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Chapter 1

Introduction

In this chapter we introduce the two central concepts of this thesis: Coulomb
drag and carbon nanotubes. Before we begin, a comment of personal nature is
stated.

1.1 Why is condensed matter physics interesting?

Basically all condensed matter systems consist of a lot of particles such as elec-
trons and atoms. Both atoms and electrons are fairly well understood, but in a
condensed matter system in principle all the inter-particle interactions need to
be included to find the properties of the system, i.e. a many particle problem
needs to be solved1. This is in general a very difficult task and approximations
are needed. In a first approach all the interactions between particles are ne-
glected. This drastic approximation called the independent particle picture [1]
(e.g. Bloch theory) has been very successful to explain many properties of met-
als, semiconductors and other systems. When interactions between the particles
are taken into account, new exciting phenomena arise such as superconductivity,
phase transitions, collective excitations (e.g. plasmons and spin waves) and so on.
As we shall see, Coulomb drag is one such phenomenon. So when more particles
are together one can have properties not stemming from the single particles, but
from the inter particle interactions! Furthermore it is by no means trivial to find
good approximations and somehow it is here good physical intuition and physical
arguments are needed. So even though condensed matter systems consist of fairly
well understood particles it is not straight forward to make a good description of
such a system; or as Anderson puts it [2]: reductionism is not constructionism.

This makes condensed matter physics one of the most exciting areas in science
and of fundamental interest in my opinion.

1To be precise, an atom does have a lot of inter-particle interactions between the core and
the electrons and among the electrons, but here we have the atom-atom interaction in mind.
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Figure 1.1: The general idea be-
hind Coulomb drag in any system is
depicted. Here the drive system (la-
belled 1) transfers momentum to the
drag system (labelled 2) via an effec-
tive interaction such as the screened
Coulomb interaction.

1.2 What is Coulomb drag and how is it studied?

When two spatially separated systems (e.g. two conductors) are brought together
the particles of the two systems begin to interact. If there are free carriers in the
two systems and they are close enough together, tunnelling between the two
systems takes place. If they are a bit further apart the charged carriers can
interact via other mechanisms such as the long-range Coulomb interaction. This
is the regime, where the phenomenon of drag can take place.

The idea of drag, as seen on figure 1.1, is that by a current I1 through one
system (the drive system) a current in another system (the drag system) can
be induced. This happens by momentum transfer from the carriers of the drive
system to the carriers in the drag system via carrier-carrier interaction. This
interaction can be a phonon mediated interaction or a (screened) Coulomb inter-
action and thereby the name Coulomb drag. This effect was first suggested by
Pogrebinskĭi [3] in 1977 and independently by Price [4] in 1983. As we shall briefly
describe in section 1.5 this has been intensively investigated both experimentally
and theoretically for two parallel electron gases in two dimensions.

To study Coulomb drag experimentally, a voltmeter can be placed on the
drag system as in figure 1.1. Since the voltmeter has a large resistance the
current in the drag system is (close to) zero and therefore the momentum transfer
from the drive current I1 builds up a voltage drop V2 in the drag system. For
isotropic systems this leads to the introduction of the transresistance, R21 =

V2

I1
,

or in terms of the magnitude of the current density J1 and the magnitude of the
induced electric field E2 the transresistivity ρ21 =

E2

J1
. One of the most difficult

experimental task is to make independent contacts to the two subsystems to be
able to measure the transresistance (without having short circuits), since the
typical distance between e.g. coupled quantum wells are of order 40nm.

To see that the transresistivity ρ21 is the relevant quantity to study to obtain

2



information about the Coulomb drag effect, we make a simple semiclassical cal-
culation (in one dimension for simplicity). The average force F2 on the carriers of
charge ẽ2 in systems 2 (figure 1.1) from the induced electric field E2 is F2 = ẽ2E2,
but the force is also the average rate of momentum transfer to each carrier in
system 2, i.e. the magnitudes of the two are equal: F2 = 〈∂p2

∂t
〉. Note that the

drag current is induced in the same direction as the drive current J1, so the drive
current and the induced voltage drop are in opposite directions, however, here
only the magnitudes are considered. The current density J1 in system 1 can be
written in terms of a drift velocity 〈v1〉 as J1 = ẽ1n1〈v1〉, where n1 and ẽ1 are the
carrier density and charge in system 1, respectively. Therefore the transresistivity
is

ρ21 =
E2
J1

=
F2

ẽ2ẽ1n1〈v1〉
=

1

ẽ2ẽ1n1

〈∂p2

∂t
〉

〈v1〉
, (1.1)

i.e. it is proportional to the average momentum transfer to each carrier in the
drag system per unit drift velocity in the drive system. It is thereby the relevant
quantity to study to understand the Coulomb drag effect. If there is a well defined
effective mass2 m1 the drift velocity is 〈v1〉 = 〈p1〉

m1
and the rate of momentum

transfer τ−121 can be defined through τ−121 = 〈∂p2

∂t
〉/〈p1〉 as done in [6].

In general, a 2 × 2 resistance matrix can be defined in the linear response
regime (i.e. small electric fields) between the voltages Vi and the currents Ii in
the two subsystems:

(
V1
V2

)
=

(
R11 R12
R21 R22

)(
I1
I2

)
. (1.2)

Here R21 = R12 due to the Onsager relations, which are symmetry relations for
coupled transport phenomena [7, p. 60]. Equivalently one can define a resistivity
matrix coupling the systems through:

(
E1

E2

)
=

(
ρ11 ρ12
ρ21 ρ22

)(
J1
J2

)
, (1.3)

where in general the electric fields Ei and current densities J i are vectors and
the resistivities ρij are tensors (with e.g. cartesian components). In this thesis
the current densities and electric fields are one dimensional so the resistivities are
numbers.

An expression for the transresistivity ρ21 is derived in chapter 3 and it of
course depends on the inter particle interaction explicitly, since the phenomenon
is due to this interaction. This makes Coulomb drag especially interesting since
the resistance (in a two-probe measurement) for many other systems such as

2If the second derivative of the energy with respect to the wave vector is non zero, then the

effective mass m is well defined, since 1
m
= 1

}2
d2ε
dk2

in one dimension [5, p. 210]. This is the case
for e.g. quadratic bands.
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a metal do not strongly depend on the particle-particle interaction. Physically
this is due to momentum conservation in the carrier-carrier collisions, so the
total momentum of the current is not affected by the interactions3. So Coulomb
drag is a unique transport measurement of the carrier-carrier interactions, which
depends crucially on many-body effects such as screening.

Coulomb drag might even be technologically important in the future as elec-
trical components and circuits on chips become closer packed in the never ending
desire to make smaller devices.

1.3 What is a Carbon nanotube?

In 1985 Smalley’s group [9] discovered4 the so called C60 molecule or Bucky-ball,
which is a hollow spherical molecule with carbon atoms on the surface packed in
a structure like a football, i.e. with 12 pentagons and 20 hexagons. They thereby
added a third kind of crystal structure for carbon besides the two already known
forms: Graphite and diamond5.

In 1991 Iijima [10] found jet another but analogous kind of crystal structure for
carbon: The carbon nanotube. A carbon nanotube is basically a sheet of graphite
folded into a tube of diameter from about 1nm and length normally6 ranging to
a few µm. Depending on how the graphite sheet is folded the carbon nanotube
can be either metallic or semiconducting7. Experimentally, carbon nanotubes are
often produced wriggled into each other like a rope (called nanotube ropes) or
are coaxial inside each other, called a multiwall carbon nanotube. A multiwall
carbon nanotube can contain several coaxial (single wall) carbon nanotubes and
to our best knowledge there is no correlation between weather the different layers
(tubes) are semiconducting or metallic. On figure 1.2(a) a multiwall carbon nan-
otube with only two walls is shown. Electronic transport in nanotubes has been
observed experimentally both in the ballistic and diffusive regime (see section
2.3). More details of carbon nanotubes will be given later in chapter 2.

3This can be made explicit see e.g. [8, p.131]. Note further that Umklapp processes can
give some small resistance from the inter particle interaction, since these are not momentum
conserving (in the strict sense).

4For this discovery R. E. Crul Jr., H. W. Kroto and R. E. Smalley were awarded the Nobel
price in chemistry in 1996.

5It is interesting to note that these have very different properties stemming only from there
crystal structure. Graphite is soft, black and a semimetal [1, p. 304] whereas diamond is a very
hard, transparent and an insulator.

6There has been reports on extremely long carbon nanotube yarns up to 30cm [11], i.e. not
single molecules.

7Recently it has been possible experimentally to separate metallic and semiconducting single
wall nanotube [12].
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1.3.1 Luttinger liquid contra Fermi liquid for a carbon na-
notube

The conduction electrons on a metallic single wall carbon nanotube are confined
to move in one dimension along the tube and as we shall see in chapter 2 the
energy bands near the Fermi level are very close to being linear. This and the one
dimensional nature of nanotubes have led people to consider carbon nanotubes
as so-called Luttinger liquids (see e.g. [13, 14, 15, 16]). A Luttinger liquid is a
strictly one dimensional interacting electron gas, where there are only collective
low energy excitations (plasmons) instead of single particle excitations as in a
Fermi liquid (such as an interacting electron gas in two and three dimensions)8.
The stability of Luttinger liquid behavior crucially depends on the one dimen-
sional nature of the theory and there is still much debate if carbon nanotubes
are really Luttinger Liquids or Fermi Liquids (see e.g. [21] and ref. therein). In
multiwall carbon nanotubes the case is even more uncertain since inter wall cou-
pling and Coulomb screening between the walls tend to break down the Luttinger
Liquid effects. Some experiments show Luttinger Liquid effects in multiwall nan-
otubes (such as power laws) and some can be understood by Fermi liquid theory
[22]. A recent experiment indicates that doped multiwall nanotubes are not Lut-
tinger Liquids [23]. So it is an important question to answer if multiwall carbon
nanotubes and nanotubes in general are Luttinger Liquids or Fermi Liquids or a
crossover as some studies suggest [24].

We work within the Fermi Liquid picture throughout this thesis. It could of
course be very interesting to develop a theory for the Coulomb drag in multiwall
carbon nanotubes for a Luttinger Liquid and then compare the two fundamen-
tally different theories with experiments. This would be a step on the way to
understanding if multiwall carbon nanotubes are really Luttinger liquids or not.
Therefore we provide a benchmark for experiments.

1.4 The merging of the Coulomb drag and multi-

wall carbon nanotubes

In this thesis, we will merge the concepts of multiwall carbon nanotubes and
Coulomb drag by letting the two subsystems in the drag setup be an inner and
an outer nanotube in a multiwall nanotube as sketched on figure 1.2(b). So we
imagine sending a current through an outer (inner) tube and find the voltage
drop this induces on an inner (outer) tube by the Coulomb drag. In other words

8For a short qualitative overview of the break down of Fermi Liquid theory in one dimension
and the emerge of Luttinger Liquid theory, see [17] or the new edition of [18, chap.19]. For a
longer more detailed review see [19]. A self contained review of some of the Luttinger liquid
effects in single wall metallic nanotubes is found in [20].
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(a)

I1

V2

The drive system

The drag system

1
2

(b)

Figure 1.2: (a) Two coaxial single wall carbon nanotubes forming a double wall carbon
nanotube, i.e. an example of a multiwall carbon nanotube. Both of these nanotubes are
so-called armchair nanotubes (as will be explained in chapter 2) and are metallic. (b) The
experimental setup to measure Coulomb drag in multiwall carbon nanotubes. For this to be
possible experimentally independent contacts are needed on an inner and an outer nanotube
after the removal of one or more of the outer shells in a multiwall carbon nanotube.

we want to calculate the intershell resistance originating from the Coulomb in-
teraction of the carriers in the two shells.

To do this experimentally one needs to remove parts of the outer shell(s) in a
controlled way in order to make independent contacts on an inner and an outer
nanotube. The shell removal has already been done several times experimentally
[25, 26, 27], but to our knowledge no one has yet made the independent contacts
needed to perform the experiment. Experiments are currently being done at the
Copenhagen University by Birte Rasmussen and Jesper Nygård.

Furthermore, since we work in the Coulomb drag regime, we neglect tun-
nelling between neighboring tubes in the multiwall nanotube. There is indirect
experimental evidence that this is a good approximation. Firstly studies on
graphite (which also has a layered structure) show that there is a difference of
two orders of magnitude between the resistance across and along the layers of
graphite sheets [28]. Another experiment on Aharonov-Bohm oscillations [18, p.
270] in multiwall carbon nanotubes suggests that only the outermost tube carries
the current, i.e. the current is not distributed across the shells in a multiwall
nanotube[29]9. Furthermore Cumings and Zettl performed an experiment, where
they pulled some inner shells out of a multiwall nanotube after opening the end
of the multiwall tube [31]. So there is some evidence that the shells are weakly
bound only by van der Waals forces and that it is reasonable to neglect the inter-
shell tunnelling. Nevertheless it could be interesting to include weak tunnelling

9The same conclusion was found in [30].
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and to see the effect of it on the transresistivity.

1.4.1 Other work on the intershell resistance and Coulomb
drag in nanotubes

Previous works on carbon nanotubes and Coulomb drag have been done. As an
example crossed single wall carbon nanotubes junctions has been studied both
experimentally [32][33, chap.3] and theoretically using Luttinger liquid theory
[34, 35]10. Here the single wall nanotubes interact only at a single point.

Coulomb drag between parallel single wall nanotubes has also been considered
in [37] and between one dimensional quantum wires (not with an emphasis on
nanotubes) has also been investigated in the ballistic regime, using both Luttinger
and Fermi liquid theory [38, 39]. Also, the diffusive one dimensional regime has
been considered [40].

There has also been some effort to calculate the intershell resistance in mul-
tiwall tubes as we will now describe. In both [41] and [42] density functional
theory in the ballistic regime were used.

In [42], a multiwall nanotube gently being pulled out of a liquid metal is
modelled to find an explanation of the experimental results [30], where ballistic
transport in multiwall nanotubes with unexpected prefactors of the conductance
quantum e2

h
were observed. The possible explanation of this effect is a blocking

of conductance channels due to inter wall interaction and a redistribution of
the current in the other layers (i.e. other than the outer one) [42]. Another
explanation of this experiment is an effect of the contacts [43], since the nanotube
in the liquid metal will be doped and thereby has a shifted Fermi level, which
affects the transmission across the contact-tube interface.

In [41], a double wall nanotube of two concentric metallic (so called armchair)
nanotubes are modelled. Here the conductance steps are found not to change
dramatically if the inter tube interaction is included (see figure 3 in [41]). The
method used to model the inter wall interaction is a tight binding approximation
(i.e. Hückel theory), which is very different from our way of modelling, since it
includes tunnelling as the only mechanism. Also [42] uses tunnelling as the only
mechanism.

Another theoretical study of the conductance of a multiwall nanotube is done
by S. Roche et. al. in [44, 45]. Here, the time evolution of a wave packet initially
on the outer shell is considered. The wave packet redistribute itself across the
multiwall structure in the presence of tunnelling between the layers, which is mod-
elled be solving the time dependent Schrödinger equation numerically. The result
of the simulations are that defect-free incommensurate nanotubes (i.e. aperiodic)
can be diffusive in the sense of having finite localization length. Furthermore, the

10Another study of crossed Luttinger liquids is found in [36], but it is not focussed on nan-
otubes.
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conductance is found to be a power law of the temperature below 1K. The tun-
nelling between the layers used in this work is 1/8 of the tunnelling between the
atoms in the same layer and is furthermore suppressed by an exponential factor
with the intershell distance in the exponent. Tunnelling of this magnitude is
inspired by density functional calculations [46].

In the present work we find the intershell resistance (transresistivity) in the
diffusive limit from the Coulomb interaction between the carriers in the different
shells and neglect the tunnelling between different shells completely.

1.5 Coulomb drag in coupled two dimensional

electron gases

Coulomb drag has previously been investigated intensively both experimentally
and theoretically for two parallel two dimensional electron systems. Here we will
give a very short introduction, for a further review see [47].

1.5.1 The low temperature regime:
Coulomb and phonon mediated drag

The first experiments done by T. J. Gramila et. al. [48] for semiconductor hetero
structures began the intense activity in the field of Coulomb drag between paral-
lel planar systems. They fabricated two separated GaAs/AlGaAs quantum wells
and made independent contacts to them. The measurements of the transresisti-
vity were done in a temperature interval from about 0.5K to 7K compared to a
Fermi temperature at TF = 62K and a separation11 d between (the center of) the
quantum wells of 37.5nm and 42.5nm. They found theoretically a temperature
dependence of the transresistivity at low temperatures, ρ21 ∝ T 2, by coupling two
Boltzmann equations – one for each layer. Their experiment was only in qualita-
tive agreement with this result. The measurements as seen on figure 1.3(a) shows
a small peak instead of a straight line in the transresistivity over temperature
squared, ρ21

T 2 , as a function of temperature. In figure 1.3 the rate of momentum
transfer τ−121 is used instead of ρ21, remembering eq.(1.1) in the case of quadratic
bands: ρ21 =

m1

n1ẽ1ẽ2τ21
.

To explain the results better Jauho and Smith [6] calculated the transresis-
tivity in great detail also by coupled Boltzmann equations. This was done in the
case of a Thomas-Fermi screened Coulomb interaction and one quadratic band in
each of the two quantum wells. This gave them a transresistivity for two identical

11This separation is about an order of magnitude larger than in multiwall nanotubes. So for
the assumption of no tunnelling between the shells in a multiwall nanotube to be acceptable,
the tunnelling barrier has to be significantly higher than in semiconductor structures.
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Figure 1.3: (a) The first measurements done by Gramila et. al. [48] on the momentum
transfer rate between two parallel quantum wells in a semiconductor heterostructure. The
peak at about 2K is explained by a combination of Coulomb and phonon mediated drag. (b) A
reproduction of the numerical integration of eq.(1.4) first done by Jauho and Smith in [6]. Both
figures shows the momentum transfer rate τ−121 , which has the connection to the transresistivity
as ρ21 =

m
ne2τ21

in the case of quadratic bands and identical wells.

two dimensional electron gasses as [6]:

ρ21 =
}2

2π2n2e2kBT

∫ ∞

0

dq

∫ ∞

0

dω q3
|eφ(q)|2

(
Imχ(q, ω)

)2

sinh2
(

}ω
2k

B
T

) , (1.4)

where n is the carrier density in each of the layers, Imχ(q, ω) is the imaginary
part of the polarizability12, eφ(q) is the screened (Fourier transformed) Coulomb
interaction in the Thomas-Fermi approximation and }q and }ω are the transferred
momentum and energy in the interaction process, respectively. We will later in
chapter 3 generalize this formula to the case of more bands of some general form
and cylindrical geometry. At low temperatures Imχ can be approximated by the
small q and ω limit as Imχ(q, ω) ' m2ω

2π}3qk
F

and the transresistivity in eq.(1.4) can

be calculated analytically to be [6]:

ρ21 =
}π2ζ(3)

16e2ε2F

(kBT )
2

(kFd)
2(qTFd)

2
∝ T 2

d4
, (1.5)

where qTF is the Thomas-Fermi screening vector, kF the Fermi wave vector, εF

the Fermi energy and ζ(3) the Riemann Zeta function of three13. This was the

12The general linear response function between some induced charge ρind and an external
field φext: ρind = χφext in Fourier space [18, p. 105].

13Generally it is: ζ(x) =
∑∞

n=1
1
nx

. For x ≤ 1 one has to use the analytical continued version
of the Riemann zeta function in order not to have a divergence.
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result previously obtained by Gramila et.al. [48] (apart from a factor of two).
Instead of using this low temperature limit Jauho and Smith made a numerical

integration of the double integral in eq.(1.4). We have reproduced their result and
obtained the same result by a numerical integration (in Matlab), which is seen on
figure 1.3(b). In calculating these curves, the zero temperature imaginary part
of the polarizability is used, since we are still well below the Fermi temperature
TF = 62K. The Thomas-Fermi screened potential is calculated self-consistently
by the Poisson equation for finite width quantum wells (see [6] for further details).
The interaction eφ(q) decreases with increasing q and sinh−2

(
}ω
2k

B
T

)
decreases

with increasing ω which makes the integrand most important for small q and ω.
Therefore the dominating process is the single particle electron-hole excitation
around the Fermi surface. Note that we have no parameters to fit the curves.

By comparing the theoretical and the experimental curves on figure 1.3, a no-
table difference is observed. Firstly the peak in the measurements at about 2K is
not as broad as the theoretical peaks at about 10K, i.e. from zero to 6K the the-
ory just gives a straight increasing line where there should be a peak. Secondly,
the measured transresistivity is about a factor of two higher than the calculated
one. Therefore the direct Coulomb interaction is not sufficient to explain the
measurements alone. By taking both the Coulomb and phonon mediated inter-
action into account the curves can be understood also quantitatively [49]. It turns
out that for large inter layer separation the phonon contribution becomes more
important, which both theory [49] and experiment [50] shows. The theory has
only one free parameter, which is the phonon mean free path, but it can account
for both the temperature, density and inter layer separation dependence of the
transresistivity.

1.5.2 The high temperature regime: Plasmon enhanced
drag

At higher temperatures, a better model for the interaction has to be considered
to capture the essential physics of the Coulomb drag. This is the random phase
approximation (RPA) instead of the Thomas-Fermi approximation and in the
RPA the interaction becomes dependent on the transferred energy }ω and the
temperature. So in the transresistivity formula (1.4) the interchange

eφ(q)→ V12(q)

ε(q, ω)
(1.6)

is made, where V12(q) is the (Fourier transform of the) bare Coulomb interaction
between the layers and ε(q, ω) is the dielectric function:

ε(q, ω) =
(
1− V11(q)χ1(q, ω)

)(
1− V22(q)χ2(q, ω)

)

− (V12(q))
2χ1(q, ω)χ2(q, ω). (1.7)
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Here Vii(q) is the intralayer Coulomb interaction (i.e. a two dimensional Coulomb
interaction) and χi(q, ω) is the polarizability for layer i.

For zero temperature the plasmon dispersion relations ω(q) are found by set-
ting the dielectric function equal to zero, ε(q, ω(q)) = 0 [18, p. 210]. At such
plasmon frequencies the screened RPA potential (1.6) would diverge and hence
give a large (in principle infinite) contribution to the transresistivity in eq.(1.4)
and this is the idea of the plasmon enhanced Coulomb drag as first discovered the-
oretically by Flensberg and Hu in [51, 52]. Of course a zero temperature plasmon
does not give an enhancement as a function of temperature. For finite tempera-
ture the plasmon modes are obtained by solving Re

[
ε(q, ω(q))

]
= 0 and thereby

one can have an enhanced electron interaction, but still finite –and a finite drag–
due to the imaginary part of the dielectric function. Calculating the temperature
dependent polarizability cannot be done analytically and a numerical evaluation
of

χ(q, ω) = −
∫

dk

(2π)2
f 0(εk)− f 0(εk+q)

εk − εk+q − }ω + iδ
(1.8)

is needed [52]. Here f 0(ε) is the Fermi function of the quadratic energy band
εk = }

2k2

2m
and δ is a positive infinitesimal.

A numerical calculation shows that a large enhancement of ρ21/T
2 appears

at about T ' 0.2TF and peaks at T ' 0.5TF [52]. This is large compared to
the small peak seen at low temperatures (in figure 1.3(a)). Furthermore for
large temperatures, the plasmon enhancement gives ρ21 ∝ d−3 instead of the low
temperature result (1.5). The theoretical prediction (with no free parameters)
was later confirmed experimentally by Hill et. al. [53].

So Coulomb drag probes both single particle excitations at low temperatures
(T ¿ TF) and collective excitations, plasmons, at higher temperature (T ∼
0.5TF). This is rare and exciting for a transport measurement, which normally
do not capture interparticle interactions as discussed above.

1.5.3 Other extensions

Much more can be said about the field of Coulomb drag and inter layer interaction
for two parallel two dimensional electron gases (see e.g. [39, chapter 1]).

One of the exciting new phenomena is the Bose-Einstein condensation of
electron-hole pairs (excitons) in double quantum wells (see e.g. [54] and ref-
erence therein). One of the tricks here is to have a hole in one quantum well and
an electron in the other well, so that they are spatially separated and thereby
cannot recombine with each other. This is considered both experimentally and
theoretically [55].

Another exciting area is the Coulomb drag in mesoscopic systems, i.e. on the
borderline between the macroscopic and the atomic scale, where the translational
symmetry is broken and the dimensions can be smaller than the phase-breaking

11



length. One of the theoretical predictions is that there should be a large sample
to sample variation in the mesoscopic fluctuations which can even exceed the
mean value of the transresistivity [56, 57, 39].
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Chapter 2

Elements of carbon nanotube

physics

In this chapter, we introduce carbon nanotube properties relevant for the elec-
tronic transport in nanotubes such as the lattice structure, energy band structure,
Bloch states and impurity scattering, needed to understand the Coulomb drag in
multiwall nanotubes.

2.1 Crystal structure

A carbon nanotube can be viewed as a sheet of graphite folded into a cylinder.
In order to understand carbon nanotubes, we therefore begin by describing the
crystal structure of a graphite sheet (often called graphene).

2.1.1 A graphite sheet

Graphite is built up by weakly coupled layers separated by 0.335 nm [58]. Each
layer consists of a hexagonal (honeycomb) lattice as seen on figure 2.1(a), where
the distance between two neighboring carbon atoms is ac c = 0.142 nm. Due to
the geometry of the hexagonal lattice it is necessary to have at least two atoms
in each unit cell [1, p.75]. One choice of the Bravais lattice is spanned by the two
non-orthogonal primitive vectors

a1 =
a

2

( √
3
−1

)
and a2 =

a

2

( √
3
1

)
, (2.1)

where a ≡ |a1| = |a2| =
√
3ac c was introduced. Other conventions are also used

in the literature [59, 60]1. The two atoms in each unit cell are labelled by A

1Here a1 = a(1, 0) and a2 =
a
2 (−1,

√
3) given in a coordinate system rotated π/4 with

respect to the system seen on figure 2.1(a) is used. This system has some advantages such as
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Figure 2.1: (a) The lattice of a graphite sheet, graphene, is seen to be spanned by the lattice
vectors a1 and a2. The unit cell is marked by the thick parallelogram and it contains two atoms
A and B connected by d = 1

3 (a1 + a2). (b) The first Brillouin zone (FBZ) of graphene and
the reciprocal lattice vectors b1 and b2 are seen. The K± =

2π
a
( 1√
3
,± 13 ) are also shown for

later reference.(Note that the other corners of the FBZ are equivalent to K±, since they are
connected by reciprocal lattice vectors.)

and B, respectively, and graphene can therefore be described by two equivalent
sublattices with A and B atoms at RA = n1a1+n2a2 and RB = n1a1+n2a2+d

(n1, n2 ∈ Z), respectively, where d = 1
3
(a1 + a2) = (ac c, 0) connects the two

atoms in the unit cell (see figure 2.1(a)).
The reciprocal space is spanned by

b1 =
2π

a

( 1√
3

−1

)
and b2 =

2π

a

( 1√
3

1

)
, (2.2)

which are found from the definition of the reciprocal lattice: ai · bj = 2πδi,j
[1, p.87]. The First Brillouin Zone (FBZ) is the Wigner-Seitz unit cell in the
reciprocal lattice, i.e. its boundaries are found by making perpendicular cuts
halfway between each neighboring lattice point as seen on figure 2.1(b).

2.1.2 A carbon nanotube

To construct the lattice of a single wall carbon nanotube a sheet of graphite is
folded into a cylinder. Or to put it mathematically: a conformal mapping (i.e.

a simpler way to describe the electronic structure even though it is less symmetric and not as
widely used as the one stated in the text.
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an angle conserving mapping) from a plane of graphene to a cylinder is made.
This can be done in many ways and the particular way determines the properties
of the nanotube, e.g. if it is metallic or semiconducting, as we shall see below.
To distinguish differently folded carbon nanotubes the Chiral vector C is defined
as

C = na1 +ma2, (2.3)

where n,m ∈ Z and 0 ≤ |n| ≤ m is chosen to avoid degeneracy [61]. The
Chiral vector connects the two sides which are folded together and it thereby
becomes the circumference of the nanotube as seen on figure 2.2. Therefore
the crystal structure of a single wall carbon nanotube is specified by indices
(n,m) from eq.(2.3). Nanotubes are conventionally divided into three categories:
The armchair (n, n) tubes, the zigzag (n, 0) tubes2 and the rest are called chiral
nanotubes. Geometrical properties of a nanotube can found in terms of the
indices (n,m) such as the diameter:

D =
|C|
π

=
a
√
n2 +m2 +mn

π
, (2.4)

where the relations a2 · a1 = a2

2
and |a2|2 = |a1|2 = a2 were used.

The primitive unit cell

We now consider the primitive (i.e. the minimum) unit cell of a carbon nanotube.
The nanotube crystal lattice can be seen as built up by two discrete symmetries: A
helical and a rotational symmetry. A helical symmetry operation S(h, ϕ) consists
of a screw operation around the nanotube axis, i.e. combining a rotation of angle
ϕ around the tube axis with a translation of length h along the tube. This makes a
spiral of atoms. The rotational symmetry operation Cn rotates the lattice around
the nanotube axis by an angle of 2π

n
. By combining these two symmetries the

nanotube lattice structure can be constructed from a unit cell of only two atoms
as in the case of graphene [62, 61].

To specify the helical symmetry operation S(h, ϕ) as in [62] we introduce the
lattice vector H = p1a1+p2a2, which (after the conformal mapping) will generate
the helical symmetry. To find p1, p2 ∈ Z we give the helical variables in terms of
the generating vector H:

h =
|H×C|
|C| and ϕ =

2π

|C|H ·
C

|C| , (2.5)

which can be seen by geometrical considerations3. To chose H we want h and |H|
to be as small as possible (or equivalently h and ϕ), so that the helical symmetry

2Zigzag tubes have a zigzag pattern around the circumferential and some see an “armchair”
pattern around an armchair nanotube [63].

3When doing the cross products one has to enlarge the vectors to three dimensions e.g. by
adding a zero third component (i.e. a1 =

a
2 (
√
3,−1)→ a1 =

a
2 (
√
3,−1, 0)), since cross products

strictly only makes sense for three dimensional vectors.
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operation can generate as much of the tube as possible (i.e. making spirals with
the shortest possible translation and rotation). So |H×C| = |p1m−p2n||a2×a1|
should be as small as possible but nonzero. Therefore the integers p1 and p2
should be chosen as the smallest pair of integers (in the sense of minimizing
|H| = a

√
p21 + p22 + p1p2), fulfilling4

p1m− p2n = gcd(n,m) ≡ n, (2.6)

where gcd(·, ·) is the greatest common divisor of the two integers. We can now
identify the helical symmetry for a given nanotube (n,m). An example of H is
seen on figure 2.2.

The rotational symmetry operation Cn is generated (after the conformal map-
ping) by the smallest lattice vector proportional to C, which leaves the lattice
invariant [61]. This is seen to be

Cn =
C

n
=
n

n
a1 +

m

n
a2, (2.7)

where n = gcd(n,m). There is no smaller lattice vector proportional to C, since
gcd(n

n
, m

n
) = 1. The smallest rotation leaving a (n,m) nanotube invariant is

therefore 2π
n

.
So by combining these two symmetries any tube can be generated from a

two atomic unit cell and a conformal mapping (see figure 2.2 for an example).
Alternatively one can chose a unit cell consisting of all the 2n atoms generated
by the rotation and only use the helical symmetry to generated the tube from a
unit cell of 2n atoms [62, 61].

The translational unit cell

Any nanotube also has translational symmetry along the tube and therefore it
is also possible to introduce a larger unit cell, which we will refer to as the
translational unit cell. This is often the unit cell used [58], even though it contains
a much larger number of atoms than two, i.e. it is not the primitive unit cell.
The translational symmetry can be generated by a lattice vector along the tube
(commonly called the translational vector [58]) T = t1a1 + t2a2, which is defined
as the smallest possible lattice vector (of graphene) perpendicular to C. By using
ai ·aj = a2δi,j +

a2

2
(1− δi,j) one has 0 = C ·T = a2

2

(
t1(2n+m)+ t2(2m+n)

)
and

since t1, t2 ∈ Z should be as small (in absolute value) as possible, the translation
vector is:

T =
2m+ n

gcd(2m+ n, 2n+m)
a1 −

2n+m

gcd(2m+ n, 2n+m)
a2, (2.8)

4This can be proven by number theoretical arguments and we chose the positive solution
(p1m− p2n = ± gcd(n,m)) corresponding to right-handed helixes, see [62] for details.
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Figure 2.2: A carbon nanotube is
made by folding the graphite sheet
into a tube by connecting the two
dotted lines. The specific example
shown is a (1, 3) tube, i.e. C =
a1 + 3a2 becomes the circumferen-
tial. The translation vector is T =
7a1 − 5a2 along the tube (the di-
rection, not the length, is shown by
the vector perpendicular to C). The
vector generating the helical sym-
metry is H = a2, which is seen to
generate the entire nanotube, since
n = 1 so only a 2π rotation leaves
the lattice invariant. Note that the
length of T compared to e.g. ai

makes the translational unit cell of
the tube contain a large number of
atoms (2N = 52) compared to the
graphene unit cell of two atoms.

where t1 and t2 can be read off.
The basis of the reciprocal space from the translational unit cell of the nan-

otube can be found as for graphene through the relation GA ·B = 2πδA,B, where
A and B are either C or T. This gives:

GC =
1

N (−t2b1 + t1b2) and GT =
1

N (mb1 − nb2), (2.9)

where N turns out to be the number of graphene unit cells in the translational
unit cell [58, chap.3], given by5

N =
|C×T|
|a1 × a2|

=
2(m2 + n2 + nm)

gcd(2m+ n, 2n+m)
. (2.10)

So the translational unit cell contains 2N atoms, which is much larger than
the two (or 2n) atoms in the unit cell for the combined helical and rotational
symmetry (or the helical symmetry only). We shall see in section 2.2.2 that the
direction GC is quantized (into a few values), giving rise to a one dimensional
band structure.

2.2 Energy band structure

We obtain the band structure, i.e. the eigenenergies and energy eigenfunctions
of a single wall carbon nanotube, in two ways: By using periodic boundary

5The size of the cross product gives the area spanned by the two vectors.
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conditions for the band structure of graphene as in [60, 64] and directly from the
helical and rotational symmetries as in [62]. The two ways of obtaining the band
structure are compared and shown to give the same energy bands, but with a
different numbering scheme.

2.2.1 Band structure of a graphite sheet

A free carbon atom has six electrons: two very strongly bound in the lower energy
1s orbital6 and four in the energy degenerate 2s, 2px, 2py and 2pz orbitals. In
graphene the orbitals 2s, 2px and 2py are combined in three new linear combi-
nations to form the so-called sp2 orbitals. These orbitals are in the same plane
and make the strong chemical bonds to the three other carbon atoms in graphene
(pictured as “black sticks” in figure 2.1(a)). These bonds take up three electrons,
which are localized and bound. The last electron in the half filled 2pz orbital
can “hop” (i.e. tunnel) to the other 2pz orbitals and thereby it is the only orbital
contributing to electron transport in graphene. Furthermore the 2pz orbital is
orthogonal to the plane and has a node in the plane, so it does not have an over-
lap with the sp2 orbitals [58]. Therefore we now make a tight binding model [1,
chap.10] of graphene to find the band structure. This was first done by Wallace
[65].

The model for the single electron Hamiltonian includes a kinetic part and the
lattice potential from each atom in the unit cell of graphene,

H(r) = Hkin +
∑

RA

(
V (r−RA) + V (r−RA − d)︸ ︷︷ ︸

Atomic potentials

)
, (2.11)

which as usual leads to a Bloch function ψk(r), (r = (x, y) and k = (kx, ky)) [1,
chap.8]. Any Bloch function in a general monatomic Bravais lattice can be written
as a sum of Wannier functions f(r−R) as ψk(r) =

∑
R e

iR·kf(r−R), which can be
seen as a (non conventional) Fourier transformation for fixed r. Here the Wannier
functions (or Fourier coefficients) can be shown to have very similar properties
to the atomic orbitals such as localization on the lattice points [1, p.187] and
therefore f(r −R) is often replaced by the atomic orbital [58, 65, 66, 67]. Note
that the Wannier form fulfills the Bloch theorem ψk(r+R) = eik·Rψk(r), shown
by translating the lattice vectors in the sum.

As the Bloch state for the case with a two atomic unit cell as for graphene a

6Here an atomic state with unspecified spin is called an orbital, so there can be a maximum
of two electrons in one orbital.

18



superposition of Wannier functions at sublattices A and B is made [1, p.185]:

ψk(r) =
1√
N

∑

RA

eik·RA

(
αΨ(r−RA) + βΨ(r−RA − d)

)
(2.12)

= α
1√
N

∑

RA

eik·RAΨ(r−RA) + β
1√
N

∑

RA

eik·RAΨ(r−RA − d)

≡ αφA,k(r) + βφB,k(r), (2.13)

where N ≡ ∑RA
is the number of unit cells in graphene, φA/B,k are Wannier

decompositions on each sublattice and α,β are to be determined by the following
calculation. A priori the Ψ(r) are Wannier functions, but we will approximate
them by the 2pz orbitals7, which makes it possible for them to have an overlap8 [1,
p.188]. Here Ψ is normalized on each lattice point, |〈Ψ(r−Ri)|Ψ(r−Ri)〉|2 = 1,
(i = A,B), so φA/B,k are normalized if the overlap between different sublattice
points (on the same sublattice) is neglected. ψk(r) is only normalized if the
overlap between the two sublattices are also zero, i.e. 〈Ψ(r−RA)|Ψ(r−RB)〉 = 0
for all RA,RB, and |α|2 + |β|2 = 1. Since the overlap is small ψk(r) is almost
normalized, i.e. |〈ψk|ψk〉|2 ' 1.

The energy eigenvalues and eigenstates are found from the Schrödinger equa-
tion

Hψk(r) = εkψk(r), (2.14)

by multiplying from the left with φ∗A,k and φ∗B,k, respectively, and integrating over
r. Written in matrix form this is9:

(
HAA HAB

HBA HBB

)(
α
β

)
= εk

(
SAA SAB

SBA SBB

)(
α
β

)
, (2.15)

where the matrix elements are (i, j = A,B):

Hij ≡
∫

drφ∗i,k(r)Hφj,k(r), (2.16)

Sij ≡
∫

drφ∗i,k(r)φj,k(r). (2.17)

To calculate these matrix elements, we assume that only the nearest neighbour

7In eq.(2.12) we see the reason why the tight binding method is often called the method of
linear combination of atomic orbitals (LCAO), which is indeed what eq.(2.12) is.

8In the end of the calculation only matrix elements of H and inner products between these
states are needed and these numbers are often found by fitting density functional theory cal-
culation to tight binding calculations [68, 66], so the precise form of the Wannier functions (or
2pz orbitals) are not used.

9Note that this is diagonal in k as can be seen in the element evaluation.
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atoms contribute to the integrals10, i.e.:

∫
drΨ∗(r−Ri)HΨ(r−Rj) =





ε0 for |Ri −Rj| = 0
−γ0 for |Ri −Rj| = ac c

0 for |Ri −Rj| > ac c

, (2.18)

∫
drΨ∗(r−Ri)Ψ(r−Rj) =





1 for |Ri −Rj| = 0
s0 for |Ri −Rj| = ac c

0 for |Ri −Rj| > ac c

, (2.19)

where i and j are either A or B. Note that the nearest neighbour is always on
the other sublattice. Here ε0 is the energy of the atomic orbital 2pz, γ0 > 0 is
of order 3eV and s0 ∼ 0.1 [66, 69, 68, 58] found by fitting to density functional
theory results. Similar numbers are found from experiments [70, 71]11. Note that
these parameters are chosen real. By using the nearest neighbour approximation
we have SAA = SBB = 1 as required by the normalization condition and

HAA =
1

N

∑

R′A,RA

eik·(RA−R′A)

∫
drΨ∗(r−R′

A)HΨ(r−RA) = ε0 (2.20)

equal to HBB, since the two sublattices are equal (apart from a translation in
space). Furthermore HAB = H∗

BA and by using eq.(2.18)

HAB =
1

N

∑

R′A

∑

RA

eik·(R
′
A−RA)

∫
drΨ∗(r−RA)HΨ(r−R′

A − d)

=
1

N

∑

R′
A

(
1 + e−ik·a1 + e−ik·a2

)
(−γ0)

= −γ0
(
1 + e−ik·a1 + e−ik·a2

)

≡ −γ0Υ(k), (2.21)

where the RA sum was done over the three nearest neighbours in the B sublattice,
giving three terms all with the same matrix element −γ0 due to symmetry. In
the same way SAB = S∗BA and SAB = s0Υ(k) by using eq.(2.19). Therefore the
Schrödinger eq.(2.15) is,

(
ε0 − εk −(γ0 + s0εk)Υ(k)

−(γ0 + s0εk)Υ
∗(k) ε0 − εk

)(
α
β

)
=

(
0
0

)
, (2.22)

which only has non-trivial solutions if the determinant is zero. This gives the two
eigenenergies εk:

ε+k =
ε0 + γ0|Υ(k)|
1− s0|Υ(k)| and ε−k =

ε0 − γ0|Υ(k)|
1 + s0|Υ(k)| . (2.23)

10One could get better band structure by including more than the nearest neighbour as in
[66].

11In [70] γ0 = 2.7±0.1eV is obtained. In [71] γ0 = 2.45eV is found. None of these experiments
states values of s0.
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Note that we obtained two eigenvalues as a direct consequence of the two atoms
in the unit cell. If Υ(k) = 0 the only eigenenergy is ε0 and the two corresponding
degenerate eigenvectors are

(
1
0

)
and

(
0
1

)
. If on the other hand Υ(k) 6= 0 the

eigenvectors corresponding to each of the eigenvalues ε±k in eq.(2.23) are:

(
α
β

)

±
=

1√
2

(
(γ0+s0ε

±
k
)Υ(k)

ε0−ε±
k

1

)
=

1√
2

(
∓ Υ(k)
|Υ(k)|
1

)
, (2.24)

independent of the constants ε0,s0 and γ0. Note that Υ(k)
|Υ(k)| is just a complex phase

factor ei arg(Υ(k)). This can be inserted into the Wannier decomposition (2.12) to
obtain the two Block states in terms of localized functions on the lattice points.
So we have now found the possible energies and eigenstates for a given point in

k-space.
Each atomic 2pz orbital contributes one electron to the energy band structure

(two per unit cell) and thereby 2N of the 4N states are filled, i.e. half filling
without doping and/or a gate voltage. Since ε+k ≥ ε−k for all k ∈ FBZ and ε±k
contains the same number of states (2N), ε−k is completely occupied and ε+k empty
at zero temperature. So the Fermi level is at εF = ε0 and the Fermi points in
k-space fulfills Υ(k) = 0 as seen by eq.(2.23). There are six such points in the
corners of the FBZ and they are degenerate by symmetry in pairs of two, called
K±, since the other four points can be obtained by a reciprocal lattice vector.
They are found to be12: K± = 2π

a
( 1√

3
,±1

3
) as seen on figure 2.1(b). Since the

Fermi points are single points (not lines in the k plane) graphene (and thereby
also graphite) is a semimetal also called a zero-gap semiconductor [1, 65, 58].

We are only interested in the transport properties of graphene, which are
mainly given by the band structure around the Fermi level where |Υ(k)| is small
and since s0 ∼ 0.1 we have s0|Υ(k)| ¿ 1 near εF. Therefore the denomi-
nator in the energies (2.23) can be neglected and doing so the Fermi energy
εF = ε0 only moves the bands up or down and we can choose our zero of en-
ergy to be εF = ε0 = 0. This gives the energies and (unchanged) eigenstates:

ε±k = ±γ0|Υ(k)|,
(
α
β

)

±
=

1√
2

(
∓ Υ(k)
|Υ(k)|
1

)
, (2.25)

where Υ(k) = 1 + e−ik·a1 + e−ik·a2 and

|Υ(k)| =
√

3 + 2 cos(k · a1) + 2 cos(k · a2) + 2 cos(k · (a1 − a2)) (2.26)

=

√

1 + 4 cos

(√
3kxa

2

)
cos

(
kya

2

)
+ 4 cos2

(
kya

2

)
. (2.27)

12Note that Υ(k) = 0 is a complex equation in two variables and can be solved by identifying
the imaginary and real part, respectively.
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FE

(4,4) Armchair

(7,2) Chiral

Figure 2.3: Left: The energy
band structure of graphene from
eq.(2.25). The (undoped) Fermi
level is seen and the (yellow) dots
represent the K± points. Right:
The possible k (white lines) of
a semiconducting (7, 2) and a
metallic (4, 4) nanotube shown in
the FBZ (green dashed lines) of
graphene, i.e. the two dimen-
sional band structure is sliced
into one dimensional bands by
the periodic boundary condition.
A contour plot of ε−k (eq.(2.25))
is also seen.

ε±k are seen on figure 2.3. Often the simplified band structure (2.25) is found
directly by assuming that s0 = 0 from the beginning [65, 58], but since the value
of s0 6= 0 is shown later to be of great importance for the Coulomb drag in
multiwall nanotube, this was not done here.

2.2.2 Carbon nanotube band structure

To model the band structure of a multiwall carbon nanotube we assume that
the band structure of the individual singlewall tubes are as if they were isolated
singlewall nanotubes. This is a good approximation but of course not completely
true [72]. Therefore we now find the band structure of an isolated singlewall
carbon nanotube.

Band structure by using periodic boundary conditions of graphene

In appendix A we show how the energy and wave function for a cylinder in the
free electron model is obtained by making periodic boundary conditions for a two
dimensional electron gas. Here we will do the same thing, i.e. apply periodic
boundary conditions around the tube (in the C direction) for the graphene band
structure to get the bands of a nanotube. It is not obvious that this will work
for carbon nanotubes, since the folding brings the 2pz atomic orbitals closer
together (further apart) on the inside (outside) of the tube. Such effects of the
curvature [73] have been shown to open energy gaps near the Fermi level of
metallic nanotubes for very small radius nanotubes r . 0.2 nm but for larger
radii the zone folding works remarkably well [60, 64, 62].
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To apply the periodic boundary condition the wave function for graphene
should satisfy ψk(r + C) = ψk(r), to fit the tube. By using the Bloch theorem
for the graphene lattice we have

ψk(r + C) = eik·Cψk(r) = ψk(r), (2.28)

so the periodic boundary condition in the last equality gives the restriction on k:

k ·C = 2πnc, (2.29)

where nc is an integer. Decomposing the wave vector along the tube and around
the circumference as

k = k
T

|T| + kc
C

|C| (2.30)

and inserting this form in eq.(2.29) we obtain kc = 2π
|C|nc. Here |C| is short

(compared to the tube length) and thereby kc splits up the two dimensional band
structure (2.25) into one dimensional subbands labelled by nc and a continuous13

k along the tube. This is completely analogue to the free electron model mapped
onto a cylinder as seen in appendix A. The slicing of the 2D band structure can
be seen for different nanotubes on figure 2.3.

To avoid degeneracy we have to restrict nc. This is done by choosing nc in
an interval so that no other nc value in the interval gives the same wave vector k

plus some reciprocal lattice vector of graphene14. Explicitly we have

k = k
T

|T| + kc
C

|C| = k
T

|T| + kc
GC

|GC|
= k

T

|T| + ncGC

= k
T

|T| + nc
1

N (−t2b1 + t1b2)︸ ︷︷ ︸
(?)

, (2.31)

where C
|C| =

GC

|GC| , |GC| = 2π
|C| and the definition of GC in eq.(2.9) were used.

Here (?) is a reciprocal lattice vector of graphene and by construction of t1 and
t2 (see above eq.(2.8)) no integer can be taken outside the parenthesis to make
a shorter reciprocal lattice vector times an integer. Therefore nc is restricted to
nc ∈ {0, 1, 2, . . . ,N − 1}, since all other nc values would give some k in this set
plus a reciprocal lattice vector of graphene, so the same wave function would be
obtained.

The energies and energy eigenstates are now obtained for a particular carbon
nanotube (n,m) by inserting the restricted wave vector (2.31) into the band
structure for graphene ε±k and

(
α

β

)
± in eq.(2.25), where k is in the one dimensional

13As always, only continuous in the long tube limit otherwise quantized in units of 2π
L

.
14It should not be a reciprocal lattice vector for the nanotube, since the Bloch theorem in

the form ψk+G(r) = ψk(r) is only valid for all graphene reciprocal lattice vectors G and not
for all nanotube reciprocal lattice vectors, when ψk(r) is given by (2.12).
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FBZ, − π
|T| ≤ k < π

|T| and nc ∈ {0, 1, 2, . . . ,N − 1}. Note that this is the band

structure for the (large) translational unit cell where k is along the tube.
This gives all the possible energy values as a function of k, but does not

tell us a priori how to connect the energy bands (at points of doubt such as
crossings). This is done in general by considering the symmetries of the points
and connecting points belonging to the same symmetry. This can be done by
group theoretical arguments such as in [67, 75, 76], but also by examining the
wavefunction directly in the specific case as done later (see page 29, figure 2.4
and section 2.2.4). The group theoretical approach has the advantage of labelling
the bands by quantum numbers arising from the symmetry properties such as a
crystal angular momentum stemming from the discrete rotational symmetry. We
shall see that nc is closely related to the crystal angular momentum. This labelling
has great importance in the calculation of matrix elements since some elements
can be zero due to the symmetries. Furthermore one can use a (generalized)
Wigner-Eckart theorem [67, 77, 78].

If a K+ or K− point is among the points in the one dimensional band struc-
ture, then the nanotube becomes metallic by having states at the Fermi surface,
if the nanotube does not have a band gap and is semiconducting. As we shall see
(in section 2.2.4) one third of the nanotubes are metallic and two thirds are semi-
conducting. Experimentally one finds both semiconducting and metallic tubes
[58, 74].

Band structure by using the helical and rotational symmetries

The helical S(h, ϕ) and rotational Cn symmetries are now used to find the band
structure for a nanotube using the primitive unit cell (see p.15). The Hamil-
tonian is invariant under the lattice symmetries and therefore15 [H, Cn] = 0 and
[H,S(h, ϕ)] = 0. Furthermore the two lattice symmetries commute [Cn,S(h, ϕ)] =
0, so it is possible to find common eigenstates |ψ〉 of the three operators16:

H|ψ〉 = ε|ψ〉, Cn|ψ〉 = c|ψ〉 and S(h, ϕ)|ψ〉 = s|ψ〉, (2.32)

where the eigenvalues c and s are complex numbers. To find the eigenvalue c we
note that (Cn)

n is the identity operator (rotation of the lattice by 2π), so cn = 1,

which has the rots c = e−i 2πm

n for m ∈ {0, 1, . . . , n− 1}, where the minus sign in
the exponent is introduced for later convenience.

The eigenvalue s is found in the following way: Let L À 1 be the number
of times the helical operation is used to get from one end of the tube to the
other, i.e. it is proportional to the length of the tube L. We now apply periodic

15The same symbol for the symmetry groups and the symmetry operators are used, since the
meaning is clear from the contents.

16The same method can be used to prove Bloch′s theorem using translational symmetry, i.e.
to find an eigenstate of both the translational operator and the Hamiltonian, see [1, p.134]
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boundary conditions to the nanotube, so the two ends are equivalent, which is
completely analogue to the Born-von Karman boundary conditions often used
in solids [1, p.135]. Therefore (S(h, ϕ))L is the identity operator and s = e−i 2πn

L

with17 n ∈ {−L/2, . . . ,L/2}, but since LÀ 1 we introduce κ = 2πn
L
∈]−π, π], i.e.

an (almost) continuous dimensionless index. We can now label the eigenstate by
use of the symmetry eigenvalues: |ψ〉 = |κ,m〉, where −π < κ ≤ π is analogue to
k (but not the same) and m ∈ {0, 1, . . . , n− 1} is the crystal angular momentum
along the nanotube, since it stems from the discrete rotational symmetry18.

To find the |κ,m〉 state explicitly as in [62] we use a Wannier decomposition
for a two atomic unit cell as for the graphene layer eq.(2.12) (section 2.2.1):

|κ,m〉 = 1√
nL

L

2∑

l=−L

2

n−1∑

p=0

eiκlei
2πm

n
p
(
αΨA(l, p) + βΨB(l, p)

)
, (2.33)

where ΨI(l, p) (I = A,B) is a Wannier function approximated by an 2pz orbital
at each atom in the two atomic unit cell, i.e. a tight binding approximation. The
unit cell at l, p is obtained by l applications of S(h, ϕ) and p applications of Cn

from some chosen origin, i.e. at the lattice vector R = lH + pCn (before the
conformal mapping). Note that |κ,m〉 in eq.(2.33) is an eigenstate of S(h, ϕ) and
Cn.

Just as in the calculation of the graphene band structure this is an eigenstate
of the Hamiltonian, H|κ,m〉 = εκm|κ,m〉, and by diagonalization (of a 2 × 2
matrix) we obtain the eigenenergies and the coefficients α and β as a function of
κ and m. The solution is formally the same as for the band structure of graphene
in eq.(2.25) (in section 2.2.1), but when calculating HAB we express the nearest
neighbours in terms of l and p and thereby get Υ(κ,m) as19

Υ(κ,m) = 1 + e−iκn
n
+i

2πmp1
n + ei

κm
n
−i

2πmp2
n . (2.34)

The eigenenergies for a specific −π < κ ≤ π and m ∈ {0, 1, . . . , n − 1} are
ε±κm

= ±γ0|Υ(κ,m)| from eq.(2.25), i.e.

ε±κm
= ±γ0

[
3 + 2 cos

(
κn− 2πmp1

n

)
+ 2 cos

(
κm− 2πmp2

n

)

+ 2 cos

(
κ(n+m)− 2πm(p1 + p2)

n

)] 1
2

, (2.35)

17We assume L to be an even integer, which has no practical importance, since LÀ 1.
18Just as angular momentum quantum number m stems from a continuous rotational sym-

metry of a system around an axis (conventionally called the z-axis).
19To identify the nearest neighbours in the l, p coordinates we observe that any lattice vector

R = q1a1 + q2a2 can be written as R = q1a1 + q2a2 = lH+ pCn, which gives l = q2n−q1m
n

and
p = q1p2 − q2p1 (modulo n) for an (n,m) tube and H = p1a1 + p2a2.
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where p1 and p2 are found from eq.(2.6). Note that we still have the (non-doped)
Fermi level at εF = 0. We still have to connect the energy bands by considering
the symmetries of the wave functions of the bands near crossing of the bands (i.e.
at Υ(κ,m) = 0 where the calculation of the band structure is not valid) as we
shall see shortly.

Comparison of the band structure for the two different unit cells

We now compare the band structure obtained from the primitive unit cell and the
(larger) translational unit cell. An analogue situation for a simple tight binding
chain is considered in appendix B, where we see that by choosing a unit cell larger
than the primitive unit cell we get a smaller FBZ with more bands in it. These
extra bands are obtained from folding the bands from the FBZ of the primitive
unit cell into the smaller FBZ of the larger unit cell. The same thing essentially
happens in the case of carbon nanotubes, but the bands in the translational and
the primitive unit cell are described by a priori different indices: The bands from
the primitive unit cell are labelled by a continuous (dimensionless) κ ∈] − π, π]
(from S(h, ϕ)) and a crystal angular momentum m ∈ {0, 1, . . . , n−1} whereas the
bands from the translational unit cell have a continuous wave vector k ∈]− π

|T| ,
π
|T| ]

along the tube and a discrete label nc ∈ {0, 1, . . . ,N − 1}. To connect these two
descriptions we have

κ = k ·H and
2πm

n
= k ·Cn, (2.36)

where k is the restricted (2D) wave vector of graphene eq.(2.31) with periodic
boundary conditions, i.e. k contains both k and nc. Therefore κ depends on
both k and nc, whereas m = nc (modulo n)20 from eq.(2.29) [61]. So the bands
from the primitive unit cell (as a function of κ) is pushed into the smaller FBZ
(as a function of e.g. ka) for the translational unit cell and the crystal angular
momentum m is split up into nc = m,m + n,m + 2n, . . . < N .

As an example consider a (6, 7) tube: Here n = 1 and N = 254, so this tube
only has two bands for the primitive unit cell with both m = 0. These two bands
are pushed into a much smaller FBZ of the translational unit cell and thereby
split up into 2× 254 bands, i.e. all bands have zero crystal angular momentum.

For the tight binding chain in appendix B we note the following: Only for
the primitive unit cell are the explicit expressions for the energy bands and eigen
functions periodic functions of the wave vector with the period of the reciprocal
lattice vector. For the larger unit cell this is not the case, so one has to repeat
the structure from the FBZ by hand to obtain a periodic band structure for the
larger unit cell. For the nanotube the situation is the same: For the primitive

20Explicitly: {0, 1, . . . ,N − 1}︸ ︷︷ ︸
nc value

= {0, 1, . . . , n− 1, 0, 1, . . . , n− 1, . . . , 0, 1, . . . , n− 1}︸ ︷︷ ︸
crystal angular momentum m of the nc value

.
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unit cell, the energy eq.(2.35) and eigenfunction eq.(2.33) are periodic functions
for κ → κ + 2π and/or m → m + n, since Υ(κ,m) eq.(2.34) is invariant under
these transformations. For the (larger) translational unit cell this is not the case,
since Υ(k) eq.(2.21) with the restricted wave vector eq.(2.31) is not periodic for
k→ k+ 2π

|T| . We therefore make the band structure for the translational unit cell
periodic by hand.

The Fermi level and gaps openings in metallic nanotubes

The Fermi level of a nanotube can be shifted by doping up to±0.5eV and applying
a gate voltage εF can be changed by about ±1eV, which should be compared to
the band width ∼ γ0 ' 3eV. The lattice structure is often unaffected by doping,
since the doping molecules or atoms bind to the surface of the nanotube by Van
der Waals forces [79, 80, 81, 82, 83, 84]. So by moving εF, semiconducting tubes
can become conducting. For εF = 0 the band structure of graphene is symmetric
around the Fermi level, i.e. for each k ∈ FBZ there is (at zero temperature) an
occupied state with energy ε−k and an empty state with energy −ε−k = ε+k . This is
called particle-hole symmetry and is carried over to the nanotube band structure
(see also section 5.3.3). If the Fermi level is shifted, the particle hole symmetry
is broken.

In the tight-binding calculation we assumed that the overlap integral has the
same value −γ0 for all the three nearest neighbours. This is true for graphene,
but for the nanotube the distance to the three nearest neighbours change a small
amount due to the curvature, i.e. one should have three different constants γ1, γ2
and γ3 in front of the three terms in Υ. This will open very small gaps21 for all
metallic nanotubes except for armchair (n, n) nanotubes [61, 85]. However, all
metallic tubes have been predicted to open gaps in nanotube ropes due to inter
tube interactions [86].

2.2.3 Examples of carbon nanotube band structure

We now consider two examples of metallic nanotubes: Armchair and (metallic)
zigzag tubes. These two examples are in a sense a model of all the metallic
nanotubes as we shall see in section 2.2.4.

The band structure of an armchair nanotube

The band structure can be constructed for both the translational unit cell and
the primitive unit cell. We begin by considering the translational unit cell.

For the armchair nanotube we have (per definition) C = n(a1 + a2), i.e.
n = m, so from eq.(2.8) t1 = 1 = −t2 and from eq.(2.10) N = 2n, which gives

21The size of the gap depends on the values of γ1, γ2 and γ3.
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Figure 2.4: An illustration of how to construct the energy bands near εF for an armchair
nanotube. At the left side of the figure the eigenvectors (2.42) are seen in intervals where
Υ(k) 6= 0, i.e. ε±k,n 6= 0, and by requiring continuity at the points ka = ± 2π3 , where Υ(k) = 0
we obtain the band structure near the Fermi level. The states and corresponding energies are
parity eigenstates and thereby labelled by parity Π = ±1 in the angular coordinate as explained
in the text. Energies are in units of γ0.

GC = 1
2n
(b1 + b2). The restriction on k due to the periodic boundary condition

eq.(2.31) is therefore (in (kx, ky) representation):

k = k

(
0
−1

)
+

2πnc√
3an

(
1
0

)
, (2.37)

where22 nc = 0, 1, . . . , 2n − 1 and −π
a
≤ k < π

a
since |T| = a. Note how the kx

and ky separate nicely in the case of armchair nanotubes. Inserting k eq.(2.37)
in Υ(k) we have

Υ(k) = 1 + e−iπ nc
n 2 cos

(
ka

2

)
(2.38)

and therefore by use of eq.(2.27), the possible energy values become

ε±k,nc = ±γ0

√
1 + 4 cos

(
ncπ

n

)
cos

(
ka

2

)
+ 4 cos2

(
ka

2

)
. (2.39)

Here we see armchair nanotubes to be metallic, since ε±k,n (nc = n) has states at

the Fermi level when ka = ± 2π
3

. The energy bands of a (5, 5) tube are shown in
figure 2.7(a). The coefficients α and β for the Bloch states (2.12) for the armchair
nanotube are (from eq.(2.25))

(
α
β

)

±
=

1√
2


 ∓

(
1+e−iπ

nc
n 2 cos( ka2 )

)

√
1+4 cos(ncπn ) cos( ka2 )+4 cos2(

ka
2 )

1


 . (2.40)

22Note that only half of the possible nc values were used in [64], which was corrected in [58].
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The transport properties are due to the energies near εF and we therefore
focus on them for the rest of this section. The energies near the Fermi level are
only for nc = n and in this situation eq.(2.39) and eq.(2.40) simplify for a specific

k to:

ε±k,n = ±γ0
∣∣∣∣1− 2 cos

(
ka

2

)∣∣∣∣ and (2.41)

(
α
β

)

±
=

1√
2

(
∓sign

(
1− 2 cos(ka

2
)
)

1

)
. (2.42)

We will now construct the energy bands (near εF) for k in the whole FBZ and not
just for specific k values as given in eq.(2.41) and eq.(2.42) and label these bands
by their symmetry properties. The eigenmatrix equation (2.22) gives specific
eigenvectors to specific eigenvalues in intervals where Υ(k) 6= 0 due to continuity.
To connect these intervals, we require the eigenvector as a function of k to be
continuous across the points where Υ(k) = 0, even though the eigenvectors (2.24)
are not eigenvectors at the point where Υ(k) = 0. This gives us a way to construct
the energy bands as a function of k when in doubt, such as at band crossings.
In practice one can do this by considering the limit of the inner product of the
eigenvectors from each side as a function of k of a point where Υ(k) = 0. In the
present case of eq.(2.41) and eq.(2.42) this is easy due to the sign function as
seen on figure 2.4 and the right band structure is

εΠk,n = −Πγ0
(
1− 2 cos

(
ka

2

))
and (2.43)

(
α
β

)

Π

=
1√
2

(
Π
1

)
, (2.44)

where Π = ±1 turns out to be the parity with respect to the angular coordinate
in cylindrical coordinates as we shall show now. Explicitly by inserting (2.44)
into (2.12) the Bloch states are:

ψΠk,n(r) =
1√
2N

∑

RA

eik·RA

(
ΠΨ(r−RA) + Ψ(r−RA − d)

)
(2.45)

=
1√
2N

∑

t,r

eiπr+i ka
2
t

[
ΠΨ

(
r− a

2

(√
3r
−t

))
+Ψ

(
r− a

2

(√
3r + 2√

3

−t

))]
,

where the sum over the lattice vector written as RA = l1a1 + l2a2, l1, l2 ∈ Z,
is redefined in terms of t ≡ l1 − l2 and r ≡ l1 + l2, which corresponds to a
translation along the tube and a rotation, respectively. To see that ψΠk,n(r) is
a parity eigenstate, consider figure 2.5. Here an unfolded armchair nanotube is
seen and the directions C (around the tube) and T (along the tube) are shown.
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Figure 2.5: The figure shows that
the two Bloch states eq.(2.45) in an
armchair nanotube with energy near
εF are parity eigenstates with re-
spect to a mirror plane (dashed line)
along the tube. The chiral vector
C and translation vector T are also
seen, i.e. the tube is folded in the C

direction.

We choose the phase of the wave function (2.45) to be zero at the points A and
B, i.e. all RA are with respect to A in this unit cell. The term of the wave

function (2.45) from the unit cell at A is
(
ΠΨ(r − RA) + Ψ(r − RA − d)

)
,

(t = r = 0) pictured as Π and + in figure 2.5. The neighboring cell to the right at
RA = a1 + a2, (t = 0, r = 2) has the same term, since eik·(a1+a2) = 1. The terms
at the other unit cells are seen equivalently and shown in the figure. The parity
is now seen by making a reflection in the dashed line (which is a mirror plane
when the tube is folded), since Π and + are interchanged. So by introducing
cylindrical coordinates r = (θ, r, z) and a parity operator Pθ we have23:

Pθ

(
ψΠk,n(θ, r, z)

)
≡ ψΠk,n(−θ, r, z) = ΠψΠk,n(θ, r, z), (2.46)

where−π ≤ θ < π. These conclusions were also found in [67], but by a completely
different method24.

We now consider the band structure using the primitive unit cell. From
eq.(2.6) we have n = n, p1 = 1 and p2 = 0, so Υ(κ,m) = 1 + e−iκ+i 2πm

n + eiκ

for m ∈ {0, 1, . . . , n − 1}. Inserting this into eq.(2.35) and eq.(2.25) we have
energies and eigen states for specific κ and m. Again the bands has to be recon-
nected at points where Υ(κ,m) = 0 to cross the Fermi level (εF = 0) as on figure
2.4. The connection between the descriptions for the different unit cells is (from
eq.(2.36)): κ = ka

2
+ ncπ

n
and m = nc (modulo n). So the band near εF (nc = n)

has crystal angular momentum m = 0 and of course also has a parity index:
εΠκm=0 = −Πγ0(1 + 2 cos(κ)). This bands is pushed into the translational FBZ

23Note that originally r = (x, y) was in the plane of graphene and when it was folded, x
became cyclic, so that for a constant radius r we might as well use cylindrical coordinates.

24By taking a starting point in the group symmetries of the lattices and thereafter use group
theoretical arguments to achieve the band structure.
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Figure 2.6: (Left): The m = 1 band for a (5, 5) tube in the FBZ of the primitive unit cell as
a function of κ ∈]− π, π] from eq.(2.35). (Center): The m = 1 band is pushed into the smaller
FBZ of the translational unit cell by using κ = ka

2 +
ncπ
5 and that nc = 1 and nc = 6, since

m = 1. Note that the band is symmetrical around π
5 , since m = 1. (Right): The band structure

for the translational unit cell. Both bands have crystal angular momentum m = 1, but indices
nc = 1 and nc = 6.

to become the two bands with nc = 0 and nc = n. In figure 2.6 we see how the
m = 1 band for a (5, 5)-tube is pushed into the FBZ of the translational unit cell
from the primitive unit cell. Further examples can be made by the Mathematica

program found in [87].

The band structure of a zigzag nanotube

A Zigzag nanotube have a zigzag pattern along C, which is found by using (n, 0),
(0,m) or C along y (see figure 2.2) due to lattice symmetry. Again we begin
by a description for the translational unit cell and thereafter briefly discus band
structure using the primitive unit cell.

For (n, 0) we have t1 = 1, t2 = −2, N = 2n so GC = 1
2n
(2b1 + b2) and

therefore the periodic boundary condition eq.(2.31) gives:

k = −1

2
k

(
1√
3

)
+

2πnc

na2
a1, (2.47)

which gives

Υ(k) = e
iπnc
n

(
2 cos

(ncπ

n

)
+ e−

i
√

3ka
2

)
, (2.48)

where nc = 0, 1, . . . , 2n− 1 and − π√
3a
< k ≤ π√

3a
since |T| =

√
3a. The possible

eigenenergies are:

ε±k,nc = ±γ0

√√√√1 + 4 cos
(ncπ

n

)
cos

(√
3ka

2

)
+ 4 cos2

(ncπ

n

)
(2.49)

as seen on figure 2.7(b) for n = 6.
For zigzag tubes to be metallic eq.(2.49) (or eq.(2.48)) has to be zero for some

k, which is only true when nc = 2n
3

or nc = 4n
3

, i.e. zigzag nanotubes are only
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Figure 2.7: The energy bands for (a) an armchair (5, 5) nanotube and (b) a metallic zigzag
(6, 0) nanotube. In both there are four crossings of the Fermi level (εF = 0), since the zigzag
bands are degenerate. These two examples are good representatives of metallic nanotubes, since
all metallic nanotubes have four crossings either at k = 0 or k = ± 2π

3|T| as shown in section
2.2.4.

metallic when n is dividable by 3. Then nc =
2n
3

or nc =
4n
3

(referred to as ñc), we

have Υ(k) = e
iπñc
n

(
−1+e−

ika
√

3
2

)
and eq.(2.49) is ε±k,ñc = ±2γ0| sin

(√
3ka
4

)
|, which

is only zero at k = 0 in the FBZ. To connect the energies to a band structure we
do as in the case of armchair nanotubes. Near k = 0, we have, to first order in k:

α±k,ñc = ±
Υ(k)

|Υ(k)| ' ∓ie
iπñc
n sign(k). (2.50)

So near the Fermi level the band structure has four25 crossing bands:

εξk,ñc = ξ}v0k and

(
α
β

)

ξ,ñc

=
1√
2

(
−ξie iπñcn

1

)
(2.51)

where ξ = ±1 and the energies were expanded to first order. The symmetry is
not as clear in this situation (see [67]).

Using the primitive unit cell we find p1 = 0, p2 = −1 and n = n from eq.(2.6),

so by eq.(2.34) Υ(κ,m) = 1+ e−iκ+ e
i2πm

n for a (n, 0) tube. From Υ(κ,m) = 0 we
see that the metallic bands nc =

2n
3

and nc =
4n
3

have crystal angular momentum
m = 2n

3
and m = n

3
, respectively.

25Two bands of the same form from nc =
2n
3 and nc =

4n
3 , i.e. degenerate into pairs.
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2.2.4 Expanding the band structure at the Fermi level

To find the band structure for a general nanotube around the Fermi level and to
show some general properties of these bands, we now expand Υ(k) for graphene
around its zeros: Kς = 2π

a
( 1√

3
, ς 1
3
), where ς = ±1. Writing the wave vector (of

graphene) as k = K + Kς and assuming the length of K small we have

Υ(K + Kς) ' ∇kΥ(k)|Kς
·K = −

(
iK · a1e−iKς ·a1 + iK · a2e−iKς ·a2

)

=

√
3a

2
(iKx + ςKy), (2.52)

where K = (Kx,Ky) and hence |Υ(K + Kς)| =
√
3a
2

√
K2x + K2y ≡

√
3a
2
|K| indepen-

dent of ς. Making a rotation of the coordinate system from the x and y axis to the
orthonormal basis ( T

|T| ,
C
|C|) (see figure 2.2) we can write K = KT

T
|T|+KC

C
|C| . This

form of K is inserted into the periodic boundary condition eq.(2.29), k·C = 2πnc,
to get the band structure of a carbon nanotube and we obtain

KC =
2nc

D
− (n+m) + ς 1

3
(m− n)

D
, (2.53)

and since the length of any vector is invariant under a rotation (in particular
|K| =

√
K2T + K2C) the possible energy values eq.(2.25) are26

ε±
KT ,nc

= ±2}v0
D

√(
KTD

2

)2
+

(
nc −

(n+m) + ς 1
3
(m− n)

2

)2
, (2.54)

so the energies near εF = 0 are for nς=+1
c = 2m+n

3
and nς=−1

c = 2n+m
3

. From this
we see the condition for a nanotubes to be metallic27:

A (n,m) nanotube is metallic in the nearest neighbour tight binding model if

and only if 2n+m
3

is an integer.

Note that if just one of the integers 2n + m, 2m + n or n − m is divisible by
3 so are the other two other28. This rule predicts that in a random sample of
nanotubes such as a multiwall or a rope of nanotubes, there will be 1/3 metallic
and 2/3 semiconducting tubes. For semiconducting tubes we can find the band

gap εgap from eq.(2.54) by setting KT = 0 and nc − (n+m)+ς 1
3
(m−n)

2
= ±1

3
to be

εgap =
2ac cγ0
D

, (2.55)

26It should be noted, that we use an expansion of the graphene dispersion relation, so it is
only strictly valid for small KT and KC . Therefore it describes the metallic states best (since
these have KC = 0) and the semiconducting states less precise.

27Note that there exists an nc ∈ {0, 1, . . . ,N − 1} so that e.g. nc =
2m+n
3 (assuming 2m+n

3 ∈
Z) , since N > 2m+n

3 seen by using eq.(2.10) and the fact that 2m+ n ≥ gcd(2n+m, 2m+ n).
28 2n+m

3 ∈ Z if and only if n−m
3 ∈ Z. Proof: 2n+m = 3n− (n−m) so the statement is true

since 3n
3 ∈ Z. Similar equations proves the other implications.
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so the larger the diameter the smaller the band gap. One often see the larger
nanotubes to be conducting because the Fermi level is shifted into the conduction
band, which makes more than 1/3 of the tubes conducting in experiments [79].

The Bloch state for metallic nanotubes for k near Kς can also be found by
setting KC = 0 so

(
Kx

Ky

)
= KT

T
|T| , which is inserted into eq.(2.52) and it gives

(
α
β

)

±
=

1√
2

(
∓ i(m−n)−ς

√
3(n+m)

2
√
n2+m2+mn

sign(KT )

1

)
, (2.56)

which depends on which point we expand around, i.e. on ς. The sign function
gives that all metallic bands in a nanotube cross the undoped Fermi level (εF = 0)

and have velocity v0 = ±
√
3γ0a
2

near εF = 0 from eq.(2.54). So when connecting
the bands in the right way the coefficients α and β become independent of KT ,
i.e. of k, in this first order expansion.

We now find the point, where k ∈ FBZ crosses the Fermi level (εF = 0). From
eq.(2.31) we know by definition that k ≡ k · T

|T| = K · T
|T| +Kς · T

|T| = KT +Kς · T
|T| .

At the crossing we have KT = 0, so the crossing point is:

Kς ·
T

|T| =
π(m− n− ς(n+m))

gcd(2n+m, 2m+ n)|T| =
{

−2πn
gcd(2n+m,2m+n)|T| for ς = +1

2πm
gcd(2n+m,2m+n)|T| for ς = −1 , (2.57)

which shows29 that any metallic nanotube have bands crossing the Fermi level
(εF = 0) either at k = 0 or at k = ± 2π

3|T| for k in FBZ, − π
|T| ≤ k < π

|T| . So each

K± (and thereby each nc = nς=±1
c ) gives rise to one crossing point and the two

crossing points are either degenerate at k = 0 or separated at k = ± 2π
3|T| .

In conclusion, all metallic nanotubes (n,m) have four (two nc = nς=±1
c ) linear

crossings at the Fermi level (εF = 0)

εξ
KT ,nςc

= ξ}v0KT and

(
α
β

)

ξ,ς

=
1√
2

(
−ξ i(m−n)−ς

√
3(n+m)

2
√
n2+m2+mn

1

)
, (2.58)

29Proof: Introduce g ≡ gcd(2n+m, 2m+ n) and since we have metallic tubes we can divide
into two cases: g = 3 and g 6= 3.
If g = 3 we have − 2πn

g|T| = − 2πn3|T| and 2πm
g|T| =

2πm
3|T| , which are ± 2π

3|T| or 0 when pulled into the

FBZ= [− π
|T| ,

π
|T| [ depending on n and m. When n

3 ∈ Z (and therefore also m
3 ∈ Z by n−m

3 ∈ Z)

both projections are taken into 0 by a reciprocal vector and the bands crossing k = 0 becomes
double degenerate. If n

3 /∈ Z the crossings are at ± 2π
3|T| .

If g 6= 3 we have 2n + m = gx and 2m + n = gy for some x, y ∈ Z (gcd(x, y) = 1), which

gives n = g(2x − y)/3 and m = g(2y − x)/3. Therefore − 2πn
g|T| = −

2πg(2x−y)
3g|T| = − 2π(2x−y)

3|T| and
2πm
g|T| =

2π(2y−x)
3|T| are both 0 or ± 2π

3|T| when taken into the FBZ for any x, y ∈ Z. Again we have

double degeneracy, when both are taken into zero.
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at either k = 0 or at k = ± 2π
3|T| , where k is along the tube in the FBZ: − π

|T| ≤
k < π

|T| and ξ = ±1 gives the direction of the velocity. This makes armchair30

and metallic zigzag nanotubes two good examples of metallic nanotubes as seen
on figure 2.7. The same conclusions can be made by expanding Υ(κ,m) for the
primitive unit cell eq.(2.34) to first order in κ around the zero(s) of Υ(κ,m).

The k · p approximation and the Dirac neutrino picture

Instead of a tight binding model for the band structure of carbon nanotubes one
can use the k · p approximation and obtain similar results [59].

In general the k · p approximation is a local description around the Fermi
surface, where the Schrödinger equation is written by decomposing the Bloch
function as ψk(r) = eik·ruk(r). The Schrödinger equation of a periodic potential
U(r) is therefore rewritten (in general) to:

(
}2k2

2me

+
p̂2

2me

+
}k · p̂
me

+ U(r)

)
uk(r) = εkuk(r), (2.59)

where p̂ is the momentum operator, k the wave vector (not an operator) and
me the mass of the electron. The task in the k · p approximation is to extract
information by expanding uk(r) around the Fermi level in the same spirit as in
the tight binding approximation. The name of the approximation stems from the
k · p̂ term, when the above rewriting of the Schrödinger equation is used (see e.g.
[88] for further details).

The k · p approximation for carbon nanotubes gives the same conclusions
as found by the expansion around K±, since inserting eq.(2.52) in eq.(2.22) one
has the Hamiltonian matrix from the k · p approximation [59]. If we view the
Schrödinger equation in the k ·p approximation as a (decoupled) two component
matrix equation (one component for each sublattice and setting s0 = 0) it is
formally equivalent to the Dirac equation31, where the spinor is not the electrons
spin but a pseudo spin representing the sublattice [89, 90]. Since the energy
bands of graphene touch εF, the problem is analogue to a free massless32 neu-
trino on a cylinder. This gives plane wave states times a pseudo spin [91, 92],
eik·r

(
±ei arg(Υ(k))

1

)
, where the notation is well chosen, since the two components do

not have an overlap (in this scheme). This scheme takes into account the impor-
tant fact of two atoms in the unit cell of graphene, which is not captured by a
simple plane wave approximation as often used in transport calculations. It has
been argued that this might be the reason for the long mean free paths in metallic

30Note that armchair tubes have four crossing of εF = 0, but only two bands, since nς=+1c =
nς=−1c . This is not true in general for tubes with crossings at k = ± 2π

3|T| , consider e.g. a (7, 4)

tube.
31Or rather the Weyl′s equation, since there is no antiparticle part.
32Massless since using the relativistic energy ε = ±

√
p2 +m2, (c = 1) for m = 0 one has a

gapless energy spectrum with linear dispersion.
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nanotubes [93, 91, 92] and we shall see that it also has profound consequences
for the Coulomb drag in multiwall nanotubes.

We use the tight binding Wannier decomposition eq.(2.12) (or eq.(2.33)) in
our calculations, which also includes the overlap between the sublattices and
thereby are more general. However, the remarkable consequences from the two
atomic unit cell remains.

2.3 Transport in carbon nanotubes

Transport of electrons through some sample depends on the number of scattering
events an electron encounters going through the structure. A scattering event typ-
ically happens due to an impurity, a lattice defect or a lattice vibration (phonon),
where the importance of the mechanism depends on the temperature. If there
are only a few scattering events the conductor is called ballistic and if there are
many events it is called diffusive [94]. It is not a sharp transition between the
two transport regimes, but merely a crossover as the scattering becomes more
frequent. The experimental conditions and internal structure determine which
regime we are in. Carbon nanotubes have been observed in both regimes for both
singlewall and multiwall nanotubes. Also the contacts to the tube seem to have
an important role to play.

If a single wall metallic nanotube is ballistic, it should have a conductance of
4e2

h
from the Landauer-Büttiker formula [18] with perfect transmission (i.e. trans-

mission coefficients equal to one), which is predicted theoretically [95]. Recently
this has also been found experimentally at low temperatures [96], but ballistic
transport has been seen before in single wall nanotubes at lower conductances
often explained as contacts effects [97, 98]. Some other experiments show signs
of ballistic transport in single wall nanotubes [99].

Multiwall nanotubes have also been observed to be ballistic when contacted
by a liquid metal [30], but many other experiments with other types of solid
contacts show multiwall nanotubes to be diffusive [97, 80, 99, 29].

We will assume in our calculations of the Coulomb drag resistance, that the
transport is diffusive as we shall seen in chapter 3. Furthermore we will use the
Boltzmann equation to model the transport in multiwall nanotubes. This has
been done successfully before to model other phenomena in nanotubes such as
the liquid flow (of e.g. water) above a tube [100], the effect on transport by a
magnetic field [101] and high electric field transport [102, 103, 104]. Furthermore
the thermal power in nanotube ropes has been explained by phonon drag using
the Boltzmann equation [105], which successfully explain the experiments [106].
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2.3.1 Backscattering from impurities in metallic nanotubes

The resistance of any material with lattice structure is determined by the phonons
at high temperatures and the impurity scattering at low temperatures [18, p.163],
i.e. a Bloch wave does not give rise to resistance. We therefore consider an
impurity bound to the surface of the tube by Van der Waals forces as is often
the case (as previously described on page 27), which makes the impurity potential

V (r) slowly varying on a scale of the interatomic distance ac c. The impurity
potential V (r) is regarded as a perturbation to the Hamiltonian (2.11) and the
matrix elements 〈ψk′|V (r)|ψk〉 of the potential between the Bloch states (2.12)
describe the scattering probability k → k′ due to the (single) impurity and is
therefore connected to the conductivity as shown in [101]. Such an impurity
potential has previously been considered in the Dirac neutrino scheme [91, 92],
where the backscattering was shown to be absent to all orders in the impurity
potential leading to a large conductivity.

We describe this calculation in detail, since it essentially can be used again,
when we do the Coulomb matrix element, needed to find the Coulomb drag
between the shells in a multiwall nanotube as we shall see in section 2.3.2.

Graphene

The impurity matrix element for two general Bloch states (2.12) of graphene is:

〈ψk′|V (r)|ψk〉 =
1

N

∫
dr
∑

R′
A

e−ik′·R′A
(
α′∗Ψ∗(r−R′

A) + β ′∗Ψ∗(r−R′
A − d)

)

× V (r)
∑

RA

eik·RA

(
αΨ(r−RA) + βΨ(r−RA − d)

)
(2.60)

and reordering the terms we get

〈ψk′|V (r)|ψk〉 =
1

N

∑

R′
A
,RA

e−ik′·R′A+ik·RA

[
α′∗α

∫
drΨ∗(r−R′

A)V (r)Ψ(r−RA) (?)

+α′∗β

∫
drΨ∗(r−R′

A)V (r)Ψ(r−RA − d) (??)

+β′∗α

∫
drΨ∗(r−R′

A − d)V (r)Ψ(r−RA) (??′)

+β′∗β

∫
drΨ∗(r−R′

A − d)V (r)Ψ(r−RA − d)

]
, (?′)

where the integrals are over the surface of the N unit cells of graphene. The
atomic orbitals Ψ are localized at the lattice points and the impurity potential
V (r) is slowly varying, which makes the integral in the first term (?):

∫
drΨ∗(r−R′

A)V (r)Ψ(r−RA) ' V (RA)δRA,R′A
(2.61)
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still using only nearest neighbour overlap. The integral in (?′) is found in the
same way to be V (RA+d)δRA,R′A

. By using the assumption of V (r) to be slowly
varying on a scale of ac c = |d| we see the integrals in (?′) and (?) are the same:
V (RA + d) ' V (RA). Note that in this calculation it is not enough to assume
slow variation of V (r) on a scale of the width of Ψ, which is only needed in
eq.(2.61), but also on the longer scale of the interatomic distance ac c. The term
(??) including the sum over the lattice in the nearest neighbour approximation is
found as in eq.(2.21) and again by using the localization of Ψ and slow variation
of V (r):

∑

R′A,RA

e−ik′·R′A+ik·RA

∫
drΨ∗(r−R′

A)V (r)Ψ(r−RA − d)

'
∑

RA

eik·RAV (RA)
∑

R′A

e−ik′·R′A
∫

drΨ∗(r−R′
A)Ψ(r−RA − d) (2.62)

=
∑

R
A

eik·RAV (RA)e
−ik′·RAs0Υ(k′) = s0Υ(k′)

∑

RA

ei(k−k′)·RAV (RA). (2.63)

In eq.(2.62) we could equally well have taken V (R′
A) outside the integral and done

the sum over RA because of the assumed slow variation of the potential. This
procedure would have resulted in Υ(k) instead of Υ(k′). The sum over RA in
eq.(2.63) is a sum over the Fourier transform at different reciprocal lattice vectors
(as we shall see shortly in eq.(2.65)) and due to the slow variation of V (RA) the
Fourier transform is a peak-like function around k − k′ = G, i.e. there is no
difference in using k or k′ in Υ, since Υ(k + G) = Υ(k).

The (??′) term is found in the same way to be:

∑

RA,R′A

eik·RA−ik′·R′A
∫

drΨ∗(r−R′
A − d)V (r)Ψ(r−RA)

' s0Υ
∗(k)

∑

RA

ei(k−k′)·RAV (RA), (2.64)

where we could as well have obtained Υ∗(k′) as explained above.
In all the terms we now have the sum over the potential at different lattice

sites and by inserting the Fourier transform33 of the potential we get:

1

N

∑

RA

ei(k−k′)·RAV (RA) =
1

A
∑

G

V (k′ − k + G), (2.65)

where the relation
∑

RA
eik·RA = N

∑
G δk,G was used and A is the area of the

N unit cells of graphene.

33We use the convention from [18] for a finite system of area A: f(r) = 1
A
∑

q e
iq·rf(q) with

the inverse f(q) =
∫
Adre−iq·rf(r).

38



Collecting all the terms the matrix element for a single impurity with a slowly
varying potential for graphene is:

〈ψk′|V (r)|ψk〉 =
1

A
[
αα′∗ + ββ′∗ + s0

(
α′∗βΥ(k′) + αβ ′∗Υ∗(k)

)]∑

G

V (k′ − k + G)

≡ g(k,k′)
1

A
∑

G

V (k′ − k + G), (2.66)

where we have introduced g = g(k,k′). Note that we chose the argument in the
Υ function in g, so that 〈ψk′ |V (r)|ψk〉 = 〈ψk|V (r)|ψk′〉∗ is (formally34) fulfilled
remembering the k dependence of α and β from eq.(2.25). For plane wave states
the matrix element is just the Fourier transform (times 1

A), so the g function is
the factor carrying the information from the Bloch states. In [91, 92] g is found
to be g = αα′∗+ββ′∗, which is the essential part of g in the case of s0 being zero.

Nanotubes and backscattering in metallic nanotubes

For a nanotube the same calculation as above can be carried out, e.g. by using
the Bloch states |κ,m〉 eq.(2.33) for the primitive unit cell. The result is:

〈κ′,m′|V (r)|κ,m〉 =
[
αα′∗ + ββ′∗ + s0

(
α′∗βΥ(κ′,m′) + αβ ′∗Υ∗(κ,m)

)]

× 1

nL

∑

u,ũ∈Z

V (κ′ − κ+ 2πu,m′ −m + ũn)

≡ g(κm, κ′m′)
1

nL

∑

u,ũ∈Z

V (κ′ − κ+ 2πu,m′ −m + ũn), (2.67)

where we have Fourier transformed in the coordinates35 l,p to κ and m.

General metallic tube: Instead of using the primitive unit cell and the matrix ele-
ment (2.67) we use the translational unit cell. By using the (larger) translational
unit cell and k,nc instead of the primitive unit cell and κ,m in this calculation
we obtain a matrix element and a g factor, which is (generally) not explicitly

periodic with the reciprocal lattice vectors, since the Bloch functions are not ex-
plicitly periodic functions. Therefore we have to make the matrix element and
g factors periodic by hand by repeating the values from the FBZ (see also the
comment on page 26).

We consider the impurity matrix element for a general metallic (n,m) nanotu-
be by using the states ψξ

k,nςc
eq.(2.58) near εF = 0 from the expansion around the

Kς=±1 points. The wave vector k of graphene is again restricted by the periodic

34By another choice this is still true since as before k ∼ k′ +G.
35Explicit: V (l, p) = 1

nL

∑n−1
m=0

∑
κ V (κ,m)e

i 2πmp

n
+iκl and V (κ,m) =

∑
p,l V (l, p)e

−i 2πmp

n
−iκl.
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boundary condition to be the one dimensional wave vector k along the tube and
nc determined by ς: nc = nς=±1

c . In this section we first calculate the general g
factor for a metallic tube and then consider backscattering.

To obtain the g factor from the matrix element eq.(2.66) we use K = KT
T
|T| to

find Υ(k) =
√
3a
2

KT

(
i(m−n)−ς

√
3(n+m)

2
√
n2+m2+mn

)
from eq.(2.52) and inserting eq.(2.58) we

have after some algebra:

g(k, nς
c, ξ; k

′, nς′
c , ξ

′) =
1

2
(ξξ′fn,m,ς,ς ′ + 1)− s0

√
3a(ξ′K′T + ξKT )

4
, (2.68)

where we have introduced

fn,m,ς,ς ′ = δς,ς′−
n2 +m2 + 4mn

2(n2 +m2 +mn)
(1−δς,ς′)+i

√
3ς(m2 − n2)

2(n2 +m2 +mn)
(1−δς,ς′). (2.69)

Now we have the general form of the matrix element for the scattering process
(k, ξ, ς)→ (k′, ξ′, ς ′) by a single impurity.

We now consider backscattering, i.e. a scattering process where the veloc-
ity before and after the process are opposite: ξ = −ξ ′ (from εξ

K
T
,nςc

= ξ}v0KT

eq.(2.58)). If we naively used plane waves instead of Bloch functions we would
get only the Fourier transformed as the matrix element. This would lead to the
expectation of a large backscattering, since the band structure for metallic tubes
(see e.g. figure 2.7) reveals a possible small momentum backscattering processes
for a slightly shifted Fermi level. We shall now see that the situation for Bloch
states are more complicated. Backscattering between Bloch states is in general
possible for both ς = ς ′ and ς = −ς ′ as we will examine now.

Backscattering for ς = ς ′: For ς = ς ′ we have the initial and final state in the
scattering process around the same Kς point, i.e. we have a small crystal mo-
mentum transfer in the backscattering process (see e.g. fig. 2.3). Furthermore
nς
c = nς′

c which means that m = m
′, so there is no exchange of crystal angular

momentum in the backscattering process. For ς = ς ′ we have fn,m,ς,ς ′ = 1 so
eq.(2.68) simplifies to

g(k, nς
c, ξ; k

′, nς
c,−ξ) = s0

√
3aξ(K′T − KT )

4
. (2.70)

This g factor only contains terms neglected in [91, 92] and we will now see that
g is indeed small. To find the conductivity from the impurity scattering by the
Fermi Golden rule (or first Born approximation), only the squared matrix element
is needed (see [101]), so this is considered now. Since ς = ς ′ we have nς

c = nς′
c

and therefore K
′
T − KT = k′ − k ∈]− π

|T| ,
π
|T| ], since both k and k′ are near either

k = 0, k = 2π
3|T| or k = − 2π

3|T| . So the squared g factor is:

|g(k, nς
c, ξ; k

′, nς
c,−ξ)|2 = s20

3a2(k′ − k)2
16

. (2.71)
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(ξ, ς) (−ξ, ς)
g ∼ 10−2

∆m = 0

k|

k = ±
2π

3|T|
or k = 0

εF

(ξ, ς) (−ξ,−ς)
g ∼ 1

∆m 6= 0

k|

k = 0

εF

(ξ, ς) (−ξ,−ς)

g ∼ 1

∆m = 0

k| | |

k = 0k = −
2π

3|T|
k =

2π

3|T|

Figure 2.8: The three types of backscattering processes in any metallic nanotube with a
slightly shifted Fermi level, which are all suppressed processes (see summery on p.43). Remem-
ber from section 2.2.4 that all metallic tubes have four crossings of the Fermi level (εF = 0)
at either ± 2π

3|T| or doubly degenerated at k = 0 and the (absolute value of the) velocity is the

same v0. (Left): Backscattering (for ς = ς ′) with no crystal angular momentum (∆m = 0) and

a small wave vector |k′ − k| ∼ 2ε
F

}v0
exchange. This process is suppressed by g . 10−4 from

eq.(2.72). This is a scattering process around k = 0, k = 2π
3|T| or k = − 2π

3|T| , i.e. the whole

FBZ is not showed. (Center): Scattering around k = 0 (for ς = −ς ′) between different crystal
angular momentum states, which suppresses the backscattering even though g ∼ 1 eq.(2.75).
Typical example is an zigzag tube. (Right): Backscattering with a large wave vector trans-
fer (for ς = −ς ′) between states with the same crystal angular momentum and g ∼ 1 from

eq.(2.75). Note that the distance between the points ± 2π
3|T| are not to scale (i.e.

2ε
F

}v0
¿ 4π

3|T| ).
An armchair tube is an typical example.

We now find the order of magnitude of |g|2 in the phase space available for
scattering, which is the phase space near the Fermi level due to Fermi functions
in the collision integral. Therefore for wave vectors near a shifted Fermi level we

have (k′ − k)2 '
(2ε

F

}v0

)2
=

16ε2
F

3a2γ2
0
, so

∣∣∣∣g
(
|k′ − k| = 2εF

}v0
, ξ = −ξ′, ς = ς ′

)∣∣∣∣
2

= s20

(
εF

γ0

)2
. 10−4 (2.72)

by using s0 ∼ 0.1, γ0 = 3eV and doping of order εF . 0.3eV. The Fourier
transform on the other hand is large due to the small argument (i.e. small
crystal momentum transfer and no crystal angular momentum transfer), but
without specifying the potential we cannot say how large. In the plane wave
approximation the matrix element is only the Fourier transform of the potential
and therefore eq.(2.72) shows a strong suppression of backscattering of the plane
wave result due to the Bloch functions factor g, when ς = ς ′.

Backscattering for ς = −ς ′: Backscattering (ξ = −ξ ′) in the case ς = −ς ′ is now
examined. The |g|2 = (Re(g))2 + (Im(g))2 factor is found from eq.(2.68) and the
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definition eq.(2.69) to be:

(
Re(g)

)2
=

[
1− Re(fn,m,ς,−ς)

2
+ s0

√
3ξa(K′T − KT )

4

]2

=

[
1

2

(
1 +

n2 +m2 + 4mn

2(n2 +m2 +mn)︸ ︷︷ ︸
∈[ 1

2
,1] for all (n,m)

)
+ s0

√
3ξa(K′T − KT )

4

]2
(2.73)

and

(
Im(g)

)2
=

1

4

(
Im(fn,m,ς,−ς)

)2
=

3

16

(
m2 − n2

n2 +m2 + nm

)2

︸ ︷︷ ︸
∈[0,1] for all (n,m)

. (2.74)

Note that the (n,m) dependent factor in (Re(g))2 is between 1
2

(zigzag) and 1
(armchair) and the (n,m) dependent prefactor in (Im(g))2 between 0 (armchair)
and 1 (zigzag) for all nanotubes. For energies near the Fermi level we have

εF ' ξ}v0KT and εF ' −ξ}v0K′T , so a(K′T − KT ) = −aξ 2εF
}v0

= −ξ 4√
3

ε
F

γ0
. Since

ε
F

γ0
. 0.1 and by the s0 factor, the second term in the square brackets in the real

part of |g|2 (2.73) can be neglected for the relevant phase space and we have

|gε∼ε
F
|2 ' 1

4

(
1 +

n2 +m2 + 4mn

2(n2 +m2 +mn)

)2
+

3

16

(
m2 − n2

n2 +m2 +mn

)2
∈
[
3

4
, 1

]
(2.75)

for all (n,m), i.e. 3
4

for zigzag, 1 for armchair and in between for all chiral tubes.
Therefore this kind of backscattering (ς = −ς ′) does not have a suppressed g
factor compared to the plane wave case.

Let us now consider the linear and angular crystal momentum exchange for
a backscattering process with ς = −ς ′. Here we have two cases: a small crystal
momentum transfer |k′−k| ' 2ε

F

}v0
accompanied by an crystal angular momentum

exchange ∆m ≡ m − m
′ 6= 0 (figure 2.8(center)) and a large crystal momentum

transfer of order |k′ − k| ∼ 2π
3|T| (Umklapp) accompanied by no crystal angular

momentum exchange ∆m = 0 (figure 2.8(right)).
For ς = −ς ′ we have nς

c− nς′
c = ςm−n

3
and therefore a crystal angular momen-

tum exchange given by

∆m = ς
m− n

3
(modulo n), (2.76)

since m = nc (modulo n).
To find the exchanged crystal (linear) momentum we have to consider the

crossing of εF = 0 with the bands for k and k′, which are Kς · T
|T| and Kς′ · T

|T| (see

eq.(2.57)) up to a reciprocal lattice vector 2π
|T|s (s ∈ Z), respectively. Therefore
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the crossing points may be different, so we can get a large momentum transfer,
but can also be the same giving a small momentum transfer. This is in contrast
to the ς = ς ′ case, where it was always the same crossing point leading to only the
small momentum transfer process. Therefore (for ς = −ς ′) |k − k′| at the Fermi

level is either
2ε

F

}v0
as for |KT − K

′
T | or substantially larger of order ∼ 2π

3|T| . Note

that the larger momentum transfer is an Umklapp process, since if e.g. k ∼ 2π
3|T|

and k′ ∼ − 2π
3|T| then |k′− k| ∼ 4π

3|T| =
2π
|T| − 2π

3|T| , which is − 2π
3|T| up to a reciprocal

lattice vector.
A priori one can have four cases of backscattering for ς = −ς ′: (1) ∆m = 0

and |k′ − k| small, (2) ∆m 6= 0 and |k′ − k| small, (3) ∆m = 0 and |k′ − k|
large and (4) ∆m 6= 0 and |k′ − k| large. By calculating the crossing of the
Fermi level (from eq.(2.57)) and ∆m (2.76) for all metallic tubes with n < 100
and m < 100 using Mathematica, we only find backscattering of type (2) (only
around k = 0) and (3) as seen on figure 2.8(center) and 2.8(right), respectively.
This can be shown by number theoretical arguments. Especially the absence
of a backscattering with ∆m = 0 and |k′ − k| small (type (1)) is interesting,
since this would have a large Fourier transform leading to a large backscattering
(since g ∼ 1). So even though g ∼ 1 for ς = −ς ′ eq.(2.75) the backscattering
is suppressed by either a crystal angular momentum transfer ∆m 6= 0 or a large
crystal momentum transfer |k′ − k| ∼ 2π

3|T| in the Fourier transformed.
In summery, we have now found the matrix element for a single impurity with

a slowly varying potential in eq.(2.67) valid for any nanotube. For all the metallic
nanotubes we found three types of suppression of backscattering:

• ς = ς ′: g . 10−4, ∆m = 0, |k′−k| ∼ 2ε
F

}v0
, i.e. a suppression from the g factor

(figure 2.8(left)). Examples: (n, n), (7, 4) or (15, 6) around k = ± 2π
3|T| .

• ς = −ς ′: g ∼ 1, ∆m 6= 0, |k′ − k| ∼ 2ε
F

}v0
, i.e. a suppression from the

crystal angular momentum exchange (figure 2.8(center)). Examples: (n, 0)
∆m = ±n

3
, (9, 30) ∆m = ±1, (9, 27) ∆m = ±3, (18, 12) ∆m = ±2 or

(24, 12) ∆m = ±4 around k = 0.

• ς = −ς ′: g ∼ 1, ∆m = 0, |k′ − k| ∼ 2π
3|T| , i.e. a suppression from the

large crystal momentum exchange just as in the plane wave approximation
(figure 2.8(right)). Examples: (n, n), (7, 4), (15, 6), or (28, 25).

So we have found a suppression of backscattering in the tight binding scheme as
also found by Ando et.al. [91, 92] (see also [108]) in the k ·p scheme, even though
the situations seen in figure 2.8(center/right) are not considered in those papers.

2.3.2 The Coulomb matrix element using Bloch states

To find the Coulomb drag between different tubes in a multiwall carbon na-
notube it is essential to know the Coulomb interaction between the electrons
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in the different tubes (see section 1.4). Therefore the Coulomb matrix element
for electrons in different shells in a multiwall nanotube is now found using the
tight binding states. The Coulomb interaction V12(|r1 − r2|) between electrons
in different shells (with a separation of order 0.5nm) is slowly varying on the
scale of the unit cell ac c and therefore we can calculate the Coulomb matrix
element in the same way as we did for the slowly varying impurity potential. We
begin with a calculation of the Coulomb matrix element between electrons in two
different nearby graphene layers in a graphite crystal using the Bloch states of
the individual graphene layers eq.(2.12).

Coulomb interaction between different layers in Graphite

The Coulomb matrix element for two parallel graphene layers (labelled 1 and 2)
using the Bloch states ψk(r) is:

〈k′1k′2|V12(|r1 − r2|)|k1k2〉 =
∫

dr1

∫
dr2ψ

∗
k′1
(r1)ψ

∗
k′2
(r2)V12(|r1 − r2|)ψk1

(r1)ψk2
(r2)

=

∫
dr1ψ

∗
k′1
(r1)

[∫
dr2 ψ

∗
k′2
(r2)V12(|r1 − r2|)ψk2

(r2)

]
ψk1

(r1). (2.77)

The square bracket can be found in the same way as the impurity potential matrix
element in section 2.3.1 remembering that the Coulomb potential is a function of
two coordinates, so

〈k′1k′2|V12(|r1 − r2|)|k1k2〉 ' (2.78)
∫

dr1 ψ
∗
k′1
(r1)

[
g2(k2,k

′
2)

1

N2

∑

R
(2)
A

V12(|r1 −R
(2)
A |)ei(k2−k′2)·R

(2)
A

]
ψk1

(r1)

' g1(k1,k
′
1)g2(k2,k

′
2)

[
1

N1N2

∑

R
(1)
A ,R

(2)
A

V12(|R(1)
A −R

(2)
A |)ei(k2−k′2)·R

(2)
A +i(k1−k′1)·R

(1)
A

]
,

by using the impurity potential result again at the last equality. The gi(ki,k
′
i)

function is the same as in eq.(2.66). The sum over the potential at different

lattice sites can be found by inserting the Fourier transform V12(|R(1)
A −R

(2)
A |) =

1
A
∑

q V12(q)e
iq·(R(1)

A −R
(2)
A ) and we get:

1

N1N2

∑

R
(1)
A

,R
(2)
A

V12(|R(1)
A −R

(2)
A |)ei(k2−k′2)·R

(2)
A +i(k1−k′1)·R

(1)
A

=
1

A
1

N1N2

∑

q

V12(q)
∑

R
(1)
A

ei(k1−k′1+q)·R(1)
A

∑

R
(2)
A

ei(k2−k′2−q)·R(2)
A

=
1

A
∑

G1,G2

V12(k
′
1 − k1 + G1)δk1+k2,k

′
1+k′2+G1+G2

(2.79)
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where we used
∑

R
(i)
A

eiki·R
(i)
A = Ni

∑
Gi
δki,Gi

in the second equality. Note that

we get the crystal momentum conservation including the Umklapp processes
(Gi 6= 0), which are less important since the Fourier transform is decreasing.
The Coulomb matrix element for graphene is therefore:

〈k′1k′2|V12(|r1 − r2|)|k1k2〉 =

g1(k1,k
′
1)g2(k2,k

′
2)

1

A
∑

G1,G2

V12(k
′
1 − k1 + G1)δk1+k2,k

′
1+k′2+G1+G2

, (2.80)

where gi(ki,k
′
i) = αiα

′∗
i + βiβ

′∗
i + s0

(
α′∗i βiΥ(k′i) + αiβ

′∗
i Υ

∗(ki)
)
. Therefore the

Coulomb matrix element has one gi factor for each layer times the plane wave
result of the Fourier transform of the Coulomb potential between the layers.

Coulomb interaction between different tubes in a multiwall tube

To find the Coulomb matrix element between two different tubes in a multiwall
carbon nanotube using the product states of |κm〉 eq.(2.33) we can use the same
approach as for the two graphene layers (eq.(2.77) and eq.(2.78)). The result is:

〈κ′1m′1κ′2m′2|V12(|r1 − r2|)|κ1m1κ2m2〉 =
g1(κ1m1, κ

′
1m

′
1)g2(κ2m2, κ

′
2m

′
2)

n1L1n2L2
(2.81)

×
[∑

l1,l2

n1−1∑

p1=0

n2−1∑

p2=0

V12(|Rl1p1 −Rl2p2|)ei(κ2−κ′2)l2+i(κ1−κ′1)l1+i 2π
n2
(m2−m′2)p2+i 2π

n1
(m1−m′1)p1

]
,

where the li sum is from −Li/2 to Li/2 and Rlipi = liHi + piCni
for tube i = 1, 2

(see also section 2.2.2 and footnote on p.25). A Fourier transformed can be
introduced into this sum in order to obtain a result similar to eq.(2.80). When
this is done one has to consider the question whether the two carbon nanotubes
are commeasurable or not, i.e. if the combined lattices form a periodic lattice or
not. This is done in appendix C.

Here we use the following approximation for the Coulomb matrix element
between the two tubes (n1,m1) and (n2,m2) using the translational unit cells:

〈k′1n′c1k′2n′c2 |V12(|r1 − r2|)|k1nc1
k2nc2

〉 =

g1(k1nc1
, k′1n

′
c1
)g2(k2nc2

, k′2n
′
c2
)

1

2πL

∑

G1,G2

∑

u1,u2∈Z

V12(k
′
1−k1+G1,

(modulo n1)︷ ︸︸ ︷
n′c1 − nc1

+n1u1)

× δk1+k2,k
′
1+k′2+G1+G2

δn′c1 − nc1︸ ︷︷ ︸
(modulo n1)

+n1u1,n
′
c2
− n′c2︸ ︷︷ ︸

(modulo n2)

+n2u2

, (2.82)
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where ki is restricted to ki, nci by using the periodic boundary condition (2.29).
The reciprocal lattice vectors long the tube are Gi =

2π
|Ti|ui (ui ∈ Z), L is the

length of the tubes (assumed to be of equal length) and we calculate nci modulo
ni in order to label the states using the crystal angular momentum. Note that the
crystal angular momentum conservation law can be modified for commensurable
tubes (see appendix C), so we should consider each case carefully. Remember
that the g-factors are not a priori periodic functions, but are made periodic by
hand. Furthermore, the Fourier transform are used as:

V12(k,m) =

∫ 2π

0

dθ

∫ L
2

−L
2

dzV (θ, z)e−ikz−imθ. (2.83)

Therefore the Coulomb matrix element we use are products of the gi factors
stemming from the Bloch states and a sum over the Fourier transformed Coulomb
potential.
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Chapter 3

Derivation of the transresistivity

from coupled Boltzmann equations

In section 1.2 we saw the basic definition of the transresistivity ρ21 and the
motivation to study ρ21 in order to obtain information about the Coulomb drag
phenomenon. In this chapter, we derive a formula for the transresistivity ρ21 for
a multiwall carbon nanotube in terms of the two singlewall tubes involved. In
the experimental setup seen on figure 3.1 there is a voltmeter on the drag system
(subsystem 2), which makes the current through the drag system vanish. This
and two coupled Boltzmann equations derived shortly are the key ingredients in
the derivation of the transresistivity ρ21.

The derivation given here includes a general band structure with several bands
crossing the Fermi level εF and a Coulomb matrix element of the form eq.(2.82),
i.e. including the gi factors from the Bloch states and not only a Fourier transform
of the Coulomb interaction1. Previously, a transresistivity formula for several
bands were stated in [114] for the case of two dimensional, planar geometry
where the interaction matrix element were only used as a Fourier transformed
interaction times some simple k independent of selections rules. The derivation
given here is a generalization of the coupled Boltzmann approach given in [52]
for one (general) band crossing the Fermi level. The transresistivity for a single
quadratic band were first derived in [6] (see also section 1.5). The geometry
considered here is two coaxial cylinders as for a multiwall tube (see figure 3.1),
where the electric fields and currents densities are along the cylinder axis, i.e. Ei

and Ji are scalers. Coulomb drag for the coaxial geometry has been considered in
[110] for a quadratic model with continuous rotational symmetry, i.e the model
in appendix A.

The transresistivity (or transconductivity) can also be derived from micro-
scopic principles using the Kubo formula, which states that the retarded current-

1The gi factors were neglected in our first approach to the problem of Coulomb drag in
multiwall nanotubes, see appendix G.
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Figure 3.1: The geometry and la-
belling of a schematic setup to mea-
sure the Coulomb drag effect exper-
imentally. A small bias on the outer
cylinder gives a current I1, which in
turn induces a small voltage drop
V2 across the inner cylinder. From
these quantities the transresistivity
is found as ρ21 =

E2
J1
= L2V2
2πrc1I1

.

current correlation function is proportional to the transconductivity [112]. This
has some advantageous, e.g. one obtain a more general formula, which simplifies
to the Boltzmann equation result in the DC, weak scattering limit. Furthermore
it does not assume a voltmeter on one of the subsystems and therefore calculates
the transresistivity in a symmetric setup, by doing perturbation theory using
Feynman diagrams in the interaction Hamiltonian between the subsystems. In
this sense the Kubo formula approach is more transparent that the Boltzmann
approach. Note that in the DC limit the first order term is zero and the de-
rived transresistivity is the second order term [112]. This derivation has not been
generalized to include several bands.

Resistance and resistivity

For the sake of clarity the connection between resistance and resistivity in one, two
and three dimensions are reviewed and a quasi one dimensional case is defined.

In three dimensions the current I is generally the integral of the current
density J over the surface S which the current passes through:

I =

∫

S
J · da, (3.1)

where da is a surface element [119, p.213]. Only the homogeneous case is treated
in this thesis and we therefore simplify to this case2. Therefore the current density
in three dimensions (3D) is J3D = I

A
in the direction as seen on figure 3.2, where

A is the cross section area. Furthermore, in all cases the voltage drop is V = EL,
where L is the length of the system and E the magnitude of the static electric
field along J. Therefore, the connection between resistance R and resistivity ρ in
3D is:

R3D =
V

I
=
L

A

E

J3D
≡ ρ3D

L

A
, (3.2)

2Variations in space can be included by introducing integrals over space such as in eq.(3.1).

48



1D: Quasi 1D: 2D: 3D:

J
qu1D

J
1D

J
2D J

3D

LT

A

Figure 3.2: Direction of the current density in one, two, three and quasi one dimensional
homogeneous systems.

where ρ ≡ E
J

is the definition of resistivity. Similarly in two (2D) and one (1D)
dimensions the connection is:

J2D =
I

LT

, R2D =
V

I
=

L

LT

E

J2D
≡ ρ2D

L

LT

, (3.3)

J1D = I R1D =
V

I
= L

E

J1D
≡ ρ1DL, (3.4)

where LT is the width of the two dimensional plane (see fig. 3.2).
For a small hollow cylinder (e.g. a singlewall carbon nanotube) we have a two

dimensional surface, which is folded to a one dimensional wire in the sense that
current only flows along the cylinder. This case is named quasi 1D (qu1D) since
it is one dimensional, but has units as the two dimensional case:

Jqu1D =
I

2πr
and Rqu1D =

V

I
=

L

2πr

E

Jqu1D
≡ ρqu1D

L

2πr
. (3.5)

This is the case we have chosen to use in the transresistivity calculation. Of course
the value of the transresistance R21 is independent of the conventions used.

3.1 The Boltzmann equation approach

The approach used to derive the transresistivity ρ21 is the Boltzmann equation:

∂f(t, r,p)

∂t
+ ṙ · ∂f(t, r,p)

∂r
+ ṗ · ∂f(t, r,p)

∂p
=

(
∂f

∂t

)

coll

, (3.6)

where f(t, r,p) is the distribution function at time t, position r and momentum
p. The dots above symbols denote time derivatives, e.g. ṙ = dr

dt
. The Boltzmann

equation is a continuity equation in (r,p)-space, where the right hand side is a
functional3 of f representing the collisions between the particles. The origin of
the Boltzmann equation is semi-classical, since knowing the exact position r and

3It is not a derivative and the notation is purely historical [7].
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momentum p is due to Heisenberg′s uncertainty principle not allowed in quantum
mechanics. It is reasonable to use this semi-classical approach, since we are in the
limit of small and constant external electric fields, i.e. the linear response limit
[1, p.217]. The microscopic basic of the Boltzmann equation is the Fermi Liquid
theory, where the particles in the Boltzmann equation are the free-particle-like
excitations (quasi particles) [18].

In the coupled system there is one distribution function fi (i = 1, 2) for each
subsystem and we consider a static and homogeneous situation, so the distribu-
tions are independent of t and r and their derivatives are zero in eq.(3.6). Instead
of the momentum as a variable in fi we use the one dimensional wave vector k
along the cylinder, band index ν and spin σ, i.e. fi = fi(k, ν, σ). For a carbon
nanotube the band index ν is a collection of indices, e.g. crystal angular momen-
tum m and parity Π for an armchair tube or by nc and ± for a metallic tube,
see chapter 2. Note that we used the translational unit cell in this description,
but we could equally well have made a Boltzmann equation using the κ and m

indices from the helical and rotational symmetries and the primitive unit cell.
In each cylinder we work with a noninteracting electron gas in the periodic po-

tential formed by the atoms to give single particle Bloch states |kνσ〉. These can
be seen as the unperturbed states or the quasi particles in the Boltzmann equa-
tion. The only electron-electron interaction considered here is the one between
electrons in different subsystems giving the drag effect. In the single subsystems
impurity scattering is included to give finite conductivity for each single isolated
cylinder. From now on the spin index σ is dropped, since the two spins have
equal distribution functions.

3.2 Single subsystem properties

Before considering the coupled subsystems, let us focus on a single isolated sub-
system and see the Boltzmann equation at work here.

The impurity scattering is considered in the relaxation time approximation
[7, p.16][1, p.244] for the collision integral

(
∂f
∂t

)
coll

. Introducing a relaxation time
τk′ν′,kν for impurity scattering from |kν〉 to |k′ν ′〉 the collision integral for a single
subsystem is4:

(
∂f

∂t

)

coll

(k, ν) =
∑

εk′ν′

−f(k, ν)− f
0(εk′ν′)

τk′ν′,kν︸ ︷︷ ︸
Scattering from |kν〉 to |k′ν′〉

≡ −f(k, ν)− f
0(εkν)

τ
, (3.7)

where the sum is over all possible scattering processes and f 0(ε) is the Fermi
(equilibrium) distribution function, which is only dependent on the energy ε.
The relaxation time τ introduced in the last equality depends a priori on k and

4Here the subsystem index i is dropped.
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ν, but in the simple model used here we assume it to be independent of k and

ν. Furthermore the form − f(k,ν)−f0(εkν)
τ

is a priori not even clear from the sum
over the possible scattering processes5. However for semiconductors a constant τ
works well [115].

Therefore the single subsystem one dimensional Boltzmann equation used is:

k̇
∂f(k, ν)

∂k
= −f(k, ν)− f

0(εkν)

τ
(3.8)

and the time derivative of k is found from the semi-classical equation of motion
[1, chap.12] in one dimension }k̇ = ẽE, where ẽ is the charge of the current carrier
(hole or electron). The electric field E is along the cylinder as the wave vector k.
The Boltzmann equation (3.8) can be solved exactly by f(k) =

∫∞
0

dxe−xf 0(ε(k−
ẽτ
}
Ex)), which gives rise to nonlinear current as a function of electric field [116].

Instead of using this solution, we linearize the Boltzmann equation by introducing
the deviation from equilibrium ψ(k, ν) through:

f(k, ν) ≡ f 0(εkν) + f 0(εkν)(1− f 0(εkν))ψ(k, ν)

= f 0(εkν)− kBT
∂f 0(εkν)

∂εkν
ψ(k, ν). (3.9)

Substituting this form of f in the left hand side of the Boltzmann equation (3.8)
and assuming that E and ψ(k, ν) are small, only the derivative of f 0 is kept to
first order in E and ψ, i.e. we model the linear response limit. So the linearized
Boltzmann equation simplifies to:

ẽE

}

∂f 0(εkν)

∂k
= −f(k, ν)− f

0(εkν)

τ
, (3.10)

which makes the distribution function a simple linear function of the electric field
E as opposed to the complicated nonlinear exact solution, i.e. for small E fields
we have

ψ(k, ν) =
ẽτvkν
kBT

E, (3.11)

where vkν is the mean velocity6 given by vkν = 1
}

∂εkν
∂k

. The linearized Boltzmann
equation makes the current proportional to E as we shall se below.

We now consider the current density J along the cylinder and define the
mobility µTr, which is a single system property, that we will use later on. The

5If one were to make a better model, we should use the impurity collision integral:(
∂f
∂t

)
coll
(k, ν) = −∑k′,ν′(Γk′ν′,kνfkν(1 − fk′ν′) − Γkν,k′ν′fk′ν′(1 − fkν)), where Γk′ν′,kν is the

transition rate [18, chap.13][7].
6In the sense that vkν is the quantum mechanical mean value of the velocity operator in the

Bloch state |kν〉, i.e. vkν = 〈kν|v̂|kν〉 [1, Appendix E].
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current density for a (hollow) cylinder with radius r and length L is:

J =
∑

σ

1

2πr

∑

ν

1

L

∑

k∈FBZ

ẽvkνf(k, ν) (No current in equilibrium.)

=
∑

σ

1

2πr

∑

ν

1

L

∑

k∈FBZ

ẽvkν(f(k, ν)− f 0(εkν)) (Using eq.(3.10))

= − ẽ
2Eτ

}

∑

σ

1

2πr

∑

ν

1

L

∑

k∈FBZ

vkν
∂f 0(εkν)

∂k
(3.12)

≡ ẽnµTrE. (3.13)

Here FBZ is the first Brillouin zone and n is taken to be a quasi 1D carrier density
defined as the carrier number divided by the surface area of the cylinder 2πrL,
i.e. it has units as in 2D. In the last equation (3.13) the mobility µTr was defined
and eq.(3.12) shows that this definition makes sense, since here J ∝ E. This
definition of µTr is only dependent on the band structure in this approximation.
Note that this calculation of the current density has units as in the quasi one
dimensional case7.

3.3 Coupling of the two subsystems

3.3.1 The model of the coupled Boltzmann equations

The task is now to couple the two subsystems. This is done to lowest order in
the interaction between the subsystems and in linear response to the external
electric field E1. We simply couple two single subsystem Boltzmann equation of
the form of eq.(3.10) by a linearized collision integral SL[ψ1, ψ2](k2, ν2) between
the electrons in the two subsystems. The coupled linearized Boltzmann equations
are:

ẽ1E1
~

∂f 0(εk1ν1
)

∂k1
= −f1(k1, ν1)− f

0(εk1ν1
)

τ1
, (3.14)

ẽ2E2
~

∂f 0(εk2ν2
)

∂k2
= −f2(k2, ν2)− f

0(εk2ν2
)

τ2
+ SL[ψ1, ψ2 = 0](k2, ν2), (3.15)

where an index i (i = 1, 2) has been added to label the subsystem properties.
The reasoning for this coupling is as follows: The induced field E2 is due to
the weak inter subsystem coupling much less than the external field E1, i.e.
|E1| À |E2|. So if there were no coupling, the deviations from equilibrium would

7The normalization factor for the sum over the bands ν is the length of the circumference
Lc = 2πr because the origin of the bands are a quantization of the wave vector in the circum-
ferential direction in only a few quanta, i.e. kc =

2π
|C|nc where nc ∈ {0, 1, . . . ,N − 1} becomes

the (dimensionfull part of the) band index ν, see section 2.2.2.
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2
ν
′
2
〉

Figure 3.3: This is the basic scattering process
for the interaction between the to subsystems,
i = 1, 2. So the electrons in the single particle
Bloch states for each system interact via the
(screened) Coulomb interaction, which causes
the Coulomb drag effect.

satisfy |ψ1| À |ψ2|, since eq.(3.10) gives ψi ∝ Ei. But even for a small coupling
this is still true, so the collision terms from the impurity scattering in the single
subsystems are of order E1 and E2, respectively. As we shall see the linearized
collision integral SL has a product of the inter subsystem interaction and the sum
of the deviation functions and is thereby to higher order in E1 than the single
subsystem collision term in eq.(3.14) but not in eq.(3.15), where there is no first
order term in E1 (only in E2). Therefore the collision integral appears only in
eq.(3.15). So the fact that these equations are not symmetric with respect to
interchange of 1 and 2 reflect that the experimental setup is not symmetric (in
the sense that a current is running in subsystem 1 but not in 2).

The full collision integral S[ψ1, ψ2](k2, ν2) is now given and linearized to
SL[ψ1, ψ2](k2, ν2). The basic idea is that a particle in |k1ν1〉 and a particle in |k2ν2〉
interacts via the Coulomb interaction and are scattered to |k ′1ν ′1〉 and |k′2ν ′2〉 as
pictured on figure 3.3. This happens with a transition rate w(1′2′; 12), i.e. scat-
tering probability per unit time, where i is short for kiνi. The scattering rates
are proportional to the occupation of the states i.e. the distribution functions fi
and to the availability of the states after the scattering event 1 − f ′i . Both the
scattering out and in of the states |k1ν1〉 and |k2ν2〉 contribute to the collision
integral. These arguments lead to [7]

S[ψ1, ψ2](k2, ν2) = −
∑

σ1σ
′
1σ
′
2

∑

ν1ν
′
1ν
′
2

∑

k1∈FBZ

∑

k′1∈FBZ

∑

k′2∈FBZ

×
(
w(1′2′; 12)f1(k1, ν1)f2(k2, ν2)

(
1− f1(k′1, ν ′1)

)(
1− f2(k′2, ν ′2)

)

︸ ︷︷ ︸
Scattering out of |k1ν1〉|k2ν2〉

−w(12; 1′2′)f1(k′1, ν ′1)f2(k′2, ν ′2)
(
1− f1(k1, ν1)

)(
1− f2(k2, ν2)

)

︸ ︷︷ ︸
Scattering into |k1ν1〉|k2ν2〉

)
. (3.16)

Note that the collision integral is a function of k2 and ν2 as it should be8 and has
dimension of (time)−1. This collision integral is not exact since it could contain

higher order distribution functions such as f
(2)
i (k1, ν1, k

′
1, ν

′
1) [7, p.4].

8It is also a function of σ2, which is suppressed in the notation.
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To get the linearized collision integral fi in eq.(3.9) (now with subsystem
indices) is substituted into the collision integral (3.16) and only terms up to first
order in ψ1 and ψ2 are kept. The reasonable assumption w(1′2′; 12) = w(12; 1′2′)
is also made. To chancel terms in the long expression obtained by inserting (3.9)
into (3.16) we use the H-theorem. It states (in the simple version used here)
that in equilibrium the energy conserving scattering in and out of the states
|k1ν1〉,|k2ν2〉 is the same:

f 0(εk1ν1
)f 0(εk2ν2

)
(
1− f 0(εk′1ν′1)

)(
1− f 0(εk′2ν′2)

)
=

f 0(εk′1ν′1)f
0(εk′2ν′2)

(
1− f 0(εk1ν1

)
)(

1− f 0(εk2ν2
)
)
. (3.17)

This expression can also be understood from the collision integral (3.16), since if
eq.(3.17) was not true (and w(12; 1′2′) = w(1′2′; 12)) more particles would scatter,
say, into |k1ν1〉|k2ν2〉 that out of the same state in equilibrium and one would not
have equilibrium by definition. Eq.(3.17) can also be seen by straightforward
calculation using energy conservation and the form for the Fermi function. So
the linearized collision integral SL[ψ1, ψ2](k2, ν2) is:

S[ψ1, ψ2](k2, ν2) ' SL[ψ1, ψ2](k2, ν2) =

−
∑

σ1σ
′
1σ
′
2

∑

ν1ν
′
1ν
′
2

∑

k1,k
′
1,k
′
2∈FBZ

w(1′2′; 12)f 0(εk1ν1
)f 0(εk2ν2

)
(
1− f 0(εk′1ν′1)

)(
1− f 0(εk′2ν′2)

)

× [ψ1(k1, ν1) + ψ2(k2, ν2)− ψ1(k′1, ν ′1)− ψ2(k′2, ν ′2)] (3.18)

In the coupled Boltzmann equations ψ2 is set to zero in SL[ψ1, ψ2 = 0](k2, ν2) in
eq.(3.15), since these terms are much smaller than the ψ1 terms, as noted earlier.

Already at this stage we note a measurable feature of our model: The coupling
SL between the subsystems and thereby ρ21 must go to zero for the temperature
going to zero T → 0, since for zero temperature (and assuming w(1′2′; 12) to be
energy conserving) we have εk′iν′i ' εkiνi so f 0(εkiνi)

(
1 − f 0(εkiνi)

)
' kBTδ(εF −

εkiνi)→ 0 for T → 0.
We have now established the model, which we will use to find the transresis-

tivity ρ21.

3.3.2 The transition rate and the Coulomb interaction

The transition rate w(1′2′; 12) depends on the electron-electron interaction, which
is taken to be the screened Coulomb interaction V12. Other interactions could be
considered such as the phonon mediated electron-electron interaction [49]. The
transition rate w(1′2′; 12) is found by the help of the Fermi‘s golden rule [78,
p.332][18, p.226], which is derived from first order time dependent perturbation
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theory on a time independent potential:

w(1′2′; 12) =
2π

}
|〈k′1k′2ν ′1ν ′2|V12(|r1 − r2|)|k1k2ν1ν2〉|2

× δ(εk1ν1
+ εk2ν2

− εk′1ν′1 − εk′2ν′2), (3.19)

where |k1k2ν1ν2〉 is just the product state of |k1ν1〉 and |k2ν2〉. This stems from
the way to derive a collision integral (by the help of Fermis golden rule) via a
two-particle operator in second quantization [8, p.130], where the matrix elements
are between product states. So we are not in contrast with the Pauli principle.
Furthermore, there could be an exchange term [117, chap.1], which is not in-
cluded, since the electrons are spatially separated and no tunnelling is allowed.
In eq.(3.19) it was stated explicitly that the screened Coulomb interaction V12
is only a function of the distance between the electrons at r1 and r2. There-
fore the assumption w(1′2′; 12) = w(12; 1′2′) made earlier is fulfilled by this form
for the transition rate. The transition rate w(1′2′; 12) in eq.(3.19) also contains
an implicit spin dependence δσ1,σ

′
1
δσ2,σ

′
2
, since the Coulomb interaction is spin

independent.
The Coulomb matrix element between two tubes in a multiwall nanotube were

discussed in detail in section 2.3.2 using the slow variation of V12(|r1−r2|) on the
scale of the interatomic distance ac c. We found the Coulomb matrix element in
eq.(2.82) for two general tubes in the tight binding model to be (without the spin
dependence):

〈k′1n′c1k′2n′c2|V12(|r1 − r2|)|k1nc1
k2nc2

〉 =

g1(k1nc1
, k′1n

′
c1
)g2(k2nc2

, k′2n
′
c2
)

1

2πL

∑

G1G2

∑

u1,u2∈Z

V12(k
′
1 − k1 +G1,

(modulo n1)︷ ︸︸ ︷
n′c1 − nc1

+n1u1)

× δk1+k2,k
′
1+k′2+G1+G2

δn′c1 − nc1︸ ︷︷ ︸
(modulo n1)

+n1u1,n
′
c2
− n′c2︸ ︷︷ ︸

(modulo n2)

+n2u2

, (3.20)

where L is the length of the tubes (assumed to be the same L1 = L2 ≡ L),
Gi =

2π
ai
mi (mi ∈ Z) is a reciprocal lattice vector for subsystem i = 1, 2 and a1,a2

are the two lattice constants along the cylinders (which in nanotube notation is
ai = |Ti|). In order to simplify the notation, we have introduced the νi index,
where the crystal angular momentum is included (and possibly some parity).
Therefore we write the matrix element as

〈k′1k′2ν ′1ν ′2|V12(|r1 − r2|)|k1k2ν1ν2〉 = g1(k1ν1, k
′
1ν
′
1)g2(k2ν2, k

′
2ν
′
2)

× 1

2πL

∑

G1G2

V12(k
′
1 − k1 +G1, ν1, ν

′
1, ω)δk1+k2,k

′
1+k′2+G1+G2

J (ν1ν
′
1, ν2ν

′
2), (3.21)
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where we have introduced the function J (ν1ν
′
1, ν2ν

′
2) to include the selection

rules from the crystal angular momentum conservation and possibly some simple
parity selection rule as in the case of armchair nanotubes as we shall see9. J
also includes the ui-sums, which in the following manipulations can be treated
exactly as the Gi-sums, but the ui 6= 0 processes are strongly suppressed by the
Fourier transform and therefore without importance. The ν1,ν

′
1 dependence in

V12 is stated explicitly to remember the angular momentum dependence in the
Fourier transformed.

Note that the Fourier transform in eq.(3.21) also depends on the transferred
wave vector k′1 − k1 and the transferred energy }ω ≡ εk′1ν′1 − εk1ν1

in the basic
scattering process seen on figure 3.3. The ω dependence in V12 is introduced
by hand in the Boltzmann equation approach (as in [52]), since it physically
describes the dynamical screening effects from other electrons. The Kubo formula
derivation [112] justifies this procedure. In the Kubo formula derivation the
interaction is resumed in the Random Phase approximation (RPA) and the result
for the screened Coulomb interaction is the bare (ω independent) interaction
divided by the (ω dependent) dielectric function.

Therefore by taking the square of the matrix element eq.(3.21) the transition
rate (including the spin part) is:

w(1′2′; 12) = w(k′1ν
′
1, k

′
2ν
′
2; k1ν1, k2ν2, ω) =

2π

}
|g1(k1ν1, k′1ν ′1)|2|g2(k2ν2, k′2ν ′2)|2

1

(2πL)2

∑

G1G2G
′
1G
′
2

V12(k
′
1 − k1 +G1, ν1, ν

′
1, ω)

× V ∗12(k′1 − k1 +G′1, ν1, ν
′
1, ω) δk1+k2,k

′
1+k′2+G1+G2

δG1+G2,G
′
1+G′2

δσ1,σ
′
1
δσ2,σ

′
2

× |J (ν1ν
′
1, ν2ν

′
2)|2 δ(εk1ν1

+ εk2ν2
− εk1+qν′1

− εk2−qν′2
). (3.22)

It should be noted that the |J |2 function is invariant under interchange of νi and
ν ′i for both i separately and the product of the Fourier transforms are even in ω. If
this is not the case, the derivation given below is not valid and the transresistivity
expression becomes more complicated.

The expression for the transition rate eq.(3.22) includes a crystal momentum
conservation law stemming from the Coulomb interaction. Furthermore it has the
δG1+G2,G

′
1+G′2 factor, which means that Umklapp scattering can only take place

if the two subsystem lattices are commensurable in the sense that a1 = ca2 for
some rational number c. This was previously found in [113].

3.3.3 Calculation of ρ21 from the Boltzmann equations

We now use the two coupled Boltzmann equations and the linearized collision
integral with Fermis golden rule to find the final formula for the transresistivity

9Note that the parity selection rule is not a priori included in eq.(3.20), but is included by
hand.
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ρ21. We begin by inserting eq.(3.22) into the linearized collision integral (3.18):

SL[ψ1, ψ2 = 0](k2, ν2) = −
∑

σ1σ
′
1σ
′
2

δσ1,σ
′
1
δσ2,σ

′
2

1

(2π)2

∑

ν1ν
′
1ν
′
2

1

L2

∑

k1,k
′
1,k
′
2∈FBZ

∑

G1G2,G
′
1G
′
2

2π

}

× δk1+k2,k
′
1+k′2+G1+G2

δG1+G2,G
′
1+G′2

|g1(k1ν1, k′1ν ′1)|2|g2(k2ν2, k′2ν ′2)|2|J (ν1ν
′
1, ν2ν

′
2)|2

× V12(k′1 − k1 +G1, ν1, ν
′
1, ω)V

∗
12(k

′
1 − k1 +G′1, ν1, ν

′
1, ω) [ψ1(k1, ν1)− ψ1(k′1, ν ′1)]

×f 0(εk1ν1
)f 0(εk2ν2

)
(
1−f 0(εk′1ν′1)

)(
1−f 0(εk′2ν′2)

)
δ(εk1ν1

+ εk2ν2
− εk′1ν′1− εk′2ν′2).

The spin sum over σ1 and σ′1 gives a factor of 2 and the Kronecker delta function
for the crystal wave vector conservation removes one of the k-sums, say k ′2 =
k1 + k2 − k′1 − G1 − G2. Furthermore we have to chose G2 so that k′2 ∈FBZ,
which removes the G2-sum. Afterwards the variable change G′2 → G′2 − G2 in
the G′2 sum is made and the new summation index is again called G′2. The long
cylinder limit (L→∞) is now taken so the wave vector sums become integrales10:
1
L

∑
k(· · · ) →

∫
dk
2π
(· · · ). Note that the long cylinder limit is taken after the use

of Fermi‘s golden rule.
After a change of variables in the wave vector integrals from k1, k

′
1 to k1, q =

k′1 − k1, the linearized collision integral is:

SL[ψ1, ψ2 = 0](k2, ν2) = −
∑

σ′2

2δσ2,σ
′
2

1

(2π)2

∑

ν1ν
′
1ν
′
2

∫ π
a1

− π
a1

dq

2π

∫ π
a1

− π
a1

dk1
2π

∑

G1G
′
1G
′
2

2π

}

× δG1,G
′
1+G′2

|g1(k1ν1, k1 + qν ′1)|2|g2(k2ν2, k2 − q −G1ν ′2)|2 |J (ν1ν
′
1, ν2ν

′
2)|2

× V12(q +G1, ν1, ν
′
1, ω)V

∗
12(q +G′1, ν1, ν

′
1, ω)

× f 0(εk1ν1
)f 0(εk2ν2

)
(
1− f 0(εk1+qν′1

)
)(

1− f 0(εk2−q−G1ν
′
2
)
)

× [ψ1(k1, ν1)− ψ1(k1 + q, ν ′1)] δ(εk1ν1
+ εk2ν2

− εk1+qν′1
− εk2−q−G1ν

′
2
). (3.23)

The change of variables uses that the integrand is periodic in q with period 2π
a1

,

so the integrals decouple as:
∫ π

a1

− π
a1

dk1
∫ π

a1
−k1

− π
a1
−k1

dq(· · · ) =
∫ π

a1

− π
a1

dk1
∫ π

a1

− π
a1

dq(· · · ).
To see the periodicity of the integrand we begin by noting that the energy for
subsystem 1, ψ1 (from eq.(3.14) and thereby eq.(3.11)) and g1 (see section 2.3.2)
are periodic by 2π

a1
. The Fourier transforms, g2 and the energy for subsystem 2 are

not periodic, but by using the G1-sum and G′1-sum the integrand is periodic. In
eq.(3.23) we have also used the periodicity of the subsystem 2 by e.g. g2(k2ν2, k2−
q −G1 −G2ν ′2) = g2(k2ν2, k2 − q −G1ν ′2).

Now yet another variable change is made: q → q + G1 (again called q) and

10Since the spacing between neighboring k points goes to zero.
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the collision integral is:

SL[ψ1, ψ2 = 0](k2, ν2) = −
∑

σ′2

2δσ2,σ
′
2

1

(2π)2

∑

ν1ν
′
1ν
′
2

∑

G1G
′
1G
′
2

∫ π
a1
+G1

− π
a1
+G1

dq

2π

∫ π
a1

− π
a1

dk1
2π

× 2π

}
δG1,G

′
1+G′2

|g1(k1ν1, k1 + qν ′1)|2|g2(k2ν2, k2 − qν ′2)|2 |J (ν1ν
′
1, ν2ν

′
2)|2

× V12(q, ν1, ν ′1, ω)V ∗12(q +G′1 −G1, ν1, ν ′1, ω)
× f 0(εk1ν1

)f 0(εk2ν2
)
(
1− f 0(εk1+qν′1)

)(
1− f 0(εk2−qν′2)

)

× [ψ1(k1, ν1)− ψ1(k1 + q, ν ′1)] δ(εk1ν1
+ εk2ν2

− εk1+qν′1
− εk2−qν′2

), (3.24)

where the integrand is not periodic in q by G1, so the q-integral is over all q (as
in [113]). The two variable changes in eq.(3.23) and eq.(3.24) were not made in
one go, since in eq.(3.23) we needed a reciprocal lattice vector in both Fourier
transforms to have an integrand periodic by 2π

a1
.

The condition that J2 = 0 is now used and no further physical assumptions
are made, except inversion symmetry in k space giving εkν = ε−kν . So the rest of
the derivation is purely mathematical manipulations. Using the second of the two
coupled Boltzmann equations (3.15) the current density J2 (in the long cylinder
limit) is found to be:

J2 =
∑

σ2

1

2πrc2

∑

ν2

∫ π
a2

− π
a2

dk2
2π

ẽ2vk2ν2
f2(k2, ν2)

=
∑

σ2

1

2πrc2

∑

ν2

∫ π
a2

− π
a2

dk2
2π

ẽ2vk2ν2
τ2

[
− ẽ2E2

~

∂f 0(εk2ν2
)

∂k2
+ SL[ψ1, 0](k2, ν2)

]

= ẽ2n2µ
(2)
Tr E2 +

∑

σ2

1

2πrc2

∑

ν2

∫ π
a2

− π
a2

dk2
2π

ẽ2vk2ν2
τ2SL[ψ1, 0](k2, ν2) = 0, (3.25)

where the definition (3.13) of the single isolated subsystem mobility was used in
the third equality. This is an important step on the way to get the transresistivity
ρ21 since from the first of the two coupled Boltzmann equations (3.14) one obtains

J1 = ẽ1n1µ
(1)
Tr E1, so

ρ21 =
E2
J1

=
E2

ẽ1n1µ
(1)
Tr E1

(3.26)

and with the help of eq.(3.25) and SL ∝ E1 from eq.(3.24) we essentially have ρ21
in eq.(3.25). Now we work out the details.
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The following equalities, which are straightforward to prove11,

δ(εk1ν1
+ εk2ν2

− εk1+qν′1
− εk2−qν′2

) = }

∫ ∞

−∞
dω
[
δ(εk1ν1

− εk1+qν′1
− }ω)

× δ(εk2ν2
− εk2−qν′2

+ }ω)
]
, (3.27)

f 0(ε)
(
1− f 01 (ε′)

)
=
(
f 0(ε′)− f 0(ε)

)
nB(ε− ε′), (3.28)

with nB(ε) being the Bose function with chemical potential µ = 0 (β = 1
k
B
T
),

nB(x) =
1

eβx − 1
, (3.29)

are inserted into the linearized collision integral (3.24). Also the deviation func-
tions ψ1, which are found from the first Boltzmann equation (3.14) to be ψ1(k1, ν1) =
ẽ1E1vk1ν1τ1β, are inserted into the linearized collision integral (3.24) and thereby
eq.(3.25) becomes:

ẽ2n2µ
(2)
Tr E2 =

spin︷︸︸︷
4

(2πrc2)

1

(2π)2

∑

ν1ν
′
1ν2ν

′
2

∑

G1G
′
1G
′
2

∫ π
a1
+G1

− π
a1
+G1

dq

2π

2π

}
}

∫ ∞

−∞
dω nB(−}ω)nB(}ω)

× V12(q, ν1, ν ′1, ω)V ∗12(q +G′1 −G1, ν1, ν ′1, ω) |J (ν1ν
′
1, ν2ν

′
2)|2 δG1,G

′
1+G′2

×
[ ∫ π

a2

− π
a2

dk2
2π

ẽ2vk2,ν2
τ2
[
f 0(εk2−qν′2

)− f 0(εk2ν2
)
]
|g2(k2ν2, k2 − qν ′2)|2

× δ(εk2ν2
− εk2−qν′2

+ }ω)

]

×
[ ∫ π

a1

− π
a1

dk1
2π

ẽ1E1βτ1
[
vk1ν1

− vk1+qν′1

]
|g1(k1ν1, k1 + qν ′1)|2

×
[
f 0(εk1+qν′1)− f

0(εk1ν1
)
]
δ(εk1ν1

− εk1+qν′1 − }ω)

]
. (3.30)

Notice that we now have a product of two integrals over k1 and k2, respectively,
which are integrated over the transferred wave vector and energy. So the prop-
erties from the band structure εkν for the two subsystems are separated into two
factors, which are connected via the interaction12.

11Note that a variable change has be made from the transferred energy ω =
εk1+qν

′

1
−εk1ν1

}
to

−ω, which in turn again is called ω in eq.(3.27). This is done to follow the notation in [52],
which we are generalizing.

12If we instead of using the Coulomb matrix element from the nanotubes used a Coulomb
matrix element for general Bloch states we could still separate into factors belonging to dif-
ferent subsystems. The price of this would be to take the spatial integrals from the Coulomb
matrix element outside the k-sums and including the Bloch states in the factors for the system.
Afterwards one can Fourier transform to get a result as in [113, eq.(2)].

59



We will now rewrite the integral over k2 in eq.(3.30) to make it look like the
integral over k1. First we divide it into two equal parts and thereafter the variable
substitutions k2 → −k2 and k2 → k2 − q are made in the first and second part13,
respectively:

∫ π
a2

− π
a2

dk2
2π

vk2ν2
τ2
[
f 0(εk2−qν′2)− f

0(εk2ν2
)
]
|g2(k2ν2, k2 − qν ′2)|2δ(εk2ν2

− εk2−qν′2 + }ω)

=
1

2

[ ∫ π
a2

− π
a2

dk2
2π

v−k2ν2
τ2
[
f 0(ε−k2−qν′2)− f

0(ε−k2ν2
)
]
|g2(−k2ν2,−k2 − qν ′2)|2

× δ(ε−k2ν2
− ε−k2−qν′2

+ }ω)

]
+

1

2

[ ∫ π
a2

− π
a2

dk2
2π

vk2+qν2
τ2
[
f 0(εk2ν

′
2
)− f 0(εk2+qν2

)
]

× |g2(k2 + qν2, k2ν
′
2)|2δ(εk2+qν2

− εk2ν
′
2
+ }ω)

]
, (3.31)

where we have used that the integrand is periodic in k2 by 2π
a2

to change the

integration limits in the second term. Inversion symmetry in k space14 gives
ε−kν = εkν and therefore v−kν = −vkν , since vkν = 1

}

∂εkν
∂k

. Note that if we
had used the primitive unit cell of the nanotubes and thereby κ instead of k,
we could not have done this, i.e. εκm 6= ε−κm. Furthermore from the explicit
form15 of g2 it can be seen that g2(−k2ν2,−k2 − qν ′2) = g∗2(k2ν2, k2 + qν ′2) and
g2(k2ν2, k

′
2ν
′
2) = g∗2(k

′
2ν2, k2ν

′
2). Therefore the integral over k2 is:

1

2

[
−
∫ π

a2

− π
a2

dk2
2π

vk2ν2
τ2
[
f 0(εk2+qν′2

)− f 0(εk2ν2
)
]
|g2(k2ν2, k2 + qν ′2)|2

× δ(εk2ν2
− εk2+qν′2

+ }ω)

]
+

1

2

[ ∫ π
a2

− π
a2

dk2
2π

vk2+qν2
τ2
[
f 0(εk2ν

′
2
)− f 0(εk2+qν2

)
]

× |g2(k2 + qν2, k2ν
′
2)|2 δ(εk2ν

′
2
− εk2+qν2

− }ω)

]
. (3.32)

This expression has essentially three things to be changed before it will look
like the k1 integration in eq.(3.30): The sign of ω in the delta function in the
first term should be opposite, the band indices in the second term should be
interchanged and when this is done the two terms will need an opposite sign.
Since |J (ν1ν

′
1, ν2ν

′
2)|2 is assumed to be invariant under interchange of ν2 and ν ′2

we can interchange these band indices in the second term in eq.(3.32), when this
is inserted in eq.(3.30).

13The new variables are again called k2.
14Real space does not have to be inversion symmetric for this to be true, only time-reversal

symmetry for the unperturbed system is required [52, Note 20].
15That is, the explicit form, which is made periodic by hand.
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To solve the two other problems in eq.(3.32) we need to look at the properties
of the k1 integration, when the variable substitution ω → −ω in eq.(3.30) is
made. By variable substitution k1 → −k1 − q we can see that the k1 integral
gets a minus and an interchange in band indices ν1 and ν ′1. By the assumed
symmetry of |J (ν1ν

′
1, ν2ν

′
2)|2, we can interchange ν1 and ν ′1 so we only have a

minus left from the k1 integration caused by the variable substitution ω → −ω.
This makes the k2 integral similar to the k1 integral. To make this point explicit,
the reformulation of eq.(3.30) is given (before the variable substitution ω → −ω
and after ν2 ↔ ν ′2):

ẽ2n2µ
(2)
Tr E2 =

4

(2πrc2)

1

(2π)2

∑

ν1ν
′
1ν2ν

′
2

∑

G1G
′
1G
′
2

∫ π
a1
+G1

− π
a1
+G1

dq

2π

2π

}
}

∫ ∞

−∞
dω nB(−}ω)nB(}ω)

× ẽ1E1βV12(q, ν1, ν ′1, ω)V ∗12(q +G′1 −G1, ν1, ν ′1, ω) |J (ν1ν
′
1, ν2ν

′
2)|2 δG1,G

′
1+G′2

×
[∫ π

a1

− π
a1

dk1
2π

[
f 0(εk1+qν′1

)− f 0(εk1ν1
)
]
|g1(k1ν1, k1 + qν ′1)|2

×
[
vk1ν1

− vk1+qν′1

]
τ1δ(εk1ν1

− εk1+qν′1
− }ω)

]

× ẽ2
2

[∫ π
a2

− π
a2

dk2
2π

[
f 0(εk2ν2

)− f 0(εk2+qν′2
)
]
|g2(k2ν2, k2 + qν ′2)|2 (3.33)

×
{
vk2ν2

τ2δ(εk2ν2
− εk2+qν′2

+ }ω) + vk2+qν′2
τ2δ(εk2ν2

− εk2+qν′2
− }ω)

}]
.

Here the above described substitution ω → −ω is made, but only in the first
term in the curly brackets in the k2 integral. Now the two integrals over k1
and k2 are of the same form. Furthermore we make the variable change G′1,
G1 to G′1 − G1, G1 in the sum over the reciprocal lattice vectors and since the
integrant thereby becomes independent of G1 the G1 sum can be carried out:
∑

G1

∫ π
a1
+G1

− π
a1
+G1

dq
2π
(· · · ) =

∫∞
−∞

dq
2π
(· · · ). Using eq.(3.26), (3.33) (in the reformulated

version) and

nB(−}ω)nB(}ω) = −
1

4 sinh2
(

}ω
2k

B
T

) (3.34)
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we therefore obtain the transresistivity ρ21 as16:

ρ21 =
}2

4πẽ1ẽ2n1n2kBT

1

2πrc2

∑

G1G2

δG1,G2

1

(2π)2

∑

ν1ν
′
1ν2ν

′
2

|J (ν1ν
′
1, ν2ν

′
2)|2 (3.35)

×
∫ ∞

−∞

dq

2π

∫ ∞

−∞
dω

V12(q, ν1, ν
′
1, ω)V

∗
12(q +G1, ν1, ν

′
1, ω)

sinh2
(

}ω
2k

B
T

) F
(1)

ν1ν
′
1
(q, ω)F

(2)

ν2ν
′
2
(q, ω),

where the F -functions are defined as

F
(i)

νiν
′
i
(q, ω) ≡ 2πẽi

}µ
(i)
Tr

∫ π
ai

− π
ai

dki
2π

[
f 0(εkiνi)− f

0(εki+qν′i
)
]
|gi(kiνi, ki + qν ′i)|2

× τi
[
vki+qν′i

− vkiνi
]
δ(εkiνi − εki+qν′i

− }ω). (3.36)

F
(i)

νiν
′
i
(q, ω) is up to some factors the same as the k1 integral in eq.(3.30) and

therefore has the same properties,

F
(i)

νiν
′
i
(q,−ω) = −F (i)ν′iνi

(q, ω), (3.37)

F
(i)

νiν
′
i
(−q, ω) = −F (i)νiν

′
i
(q, ω), (3.38)

which are shown as before by variable substitutions17 and using inversion sym-
metry in k space. Note the band index switch in eq.(3.37). Furthermore the
product of the Fourier transforms are even in ω and q (by redefining the recip-
rocal lattice sum). Therefore the integrand of ρ21 is even in q and ω (when the
sum over the band indices are taken inside the integrals18) and the final form for
the transresistivity in the quasi one dimensional case is:

ρ21 =
}2

πẽ1ẽ2n1n2kBT

1

2πrc2

∑

G1G2

δG1,G2

1

(2π)2

∑

ν1ν
′
1ν2ν

′
2

|J (ν1ν
′
1, ν2ν

′
2)|2 (3.39)

×
∫ ∞

0

dq

2π

∫ ∞

0

dω
V12(q, ν1, ν

′
1, ω)V

∗
12(q +G1, ν1, ν

′
1, ω)

sinh2
(

}ω
2k

B
T

) F
(1)

ν1ν
′
1
(q, ω)F

(2)

ν2ν
′
2
(q, ω).

This result is the quasi one dimensional transresistivity for a multiwall car-
bon nanotube with more than one band found using the Coulomb matrix element
from a tight binding model. The result is the natural combination of the tran-
sresistivity including the Bloch states from [113] and for more than one band
[114].

16Where the summation indices over the reciprocal lattice vectors again are called G1 and
G2.

17The substitutions are ki → −ki − q in eq.(3.37) and ki → −ki in eq.(3.38).
18Since a interchange of band indices are necessary for the integrand to be even.
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The transresistivity formula can be understood intuitively as follows: The
Coulomb drag is related to the interaction and thereby the dependence of V12
in ρ21. The sinh function is from thermal factors and the F -functions gives the
available (q, ω) phase space for scattering for the given band structure. The sums
and integrals are there to get all the possible drag process (not forbidden by the
selection rules J ).

Note that τi could a priori have been dependent on ki and νi, which would
have made the velocity differences into

[
vki+q,ν′i

τi(ki + q, ν ′i) − vki,νiτi(ki, νi)
]

in
the F functions as in [52]. This could also have been included here by letting
τi depend on k and ν in eq.(3.7) and assuming that τi(ki, νi) is even in ki, but
since we will use a constant τi all through this thesis, this was not included in
the derivation of ρ21 for simplicity. The advantage of a constant τi is that we can
move it outside the integration in the F function and since µ

(i)
Tr ∝ τi in eq.(3.12)

it cancels out, i.e. the transresistivity ρ21 is independent of the single subsystem
property τi, when this is approximately a constant.

The geometry also introduces a simple difference between the transresistivity
expressions in eq.(3.39) and in [52, 114]. These are extra factors of 1

(2πrc2)
and

1
(2π)2

and the q integral being over one instead of two dimensions. The geometric

factor 1
2πrc2

(from eq.(3.25)) means that ρ21 6= ρ12, since rc1 6= rc2. This is not

unphysical, since the transresistance R21 is (remembering that L = L1 = L2)

R21 = ρ21
L

2πrc1
, (3.40)

so R21 = R12.
Furthermore the prefactor of R21 (found from eq.(3.40) and (3.39)) does not

depend on the cylinder radii, since the densities n1 and n2 are proportional to 1
2πrci

,

i.e. n1n22πr
c
12πr

c
2 is radius independent. So the transresistance only depends on

the radii in the electron interaction. This also shows that if we had done an
one dimensional calculation, where the current density (3.25) and the densities
were without the factor 1

2πrci
, but still had used the same potential, then the

transresistance R21 is the same as it should be, since R21 should not depend on
our conventions for current density and carrier density. The reason for the use of
the conventions for the quasi 1D case will become clear, when the model for the
screened Coulomb interaction is considered.

Note that the F -function in eq.(3.36) is a generalization of (q times) the
imaginary part of the susceptibility Imχ(q, ω) when one quadratic band crossing
the fermi surface is used [6].

3.3.4 Simplifying the F -functions further

The assumption of a constant τi and the one dimensional integration over wave
vectors in the F -functions make it possible to give the F -functions in an even

63



simpler form. Rewriting the definition (3.36) of F
(i)

νiν
′
i
(q, ω) gives:

F
(i)

νiν
′
i
(q, ω) = −2πẽiτi

}2µ
(i)
Tr

∫ π
ai

− π
ai

dki
2π

[
f 0(εkiνi)− f

0(εki+qν′i
)
]
|gi(kiνi, ki + qν ′i)|2

× ∂

∂k
(εkiνi − εki+qν′i

− }ω)δ(εkiνi − εki+qν′i
− }ω), (3.41)

since ∂ω
∂k

= 0. Furthermore for an arbitrary function h(x) with zeros x0 and
h′(x0) 6= 0 one has the relation19:

δ(h(x)) =
∑

x0

δ(h′(x0)(x− x0)) =
∑

x0

δ(x− x0)
|h′(x0)|

. (3.42)

This is now used to find the simple form of F
(i)

νiν
′
i
(q, ω) as:

F
(i)

νiν
′
i
(q, ω) = − ẽiτi

}2µ
(i)
Tr

∑

ks

[f 0(εksνi)− f
0(εks+qν′i

)]

× |gi(ksνi, ks + qν ′i)|2
∂
∂k
(εksνi − εks+qν′i

− }ω)

| ∂
∂k
(εksνi − εks+qν′i

− }ω)| (3.43)

i.e.

F
(i)

νiν
′
i
(q, ω) = (3.44)

− ẽiτi

}2µ
(i)
Tr

∑

ks

sign(vksνi − vks+qν′i
)[f 0(εksνi)− f

0(εks+qν′i
)] |gi(ksνi, ks + qν ′i)|2

where ks are the zeros of εkνi − εk+qν′i
− }ω = 0 in the FBZ of subsystem i and

sign(x) =





1 for x > 0
0 for x = 0
−1 for x < 0

. (3.45)

This formula is also true if ∂
∂k
(εkiνi−εki+qν′i

−}ω)
∣∣
ki=ks

= 0 because then F
(i)

νiν
′
i
(q, ω)

was originally zero in eq.(3.41). Eq.(3.44) will be used in the evaluation of

F
(i)

νiν
′
i
(q, ω) in the coming chapters.

19If h′(x0) = 0 one has to expand to first non-vanishing order and use that instead.

64



Outlook

Now we have a formula for the transresistivity to be used in the problem of
Coulomb drag in multiwall carbon nanotubes, but before we go on to this problem
we consider more closely ρ21 for different simple band structures in the next
chapter and we see how this effects the Coulomb drag.
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Chapter 4

The Coulomb drag in two simple

models in one dimension

The purpose of the present chapter is to compare the transresistivity ρ21 for the
(piecewise) linear dispersion relation εk = αl|k| (l for linear) to the usual free
electron dispersion relation εk = αquk

2 in one dimension for both an unscreened
and a completely screened Coulomb interaction. This is relevant because metallic
carbon nanotubes have approximately linear bands near the Fermi level and so far
little work has been done on Coulomb drag with non-quadratic band structure.
The specific physical situation under consideration is two parallel coupled one
dimensional quantum wires as seen on figure 4.1. This could be realized by
etching in a two dimensional electron gas in GaAs [38] or by having parallel
carbon nanotubes, but there is, however, no experimental way to change between
the two idealized models used in this chapter. Note that the geometry of the
system only enters the calculation of the electron interaction and the parallel
configuration is chosen for simplicity. So we can use the coaxial geometry just by
using another interaction as we shall see in chapter 5.

d

L

2

1
Figure 4.1: Two parallel quantum wires of
length L and separation d, which is the geome-
try considered in this chapter. Note that the
geometry of the system only enters in the elec-
tron interaction.
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4.1 The transresistivity for one band in one di-

mension

The transresistivity formula (3.39) in one dimension with only a single band and
no lattice simplifies to:

ρ21 =
}2

πẽ1ẽ2n1n2kBT

∫ ∞

0

dq

2π

∫ ∞

0

dω
|W12(q, ω)|2F1(q, ω)F2(q, ω)

sinh2
(

}ω
2k

B
T

) , (4.1)

where ni is the one dimensional carrier density and W12(q, ω) is defined from the
Coulomb matrix element as:

〈k′1k′2|V12(|r1 − r2|)|k1k2〉 =
1

L
W12(q, ω)δk1+k2,k

′
1+k′2

, (4.2)

i.e. we use g = 1 as for the plane wave states. The Fi(q, ω) function in the single
band case is1:

Fi(q, ω) = −
ẽiτi

}2µ
(i)
Tr

∑

ks

sign(vks − vks+q)[f
0(εks)− f 0(εks+q)], (4.3)

where ks is all the solutions of εk−εk+q−}ω = 0 (not only in the FBZ). Remember
that Fi(q, ω) is odd in both q and ω (see eq.(3.37) and eq.(3.38)).

4.2 The quadratic band model

The transresistivity is found using the familiar free electron quadratic dispersion
relation

εk = αquk
2 (4.4)

in one dimension, where αqu is a parameter (qu for quadratic) conventionally

given in terms of an effective mass m∗ as αqu = }
2

2m∗ [1, chap.2] to make it
formally identical to the free electron case. This dispersion relation has a smooth
velocity vk = 2αqu

}
k in contract to the linear model as we shall see (eq.(4.19)).

4.2.1 Single subsystem properties

The transresistivity ρ21 contains three single subsystem properties, which will be
found: the carrier density n, the mobility µTr and the chemical potential µ. We
drop the subsystem indices i = 1, 2 in this section, since all properties are only
for a single subsystem.

1Note that the subsystem index is now a lower index instead of a upper index on F for
notational convenience.
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The carrier density in the long wire limit2 is:

n ≡ 〈N〉
L

=
∑

σ

∫ ∞

−∞

dk

2π
f 0(εk) =

∑

σ

∫ ∞

−∞

dk

2π
θ(εF − εk) =

2kF

π
, (4.5)

where we used temperature independence of n in the third equality and intro-
duced the Fermi wave vector from the Fermi energy as εF = εk

F
= αquk

2
F.

The mobility µTr is found by the Boltzmann equation as in section 3.2 and in
the long wire and for one band, the current density J eq.(3.12) is:

J = − ẽ
2Eτ

}

∑

σ

∫ ∞

−∞

dk

2π
vkν

∂f 0(εk)

∂k
=

2ẽ2Eτ

}

∫ ∞

−∞

dk

2π

2αqu

}
f 0(εk) =

2ẽ2Eταqun

}2
,

by doing a partial integration (with vanishing boundary term) at the second
equality and using

∑
σ

∫
dk
2π
f 0(εk) = n in the last equality. By the definition

J = ẽnµTrE the mobility is therefore:

µTr =
ẽτ

m∗ with the effective mass m∗ =
}2

2αqu

. (4.6)

The chemical potential cannot be determined analytically in this model, so
one can approximate it by the zero temperature chemical potential µT→0 = εF or
do a Sommerfeld expansion3 of µ as in [111]:

µ ' εF

(
1− π2

6
(kBT )

2 ∂εg(εF)

εFg(εF)

)
(4.7)

where g(εk) is the density of states, which for the quadratic band in the long wire
limit is:

g(ε) ≡ 1

L

∑

kσ

δ(ε− εk) =
1

π
√
αquε

. (4.8)

Therefore the chemical potential in the Sommerfeld approximation is:

µ ' εF

(
1 +

π2

12

(
T

TF

)2)
(T ¿ TF). (4.9)

This is a peculiar result since it increases instead of decreases as a function of
temperature as one would expect because the classical limit f 0(ε)→ e−(ε−µ)/k

B
T

is decreasing, since using n(T ) = n(T = 0) =
2k

F

π
we have4:

µ(T ) = kBT

[
ln

(
2√
π

)
+

1

2
ln

(
TF

T

)]
for T À TF. (4.10)

The expected trend for the low temperature result will appear if one would include
the higher order terms in the Sommerfeld expansion. Note that for a quadratic
band this only happens in one dimension, since the density of states is constant
and increasing in two and three dimensions, respectively.

2Since we integrate over k instead of summing: 1
L

∑
k →

∫
dk
2π when L→∞.

3This is basically a Taylor expansion of the chemical potential.
4Remembering the Gaussian integral

∫∞
−∞dxe

−x2 =
√
π
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4.2.2 The Fi(q, ω) function

The Fi(q, ω) function eq.(4.3) is now found. For quadratic dispersion relation
there is only one zero of εk − εk+q − }ω = 0, which is

ks = −
1

2

( }ω

αquq
+ q
)
. (4.11)

Therefore the sign of the velocity differences at ks is:

sign(vks − vks+q) = sign
(
− 2αqu

}
q
)
= −sign(q) = −1, (4.12)

since q > 0 in the integrand eq.(4.1). Inserting the zero eq.(4.11), the mobility
eq.(4.6) and eq.(4.12) in eq.(4.3) we have:

Fi(q, ω) = +
m∗

i

}2

(
f 0
(
(}ω)2

4 εq
+
εq
4

+
}ω

2

)
− f 0

(
(}ω)2

4 εq
+
εq
4
− }ω

2

))
, (4.13)

where εq = αquq
2.

The F function for zero and finite temperature is seen on figure 4.2. At zero
temperature it is either zero or −m∗

}2 , since the Fermi functions are step functions
at T = 0. At higher temperatures the edges smear out due to the Fermi functions
as seen on the figure. The transresistivity ρ21 in eq.(4.1) is obtained by integrating
over the (positive) (q, ω)-plane and since both W12(q, ω) and sinh−2

(
}ω
2k

B
T

)
are

decreasing as a function of q and ω, respectively, the most important points are
for small q and ω. Therefore the important phase space available from the F
function in the εk = αquk

2 model is around (q, ω) = (0, 0) and (q, ω) = (2kF, 0),
respectively. It is evident from the figure that there is more phase space around
q = 2kF (i.e. larger F 6= 0 area) than around q = 0, but the two decreasing
factors (W12(q, ω) and sinh−2

(
}ω
2k

B
T

)
) suppress the phase space around q = 2kF

more. So which one of the two points, that is the most important one in the drag
is a competition between the available phase space (area of F ) and the decreasing
factors. So the main processes in the drag effect in the quadratic model in one
dimension are the backscattering process ±kF → ∓kF, (q = 2kF) and forward
scattering with very small q.

This is in sharp contrast to the two dimensional quadratic model, where the F
function is also nonzero between q = 0 and q = 2kF and is proportional to q, but
otherwise has the same shape as figure 4.2 [52, 6], which increases the phase space
around q = 0 substantially. Therefore the important processes in two dimensional
Coulomb drag are all the particle-hole excitations around the Fermi surface (at
low temperatures) and the backscattering q = 2kF has no special importance5.
In [6] the result of only the ω integration in the two dimensional case is shown
and it has a peak around 1.4kF, so if any, this is the main process.

5This contrast between a one and two dimensional system is general in the sense that
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Fi(q, ω) for T = 0 for εk = αquk
2 Fi(q, ω) for T > 0 for εk = αquk

2

ω ω

q qq = 2kF q ' 2kF

| |

−
m

∗
i

}2 −
m

∗
i

}2Zero

Zero Zero

Zero

Zero Zero

Figure 4.2: Contour plots of Fi(q, ω) in the quadratic model for T = 0 and T > 0. For T > 0
the value T

TF

= 0.05 and the approximation for the chemical potential µ ' εF were used. If the
Sommerfeld approximation is used the figure is not changed qualitatively for low temperatures
(T ¿ TF), but at higher temperatures the zero-temperature 2kF point is moved to higher q.
Observe how the boundary gets broader at T > 0 due to the Fermi functions.

4.2.3 The transresistivity ρ21

The static limit of the potential, i.e. W12(q, ω) independent of ω, and two equiva-
lent subsystems are used. Therefore inserting Fi(q, ω) from eq.(4.13), ni eq.(4.5)
and ẽi = −e in the transresistivity eq.(4.1) we have:

ρ21 =
π}4

8εFe
2m∗kBT

∫ ∞

0

dq

2π
|W12(q)|2

∫ ∞

0

dω
F (q, ω)2

sinh2
(

}ω
2k

B
T

) (4.14)

=
πm∗

8εFe
2kBT

∫ ∞

0

dq

2π
|W12(q)|2

∫ ∞

0

dω

[
f 0
(
(}ω)2

4 εq
+ εq

4
+ }ω

2

)
− f 0

(
(}ω)2

4 εq
+ εq

4
− }ω

2

)]2

sinh2
(

}ω
2k

B
T

) .

Introducing Tµ = µ
k
B

and the dimensionless variables

Ω =
}ω

2kBT
, Q =

√
αquq√
kBT

and f̃ 0(x) =
1

ex + 1
, (4.15)

we get ρ21 in the new variables to be:

ρ21 =
(m∗)

3
2

√
kBT

4
√
2e2}εF

∫ ∞

0

dQ
∣∣∣W12

(√
T/TFkFQ

)∣∣∣
2

×
∫ ∞

0

dΩ

[
f̃ 0
(
Ω2

Q2 + Q2

4
+ Ω− Tµ

T

)
− f̃ 0

(
Ω2

Q2 + Q2

4
− Ω− Tµ

T

)]2

sinh2(Ω)
. (4.16)

particle-hole excitations are heavily suppressed in one dimension due to lack of phase space for
Imχ(q, ω) (which is F for the quadratic model)[17].
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Note that if the densities are not identical, n1 6= n2, then the transresistivity
will be heavily suppressed, since the momentum conservation will be harder to
fulfill near the Fermi surface.

To make sure that ρ21 in eq.(4.16) is finite it is necessary to consider the
integrand. We are in a situation where both the denominator (sinh2(Ω)) and
numerator is zero at Ω = 0, so we want to make sure that the Ω → 0 limit is
finite. The integrand is clearly finite for all other values of Ω. The question of
whether the integrand is finite for all Q values depends on the specific form of
W12(q), but for a screened potential all q ≥ 0 will give a finite W12(q) and for
an unscreened potential the q → 0 limit will diverge. Note that the integrand
goes to zero for large Q and Ω, since sinh−2(Ω) → 0 for Ω → ∞ and assuming
that W12(q) → 0 for q → ∞. By using L`Hospitals rule6 and the fact that
limx→x0(g(x))

2 = (limx→x0 g(x))
2 for | limx→x0 g(x)| <∞ the limit Ω→ 0 for the

integrand is proportional to:

lim
Ω→0

[
f̃ 0
(
Ω2

Q2 + Q2

4
+ Ω− Tµ

T

)
− f̃ 0

(
Ω2

Q2 + Q2

4
− Ω− Tµ

T

)]2

sinh2(Ω)
=

1

4 cosh4
(

Q2

8
− Tµ

2T

) .

So the integrand is finite for all Ω in the integration interval. The limit is a peak
around the important scattering process q = 2kF broadened by temperature. If
the potential W12(q) fulfils the criteria

∫ ∞

0

dQ
∣∣∣W12

(√
T/TFkFQ

)∣∣∣
2

F (Q,Ω)2 <∞ for all Ω ≥ 0, (4.17)

then the Q integration is finite. However the integration can be finite without
eq.(4.17) being true.

We have now justified, not proven, that the integral eq.(4.16) is finite. In
section 4.5 the transresistivity will be found numerically.

4.3 The linear band model

In this section we calculate the transresistivity in one dimension with the disper-
sion relation

εk = αl|k|, (4.18)

where αl

}
is the velocity and the wave vector is not restricted to the first Brillouin

zone, but instead k ∈]−∞,∞[ as for free electrons. This dispersion relation gives
rise to a discontinuity at k = 0 for the velocity:

vk =
αl

}
(2θ(k)− 1) =

{
−αl

}
for k < 0

αl

}
for k > 0

, (4.19)

6This says that limx→x0
f(x)
g(x) = limx→x0

f ′(x)
g′(x) for differentiable functions with nonzero deriva-

tive.
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where θ(k) is the step function.

4.3.1 Single subsystem properties

The single subsystem properties n, µTr and µ are now found, again dropping the
subsystem index i = 1, 2 for convenience.

The carrier density is found as in eq.(4.5) to be

n =
2kF

π
, (4.20)

i.e. the same result expressed in terms of kF is obtained in both models, but not

in terms of εF, since ε
(lin)
F = αlk

(lin)
F where as ε

(qu)
F = αqu(k

(qu)
F )2.

The mobility is again found from the current density:

J = − ẽ
2Eτ

}

∑

σ

∫ ∞

−∞

dk

2π
vkν

∂f 0(εk)

∂k

= −2ẽ2Eτ

}

[∫ 0

−∞

dk

2π

(
−αl

}

) ∂f 0(εk)
∂k

+

∫ ∞

0

dk

2π

αl

}

∂f 0(εk)

∂k

]

=
2ẽ2Eταl

π}2
1

e−µ/k
B
T + 1

, (4.21)

where the velocity (4.19) and f 0(εk→±∞) = 0 were used. So using the expression
J = ẽnµTrE and the carrier density eq.(4.20) the mobility is:

µTr =
ẽτ

m∗(T )
with the effective mass m∗(T ) =

}2kF

αl

(1 + e−µ/k
B
T ). (4.22)

This definition of a effective mass is not the same as the one used in most text-
books (such as in [5, p.210]), where the effective mass is proportional to the
inverse curvature of the dispersion relation. The reason for the definition given

here is to obtain the relation µTr =
ẽτ
m∗ . Note the relation εk =

}
2k

F

m∗(0) |k| and the

temperature dependence of the effective mass m∗(T ) in contrast to the temper-
ature independent effective mass of a parabolic band, where the two definitions
are the same (see section 4.2.1).

A particularly nice property of this model is that the chemical potential µ can
be found exactly as follows7:

n(T ) =
∑

σ

∫ ∞

−∞

dk

2π

1

e(αl|k|−µ)/k
B
T + 1

=
2kBT

παl

∫ ∞

−µ/k
B
T

dx
1

ex + 1

=
2kBT

παl

(
µ

kBT
+ ln(1 + e−µ/k

B
T )

)
(4.23)

7By use of the integral:
∫
dx 1

ex+1 = x− ln(1 + ex).
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and using n(T ) = n(T = 0) and eq.(4.20) the exact chemical potential is:

µ = kBT ln(eTF/T − 1) '
{
εF for T ¿ TF

kBT ln(TF

T
) for T À TF

. (4.24)

Note that the low and high temperature limits are the same as in the quadratic
model.

4.3.2 The Fi(q, ω) function

The first step to finding Fi(q, ω) for the linear dispersion relation is the sign of
the velocity difference by using eq.(4.19):

sign(vk − vk+q) = sign

(
2αl

}
(θ(k)− θ(k + q))

)
= sign

(
θ(k)− θ(k + q)

)

= −θ(k + q)θ(−k), (4.25)

which can be seen by analyzing the step functions for q > 0.
The zeros ks of αl|k|−αl|k+q|−}ω = 0 can be found by dividing the solution

into two cases depending of the sign of k. For k > 0 the Fi(q, ω) function is zero
because sign(vk − vk+q) ∝ θ(−k) is zero in this case. If on the other hand k < 0
the Fi(q, ω) function is only non-zero if sign(vk − vk+q) ∝ θ(k + q) 6= 0, i.e. if
k + q > 0. In that case |k + q| = k + q and |k| = −k, so

αl|k| − αl|k + q| − }ω = −αlk − αl(k + q)− }ω = 0, (4.26)

which has the solution

ks = −
1

2

(}ω

αl

+ q
)
. (4.27)

Therefore Fi(q, ω) is obtained by inserting the mobility eq.(4.22), the sign differ-
ence of the velocities eq.(4.25) and the zero eq.(4.27) into eq.(4.3):

Fi(q, ω) = +
m∗

i (T )

}2
θ(−}ω + αlq)

[
f 0
(
1

2
|}ω + αlq|

)
− f 0

(
1

2
|}ω − αlq|

)]
, (4.28)

where θ(}ω + αq) is omitted, since ω ≥ 0 (and q ≥ 0) in the integration.
Figure 4.3 shows that for T = 0 the Fi(q, ω) function is step-like and at

T > 0 only two of the three edges are smeared out due to the Fermi functions in
eq.(4.28). The line }ω = αq is a discontinuity for Fi(q, ω) even at T > 0 since it
stems from the discontinuity in the dispersion relation. Therefore the important
available phase space in the integral of ρ21 is only around q = 2kF and no phase
space is available around q = 0 at low temperatures8 for the εk = αl|k| model.

8At high temperatures a large smearing by the Fermi functions can pick up some q = 0
phase space, but nothing compared to the quadratic model.
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Fi(q, ω) for T = 0 for εk = αl|k| Fi(q, ω) for T > 0 for εk = αl|k|

ω ω

q qq = 2kF q ' 2kF

| |

−
m

∗
i
(0)

}2 −
m

∗
i
(T )

}2

Zero

Zero

Zero

Zero

Figure 4.3: Contour plots of Fi(q, ω) for T = 0 and T > 0. For T > 0 we use T = 0.05TF and
the exact chemical potential µ. If the approximation µ ' εF is used the figure is not changed
qualitatively at low temperatures.

This is in contrast to the quadratic model, where both q = 0 and q = 2kF were
important. So only backscattering around the Fermi level is the main process in
the Coulomb drag in the linear model.

In other words, if the band structure is linearized around the Fermi level, the
sign(vk − vk+q) factor in the Fi(q, ω) function completely neglects the forward
scattering process9 around q = 0.

4.3.3 The transresistivity ρ21

The potential W12(q, ω) is again used in the static limit, W12(q, ω) = W12(q)
and the transresistivity eq.(4.1) in the linear model is found to be for equivalent
subsystems:

ρ21 =
(m∗(T ))2

π}2e2n2kBT

∫ ∞

0

dq

2π
|W12(q)|2 (4.29)

×
∫ ∞

0

dω θ(−}ω + αlq)

[
f 0
(
1
2
(}ω + αlq)

)
− f 0

(
1
2
(−}ω + αlq)

)]2

sinh2
(

}ω
2k

B
T

)

=
(m∗(T ))2

2π2}2e2n2kBT

∫ ∞

0

dω

∫ ∞

}ω
αl

dq|W12(q)|2
[
f 0
(
1
2
(}ω + αlq)

)
− f 0

(
1
2
(−}ω + αlq)

)]2

sinh2
(

}ω
2k

B
T

) ,

9Some authors recently argued that the small momentum transfer process are the most
important ones for one dimension [107].
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which in terms of the dimensionless variable eq.(4.15) and Q = αlq
2k

B
T

is:

ρ21 =
}(1 + e−µ/k

B
T )2kBT

2e2α3l
(4.30)

×
∫ ∞

0

dΩ

∫ ∞

Ω

dQ
∣∣∣∣W12

(
2kF

T

TF

Q
)∣∣∣∣

2

[
f̃ 0
(
Ω +Q− Tµ

T

)
− f̃ 0

(
− Ω +Q− Tµ

T

)]2

sinh2(Ω)
.

As in the quadratic model we consider the Ω → 0 limit of the integrand, to
make sure the integral is finite:

lim
Ω→0

[
f̃ 0
(
Ω +Q− Tµ

T

)
− f̃ 0

(
− Ω +Q− Tµ

T

)]2

sinh2(Ω)
=

1

4 cosh4
(
Q
2
− Tµ

2T

) , (4.31)

which again peaks at the important backscattering process q = 2kF broadened
by temperature. The integration is finite if the potential W12(q) fulfils:

∫ ∞

Ω

dQ
∣∣∣∣W12

(
2kF

T

TF

Q
)∣∣∣∣

2

(F (Q,Ω))2 <∞ for all Ω ≥ 0. (4.32)

Again the opposite is not true, i.e. we can have a finite ρ21 without eq.(4.32)
being fulfilled.

4.4 The Coulomb matrix element

The task is now to do the integrals of ρ21 in eq.(4.16) and eq.(4.30) numerically in
the two models to compare the results. We will consider two completely opposite
limits of a screened potential: An unscreened potential and a completely screened
potential.

4.4.1 The unscreened Coulomb potential

We now investigate the simple unscreened Coulomb potential V12(|r1 − r2|) =
e2

4πε0εr |r1−r2| for two coupled quantum wires, where εr is some relative permittivity

for the material (see figure 4.1). We have a static interaction, since V12(|r1− r2|)
is not time dependent as a screened potential could be. Note that this is the first
and only time in the calculation of ρ21 that the geometry of the coupled quantum
wires is taken into account.

To find the Coulomb matrix element we need the wave functions in the two
models. In the quadratic model the wave functions are plane waves 1√

L
eikx and

in the linear εk = αl|k| model we also use plane waves for simplicity, even though
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these are only approximations to the wave functions in this model. So in both
models the Coulomb matrix element is:

〈k′1k′2|V12(|r1 − r2|)|k1k2〉 =
1

L2

∫ L/2

−L/2

dx1

∫ L/2

−L/2

dx2e
−ik′1x1−ik′2x2V12(|r1 − r2|)eik1x1+ik2x2

=
1

L2

∫ L/2

−L/2

dx1

∫ L/2

−L/2

dx2 e
−ik′1x1−ik′2x2+ik1x1+ik2x2

1

L

∑

q

V12(q)e
iq(x1−x2)

=
1

L
V12(k

′
1 − k1)δk1+k2,k′1+k′2 , (4.33)

where V12(q) is the one dimensional Fourier transformed potential, since |r1−r2| =√
d2 + (x1 − x2)2, where xi (i = 1, 2) are the coordinates along the wires and d

the wire separation. Therefore W12(q) from eq.(4.2) is identified as the Fourier
transformed potential when plane waves are used, and it is:

W12(q) =

∫ L/2

−L/2

dx
e2

4πε0εr
√
d2 + x2

eiqx

' e2

4πε0εr

∫ ∞

−∞
dx

eiqx√
d2 + x2

=
e2

2πε0εr
K0(|q|d), (4.34)

where the long wire limit is used to do the integral analytically and K0(|q|d) is the
modified second order Bessel function as also found in [39, p.56]. Note that this
potential is even in q, which is a special case of V12(−q) = V ∗12(q) from the real
Coulomb potential V12(|r|). Note also that the limits of K0(|q|d) are − ln(|q|d/2)
for |qd| ¿ 1 and

√
π|q|d/2e−|q|d for |qd| À 1, so the potential is logarithmical

divergent for q → 0.
This potential does satisfy the integrability criteria eq.(4.32) and eq.(4.17) for

W12(q) in the linear and quadratic model, since by partial integration we have
(up to a constant factor):

∫ ∞

0

dQ(K0(sQ))2A(Q) =

−
∫ ∞

0

dQ ∂QA(Q)

∫ Q

0

dx(K0(sx))
2 +

[
A(Q)

∫ Q

0

dx(K0(sx))
2

]Q→∞

Q=0

(4.35)

where A(Q) is defined as (F (Q,Ω))2 and s is kF

√
T
TF

or 2kF
T
TF

in the quadratic

and linear model, respectively. (Note that Q in eq.(4.35) is just a integration
variable, so it can be both Q and Q.) To justify that the integral eq.(4.35) is
finite we note that limQ→∞A(Q) = 0 and ∂QA(Q) < ∞ for all Q ≥ 0 by use of
the F functions squared. Furthermore

0 ≤
∫ x0

0

dx(K0(x))
2 <

∫ ∞

0

dx(K0(x))
2 =

π2

4
for all x0 ≥ 0, (4.36)

so the integral is justified to be finite and we can do a numerical integration
without worrying about trying to find a finite number for something infinite.
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4.4.2 The completely screened Coulomb potential

The physical effect of screening is to limit the long-range Coulomb interaction due
to electron-electron interaction [18]. In the extreme limit of completely screened
electrons the interaction is a contact interaction: V12(|r1 − r2|) = U0δ(|r1 − r2|).
This is of course an extreme limit and is never relevant in real Coulomb drag
systems, since r1 6= r2 is always true for separated subsystems. By again using
plane waves for the wave functions in both the linear and quadratic model the
Coulomb matrix element becomes 〈k′1k′2|V12(|r1− r2|)|k1k2〉 = 1

L
U0δk1+k2,k

′
1+k′2

, so

W12(q) = U0 =
e2

2πε0εr
K0(2kFd) = const, (4.37)

where the constant U0 was chosen to be the q = 2kF value of the unscreened
potential eq.(4.34), so that we have the same wire separation d dependence for the
two potentials. However, the constant U0 potential moves outside the integrals
in ρ21, so the value only changes the magnitude and not the T dependence of
ρ21. Even though this is a very simple featureless potential it does capture the
essential mathematical difference between a screened and an unscreened Coulomb
potential, which is that screening makes the divergence for small q disappear.
Note that the constant potential does not satisfy eq.(4.17) and eq.(4.32), but the
double integral in ρ21 is finite anyway, which can be seen by using a rewriting,
which will be given in eq.(4.39).

4.5 Numerical evaluation of ρ21 and comparison of

the linear and quadratic model

4.5.1 The transresistivity ρ21 at low temperatures

Before we do the integrals numerically we try to find a low temperature depen-
dence of ρ21 analytically.

How the two dimensional method for T ¿ TF fails

In the two dimensional quadratic model one could successfully show ρ21 ∝ T 2

for T ¿ TF by using Fi(q, ω) at zero temperature and maintain the sinh2( }ω
2k

B
T
)

factor in the integrand. If we do the same in the one dimensional εk = αl|k|
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model, the ω-integration can be done analytically as:

ρ21 ∝
∫ ∞

0

dq|W12(q)|2
∫ ∞

0

dω θ(αlq − }ω)
[θ(2εF − }ω − αlq)− θ(2εF + }ω − αlq)]

2

sinh2
(

}ω
2k

B
T

)

=

∫ ∞

0

dq|W12(q)|2
∫ αlq

}

αl
}
|q−2k

F
|

dω
1

sinh2
(

}ω
2k

B
T

)

=
2kBT

}

∫ ∞

0

dq|W12(q)|2
[
coth

(
αl

2kBT
|q − 2kF|

)
− coth

(
αl

2kBT
q

)]
, (4.38)

which is a divergent integral at q = 2kF and q = 0, since10 coth(x) ' 1
x

for
|x| ¿ 1. This approximation is therefore too crude and we cannot find a low
temperature dependence for ρ21 in the same way as in the two dimensional case.
The same thing also happens in the εk = αquk

2 model in one dimension as can
be seen by the same analysis on eq.(4.14). Note that there is no way to make the
integrals of ρ21 temperature independent in either the linear or quadratic model.
So the method inspired by the two dimensional case does not work for neither
the unscreened nor the completely screened potential.

Low temperature expansion for the completely screened potential

In both the linear and quadratic model we can used the rewriting
[
f̃ 0(Ω + x)− f̃ 0(−Ω + x)

]2

sinh2(Ω)
=

1

(cosh(x) + cosh(Ω))2
, (4.39)

where x is Q− Tµ
T

in the linear model and Ω2

Q2 +
Q2

4
− Tµ

T
in the quadratic model.

Therefore the transresistivity for the completely screened potential in the linear
model εk = αl|k| is:

ρ21 ∝ (1 + e−µ/k
B
T )2kBT

∫ ∞

0

dΩ

∫ ∞

0

dQ θ(Q− Ω)
(
cosh(Q− Tµ

T
) + cosh(Ω)

)2

= (1 + e−µ/k
B
T )2kBT

∫ ∞

0

dΩ

∫ ∞

−Tµ
T

dQ̃ θ(Q̃+ Tµ
T
− Ω)

(
cosh(Q̃) + cosh(Ω)

)2 , (4.40)

where Q̃ = Q − Tµ
T

. For T → 0 the integration limit is −∞ and e−µ/k
B
T → 0.

Furthermore since the important part of the integral is for (numerically) small

values of Ω and Q̃ we can set θ(Q̃+ Tµ
T
−Ω) equal to one, so the integral becomes

independent of temperature and we therefore expect:

ρ21 ∝ T for T ¿ TF (4.41)

10The definition coth(x) ≡ cosh(x)
sinh(x) is used.
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Figure 4.4: The transresistivity as a function of T
TF

for the linear and quadratic model in one
dimension for the unscreened potential. The dashed lines are for the chemical potential in the
low temperature approximation µ ' εF and the full lines are for the exact eq.(4.24) and the
Sommerfeld chemical potential eq.(4.9) in the two models, respectively. In both models we use
the parameter kFd = 4, so the densities are the same in the two models.

in the linear model for the completely screened constant potential. Similarly it
can be showed that ρ21 ∝ T for T ¿ TF for the quadratic model (see also [40]).

4.5.2 The numerical integration of ρ21

We now have four different cases to investigate numerically: The linear and
quadratic model for both the unscreened and the completely screened model. In
any case a numerical integration over Q (Q) and Ω for each temperature T is done
to find the transresistivity as a function of temperature ρ21(T ). The calculated
integrals in the linear and quadratic model are eq.(4.16) and eq.(4.30) inserting
the unscreened interaction W12(q) from eq.(4.34):

ρlin
21 = ρlin

0 (1 + e−µ/k
B
T )2

T

TF

(4.42)

×
∫ ∞

0

dΩ

∫ ∞

Ω

dQ
∣∣∣∣K0

(
2kFd

T

TF

Q
)∣∣∣∣

2

[
f̃ 0
(
Ω +Q− Tµ

T

)
− f̃ 0

(
− Ω +Q− Tµ

T

)]2

sinh2(Ω)

and

ρqu
21 = ρqu

0

√
T

TF

∫ ∞

0

dQ
∣∣∣Ko

(√
T/TFkFdQ

)∣∣∣
2

×
∫ ∞

0

dΩ

[
f̃ 0
(
Ω2

Q2 + Q2

4
+ Ω− Tµ

T

)
− f̃ 0

(
Ω2

Q2 + Q2

4
− Ω− Tµ

T

)]2

sinh2(Ω)
, (4.43)
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where the temperature independent prefactors are:

ρlin
0 =

}e2εlin
F

8π2α3l (ε0εr)
2

and ρqu
0 =

}e2

64π2α
3
2
qu

√
εqu
F (ε0εr)2

, (4.44)

which both have dimension of resistivity in one dimension: Ω/m.
To obtain the case of the completely screened potential we just need to use

eq.(4.37), i.e. move the Bessel functions with a constant argument outside the
integrals in eq.(4.42) and eq.(4.43) to get the constant (K0(2kFd))

2 in front.
The only parameter we have to fix (apart from the prefactors) in order to do

the numerical integration is kFd, which is chosen to be kFd = 4 as would be the
case if for example d = 40nm and kF = 108m−1 as in [38]. Details on the method
for the numerical integration in the program Matlab can be found in appendix
D.

4.5.3 Comparison of ρ21 in the linear and quadratic model

Equal Fermi Temperatures?

By choosing the same kFd in the linear and quadratic model we have the same

carrier density n =
2k

F

π
in the two models, if we assume the wire separation d to be

the same. However, the Fermi temperature TF can be different in the to models,
since in the quadratic model and in the linear model we have kBT

qu
F = αquk

2
F and

kBT
lin
F = αlkF, respectively. Therefore a specific T/TF point on the graphs cannot

in general be compared as representing the same temperature. However, if we
choose αl = kFαqu, then the two Fermi temperatures are the same, T qu

F = T lin
F ,

but this makes the Fermi velocities different: v lin = 1
2
vqu
k
F

. The Fermi velocities
are proportional to the relaxation time τ in a simple Drude picture, which drops
out of the transresistivity, when τ is taken to be independent of k (see chapter 3).
So the different Fermi velocities should not affect the transresistivity. Therefore
if we assume the two Fermi temperatures to be equal for the two models, we can
think of T/TF as the same temperature in both models, which makes it easier to
compare the form of the graphs of the transresistivities. On the other hand the
relative size of the transresistivity is dependent on the Fermi temperatures, since
the ratio between the prefactors for equal densities are

ρqu
0

ρlin
0

=
1

8

(
T lin

F

T qu
F

)2
, (4.45)

i.e. dependent on the Fermi temperatures and is 1/8, when they are equal.

The role of the chemical potential

In figure 4.4 ρ21 for the unscreened potential is given for both the low temperature
chemical potential, µ ' εF, and for the exact chemical potential and the Sommer-
feld expansion of µ, respectively. The effect of changing the chemical potential µ
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Figure 4.5: A double logarithmic plot of the transresistivity as a function of T
TF

for the
linear and quadratic model in one dimension for the unscreened potential. In both models
we use kFd = 4 and low temperature chemical potential µ = εF. We have fitted power laws,
ρ21 ∝ Tn, to different temperature intervals in both models and it seems like that both models
have ρ21 ∝ T 1.5 for low temperatures, but the T 1.5 regime is different in the two models. Each
square on the figure represents a result of a numerical integration.

away from being the Fermi level is seen to be quite small in both the linear and
quadratic model and as expected larger the larger the temperature. The effect
on ρ21 of using the Sommerfeld expansion contra the exact chemical potential
is opposite, i.e. it pulls ρ21 down and up wards, respectively. This is a direct
consequence of the fact that the exact chemical potential eq.(4.24) is decreasing
and the Sommerfeld expansion to first order eq.(4.9) is increasing. Due to the
modest effect of changing the chemical potential away from εF we do not show a
plot for the Sommerfeld and exact µ for the completely screened interaction.

Results of the unscreened potential

For the unscreened potential, the transresistivity is shown on figure 4.4 for the
linear and quadratic model. It is evident that both transresistivities are increasing
at first and go to zero at zero temperature. The ρ21 for the quadratic model seems
to have a negative curvature over most of the interval 0 < T/TF < 0.7, whereas
ρ21 for the linear model has a positive curvature.

To obtain a better measure of comparison for the two models for an unscreened
potential we consider a logarithmic plot of the transresistivities as seen in figure
4.5. Here we have fitted a power law dependence, ρ21 ∝ T n, to find the best
n in each of the approximative linear intervals (in the log-plot). We see that
both models show something like a T 1.5 dependence at low temperatures, but the
crossover to another power law takes place at different T/TF in the two models.
The behavior after the T 1.5 regime is qualitatively different in the two models:
ρ21 ∝ T 8 and ρ21 ∝ T 0.7, respectively. Furthermore the εk = αl|k| model has the
T 1.5 behavior for substantially lower transresistivities than the quadratic model
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model as a numerical calculation shows (not given here). Note the fact that the longer apart
the two wires are the smaller the induced current in the drag system.

(for T lin
F = T qu

F ).
Similar conclusions can be obtained by considering other values of kFd as seen

in figure 4.6, since the form of the curves do not change drastically. Furthermore,
we observe that when the wire separation becomes larger the transresistivity
decreases, which can be understood by the intuitive assumption that the more
separated the two subsystems are, the smaller the induced current should be.

Results of the completely screened potential

For the completely screened interaction (i.e. W12(q) constant) the transresistiv-
ities are seen in figure 4.7 for both the quadratic and linear model. Agreement
between the expected power law ρ21 ∝ T from eq.(4.41) for low temperatures is
found in both the linear and quadratic model. However, the quadratic model is
linear until about T

TF

∼ 0.1 whereas a substantial deviation from ρ21 ∝ T is first

seen at about T
TF

∼ 3 for the linear model (not shown).

Comparison of ρ21 for the two potentials

We now compare the unscreened and the completely screened potential. In both
cases the F functions give the available phase space, but with a constant potential
the integrand is not decreasing for q and thereby not limiting the phase space
in that direction, i.e. all drag processes with different q but equal ω are equally
probable. This is in contrast to the unscreened potential, which has a logarithmic
divergence for q → 0 and is decreasing with q. This logarithmic divergence gives
the (small) phase space around q = 0 for the k2 model a large weight and gives
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rise to ρ21 ∝ T 1.5 instead of ρ21 ∝ T for a screened potential11.
In the linear model the decrease of W12(q) gives rise to higher powers of T

than for the constant potential. As temperature increases the F functions smears
out as Fermi functions and allows more and more lower q phase space. This phase
space with lower q than 2kF gets enhanced by the non-constant and logarithmic
divergent potential and gives the two power laws ρ21 ∝ T 1.5 and ρ21 ∝ T 8 with
powers higher than one. For a constant potential the lower q phase space does
not get enhanced more than the higher (than 2kF) phase space and we therefore
obtain the linear dependence.

Note, however, that in modelling a realistic system, e.g. two coupled quan-
tum wires in GaAs, a good description of the screening is very important in the
electron-electron interaction and will change the power laws for T/TF & 0.2 sub-
stantially (see [51, 52]). So the unscreened and the completely screened potential
are not sufficient descriptions at higher temperatures.

4.6 Concluding remarks on the simple models

We have now analyzed the difference between the Coulomb drag for a quadratic
εk = αquk

2 and a piecewise linear εk = αl|k| dispersion relation in one dimension
for an unscreened and a completely screened potential.

The F functions give the available phase space for electron scattering in the
drag process and as found in sections 4.2.2 and 4.3.2 the two models reveals

11Note that in [40] it was showed that ρ21 ∝ T for another screened potential than the
completely screened one used here.
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drag in the two models. In the quadratic model εk ∝ k2 the important processes are the
small q forward scattering and the backscattering with q ' 2kF in contrast to the linear model
εk ∝ |k|, where only the backscattering with q ' 2kF is important due to the sign of the velocity
difference in the F function in one dimension.

qualitatively different behavior. The quadratic model has two important pro-
cesses: the small momentum transfer forward scattering process q ' 0 with small
phase space and the backscattering process q ' 2kF with larger phase space. The
linear model, on the other hand, has only the backscattering q ' 2kF process
and completely neglects the forward scattering small q processes as illustrated
on figure 4.8. This difference is due to the binary nature of the sign function of
the velocity difference in F , which only appears in the one dimensional rewrit-
ing of the F function (see page 63). Therefore, any small velocity difference
between the k points before and after the scattering process becomes magnified
to |sign(vk − vk+q)| = 1, since it is not suppressed by the velocity difference
(vk − vk+q) as in two dimensions.

The Coulomb interaction in the two opposite limits of the screening treats this
difference in the dispersion relations very differently. It is therefore evident that
a better model for the screening (in between the two extreme cases) is important
and will be given for the nanotubes. For the two simple band structure models
we see that for a constant potential ρ21 ∝ T for low temperatures, whereas for
the logarithmic divergent potential we have ρ21 ∝ T 1.5.

The general point is therefore, that by linearizing around the Fermi Level,
as we have done in the case of the carbon nanotube band structure (see section
2.2.4), we completely neglect the forward scattering small momentum transfer
processes. Furthermore, the screening should be included in the interaction.
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Chapter 5

Coulomb drag in multiwall carbon

nanotubes

In the previous chapters we have found many of the ingredients to calculate the
Coulomb drag in a multiwall carbon nanotube within the Fermi Liquid picture
such as the band structure, the Coulomb matrix elements and the transresistivity
formula. In this chapter we find the Coulomb drag in a multiwall nanotube as a
function of temperature T and Fermi level εF (i.e. a gate voltage), where both
drive and drag subsystems are metallic tubes. We present numerical results in
the case of drag between two armchair tubes.

5.1 Models of metallic nanotubes

From section 2.2.4 we know that the band structure as a function of k for all
metallic nanotubes are either like an armchair tube with crossings at ± 2π

3|T| or
like a zigzag tube with a double degenerate crossing at k = 0.

The model for armchair-like nanotubes

The armchair-like nanotubes are similar to the armchair nanotube in the sense
that their band structures have two crossings of the Fermi level (εF = 0) at ± 2π

3|T|
with velocity ±v0. For higher (lower) energies the bands crossing the Fermi level
for an armchair-like tube can be quite different from the armchair cosine bands
eq.(2.43). Since the transport properties are only determined by the structure
around the Fermi level, we will consider all these tubes as one class of tubes
called armchair-like tubes. As the energy bands around the Fermi level we use
the linear approximation around εF = 0:

εΠk = −Π}v0(|k| − k0), (5.1)

where v0 =
√
3
2

γ0a
}

is the velocity near εF = 0, k0 ≡ 2π
3|T| and Π = ±1 is only the

parity index for (real) armchair tubes and just an index for the others. These
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bands are made periodic by hand by repeating the FBZ=]− π
|T| ,

π
|T| ] remembering

that the FBZ is generally different for different armchair-like tubes. The two
crosses at ± 2π

3|T| connected in this way have different nc, but the same crystal

angular momentum1 and therefore we can label the bands by the same m.
The linearization is a good approximation as long as the Fermi level is not

shifted too much |εF| ¿ γ0, which is normally the case experimentally (see p.27).
The linearization could also have been done around each εF used, but this is not
done, since it would not preserve the particle-hole symmetry (from the graphene
band structure) around εF = 0 for each chosen εF.

The model for zigzag-like nanotubes

The second class of metallic tubes are the zigzag-like tubes defined as the tubes
with a double degenerate crossing of εF = 0 at k = 0 as for the zigzag tubes.
Again a linearized band structure around the Fermi level is used for all the zigzag-
like tubes:

εξkm
= ξ}v0k, (5.2)

where ξ = ±1 is an index. It is important to remember, that there are two bands
for each ξ with different crystal angular momentum m. Furthermore, the FBZ
is repeated periodically and again the FBZ is different for different zigzag-like
tubes.

Neglecting small momentum forward scattering by linearization of εkν

By using a linearized model for the band structure around εF = 0 for both the
armchair-like and zigzag-like nanotube we only have two velocities ±v0 in the
models. Since we have a factor of sign(vksνi−vks+qν′i

) in the F function eq.(3.44),
we only have scattering with opposite velocities contributing to the Coulomb
drag, i.e. only backscattering are present in the linearized models analogous to the
ε ∝ |k| model considered in chapter 4. Therefore the gi factors for backscattering
in any metallic nanotube from section 2.3.1 can be used directly. If we should
include the small q forward scattering processes, we should relax the strictly
linear model to e.g. a cosine or a sine band as for the armchair and zigzag tubes
in the tight binding model, respectively. However as in the quadratic model in
chapter 4 the curvature of the bands will limit the available phase space (i.e. the
F function) for small q forward scattering.

1Numerically it seem like the bands crossing the Fermi level for all armchair-like tubes have
m = 0, which is found in several examples using the program in [87].
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5.2 The screened Coulomb interaction

In section 2.3.2 we found the Coulomb matrix element in terms of the Fourier
transformed Coulomb interaction, but did not specify the interaction further.
Now we specify the interaction to include the effect of screening in the Coulomb
interaction in a very simple way. The model of the screening presented here is
better that the ones given in chapter 4, where only the unscreened and completely
screened potential were considered. But the model is only strictly valid for a two
dimensional (quasi one dimensional) cylinder, i.e. for large nanotubes where
several bands are taken into account. We will however also use it to describe
smaller tubes, since we are more interested in the effect of the band structure than
the precise form of the screened interaction. The screened Coulomb interaction
has a finite limit for q → 0, which ensures the integral in the transresistivity to be
finite. The calculation of the screening is done in the random phase approximation
(RPA) and in the Thomas-Fermi approximation in appendix F.

5.2.1 The random phase approximation (RPA)

We now briefly consider the screening of the Coulomb potential in the random
phase approximation, which simplifies to the Thomas-Fermi result in the limit of
small q and ω → 0 (the static limit) as seen in appendix F.

The RPA for a single subsystem is obtained by a resummation of the most
divergent Feynman diagrams in the self energy for an interacting electron gas [18,
chap.12] (or from the equation of motion technique [126, sec.5.5]), which gives in
general for a translational invariant subsystem a Dyson equation for the screened
interaction V (q, ω) of the form:

V (q, ω) = V 0(q) + V 0(q)χ(q, ω)V (q, ω), (5.3)

where V 0(q) is the bare Coulomb interaction and χ(q, ω) the free polarizability
(or Lindhard function):

χ(q, ω) =
1

V
∑

σk

f 0(εk+q)− f 0(εk)
εk+q − εk − }ω + iη

, (5.4)

where V is the normalization factor, η a positive infinitesimal [18] and the band
indices were included in the wave vectors. So from eq.(5.3) we can get the screened
interaction and the dielectric function εRPA(q, ω) in the RPA as

V (q, ω) =
V 0(q)

εRPA(q, ω)
where εRPA(q, ω) = 1− V 0(q)χ(q, ω). (5.5)

Now we consider the screened Coulomb interaction between electrons in the
two subsystems in the RPA as in [112], i.e. we briefly generalize the above argu-
ments to include two subsystems. By having two subsystems we have Coulomb
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interaction both in the individual systems Vii and between the systems Vij (i 6= j).
Therefore we have four Dyson equations for the four screened interactions Vij,
but to find V12 it is sufficiently to consider only two [112, fig.2]:

V12(q, ω) = V 012(q) + V 012(q)χ2(q, ω)V22(q, ω) + V 011(q)χ1(q, ω)V12(q, ω), (5.6)

V22(q, ω) = V 022(q) + V 022(q)χ2(q, ω)V22(q, ω) + V 021(q)χ1(q, ω)V12(q, ω), (5.7)

where there is one polarizability function χi for each subsystem. Solving these
two equations with two unknowns (V12 and V22) we find:

V12(q, ω) =
V 012(q)

εRPA(q, ω)
where (5.8)

εRPA(q, ω) =
(
1− V 011(q)χ1(q, ω)

)(
1− V 022(q)χ2(q, ω)

)

− (V 012(q))
2χ1(q, ω)χ2(q, ω), (5.9)

using that V 021(q) = V 012(q). The introduced dielectric function should in principle
have the indices 12, but since this is the only dielectric function we consider, they
are neglected.

The system of two concentric cylinders are now considered. The bare in-
teraction2 was found in the Thomas-Fermi approximation eq.(F.28) by setting
qTF = 0:

V 0ii (r
c
i , r

c
i , q,∆m) =

e2

κ
K∆m(qr

c
i )I∆m(qr

c
i ) for i = 1, 2, (5.10)

V 012(r
c
1, r

c
2, q,∆m) = V 021(r

c
2, r

c
1, q,∆m) =

e2

κ
K∆m(qr

c
1)I∆m(qr

c
2), rc2 < rc1. (5.11)

This is independent of the Thomas-Fermi approximation, since it is equivalent
to solving the Poisson equation (eq.(F.6)) for a point charge in cylindrical coor-
dinates using the Greens function technique for differential equations.

The calculation of the polarizability on the other hand requires specification
of the band structure. In [118] the tight binding bands near the Fermi level

εΠk = −Πγ0
(
1− 2 cos

(
ka
2

))
for an armchair tube and ε±k = ±2γ0 sin

(√
3ka
4

)
for a

zigzag tube were used to find the polarizabilities for a Fermi level at εF = 0 and
T = 0. The result for the zigzag and armchair tubes are the same in the limit of
small q and ω and found to be [118, eq.(13) and eq.(21)]:

χ(q, ω) =
1

2π

8γ0(qa)
2

aπ
√
3
(
4
3
(}ω)2 − (γ0qa)2

) , (5.12)

remembering that a =
√
3ac c. In [118] the inter band excitations were neglected,

so the polarizability is simply the sum of the two polarizabilities of the two bands,

2Note that κ = εrε0 is used instead of ε0, i.e. the linear medium of e.g. a substrate is
included in the bare interaction. We use εr = 1.4 as in [120] (see also p.124).
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i.e. χ = χΠ=1 + χΠ=−1. To do a better calculation of the screening including
the inter band excitations we should solve a 2 × 2 problem for each subsystem
equivalent to the Dyson equations (5.6) and (5.7), where the indices now are
subband indices instead of subsystem indices. This should then be generalized
to two subsystems as above. Note that the normalization factor 1

2π
in eq.(5.12)

was not present in [118], but included here to use the same normalization as done
previously in the k and band index sums.

We can now find the (dynamically) screened Coulomb interaction from eq.(5.8)
in the RPA. We use the static limit ω → 0, i.e.

χ(q, 0) =
1

2π

−8γ0(qa)2
aπ
√
3(γ0qa)2

= − 2

π2}v0
≡ − κ

e2
s, (5.13)

so the interaction used in all metallic nanotubes is explicitly:

V12(r
c
1, r

c
2, q,∆m) =

V 012(r
c
1, r

c
2, q,∆m)

εRPA(q,∆m, 0)
, where (5.14)

εRPA(q,∆m, 0) =
[
1 + sK∆m(qr

c
1)I∆m(qr

c
1)
][
1 + sK∆m(qr

c
2)I∆m(qr

c
2)
]

− s
2
[
K∆m(qr

c
1)I∆m(qr

c
2)
]2
. (5.15)

The limits of the screened interaction for q → 0 for different ∆m are now
considered and found to be finite for all q (as it should be). For ∆m = 0 we have
V 012(r

c
1, r

c
2, q, 0)→∞ for q → 0, but the screened Coulomb interaction is finite for

all q, since the small q limit is

lim
q→0+

V12(r
c
1, r

c
2, q, 0) =

e2

κ

1

s

(
2 + s ln

(
rc1
rc2

)) , (5.16)

found by using the small x expansions of K0(x) and I0(x) [123, p.138-139]. For
∆m ≥ 1 the bare interaction V 0

12 is not divergent:

lim
q→0

V 012(r
c
1, r

c
2, q,∆m) =

e2

κ

1

2∆m

(
rc2
rc1

)∆m

for ∆m ≥ 1, (5.17)

hence neither the screened interaction. Note that the interaction decreases as a
function of ∆m.

5.3 Coulomb drag in multiwall armchair-like na-

notubes

We now consider the problem of Coulomb drag between two armchair-like nan-
otubes. This problem falls into two parts: Firstly drag between two real armchair
tubes, e.g. a (5,5) tube in a (10,10) tube, where we can use a parity selection rule,
and secondly, drag between two armchair-like tubes without a parity selection
rule.
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5.3.1 Properties of single armchair-like nanotubes

The single subsystem properties entering the transresistivity are now found. The
density of free electrons n for the armchair-like band structure eq.(5.1) (in the
long tube limit) is (dropping the subsystem index i):

n =
1

2πrc

∑

σν

∫ π
|T|

− π
|T|

dk

2π
f 0(εkν) =

2εF + }v0
π
|T|

π2rc}v0
, (5.18)

where the temperature independence of the density were used and the ν sum was
simply a sum over Π = ±1. Furthermore, we use the chemical potential in the
low temperature approximation µ ' εF, since this works well as we found for the
simple models in chapter 4.

The transport mobility µTr is the only single subsystem property entering the
transresistivity, which we have not found yet. The current density for a single
subsystem in the Boltzmann framework eq.(3.12) is found by dividing the FBZ
into intervals, where the velocity is differentiable as in eq.(4.21):

J = −e
2Eτ

}

∑

σ

1

2πrc

∑

ν

∫ π
|T|

− π
|T|

dk

2π
vkν

∂f 0(εkν)

∂k
=

2e2Eτv0
}π2rc

, (5.19)

where the ν sum is over Π = ±1. Therefore the mobility is found by the definition
eq.(3.13) to be:

µTr =
J

(−e)nE =
2(−e)τv20

2εF + }v0
π
|T|

(5.20)

for armchair-like tubes.

5.3.2 The F functions for armchair-like tubes

The F
(i)

νiν
′
i
(q, ω) functions eq.(3.44):

F
(i)

νiν
′
i
(q, ω) = (5.21)

− ẽiτi

}2µ
(i)
Tr

∑

ks

sign(vksνi − vks+qν′i
)[f 0(εksνi)− f

0(εks+qν′i
)] |gi(ksνi, ks + qν ′i)|2

are now found for the two armchair-like bands Π = ±1 in eq.(5.1) and we therefore
have to find the four F functions: F++, F−−, F+− and F−+. Note that in contrast
to the two simple models (chapter 4), we have periodic bands and therefore have
either two or none solutions of εΠks = εΠ

′
ks+q + }ω in the FBZ for all combinations

of Π′ and Π. The prefactor is the same for all four F functions:

C
(i)
F ≡

ẽiτi

}2µ
(i)
Tr

=
2εF + }v0

π
|Ti|

2(}v0)2
, (5.22)
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ε
Π=−1

kε
Π=−1

k+q

ε
Π=−1

k+q + }ω

k1

k2

Graphical solution of ε
Π=−1

k = ε
Π=−1

k+q + }ω

Figure 5.1: Illustration of a possible way
to solve the equation εΠk = εΠ

′

k+q + }ω for
the case of Π = Π′ = −1. The energies
εΠ=−1k (thick line), εΠ=−1k+q (dashed line)

and εΠ=−1k+q +}ω (normal line) are showed.
Two solutions k1 and k2 are seen to exist
for }v0q > }ω, which gives the step func-
tion θ(v0q − ω) in the F−− function.

where we used electrons ẽi = −e and the mobility eq.(5.20).
Let us begin by calculating the F−−(q, ω) function in detail. We need to find

the solutions k ∈ FBZ of εΠ=−1k = εΠ=−1k+q + }ω for 0 < q < π
|Ti| remembering that

the F (i) function is periodic in q by 2π
|Ti| and odd in q eq.(3.38). The solution

can be found in the same way as in section 4.3.2, i.e. by dividing the piecewise
linear dispersion relation into linear pieces. Here we simply solve the equation
εΠ=−1k = εΠ=−1k+q + }ω graphically as seen on figure 5.1, which is an equivalent
approach. For Π′ = Π = −1 the solutions k1 and k2 are found to be:

−}v0(k1 + k0) = }v0(k1 + q − k0) + }ω ⇔ k1 = −
1

2

(
q +

ω

v0

)
, (5.23)

}v0(k2 − k0) = −}v0

(
k2 + q − 2π

|Ti|
+ k0

)
+ }ω ⇔ k2 =

1

2

(
2π

|Ti|
− q + ω

v0

)
.

These solutions only exist if εΠ=−1k+q +}ω is not above εΠ=−1k for all k, which means
that }v0q > }ω and the step function θ(v0q − ω) should be included in the F−−
function. This step function also appears from the sign-function of the velocity
difference, when one solves the equation εΠ=−1k = εΠ=−1k+q + }ω in piecewise linear
intervals. When the two solutions exist the sign difference is:

sign(vk1Π=−1 − vk1+qΠ=−1) = sign(−v0 − v0) = −1, (5.24)

sign(vk2Π=−1 − vk2+qΠ=−1) = sign(+v0 + v0) = +1. (5.25)

Furthermore, the energies of the solutions k1 and k2 are:

εΠ=−1k1
= −}v0(k1 + k0) =

}

2
(ω + v0q)− }v0k0 ≡ ε1, (5.26)

εΠ=−1k2
= }v0(k2 − k0) =

}

2
(ω − v0q + v0k0) ≡ ε2, (5.27)

εΠ=−1k1+q = }v0(k1 + q − k0) =
}

2
(v0q − ω)− }v0k0 = −ε2 −

1

2
}v0k0, (5.28)

εΠ=−1k2+q = −}v0(k2 + q − 2π

|Ti|
+ k0) = −

}

2
(v0q + ω) +

1

2
}v0k0 = −ε1 −

1

2
}v0k0,
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which are used in the Fermi functions.
Now we only need the gi factor to know F−−. For a (real) armchair nanotube

we can insert eq.(2.38) (with nc = n) and eq.(2.44) into eq.(2.66) to obtain the
non-linearized gi factor:

gi(k,Π, k
′,Π′) =

1

2
(Π′Π+ 1) +

s0
2

[
Π′
(
1− 2 cos

(ka
2

))
+Π

(
1− 2 cos

(k′a
2

))]
, (5.29)

so

gi(k,Π, k + q,Π) = 1 + s0Π

[
1− cos

(
ka

2

)
− cos

(
(k + q)a

2

)]
. (5.30)

Since s0 ∼ 10−1 the k and q dependence do not change the value away from 1 by
more then ∼ 0.2. The form eq.(5.30) is of course only true for real armchair tubes,
but as we derived in section 2.3.1 (from p. 39) the g factor for backscattering
between different crosses (fig.2.8(right)) is 3

4
< g ≤ 1 eq.(2.75) for all armchair-

like tubes and therefore we use g ' 1 in F−− to model all the armchair-like
tubes.

Inserting into eq.(5.21) the F−− function is:

F
(i)
−−(q, ω) = −C(i)F θ(−ω + v0q) (5.31)

×
[
−
(
f 0(ε1)− f 0

(
− ε2 −

1

2
k0}v0

))
+

(
f 0(ε2)− f 0

(
− ε1 −

1

2
k0}v0

))]
,

where ε1 and ε2 are found in eq.(5.26) and eq.(5.27), respectively.
In the same way we find F++ to be:

F
(i)
++(q, ω) = −C(i)F θ(−ω + v0q) (5.32)

×
[
−
(
f 0(ε̃1)− f 0

(
− ε̃2 +

1

2
}v0k0

))
+

(
f 0(ε̃2)− f 0

(
− ε̃1 +

1

2
}v0k0

))]
,

where ε̃1 = }

2
(ω + v0q) − 1

2
}v0k0 and ε̃2 = }

2
(ω − v0q) + }v0k0. Again we have

used g ' 1 for the same reason as above. Therefore the two F functions F++
and F−− for intra band scattering Π → Π are now known and can be seen on
figure 5.2. The F functions gives the available phase space for scattering and

the sinh
(

}ω
2k

B
T

)−2
and Fourier transformed interaction in ρ21 are decreasing as

a function of q and ω, respectively, suppressing the phase space away from the
origin. Therefore figure 5.2 shows that the most important intra band scattering
processes at low temperatures3 are:

3Remembering that the lower the temperature T the more the factor sinh
(

}ω
2k

B
T

)−2
sup-

presses the phase space for larger ω.
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q q

ω ω

F++(q, ω) F
−−

(q, ω)

k0+
2εF

}v0
k0−

2εF

}v0

−C
(i)
F

+C
(i)
F

Figure 5.2: The F functions for the intra band scattering for q ∈ [0, π
|T| ] and εF > 0. The

values of FΠΠ are found to be ±C(i)F , respectively. To get FΠΠ for all q we can use that F is
odd in q to get q ∈FBZ and thereafter repeat the FBZ periodically as a function of q. Note the
smearing by the Fermi functions due to the temperature on some edges and the sharp edge at
ω = v0q from the step function θ(−ω + v0q). The temperature T = 0.1TF were used.

• For Π = +1: q = k0+
2ε

F

}v0
, i.e. the Umklapp process k′ → k for k′ = −k0+ ε

F

}v0

and k = k0− ε
F

}v0
in the FBZ, so q = k′− k+ 2π

|T| = k0+
2ε

F

}v0
(or equivalently

k′ = k0 − ε
F

}v0
and k = −k0 + ε

F

}v0
so q = k′ − k − 2π

|T| = −
(
k0 +

2ε
F

}v0

)
).

• For Π = −1: q = k0 − 2ε
F

}v0
, i.e. the Umklapp process k′ → k for k′ =

−k0 − ε
F

}v0
and k = k0 +

ε
F

}v0
so q = k′ − k + 2π

|T| = k0 − 2ε
F

}v0
(or equivalently

k′ = k0 +
ε
F

}v0
and k = −k0 − ε

F

}v0
so q = k′ − k − 2π

|T| = −
(
k0 − 2ε

F

}v0

)
).

These scattering processes are seen on figure 5.4.
The F functions F−+ and F+− for inter band scattering Π → −Π are now

considered. The gi factor for armchair tubes eq.(5.29) for Π = −Π is:

gi(k,Π, k + q,−Π) = s0Π

[
cos

(
ka

2

)
− cos

(
(k + q)a

2

)]

' s0Πsin

(
ka

2

)
aq, (5.33)

where we expanded to first order in q around zero. This is a good approximation,
since the inter band backscattering around the Fermi level has a small q. Using
k = ±2π

3a
in eq.(5.33) we exactly get the result from eq.(2.70) as we should. Again

we will like to model all armchair-like tubes and we therefore use the g factor
from eq.(2.71)

|gi(k,Π, k + q,−Π)|2 = s20
3(qa)2

16
(5.34)
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}v0

2εF

}v0

− zero − zero

Figure 5.3: Contour plots of the F functions for inter band scattering with and without the
g factors for q ∈ [0, π

|T| ] and εF > 0. For low temperatures and g = 1 the processes with

q =
2ε

F

}v0
(i.e. k′ → k for k′ = ±

(
k0 +

ε
F

}v0

)
and k = ±

(
k0 − ε

F

}v0

)
or k′ = ±

(
− k0 + ε

F

}v0

)
and

k = ±
(
− k0− ε

F

}v0

)
) are seen to be important, but due to |g|2 ∝ s20(aq2) ∼ 10−4 this is strongly

suppressed as seen on the contour plots including the g factors. The signs indicate the signs of
the F functions.

in the inter band F functions, since this exactly describes the small q inter band
backscattering without crystal angular momentum transfer. Note that by lin-
earization of the band structure only backscattering is considered and therefore
the g factors for backscattering is used in both the inter and intra band F func-
tions.

The equation εΠk = ε−Πk+q + }ω for 0 < q < π
|Ti| can again be solve graphically

or by dividing the dispersion relations into piecewise linear intervals as above.
This leads to

F
(i)
+−(q, ω) = −C(i)F s20

3(qa)2

16
θ(ω − v0q + v0k0)θ(−ω − v0q + 2v0k0)

×
[
−
(
f 0(ε′1)− f 0(−ε′2)

)
+
(
f 0(ε′2)− f 0(−ε′1)

)]
(5.35)

and

F
(i)
−+(q, ω) = −C(i)F s20

3(qa)2

16
θ(−ω − v0q + v0k0)

×
[
−
(
f 0(ε′1)− f 0(−ε′2)

)
+
(
f 0(ε′2)− f 0(−ε′1)

)]
(5.36)

where ε′1 =
}

2
(ω+ v0q) and ε′2 =

}

2
(ω− v0q). Here the two inter band F functions

have the same Fermi functions but are cut off by different lines (i.e. different step
functions) in the (q, ω) plane. Figure 5.3 shows the inter band F functions with
and without the g factors, i.e. for the phase space for inter band scattering (see
figure 5.4(left)).

The factors s20 ∼ 10−2 and (aq)2 in F+− and F−+ suppress the inter band pro-
cesses substantially compared to using plane wave states in the Coulomb matrix
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g ∼ 1
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εF

k
0

Inter Band Processes Intra Band Processes

Figure 5.4: The main backscattering processes contributing to the drag and the suppression
of the small momentum q =

2ε
F

}v0
inter band scattering due to the g factor. Note that the intra

band processes (on the right) are seen in the interval from zero to 2π
|T| , since we have Umklapp

processes. Note that an extremely high Fermi level εF = 1eV is used in this figure for illustrative
reasons.

element (g = 1), which were our first approach to the problem, see appendix G.
The reason for the large difference between using plane wave states and the Bloch
states in the matrix element is the fact of the two atomic unit cell, which gives
a two component tight binding state leading to a g factor of the ”dot-product”
form

(α′∗, β ′∗) ·
(
α
β

)
(5.37)

to zeroth order in s0. A priori α and β depend on k, but to linear order they are
independent of k. This is a good approximation, since γ0 À εF. If we had only
one atom in the unit cell, this would not have been the case, but on the other
hand we would not have obtained two bands near εF, which could lead to the
believe of a small q inter band backscattering.

Thus, by analyzing the F functions including the g factors it seem like the
most important processes in the Coulomb drag are the intra band backscattering
processes as seen on figure 5.4.

5.3.3 Particle-hole symmetry

Particle-hole symmetry means that there are as many electrons as holes in the
conductor. Or to be more precise: For each occupied k state (at T = 0) with
energy εk and velocity vk there exists one and only one empty state k′ with the
same velocity vk′ = vk and the opposite energy with respect to the Fermi level:
εF − εk′ = −(εF − εk). So in this way there is a one to one correspondence
between the particles (i.e. the filled states) and holes (i.e. the empty states).
An example of particle-hole symmetry is a half filled cosine band. The graphene
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band structure has particle-hole symmetry for εF = 0, since it is symmetric
around εF = 0. The symmetry is pasted on in the wrapping procedure to the
nanotube band structure and preserved in the linear approximation of the bands.

Let us now consider the Coulomb drag between two subsystems, where one of
the subsystems, say subsystem 1, has particle-hole symmetry. One can chose to
use either holes ẽ1 = +e or electrons ẽ1 = −e in the calculation of ρ21 eq.(3.39)
and the same result would be obtained except for the prefactor ẽ1, which has
different signs. Therefore the Coulomb drag (i.e. ρ21) is zero, if one (or both) of
the systems have particle-hole symmetry. Explicitly the F functions disappear at
εF = 0, which can be seen by using f 0−µ(ε) = 1− f 0µ(−ε) after doing the sum over
the band indices. This has been used to show that one can have a sign change in
ρ21 (for the cosine band), if one of the subsystems goes from an electron-like to
a hole-like subsystem though the particle-hole symmetry [113].

The absence of Coulomb drag for a particle-hole symmetric system can also
be understood intuitive in the following way: The drag effect is based on the
momentum transfer from one system to the other. If there are as many electrons
as holes in the drag system, the drive system will transfer an equal amount of
momentum to the electrons and holes in the drag system. Since the electrons
and holes have opposite electric charges no voltage will arise.

5.3.4 Selection rules for armchair-like tubes

Bands near the Fermi level have the same crystal angular momentum for the
armchair-like tubes and therefore we have no selection rule from crystal angular
momentum conservation, so we shall use ∆m = 0 in the Fourier transformed
interaction. Furthermore, we can safely neglect the Umklapp process in the
crystal angular momentum conservation law (if the tubes are commensurable),
since the Fourier transform suppresses them.

The parity selection rule for (real) armchair nanotubes

There is however a parity selection rule for (real) armchair nanotubes, which we
will now derive. It stems from the specific symmetry of the lattice for a (n, n) tube
as described on page 30 (see figure 2.5), where the eigenstates ψΠk (θ, r, z) for the
bands crossing εF were found to be parity eigenstates in the angular coordinate

(eq.(2.46)): Pθ

(
ψΠk (θ, r, z)

)
≡ ψΠk (−θ, r, z) = ΠψΠk (θ, r, z).

We now consider the matrix element 〈k′1k′2Π′1Π′2|V12(|r1 − r2|)|k1k2Π1Π2〉,
where the only assumption needed to have a parity selection rule is that the
electron-electron interaction V12(|r1− r2|) only depends on the distance |r1− r2|
between the electrons. This distance in cylinder coordinates (θi, ri, zi) (i = 1, 2)
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Figure 5.5: The Fintra function giving
the phase space for intra band scattering
in (real) armchair tubes. By comparing
with figure 5.2 we note that there is an
area of phase space, where F+−+F−+ can-
cels out. (Remember that Fintra is odd in
q and should be repeated periodically as
a function of q.)

is:

|r1 − r2| =
√(

r1 cos(θ1)− r2 cos(θ2)
)2

+
(
r1 sin(θ1)− r2 sin(θ2)

)2
+ (z1 − z2)2

=

√
(r1 − r2)2 + 4r1r2 sin

2

(
θ1 − θ2

2

)
+ (z1 − z2)2, (5.38)

which is seen to be even in θ1 − θ2 and in z1 − z2. So V12(|r1 − r2|) is even in
θ1 − θ2 and z1 − z2. The matrix element is explicitly:

〈k′1k′2Π′1Π′2|V12(|r1 − r2|)|k1k2Π1Π2〉 =∫ ∞

0

dr1r1

∫ ∞

0

dr2r2

∫ ∞

−∞
dz1

∫ ∞

−∞
dz2

∫ π

−π

dθ1

∫ π

−π

dθ2 ψ
Π′1∗
k′1

(θ1, r1, z1)ψ
Π′2∗
k′2

(θ2, r2, z2)

×V12(|r1 − r2|) ψΠ1
k1
(θ1, r1, z1)ψ

Π2
k2
(θ2, r2, z2). (5.39)

By changing the integration variables from θ1, θ2 to −θ1,−θ2 and using that the
Bloch states are parity eigenstates and that V12(|r1− r2|) is even in this variable
change by eq.(5.38) it is seen that Π1Π2Π

′
1Π

′
2 = 1 for the matrix element not to

be zero. Equivalently Π1Π2 = Π′1Π
′
2 since Π = ±1, so the product of the parity

has to be conserved in the scattering process. This is the parity selection rule.

An equivalent derivation is to inserted
(
Pθ1Pθ2

)−1(Pθ1Pθ2

)
= 1 in the matrix

element:

〈k′1k′2Π′1Π′2|V12(|r1 − r2|)|k1k2Π1Π2〉 =
〈k′1k′2Π′1Π′2|

(
Pθ1Pθ2

)−1(Pθ1Pθ2

)
V12(|r1 − r2|)

(
Pθ1Pθ2

)−1(Pθ1Pθ2

)
|k1k2Π1Π2〉

= Π1Π2Π
′
1Π

′
2〈k′1k′2Π′1Π′2|V12(|r1 − r2|)|k1k2Π1Π2〉, (5.40)

i.e.
〈k′1k′2Π′1Π′2|V12(|r1 − r2|)|k1k2Π1Π2〉 ∝ δΠ1Π2,Π

′
1Π
′
2
. (5.41)

This selection rule for drag between (real) armchair nanotubes reduces the num-
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Figure 5.6: The transresistance per length R21
L

(in units of Ω/µm) from a numerical integra-
tion of eq.(5.43) for a (5, 5) in a (10, 10) tube as a function of the temperature T in units of
the Fermi Temperature TF. Curves for three different Fermi levels εF are seen: εF = 0.015eV
(Left, full line), εF = 0.15eV (Middle, dashed-dotted line) and εF = 0.3eV (Right, dotted line).
Note the difference in magnitude between the transresistances R21 and the very large (real)
temperatures for the middle and right curves (since TF is large).

ber of non-zero matrix elements by half4. Note that for armchair nanotubes
laying parallel to each other (i.e. not coaxial) the parity selection rule is not
found, since the distance is no longer even in θ1 − θ2.

Let us now carry out the sum over the band indices in the transresistivity
eq.(3.39) for the parity selection rule. For all (real) armchair nanotubes we have

|T| = a so F
(i)

ΠiΠ
′
i
(q, ω) = FΠiΠ′i(q, ω), i.e. the F functions are independent of

the subsystem i. Since the Fourier transforms are parity independent, we have
(suppressing the q, ω dependence in the notation):

∑

Π1Π2Π
′
1Π
′
2

FΠ1Π
′
1
FΠ2Π

′
2
δΠ1Π2,Π

′
1Π
′
2
=

(
F++ + F−−

)2
+
(
F+− + F+−

)2
= (Fintra)

2 + (Finter)
2 (5.42)

introducing the inter and intra band scattering F functions. The (Finter(q, ω))
2

function contains the strongly suppressing factors s40 ∼ 10−4 and q4, which makes
Fintra(q, ω) the most important term in the transresistivity. Fintra(q, ω) is plotted
in figure 5.5.

5.3.5 Transresistivity for armchair tubes: numerical results

We now consider the Coulomb drag between a (5, 5) armchair tube and a (10, 10)
armchair tube (seen in figure 1.2(a)) and find the transresistivity ρ21 by numerical
integration. Two armchair tubes are commensurable and therefore the sum over

4In our original approach to drag in multiwall armchair nanotubes (appendix G) this was the
only symmetry property from the Bloch states we use in the calculation of the matrix element,
which did not suppress the small q inter band backscattering.
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G1 can give some contribution to ρ21 in eq.(3.39), but they are suppressed by the
Fourier transform V ∗12(q+G1) and therefore neglected in the numerical integration.
Note however that this does not mean, that we neglect Umklapp scattering, since
in the derivation of ρ21 we have included a sum over G1 into the q-integral (see
p.61) and introduced q = k′1 − k1 + G1 (see p.57). Using the F -functions from
eq.(5.42) and the interaction eq.(5.14) ρ21 simplifies to:

ρ21 =
}2

πe2n1n2kBT

1

2πrc2
(5.43)

×
∫ ∞

0

dq

2π

∫ ∞

0

dω
|V12(rc1, rc2, q,∆m = 0)|2

sinh2
(

}ω
2k

B
T

)
(
(Fintra(q, ω))

2 + (Finter(q, ω))
2
)
,

where we now have calculated all the ingredients. We proceed the calculation of
these integrals by numerical integration as in chapter 4 remembering to repeat
the F function periodically as a function of q. The details of the numerical
integration technique are found in appendix D5.

In all of the figures, we give the transresistance per length R21

L
(i.e. the 1D

transresistivity) eq.(3.40), since this is the natural quantity to measure. The
magnitude of the transresistance per length is seen to be of order mΩ/µm, which
is suppressed by about a factor of 106 compared to our previous result with g = 1
for the inter band backscattering processes (see appendix G).

In a Coulomb drag experiment the Fermi level εF is controlled by a gate
voltage Vg, which is approximately proportional to εF. For a multiwall tube the
gate is likely to have a larger effect on the Fermi level on the outer tubes than on
the inner ones (i.e. position dependent). Therefore, in general we have a Fermi
level for each tube, but in the calculations we will use the same Fermi level in
both tubes and therefore neglect this small effect.

5We introduce the new dimensionless variables x = }v0q
ε
F

and y = }ω
ε
F

and the prefactors from

V12, the F functions, the ρ21 formula it self and the variable change is: ρ0 =
πrc1e

2ε
F

16κ2}2v30

TF

T
, which

has the dimension of Ohm as it should in quasi 1D.
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The transresistance as a function of temperature

In figure 5.6 and 5.8 we calculated the transresistance as a function of temperature
in units of TF for different values of the Fermi level. We find a linear dependence,
R21 ∝ T , for T . 0.4TF for all the Fermi levels considered, which is also found
in the logarithmic plot on figure 5.7. Note that R21 goes to zero for T → 0, as
predicted in section 3.3.1 (p.54). Furthermore, we can numerically evaluate the

two sperate terms ρ
(inter)
21 (from the Finter function) and ρ

(intra)
21 in eq.(5.43) and we

find that the shape of the curves and the magnitude is entirely due to the intra
band F function, i.e. due to the intra band processes with a wave vector transfer
of order q ∼ k0. This is exactly as we expected from the very small g factors
eq.(5.34) for inter band backscattering.

We now try to understand the linear dependence R21 ∝ T along the same lines
as for the completely screened potential (p.78). We should only consider the intra
band backscattering processes, so for very low temperatures only the processes
around q = k0± 2ε

F

}v0
are present (see figure 5.5). Therefore the Fourier transform

can approximately be consider as a constant around each of these points, which
can be taken outside the integrals. Since Fintra has four terms each of the form
used in the numerator in eq.(4.39), we can use the rewriting (without the square)
of Fintra

sinh( }ω
2k

B
T
)

in eq.(4.39). The explicit from of Fintra shows the four terms:

Fintra(q, ω) = F−−(q, ω) + F++(q, ω) = −C(i)F θ(−ω + v0q) (5.44)

×
[
− f 0(ε1) + f 0

(
− ε2 −

1

2
k0}v0

)
+ f 0(ε2)− f 0

(
− ε1 −

1

2
k0}v0

)

− f 0
(
ε1 +

1

2
k0}v0

)
+ f 0(−ε2) + f 0

(
ε2 +

1

2
k0}v0

)
− f 0(−ε1)

]
,

where ε1 and ε2 are defined in eq.(5.26) and eq.(5.27), respectively. So by using
the same arguments as for the case of a constant potential (p.78) we can conclude,
that R21 ∝ T for T ¿ TF in the case of drag between two armchair nanotubes.
This is the same conclusion as found in [40] for a single quadratic band in 1D
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zero to 350K for different εF. We see that the slope around room temperature can change from
positive to negative as a function of the Fermi level εF, i.e. a gate voltage.

and in the two simple models in chapter 4 for the completely screened potential.
So by measuring the transresistance of a double wall armchair nanotube as a
function of temperature (for low temperatures) we can not see any difference in
the power law R21 ∝ T between the simple free particle dispersion relation and
the tight binding band structure (with linearized bands). The reason is, that
in both models the drag stems from a large momentum transfer backscattering
process: q = 2kF for the quadratic (screened) model (or the ε ∝ |k| model) and

q = k0 ± 2ε
F

}v0
for armchair tubes.

For temperatures above ∼ 0.4TF we see two different behaviors: For εF .

0.06eV (TF ∼ 700K) the transresistance falls of after the linear piece in contrast
to the temperature dependence for εF & 0.06eV, where it increases beyond the
linear power law after the linear piece. We see that the increase (decrease) is
more pronounced the larger (smaller) the Fermi level εF is. The crossover is seen
on figure 5.8 to be smooth. Note however that the temperature is very large
for e.g. TF = 1740K (figure 5.6(middle)) in the regime of increase beyond the
linear power law. The transresistance as a function of temperature T from zero
to 350K is seen on figure 5.9, where we observe that the slope of R21 around room
temperature can change sign by varying εF.

For low Fermi levels we are close to the particle-hole symmetry, where R21 is
zero. Then the temperature is raised the Fermi level will be smeared out, which
brings the system closer to the particle-hole symmetry again, which in turn makes
the transresistance drop.

The transresistance as a function of gate voltage

In figure 5.10(left) we have the transresistance as a function of the Fermi level
for two different temperatures: T = 300K and T = 150K. The Fermi level is in

101



0 0.1 0.2 0.3
0

0.2

0.4

0.6

0.8

1x 10
−3

0 0.1 0.2 0.3
0

0.05

0.1

0.15

0.2

εF/[eV]
εF/[eV]

R21

L

R21

ε2

F
LT = 300K

T = 150K

Figure 5.10: (Left): The transresistance per length R21
L

(in Ω/µm) as a function of the Fermi
level εF (in eV) (e.g. a gate voltage) for T = 150K (dotted) and T = 300K (full line). (Right):
The transresistance per length over the Fermi energy squared R21

(ε
F
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trough the particle-hole symmetry at εF = 0.

the interval |εF| < 0.3eV, which is realistic by changing a gate voltage or from
doping (see p.27). We note that R21 goes to zero as it should for εF = 0.

The transresistance is symmetric around εF = 0 due to the particle-hole
symmetry, which will introduce a dip as a function of the gate voltage at εF = 0.
This prediction only depends on the particle-hole symmetry and not on the details
of the model. Since all nanotubes have particle-hole symmetry this is a feature
to be found in any drag experiment for a multiwall carbon nanotube. The dip
might be somewhat destroyed if the tunnelling between the tubes is to large.

In figure 5.11 there is a logarithmic plot of R21

L
and in figure 5.10(right) we have

R21

L(ε
F
)2

as a function of εF. These show that R21 ∝ ε2F in to separate intervals:

For very small Fermi levels εF . 10−2eV and for larger Fermi energies above
εF ∼ 0.15eV. In between we have an increase slower that a square power law.
The screened interaction is independent of εF and the εF dependence in the
density n cancels with the εF dependence in the transport mobility µTr, so we
only have a εF dependence in the Fintra function left in the transresistivity formula
eq.(5.43). Therefore we can justify R21 ∝ ε2F for εF . 10−2eV by expanding the
Fintra function to first order in εF. The explicit form of Fintra in eq.(5.44) can be
divided into four terms, each consisting of two terms with arguments of opposite
signs. One of the terms is (including the chemical potential (µ ' εF) in the
argument):

f 0(ε2−εF)+f
0(−ε2−εF) = f 0(ε2−εF)+1−f 0(ε2+εF) ' 1−2εF

∂f 0

∂ε

∣∣∣
ε
F
=0
, (5.45)

where we have expanded to first order in εF and used f 0(−ε2−εF) =1− f 0(ε2 + εF).
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Adding the four terms in Fintra the constants cancels out and we have (Fintra)
2 ∝

ε2F, which gives R21 ∝ ε2F for low Fermi energies.

5.3.6 Coulomb drag in armchair-like nanotubes

For armchair-like tubes (excluding the armchair tubes) we have no parity selection
rule and in general |T1| 6= |T2|, so the F (i) functions are periodic in q over different

periods 2π
|Ti| and in particular the k

(i)
0 = 2π

3|Ti| is different for the two subsystems.
So without the parity selection rule the sum over the bands give:

∑

Π1Π2Π
′
1Π
′
2

F
(2)

Π1Π
′
1
F
(2)

Π2Π
′
2
=

(∑

Π1Π
′
1

F
(1)

Π1Π
′
1

)(∑

Π2Π
′
2

F
(2)

Π2Π
′
2

)

= F
(1)
++F

(2)
++ + F

(1)
++F

(2)
−− + F

(1)
−−F

(2)
++ + F

(1)
−−F

(2)
−−+

F
(1)
++F

(2)
+− + F

(1)
++F

(2)
−+ + F

(1)
−−F

(2)
+− + F

(1)
−−F

(2)
−++

F
(1)
+−F

(2)
++ + F

(1)
+−F

(2)
−− + F

(1)
−+F

(2)
++ + F

(1)
−+F

(2)
−−+

F
(1)
+−F

(2)
+− + F

(1)
+−F

(2)
−+ + F

(1)
−+F

(2)
+− + F

(1)
−+F

(2)
−+, (5.46)

where the first four terms have no suppressing g factor (zeroth order in s0), the
next eight terms have |g|2 ∼ (s0aq)

2 and the last four terms have |g|4 ∼ (s0aq)
4.

Note that it was the terms of order s20, which was forbidden by parity in (real)
armchair tubes. So if we neglect higher order in s0 we have:

∑

Π1Π2Π
′
1Π
′
2

F
(2)

Π1Π
′
1
F
(2)

Π2Π
′
2
' F

(1)
++F

(2)
++ + F

(1)
−−F

(2)
−− + F

(1)
++F

(2)
−− + F

(1)
−−F

(2)
++ +O(s20),

which is Fintra in the case of |T1| = |T2|. If on the other hand |T1| 6= |T2| we will

have k
(1)
0 6= k

(2)
0 , so the F

(1)
++F

(2)
−− and F

(1)
−−F

(2)
++ are not the same. The product of

the F (i) functions are suppressed for the different positions of the k
(i)
0 , since this

makes the F (i) functions nonzero in different areas (see figure 5.2). Physically
we can see that the drag must be strongly suppressed compared to drag between
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two (real) armchair tubes, since the intra band backscattering processes around

the Fermi level in each subsystem has a momentum transfer ±
(
k
(i)
0 ±

2ε
F

}v0

)
, which

is different in the two subsystems, so we can not conserve momentum with one
of these backscattering processes in each subsystem for |T1| 6= |T2|. Therefore

the transresistivity will have a peak around one as a function of |T1|
|T2| . This is

analogue to the situation of different densities for two coupled two dimensional
electrons gasses considered in [52].

5.4 Comments on Coulomb drag in other types of

nanotubes

In this section, we comment on the possibility of Coulomb drag between other
types of nanotubes than armchair tubes.

Experimentally we could have one or several tubes in between the drive and
drag system in the Coulomb drag setup. The role of one of these tubes depends
on, if it is semiconducting or metallic. A metallic tube could screen out the
interaction between the electrons in the drive and drag systems and thereby
destroy the effect. A semiconducting tube would probably not have a large effect.

Coulomb drag in zigzag-like nanotubes

For the zigzag-like tubes we can calculate the single subsystem properties and the
Fξm,ξ′m′ functions in the same way as for the armchair-like tubes from the linear
bands in eq.(5.2).

The Fξm,−ξm′ function will have a form similar to the FΠ,−Π function found in
figure 5.3, but the g factor will depend on the value of the crystal angular momen-
tum transfer ∆m (see section 2.3.1). This F function reflects the backscattering

ξ → −ξ with a wave vector transfer of q ' 2ε
F

}v0
, which both can have ∆m = 0 and

∆m 6= 0 for which the g factors are: |g(∆m = 0)|2 ∝ (s0aq)
2 and g(∆m 6= 0) ∼ 1

(see figure 2.8). So we have two backscattering processes with q ' 2ε
F

}v0
:

• The ∆m = 0 process strongly suppressed by the g factor |g(∆m = 0)|2 ∝
(s0aq)

2.

• The ∆m 6= 0 process with g ∼ 1, but with a suppression in the interaction
V12(r

c
1, r

c
2, q,∆m), which is smaller the larger the ∆m.

The suppression of ∆m 6= 0 from V12(r
c
1, r

c
2, q,∆m) is not as strong as the one

for ∆m = 0 from the g factor. However for the ∆m 6= 0 backscattering process
we have to conserve the crystal angular momentum, which is not in general
possible for two different zigzag-like tubes, but only in special cases. When
using the crystal angular momentum conservation we have to remember to take
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incommensurability and commensurability into account (see appendix C and the
crystal angular momentum conservation law for commensurable tubes eq.(C.9)).

Consider e.g. the drag between to real metallic zigzag tubes: a (n, 0) in a
(n′, 0) tube, which are commensurable. Here we have ∆m = ±n

3
and ∆m = ±n′

3

between the bands in the two tubes, respectively (see eq.(2.76)). Since the two
tubes have different radii we have n 6= n′, so the crystal angular momentum can
not be conserved directly (i.e. only in Umklapp processes6). So for two (real)
metallic zigzag tubes the ∆m 6= 0 process is forbidden by crystal angular momen-
tum conservation and the ∆m = 0 process is suppressed by the g factor. There
are, however, other examples where one can have crystal angular momentum con-
servation, so the q =

2ε
F

}v0
and ∆m 6= 0 backscattering process can be important

in these cases. Such an example is a (12, 15) tube in a (15, 18) tube, which are
commensurable (in the angular direction) and the crystal momentum exchange
is |∆m| = 1. Note furthermore that this process is not suppressed if |T1| 6= |T2|,
since q =

2ε
F

}v0
in independent of |Ti|.

The other type of F function is Fξm,ξm′ , which will have finite area (near

ω = 0) around q = π
|Ti| −

2ε
F

}v0
(for q ∈ [0, π

|Ti| ]). This backscattering process

will generally be suppressed by the large wave vector transfer q = π
|Ti| −

2ε
F

}v0
in

the Fourier transformed interaction and again we can have both ∆m = 0 and
∆m 6= 0 processes. However in this case we have ξ = ξ ′ so for both ∆m = 0 and
∆m 6= 0 we have g ∼ 1 as can be seen from eq.(2.68)7. These large momentum
transfer backscattering processes could become important, if a crystal angular
momentum transfer is not possible as in the case of two (real) metallic zigzag

nanotubes. Note that for the q = π
|Ti| −

2ε
F

}v0
process it is important (as for the

armchair-like tubes) to have |T1| = |T2| in order to have a possible momentum
conservation around the Fermi level. So again we would observe a peak for R21
around one as a function of |T1|

|T2| .

If we are in a situation, where both the q =
2ε

F

}v0
processes are absent, then we

should consider making a model without linearized bands in order not to neglect
the small momentum forward scattering process q ∼ 0, which might become
important. This could be done by using the cosine and sine bands found in the
tight binding model for armchair and zigzag tubes, respectively. These processes
are again possible for both ∆m = 0 and ∆m 6= 0 (both have g ∼ 1), since we have
degenerate bands separated by different m in the zigzag-like case. The ∆m = 0
forward scattering process will dominate of the two forward scattering processes.

Coulomb drag between an armchair-like and a zigzag-like tube

We have so far considered drag between two armchair-like tubes and two zigzag-
like tubes, but what if we have a zigzag-like and an armchair-like tube?

6These are however strongly suppressed by the interaction.
7Remember that ς = ς ′ gives ∆m = 0 and ς = −ς ′ gives ∆m 6= 0.

105



First of all we can have no angular momentum transfer in the armchair-like
tube for scattering in the bands near the Fermi level and therefore the ∆m 6= 0
process in the zigzag-like tube is excluded by angular momentum conservation.
Therefore all the q =

2ε
F

}ω
processes are suppressed. The other backscattering

processes around the Fermi level with transferred wave vector q = k
(i)
0 ±

2ε
F

}ω

(armchair-like) and q = π
|Ti| −

2ε
F

}ω
(zigzag-like) are suppressed, because they are

not in general of compatible magnitude — only in rare cases. So in the linearized
models it is not likely to find any Coulomb drag between a zigzag-like and an
armchair-like tube. If we include the small q ∼ 0 forward scattering processes
by using nonlinear bands, we could obtain the possibility of some Coulomb drag,
but the phase space (i.e. the F functions) are small around the q ∼ 0 in such
models, since the bands near εF = 0 are to a very good approximation linear.

Coulomb drag in semiconducting nanotubes

If we shift the Fermi level into the conduction (or valence) band of a semicon-
ducting tube, it becomes conducting. In such a situation the drag processes are
within a single band (i.e. ∆m = 0) similar to a quadratic band for small tubes,
where there are few bands with large separation. Here both the small q forward
scattering and the large q backscattering processes will contribute to the drag.
We can calculate the g factors in the same way as for the metallic tubes and for
intra band scattering it is close to one. However, the magnitude of the backscat-
tering momentum transfer around the Fermi level has to be approximately the
same in the two tubes in order to have momentum conservation. If we deal with
larger tubes more bands can come into play and thereby more scattering possi-
bilities appear than captured in the single band quadratic model (see [108] for
a discussion on scattering in larger multiwall nanotubes). This is also the case
of larger metallic tubes. Coulomb drag in the quadratic model with more bands
(with different angular momentum along the tube) for tubes of semiconducting
material were considered in [110].

Coulomb drag between a semiconduction and a metallic tube

Coulomb drag between a semiconducting and a metallic tube is also a possibil-
ity and leads to many different scenarios. Again the wave vector transfer for
backscattering processes near the Fermi surface have to be of the same order to
have any significant effect. A crystal angular momentum exchange can take place,
but it depends on the tubes involved. A small semiconducting tube only has the
∆m = 0 process, so this also as to be fulfilled in the metallic tube. However the
suppressing g factor of order s0 can only be to second order in this setup.
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5.5 Conclusion and extensions of the model

We have considered the Coulomb drag in a multiwall carbon nanotube with em-
phasis on the drag between armchair tubes. We classified all metallic nanotubes
in two types: The armchair-like and zigzag-like tubes and modelled them by lin-
ear bands crossing the Fermi level εF = 0 at k = ± 2π

3|Ti| and k = 0, respectively.
By using linear bands we neglected the small q forward scattering processes a
priori in the models. The screened interaction were used in a simple quasi 1D
random phase approximation.

We found the F function for the armchair-like tubes and on the basis of
the strongly suppressing g factors we excluded the small wave vector inter band
backscattering processes. Therefore the main process (at low temperature com-
pared to TF) in the Coulomb drag in armchair-like tubes are the backscattering

processes with q ' k0 ± 2ε
F

}v0
and ∆m = 0 (see figure 5.4). This led to a linear

dependence of the transresistance R21 as a function of temperature. The order of
magnitude of the transresistance per length is mΩ/µm. The same temperature
dependence is found for the (screened) quadratic model (and the ε ∝ |k| model).
The similarity is found because the main process in both models is the large q
backscattering process, i.e. the details of the band structure do not have any
effect on the temperature dependence of R21.

In contrast to this, the Fermi level dependence of R21 is strongly dependent
on the band structure. In particular the particle-hole symmetry introduces a dip
at εF = 0, which can be found experimentally by varying a gate voltage. This dip
should exist for all tubes, since all tubes have particle-hole symmetry. However
if the tunnelling between the tubes are too large this dip might not be seen. For
armchair tubes we found R21 ∝ ε2F for εF . 10−2 and above εF = 0.15eV. For

armchair-like tubes we expect a suppression of the drag away from |T1|
|T2| = 1, since

the scattering around the Fermi level will have different wave vector transfers in
the two tubes.

Coulomb drag between zigzag-like metallic tubes were found to depend crit-
ically on the crystal angular momentum selection rule: In some tubes crystal
angular momentum conservation could only be fulfilled for ∆m = 0 (with a sup-
pressing g ∼ s0aq factor), where as for others we could have ∆m 6= 0 leading to
a larger transresistivity.

Note that the coaxial geometry only entered in the calculation of the Coulomb
interaction and in the parity selection rule. Therefore most of the considerations
can also be used in the case of Coulomb drag between parallel nanotubes.

Possible extension of the model

We have found a benchmark result on the basis of Fermi liquid theory. An
interesting extension (or rather a different project) could be to make a theory for
Coulomb drag in a multiwall nanotube using Luttinger liquid theory approach, to
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investigate whether electrons in multiwall nanotubes behave as Fermi or Luttinger
liquids.

Within the present model we could do a more detailed calculation of drag in
other kinds of tubes that armchair, to see if our expectations are correct. Further-
more, a model with nonlinear bands could be used to find the quantitative error
introduced neglecting the small momentum transfer forward scattering process.
The model of the screening of the Coulomb interaction could also be refined and
one could consider the role of phonon mediated drag, which were found to be
important in the case of two dimensional systems (see section 1.5). Furthermore,
carbon nanotubes are often observed to be in the ballistic regime and therefore
one could also consider the Coulomb drag between ballistic tubes including the
band structure. This could be consider e.g. by removing the impurity scatter-
ing terms in the coupled Boltzmann equations or within the Landauer-Büttiker
picture.

Another extension could be to include tunnelling between tubes in the model.
A transresistance formula including this contribution could be found by placing
some tunnelling centers in the tube (e.g. at the impurities or at dislocations) and
then performing an average over these centers in the same way as one can make
impurity average Greens functions, see [18, chap.10]. These Greens functions
could then be included in a Kubo formula derivation of ρ21. Note that in the
experiment, the tunnelling effect and the drag effect will give different signs of
the transresistivity.

Furthermore, our calculation of ρ21 could be used directly to evaluate the
electronic part of the mechanical friction between two carbon nanotubes in a
GHz oscillation, where an inner tube is mechanically oscillating in and out of
an outer tube (with GHz frequency). The contribution from the Van der Waals
forces are found in [127] (see also the experiment in [31]).
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Summery

In this thesis, we have considered the idea of Coulomb drag between concentric
nanotubes in a multiwall carbon nanotube with an emphasis on drag between
metallic nanotubes. To study the Coulomb drag we calculated the transresistivity
ρ21.

The electrons in the nanotubes are described by single particle Bloch states.
The two atomic unit cell of graphene gave rise to a two component tight binding
state, which in turn gave four crossings of the Fermi level εF as a function of the
one dimensional wave vector k in all metallic tubes. By using the slow variation
of the Coulomb interaction between electrons in different tubes, we calculated
the Coulomb matrix element between tight binding Bloch states. The result was
a sum over the Fourier transformed interaction times a so-called g factor for each
tube. These g factors are roughly the dot product of the two components in the
Bloch states and the g factors were found to suppress some of the backscattering
processes substantially. Furthermore, the Bloch states can be labelled by the
crystal angular momentum m (stemming from the discrete rotational symmetry)
and we have classified the metallic tubes to be either armchair-like with bands
crossing εF = 0 at k = ± 2π

3|T| or zigzag-like with doubly degenerate bands crossing

the Fermi level (εF = 0) at k = 0.
We have used two coupled diffusive Boltzmann equations to derive a formula

for the transresistivity ρ21, i.e. a semiclassical transport theory. This calcula-
tion was performed in the regime of linear response to the external electric field
and furthermore, the g factors from the Coulomb matrix element were included.
Therefore we provide a benchmark result for Coulomb drag in multiwall nan-
otubes within the Fermi liquid theory, which could be compared to a similar
theory within the Luttinger liquid picture. The comparison to the experimental
results would then gain inside to the question, if multiwall carbon nanotubes are
Luttinger liquids or Fermi liquids.

Furthermore, we considered the Coulomb drag in one dimension for two sim-
ple dispersion relations: ε ∝ k2 and ε ∝ |k| (k ∈ R). This gave some inside
into the phenomenon of Coulomb drag and to which scattering processes are
responsible for the effect. Here we found, that the small momentum transfer
was neglected by using a (piecewise) linear dispersion relation, which was clear
from the explicit form of the F functions in the drag formula for one dimension.
However, for a screened interaction, we found a linear temperature dependence
(for low temperatures) in both models stemming from the backscattering process
with momentum transfer of order 2kF. This understanding were used to analyze
the drag in multiwall tubes.

To model the Coulomb drag between metallic nanotubes we linearized the
bands around εF = 0 in order to preserve the particle-hole symmetry present for
all nanotubes. This linearization neglected the small momentum transfer forward
scattering processes and made it possible to use the g factors found earlier for
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backscattering processes in all metallic tubes directly. Numerical results of the
transresistance per length as a function of temperature and Fermi level (e.g. a
gate voltage) were presented for the Coulomb drag between two armchair tubes:
A (5, 5) in a (10, 10) tube. Here we found a linear temperature dependence for
low temperatures (compared to the the Fermi temperature).

For all the armchair-like nanotubes we only have scattering around the Fermi
level without crystal angular momentum exchange. Furthermore, the inter band
backscattering processes (with small wave vector transfer q ' 2ε

F

}v0
) were found to

be strongly suppressed by a factor of order 10−8 in the Coulomb drag. Therefore
the important scattering process in the Coulomb drag between armchair tubes
were found to be the intra band backscattering process with wave vector transfer
q ' 2π

3|Ti| ±
2ε

F

}v0
. For the (5, 5) tube in the (10, 10) tube the order of magnitude of

the transresistance per length were found to be mΩ/µm. For other armchair-like
tubes we expect the magnitude to become smaller as we move away from the
|T1|
|T2| = 1 case, since momentum conservation becomes harder to fulfill near the

Fermi level for the q ' 2π
3|Ti| ±

2ε
F

}v0
scattering.

For Coulomb drag between zigzag-like tubes the scattering with no crystal
angular momentum exchange is again suppressed by the g factor. This is in
contrast to backscattering with finite angular momentum exchange, which have
g ∼ 1. However, we have to conserve the crystal angular momentum in the
scattering process, which is not possible for e.g. two (real) zigzag tubes, but
possible for other zigzag-like tubes. Therefore the Coulomb drag between zigzag-
like tubes depends critically on the possibility of scattering between bands with
different crystal angular momentum.

The particle-hole symmetry present for all nanotubes will create a dip in ρ21 as
a function of εF around εF = 0, which could be found experimentally by varying a
gate voltage. In the numerical calculation, we found the transresistance to begin
quadratic in εF for very small εF, then a less increase is found in a small interval,
after which ρ21 again appeared quadratic.

In an actual experiment, we can have many different scenarios, and I am
looking forward to seeing the experimental curves appearing.
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Appendix A
Band structure of a cylinder in the free electron model

To gain some insight into the application of periodic boundary conditions we
consider a free two dimensional electron gas (2DEG) folded into a cylinder.

The dispersion relation for the 2DEG of size A = Lx × Ly is

εk =
}2

2m∗ (k
2
x + k2y), (A.1)

where m∗ is some effective mass and ki =
2π
Li
mi is the wave vector (mi ∈ Z and

i = x, y). In the free electron model we conventionally have periodic boundary
conditions [1, chap.2], since Li are assumed large. The large Li makes ki (almost)
continuous. The single electron (non-normalized) wave function in a 2DEG is a
plane wave eikxx+ikyy.

When one of the dimensions becomes smaller, say Ly, one normally consider
it to be a particle in a box in that direction [109, chap.4], but if we wrap the plan
to a tube it is physically reasonable to maintain the periodic boundary condition.
Then Ly is small the spacing 2π

Ly
between the possible ky becomes large and if ky

is written in terms of the radius of the cylinder r = Ly
2π

we have ky = 2π
Ly
my = my

r
.

This splits the two dimensional band structure up into one dimensional subbands
labelled by my ≡ m:

εk,m =
}2

2m∗

(
k2 +

(m
r

)2)
, (A.2)

where k ≡ kx is still (almost) continuous, i.e. εk,m are parabolas as a function of

k with minimum at }
2m2

2m∗r2 determined by m. The emergence of one dimensional
subbands from a two dimensional band structure can be seen as a cutting of the
two dimensional (almost continuous) k space into lines. The same picture is used
for nanotubes in figure 2.3. The wave function becomes eikx+imθ, where θ = y

r

is the angle in cylindrical coordinates. This is an eigenfunction for the angular
momentum operator along the tube L̂x = −i} ∂

∂θ
with eigenvalue }m, which is

clear since the tube has continuous rotation symmetry. So the states and energies
are labelled by angular and linear momentum quantum numbers m and k. The
same band structure would have been obtained by making any other direction
small (also combinations of x and y) by a rotation of the coordinate system. Note
that the same energies and states can be obtained directly from the Schrödinger
equation for a cylinder disregarding the radial direction.

Coulomb drag in such a model has been investigated in [110].
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Appendix B
Tight-binding chain with different unit cells

In this appendix we describe a one dimensional atomic chain with equal spacing
a between equivalent atoms with a single (usable) atomic orbital in the tight-
binding approximation. We want to consider the difference between the descrip-
tion of the band structure for the chain with the smallest possible unit cell (i.e.
the primitive unit cell) with one atom and a larger unit cell with two atoms. In
principle the same difference arises when describing the nanotubes band structure
in terms of the translational unit cell and the helical unit cell.

The one atomic unit cell

For the primitive unit cell with one atom a general lattice vector is R = na, where
n ∈ Z. The Wannier decomposition of the energy eigenstate is:

ψk(x) =
1√
N

∑

n∈Z

eikanΨ(x− na), (B.1)

where Ψ(x) are Wannier functions approximated by the atomic orbital and N
the number of atoms in the chain (N À 1). The wave vector k is found from the
periodic boundary condition ψk(x) = ψk(x + Na) = eikNaψk(x) to be k = 2πm

Na
,

where the integer m is restricted so that −π < ka ≤ π. The eigenstate eq.(B.1)
is a solution to the Schrödinger equation Hψk(x) = εkψk(x) and the eigen energy
in the nearest neighbour approximation is therefore found to be

εk =
〈ψk|H|ψk〉
〈ψk|ψk〉

=
ε0 − γ02 cos(ka)
1 + s02 cos(ka)

' −2γ0 cos(ka) for − π
a
< k ≤ π

a
, (B.2)

where γ0 > 0 is the magnitude of the hopping matrix element 〈Ψ(x−na)|H|Ψ(x−
(n±1)a)〉, ε0 the energy of the atomic orbital (chosen to be zero) and the overlap
s0 between neighboring orbitals were neglected (s0 ' 0).

The reciprocal lattice is spanned by b = 2π
a

by the definition ab = 2π and we
see that the explicit form of the energy eq.(B.2) is periodic with 2π

a
and the explicit

form of the Bloch function eq.(B.1) fulfills the Bloch theorem ψk+G(x) = ψk(x)
for any G = nb for n ∈ Z.

The two atomic unit cell

Consider the same chain with two atoms in the unit cell, so the lattice vectors are
of the form R = nã, where ã ≡ 2a. The Wannier decomposition for two atoms
in the unit cell is therefore:

ϕk(x) =
1√
Nu

∑

n∈Z

eikãn
(
αΨ(x− nã) + βΨ(x− nã− a)

)
, (B.3)
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Figure B.1: (Left): The single tight-binding band found be using the primitive unit cell with
one atom. Here the FBZ is ] − π

a
, π
a
]. (Center): The zone folding procedure, where the single

band from the primitive unit cell is pushed into the smaller FBZ of the two atomic unit cell to
obtain two bands. (Right): The two bands from the two atomic unit cell in the smaller FBZ
]− π

2a ,
π
2a ].

where Nu = N
2

is the number of unit cells and the k dependent parameters α
and β are determent from the Schrödinger equation in the same way as in section
2.2.1 for graphene, i.e. be diagonalizing the 2× 2 Hamiltonian matrix. The two
eigenstates are8: (

α
β

)

∓
=

1√
2

(
±e−ika

1

)
, (B.4)

i.e.

ϕ±k (x) =
1√
N

∑

n∈Z

eikãn
(
∓ e−ikaΨ(x− nã) + Ψ(x− nã− a)

)
, (B.5)

and the two eigen energies are

ε±k = ±2γ0 cos
(
kã

2

)
where − π

ã
< k ≤ π

ã
. (B.6)

The reciprocal lattice is spanned by b̃ = 2π
ã

by the definition ãb̃ = 2π, i.e. half
the length of the reciprocal lattice vector from the one atomic (primitive) unit
cell. By using the explicit expressions for the energy eq.(B.6) and the Bloch
wavefunction eq.(B.3) it seems like that a shift of k by b̃ = 2π

ã
do not leave these

invariant. This is because we need to repeat the energy and the Bloch wave from
the interval −π < kã ≤ π to the other intervals of length 2π

ã
to make them into

periodic functions by hand9.

Comparison of the two different unit cells

The physics of the atomic chain should of course not depend on which unit cell is
used. We therefore show now, that the states and energy band for the primitive

8Then diagonalizing the 2 × 2 matrix a factor of sign(cos(ka)) appears in α, which is one
since −π < kã ≤ π.

9Note that the velocity (i.e. the derivative of the energy) is discontinuous at the zone
boundary.
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unit cell can be pushed from the FBZ ]− π
a
, π
a
] into the smaller FBZ ]− π

2a
, π
2a
] of

the two atomic unit cell to give the same states and energies as found by using a
two atomic unit cell from the beginning. This is seen on figure B.1.

We begin by rewriting ψk(x) into ϕk(x). The sum over n in eq.(B.1) is split
into two sums by writing R = na = nã + ja, where n ∈ Z and j ∈ {0, 1}, so we
get:

ψk(x) =
1√
N

∑

n∈Z

eikanΨ(x− na)

=
1√
N

∑

n∈Z

eikãn
(
Ψ(x− nã) + eikaΨ(x− nã− a)

)
, (B.7)

which is the eigenstate ϕ−k (x) eq.(B.5) (up to a complex phase factor) for the ε−k
band in figure B.1. To obtain the upper band (ε+k ) we move the single cos(ka)
band into the smaller FBZ by the substitutions k → k ± π

ã
for the part outside

] − π
2a
, π
2a
] as seen in the figure. This substitution in the wave function eq.(B.7)

produces ϕ+k (x) in eq.(B.5) (up to a complex phase factor).
We have thereby seen that the two ways of choosing the unit cell are equiva-

lent. This is a general statement even though we have only shown it explicitly in
this very simple case.
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Appendix C
Commensurability and incommensurability effects in the

Coulomb interaction between the tubes

In this appendix, we will shortly consider the difference between commensurable
and incommensurable tubes in a double wall nanotube, which inters in the cal-
culation of the Coulomb matrix element eq.(2.81), therefore we consider

1

n1L1n2L2

∑

l1,l2

n1−1∑

p1=0

n2−1∑

p2=0

V12(|Rl1p1−Rl2p2 |)ei(κ2−κ′2)l2+i(κ1−κ′1)l1+i 2π
n2
(m2−m′2)p2+i 2π

n1
(m1−m′1)p1 ,

(C.1)
where the li sum is from −Li/2 to Li/2, (i = 1, 2).

The Coulomb interaction V12(|Rl1p1 − Rl2p2|) is in general a function of the
difference between the coordinates of the electrons, which makes it possible to
Fourier transform as if Rl1p1 −Rl2p2 is one coordinate to obtain a nice result in
terms of the Fourier transform as for the graphene layers eq.(2.79). The same
rewriting can not by used to simplify eq.(C.1), because it is not a priori clear if
the Coulomb interaction is a function of l1 − l2 and p1 − p2, since

Rl1p1 −Rl2p2 = l1H1 + p1Cn1 − l2H2 − p2Cn2 (C.2)

is not a priori a function of l1− l2 and p1− p2. It is here the commensurability or
incommensurability of the two tubes inters, i.e. if the two tubes as a combined
system proposes a periodic lattice or not.

The definition of commensurability for two tubes is: Tube 1 and 2 are com-
mensurable if and only if there exist two rational numbers cH , cC ∈ Q such that

H1 = cHH2 and Cn1 = cCCn2 . (C.3)

If this is not true the tubes are incommensurable. Note that Hi and Cni
(i = 1, 2)

found from eq.(2.6) and eq.(2.7) are not calculated in the same coordinate system
in the sense that a1 and a2 are in different directions for the two tubes due to
the conformal mapping (wrapping) on the tube. Therefore one has to find H1,
H2, Cn1 and Cn2 in the same coordinate system to determine if two tubes are
commensurable or not from definition (C.3).

We now rewrite eq.(C.1) for the case of commensurable and incommensurable
nanotubes by inserting Fourier transforms in the helical coordinates.

Commensurable nanotubes

Assuming that the tubes are commensurable we have

Rl1p1 −Rl2p2 = (cH l1 − l2)H2 + (cCp1 − p2)Cn2 , (C.4)
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so we can Fourier transform as

V12(|Rl1p1 −Rl2p2|) =
1

n2L2

∑

κ̃2

n2−1∑

m̃2=0

V12(κ̃2, m̃2)e
iκ̃2(cH l1−l2)+i 2π

n2
m̃2(cCp1−p2), (C.5)

where the κ̃2 sum is over κ̃2 =
2π
L2
q, q ∈ Z and the Fourier transform is

V12(κ̃2, m̃2) =

L2/2∑

l2=−L2/2

n2−1∑

p2=0

V12(|Rl2p2|)e−iκ̃2l2−i 2π
n2

m̃2p2 . (C.6)

So by inserting eq.(C.5) into eq.(C.1) we get:

1

n1L1n2L2

∑

l1,l2

n1−1∑

p1=0

n2−1∑

p2=0

V12(|Rl1p1 −Rl2p2|)ei(κ2−κ′2)l2+i(κ1−κ′1)l1+i 2π
n2
(m2−m′2)p2+i 2π

n1
(m1−m′1)p1

=
1

n1L1n
2
2L

2
2

∑

κ̃2,m̃2

V12(κ̃2, m̃2)
∑

l1

ei(cH κ̃2+κ1−κ′1)l1
∑

l2

ei(−κ̃2+κ2−κ′2)l2

×
n1−1∑

p1=0

e
i 2π

n1
(
cC m̃2n1

n2
+m1−m′1)p1

n2−1∑

p2=0

e
i 2π

n2
(−m̃2+m2−m′2)p2

=
1

n2L2

∑

u1,ũ1,u2,ũ2∈Z

V12(κ2 − κ′2 + 2πu2,m2 −m
′
2 + n2ũ2)

× δκ′1+cHκ′2,κ1+cHκ2+2π(cHu2−u1)δm′1+cCm′2n1,m1+cCm2n1+n1n2(cC ũ2−ũ1), (C.7)

where we used
∑

li
eiκili =

∑
ui∈Z

δκi,2πui and
∑

pi
e
i
2πmi

ni
pi =

∑
ũi∈Z

δmi,niũi in the
last equality. So we see that the κ quantum number stemming from the helical
symmetry and the crystal angular momentum m are conserved as

κ′1 + cHκ
′
2 = κ1 + cHκ2 + 2π(cHu2 − u1), (C.8)

m
′
1 + cCm

′
2n1 = m1 + cCm2n1 + n1n2(cC ũ2 − ũ1) (C.9)

in the Coulomb interaction between Bloch states in the to commensurable tubes,
where ui 6= 0 and/or ũi 6= 0 are the Umklapp process. The analogue to the
normal crystal momentum conservation in eq.(2.79) is clear.

Incommensurable nanotubes

For incommensurable nanotubes we have to Fourier transform each coordinate
as:

V12(|Rl1p1 −Rl2p2 |) = V12(Rl1p1 ,Rl2p2)

=
1

n1L1n2L2

∑

κ̃1,κ̃2

∑

m̃1,m̃2

V12(κ̃1, m̃1, κ̃2, m̃2)e
iκ̃1l1+iκ̃2l2+i 2π

n1
m̃1p1+i 2π

n2
m̃2p2 , (C.10)
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which is inserted into eq.(C.1) to give:

1

n1L1n2L2

∑

u1,ũ1,u2,ũ2∈Z

V12(κ1−κ′1+2πu1,m1−m
′
1+n1ũ1, κ2−κ′2+2πu2,m2−m

′
2+n2ũ2),

where there is no conservation laws a priori. If we assume commensurability at
this point, this Fourier transform simplifies to eq.(C.7).

It is also possible to have two nanotubes, where one but not the other of the
commensurability conditions (C.3) are fulfilled. In such a case we can find one of
the conservation laws by Fourier transforming.

Note that we could also have introduced the commensurability using the trans-
lational unit cell, i.e. ∃ cT ∈ Q so T1 = cTT2.
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Figure D.1: The integrand of ρ21 for the quadratic εk ∝ k2 model with a constant potential
W12(q) from chapter 4. (Left): A contour plot of the integrand. (Right): The grid used in the
numerical integration. Here T

TF

= 0.2 is used.

Appendix D
Details on the numerical integration technique

In this appendix, we will shortly describe some details on the numerical inte-
gration used to find ρ21 for a specific temperature T , Fermi energy εF and so
on.

The integral to find ρ21 is a double integral of q and ω over a square domain,
which in the numerical calculation of course always is finite. So even if we in
principle have to integrate to infinity we cut of the upper limit(s) of the integral(s).
The upper limit in the numerical integration is chosen, so the value of the integral
does not change (significantly), when the limit is raised.

The lower limits of the integrals are always zero, so the boundary of the
integration domain is the set {(q, ω) ∈ R2|q = 0 ∨ ω = 0}. On the line ω = 0
we have the problem of sinh2( }ω

2k
B
T
) = 0 and F (q, ω) = 0, where the ratio has a

finite limit value, but a numerical evaluation of the ratio on the line ω = 0 does
not make sense. The integrand on the q = 0 boundary depends on the potential
used: finite for the screened potential (chapter ??) and infinite for the unscreened
potential (chapter 4). Therefore we can never explicitly use the ω = 0 boundary
and sometimes not the q = 0 boundary in the calculation of the integral.

This limits the choice of the numerical integration routine to someone, in
which the boundary is not evaluated explicitly in the integration. Such a method
is not available as a standard routine in the program Matlab and the used
routine can be found in appendix E. The method of the numerical integration is
chosen to be either the midpoint rule or the three point Gauss quadrature rule
(see e.g. [128, chap.4]), which both avoid use of the boundary explicitly.

The integrands of ρ21 are in no way slowly varying due to the Fermi functions,
so one has to be very careful to chose a fine enough grid for the numerical inte-
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gration around the points of fast variation. This is done in the program in the
following way: First the integral is calculated in the square domain given. Then
this domain is divided into four smaller domains and the integral is calculated
on each of these smaller domains. If the sum of the four integrals on the smaller
domains are within a specified tolerance of the calculated integral on the larger
domain, then the calculation ends. If not, each of the smaller domains are divided
again and the same procedure is repeated on each of the smaller domains. An
example of this procedure is seen on figure D.1. In this example we focus on the
integration of ρ21 in the quadratic model from eq.(4.43) with constant potential
for T

TF

= 0.2. The contour plot of the integrant shows that the integration should
be carefully done near the origo and near q = 2kF. Compare to the F function
for the quadratic model on figure 4.2. On the right of figure D.1 we see how fine
a grid is used in the integration. Here each dot represents an calculated domain,
i.e. where the dot-density is large, so is the calculated points. In the specific case
we see the grid to be very find around q = 0 and fine around q = 2kF.
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Appendix E
The code for the numerical integration routine

Comments on the routine

QUAD22(f,x,dx,y,dy) determines the integral of the function f(x, y) over the rect-
angular domain x < x′ < x+ dx and y < y′ < y + dy. If x, dx etc are vectors or
matrices of the same size indicating integration over several rectangular domains
then so is the result.
QUAD22(f,x,dx,y,dy,tol,n) specifies the error tolerance for the integral and the
number of quadrature points n in both dimensions. The midpoint rule is used
when n is an integer whereas a 3 point Gauss quadrature rule is used when n
is the string ’gauss3’. If the tolerance is not met with n points on the domain
[x, d+ dx]× [y, y+ dy] QUAD22 splits the domain into four subdomains and calls
itself on those subdomains.
QUAD22 is vectorized which means that it does not call itself four times (one for
each subdomain) but instead it turns x, dx, y and dy into vectors and calls itself
once for all four subdomains. This avoids a lot of recursive calls so that Matlab

can concentrate on adding numbers. QUAD22(f,x,dx,y,dy,tol,n,p1,p2,p3,...) speci-
fies additional arguments to f(x,y,p1,p2,p3).

Examples on integrations in Matlab:

• f = inline(’sin(x).*sin(y)’,’x’,’y’)
I = quad22(f,0,pi,0,pi,1e-6)
The result should be 4.

• f = inline(’log(z)’,’z’,’dummy’)
I=quad22(f,0,1,0,1,1e-4,4)
The analytical integral of the natural logarithm log(x) is x log(x) − x so
result for definite integral from 0 to 1 should be -1.

• Use of the program to make plots like figure D.1.
f = inline(’log(k)*log(w)’,’w’,’k’,’a’)
[I,x,y] = quad22(f,0,1,0,1,1e-4,[],20);
plot(x,y,’.’,’markersize’,1)

The routine

function[I,X,Y]=quad22(f,x,dx,y,dy,tol,n,varargin)

if exist(’tol’) =1|isempty(tol) tol=1e-4; end
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if exist(’n’) =1|isempty(n) n=’gauss3’; end

% Perform quadrature
[i,I,X,Y]=midquad(f,x,dx,y,dy,n,varargin:);

% Determine which domains meet tolerance
ok=(abs(i-I)<tol);

% Refine those domains where tolerance is not met
if any( ok(:))
x=[x( ok); x( ok)+dx( ok)/2; x( ok); x( ok)+dx( ok)/2];
y=[y( ok); y( ok); y( ok)+dy( ok)/2; y( ok)+dy( ok)/2];
dx=[dx( ok)/2; dx( ok)/2; dx( ok)/2; dx( ok)/2];
dy=[dy( ok)/2; dy( ok)/2; dy( ok)/2; dy( ok)/2];

% draw a dot to indicate that we enter a new recursion level
disp(’.’)

% simple version: don’t pick up any quadrature points
if nargout <= 1
I = sum(I(ok))+sum(quad22(f,x,dx,y,dy,tol,n,varargin:));

% Fancy version: collect all quadrature points used for I
else
[I2,X2,Y2] = quad22(f,x,dx,y,dy,tol,n,varargin:);
I = sum(I(ok)) + sum(I2);
X = X(ok,:);
Y = Y(ok,:);
X = [X(:); X2(:)];
Y = [Y(:); Y2(:)];
end
end

function [I,I2,x2,y2] = midquad(f,x,dx,y,dy,n,varargin)
% MIDQUAD quadrature by the midpoint rule.
% [I,I2] = MIDQUAD(f,x1,x2,y1,y2,n) determines the integral of f(x, y) over
% the domain x1 < x < x2 and y1 < y < y2 using n and 2n quadrature points
% in the midpoint rule. The idea is to estimate the error on I as |I − I2|.
% [I3,I6] = MIDQUAD(f,x1,x2,y1,y2,’gauss3’) employs a 3 vs. 6 point Gauss
% quadrature rule in stead.
% [I,I2,x,y] = MIDQUAD(...) returns also the positions of the quadrature points
% used which it may be instructive to look at.
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% Quadratre points for line integral
if strcmp(n,’gauss3’)

n = 3;
% quadrature point positions in interval [−1, 1]
z=[-0.77459666924148337 0.00000000000000000 0.77459666924148337];
w=[ 0.55555555555555555 0.88888888888888888 0.55555555555555555];
z2=[-0.93246951420315202 -0.66120938646626451 -0.23861918608319690 0.23861918608319690
0.66120938646626451 0.93246951420315202];
w2=[0.17132449237917034 0.36076157304813860 0.46791393457269104 0.46791393457269104
0.36076157304813860 0.17132449237917034];
% we prefer the interval [0,1] so variable changes are made:
z=(z+1)/2;
z2=(z2+1)/2;
w=w/2;
w2=w2/2;

else
% midpoint rule quadrature points and weights in interval [0, 1]
dz = 1/n;
z = dz/2:dz:1;
w = repmat(dz,1,n);
z2 = dz/4:dz/2:1;
w2 = repmat(dz/2,1,2*n);

end

% make quadrature grid for area integral
z=repmat(z,n,1);
w = w’*w;
z2=repmat(z2,2*n,1);
w2 = w2’*w2;

% number of intervals that that we are integrating
N = length(x(:));

% make quadrature points in x, y space
x2=repmat(x(:),1,4*n*n)+repmat(dx(:),1,4*n*n).*repmat(z2(:)’,N,1);
x=repmat(x(:),1,n*n)+repmat(dx(:),1,n*n).*repmat(z(:)’,N,1);

% traverse quadrature grid the other way for y:
z=z’;
z2 = z2’;
y2=repmat(y(:),1,4*n*n)+repmat(dy(:),1,4*n*n).*repmat(z2(:)’,N,1);
y=repmat(y(:),1,n*n) + repmat(dy(:),1,n*n).*repmat(z(:)’,N,1);
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% evaluate integrand
f2 = feval(f,x2,y2,varargin:);
f=feval(f,x,y,varargin:);

% evaluate integral
I=sum(f.*repmat(w(:)’,N,1),2).*dx(:).*dy(:);
I2 = sum(f2.*repmat(w2(:)’,N,1),2).*dx(:).*dy(:);

I will like to thank Laurits Højgaard Olesen for extensive help with the above

code.
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Appendix F
The Thomas-Fermi approximation to screening

In this appendix, we consider the Fourier transform of the static screened Coulomb
interaction in the Thomas-Fermi approximation following Ref.[6] and generalize
there approach for two parallel planes to the case of coaxial cylinders. The re-
sult for a different band structure was previously stated (not derived) in [110].
This approach is only valid for large cylinders, i.e. where the quantization in the
circumferential direction is close to being continuous.

The simple mental physical picture of screening is that a charged (test) particle
is added to a gas of free charged particles and held rigidly at a position r0. If
the free charges and the test particle have opposite charges, the free charges will
be attracted to the test particle and thereby reducing (or screening) its field
especially at large distances (or equivalent small wave vectors). Thereby the
name. In any case (as the calculation will show) the other free charges generally
changes the particle-particle interaction due to screening process. So screening is
a many-body effect.

The semiclassical idea used here is to find the electrical potential φr0(θ, r, z)
at a point (θ, r, z) stemming from a test charge at r0 surrounded by some other
free charges. Multiplying the obtained electrical potential φ with the charge at
(θ, r, z) gives the interaction between the test charge and the charge at this point.

The stating point is the Poisson‘s equation (in SI-units),

−∇2φr0(θ, r, z) =
ρ(θ, r, z)

κ
, (F.1)

where ρ(θ, r, z) is the free charge density for all the charges including the test
charge, κ = εrε0, ε0 is the permittivity of free space and εr is the dielectric
constant (or relative permittivity) of the medium [119]. Here we have taken the
medium (i.e. the non-free charges) into account as a linear medium by the factor
εr, which is about 1.4 for carbon nanotubes [120].

We now divide the charge density ρ(θ, r, z) into a part from the test charge
ρtest and a part from the other free charges ρind. ρind is the induced charge density
from the test charge at r0. Equivalently the potential φ is divide into two parts,

φr0(θ, r, z) = φtest(θ, r, z) + φind(θ, r, z) (F.2)

each satisfying there own Poisson‘s equation.
In the Thomas-Fermi approximation it is required that the full potential

φr0(θ, r, z) varies slowly on the scale of many lattice spacings, which makes it
possible to include the potential φr0(θ, r, z) in the energy for a single particle
with charge ẽ by the simple substitution εkν → εkν + ẽφr0(θ, r, z) [1, p.341][18,
p.220]. This can be used for the quantum numbers k and ν varying almost con-
tinuously as for cylinders with a not to strong circumferential quantization. By
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using εkν → εkν + ẽφr0(θ, r, z) we know the charge density before and after the
addition of the test particle, since it is simply proportional to the distribution
functions. Furthermore in the static case considered here the Fermi functions are
the distribution functions. This gives the induced charge density for electrons as:

ρind(θ, r, z) =
(−e)
2πrc

∑

σν

∫ π
a

−π
a

dk

2π

[
f 0(εkν − eφr0(θ, r, z))− f 0(εkν)

]
δ(r− rc), (F.3)

which is the basic equation of the (nonlinear) Thomas-Fermi approximation [1,
p.341]. Here we restrict the electrons to on the cylinder with radius rc by including
a delta function in the radial direction10. This is completely analogue to the
restriction made in the Thomas-Fermi screening calculation for a two dimensional
electron gas [121]. Assuming that φr0(θ, r, z) is small we linearize to first order
in φ:

ρind(θ, r, z) ' (−e) 1

2πrc

∑

σν

∫ π
a

−π
a

dk

2π
(−e)

(
− ∂f 0(εkν)

∂µ

)
φr0(θ, r, z)δ(r − rc)

= −e2∂n
∂µ
φr0(θ, r, z)δ(r − rc) ≡ −2κq(r

c)
TF φr0(θ, r, z)δ(r − rc) (F.4)

where n is the free electron density, the Thomas-Fermi screening vector q
(rc)
TF was

defined and it was used that ∂f0(εkν)
∂εkν

= −∂f0(εkν)
∂µ

. The factor of two in front of

q
(rc)
TF is nothing but a convention.

The test charge at r0 = (θ0, r0, z0) has the density

ρtest(θ, r, z) = (−e)δ(r − r0)
r

δ(θ − θ0)δ(z − z0), (F.5)

since by integration over space the charge of an electron −e is obtained.
Now we have the setup to look at the system consisting of two coaxial cylinders

(such as a multiwall carbon nanotube) as seen on figure 3.1. We restrict the
electrons to be on either the inner or the outer cylinder. Further the coordinate
system is chosen such that θ0 = z0 = 0. This gives us the Poisson‘s equation

∇2φr0(θ, r, z) = −
1

κ

(
ρtest + ρind,rc1

+ ρind,rc2

)
(F.6)

=
e

κ

δ(r − r0)
r

δ(θ)δ(z) + 2q
(rc1)
TF φr0(θ, r, z)δ(r − rc1) + 2q

(rc2)
TF φr0(θ, r, z)δ(r − rc2)

by the use of (F.5) and (F.4) for each of the cylinders. The Laplacian operator
∇2 in cylindrical coordinates is

∇2 = 1

r

∂

∂r
+

∂2

∂r2
+

1

r2
∂2

∂θ2
+

∂2

∂z2
. (F.7)

10An alternative approach could be to use some radial wave function with finite width such
as in [6, Appendix].
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The Poisson‘s equation (F.6) is now Fourier transformed11 in the angle θ and
in the z coordinate. We cannot Fourier transform in the radius r, since we do
not have a symmetry in this direction because of the two shells. The Fourier
transformation gives:

[
1

r

∂

∂r
+

∂2

∂r2
−
(m2

r2
+ q2

)]
φr0(r,m, q) =

e

κ

δ(r − r0)
r

+ 2q
(rc1)
TF φr0(r,m, q)δ(r − rc1) + 2q

(rc2)
TF φr0(r,m, q)δ(r − rc2), (F.8)

where for finite cylinder length L

φr0(r,m, q) =

∫ 2π

0

dθ

∫ L

0

dz e−iqz−imθ φr0(θ, r, z). (F.9)

Note that physically q and m are the transferred wave vector and angular mo-
mentum, respectively.

To find the Fourier transformed potential we have to solve the second order
inhomogeneous differential equation (F.8) in r. To do this we use the Greens
function method for ordinary differential equations12. Here it is a custom to
introduce the linear operator L(r,m, q) and the right hand side of eq.(F.8) as:

L(r,m, q) ≡ 1

r

∂

∂r
+

∂2

∂r2
−
(m2

r2
+ q2

)
, (F.10)

h(r, r0) ≡
e

κ

δ(r − r0)
r

+ 2q
(rc1)
TF φr0(r,m, q)δ(r − rc1) + 2q

(rc2)
TF φr0(r,m, q)δ(r − rc2),

and the Greens function G(r, r̃), which solves the homogeneous version13 of eq.
(F.8):

L(r,m, q)G(r, r̃) =
δ(r − r̃)

r
, (F.11)

where r̃ is an arbitrarily radius for mathematical use only. If we know the Greens
function we can find the potential by:

φr0(r,m, q) =

∫ ∞

0

dr̃ r̃G(r, r̃)h(r̃, r0), (F.12)

which can be seen by use of L(r,m, q) on both sides and use of the defining
equation for the Greens function (F.11). Note that we have en extra factor of r̃

11The convention used for the angular Fourier transform is for an arbitrary function g: g(θ) =
1
2π

∑
m∈Z

g(m)eimθ where g(m) =
∫ 2π
0

dθg(θ)e−imθ. The same convention is used for the Fourier
transform in the z direction replacing 2π by the cylinder length L [18, Appendix A].

12For a good introduction to the subject see [122].
13This equation is of cause only homogeneous for r 6= r̃.

126



in the integral in eq.(F.12), since when we change from cartesian coordinates to
cylindrical the Jacobian matrix is r.

The Greens function is now found in order to get the potential. Since φr0(θ, r, z)
is real the Fourier transformed obeys φr0

(r,m,−q) = φ∗r0
(r,m, q). Therefore it is

sufficient to take q > 0 in the following. Introducing ξ ≡ qr (ξ̃ ≡ qr̃) in eq.(F.11)
and multiplying both sides of it by r2 it is:

[
ξ
∂

∂ξ
+ ξ2

∂2

∂ξ2
−
(
m2 + ξ2

)]
G

(
ξ

q
,
ξ̃

q

)
= ξ̃δ(ξ − ξ̃). (F.13)

For ξ 6= ξ̃ this is the Bessel‘s modified differential equation [123, p.138], where the
general solution is a linear combination of the modified Bessel‘s functions of the
first kind Im(ξ) and of the second kind Km(ξ) both of order m. To solve (F.13)
we take the constants of this linear combination and make them functions of ξ̃,
so14

G(ξ, ξ̃) = A(ξ̃)Im(ξ) +B(ξ̃)Km(ξ), (F.14)

where A(ξ̃) and B(ξ̃) are these functions determent by the boundary conditions.
The boundary conditions for the potential are by physical grounds found to be:

φr0(r, q,m)→ 0 for r →∞, (F.15)

|φr0(r, q,m)| <∞ for r → 0. (F.16)

If G(r, r̃) obeys the same boundary conditions, then so will the potential. This
can be seen from eq.(F.12) if we assume the integral to be finite for all r. The
same boundary conditions for the potential and the Greens functions is therefore
used. The limits of the modified Bessel‘s functions are:

|Im(x)| <∞ and Km(x)→∞ for x→ 0, (F.17)

Im(x)→∞ and Km(x)→ 0 for x→∞ (F.18)

and by the help of these limits and boundary conditions forG we have an educated
guess for the Greens function:

(Guess) G(r, r̃) =

{
AIm(qr)Km(qr̃) for r 6 r̃
BIm(qr̃)Km(qr) for r > r̃

, (F.19)

where A and B now are constants.
To show that this is the solution and to find A and B we have to do three

things. First of all we note that for r 6= r̃ the guess (F.19) fulfills eq.(F.11),
since both Bessel‘s functions satisfies Bessel‘s modified differential equation. Sec-
ondly we require G(r, r̃) to be continues at r = r̃, since r̃ was just a arbitrary
radius. This gives A = B. Thirdly the derivative of G(r, r̃) with respect to r

14The factor of 1
q

is dropped in the notation in the arguments of G.
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at r̃, ∂G(r,r̃)
∂r

∣∣
r=r̃

, has to have the same discontinuity as obtained by integrating
eq.(F.11). This will give the constant A. By integrating the right hand side of
eq.(F.11) for any interval around r̃ (again using the mesh dr r) 1 is obtained.
The left hand side integrated around r̃ is:

lim
ε→0+

∫ r̃+ε

r̃−ε

dr r

[
1

r

∂

∂r
+

∂2

∂r2
−
(m2

r2
+ q2

)]
G(r, r̃) =

lim
ε→0+

∫ r̃+ε

r̃−ε

dr r
∂2G(r, r̃)

∂r2
= r̃ lim

ε→0+

[
∂G(r, r̃)

∂r

∣∣∣∣
r=r̃+ε

− ∂G(r, r̃)

∂r

∣∣∣∣
r=r̃−ε

]
= 1, (F.20)

where the continuity of G(r, r̃) at r = r̃ was used in the first equality and a partial
integration was done in the second equality. This can be compared to the result
obtained from the guessed Greens function (F.19):

lim
ε→0+

[
∂G(r, r̃)

∂r

∣∣∣∣
r=r̃+ε

− ∂G(r, r̃)

∂r

∣∣∣∣
r=r̃−ε

]
=

Aq

(
Im(qr̃)

∂Km(x)

∂x

∣∣∣∣
x=qr̃

−Km(qr̃)
∂Im(x)

∂x

∣∣∣∣
x=qr̃

)
= −A1

r̃
, (F.21)

where the last equality stems from connections between the Bessel functions. By
comparison of eq.(F.20) and eq.(F.21) we have that A = −1 and therefore our
guessed Greens function (F.19) is the right one15:

G(r, r̃) =

{
−Km(qr̃)Im(qr) for r 6 r̃
−Im(qr̃)Km(qr) for r > r̃

. (F.22)

Now it is straight forward to get the Fourier transformed potential from a test
charge for a general radius r:

φr0(r,m, q) =

∫ ∞

0

dr̃ r̃G(r, r̃)h(r̃, r0) (F.23)

=
e

κ
G(r, r0) + 2q

(rc1)
TF r

c
1φr0(r

c
1,m, q)G(r, rc1) + 2q

(rc2)
TF r

c
2φr0(r

c
2,m, q)G(r, rc2),

which is a expressed in terms of the potential at the two cylinders. To find these
two potential values we can insert r = rc1 and r = rc2 in eq.(F.23) and thereby get
two equations with two unknowns, which is easily solved to give:

(
φr0(r

c
2,m, q)

φr0(r
c
1,m, q)

)
=

−e
κ∆

(
−1 + 2q

(rc1)
TF r

c
1G(rc1, r

c
1) −2q(r

c
1)

TF r
c
1G(rc2, r

c
1)

−2q(r
c
2)

TF r
c
2G(rc1, r

c
2) −1 + 2q

(rc2)
TF r

c
2G(rc2, r

c
2)

)(
G(rc2, r0)
G(rc1, r0)

)
(F.24)

15The Greens function stated here has an opposite (but right) sign of the Greens function
stated in [110].
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where

∆ =
[
− 1 + 2q

(rc1)
TF r

c
1G(rc1, r

c
1)
]

×
[
− 1 + 2q

(rc2)
TF r

c
2G(rc2, r

c
2)
]
− 4q

(rc1)
TF q

(rc2)
TF r

c
1r

c
2G(rc1, r

c
2)G(rc2, r

c
1). (F.25)

This could now be inserted into eq.(F.23) and the potential at a general radius
would be obtained. Since we do only need a potential energy for electron-electron
interaction on the two different cylinders, we choose the radius to be one of the
cylinders and the test charge to be on the other one. In this way we get the
potential from one electron on one of the cylinders felt by another electron on
the other cylinder. Therefore we chose r0 = rc1 and r = rc2:

φrc1
(rc2,m, q) =

(−e)
κ∆

Im(qr
c
2)Km(qr

c
1). (F.26)

Note that the same result is obtained by choosing r0 = rc2 and r = rc1 as it should
be, since the electron-electron interaction should not dependent on which electron
we imagine to be a test charge. To get the potential energy V12(r

c
1, r

c
2, q,m) we

just need to multiply φrc1
(rc2,m, q) by (−e).

By setting q
(rci )
TF = 0 we can identify the unscreened potential16 V 012(r

c
1, r

c
2, q,m)

and the dielectric function in the static limit as ∆ = εTF(q). The Fourier trans-
form of the screened Coulomb interaction V12(r

c
1, r

c
2, q,m) is therefore:

V12(r
c
1, r

c
2, q,m) =

V 012(r
c
1, r

c
2, q,m)

εTF(q)
, (F.27)

V 012(r
c
1, r

c
2, q,m) =

e2

κ
Km(qr

c
1)Im(qr

c
2), (F.28)

εTF(q) =
[
1 + 2q

(rc1)
TF r

c
1Km(qr

c
1)Im(qr

c
1)
][
1 + 2q

(rc2)
TF r

c
2Km(qr

c
2)Im(qr

c
2)
]

− 4q
(rc1)
TF q

(rc2)
TF r

c
1r

c
2

[
Km(qr

c
1)Im(qr

c
2)
]2
. (F.29)

Remembering from eq.(F.4) that the Thomas-Fermi screening vector is:

2q
(rci )

TF =
e2

κ

∂ni

∂µ
. (F.30)

For the armchair-like and zigzag-like tubes the Thomas-Fermi vector is the same
using the approximation µ ' εF and the densities eq.(5.18) and eq.(??):

2q
(rci )

TF =
e2

κ

∂n

∂εF

=
e2

κ

2

π2rci}v0
, (F.31)

16This potential was previously found in [124] and [125] with different prefactors of 4π, since
the calculation was done using Gaussian units.
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so the dimensionless quantity 2q
(rc1)
TF r

c
1 = 2q

(rc2)
TF r

c
2 ≡ s is tube independent in our

model.
We consider the static limit ω → 0 and show that the RPA interaction sim-

plifies to the Thomas-Fermi interaction. For small q and ω → 0 the polarizability
eq.(5.12) for both zigzag and armchair tubes is:

χ(q, 0) =
1

2π

−8γ0(qa)2
aπ
√
3(γ0qa)2

= − 2

π2}v0
= − κ

e2
2q
(rci )

TF r
c
i (F.32)

independent of i = 1, 2. Therefore εRPA(q, 0) = εTF(q) for small q from eq.(5.9)
and eq.(F.29), so the screened interactions are the same in the static small q
limits as it should be.
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Appendix G
Conference contribution to HCIS13

This article is accepted for publication in Semiconductor Science and Technology

in 2004 in a special conference proceedings issue from the “International Confer-
ence on Nonequilibrium Carrier Dynamics in Semiconductors” (HCIS13).

It is basically a summery of my talk given at HCIS13 on the 31. of July 2003 in
Modena, Italy.

Note that the thesis contains the g-factors from the band structure in the Coulomb
matrix element, which were not included in this article. Figure G.1 is the one
mentioned but not given in the article.
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Figure G.1: ρ21 as a function of T
TF

for different εF values: εF = 0.3eV (3481K) (dotted),
εF = 0.15eV (1740K) (dashed-dotted), εF = 0.03eV (348K) (dashed) and εF = 0.006eV (70K)
(full line). It is seen that ρ21 has a peak as a function of temperature for all the chosen εF. The
value of T

TF
at the peak is roughly the same, even though it might have a slight tendency to

decrease as a function of εF. Since TF is not the same for the different graphs this conclusion
is not true as a function of temperature. C0 and Cρ (in figure 2 in the article) is connected by:
C0 = cρεF.
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Abstract
We calculate the transresistivity ρ21 between two concentric armchair
nanotubes in a diffusive multiwall carbon nanotube as a function of
temperature T and Fermi level εF. We approximate the tight-binding band
structure by two crossing bands with a linear dispersion near the Fermi
surface. The cylindrical geometry of the nanotubes and the different parities
of the Bloch states are accounted for in the evaluation of the effective
Coulomb interaction between charges in the concentric nanotubes. We find
a broad peak in ρ21 as a function of temperature at roughly T ∼ 0.4TF.
Further, we predict a peak in ρ21 as a function of εF, which can be studied
experimentally by changing a gate voltage or by doping.

The phenomenon of Coulomb drag [1] concerns momentum

exchange between two spatially separated subsystems with

independent contacts. Thus, a current J1 through one

subsystem induces a current J2, or an electric field E2, in

the other subsystem due to the Coulomb interaction between

the mobile charges. A convenient object to study both

experimentally and theoretically is the transresistivity, defined

as ρ21 = E2/J1. Following the initial experiments by Gramila

et al [2], Coulomb drag has been investigated intensively for

parallel bulk 2D systems (for a recent review, see [3]) and has

recently been extended to the mesoscopic regime [4].

Here we consider two coaxial armchair carbon nanotubes

(a multiwall carbon nanotube) with independent contacts on

an inner and an outer nanotube. This configuration is a

challenging but not an impossible technological achievement

[5, 6]. It is further assumed that there is no tunnelling between

the different tubes, labelled by 1 (outer) and 2 (inner). We work

within the Fermi liquid picture, and generalize the formalism

developed to study Coulomb drag in coupled quantum wells

[7–9] to a multi-subband system.

To derive the transresistivity ρ21 coupled linearized

Boltzmann equations in the limit of weak intertube interaction

and small external electric field E1 on the outer nanotube can

be used [8]. This approach uses the Fermi Golden rule to

model the Coulomb scattering process between the electrons

in the two nanotubes. Alternatively, the Kubo formula can be

used [10]. Neglecting Umklapp processes one arrives at

ρ21 =
�

2

8π4rc
2e

2n1n2kBT

∑

ν1ν
′
1ν2ν

′
2

∫ π
a

0

dq

2π

∫ ∞

0

dω

×
|V12(q, ω, ν1ν2, ν

′
1ν

′
2)|2

sinh2
(

�ω
2kBT

) F
(1)

ν1ν
′
1
(q, ω)F

(2)

ν2ν
′
2
(q, ω), (1)

where νi (ν ′
i) are the band indices before (after) the scattering,

V12(q, ω, ν1ν2, ν
′
1ν

′
2) the Coulomb matrix element (apart from

a normalization factor 1/2πL), a = 0.249 nm the lattice

spacing, rc
i the tube radius, ni the conduction electron density,

�q the momentum transfer, �ω the energy transfer and

F
(i)

νiν
′
i
(q, ω) ≡

2π(−e)

�µ
(i)
Tr

∫ π
a

− π
a

dki

2π

[

f 0
(

εkiνi

)

− f 0
(

εki+qν ′
i

)]

× τi

[

vki+qν ′
i
− vkiνi

]

δ
(

εkiνi
− εki+qν ′

i
− �ω

)

, (2)

where vkν = 1
�

∂εkν

∂k
is the band velocity, f 0(ε) the Fermi

function, τi the single tube relaxation-time from single tube

impurity scattering and µ
(i)
Tr is the single tube mobility defined

through J = (−e)nµTrE for an isolated tube. (The F functions

are generalizations of the imaginary part of the susceptibility.)

Note that the transresistance is R21 = ρ21
L

2πrc
1
, where L is the

length of the tubes (assuming that L1 = L2 ≡ L).

An armchair nanotube has a discrete translational

symmetry, discrete rotational symmetry and a mirror plane

along the tube axis, which gives rise to single-particle Bloch

0268-1242/04/000001+03$30.00 © 2004 IOP Publishing Ltd Printed in the UK 1
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Figure 1. Contour plot of Finter(q, ω) and Fintra(q, ω). The
broadening is due to Fermi functions at finite temperature (here
T/TF = 0.1).

states labelled by a (crystal) wave vector k along the tube,

(crystal) angular momentum m and a parity 	 = ±1 in the

angle θ in cylindrical coordinates (θ, r, z), respectively [11].

The two bands near εF for an armchair nanotube both have

m = 0, so effectively the band index for these two bands are

only ν = 	 = ±1. In a tight-binding calculation the bands

near εF are of the form [11]: εk	 = 	γ0

(

1−2 cos
(

ka
2

))

, where

γ0 = 3 eV is an overlap integral and εF = 0 for a non-doped

and non-gated tube. We take εF as a parameter, which can vary

between ±0.3 eV. Furthermore we linearize the bands around

εF = 0, so we use εk	 � 	α(|k| − k0) in all calculations,

where α =
√

3
2

γ0a and k0 = 2π
3a

.

We next address the calculation of the Coulomb matrix

element V12(q, ω, ν1ν2, ν
′
1ν

′
2) needed in (1). One needs

the parity eigenstates and the screened Coulomb interaction,

which depends only on the distance |r1 − r2|, so it is

even in θ1 − θ2. This fact reduces the number of possibly

non-zero matrix elements by a factor of 2, since by using

the variable change θi → −θi (i = 1, 2) in the matrix

element one can show: 〈k′
1k

′
2ν

′
1ν

′
2|V12(|r1 − r2|)|k1k2ν1ν2〉 =

ν ′
1ν1ν

′
2ν2〈k′

1k
′
2ν

′
1ν

′
2|V12(|r1 − r2|)|k1k2ν1ν2〉, i.e. the product

of the parities is conserved in the collision. This is the

only symmetry property of the Bloch states we use and, for

simplicity, we take the single-particle states to be plane waves
1√

2πL
eimθ+ikz, even though these are not parity eigenstates.

Thus we find

〈k′
1k

′
2ν

′
1ν

′
2|V12(|r1 − r2|)|k1k2ν1ν2〉

=
1

2πL
δν1ν2,ν

′
1ν

′
2
δk1+k2,k

′
1+k′

2
δm1+m2,m

′
1+m′

2

× V12

(

q = k′
1 − k1,m = m′

1 − m1 = 0, rc
1 , r

c
2

)

, (3)
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Figure 2. Transresistivity ρ21 as a function of the Fermi level εF (left) and as a function of the temperature (right) for a (5,5) tube in a (10,10)

tube. The constant is Cρ = �e2rc
1

24
√

3π(εr ε0)2γ 3
0 a3 and for a 1 µm long tube system the transresistance at the peak for T = 300 K is R21 = 1.4 k�.

where V12(q,m, rc
1 , r

c
2) is the Fourier transform of the

screened Coulomb interaction. Screening is treated in the

Thomas–Fermi approximation, where we take into account

the cylindrical geometry of the tubes. One finds

V12

(

q,m, rc
1 , r

c
2

)

=
e2

εrε0

Km

(

qrc
1

)

Im

(

qrc
2

)

εTF(q)
(4)

where the dielectric function is εTF(q) =
[

1 + 2q
(rc

1 )

TF rc
1Km

(

qrc
1

)

Im

(

qrc
1

)][

1+2q
(rc

2 )

TF rc
2Km

(

qrc
2

)

Im

(

qrc
2

)]

−4q
(rc

1 )

TF q
(rc

2 )

TF rc
1r

c
2

[

Km

(

qrc
1

)

Im

(

qrc
2

)]2
with q

(rc
i )

TF = e2

2εrε0

dni

dεF
= e2

εrε0π
2rc

i α
· Im and

Km are modified mth order Bessel functions of the first and

second kind, respectively.

The F
(i)

νiν
′
i

functions (2) are independent of the subsystem,

basically because the two energy bands near εF are radius

independent in armchair nanotubes. Recalling (3), the sum

over the band indices in (1) thus gives a factor (F+− + F−+)
2 +

(F++ + F–−)2 ≡ (Finter)
2 + (Fintra)

2 in the integrand of

ρ21. The F-functions for inter and intra band scatterings,

respectively, are shown in figure 1. Since the integrand of

ρ21 has two decreasing functions, V12 and sinh−2
(

h̄ω
2kBT

)

as a

function of q and ω, respectively, the inter band processes are

by far the most important. From (2) we explicitly find

Finter(q, ω) = CF {�(−�ω − αq + αk0)

+ �(�ω − αq + αk0)�(−�ω − αq + 2αk0)}
× [f 0(ε1) − f 0(−ε2) − f 0(ε2) + f 0(−ε1)], (5)

where ε1 = 1
2
(�ω+αq), ε2 = 1

2
(�ω−αq) and CF = 2εF+απ/a

2α2 .

A similar expression is obtained for Fintra. At εF = 0 both

the inter and intra band contributions are zero, which is

seen by using f 0
−µ(ε) = 1 − f 0

µ(−ε)(µ being the chemical

potential used in the approximation µ � εF), i.e. ρ21|εF=0 = 0.

Physically this is due to particle–hole symmetry.

Including all these considerations ρ21 in (1) yields

ρ21 = C

∫ π
a

0

dq

∫ ∞

0

dω

∣

∣V12

(

q, 0, rc
1 , r

c
2

)
∣

∣

2

sinh2
(

�ω
2kBT

)

× [Finter(q, ω)2 + Fintra(q, ω)2], (6)

where C = �
2

16π5rc
2n1n2kBT

.

Figure 2 shows our numerical results for the

transresistivity ρ21 as a function of Fermi level εF and

temperature T.
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The interplay between the F functions (figure 1) and the

matrix element shows that the most important process in the

drag is the small q backscattering inter band process with

energies around εF, e.g. the process with scattering between

k0 ± εF

α
in both tubes. The higher the Fermi level the larger the

transferred wave vector q and thereby the smaller the Coulomb

interaction (4), which makes ρ21 go down at high εF. On the

other hand, at εF = 0 we have particle–hole symmetry (where

ρ21 is zero) and a finite εF leads to a finite ρ21. Thus ρ21

must have a peak as a function of εF, as also revealed by the

numerical calculation showed in figure 2.

As a function of temperature, our calculations show a peak

for small Fermi temperatures TF, which is broader the larger

TF. A plot as a function of T/TF (not shown) reveals that

all ρ21(TF) have a peak at T/TF ∼ 0.4. ρ21 decays at higher

temperatures since the temperature smearing of the Fermi level

causes the situation to be closer to the particle–hole situation

at εF = 0 than at low temperature.

We expect other metallic nanotubes (e.g. zigzag) to show

similar behaviour since these will have two linear bands

crossing the Fermi level for a non-gated nanotube at the same

point, so a similar situation is obtained.

In summary, we have investigated the Coulomb drag effect

in coaxial armchair carbon nanotubes, where the important

process for the drag is inter band backscattering with small

transferred crystal wave vector. We found a peak in the

transresistivity as a function of Fermi level (gate voltage) and

temperature. For free (i.e. εF = 0) armchair nanotubes the

drag vanishes due to the particle–hole symmetry.
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Forró, Electrochemical carbon nanotube field-effect transistor, Appl. Phys.
Lett. 78, 1291 (2001).

[80] C. Schönenberger, M. Buitelaar, M. Krüger, I. Widmer, T. Nussbaumer and
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