Tτ

(
d†↓(τ1)d

†
↑(τ2)d↓(τ3)d↑(0)

)〉
0
. (5.5)

The anomalous Green’s functions are〈
Tτ

(
c†−kα↓(τ)c†kα↑

)〉
=

〈
Tτ

(
ckα↑(−τ)c−kα↓)

)〉∗

= [G(Ekα, τ) + G(Ekα,−τ)]
∆kα

2Ekα

=
∆kα

2Ekα

[
(θ(τ)− nF (Ekα))e−Ekατ + (θ(−τ)− nF (Ekα))eEkτ

]

=
∆kα

2Ekα

[
e−Ekα|τ | − 2 cosh (Ekατ) nF (Ekα)

]

≡ ∆kα

2Ekα

fkα(τ).
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Assuming low temperatures ∆β À 1, we approximate

fkα(τ) ≈ e−Ekα|τ | − e−Ekα(β−|τ |). (5.6)

Inserting this into (5.5), we have

Iα = 2 Im
∑

k

∑
p

t∗pᾱt∗−pᾱ

∆∗
pᾱ

2Epᾱ

t−kαtkα

∆kα

2Ekα

∫ β

0

dτ1

∫ β

0

dτ1

∫ β

0

dτ3 fpᾱ(τ1−τ2)fkα(τ3)B(τ1, τ2, τ3).

(5.7)
where

B(τ1, τ2, τ3) =
〈
Tτ

(
d†↓(τ1)d

†
↑(τ2)d↓(τ3)d↑(0)

)〉
0

(5.8)

For a system with interactions, we cannot use Wick’s theorem, and hence
we must evaluate this directly. There are four many-body states, |0〉 ,
| ↑〉, | ↓〉, and | ↑↓〉. In (5.8) only | ↑〉 and | ↑↓〉 contributes to the trace,
i.e.

B = B1 + BU , (5.9)

where

B1 = P↑
〈
↑

∣∣∣Tτ

(
d†↓(τ1)d

†
↑(τ2)d↓(τ3)d↑(0)

)∣∣∣ ↑
〉

, (5.10)

BU = P↑↓
〈
↑↓

∣∣∣Tτ

(
d†↓(τ1)d

†
↑(τ2)d↓(τ3)d↑(0)

)∣∣∣ ↑↓
〉

. (5.11)

For B1 only three orderings of the operators give a non-zero result, and
we find

B1 = P↑
〈
↑

∣∣∣Tτ

(
d†↓(τ1)d

†
↑(τ2)d↓(τ3)

)∣∣∣ 0
〉

= P↑
[〈
↑

∣∣∣d†↑(τ2)d↓(τ3)d
†
↓(τ1)

∣∣∣ 0
〉

θ(τ2 − τ3)θ(τ3 − τ1)

−
〈
↑

∣∣∣d↓(τ3)d
†
↑(τ2)d

†
↓(τ1)

∣∣∣ 0
〉

θ(τ3 − τ2)θ(τ2 − τ1)

+
〈
↑

∣∣∣d↓(τ3)d
†
↓(τ1)d

†
↑(τ2)

∣∣∣ 0
〉

θ(τ3 − τ1)θ(τ1 − τ2)
]
. (5.12)

This becomes

B1 = P↑
{
eξ(τ1−τ3+τ2)θ(τ2 − τ3)θ(τ3 − τ1) + eE2(τ2−τ3)eξ(τ1−τ2+τ3)θ(τ3 − τ2)θ(τ2 − τ1)

+ eE2(τ1−τ3)eξ(τ2−τ1+τ3)θ(τ3 − τ1)θ(τ1 − τ2)
}

. (5.13)
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Likewise, for BU we find

BU = P↑↓
〈
↑↓

∣∣∣Tτ

(
d†↓(τ1)d

†
↑(τ2)d↓(τ3)

)∣∣∣ ↓
〉

= P↑↓
[〈
↑↓

∣∣∣d†↓(τ1)d
†
↑(τ2)d↓(τ3)

∣∣∣ ↓
〉

θ(τ1 − τ2)θ(τ2 − τ3)

−
〈
↑↓

∣∣∣d†↓(τ1)d↓(τ3)d
†
↑(τ2)

∣∣∣ ↓
〉

θ(τ1 − τ3)θ(τ3 − τ2)
]
, (5.14)

and thus

BU = P↑↓
[
eξ(τ2−τ3)eE2τ1θ(τ1 − τ2)θ(τ2 − τ3) + eξ(τ3−τ1−τ2)eE2(τ1+τ2−τ3)θ(τ1 − τ3)θ(τ3 − τ2)

]
,

(5.15)

5.3 E2 À 0

Let E2 À 0 such that the double occupied state is taken out. Hence

B1 = P1e
ξ(τ1−τ3+τ2)θ(τ2 − τ3)θ(τ3 − τ1), (5.16)

and when inserted into the current formula

Iα = 2 Im
∑

kp

t∗pᾱt∗−pᾱt−kαtkα

∆∗
pα∆kα

4EpαEkα

C, (5.17)

where

C = P1

∫ β

0

dτ2

∫ τ2

0

dτ3

∫ τ3

0

dτ1

(
e−Ep(τ2−τ1) − eEp(τ2−τ1−β)

) (
e−Ekτ3 − eEk(τ3−β)

)
P1e

ξ(τ1−τ3+τ2)

(5.18)
Performing the integrals and letting e−Ep,kβ → 0, we find

C =
2 e−βξ

1 + 2e−βξ

ξ(Ep + Ek)(1 + eβξ) + (EkEp + ξ2)(1− eβξ)

(Ep + Ek) (E2
k − ξ2)

(
E2

p − ξ2
)

=
2 e−βξ

1 + 2e−βξ

(
− eβξ

(Ep + Ek) (Ek + ξ)
(
Ep + ξ

) +
1

(Ep + Ek) (Ek − ξ)
(
Ep − ξ

)
)

.

(5.19)
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At T = 0, this reduces to

C =

{ − 2

(Ep+Ek)(Ek+ξ)(Ep+ξ)
for ξ > 0,

1

(Ep+Ek)(Ek−ξ)(Ep−ξ)
for ξ < 0.

(5.20)

Hence

I =
ΓLΓR∆L∆R

2π2
sin φH(ξ), (5.21)

where

H(ξ) =

∫
dEdE ′ 1√

E2 −∆2
L

1√
E ′2 −∆2

R

C (5.22)

For ξ ¿ ∆, we can perform the integrations and we get

H(0) =
e−βξ − 1

1 + 2e−βξ

∫
dεdε′

1

(E + E ′)E2E ′2 =
2 (e−βξ − 1)

1 + 2e−βξ

(
π − π2

4

)
.

(5.23)

5.4 Josephson current with coupling to a

localized phonon

In the following we consider a single level between two superconductors
as above but now with an additional coupling to a bosonic mode. We
thus have two new terms in the Hamiltonian: HB + HeB, where

HB = ω0(a
†a +

1

2
), (5.24)

HeB =
λ`0√

2
(a + a†)

∑
σ

nσ. (5.25)

We remove the last term using the usual canonical transformation, which
renormalizes ξ and U and transform the d-operator into

d → de−ip`, ` =
λ

mω2
0

, (5.26)

where p = i(a† − a)/(`0

√
2).
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Now everything carries through as above with d replaced as in (5.26).
Thus the function B in (5.8) acquires an additional factor, namely

F (τ1, τ2, τ3) =
〈
Tτ

(
eip(τ1)`eip(τ2)`e−ip(τ3)`e−ip`

)〉
0
. (5.27)

This is evaluated as

F (τ1, τ2, τ3) = exp (−g(τ1 − τ2) + g(τ1 − τ3) + g(τ1) + g(τ2 − τ3) + g(τ2)− g(τ3))
(5.28)

where

g(τ) = `2
(〈

Tτ

(
p(τ)p(0)

)〉− 〈
p2

〉)
= g

(
nB(eω|τ | − 1) + (1 + nB)(e−ω|τ | − 1)

)
,

(5.29)
where

g =
`2

2`2
0

, nB =
1

eβω0 − 1
. (5.30)

In order to study how the coupling to the vibration changes the Josephson
current, we will perform a numerical integration of the three imaginary
time integrals. For this purpose we first find:

∑
p

t∗pαt∗−pα

∆∗
pα

2Epα

fpα(τ) ≈ e−iφαt2αρ

∫
dε

∆α

2E

[
e−E|τ | − e−E(β−|τ |)]

= e−iφαt2αρ

∫ ∞

∆α

dE
∆α√

E2 −∆2
α

[
e−E|τ | − e−E(β−|τ |)]

= e−iφα
Γα∆α

2π
[K0(|τ |∆α)−K0((β − |τ |)∆α)] ≡ e−iφα

Γα∆α

2π
Hα(τ),

(5.31)

where K0 is the modified Bessel function of the second kind.

The final expression for the current thus reads

Iα = Ic sin φ, (5.32)

where

Ic =
ΓLΓR∆L∆R

2π2

∫ β

0

dτ1

∫ β

0

dτ2

∫ β

0

dτ3HL(τ1−τ2)HR(τ3)B(τ1, τ2, τ3)F (τ1, τ2, τ3).

(5.33)
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5.4.1 Vibron and E2 À 0

Again study the case, where double occupied state is ”out”, then we have
B = B1, where B1is given in Eq.(5.16), and hence

Ic =
ΓLΓR∆L∆R

2π2

e−βξ

1 + 2e−βξ

∫ β

0

dτ2

∫ τ2

0

dτ3

∫ τ3

0

dτ1e
ξ(τ1−τ3+τ2)HL(τ2−τ1)HR(τ3)F (τ1, τ2, τ3).

(5.34)
In the numerical calculation the following symmetry is useful

g(ξ) =

∫ β/2

0

dτ2

∫ τ2

0

dτ3

∫ τ3

0

dτ1e
ξ(τ1−τ3+τ2)HL(τ2 − τ1)HR(τ3)F (τ1, τ2, τ3)

=

∫ 1

β/2

dτ ′2

∫ τ ′2−β/2

0

dτ3

∫ τ3

0

dτ1e
ξ(τ1−τ3+τ ′2−β/2)HL(τ2 − τ1 − β/2)HR(τ3)F (τ1, τ2 − β/2, τ3)

= −
∫ 1

β/2

dτ ′2

∫ τ ′2−β/2

0

dτ3

∫ τ3

0

dτ1e
ξ(τ1−τ3+τ ′2−β/2)HL(τ2 − τ1 + β/2)HR(τ3)F (τ1, τ2 − β/2, τ3)

= −
∫ 1

β/2

dτ ′2

∫ τ ′2

0

dτ ′3

∫ τ3

0

dτ1e
ξ(τ1−τ3+τ ′2−β/2)HL(τ2 − τ1 + β/2)HR(τ3)F (τ1, τ2 − β/2, τ3)
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