
U N I V E R S I T Y O F C O P E N H A G E N
F A C U L T Y O F S C I E N C E

Master’s Thesis

Learning Quantum
Optimization Games
Monte Carlo Tree Search as an alternative for quantum optimization

Andoni Agirre Arabolaza

Advisors: Evert P.L. van Nieuwenburg, Matteo M. Wauters and Michele Burrello

Submitted: August 8, 2023

Preamble

Abstract

Hard combinatorial optimization problems have an abundance of real-life ap-
plications, but quickly become intractable and too costly to solve. By en-
coding them into ground states of spin-1/2 Hamiltonians, such problems can
be formulated as ground state preparation problems, which can be tackled by
quantum algorithms. A lot of effort is currently being made to determine if the
limited quantum devices of today could provide better and faster platforms
to solve these hard problems.

In this thesis we work with 3-satisfiability, the prime example of such hard
problems, and try to solve it with algorithms based on two of the main near-
term quantum computational paradigms for quantum optimization: Adiabatic
Quantum Computation and Variational Quantum Algorithms. In view of the
difficulties of quantum optimization, such as having to navigate exceedingly
complicated cost landscapes, we employ the Monte Carlo Tree Search algo-
rithm, a very peculiar way of approaching quantum optimization from the
viewpoint of board game artificial intelligence.

We first implement and study the performance of our own version of the
Monte Carlo Tree Search algorithm, both within a conventional game domain
and a simple quantum system with two spins. We then successfully use our
algorithm as a tool to optimize annealing schedules to solve hard instances of 3-
satisfiability, as well as presenting and testing different methods of optimizing
the parameters of the Quantum Approximate Optimization Algorithm with
it. We also devise a number of concrete modifications to the standard version
of the algorithm, which make it an even more compelling tool for quantum
optimization.

i

Contents

Preamble i

Abstract . i

Contents ii

1 Introduction 1

1.1 Background . 1

1.2 Outlook of this work . 9

2 Monte Carlo Tree Search 11

2.1 Background . 11

2.2 Technical details . 13

The MCTS Cycle . 14

Making the final choice . 17

Conclusions . 18

2.3 Benchmarking MCTS . 18

3 Adiabatic Quantum Computation (AQC) 21

3.1 Quantum Annealing (QA) . 21

3.2 Adiabatic Perturbation Theory 23

Faster evolution regimes . 26

3.3 Toy model: flipping two spins with QA 27

The toy model . 27

QA on the toy model . 28

3.4 MCTS plays the toy model . 30

MCTS-guided discretized QA 31

Putting a bound on the error 34

4 The 3-Satisfiability problem 37

4.1 Description of k -SAT . 37

4.2 Encoding a k -SAT instance into the target Hamiltonian 39

Toy model Hamiltonian . 41

5 MCTS-guided Quantum Annealing to solve 3-SAT 43

ii

CONTENTS iii

5.1 Fourier gamemode . 43
5.2 Results on 3-SAT instances . 44
5.3 What MCTS is doing: a closer look at some results 47
5.4 The noisy case . 49

6 Quantum Approximate Optimization Algorithm (QAOA) 51
6.1 Theory . 51

The QAOA Ansatz . 52
6.2 MCTS-optimized QAOA on the toy model 54
6.3 MCTS-optimized QAOA for 3-SAT 56

Results . 56
6.4 Proposed solutions . 59

MCTS-initialized QAOA . 59
MCTS with iterative search space updates 61
Discussion on an improved MCTS algorithm 63

7 Conclusion and future directions 67

A Deeper dive into MCTS 71
A.1 More tic-tac-toe benchmarks 71
A.2 About the final choice . 71
A.3 Rewards in quantum optimization games 73
A.4 Tree recycling: why and why not 74
A.5 On possible MCTS modifications 75

B QA to QAOA: what is lost on the way 77
B.1 Discretizing the annealing schedule 77

General proof . 78
The case of QA . 79
A look at ||Hx −Hz|| . 80

B.2 Trotter splitting the time evolution operator 81
B.3 Other proofs . 82

Definition of operator norm . 82
Proof operator norm is submultiplicative 82
Proof operator norm sets a bound on eigenvalues 82

C More noisy results 83

Bibliography 85

Chapter 1

Introduction

This introductory chapter has two sections. In section 1.1 we attempt to
give a broad overview of the problems we will be tackling and the context in
which they arise. In the outlook section 1.2 we introduce our approach to the
problem and explain the layout of the thesis.

Throughout this work we will set ℏ = 1.

1.1 Background

The marvelous promises of quantum computation (QC) have drawn the atten-
tion of many since its original proposal in the 1980s. By integrating quantum
mechanics into their very hardware, quantum devices hold the potential of cun-
ningly simulating big quantum systems —notoriously hard to do in classical
computers due to the exponential increase of the size of the Hilbert space—,
as well as providing rampant speedups over classical algorithms — such as
factorizing numbers [1], solving linear systems of equations [2] and searching
unstructured data sets [3].

Most of these promises, however, may not be properly realized today. The
required amount of qubits to implement these quantum algorithms is way
beyond current capabilities, not to mention the lack of reliability of those
qubits, as they need to be shielded from decoherence-inducing external noise
while being reliably controlled. Similarly, although there exist ways that com-
bat decoherence and other sources of error through the theory of Quantum
Error Correction (QEC) [4], the required number of qubits as overhead to
perform QEC is too large in practice.

Since fault tolerant QC seems not to be a thing of the near future, a great
deal of effort is currently being made to create and develop algorithms for al-
ternative computational paradigms that make use of existing quantum devices
(often in conjunction with powerful classical computers) and achieve quantum
advantage with them. Although these Noisy Intermediate-Scale Quantum
(NISQ) devices, as they are known, are severely limited —from lower than

1

2 CHAPTER 1. INTRODUCTION

ideal qubit numbers to shallow circuit depths—, said limitations are not ex-
pected to necessarily impede the development of near-term algorithms that
take advantage of them. The creation of usable and practical NISQ era algo-
rithms is, in fact, a very promising field of research spanning a vast number
of applications, from condensed matter physics and quantum chemistry to
machine learning and classical optimization [5]. Despite its many challenges,
it has seen some limited success and there have been experiments that have
obtained exponential speedups over classical devices for certain tasks, albeit
very contrived and inane ones [6, 7]. Any quantum advantage for practical
applications has yet to be experimentally demonstrated. There are various
ways one can try to create algorithms for NISQ era devices. These algorithms
are divided into two main types: gate-based and analog.

The gate-based or digital kind fall within the framework of Variational
Quantum Algorithms or VQAs. These consist of a combined effort of both a
classical subroutine and a quantum one, and the classically hard part of the
computation is delegated to the latter. Their objective is to solve an optimiza-
tion problem where a cost function C(θ) needs to be minimized with respect
to a number of variational parameters θ = {θ1, ..., θL}. VQAs encompass a
very broad class of algorithms, which can have very different applications [8].
Nevertheless, all VQAs are equipped with the same modular parts: a cost
function C(θ) to be minimized, a circuit of universal quantum gates, known
as the unitary Ansatz U(θ), which gives the θ dependence of the cost func-
tion1, and a classical optimizer that finds the set of parameters θ∗ associated
with the global minimum of the cost function

θ∗ = argmin
θ

C(θ), (1.1)

as well as a quantum computer that computes the cost function as required by
the classical optimizer along the minimization process. Usually the cost func-
tion will correspond to an expectation value of some observable, very often2

a Hamiltonian H, and its θ-dependence will enter via transforming it with
the unitary Ansatz, C(θ) = ⟨U †(θ)HU(θ)⟩. In those cases the minimization
problem becomes a problem of finding the ground state of H. The general
structure of VQAs can be seen in Fig 1.1.

The source of the possible speedup for a VQA with respect to a purely
classical optimizer is the extremely significant role of the quantum computer:
while the quantum computer works with the exponentially large, 2Nqubits-
dimensional Hilbert space, the classical machine is solely concerned with the

1Because of the limitations of near-term quantum devices, the circuits cannot be too
deep, and the gates that constitute the circuit can act at most on a few qubits only.

2A less restrictive cost function could be constructed as the linear combination of ex-
pectation values of many observables {Ok}, C(θ) =

∑
k fk

(
Tr

[
OkU(θ)ρkU

†(θ)
])
, for some

initial projectors {ρk}, although it is not even restricted to that. With loss of generality,
here it is assumed that one minimizes expectation values of Hamiltonians, which is very
common for VQAs.

1.1. BACKGROUND 3

Figure 1.1: Structure of a Variational Quantum Algorithm (VQA). The classi-
cal optimizer optimizes the parameters of the quantum circuit. Figure adapted
from [9].

L-dimensional space of the variational parameters. This allows the classical
optimizer to harness the power of the quantum device and opens the door to
solving problems thought to be impossible to solve by purely classical means.
This, of course, requires that the unitary Ansatz be chosen smartly, such that
the θ cover the most relevant regions of the Hilbert space. The two most well
known examples3 of VQAs are the Variational Quantum Eigensolver (VQE)
[10] and the Quantum Approximate Optimization Algorithm (QAOA) [11].

In stark contrast to VQAs, the other kind of NISQ era algorithms does
away with gate-based quantum circuits altogether. They are instead based on
analog devices that aim to simulate special-purpose systems. Chief among the
analog quantum algorithms is Adiabatic Quantum Computation (AQC) or4

Quantum Annealing (QA) [12]. QA was originally inspired by the classical
optimization algorithm known as Simulated Annealing (SA) [13], employed for
locating the global minimum of energy landscapes with many local minima.
SA simulates thermal excitations by introducing a temperature parameter T
which allows the system to visit energetically less favorable states with prob-

ability e
− ∆E

kBT , where the energy difference is ∆E, meaning that at higher
temperatures the system is allowed to perform more thermal jumps over en-
ergy barriers to escape local minima. In analogy with annealing processes in
material science5, the SA process starts at a very high temperature, and is
then slowly cooled down until the system gets frozen at a minimum (hopefully
the global one) at zero temperature.

3Both of these examples use the expectation value of a Hamiltonian as their cost function.
4In this work both terms will mostly be used as synonyms, although some texts consider

AQC to be the theoretical framework on which QA is based.
5Annealing denotes a heat treatment for materials which consists of heating them to

a suitable temperature followed by cooling them at a slow rate, primarily used to soften
metallic materials [14].

4 CHAPTER 1. INTRODUCTION

QA is the quantum version of SA, used to find the ground state of a
complicated target Hamiltonian Htarget. Instead of using a temperature, it
works by introducing a driving Hamiltonian6 Hdriving with an easy to construct
ground state, multiplied by a time-dependent interaction strength Γ(t),

H(t) = Htarget + Γ(t)Hdriving. (1.2)

The new term fulfills the same role as the temperature in SA; the interaction
strength Γ(t) should initially be very large, such that the ground state of the
system almost coincides with that of Hdriving, and slowly die down until only
the target Hamiltonian is left. The system is initialized in the ground state of
the driving Hamiltonian, and by letting it evolve according to Schrödinger’s
equation, the energy barriers that emerge in the dynamic energy landscape
can be crossed by quantum tunneling through them instead of jumping over
them via thermal excitations. These differences are shown schematically in
Fig 1.2.

A very nice advantage of QA is that one does not have to rely on the hope
that the quantum effects that are present during the evolution of the system,
such as being able to tunnel through barriers, might make the QA algorithm
reach the required energy minimum: there is the theoretical guarantee that
—provided some conditions are met— the global minimum will be reached
via the adiabatic theorem. The adiabatic theorem states that, as long as
the driving Hamiltonian is turned off slowly enough, the system will stay in
its instantaneous ground state throughout the evolution; finally reaching the
ground state of Htarget after the total evolution time τ elapses. The slow
enough condition is most commonly stated as

τ ≫ ξ

∆2
, (1.3)

where ξ is the absolute value of the matrix element of the time derivative of
the Hamiltonian (1.2) between the ground state and the first excited state,
and ∆ the minimum energy gap along the evolution path. This might not be
a feasible τ for some Hamiltonians, but it is very convenient that the theorem
is there as validation for QA7.

It has been proven that there are particularly interesting and difficult types
of problems that QA is able to solve much more efficiently than SA [17, 18].
Furthermore, QA has the advantage over SA of being able to run in quantum
hardware. In fact, current analog quantum devices can have a much higher
number of qubits than gate-based ones since not all of them need to be pre-
cisely controlled, and it has also been shown to be more resistant to noise [19].
Their disadvantage is that, in practice, they are not universal devices as they

6Any driving Hamiltonian Hdriving can be chosen as long as [Htarget, Hdriving] ̸= 0.
7Technically, an equivalent theorem can also be found for SA [16].

1.1. BACKGROUND 5

Figure 1.2: Schematic comparison of mechanisms to overcome barriers in an
energy landscape E(x). Simulated Annealing (red dashed line) and Quantum
Annealing (Blue dotted line). The thermal jumps in SA occur with a prob-

ability e
− ∆E

kBT , whereas the probability for a tunneling event in QA can be

crudely approximated as e−
w
√

∆E
Γ , where w is the width of the barrier. Be-

cause the height of the barrier enters the approximate tunneling probability
with a square root, it was predicted that tunneling should work better when
the energy landscape contains thin but high barriers, while thermal jumps
might get stuck if the barriers are too high. This has been seen in [15], among
others.

can only be used to tackle a very particular type of task.

To cut a long story short, there are two main computational frameworks
to create NISQ era algorithms, and both can be used to find the ground
states of quantum Hamiltonians. It should come as no surprise that a quan-
tum algorithm able to find ground states for complicated systems has a huge
number of applications in condensed matter physics and quantum chemistry
[5]. But there is also another application of immense interest for ground-state-
finding near-term quantum algorithms, although it is not quantum mechanical
in nature: using them to solve difficult classical combinatorial optimization
problems [8, 5], specifically so called NP-hard problems. Before exploring this
deeper, it makes sense to make a brief detour to introduce a few concepts
related to combinatorial optimization problems.

6 CHAPTER 1. INTRODUCTION

A combinatorial optimization problem deals with a classical cost function
with a discrete set of possible solutions. Each instance of a problem has
an associated parameter n that gives its size, this can be thought of as the
number of discrete variables that enter the cost function. Such problems
can be classified by difficulty into what are known as complexity classes [20],
which give the dependence of the computational cost of solving the problem
as a function of n. A problem is said to be in complexity class P if there exists
an algorithm that can solve it in a time polynomial in n, such that the cost of
solving the problem scales asO(nk), k ≥ 0 in the worst case. This is considered
a class of (mostly) efficiently solvable problems; P is made up of, in general,
tractable, but not very interesting8 problems. Conversely, a problem is said
to be in NP if a proposed solution can be verified in polynomial time. From
this definition it follows that all problems in P are contained in NP, P ⊆ NP,
since if a problem can be solved in polynomial time, then a proposed solution
can always be verified in polynomial time (by just solving the problem). The
interesting problems in NP are those for which every existing algorithm that
solves them scales worse than polynomially. An extremely famous unanswered
question in mathematics asks whether polynomial algorithms exist for solving
all the problems of NP, i.e., if P = NP. To study this, instead of checking if
there exist polynomial time algorithms for each of the infinitely many problems
in NP, there is another class of problems, NP-hard problems, which reduce9 to
every other problem in NP. Finding a polynomial time algorithm that solves
any one NP-hard problem would be sufficient to prove that P = NP. If an
NP-hard problem is also in NP, that problem is said to be NP-complete. This
distinction can also be formulated as follows: NP-hard problems are at least
as hard as all other problems in NP, whereas NP-complete problems are the
hardest problems within NP. This can be nicely visualized in Fig 1.3.

NP-complete problems are most often formulated as “yes or no” questions
or decision problems. Some examples include Decision Graph Coloring (can
you color all the vertices of this graph with these many colors such that no
adjacent vertices have the same color?) and Boolean Satisfiability (is there an
assignment of bits that satisfies this boolean expression?). Instead, the harder
NP-hard problems look like optimization problems. And there are often NP-
hard variations of NP-complete problems and vice versa. For the two previous
examples, the NP-hard versions are Optimization Graph Coloring (what is the
least amount of colors one needs to color this graph like in Decision Graph
Coloring?) or Max-Satisfiability (what is the assignment of bits that comes
closest to satisfying this boolean expression?). Far from being mathematicians’
delusional creations, NP-hard and NP-complete problems have a monumental
number of tangible uses, as many real-life problems happen to be in those

8The word “interesting” should be understood as interesting within the context of com-
putational complexity.

9This means a solution for an NP-hard problem implies a solution to all NP problems
with the same computational cost. Particularly, a solution in polynomial time.

1.1. BACKGROUND 7

Figure 1.3: Diagramatic representation of the mentioned complexity classes.

complexity classes [20].

The interest of solving hard problems in quantum devices really took of af-
ter the discovery of the celebrated Shor’s algorithm [1]. Integer factorization,
an NP problem, was proven to be solvable in polynomial time in a quantum
computer10,11, giving an exponential speedup over the best existing classical
factorization algorithms. For reasons that will become more apparent in sub-
sequent chapters, it is unlikely that NISQ era algorithms will give exponential
speedups for NP-complete or harder problems. However, the true potential of
near-term devices is still unknown.

But how exactly can one solve NP-hard problems in quantum comput-
ers? The answer to this question stems from one simple fact: finding the
ground state of a classical spin-glass Hamiltonian is an NP-hard problem (or
NP-complete if it is formulated as a yes or no question), and so is the quan-
tum version12. This has the immediate extremely convenient consequence
that any NP-complete problem and many NP-hard ones can be formulated

10This has no dramatic effect on the current understanding of complexity classes, unless
someone could prove integer factorization to be NP-complete, from which P = NP would
follow.

11This lead to the definition of other complexity classes for quantum algorithms. Specif-
ically, integer factorization is in Bounded Quantum Polynomial (BQP) time. The problems
in BQP can be solved by a quantum device in polynomial time, with a success probability
at least as high as 2/3 [20, 5].

12Technically, the quantum version is what is called QMA-complete [21], but this is not
relevant to the present discussion.

8 CHAPTER 1. INTRODUCTION

as ground state preparation problems for problem-specific target Hamiltoni-
ans. Naturally, Variational Quantum Algorithms or Quantum Annealing can
be employed to attempt to solve the quantum version of just such problems.
Indeed, a huge number of Hamiltonian representations that have the solution
to an NP-hard problem encoded in their ground state have been created [22],
making attempting to solve them with NISQ era devices possible.

The classical Hamiltonians that encode optimization problems are made
out of classical spins or bits si which can only take the value 1 or −1. For
quantum optimization, the target Hamiltonians are instead built with σzi Pauli
operators. The hope is that by transitioning into quantum spins, si → σzi ,
the new degrees of freedom of the system might give rise to new faster and/or
better ways to attempt to solve these problems.

One might ask how good NISQ era algorithms that were mentioned earlier
are at solving these kinds of combinatorial optimization problems. Well, in
the case of gate-based algorithms, there is one very powerful and promising
VQA for this, the Quantum Approximate Optimization Algorithm (QAOA).
It has successfully obtained limited polynomial speedups for a few NP-hard
problems with respect to the best existing classical algorithms13 [23, 8]. The
main problem of VQAs, and the reason that no general quantum advantage
over classical algorithm has been discovered yet, is that the energy landscapes
which need to be navigated for these problems are exceedingly complicated
with many local minima and barren plateaus [24]. Most classical optimizers for
VQAs hopelessly struggle to navigate such landscapes, especially since the cost
function evaluations from the quantum device have significant sources of errors
such as noise. This makes the job of gradient-based optimizers particularly
difficult.

In the case of the analog Quantum Annealing machines, solving hard prob-
lems does not get any simpler. Issues emerge because, as the size of the combi-
natorial optimization problem grows, the energy gap between the ground state
and the excited states along the evolution path becomes narrower. For NP-
hard problems this happens as a first order phase transition [25], which means
the gap closing happens exponentially, ∆ ∼ O(e−kn). Seeing this should trig-
ger all kinds of alarm bells, because a look at the adiabatic condition (1.3)
reveals that if ∆ decreases at such rates the required evolution time will very
quickly grow beyond any remotely reasonable time. However, it turns out that
the particular way in which the magnetic field Γ(t) is turned off during QA,
usually making it slow down during the most delicate parts of the evolution,
can greatly reduce the required annealing time [26]. Finding the optimal way
to do this, however, is far from easy: the location of the gap minimum and
the appearance of the energy spectrum of the instantaneous Hamiltonian (1.2)
are unknown. This calls for alternative ways to optimize the evolution of the

13This does not mean that no one will be able to come up with a new classical algorithm
for a specific problem that beats QAOA. In fact this has happened in some cases [8].

1.2. OUTLOOK OF THIS WORK 9

system and find the optimal way of traveling from the driving Hamiltonian to
the target one. This optimization can be formulated by giving a variational
Ansatz for Γ(t) with respect to a number of tunable parameters; this, in turn,
runs into similar problems as the classical optimizer in VQAs.

In summary, one can engineer promising ways of solving difficult and in-
teresting combinatorial optimization problems on both gate-based and analog
NISQ era paradigms. However, they require to navigate very complex and
noisy landscapes, as well as escaping non-adiabatic transitions. It is therefore
of great relevance to search for ways of solving these problems.

1.2 Outlook of this work

Now that all of the pieces of the puzzle have been laid out, we set out to
explain our intentions with this thesis within the context that was just intro-
duced.

As a compelling candidate algorithm to navigate the complex energy land-
scapes of quantum optimization, we choose the Monte Carlo Tree Search al-
gorithm [27]. It is an algorithm that has become exceptionally well known in
the context of board games such as Go and chess, and is being found to be ex-
ceptionally adaptable for more and more applications within other contexts in
recent years [28]. As we will see, it is also applicable to quantum optimization,
if we succeed in formulating the optimization task as a board game that it can
play. Its possible advantages include its gradient-free nature and very origi-
nal approach to the problem, as well as its versatility, resistance to noise and
the option of straightforwardly integrating the algorithm within deep learning
frameworks. Chapter 2 will be devoted to introducing, discussing, as well as
benchmarking our implementation of the Monte Carlo Tree Search algorithm.

The goal is to test the algorithm in both existing NISQ era computational
paradigms that were introduced in the last section. Because of the particular
quantum algorithms that we will choose, it makes sense for us to start out with
Adiabatic Quantum Computation first, which we explain more in-depth in
Chapter 3. We also try the Monte Carlo Tree Search with our implementation
of Quantum Annealing for a simple system with two spins.

After that, we move onto the hard combinatorial optimization problem
that we will focus on: 3-Satisfiability or 3-SAT, the first problem that was
proven to be NP-complete [20], as well as its NP-hard variant. We discuss
3-SAT and its Hamiltonian representation in Chapter 4.

We then try to see how the Monte Carlo Tree Search algorithm holds up
when trying to solve difficult instances of 3-SAT with quantum optimization
algorithms. In Chapter 5 we present and discuss the results for the case of
Quantum Annealing.

10 CHAPTER 1. INTRODUCTION

Only then do we move onto the gate-based Variational Quantum Algo-
rithms in Chapter 6, where we introduce the Quantum Approximate Opti-
mization Algorithm as well as displaying the results obtained in our imple-
mentation of this second computational paradigm. Following these results,
a discussion will follow where we propose and test a set of applications and
modifications for our algorithm in the context of the Quantum Approximate
Optimization Algorithm.

Chapter 7 will conclude this thesis. In it, we will summarize the main
results of this work and the conclusions we can extract from them, along with
discussing the various doors that said results opened, as promising future di-
rections in which the present work can be further extended.

Chapter 2

Monte Carlo Tree Search

In this chapter we introduce one of the most central parts of this thesis,
the Monte Carlo Tree Search (MCTS) algorithm. The aim of this section
is to understand how MCTS works and why it could help us with quantum
optimization algorithms. We very briefly explore the context in which the
MCTS algorithm originated in Sec. 2.1, moving on to the technical details of
the algorithm in Sec. 2.2. We then benchmark our own version of MCTS with
a test game and comment on its versatility, strengths and possible weaknesses
in Sec. 2.3. Further MCTS-related discussion can be found in Appendix A.

2.1 Background

Before applying the Monte Carlo Tree Search algorithm to the case of quantum
optimization, we should first try to understand it in its most natural habitat:
game artificial-intelligence creation. We are particularly interested in games
that can be represented by decision trees such as the one in Fig 2.1.

Each node in the tree represents a particular state of the game. The
branches that connect the different nodes are the allowed paths between the
states or the legal moves of the game, which progresses downwards until it
reaches what is called a leaf node, representing a terminal or game-over state.
Leaf nodes have a score or reward associated with them, often given by a real
number, that depends on the particular outcome of the game. For a particular
node, the nodes below it that it is directly connected to are called its children
nodes, or simply its children, and the nodes that are directly connected to it
from above are called its parent nodes or parents.

Consider now that we start at the very top of the tree of a particular
game, and want to create an algorithm to find the path down the tree that
gives us the best possible outcome in the game (depending on the game, this
could be a win or a maximum score). The most obvious way of doing just
that is to perform a brute force search, which has to be conducted differently
depending on the number of players, and is commonly known as the Minimax

11

12 CHAPTER 2. MONTE CARLO TREE SEARCH

Figure 2.1: An example of part of a decision tree.

search for two player games. It consists of exploring each and every possible
path down the tree, calculating the scores of all of the leaf nodes and selecting
the optimal one by assuming that every player plays the game perfectly, i.e.,
by minimizing our loss when the opponent plays the moves that give us the
max imum loss possible [29].

Evidently, this will quickly become unfeasible in all but the simplest games,
as the search spaces for most games can get absurdly big. In the case of chess,
for example, one can estimate1 the number of leaf nodes to be 10123, all
of which would need to be visited by the Minimax search! There exist more
intelligent ways of searching trees, such as the very popular alpha-beta pruning
[29], where the parts of the tree which are found to be unquestionably worse
than a previously examined path are excluded or pruned from the search2.
Still, to make alpha-beta pruning usable for big search spaces, it is usually
necessary to stop the search when a particular depth is reached, before it
arrives at a leaf node. At that point, some game-specific heuristic position
evaluation function can be used, which estimates the goodness of the position
from that non-terminal state. These could be hand crafted to take into account
various criteria in the position3, or even estimated by neural networks [30].

We can find a vast number of enhancements to alpha-beta pruning, such as

1From the average branching factor of the tree (the average number of legal moves in
a position) b, which is around 35 for chess, and the average length of a game d, which is
approximately 80 half-moves: bd ≈ 10123.

2In the best of cases, the required number of leaf node evaluations is reduced by O(bd) →
O(b

d
2) with respect to Minimax. This depends on the order in which the tree is explored;

specifically, how early in the search we explore the best move.
3In the case of chess, the position evaluation function could take into account the material

imbalance in the position via the relative value of the pieces, and other factors such as pawn
structure, center control, king safety and more, all of which would have their corresponding
weights in the calculation.

2.2. TECHNICAL DETAILS 13

Transposition Tables (using symmetries of the tree to further reduce the size of
the search space), Iterative Deepening (starting from a low depth search and
gradually increasing it, combining the advantages of depth-first and breadth-
first searches), and many more [29]. Most advanced game playing machines
use a mix of these techniques to navigate decision trees.

The algorithm central to this thesis, the Monte Carlo Tree Search algo-
rithm, is a way to achieve the same thing. And its way of going about is not
fundamentally all that different from the more traditional techniques men-
tioned earlier. Its main advantage over alpha-beta pruning is that it does not
require a game-dependent heuristic position evaluation function. It can make
very meaningful evaluations of states just from sampling random paths down
the tree in a clever way. This implies that it is extremely versatile, in that no
strategic or tactical knowledge about the particular game is required for it to
function, which makes it especially useful for games lacking a good heuristic
to properly evaluate non-terminal positions. It has also been demonstrated to
work extremely well when paired with Neural Networks that guide the search
[28].

MCTS was first proposed in [27], and its power was demonstrated a few
years later with the board game Go. The alpha-beta pruning variants, which
worked decently well for games like chess and checkers, really struggled with
Go because of the much larger size of the search-space, and the difficulty of
finding good heuristics to evaluate positions. However, with the emergence
of MCTS based algorithms [31], the level of play of Go playing algorithms
increased sharply until in 2015 Deepmind’s AlphaGo, which combined MCTS
with neural networks, was able to win a match against one of the best human
players. Since then, many MCTS based algorithms have been created and
able to obtain superhuman playing strength for other board games, such as
chess [32] and Scrabble [33], and even for more complicated, real-time and
nondeterministic games [34].

Furthermore, currently more and more applications outside of game play-
ing are being found for MCTS or variations thereof. These include scheduling
problems, simulations of physical systems and more [35, 34].

2.2 Technical details

We will now see how exactly the Monte Carlo tree search works. MCTS
is a search algorithm that explores a given search space via random samples
guided by a given selection strategy. The MCTS search starts from a particular
node in the decision tree called the root node, and, as it is running, gradually
constructs parts of the tree, focusing on the paths it deems most promising.
The search can be interrupted at any time to suggest the best action or move
from the root node. It consists of a 4-step cycle, called the MCTS cycle, which
is repeated for a set number of times, or for a set time. As the number of

14 CHAPTER 2. MONTE CARLO TREE SEARCH

Figure 2.2: Schematic representation of one MCTS cycle. Figure modified
from [34].

cycles grows, the suggested best action improves until it eventually converges
to the optimal Minimax result. Because MCTS builds a replica from parts of
the tree, to differentiate the actual full tree that we want to explore and the
tree that the MCTS constructs and is saved to memory, we will use tree in
memory when referring to the latter.

At the start of the game, MCTS starts with a tree in memory that only
contains the initial or root node. The MCTS cycle is run a number of times,
after which the algorithm outputs the move that it believes to be the best out
of all the possible legal moves in the first turn. The MCTS algorithm can be
run again for a subsequent turn by taking the chosen node as the new root
node.

MCTS assigns two numbers to each node i in the tree in memory, which
it builds as it runs: a score wi, to keep track of how well node i has scored
so far in the random simulations, and a visit count ni, which keeps track of
the number of times the algorithm has passed through the node i in the first
of the four stages. After each MCTS cycle, the scores and visit counts of the
nodes are updated, and that affects the decisions on the subsequent cycles, as
well as the final chosen move.

The MCTS Cycle

The four stages of an MCTS cycle are selection, expansion, rollout or simu-
lation, and backpropagation. The particular strategies used in the selection
and expansion stages for an MCTS algorithm make up the tree policy of the
algorithm, and the particular way the rollout happens defines its default or
playout policy4. We now explore each of the four stages in more detail. Fig 2.2

4This makes the definition quite lenient, giving the freedom to develop many versions
and variants of MCTS for specific types of search spaces by adjusting said policies.

2.2. TECHNICAL DETAILS 15

contains a schematic representation of one MCTS cycle.

1. The selection stage

In this first stage, the algorithm travels through the tree in memory that
it has built from previous cycles. This process always starts at the root
node, goes downwards and ends upon arriving at a node which has at
least one child that is not yet stored in the tree in memory. In the very
first cycle, the selection ends at the root node itself since it is the only
node in the tree in memory.

In order to choose a path, the algorithm requires a selection policy : a
function that takes the scores and visit counts of the nodes as inputs,
and assigns a potential of exploration to each node. The algorithm de-
scends through the tree in memory level by level, at each point choosing
the child with the maximum potential for exploration according to the
selection policy. A good selection policy should maintain a proper bal-
ance between the exploitation of well scoring nodes and the exploration
of nodes that lead to unknown or less explored paths. By far the most
widely used selection policies are the Upper Confidence Bounds applied
to Trees (UCT). Specifically, the UCB1 policy, which for node i is

UCB1i =
wi
ni

+ C

√
2 lnn

(p)
i

ni
, (2.1)

where n
(p)
i is the visit count of the parent node of i, and C is a constant

that we can choose to adjust the weight of each of the two terms.

Intuitively, (2.1) is easy to understand: the first term is the average score
of node i, so that it is higher for nodes which are believed to be good.
The second term vanishes as node i is selected more often, because in

that case ni ∼ n
(p)
i , and lnni

ni
→ 0 as ni increases. Instead, this term will

increase logarithmically for nodes that are not getting selected as often

by the algorithm in relation to their parent, as n
(p)
i will increase in those

cases while ni stays the same. In summary, the first term encourages
the algorithm to select the best scoring child, while the second one en-
courages it to also consider its more neglected siblings, which might be
hiding some yet undiscovered potential, and the C balances both con-
tributions. This is precisely the exploitation/exploration trade-off that
was mentioned earlier. There is much more to the UCB1 expression than
what was mentioned here, its very interesting origin can be found in [36],
and there is some discussion about alternative policies in Appendix A.

Therefore, our algorithm should, at each step, select the node that max-
imizes (2.1) to make sure that the algorithm is making the choice which
will be the most beneficial to learn about the best path down the tree.
In case of a tie scores, the tie is broken randomly.

16 CHAPTER 2. MONTE CARLO TREE SEARCH

Once the selection arrives at a node with some child in the decision tree
not yet present in the tree in memory (an unexpanded child), the algo-
rithm is done selecting the path with the most promise for exploration
within the tree in memory. The selection stage ends and we enter the
expansion stage.

2. The expansion stage

We are at the selected node with at least one unexpanded child. In the
expansion stage, we simply add to the tree in memory one (or more)
previously unexpanded children of the selected node.

There exist many different ways to perform this expansion [34]. In our
case we will follow the most common approach of expanding only one
child per cycle5, selected randomly out of all the available unexpanded
children. The newly expanded node is initialized with a null score and
visit count. After adding the new node to the tree in memory, the
algorithm travels to the newly expanded node and the expansion stage
ends.

With these two stages, the Tree policy of our algorithm has been defined.
We now move onto the rollout or simulation stage.

3. The rollout stage

This third stage is the point where the random sampling enters, and
where the algorithm takes its “Monte Carlo” part of the name from.

Starting from the newly expanded node, random moves are played by
the algorithm until a terminal node is reached, and the reward associated
to the terminal node’s state is evaluated. That reward will serve as a
way of updating the values of the nodes in the selection path, which will
in turn affect the UCB1 scores of many nodes in the tree in memory.

Note that the random simulations happen at the decision tree level and
none of the nodes below the newly expanded node are saved into the tree
in memory. Additionally, the way the playouts happen can also be semi-
guided, instead of being completely random, although this negatively
affects the versatility of the algorithm because game-specific criteria need
to be taken into account in that case. Formally, the way the game
plays out from the newly expanded node defines the default policy of
the MCTS algorithm.

5This, as it will become apparent later, will have the added benefit that the number
of function evaluations to obtain rewards from leaf nodes will equal the number of MCTS
cycles.

2.2. TECHNICAL DETAILS 17

Once we have a reward from the random simulations, the rollout stage
terminates and we enter the backpropagation stage.

4. The backpropagation stage

In the last stage of the cycle, we travel from the node expanded in stage
2, all the way back up to the root node along the route that was selected
in the first stage. Along the way, the visit counts n of the nodes we pass
through are increased by one, and their scores w are updated according
to the reward obtained in the third stage.

The way the scores are updated depends on the particular game we are
dealing with6. However, these will be fairly straightforward for the case
of quantum optimization, as it will become obvious later.

The MCTS cycle concludes after the backpropagation stage. Whenever the
algorithm gets to this point, the final choice on the best move from the root
node can be made with the statistics obtained so far. Alternatively, another
cycle can be run to further expand the tree in memory and update the values
of the nodes to make the final decision slightly more accurate.

We might think of some exceptional cases, where a terminal node is ex-
panded in the second stage. This most commonly happens if the root node is
close to the bottom of the tree or a very large amount of MCTS cycles is run,
but it is not a problem. In those cases, the rollout is trivial and the reward is
the score of the leaf node. If that terminal node is selected during a selection
stage in a later cycle, the expansion stage can simply be skipped since leaf
nodes have no children, so that the rollout once again happens from the leaf
node itself. Note that no node other than a leaf node can be the starting point
of a rollout more than once unless the tree in memory is reset.

Making the final choice

When the MCTS search is terminated, either because the desired amount of
cycles have been executed or because the maximum allowed time has been
exceeded, the best child of the root node has to be chosen. There exist a
number of criteria to make this choice [34]. The one chosen for our algorithm
is the one known as max child, where we choose the child with the highest
average score. This is the same as choosing the child that maximizes (2.1)
with C = 0.

6In the very common case of a two player game where the only outcomes are {win, loss,
tie}, the corresponding rewards could be chosen to be {1, -1, 0}. If we arrive at a leaf node
where the MCTS player wins (loses), we should add a winning score of 1 to all the nodes
along the path where the MCTS (opponent) player played the last move, and a losing score
of -1 to every node where the opponent (MCTS) player played last. Whereas, in the case of
a tie, all of the nodes along the path should get a tying score of 0. This makes sure that the
MCTS understands that the opponent is also trying to make good moves.

18 CHAPTER 2. MONTE CARLO TREE SEARCH

Further discussion on different criteria, and the reasons behind our choice
of using that particular one, can be found in Appendix A.2.

Conclusions

Once we understand how the MCTS algorithm works, the comments in Sec. 2.1
praising its adaptability should seem quite reasonable. For any game tree, we
require nothing other than a way to get the legal moves from a given position
and a way to extract the corresponding rewards from terminal nodes, and
MCTS will be able to learn to play the game without any other information
about the domain to be searched. It also has a very straightforward behavior
with its cycles, each iteration having a very similar time and resource cost to
the next.

There is also interesting discussion to be had about what should happen
to the tree in memory when one wants to use the MCTS algorithm for a later
turn after using it for a previous one. The advantages and disadvantages of
recycling or resetting the tree in memory are explored in Appendix A.4, as well
as proposing an alternative memory subtree recycling method which might be
interesting to study.

2.3 Benchmarking MCTS

Our implementation of MCTS [37] should, in principle, be able to play any
game as long as it has a way of obtaining a list of legal moves from positions
and rewards from leaf nodes. Tic-tac-toe, the two player game where the
players win by placing three of their marks lined up in vertical, horizontal or
diagonal on a 3×3 grid, is a simple yet not too trivial game, and a very typical
test for such game-playing algorithms. We test it here to see that MCTS is
working as intended before moving on to using it for quantum optimization.

To see that MCTS is able to properly learn this game, we present it with
various challenges: we first test the performance of the MCTS player against
a player that simply plays random moves in Figure 2.3, which it is able to
consistently beat or tie with ease, especially in the case that MCTS plays first.
We also made it play against a Minimax algorithm that looks at the entire tree
and plays the game perfectly in Figure 2.4. We found that MCTS plays at a
comparable level when running 500-600 cycles. Another very interesting and
common thing to test is to make MCTS play against another version of itself,
and to see whether the games become of higher level for a higher number of
MCTS cycles, which we confirm in Figure 2.5.

We also ran further tests where we gave the MCTS player a set of specific
prearranged positions and told it to choose the move that it would play in
such position, but to keep this section from becoming too lengthy, the results
can be found in Appendix A.1.

2.3. BENCHMARKING MCTS 19

Figure 2.3: MCTS plays tic-tac-toe against a completely random player. Re-
sults with varying number of MCTS cycles when MCTS plays second (left)
and first (right). This shows that the advantage of the player that plays first
is considerable, as the number of required simulations for perfect play goes
from around 80 MCTS cycles when playing first to around 200 when playing
second. Notice that no matter how much we increase the number of cycles,
MCTS is unlikely to win every game since the random player occasionally just
happens to play well and manages to score a tie, which is unavoidable.

Figure 2.4: MCTS plays tic-tac-toe against the perfect player (Minimax) that
we implemented. Results with varying number of MCTS cycles, where, be-
cause of the computational cost of running the Minimax algorithm, 50 games
were played per cycle number instead of 100. The Minimax player always
plays optimally, so that it is impossible to win against it, scoring a tie is the
best that can be done. The perfect player plays first, making this the hardest
possible challenge for MCTS.

20 CHAPTER 2. MONTE CARLO TREE SEARCH

(a) (b)

Figure 2.5: MCTS plays tic-tac-toe against itself. The grid shows different
numbers of cycles used, with 50 games played for each pixel. In (a) we display
the score defined as N(wins) − N(losses) for the MCTS player that plays
first. The players win more and lose less the more MCTS cycles they run in
comparison to their opponent’s number of cycles. When both players have a
high number of cycles, the scores get closer to zero as the games played are
of higher level and more games are tied. This also shows that player 1 (the
one who goes first) has a clear advantage over player 2, since, if the game was
more balanced, the color map would be more symmetric around the diagonal
where the number of cycles for both players are equal. (b) Shows that the
density of games that end in ties is significantly higher for the cases where
the players play with high numbers of MCTS cycles, indicating higher level
play as expected. Conversely, the games that end decisively are much more
common when the level of play is lower or there is a vast difference in playing
strength between the players.

With these very promising results, we move on to explaining the type of
challenging games that the MCTS algorithm will be faced with, starting with
Adiabatic Quantum Computation.

Chapter 3

Adiabatic Quantum
Computation (AQC)

In this chapter we study Adiabatic Quantum Computation, one of the cur-
rently realizable computational paradigms for quantum optimization, and its
experimental realization, Quantum Annealing. At the heart of any kind of
quantum analog simulation is the resemblance of the physical phenomenon
to be simulated to the simulating device; in a way, the device itself becomes
the system to be simulated. In the case of AQC, the quantum annealer simu-
lates a time dependent quantum mechanical system which evolves according
to adiabatic Schrödinger dynamics for a high enough evolution time, with the
objective of obtaining the complicated ground state of the system.

In Section 3.1 we build upon the explanations of the introductory Sec-
tion 1.1 by formulating Quantum Annealing in a more concrete way and
studying it further. In Section 3.2 we look more in-depth at the adiabatic
expansion, the mechanism which makes Quantum Annealing work, and we
test our findings in a simple Ising chain in Section 3.3. In the remaining sec-
tion Section 3.4, we discuss how Quantum Annealing path optimization can
be formulated as a board game, such that MCTS learns to play it and we test
it for the simple toy model.

3.1 Quantum Annealing (QA)

We have a Hamiltonian Htarget the ground state |Ψ0⟩ of which we are dying to
find. Either because we are intrigued by the low energy dynamics of the system
or because it would provide us with the result of a fascinating optimization
problem. First, for our convenience, as we saw that in classical optimization
Htarget will be made out of σz operators, we refer to the target Hamiltonian as
Hz from now on. Similarly, the driving HamiltonianHdriving will be nicknamed

21

22 CHAPTER 3. ADIABATIC QUANTUM COMPUTATION (AQC)

Hx, as it is conventionally chosen to be the transverse field Hamiltonian1

Hx = −
∑
j

σxj , (3.1)

where the index j on a Pauli operator indicates that it acts non-trivially only
on the jth spin. For the case of n spins we would have

σxj =

1︷︸︸︷
1 ⊗...⊗

j−1︷︸︸︷
1 ⊗

j︷︸︸︷
σx ⊗

j+1︷︸︸︷
1 ⊗...⊗

n︷︸︸︷
1︸ ︷︷ ︸

n

, (3.2)

with all of the operators on the right-hand side being 2 × 2 dimensional. In
Quantum Annealing the system is usually constructed by interpolating both
Hamiltonians as

H̃(t) = (1− f (t))Hx + f (t)Hz, (3.3)

where f(t) is a function f : [0, τ] → [0, 1] known as the annealing schedule2,
with τ being the total evolution time of the system —commonly referred to as
the annealing time. The most intuitive, albeit naive, schedule we can choose
is the linear schedule f(t) = t

τ , which brings the system from H̃(0) = Hx

to H̃(τ) = Hz at a constant rate. For most schedules we will still have that
f(0) = 0 and f(τ) = 1, such that H̃(t) starts from Hx and ends up at Hz,
even if the interpolation is not linear3.

The way to proceed with QA is to start the system in the easy-to-construct
ground state of (3.1) at t = 0, with all of the n spins lined up in the +x
direction

|ψ(0)⟩ = 1

2n/2

n⊗
j=1

(|↑⟩j + |↓⟩j). (3.4)

As the Hamiltonian changes with time, the evolution of the system will be
governed by the Schrödinger equation

i∂t |ψ(t)⟩ = H̃(t) |ψ(t)⟩ , (3.5)

such that after the evolution the system will end up in the state

|ψ(τ)⟩ = U(τ) |ψ(0)⟩ , U(τ) = T e−i
∫ τ
0 H̃(t′)dt′ , (3.6)

with T being the time-ordering operator. The idea is that we would like this
state to be as close as possible to the ground state of the target Hamiltonian,

1To see why there is often a minus sign in front, see [38].
2It is very common to use s(t) for the schedule instead [39]. Here we reserve the letter

s to represent the dimensionless time s = t/τ to avoid confusion, just as in [26].
3In fact, if this is not the case, it is impossible for the evolution to be adiabatic. Non-

adiabatic schedules of this kind are desirable in some cases, such as when the evolution
operator is discretized or some sort of digital bang-bang schedule is employed [39].

3.2. ADIABATIC PERTURBATION THEORY 23

⟨Ψ0|ψ(τ)⟩ → 1. Fortunately, this is guaranteed by the quantum adiabatic
theorem [40], which states that, provided the evolution time τ is long enough,
|ψ(τ)⟩ will end up arbitrarily close to |Ψ0⟩. As was mentioned in the introduc-
tory Chapter 1, the adiabatic theorem gives us the condition of the evolution
time τ being large enough as

τ ≫ max
j,t

{
ξj(t)

∆j(t)

}
, (3.7)

where ξj(t) is the matrix element of the time derivative of the Hamiltonian
(3.3) that connects the ground state and the jth excited state at time t, and
∆j(t) the energy difference between the ground state and the jth excited state
at t.

We now explore this condition in more depth to get some interesting and
useful results.

3.2 Adiabatic Perturbation Theory

We assume we have a Hamiltonian of the form (3.3), with the very important4

caveat that its time dependence always enters as t/τ . In this section we thus
work with the Hamiltonian written in terms of the dimensionless time parame-
ter s = t/τ , H̃(t) → H(s), with s ∈ [0, 1] being the only time dependence that
it has. Another way of stating the condition is that the Hamiltonian H̃(sτ)
must not explicitly depend on the total evolution time τ . This is the case for
most interpolated Hamiltonians in QA, and for all of the Hamiltonians we will
consider throughout this work.

The Schrödinger equation now gets an extra factor τ as

i∂s |ψ(s)⟩ = τH(s) |ψ(s)⟩ . (3.8)

We will be working with the instantaneous eigenstate basis {|εi(s)⟩}, the el-
ements of which satisfy the time-independent Schrödinger equation at every
time s during the evolution,

H(s) |εj(s)⟩ = εj(s) |εj(s)⟩ . (3.9)

It is also important to mention that we assume that the eigenvalues never
cross along the evolution path, such that, for all times and all j, we have
εj(s) ≤ εj+1(s); and, in the case of the ground state j = 0, there should be a
non-zero gap, ε0(s) < ε1(s). The only exception to this is that we can have a
degenerate ground state at s = 1, after the evolution.

4This ensures that there do not exist two different timescales during the evolution, which
can break adiabaticity even when (3.7) is met. See [41] to see an example of such a case.

24 CHAPTER 3. ADIABATIC QUANTUM COMPUTATION (AQC)

The underlying idea of this derivation will be to figure out how the system
changes for long evolution times if we are initially at the instantaneous ground
state |ψ(0)⟩ = |ε0(0)⟩. We can do so by performing an asymptotic expansion
of the coefficients of the instantaneous eigenstates in powers of 1/τ .

We first expand the state in the basis of the instantaneous eigenstates as

|ψ(s)⟩ =
∑
j

cj(s)e
−i

∫ t
0 ds

′εj(s′) |εj(s)⟩ . (3.10)

The exponential in this Ansatz, which corresponds to a quantity known as
the dynamical phase, is not strictly necessary, but is there for simplification
reasons. Inserting (3.10) into (3.8) gives the differential equation that the
cj(s) coefficients obey:

ċk(s) = −
∑
j

cj(s)e
−iτ

∫ s
0 ds

′(εk(s
′)−εj(s′)) ⟨εk(s)|ε̇j(s)⟩ , (3.11)

where the dot represents differentiation with respect to the dimensionless time
parameter s. We also acted from the left with another state ⟨εk(s)| and used
the orthonormality of the instantaneous eigenbasis. In order to proceed, we
should notice that we can rewrite the ⟨εk(s)|ε̇j(s)⟩ terms as

⟨εj(s)|ε̇k(s)⟩ =
⟨εj(s)|Ḣ(s)|εk(s)⟩
εk(s)− εj(s)

(3.12)

for j ̸= k, by differentiating (3.9) with respect to s. For the special j = k case,
we have that the overlap ⟨εj(s)|ε̇j(s)⟩ is a purely imaginary quantity, because

∂s (⟨εj(s)|εj(s)⟩) = ⟨εk(s)|ε̇j(s)⟩∗ + ⟨εk(s)|ε̇j(s)⟩ = 0, (3.13)

where the last equality comes from ⟨εj(s)|εj(s)⟩ = 1. We can also check that
if we add a time dependent phase to the instantaneous eigenstates |εj(s)⟩ →
eiγj(s) |εj(s)⟩, the overlap will transform by an imaginary amount,

⟨εj(s)|ε̇j(s)⟩ → iγ̇j(s) + ⟨εj(s)|ε̇j(s)⟩ . (3.14)

Therefore, since both terms in the right-hand side are imaginary, we can always
choose a basis such that the eigenstates are appropriately rotated to make
sure that for every j, ⟨εj(s)|ε̇j(s)⟩ = 0 holds. This is ensured with γj(s) =
i
∫ s
0 ds

′ ⟨εj(s′)|ε̇j(s′)⟩, known as the Berry phase5.
With these considerations, we may rewrite (3.11) as

ċk(s) =
∑
j ̸=k

cj(s)
Ajk(s)

∆jk(s)
eiτ

∫ s′
0 ds̃∆kj(s̃), (3.15)

5We could have also put this extra phase factor into the Ansatz itself in (3.10) to begin
with and arrive at the same result.

3.2. ADIABATIC PERTURBATION THEORY 25

where we have defined the energy difference ∆jk(s) ≡ εj(s) − εk(s), which
has absorbed the minus sign, and wrote the matrix elements of ∂sH(s) as
Ajk(s) ≡ ⟨εj(s)|∂sH(s)|εk(s)⟩. We integrate the last expression from an initial
time s′ = 0 to a time s′ = s to obtain

ck(s) = ck(0) +
∑
j ̸=k

∫ s

0
ds′cj(s

′)
Ajk(s

′)

∆jk(s′)
eiτ

∫ s′
0 ds̃∆jk(s̃). (3.16)

At this point, a way to qualitatively arrive at the adiabatic condition would
be to argue that, as one increases τ , the integral oscillates faster and faster
and the contribution from the second term becomes negligible, since the term
at the saddle-point j = k is not in the sum. From this it would immediately
follow that at high enough τ the coefficients of different levels do not mix and
that the system remains in the ground state for all times. We now see this in
slightly more detail.

Let us first consider an integral
∫
dxg(x)eiλf(x) for some functions f , g,

and a real number λ that we can tune, repeatedly integrating by parts gives∫
dxg(x)eiλf(x) = −i g(x)

λf ′(x)
eiλf(x) +O(λ−2). (3.17)

We can see all other terms are higher powers in 1/λ because in the integral that
remains after integrating by parts we have the eiλf(x) factor again, which after
each subsequent integration gives an extra λ−1 factor. Then, the condition
on the required largeness of λ to make this expansion valid and the integral
small due to the fast oscillations is |λ| ≫ |g(x)/f ′(x)|, as long as f ′ does not
become very small and g does not become very big at some point, and the
higher order terms behave nicely. This, applied to the integrals in (3.16), will
give us something close to the adiabatic criterion (3.7). After after saying

λ = τ , g(s) = cj(s)
Ajk(s)
∆jk(s)

and f ′(s) = ∆jk(s), by (3.17), we need

τ ≫
|Ajk(s)|
|∆2

jk(s)|
, (3.18)

which follows from the fact that |cj(s)|2 ≤ 1 and the multiplicativity of the
absolute value of complex numbers6 and the fact that τ > 0. This needs
to be true for every single j ̸= k in the sum of (3.16), but, as we will see,
there are some terms in that sum which are actually of the order O(τ−2) for
the case we are interested in. For that, consider the case where initially the
system is in the ground state, such that ck(0) = δk,0 (we could have chosen
any arbitrary phase), and, by recursively substituting the expression (3.16)
for the coefficient in the second term on the right-hand side of (3.16) itself,

6Even if they were only submultiplicative, like the operator norm, this analysis would
be valid, as we would instead get an upper bound on the condition.

26 CHAPTER 3. ADIABATIC QUANTUM COMPUTATION (AQC)

we see that each j except j = 0 gets an extra τ−1 factor, because they get
another integral! All of the terms in the new O(τ−1) sum except the j = 0
contribution vanish because of the Kronecker delta. Then, we have that c0(s)
has no first order correction, c0(s) = 1 + O(τ−2), while all the ck ̸=0(s) do,
ck ̸=0(s) = O(τ−1). We can calculate the τ−1 correction term explicitly by
integrating by parts just like before:

ck ̸=0(s) ∼
∫ s

0
ds′

A0k(s
′)

∆0k(s′)
eiτ

∫ s′
0 ds̃∆0k(s̃) +O(τ−2)

=
i

τ

[
A0k(0)

∆2
0k(0)

− A0k(s)

∆2
0k(s)

eiτ
∫ s
0 ds̃∆0k(s̃)

]
+O(τ−2),

(3.19)

where the extra term after integrating by parts has been ignored as it is
proportional to τ−2 as discussed. This is the adiabatic approximation to first
order. Now, if we say that the condition for the adiabatic approximation needs
to hold for all times, so that ck ̸=0(s) is, for all k, s, vanishing, we get to the
adiabatic condition

τ ≫
maxk,s {A0k(s)}
mink,s

{
∆2

0k(s)
} . (3.20)

As we will see in later chapters, it will be precisely the inverse-of-the-gap-
squared dependence that will make trying to achieve adiabatic evolution as
dictated by (3.20) unfeasible for many hard optimization problems.

With this analysis, we have also found how exactly the evolved state ap-
proaches the ground state: for all levels k ̸= 0, when we are in the adiabatic
regime, the residual energy εres = ⟨ψ(τ)|Hz|ψ(τ)⟩− ⟨Ψ0|Hz|Ψ0⟩ after the evo-
lution will vanish as τ−2; specifically, as the square of the modulus of the
leading-order term in (3.19). We will use this in the following section.

One could also calculate higher order corrections to the adiabatic solution
by computing more terms from (3.16); and, although not particularly relevant
for this work, this method has been used in fascinating ways to create improved
annealing schedules by making terms from the adiabatic expansion vanish by
choosing schedules with vanishing derivatives at the endpoints in [26].

But what happens in the case where we cannot say that we are in the
adiabatic regime?

Faster evolution regimes

When we evolve the system H(s) for an evolution time τ which does not
fulfill (3.20), possibly because there exists a very tight avoided gap crossing
along the evolution path making high enough τ values unfeasible, and the
evolution time is instead comparable to the inverse square of the gap τ ∼ A

∆2 ,
the previous analysis no longer applies. In this τ regime the evolution of the
system is governed by Landau-Zener theory [42, 43], which states that the
probability of excitation of the system to the first excited state after crossing

3.3. TOY MODEL: FLIPPING TWO SPINS WITH QA 27

the gap is

| ⟨ε1(s = 1)|ψ(s = 1)⟩ |2 ≈ e−τ
π∆2

4v , (3.21)

where v = ∂sf(s)|s=s∗ is the rate of change of the schedule at the gap minimum
time s∗. This is, in theory, only valid for two-level systems that evolve for
an infinite time. And although there exist ways to calculate the equivalent
expressions for more complicated systems [44], and finite times [45], many
systems can be remarkably well approximated by an effective two level system
near the avoided gap crossing, and the Landau-Zener formula (3.21) is often
employed to approximate the extent of the excitations [46, 47]. It is also
nice to notice that we even recover the inverse of the gap squared adiabatic
condition from the requirement that the exponent be small to minimize the
probability of excitations.

If we go to even lower τ , we enter a fast regime where the change of the
system happens so quickly that other mechanisms describe the dynamics. In
cases where the system is driven through a second order phase transition, we
can describe the residual energy as a function of the annealing time by a power
law via the Kibble-Zurek mechanism [48]. This is the case, for example, of
1-dimensional Ising chains with nearest neighbor interaction [49].

In the remaining sections of this chapter, we test quantum annealing in a
simple system. We first see that the behavior of the system agrees with our
analysis, and then move on to using MCTS for annealing path optimization.

3.3 Toy model: flipping two spins with QA

Before moving on to systems which represent hard optimization problems, we
check the results up to this point for a smaller-scale system with just two
spins.

The toy model

We consider the following target Hamiltonian:

Hz =
1

4
(3− σz1 − σz2 − σz1σ

z
2) , (3.22)

where the 3 is implicitly multiplying the identity matrix. In the σz basis it
has the form

Hz
.
=

0 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

 . (3.23)

The ground state of Hz corresponds to the state where both spins are pointing
up in the z-direction, |Ψ0⟩ = |↑↑⟩. We will try quantum annealing with this

28 CHAPTER 3. ADIABATIC QUANTUM COMPUTATION (AQC)

Figure 3.1: Quantum annealing for the simple model with two spins. The
system must adiabatically transition from an initial paramagnetic state to a
ferromagnetic one during the annealing process.

very simple system first. To that end, we choose the following —slightly
modified from (3.1)— driving Hamiltonian:

Hx =
1

2

∑
j

(
1− σxj

)
. (3.24)

The reason we choose this driving Hamiltonian is that it scales the energies
to coincide with the target Hamiltonian, i.e., it makes the ground state have
an energy of 0. Other than that, this changes nothing and the initial ground
state will still be of the form of (3.4). This choice and the reason of the
particular choice of the target Hamiltonian (3.22) should become more logical
after reading Chapter 4, where we discuss the type of optimization problems
we will be trying to solve in Chapter 5 and Chapter 6.

QA on the toy model

For now, we interpolate both the target and driving Hamiltonians with a linear
schedule, f(s) = s with s = t/τ ,

H̃(t) =

(
1− t

τ

)
Hx +

t

τ
Hz, (3.25)

and perform quantum annealing: we start from the ground state of (3.24) at
t = 0, let the system evolve according to (3.25), and implement a Schrödinger
evolution (3.8). To that end, we use the open-source QuTIP library [50], which
we will be using all throughout this work [37]. A schematic representation
of the annealing process is shown in Fig 3.1, and the instantaneous energy
landscape for our system is represented in Fig 3.4-(a).

3.3. TOY MODEL: FLIPPING TWO SPINS WITH QA 29

Figure 3.2: The coefficients of the instantaneous eigenstates after the evolution
up to first order in the adiabatic approximation for the toy model (3.25), valid
for τ large enough to be in the adiabatic regime. The modulus squared of the
j = 2 coefficient is the only one that oscillates. The reason for this is that for
all other coefficients, either Aj(0) or Aj(τ) is zero, which makes them lose the
oscillatory relative phase term when calculating the modulus squared. Instead,
c2(s) has nonzero values for both cases, which gives rise to the oscillatory
behavior proportional to cos(τ

∫
s∆j). This makes the coefficient oscillate

more and more as τ increases. The integral between j = 2 and the ground
state j = 0 (see Fig 3.4-(a)) was calculated numerically to be 0.872. The c0
term stays constant to this order.

Since this is a small system and we are using a linear schedule, which makes
∂sH(s) = Hz−Hx constant in time, the O(τ−1) term from adiabatic perturba-
tion theory, (3.19), can be computed explicitly for all ci, with i = 1, 2, 3, since,
as we saw, c0 ∼ 1 does not have a correction to this order, by computing the
matrix elements of the derivative of the interpolated Hamiltonian. We plot
these coefficients for different annealing times in Figure 3.2. Since we were
able to calculate all of the coefficients, we can predict how the energy should
approach the ground state energy (0, in our case) when τ is large enough such
that the first order adiabatic expansion is valid:

⟨ψ(τ)|Hz|ψ(τ)⟩ =
3∑
j=1

εj |cj |2 ∼
1

τ2

3∑
j=1

∣∣∣∣∣Aj0(0)

∆2
j0(0)

+
Aj0(τ)

∆2
j0(τ)

eiτ
∫ 1
0 ds∆j0(s)

∣∣∣∣∣
2

.

(3.26)
This can be seen, dashed gray line, along with the results from QA in Fig-
ure 3.3. In that same figure, we see that the annealing results do follow the
adiabatic behavior for high enough τ , and we even observe the oscillatory be-
havior of the residual energy in the QA results, as predicted by the adiabatic

30 CHAPTER 3. ADIABATIC QUANTUM COMPUTATION (AQC)

Figure 3.3: Results for QA with a linear schedule for the toy model (3.25).
The dashed curve is (3.26), the first order from adiabatic perturbation theory.
The dotted Landau-Zener curve follows (3.21) and simulates the probability
of transitioning to the first excited level after the gap minimum crossing. This
is an approximation that assumes that all the other possible transitions other
than to the first excited state are negligible, due to the higher energy gap.
The red vertical line marks the square of the inverse of the gap minimum,
which helps indicate the locations of the different regimes. As expected, the
LZ approximation is accurate around the vertical line, while the adiabatic
expansion agrees with QA in the adiabatic regime.

expansion in Fig. 3.2. In the non-adiabatic regime we observe that the residual
energy closely follows a Landau-Zener distribution, where the rate of change
of the system is proportional to τ−1, because of the linear annealing schedule.

We now move onto trying out MCTS for finding improved annealing paths
for the simple toy model (3.22).

3.4 MCTS plays the toy model

As was discussed in Chapter 2, MCTS works on trees, which require a discrete
search space by nature7. The way to proceed is then to express the schedule
in Ansatz form, with a set of discrete parameters that can be adjusted to tune
the path that the interpolated time-dependent system should follow. This will
make the path optimization problem a variational minimization problem. The
MCTS algorithm will then play a game where it has to choose said variational

7Interestingly, recent MCTS modifications exist that allow for continuous search space
optimization for some simple problems by using a progressive widening technique for the
MCTS algorithm [51].

3.4. MCTS PLAYS THE TOY MODEL 31

parameters out of a discrete set at each turn, and return an annealing schedule
after it is done.

Arguably, the most straightforward way of creating an Ansatz that can
characterize an annealing schedule is what we will call the discretized QA
schedule.

MCTS-guided discretized QA

Figure 3.4: Instantaneous eigenspectra of the toy model with a linear anneal-
ing schedule for different discretizations of the schedule. The interpolated
system has a minimum energy gap ∆ = 0.52 at t = 0.53τ . (a) Continuous
QA spectrum; (b) P = 3 discretized QA spectrum; (c) P = 10 discretized QA
spectrum.

In discretized QA we divide the continuous annealing schedule into P
segments, each with its corresponding length ∆tm and a constant value sm ∈
[0, 1]. The resulting time evolution operator that such a schedule will induce
will be the discretized version of the operator in (3.6),

Ustep(τ) =

←P∏
m

e−iH(sm)∆tm , (3.27)

where the arrow signifies that the exponentials at earlier times should go on
the right. This suffices to create a one-player board game for MCTS to play:
a game with P turns, where the mth turn consists of choosing the value for
sm out of b possible values between 0 and 1. P will thus be the depth of the
tree and b the branching factor, such that the tree representing the game will
contain exactly bP leaf nodes. We will select the choices for the schedule to
be evenly spaced as

sm ∈
{

1

2b
,
3

2b
,
5

2b
, ...,

2b− 1

2b

}
, (3.28)

32 CHAPTER 3. ADIABATIC QUANTUM COMPUTATION (AQC)

where b determines the number of available choices. The choice of the values
is such that it matches those of the discretized linear schedules in Figure 3.5,
with P = b steps.

Figure 3.5: Discretized linear schedules for different P . The value of s is
chosen to be the one at the midpoint of every time segment.

We will also choose to divide τ into segments with equal duration, ∆tj =
τ/P for all j = 1, ..., P ; and, with this, we are ready to start testing MCTS in
the context of quantum optimization.

The results for P = 3 and b = 20 can be found in Figure 3.6, where the
improvements of the MCTS path optimization can be seen to be meaningful.
MCTS improves upon the linear on every single case, and it is curious to look
at the schedules that it ends up choosing in Figure 3.6-(b): the higher the
annealing time, the more it seems to prefer to utilize schedules that are closer
to the linear solution, or that spend more time near the gap in an attempt
to minimize excitations. Whereas, for low annealing times it seems to favor
bang-bang type schedules. These can be intuitively understood as the system
trying to rotate the spins around the z-axis first by applying a unitary operator
with sm ∼ 1, and then bringing the system to the z-direction via a rotation
around x, with sm ∼ 0. All in all, the MCTS improves the results and the
choices it makes do make some physical sense.

We should note that we have no reason to believe that with just 200
MCTS simulations the results have converged to the global optimum in all
cases. MCTS is based on randomness, so it is normal for it to just do worse
sometimes, if it is unlucky and the random simulations guide it along a less-
than-optimal path in the first turn. Even then, we know that it will give good
paths in virtually all cases, as the paths it chooses will always have a high
chance of leading to regions with good-scoring values of the schedule sm. The
τ = 10 result is particularly interesting as it gives a worse energy than the
τ = 8 and τ = 9 ones. This is likely because at that point, the error from
the discretization starts to become significant, making the resulting energies

3.4. MCTS PLAYS THE TOY MODEL 33

(a)

(b)

Figure 3.6: Results of MCTS schedule optimization on the toy model in the
regime of τ < 10, where the error from the discretization is mostly under
control (see Sec. 3.4 and App. B.1). with P = 3, b = 20. MCTS ran for
200 cycles per turn. (a) MCTS and linear schedule energies of the P = 3
discretized schedule within the regime where the discretization error is not
significant. Linear energies correspond to those of the blue line in Fig. 3.7.
(b) Three example paths chosen by MCTS for different annealing times. The
gray dashed grid on the background represents the possible choices the MCTS
algorithm had available.

much more irregular, which makes MCTS struggle more than in other cases.
These kinds of behaviors will be discussed in the next section and, in a broader
sense, in later chapters.

These results allow us to make an extremely useful conclusion: even if
the annealing time τ is not high enough to ensure adiabaticity in a given

34 CHAPTER 3. ADIABATIC QUANTUM COMPUTATION (AQC)

regime, i.e., τ ≲ ∆−2, results can be significantly improved via annealing path
optimization around the Landau-Zener regime. Meaning that not all hope is
lost, even if the gap is very small, or closes very quickly with the system size
as will be the case with hard optimization problems, and MCTS might be an
appropriate tool for just that, which we will investigate in later chapters.

Putting a bound on the error

Before moving on, it is important to note a few things about the discrete
QA schedule that we chose in the last section. We should note that, when
discretizing the annealing schedule, the system cannot evolve smoothly any
longer because the system Hamiltonian (3.25) will change in P bumps instead,
as can be seen from its energy spectra in Figure 3.4-(b),(c). This means
that the evolution can no longer ever be truly adiabatic, and that a possibly
significant source of error has been introduced to the QA process. In this
subsection we will see if and how this error can be kept under control.

It is already known from (3.27) that in the P → ∞, ∆tm → 0 limit
we recover the continuous time evolution operator (3.6) by approximating
the ∆tm-weighed sum in the exponents by a time integral. But it is also
important8 to see whether the size of the overlap

| ⟨ψ(0)|U †(τ)Ustep(τ)|ψ(0)⟩ |, (3.29)

i.e., how much the discretized solution deviates from the continuous one, can
be made arbitrarily close to 1 with a reasonably-scaling choice of the dis-
cretized mesh size. The full proof where we attempt to put bounds on the
error has been relegated to Appendix B.1. Here we only very briefly summa-
rize the procedure and present the main results.

The idea is to find upper bounds for the operator norm (defined in Ap-
pendix B.3) of the difference of the two time evolution operators. By following
a similar, but more general, process to that in [52], we find that, for the case
with a discretized linear schedule like in Figure 3.5, we have

||U(τ)− Ustep(τ)|| ≤
√

poly(n)
2τ

P
, (3.30)

where poly(n) is a function that only contains terms which are polynomial in n,
which happens to be ||Hz−Hx|| in the case of a linear schedule. For the case of
a system like the toy model, we quickly find that we can bound the quantity as
||Hz−Hx|| ≤ 3n, where in our specific case, the size is n = 2. The upper bound
in (3.30) makes intuitive sense: as we increase the annealing time τ , each of
the P pieces of duration ∆t becomes larger, such that the approximation

8Furthermore, because of how related QAOA is to discretized QA, this discussion is also
very relevant for Chapter 6, and it is even a first step to proving the universality of QAOA,
as we will see.

3.4. MCTS PLAYS THE TOY MODEL 35

becomes more inaccurate. Therefore, with discretized annealing schedules
with P pieces, we get better results with increasing τ as expected, just like
with continuous schedules, because the process is more and more adiabatic.
This keeps happening until at one point, the error from the discretization
becomes unmanageable and the results no longer improve with increased τ .
We plot the results which confirm this for the toy model with different P in
Fig. 3.7.

Figure 3.7: Residual energy after QA for the toy model with linear schedules
with different number of discretization steps P . The higher the P , the longer
it agrees with continuous QA until it breaks for a high enough annealing time.

As we increase the annealing time within regimes where the error domi-
nates, we would expect some sort of pseudo-periodic behavior of the energy
as the high size of the ∆t in (3.27) introduces phases larger than 2π. In
Appendix B.1 the procedure is outlined for more general schedules. We also
check with the toy model that we should choose a P proportional to τ so as
to properly approximate the time evolution of continuous QA (Fig B.1).

With this it should become clearer why the MCTS results in Fig 3.6a only
went up to τ = 10, as the error becomes as high as the residual energy after
that point. The truth is that we will see later that the game that MCTS plays
seems to become harder once we approach the edges of the Landau Zener
regime, or when some other effects such as the discretization error come into
play. This warrants a higher number of MCTS simulations for those cases or
some other kinds of modifications, which will be mentioned and discussed in
later chapters.

Chapter 4

The 3-Satisfiability problem

In this short chapter, we briefly discuss the combinatorial optimization prob-
lem we will be solving in subsequent chapters. Our problem of choice will be
3-SAT or 3-Satisfiability. In Section 4.1 we introduce the general k-SAT opti-
mization problem and in Section 4.2 we explore a way to encode the problem
into a quantum Hamiltonian.

4.1 Description of k-SAT

Before formulating the k-SAT problem, some definitions are in order. A
boolean variable or a bit, which we represent with x, is an object that can
only take two values, TRUE or FALSE. Such variables can be subjected to
three kinds of basic operations: conjunction, represented by ∧ (AND); dis-
junction, represented by ∨ (OR); negation, represented by ¬ (NOT). These
three operations can be used as a basis to create more complicated opera-
tions1. A boolean statement or a logical statement is a function φ(x) of n
bits x = {x1, ..., xn}, which combines them with the operations that were just
mentioned. Thus, the boolean statement takes an n-bit-long string of bits and
spits out a truth value. We will be looking for the particular assignment of
bits x∗ that satisfies the statement, such that φ(x∗) = TRUE, but for some
statements with a very specific form.

The k-Satisfiability or k-SAT problem deals with logical statements that
are said to be in k Conjunctive Normal Form2 (kCNF). A kCNF formula has
a very particular structure: it is made up of m clauses separated by AND
operations, where each clause is made up of k different bits separated by OR

1For example, an Exclusive OR operation between two bits x1, x2 can be written as
(x1 ∧ ¬x2) ∨ (¬x1 ∧ x2).

2Also known as clausal normal form.

37

38 CHAPTER 4. THE 3-SATISFIABILITY PROBLEM

operations:

φ =
m∧
i=1

Ci, Ci = li1 ∨ li2 ∨ ... ∨ lik , (4.1)

where each of the lik is a literal of a bit (either the bit itself or its negation,
li ∈ {xi,¬xi}) among the n bits in the problem. Every single logical statement
can be rewritten as a CNF formula3.

Note that it requires O(km) steps to check the validity of a solution, which
means that k-SAT is in NP, as an answer can be checked in polynomial time in
the problem size. The k = 1 case is trivial, as it suffices to check whether a bit
and its negation are simultaneously in the logical statement to know that it is
unsatisfiable, and it is satisfiable in all other cases, which means that 1-SAT
is in P. The k = 2 case is a very well known case which also happens to be in
P, but is harder to prove [20]. It is for k > 2 that the satisfiability problem
starts to be very difficult and, from a computational viewpoint, interesting.
In particular, 3-SAT is the first problem that was proven to be NP-complete,
so that an algorithm that can solve 3-SAT in polynomial time would imply
P = NP. In fact, it is often considered to be the NP-complete problem, and
it is used to create most proofs for the NP-completeness of other problems in
NP [53]. 3-SAT has an immense number of real-life applications as it is a type
of problem that comes up in many planning problems, artificial intelligence,
software-verification and much more [54, 53].

The difficulty of a 3-SAT problem can be roughly characterized by its
α ≡ m/n clause to variable ratio. There exists a regime where, if one starts
checking a high number of random 3-SAT problems, they start getting very
difficult, which seems to happen for α in a small region around the critical
value αc ∼ 4.2. This is a well-known phase transition [55] represented in
Figure 4.1.

3-SAT (and any k-SAT problem) has both an NP-complete decision version
which asks whether there exists an assignment x∗ that makes φ(x∗) = TRUE
or not, where it is enough to find one assignment that satisfies the statement
to solve the problem. And an NP-hard optimization version (known as MAX
3-SAT by computer scientists) which asks for the one assignment that violates
the least amount of clauses, even when no assignment exists that satisfies φ.
This is not really consequential for this work so we will not give too much
importance to it; however, it is probably not harmful for us to know that
we will technically be doing MAX 3-SAT instead of 3-SAT, which will be
especially obvious in the case of QAOA, where, as we will see, the Ansatz can
be surprisingly limiting for shallow depths.

3In a few cases, it is necessary to introduce new bits so that the size of the CNF statement
with respect to the initial statement does not increase exponentially. Still, the equivalence
of both statements is always kept, such that a solution for any one implies a solution for
both.

4.2. ENCODING A K-SAT INSTANCE INTO THE TARGET
HAMILTONIAN 39

Figure 4.1: The phase transition for random 3-SAT instances. There exist
three different regimes: for low α, before the phase transition, there are many
variables n and very few clauses m, so that there is a high chance that most
assignments satisfy the expression, making 3-SAT generally easy. For high
α, after the transition, there are many clauses setting restrictions for a low
number of bits, such that the problem instances have a very high chance of not
containing a successful assignment, which also makes 3-SAT generally easy to
solve. It is around the critical αc that problems really become computationally
hard. Figure taken from [56].

There is a surplus of other interesting properties of 3-SAT [56, 20], but they
go way beyond the scope of this work. Suffice it to say that it is instances
of such problems that we will be trying to solve in the subsequent chapters.
However, we should mention that we will not be dealing with the 3-SAT
problem in its logical statement form in most cases, but it will be converted
into a quantum Hamiltonian, with the solution encoded in its ground state.
We now briefly go over how we can go from a general satisfiability kCNF
statement to its equivalent Hamiltonian.

4.2 Encoding a k-SAT instance into the target Hamil-
tonian

We mentioned in Chapter 1 that many NP-hard and NP-Complete combina-
torial optimization problems can be formulated as Hamiltonians, where some
of the most well known ones can be found in [22]. The satisfiability problem
is unsurprisingly no exception.

In this section we see how a particular k-SAT problem statement can be

40 CHAPTER 4. THE 3-SATISFIABILITY PROBLEM

put into quantum Hamiltonian form, with the solution encoded in its ground
state, as required by the quantum optimization methods that we are working
with. The idea is for each energy eigenstate to represent a particular string of
bits, where its energy tells us the quality of the answer, i.e., the more wrong
an answer the higher its corresponding energy.

To build such a Hamiltonian, we first look at an individual boolean vari-
able x ∈ {TRUE,FALSE} and see how we could represent it as a quantum
operator. We need an operator whose eigenvalues correspond to the two pos-
sible truth values of x. The most obvious candidate to build such an operator
is of course σz, where the two spin orientations along the z axis represent the
two truth values of x. If we chose |↑⟩ to be TRUE and |↓⟩ to be FALSE, we
can re-scale the Pauli operator as

x̂ =
1

2
(1− σz)

.
=

(
0 0
0 1

)
, (4.2)

where the hat on top of x̂ is there to signify that it is now a quantum operator.
If the logical statement was the bit itself, φ(x) = x, (4.2) would represent the
corresponding 1-SAT problem instance, i.e., an energy of 1 if the spin points
down, which corresponds to x being FALSE, and 0 energy for the solution in
which x is TRUE. If we instead had the negation of x, φ(x) = ¬x, we would
need to swap the energies in the diagonal by changing the sign of σz,

¬x̂ =
1

2
(1+ σz)

.
=

(
1 0
0 0

)
, (4.3)

so that now the x = FALSE solution is the lowest energy state. Now that
we know how an individual bit can be represented, we move onto one entire
disjunctive clause, such as the ones in (4.1). An individual clause in k-SAT is
a disjunction of k literals, such that the clause evaluates to TRUE only if at
least one of the literals in the clause does. The key insight here is that in our
representations of bits (4.2), 0 energy represents a TRUE literal and an energy
of 1 a FALSE one, which is the opposite of the values that one generally uses
to represent truth values. Because of this, if 0 →TRUE, 1 →FALSE, the OR
algebra between bits naturally arises from multiplication of operators of the
form (4.2) and (4.3), scaled up to the required number of dimensions. Meaning
that we can write a general individual clause C of k bits as a Hamiltonian by
multiplying the corresponding literal operators

C = l1∨l2∨...∨lk → Ĉ = l̂1∨ l̂2∨...∨ l̂k =
1

2k
(1∓σz1)(1∓σz2)...(1∓σzk), (4.4)

where we choose the plus in cases where the particular literal involves a nega-
tion and the minus when it involves the bit itself. In this way, the resulting
diagonal operator Ĉ from (4.4) will contain all of the possible bit configura-
tions in its diagonal: the 0s in the diagonal will correspond to assignments that

4.2. ENCODING A K-SAT INSTANCE INTO THE TARGET
HAMILTONIAN 41

satisfy at least one of the literals in the clause, and thus the clause, whereas
the 1s in the diagonal will coincide with the assignments that fail to satisfy
the clause as all literals within it evaluate to FALSE4.

The last step to building a Hamiltonian for a Conjunctive Normal Form
expression is to form the conjunction of all clauses in the expression. This
can be done very naturally by simply summing over all clause operators (4.4).
For a statement with n different bits in m clauses containing k bits each, the
equivalent quantum Hamiltonian is

φ(x) =

m∧
i=1

Ci → Ĥ =

m∑
i=1

Ĉi. (4.5)

Each term in the sum is at most a k-body operator which acts trivially on the
other n− k bits. After performing the sum, the contributions from all clauses
come together, such that the energy of each configuration indicates the number
of clauses it violates. The ground state(s) is (are) the bit-string(s) that satisfy
the whole expression; or alternatively, the assignments that satisfy the most
amount of clauses. This makes this usable for both the NP-complete decision
version of the satisfiability problem, and the NP-hard optimization version —
unless, of course, we are dealing with 1-SAT, MAX 1-SAT, or 2-SAT, which
are in P5.

In practice, it is possible that, if one wants to solve 3-SAT instances on an
actual quantum annealer, the k-body connectivity might not be available. In
those cases, other more complicated ways are required in order to express the
3-SAT instance as the appropriate type of Hamiltonian [22].

Toy model Hamiltonian

The form of the target Hamiltonian (3.22) we chose for the simple toy model
from the previous Chapter 3 was no coincidence. It was a Hamiltonian that
was created following the procedure that was just explained for a satisfiability
expression with n = 2. Let us take a look at the following 2-SAT expression:

φ(x1, x2) = (x1 ∨ x2) ∧ (¬x1 ∨ x2) ∧ (x1 ∨ ¬x2). (4.6)

This simple expression is satisfied by both bits being set to TRUE. By writing
the operator of the first clause, we find (x1 ∨ x2) → diag[0, 0, 0, 1] in the σz

basis, which gives a nonzero energy for the assignment x1 = x2 = FALSE, as
required. Each of the other clauses will similarly introduce energy costs to
the corresponding assignments, such that only the solution will be left with

4One might think that we have lost information in this process, as we do not keep track
of the individual literal evaluations, but this is irrelevant for k-SAT as it is always sufficient
to consider the evaluations at clause-level only.

5Interestingly, MAX 2-SAT is NP-hard.

42 CHAPTER 4. THE 3-SATISFIABILITY PROBLEM

0 energy as we saw in (3.23). We can easily check that the operator built
according to (4.4) and (4.5),

Hz =
1

4
[(1− σz1)(1− σz2) + (1+ σz1)(1− σz2) + (1− σz1)(1+ σz2)] , (4.7)

evaluates to (3.22).

As a last note, this same procedure can also be used to create non quantum
Hamiltonians. It suffices to use classical spin variables si ∈ {1,−1} instead
of σzi operators. Building such energy functions could be a first step to solv-
ing k-SAT with classical energy minimization algorithms such as Simulated
Annealing, which was mentioned in Chapter 1.1. This is also a nice way to
appreciate the reason why all target Hamiltonians for classical combinato-
rial optimization can be made to be diagonal in the σz basis, as they always
originate from classical Hamiltonians.

Chapter 5

MCTS-guided Quantum
Annealing to solve 3-SAT

In this chapter we test MCTS as a tool to optimize QA schedules for hard
combinatorial optimization problems. In Section 5.1 we take a look at the
particular Ansatz we will be using for the annealing schedule, and thus, the
game that MCTS will need to play. In Section 5.2 we see how the MCTS
does for various instances of 3-SAT, and in Section 5.3 we look at some results
in more detail. Lastly, we briefly explore the behavior of MCTS in noisy
environments in Section 5.4.

5.1 Fourier gamemode

The discretized schedule (3.28), which we used for the toy model, is far from
being the only (or the best) possible Ansatz for the annealing schedule.

Another interesting Ansatz for characterizing annealing schedules, pro-
posed in [57], can be obtained by performing a Fourier series expansion around
the linear schedule f(s) = s as

f(t/τ,B) =
t

τ
+

P∑
k=1

Bk sin

(
kπt

τ

)
, (5.1)

where this time the game will consist on selecting P Fourier coefficients B =
{B1, ..., BP }. Notice that if the same discretization for b choices is used for
the Fourier coefficients as for the discretized schedule values sm, the size of
the tree will be the same as the discrete gamemode for an equivalent depth
P . However, this Fourier gamemode has the advantage over the discretized
schedule (3.28) that the schedule is continuous, which lets us forget about the
discretization error. This means that with an schedule such as (5.1) we may
increase τ as much as we would like without ever worrying about breaking the
QA energy evaluations.

43

44
CHAPTER 5. MCTS-GUIDED QUANTUM ANNEALING TO SOLVE

3-SAT

Figure 5.1: A number of annealing schedules f(s) suggested by MCTS with
P = 5 Fourier components.

Nevertheless, we should not conclude that an annealing path of the form
(5.1) is always better than the discretized one. In fact, as we will see in
subsequent sections of this chapter, we should make known that the Fourier
coefficient optimization is probably not the absolute best way to approach
annealing path optimization1, and that is not to say that it is particularly
terrible either. But this is not something that should worry us at all. The
point of this chapter, and even that of this entire thesis, is not to provide some
optimal control schedules for QA which are undoubtedly better than anything
else. We merely want to see how the MCTS algorithm can hold itself with
the particular problems that we confront it with. In the case of the Fourier
gamemode, we let it adjust some Fourier coefficients around the linear solution
and see how well it is able to do within the limitations of the Ansatz.

Notice that the time dependence still enters as the dimensionless time pa-
rameter s = t/τ for the Fourier Ansatz, meaning that the adiabatic condition
still holds for Hamiltonians that are interpolated by these kinds of schedules.

5.2 Results on 3-SAT instances

We will run MCTS QA on 18 different problem instances of 11-bit 3-SAT
with α = 3, i.e., with 33 clauses per instance. All of the problems we will be
dealing with are designed such that they all have one non-degenerate ground
state with 0 energy, meaning each of them is solvable by the corresponding
unique bit string that satisfies every single clause within the logical 3CNF
statement.

1Likely an improved version of the Ansatz could be devised by basing it on the Chopped
Random Basis (CRAB) Ansatz [58], in which the basis functions are randomized.

5.2. RESULTS ON 3-SAT INSTANCES 45

Figure 5.2: Energies of the final evolved state with a linear schedule (orange)
and a MCTS-optimized schedule (blue) for 18 instances of n = 11 and m = 33
3-SAT problems. The MCTS algorithm ran for 200 cycles per turn for a game
with P = 5 Fourier components per instance. Each Fourier component had
to be chosen from a set of b = 40 discretized values in [-0.2, 0.2]. The reason
of choosing this particular range of values is to compare the performance of
our algorithm to that of [57].

The main results can be found in Figure 5.2, where the performance of
MCTS with a remarkably low number of simulation counts builds Fourier
schedules of the type (5.1) with P = 5, and the energies are compared to the
results obtained using a linear annealing schedule. The standard deviation
of the energies across the instances is large because the 18 instances present
very large differences in difficulty. This can be observed much more clearly
in Figure 5.3, where all individual instance results are shown. The measured
energy gap minima between the ground state and the first excited state range
between 0.02 for instance 1, to 0.17 for instance 16. This makes the inverses
of their squares significantly different. As such, the linear schedule struggles
in the τ range under consideration only for some instances, which happen
to be the ones where, in general, the MCTS improves the results the most.
Because of the low number of simulations used, MCTS does occasionally fail
to improve the results in some cases. But notice that we did not increase the
number of simulations per turn from the 200 used for the model with 2 spins
in Chapter 3.3, when now, apart from the problem being much harder, the

46
CHAPTER 5. MCTS-GUIDED QUANTUM ANNEALING TO SOLVE

3-SAT

whole game tree has a much higher size of 405 ∼ 108 leaf nodes2. If one wanted
the results to be better, that could be easily achieved by simply increasing the
number of simulations. But there is also a lot of value in seeing that we can
get very decent results for cases where a small number of calls to the annealing
function were performed. Even so, our results are comparable to those in [57].

Figure 5.3: Individual linear (orange) and MCTS with 200 cycles per turn
(blue) results for the 18 instances of 11-bit 3-SAT problems. Fig. 5.2 cor-
responds to the average of all problem instances of this Figure. This shows
the clear disparity between different instances, some of them being consider-
ably easier than others. These figures also display the randomness inherent
to MCTS, as its results are much more irregular than the linear ones. We
observed a similar behavior for the simpler model in Chapter 3.3.

2Our algorithm with Nsim = 200 MCTS cycles per turn will only visit NsimP − (Nsim −
b) = 840 leaf nodes for each instance, out of the bP ∼ 108 existing ones, and the number of
unique leaf nodes is likely much lower, as many of them will repeat, especially in later turns!

5.3. WHAT MCTS IS DOING: A CLOSER LOOK AT SOME RESULTS47

5.3 What MCTS is doing: a closer look at some
results

By looking at the energies of the final state after the QA evolution we do not
really see how the MCTS algorithm is achieving the better results. In this
section we look at a few examples to better illustrate what MCTS is doing.

We first focus on the instance with the smallest gap minimum out of the
set of 18 problems, instance 1. Unsurprisingly, this is the instance in which the
simple linear schedule struggles the most as can be seen in Figure 5.3. We can
explicitly confirm that the unwanted excitations within the linear evolution
are due to the gap crossing by diagonalizing the instantaneous Hamiltonian
H(s) at various times along the evolution path. We do so for two different
annealing times in Figure 5.4-(a), where we see that until the gap minimum,
the system was extremely close to the instantaneous ground state at all times,
and it was precisely during the gap crossing that the unwanted deviation from
the ground state happened. The lower annealing time achieves an even worse
result as the gap is crossed at a higher rate of change, given by τ−1 for the
linear schedule.

We then look at the two fundamentally different schedules that the MCTS
algorithm comes up with to improve the results for instance 1, in Figure 5.4-
(b). The schedule for τ = 300 slows down at the gap minimum, which signifi-
cantly reduces the excitations after the crossing as can be seen in Figure 5.4-
(c), whereas, for a lower annealing time of τ = 60, it chooses an entirely
different schedule, which intentionally causes excitations and uses the excited
levels as an alternative diabatic path. By crossing a gap minimum quickly, it
makes sure that the probability for excitation is high, and it even utilizes the
gap between the first and the second excited states to excite itself into the sec-
ond excited level and thus partly avoid the gap between the ground state and
the first excited state. By trying to make the first excited state as populated
as possible before the very last quick crossing, it has some chance of ending
in the ground state at the end. This agrees with the general behavior that
was observed for the toy model schedules in Fig 3.6b, where it would choose
non-adiabatic schedules for lower annealing times. We find that, in general,
while slow and steady wins the race when we are closer to or slightly below
the Landau-Zener regime τ ∼ ∆−2, fast and erratic schedules are preferable,
for a lack of a better option, for regimes of lower τ .

Figure 5.5 shows another example of each type of annealing schedule, where
the results of MCTS paths give particularly good energies and improvements
over the linear schedule. As we increase the number of MCTS cycles, we
expect the algorithm to find many more such paths.

48
CHAPTER 5. MCTS-GUIDED QUANTUM ANNEALING TO SOLVE

3-SAT

Figure 5.4: Results for the hardest 11-bit 3-SAT instance (∆min = 0.028) in
more detail. In (a) we represent the instantaneous eigenvalues of the system
with a linear interpolation of Hamiltonians by the dashed gray lines. We also
represent the instantaneous energy of the system during the evolution for two
different evolution times τ = 300 (blue) and τ = 60 (orange). As expected,
the lower τ evolution has more losses due to excitations and achieves a worse
energy. The dotted lines correspond to the expectation value of the target
Hamiltonian Hz on the instantaneous states for the corresponding τ . (b)
shows two choices of annealing schedules for solving instance 1 by MCTS for
τ = 300 (blue) and τ = 60 (orange), and the dashed red line corresponds to
the approximate location of the gap minimum. The blue path slows down
near the gap, while the orange one crosses it various times without slowing
down. These correspond to two different strategies that MCTS employs. (c)
and (d) are equivalent to (a) but with the corresponding schedules from (b):
the one in (c) tries to minimize loses by slowing down near the gap, and (d)
employs a non-adiabatic path to get an approximate result.

5.4. THE NOISY CASE 49

Figure 5.5: Two more examples of state evolutions along MCTS-designed
annealing schedules. (a) MCTS took an already well scoring instance (⟨Hz⟩ =
0.012 at t = τ with a linear schedule) and further improved it to ⟨Hz⟩ = 0.002
at t = τ by slowing down near the gap. Notice the eigenvalues take negative
values, as MCTS chooses a schedule higher than 1 and lower than 0 near the
endpoints, which allows it to slowdown for longer. (b) deals with one of the
instances with a smaller gap, it scores an energy of ⟨Hz⟩ = 0.119 at t = τ
while the linear scores ⟨Hz⟩ = 0.651 at t = τ .

5.4 The noisy case

We conclude the analysis of Quantum Annealing with a brief look at one of the
other postulated advantages of MCTS, especially relevant over gradient-based
optimization algorithms: its ability to efficiently navigate noisy environments.
For that we introduce a noisy component within the reward evaluations during
the rollout stages of the MCTS cycle, such that the scores that the MCTS is
dealing with are not the real energies of those paths. Every time the MCTS
algorithm needs to evaluate a path B, we add an extra Gaussian noise term,
which serves as a way to simulate the various uncertainties that we would
encounter in a real-life experiment [59].

In Figure 5.6 we see the very promising results for one example 7-bit 3-
SAT instance with m = 3n clauses in which MCTS is able to stay very close
to the performance of the noiseless case, even for very strong noise. The
two highest noise strengths are even larger than the gap minimum of the
instance. We notice that in some cases, especially with high noise strengths
and faster annealing times, MCTS can be fooled by the noise and fail to
deliver the expected performance. We found that by restarting the MCTS
search, we could find a game where it does well within 10 games in every case.
In Appendix C we extend this noise-resilience analysis slightly by considering
another type of noise.

50
CHAPTER 5. MCTS-GUIDED QUANTUM ANNEALING TO SOLVE

3-SAT

Figure 5.6: Resulting energies of MCTS in a noisy reward environment. (Top)
average energies over 10 games with Gaussian noise for different annealing
times and noise strengths. The annealing schedules that MCTS obtained
came from information it obtained from the noisy landscape alone, and the
energies in these figures are calculated with no noise with the paths that
MCTS returned. (Bottom) minimum energies out of the 10 games. It is
interesting that we could see that a gradient-based search could not converge
even with the smallest noise strength considered in this figure. The energy
gap is ∆ = 0.18 for the 3-SAT instance under consideration.

It would be very interesting to compare MCTS in a noisy environment
with other gradient-free methods. This is left as a topic of future research.

Chapter 6

Quantum Approximate
Optimization Algorithm
(QAOA)

In this chapter we explore the remaining paradigm of near-term quantum
algorithms by choosing the most relevant Variational Quantum Algorithm
(VQA) for our use case. The Quantum Approximate Optimization Algorithm
(QAOA), first proposed in [11], is a VQA that aims to provide approximate
solutions to combinatorial optimization problems. It is one of the most promis-
ing algorithms to obtain some sort of quantum advantage on current quantum
hardware [60]. We implement QAOA and see how our Monte Carlo Tree
Search fares in this new context.

In Section 6.1 we go over what QAOA is and how it works. We then
combine it with MCTS and see it in action for the toy model in Section 6.2.
The remaining sections are devoted to doing the same for 3-SAT instances
(Section 6.3), and the intriguing discussions and proposals that spring from
those results (Section 6.4).

6.1 Theory

At its core, the Quantum Approximate Optimization Algorithm or QAOA is
another way of obtaining the ground state of the target Hamiltonian Hz

1. As
we will see, it is curiously inspired by Quantum Annealing from Chapter 3.1;
but, as a VQA, it is fundamentally a different kind of approach to the problem.
Instead of adiabatically evolving the system according to some annealing path,
QAOA is much more comparable to conventional optimization, where a cost
function is minimized. In this case, a quantum device assists the optimizer

1We will keep using the same notation as before: Hz for the target Hamiltonian and Hx

for the driving Hamiltonian. Keep in mind that in QAOA it is also usual to refer to them
as the cost Hamiltonian HC and the mixer Hamiltonian HB , respectively.

51

52
CHAPTER 6. QUANTUM APPROXIMATE OPTIMIZATION

ALGORITHM (QAOA)

with the evaluations of the cost function that are required in the minimization
process.

Like in all VQAs, in QAOA we have a cost function that depends on some
variational parameters θ. For QAOA the cost function corresponds to the
expectation value of the target Hamiltonian that encodes our combinatorial
optimization problem,

C(θ) = ⟨ψ0|U †(θ)HzU(θ)|ψ0⟩ , (6.1)

with |ψ0⟩ being the initial state we defined in (3.4). The unitary Ansatz U(θ)
is the parameterized quantum circuit that the classical subroutine needs to
optimize by by adjusting its variational parameters. We now look at said
unitary Ansatz for the case of QAOA.

The QAOA Ansatz

Figure 6.1: Schematic representation of QAOA. Figure adapted from [61].

The reason we are discussing QAOA only after Adiabatic Quantum Com-
puting is that QAOA can be formulated in a way that is much more straight-
forward to grasp once one understands Quantum Annealing (QA). This is be-
cause the QAOA Ansatz U(θ) is heavily inspired by QA. The starting point
to derive the QAOA Ansatz is the discretized QA time evolution operator
(3.27), which was obtained by dividing the time into P segments wherein the
time-dependent QA Hamiltonian (3.3) was taken to be constant. We rewrite
the product of discretized unitaries here:

Ustep =

←P∏
m=1

e−iH(sm)∆tm . (6.2)

6.1. THEORY 53

The only required further simplification to get to the QAOA unitary is to split
the exponential into two as

e−iH(sm)∆tm → e−i(1−sm)Hx∆tme−ismHz∆tm , (6.3)

where the error after this operation, known as Trotter-splitting, is of the order
O(∆t2m) for each m [62]. In Appendix B we more carefully study the errors of
going from the QA time evolution operator to the QAOA one. We may now
define the so called QAOA parameters as

βm = (1− sm)∆tm, γm = sm∆tm, (6.4)

such that we have two separate kinds of unitaries: one which contains the
combinatorial optimization problem to be solved, which we adjust with the
real parameter γ and the other which entangles all the spins, tuned by the
other real parameter β. Thus, QAOA is nothing but the generalized version of
Trotterized discretized QA, where we have more freedom in both parameters
in the exponentials, as they are not bound to each other by the annealing path
like in the case of QA. The unitary ansatz for a depth P takes the form

U(γ,β) = e−iβPHxe−iγPHz ...e−iβ1Hxe−iγ1Hz , (6.5)

which lets us construct the parameterized state as

|ψP (γ,β)⟩ = U(γ,β) |ψ0⟩ , (6.6)

where |ψ0⟩ corresponds to the ground state of Hx, (3.4). With this we can al-
ready define the cost function for a depth P with respect to the 2P variational
parameters C(θ) = EP (γ,β) as

EP (γ,β) = ⟨ψP (γ,β)|Hz|ψP (γ,β)⟩ . (6.7)

This Ansatz is known to be universal [60]. The goal in QAOA is to find the
optimal set of QAOA parameters

(γ∗,β∗) = argmin
(γ,β)

EP (γ,β), (6.8)

which is done with the help of a classical optimizer as depicted in Figure 6.1.
As was mentioned in the introductory chapter, the real potential of this quan-
tum/classical hybrid framework lies in the fact that the classical optimizer
only deals with the optimization of 2P parameters, while only the quantum
circuit deals with the immense 2n dimensional Hilbert space. Nevertheless,
the minimization in the 2P -dimensional parameter space is a highly non-
trivial task [8]. The existence of a large number of sub-optimal local minima
and barren plateaus can make them very arduous to navigate [24]. For the
most common gradient-based minimization approaches, the former makes it

54
CHAPTER 6. QUANTUM APPROXIMATE OPTIMIZATION

ALGORITHM (QAOA)

extremely important to be able to find good initial parameters close to the
global minimum [63, 64], so as not to get trapped in local minima, while the
latter further hinders the job of the optimizer as it encounters flat regions in
which the vanishing gradient is unable to guide the search.

Finding ways to traverse these complicated landscapes is thus a topic of
great interest [65, 8, 5]. In the following section we test how the MCTS
algorithm does in this context to see its strengths and shortcomings, and
whether it could be a helpful tool to be used in this context.

6.2 MCTS-optimized QAOA on the toy model

We first very quickly test MCTS on the toy model (3.22) presented in Chap-
ter 3.3, so as to get an idea of how the QAOA game functions. The task of
MCTS is now to choose the QAOA parameters. The way we formulate the
game for QAOA is the following: the game has 2P turns, at each odd turn the
player must choose a value for the corresponding γ parameter, and the same
happens for the parameter β in the even turns. Each parameter is chosen out
of a selection of b discretized values. Every time the MCTS algorithm gets to
the rollout stage (see Chapter 2.2), it chooses a set of parameters, at which
point the initial state can be evolved according to them and the cost function
evaluated. The reward obtained in the rollout can be related to the energy
of the final state (6.7) by possibly manipulating it in one of the ways out-
lined in Appendix A.3. The search space will contain exactly b2P leaf-nodes
in this case. The scaling is worse than in the case of discretized QA, because
now for every step we need to choose two parameters instead of one, which

Figure 6.2: QAOA results on the toy model up to P = 4. With b = 20 values
in [0, 2π] for the parameters, for a similar search space to the one for QA in
Chapter 3.3. With 400 MCTS cycles per turn for P > 1, and 50 for P = 1.

6.2. MCTS-OPTIMIZED QAOA ON THE TOY MODEL 55

is the price to pay for the extra freedom of QAOA. In Figure 6.2 we can see
how the MCTS algorithm did for some shallow depths with a less-than-ideal
discretization2.

Figure 6.3: MCTS-optimized QAOA and QA results for the toy model. The
equivalent discretized annealing times have been calculated with (6.9). This
way we can compare the QAOA results to the equivalent τ regime for dis-
cretized QA for the same system. The solid gray line corresponds to the
linear continuous annealing energy, whereas the gray squares are the MCTS-
optimized discretized QA results, i.e., the ones in Fig. 3.6a. The P = 1 and
P = 2 solutions seem to be on par with the QA results, as they are at or be-
low the MCTS line. The other two, although we do not have MCTS QA data
for those τ values (because the discretization error forbade us from exploring
them), are likely not at the global minimum, as even if they are below the
continuous annealing line, it seems that the energies could be lower if the QA
results follow their trend. We explore the reason for this in later sections.

Since QA and QAOA are so closely related, there are ways to compare the
results to those of QA. From the definition of the QAOA parameters (6.4) it
follows that

P∑
m=1

(γm + βm) =

P∑
m=1

∆tm = τ (6.9)

lets us define an equivalent annealing time3 for a set of parameters (γ,β).

2Some values of the parameters are probably redundant for such a simple system because
of symmetries, which we could exploit to eliminate the degeneracies in energy and have a
finer discretization [64]. But we are simply using this problem to see that MCTS is able to
play it before moving on to the case with 3-SAT, which is the one we care about.

3We could also define the corresponding discretized annealing schedule values: each step
with a duration ∆tm = γm + βm and a value sm = γm

γm+βm
. Of course, this will be true up

to the Trotter error.

56
CHAPTER 6. QUANTUM APPROXIMATE OPTIMIZATION

ALGORITHM (QAOA)

And in Figure 6.3 we plot the discretized QA and QAOA results for the toy
model together. Those results show how much more complicated the game of
QAOA gets with increasing P .

With these results on the toy model, we move on to applying our algorithm
to 3-SAT problem instances.

6.3 MCTS-optimized QAOA for 3-SAT

Before showing the results for 3-SAT, there is an important note that we
should be aware of: when dealing with 3-SAT instances, QAOA presents some
reachability deficits [66]. What this means is that unless we choose an unrea-
sonably high depth P , there will not exist a set of parameters that will evolve
the system close to the ground state4. Specifically, with our particular clause
densities, according to [66], we would need a QAOA circuit depth of P ∼ 45 to
be able to achieve an overlap | ⟨Ψ0|ψP (γ,β)⟩ |2 > 0.95 in our 3-SAT problems.
We will, naturally, not be going to such high depths. This is, however, not
something we should be bothered by, because for hard optimization problems
there is a lot of value to being able to efficiently find approximate solutions,
such as a bit string that violates only a small number of clauses. In QAOA
with a shallow depth, we will likely only be able to look for such solutions,
and we will simply be testing how the MCTS algorithm works within the
limitations of the algorithm for the case of 3-SAT.

Results

With that out of the way, we move onto the results of running MCTS as a way
to optimize the parameters. We increase the branching factor from the last
section to b = 40 like we did for the case of QA. We will also be comparing the
MCTS results to a more traditional gradient-descent optimization method,
specifically the Broyden–Fletcher–Goldfarb–Shanno (BFGS) algorithm [67].

The results are shown in Figure 6.4. At first sight, the MCTS results seem
quite unfortunate: while the P = 1 results converge to the optimal parameters,
for P = 2 (where the size of the tree is comparable to that of the QA case)
MCTS struggles to converge in some instances, and for anything beyond that,
it is not able to find good results in the vast majority of cases because of the
increase in difficulty.

In this section we display the results and comment on why they are so
unfortunate, and in the next ones we explore the reasons on why this hap-
pened, which will let us provide some concrete alternatives and improvements
to make MCTS work for QAOA.

4This is also the case with 2-SAT, because we are technically dealing with the opti-
mization version of the k-satisfiability problems, which are NP-hard even for the case of
k = 2.

6.3. MCTS-OPTIMIZED QAOA FOR 3-SAT 57

Figure 6.4: QAOA energies for MCTS-optimized QAOA (blue circles) and
BFGS (black crosses) over 15 3-SAT instances. The MCTS results are av-
eraged over 15 7-bit 3-SAT instances by choosing the best out of 10 MCTS
games (b = 40, 2P turns) for each, while the BFGS search was run 1000 times
from random initial parameters. The latter represents the probable global
minima, especially for low depths, and works as a benchmark for MCTS, to
see how close it gets to them. The size of the MCTS tree can be cut down in
half because of the inversion symmetry of the QAOA parameters, which fol-
lows from the QAOA Ansatz. The number of MCTS cycles used is the same
as for the toy model. The effects of the reachability problems for 3-SAT that
we mentioned are apparent from the values of the energies we are working
with.

The P = 1 MCTS results are good, but that is not surprising, as the tree
size is small for P = 1. Furthermore, the P = 1 energy landscapes happen to
be fairly simple, even for 3-SAT instances of increased size, as can be seen in
Figure 6.5a; and, on top of that, the landscape does not change much from
instance to instance, meaning that the task of finding the minimum should
be very viable for most optimizers, as the initial parameters could be very
straightforwardly selected. The case of P ≥ 2, which is when the problem
starts to get more interesting, is the point at which MCTS struggles. For one,

58
CHAPTER 6. QUANTUM APPROXIMATE OPTIMIZATION

ALGORITHM (QAOA)

(a) (b)

Figure 6.5: (a) Average P=1 energy landscape for 45 3-SAT QAOA instances
of 7, 9 and 11 bits. The markers represent the minima of each individual
instance with the corresponding number of bits, with which the average was
calculated. All of the minima are concentrated around the same area. The
inversion symmetry is very clear from the figure too. (b) Comparison of the
MCTS-optimized QA and QAOA results for 3-SAT. The equivalent annealing
time for QAOA has been calculated using (6.9). The P > 2 results as well as
some P = 2 ones can be seen to probably be stuck in local minima.

the size of the search-space increases exponentially5, but most importantly,
the energy landscape becomes increasingly complicated to navigate for the
version of MCTS we are using. This can be confirmed from Figure 6.5b,
where the P = 1 and some P = 2 solutions are seen to be probably at the
global minimum, while the other ones are not.

This happens to the point that the MCTS energy gets worse as we increase
the depth P , as can be seen in Figure 6.4. We know this should never be the
case, as the results for P should be at least as good as the ones for P − 1 in
every case6.

One could think that the discretization of the parameters might be the
source of the issue. The MCTS does in fact only work with a discrete set of
the parameters, instead of the full continuous space like the BFGS algorithm.
We found this not to be the case for the problems we are considering: a set
of discretized parameters very close in energy to the BFGS results exists in
every case. It does exists, but the MCTS is almost never able to find it for
P > 2.

The most interesting part is that the MCTS results are still similar, with

5QAOA-MCTS scales worse than chess! With an average branching factor of 40 vs 35
for chess. See Chapter 2.1.

6This is because for some P , we can reach the previous P − 1 parameters by choosing
γp = βp = 0, making the P depth results always at least as good as the ones for P − 1.

6.4. PROPOSED SOLUTIONS 59

only minimal improvements, as we increase the number of MCTS cycles be-
yond the number that we used to obtain the results. We explore why all of
this happens and propose new methods to overcome the problems in the next
section.

6.4 Proposed solutions

From seeing the ill-fated results of the last section, we should not just conclude
that MCTS is not an appropriate tool to optimize the QAOA parameters. In
this section we propose two ways in which MCTS can be used in QAOA, as
well as trying to understand why it fails. Doing the latter successfully will
also allow us to propose a set of concrete and powerful modifications to the
MCTS algorithm which could very conceivably improve the results for QAOA,
as well as the ones for QA, as they would make it much better suited to play
quantum optimization games.

MCTS-initialized QAOA

Finding good initial parameters for a gradient-based search is very valuable
in QAOA, as they can significantly reduce the number of required gradient
searches before arriving to the global minimum. One of the ways of doing
that is employing the parameters of the equivalent schedule from Trotterized
linear QA with equal time steps, where one can vary the time step ∆t to
find different promising starting points [63]. Alternatively, one can obtain
the initial parameters by interpolating the previous depth solutions for some
problem instances [64].

MCTS, although it was not able to obtain good results by itself in the last
section, has the clear advantage that it does not require any initialization, as
the algorithm chooses what parts of the tree are most appropriate to explore
by itself. It might therefore have some value as a tool to find said initial
parameters. We have seen that very often, although MCTS obtains bad en-
ergies, the algorithm is not necessarily choosing parameters that are far from
the optimal ones. Instead, they often seem to lie on the slope to the global
minimum. This is especially true for P = 2. An example of this can be seen
in Figure 6.6, where we used the parameters that the MCTS algorithm found
as starting points for BFGS searches. These good results indicate that many
MCTS results which seem bad might not actually be stuck in local minima.

Thus, although we saw that MCTS is not able to find the global minimum
in most cases, because of how the algorithm functions, we can be assured that
it did inevitably take the search to regions where the averages scores were
good, so that good solutions exist; and, as such, it might very well have some

60
CHAPTER 6. QUANTUM APPROXIMATE OPTIMIZATION

ALGORITHM (QAOA)

Figure 6.6: Example of MCTS-initialized BFGS to find the global minimum
for P = 2. (a) shows the energies given by MCTS (left) and the energies given
by one run of BFGS with the MCTS results as initial parameters (right).
Despite the fact that some of the MCTS results can be seen to be closer to
other local minima in energy (dotted gray lines), 8 of the 10 games converged
to the global minimum, meaning that they were in its vicinity instead. (c) is a
representation of part of the parameter-space for the example 3-SAT instance:
each pair of dots is a result given by MCTS as explained in (b), which lie on
one of the vertices of the grid on the background, which corresponds to the
discretization of the parameters on the space of (c). The pairs of squares are
the various minima found by the randomly initialized BFGS searches, which
helps see the complexity of the landscape. All of the green pairs of dots in (c)
converged to the global minimum after the BFGS search.

6.4. PROPOSED SOLUTIONS 61

value as a way of finding initial parameters close to the optimal solution for a
BFGS search.

MCTS with iterative search space updates

The second and most notable and promising way to use our MCTS algorithm
for QAOA is to exploit the regularity of the QAOA optimal parameters. It
has been discovered, for example in [64], that for a large number of combina-
torial optimization problem instances, the parameters exhibited a remarkably
predictable behavior: as the depth P was increased, the optimal γk, k ∈ [1, P],
increased monotonically with increasing k, while the βk decreased in the same
way. They also always occupied roughly the same range of values, even as P
increased. Making use of this, in [64] the QAOA parameters were interpolated
from the previous depth parameters according to said rules to create excel-
lent sets of initial parameters for BFGS, which were already very close to the
global minimum, so that the gradient search would just need to slightly shift
the parameters from the initial values to find the minimum. This regularity
was already visible in P = 2 and would persist up to fairly high P values.

Instead of using this to find good initial parameters for a gradient-based
search, we can instead devise a way in which we utilize this to aid the MCTS
search. With this in mind, we can propose the following adjustments: suppose
we have the optimal parameters {γ1, β1, ..., γP , βP } for a depth P , and that
we are working with a regular problem instance that behaves like the ones in
[64], we can let MCTS search for the new P +1 parameters {γ′1, β′1, ..., γ′P , β′P }
in a mesh of b discrete values within

γ′k ∈ [γk−1(1− δ), γk(1 + δ)], β′k ∈ [βk−1(1− δ), βk(1 + δ)], (6.10)

where k ∈ [0, P + 1]. The values for β0, γ0, βP+1 and γP+1 are some heuris-
tically chosen values by looking at the known optimal parameters that limit
the range of the new parameters, and δ is a constant that lets MCTS search
beyond the bounds of the restricted regions.

By looking at the BFGS optimal-parameters, we were able to confirm that
this regularity also seems to be present for many 3-SAT instances. We show
the potential of this method in Figure 6.7, where we test it for an example
instance which exhibits the aforementioned regularity of solutions, and we
compare it to the BFGS and normal MCTS results. The new search-space-
restricted MCTS is able to find good solutions with ease, that match and
sometimes even improve upon the BFGS ones.

We also show explicitly the process of going from the MCTS+BFGS min-
imum of P = 2 to the result for P = 3 in Figure 6.8.

It is true that we might argue that using MCTS in this way does break one
of the MCTS selling points that were mentioned in Chapter 2: its versatility.
We are somewhat adding heuristics by only letting it look in some subspace
of the space of parameters, instead of letting it freely explore the full search

62
CHAPTER 6. QUANTUM APPROXIMATE OPTIMIZATION

ALGORITHM (QAOA)

Figure 6.7: Comparison between ordinary MCTS (blue circles), BFGS with
many random initializations (black crosses) and search space tuned MCTS
(purple diamonds) for a 3-SAT instance with regular solutions. Starting from
the P = 2 solution, each subsequent search space MCTS result is built with
the previous one according to (6.10) with δ = 0.05. The regularity of solutions
holds remarkably well, and MCTS is able to navigate the new landscapes with
ease, even improving upon the BFGS result for P = 5. The number of MCTS
cycles only increased linearly with P, as we kept them fixed at 1000 per turn.

space. This means that within this searchspace restriction method MCTS
will be very limited to attempt strategies that do not take advantage of the
regularity. Although, since the regularity of QAOA is a very well-established
phenomenon, it could be a very useful way of making use of it in cases where
we know it will be there.

Even then, with the restricted searchspace MCTS we still have a tree with
the same large branching factor and exponential growth b2P , but now we
are able to avoid many parts of the complicated 2P -dimensional landscape
and thus reduce the number of local minima. This has the added benefit
that the resolution of the MCTS algorithm increases at every P , since the
b × b values of each {γm, βm} are sampled in a progressively smaller region
of the parameter space. Therefore, its accuracy should get increasingly closer
to a continuous-space optimization algorithm at each consecutive deepening,
which makes any discretization-related errors become less and less relevant as
we iteratively increase the depth.

This confirms that the complexity of the landscape was the main is-
sue which prevented MCTS from working for QAOA without restricting the

6.4. PROPOSED SOLUTIONS 63

Figure 6.8: Example of searchspace-restricted MCTS. The parameter-space is
on the left and the energies on the right. As it starts from the P = 2 minimum
(transparent orange squares on the left), the algorithm looks within the shaded
green region, which corresponds to the new reduced (β0 = π, γ0 = β3 = 0,
γ3 = π/2, δ = 0) search-space for P = 3. As can be seen on the right, the
MCTS is able to escape the local minima and find a good energy this way.

searchspace, as opposed to the large size of the tree, which MCTS is known
to be able to deal with appropriately.

Discussion on an improved MCTS algorithm

As we mentioned in Chapter 2, an MCTS algorithm is characterized by its
search and playout policies, as well as other details related to the final choice
criterion and to the treatment of the tree from previous turns. This makes it
very convenient to come up with new versions of MCTS that are specifically
designed for the task at hand.

We already found two possibly interesting uses for our algorithm in the
context of QAOA, with no modifications7. However, if we are able understand
the mechanism that impedes MCTS from choosing the right path down the
tree, we could propose modified versions of MCTS which might be more apt to
tackle QAOA with no search space restrictions or gradient-based corrections.

By testing MCTS with custom smaller versions of QAOA trees, we were
able to find what is most likely the issue that MCTS encounters. It has to
do with the combination of having a complex landscape and it being a single-

7We do not consider restricting the search space as a modification to the algorithm, as
its policies and selection criteria remain unchanged. It is the exact same algorithm, the only
difference being that we show it only some parts of the parameter space, and hide others.

64
CHAPTER 6. QUANTUM APPROXIMATE OPTIMIZATION

ALGORITHM (QAOA)

player game. The former is a fairly self-explanatory reason for MCTS to
struggle, but the latter implies a very important distinction: in a single-player
game we are looking for the absolutely best path down the tree, while, for a
multi-player game, we are looking for the path that is as good as possible for us,
but as bad as possible for the opponents, no matter what their chosen actions
may be. Now, if we consider a case with a complicated reward landscape,
where a very well scoring path is hidden among many bad paths, in the case
of a multi-player game, that path is likely resulting from one or more players
making very foolish moves. But in the single-player game there is no opponent,
and that very path could be the one we are looking for. Because of the
averaging of the rewards, those kinds of paths can be obscured from the MCTS
algorithm, making it choose paths that lead to more mediocre, but on average
better, regions of the parameter space than the hidden path. While on the
case of a multi-player game, if the average obscures that path, it often ends
up being beneficial for the algorithm instead.

In view of this, we propose three modifications to the algorithm, specifically
to its selection policy, tree recycling and the final choice criterion. These are
summarized in Appendix A.5. This is still something that we are working
on, so we currently have no definite answer on how much this can improve
the algorithm for quantum optimization. As some preliminary tests, we show
the results of MCTS modified with modifications 1 and 2 from Appendix A.5
on the toy model: the modified MCTS (“MCTSv2” in the figures) optimizes
discretized annealing paths with P = 3 steps in Figure 6.9, and the QAOA
parameters in Figure 6.10. We compare the results to our previous MCTS
algorithm, and, in both cases, the improvements are substantial.

Figure 6.9: QA on the toy model, with partly modified MCTS (Modifications
1,2 in Appendix A.5). It is able to improve the energy over standard MCTS
in every single case. Again, at τ = 10 the error from the discretization makes
it so that the energy is worse than the previous case. Compare with Fig. 3.6a.

6.4. PROPOSED SOLUTIONS 65

Figure 6.10: QAOA on the toy model, with partly modified MCTS (Modifi-
cations 1,2 in Appendix A.5). It is able to find the exact ground state of the
system for P > 2, in spite of the rough discretization used. Compare with
Fig. 6.2.

This is not to say that, because we knew our games would be single-player
games, we should have expected our MCTS to not work from the beginning.
In fact, equivalent MCTS algorithms to our unmodified one have been found
to work very well in some single-player games too [68, 69]. And we even saw
that it worked well for the case of QA in Chapter 5.2. This behavior of MCTS
is not something that has been extensively studied. That is certainly the case
in physics, where, to the best of our knowledge, both papers where MCTS
is used similarly in the context of quantum optimization, [57, 59], utilize the
standard MCTS algorithm for their single-player games. It is in the field
of computer science that one can find a handful of publications where the
authors have run into similar problems with their algorithms for single-player
card games and puzzle games, and suggested solutions similar to ours [70, 71].
The promising prospect of fully implementing our proposed modifications and
determining how much they improve the performance of the algorithm is left
as a topic of future research.

Chapter 7

Conclusion and future
directions

In this thesis we have explored two of the main existing computational frame-
works to solve hard combinatorial optimization problems on near-term quan-
tum hardware. In view of the difficulties that hinder these kinds of algorithms,
the main task of the thesis was to investigate the validity of the Monte Carlo
Tree Search (MCTS) algorithm, a decision making algorithm especially distin-
guished in the world of board game artificial-intelligence creation with many
recent accomplishments, in the context of quantum optimization.

We focused on both the adiabatic quantum computational paradigm with
quantum annealing (QA), and the hybrid quantum/classical variational one
with the Quantum Approximate Optimization Algorithm (QAOA). The goal
of both algorithms is to find the ground state of a target Hamiltonian, in
which the solution of the classical problem instance is encoded. To that end,
we formulated the optimization task as a single-player board game, in which
the MCTS player is tasked with finding a set of parameters that maximizes the
score: in the case of QA, the game consisted in building annealing schedules
f(s), functions that dictate the evolution of the interpolated system; whereas,
in the case of QAOA, the game involved finding the QAOA parameters (γ,β)
with which to build the parameterized unitary Ansatz.

For the case of QA, we found that MCTS was able to very skillfully con-
struct annealing schedules for solving hard 3-SAT problem instances. Remark-
ably, MCTS was able to find annealing schedules that either slowed down near
the delicate gap minimum, or opt for non-adiabatic schedules and surf the ex-
cited states in search of an approximately good result. All of this was done
with no knowledge of the location of the minimum gap or the form of the
instantaneous energy eigenvalues. Furthermore, MCTS showed signs of being
particularly well suited for noisy environments and could find good results in
places where a more traditional gradient-based searcher would be completely
helpless. We were able to achieve acceptable results with a fairly low num-

67

68 CHAPTER 7. CONCLUSION AND FUTURE DIRECTIONS

ber of 200 MCTS cycles per turn, which with our implementation of MCTS
corresponds to exactly 200 function evaluations.

The remaining sections of this work were dedicated to the study of MCTS
applied to QAOA. MCTS had never been used before in QAOA to directly
optimize the parameters1. This case turned out to be significantly more com-
plicated for MCTS than QA: with increasing depth P , our implementation
of MCTS would struggle tremendously to optimally navigate the increasingly
complicated landscape and would appear to only be viable in the most shal-
low depths. But it was precisely in trying to understand and looking for the
sources of these complications that the most compelling findings of this work
emerged. We were able to propose two ways in which MCTS can help with
QAOA. Firstly, we saw that it might have some potential as a method of ob-
taining the initial parameters for a subsequent gradient-based search, as many
of the results of MCTS with not-so-good energies were in close proximity to
the global minimum in the parameters themselves. Secondly, we found a way
to make use of the well-established regularity of the optimal parameters in
QAOA, which we were able to observe in many 3-SAT instances, to itera-
tively build solutions for increasing depths by restricting the search of the
MCTS algorithm to the relevant regions in the space of the parameters, with
finer and finer discretization. Our preliminary tests on this purely MCTS
iterative restricting of the search space gave very good results and warrant
further study.

We went further and tried to understand the reasons and mechanisms that
make MCTS fail in the case of QAOA. By testing the algorithm in custom
trees where the particular landscape complexity from QAOA was present, we
were able to come up with a set of concrete modifications to our MCTS which
might very well allow it to optimize QAOA parameters for non-regular prob-
lem instances and possibly even significantly improve the results for the regular
ones, as well as the ones from QA, especially in cases where the traditional im-
plementation of MCTS struggled the most. For this, it was especially helpful
to read the works of researchers working in fields other than physics, espe-
cially computer scientists, who have struggled with MCTS for single-player
search spaces for much longer, and the problems of whom could have some
striking similarities to our own, even though their uses are completely different
to ours. In general, great benefits could be obtained from the interplay with
computer scientists, and an algorithm that someone has coded for an obscure
card game could happen to be a truly useful source of inspiration to improve
our algorithms in physics-related contexts.

1In [59], which was published while the work on this thesis was ongoing, MCTS is used
in the context of QAOA. However, it is used for choosing the Hamiltonians from a discrete
set to build custom generalized QAOA Ansatze, while the parameter optimization is still
done with gradient-based methods. This makes both approaches fundamentally different.

69

Apart from those proposals, there are other very natural ways to continue
or expand upon this work. For one, MCTS is known to function very well
together with neural networks, which could improve our results substantially
[57]. The noise resistance of the algorithm for both computational paradigms
is likewise something that would be interesting to study further. Furthermore,
to see how our algorithm does in a real setting, testing MCTS-based optimiza-
tion on actual quantum hardware could also be an attractive thing to do, as
well as trying it out for more algorithms and more kinds of hard problems.

It is entirely possible that NISQ era algorithms will not be able to give us
real practical advantages over classical devices. It could very well be that one
day it will be proven that no general quantum advantage can ever be achieved
within the limitations of current quantum devices. However, even if that turns
out to be the case, having spent time with this would not be a waste of time.
It is still deeply meaningful to try and make advances in improving NISQ
era algorithms, as well as improving existing hardware and finding problems
which could be appropriate for solving in current quantum devices, as the
advances we make in these areas will give us a better understanding of QC in
general and even be useful in later fault-tolerant eras.

Appendix A

Deeper dive into MCTS

A.1 More tic-tac-toe benchmarks

Figure A.1 shows the remaining tic-tac-toe results for MCTS that complement
the discussion of Chapter 2.3. To see that our MCTS [37] is playing tic-tac-toe
appropriately, apart from looking at the results it obtains in games, we also
want to look at the particular decisions it makes in different types of positions.
Specifically, these are tests where MCTS chooses the move it would play in
a given state of the game for varying numbers of cycles. These are different
kind of positions, where the player needs to either defend against threats or
execute its own threats.

We found that, overall, these results are very much comparable to other
implementations of MCTS.

A.2 About the final choice

Once the MCTS has run for the desired amount of cycles, we are left with a
tree in memory that contains the nodes with some score and visits values. It
is at that point that the MCTS must choose one move to make on the actual
game board.

There are many ways to choose such moves [34]. It turns out that choosing
the child that maximizes the UCB score is not a good choice. This makes
sense as the UCB score tells us which move would minimize our regret when
exploring, not necessarily the best move. Throughout the work we have been
using the max child criterion to choose said definitive move, as it turned out
to be the optimal one as can be seen in Figures A.2 and A.3. The max child
criterion consists on choosing the child that maximizes the first term, i.e., the
average reward of the UCB formula.

71

72 APPENDIX A. DEEPER DIVE INTO MCTS

(a) (b)

(c) (d)

Figure A.1: MCTS chooses a move from given tic-tac-toe positions. We give
MCTS a board state (see the diagram in each figure) and see if it as able to
find the only correct move in the position (the gray move in the corresponding
diagram). In (a) and (b) MCTS needs to defend against the opponent’s threat
of winning. Since, in theory, the game has many ways it can continue even after
MCTS fails these tests, especially if playing against an imperfect opponent,
this could be a position that MCTS might have had some difficulty evaluating
correctly, but it is eventually always able to find the best move consistently.
(c) shows that MCTS is quickly able to identify and play a winning move if
there is one in the position, as it is able to consistently choose that move with
a very low number of simulations. This makes sense because as soon as the
winning move is expanded into the tree in memory, it will always have a score
at least as good as every one of its sibling nodes. The most challenging test
comes in (d): when the first player plays the initial move in a corner, there
is only one move that does not lose by force against perfect play. MCTS, as
expected, needs a higher number of cycles to identify this. We see that, in
general, the more moves there are in the position, i.e., the larger the tree is
below the root node, the more cycles MCTS requires to achieve optimal play.
C =

√
2 and the max child last choice were used for all tests.

A.3. REWARDS IN QUANTUM OPTIMIZATION GAMES 73

There is another very used criterion along with max child known as ro-
bust child, which chooses the child that received the maximum number of visits
during the simulation. This, although not as intuitive asmax child is supposed
to be the often preferred criterion, although max child always seemed to do
better in the case of quantum optimization.

There may, however, be some value in exploring other last choice criteria
as they could be more suitable for one player games. One such criterion could
be choosing the child from which the best random simulation was run. This
would not make sense for two-player games, but might be specially relevant
for one-player games that we are dealing with where there is no opponent
and the best scoring path might be very hidden for particularly hard problem
instances and set ups.

Figure A.2: Comparison between three different criteria for the last choices:
ucb chooses the child as it would in the selection stage, robust chooses the child
which has been visited the most, max chooses the child with the maximum
average score, i.e., the first term in (2.1). The dashed vertical line represents
the simulation at which every legal move from the root position has been
added to the tree in memory. Before that, not all legal moves from the root
node were visible to the MCTS algorithm.

A.3 Rewards in quantum optimization games

The rewards for tic-tac-toe in Chapter 2.3 were simple. Just win, tie or lose.
However, that is not so with quantum optimization games, what should we
do when we have a a score, an energy ε, as the reward? We thought of several
options:

• Since 0 is the best energy, the most straightforward way is just to give
ω = −ε as the reward.

74 APPENDIX A. DEEPER DIVE INTO MCTS

Figure A.3: Comparison between different last choices for MCTS-QA averaged
over the 18 instances of 11 bit 3-SAT problems vs annealing time. The max
child always seems to do at least as good as robust child.

• Normalize it between 0 and 1. This is not strictly necessary, but we do
it in most cases because it gives a guarantee on the bound of the regret,
and the theoretical value of C =

√
2 [36].

– We can do this linearly: we know that for 3-SAT the maximum
eigenvalue of Hz, i.e., the worst possible score one can get is the
number of clauses αn. We can then simply map the scores lin-
early as [αn, 0] → [0, 1] by dividing every score by αn, and then
subtracting it from 1.

– We can also do it with another non linear mapping, such as ω =
e−aε. This has the added benefit that, by adjusting a, MCTS will
be able to understand that not all rewards have the same value.
An improvement among high rewards is more rewarded than one
among bad ones.

In most cases we will use the third option throughout this work with a = 2,
which we decided on after trying many different values.

A.4 Tree recycling: why and why not

Another very pertinent question is deciding what to do with the tree once
the last choice has been made and the turn has finished. One might initially
think that saving and reusing the tree is the best solution. This can be done by
pruning all other branches and making the chosen move the new root node.

A.5. ON POSSIBLE MCTS MODIFICATIONS 75

This way, all of the simulation information of the memory tree below the
chosen node remains. However, this could very well be detrimental; having
more information is not always good. The fact is that starting from a tree
in which simulations have already been run makes it more difficult to change
MCTS’s mind into choosing a different path than the previously expanded
tree might suggest. The simulations in the new turn will have more value, as
they start from a deeper level and thus more accurately simulate the scores
of the nodes. The problem is that simulations from previous turns make the
algorithm much more confident on the values that it has started with, and
the new important simulations will not as easily change this, as lower quality
simulations are clouding its judgment. Therefore, especially if the first turn
choice was not optimal, the MCTS will do worse than if the tree was thrown
away entirely. In our cases, only a minimal difference was noticed between
recycling and throwing away the tree. In general, we found that the average
score over a high number of MCTS games would be slightly higher when
throwing away the tree, but so would be the standard deviation of the scores.

It would be highly interesting, and maybe even a possible topic for a Bach-
elor’s thesis in computer science, to explore solutions to this issue. One idea
could be making simulations from later turns have a higher weight in calcu-
lating the average: an MCTS backpropagation in turn m would increase the
visits along the route of ancestor nodes by m instead of 1, similarly counting
the obtained reward m times.

A.5 On possible MCTS modifications

The problems that the MCTS algorithm encounters with QAOA have to do
with the single-player nature of the game combined with the highly deep global
minima, surrounded by significantly worse scoring nodes. To combat this, we
propose a set of single-player oriented modifications:

• Use the maximum simulation reward as the criterion of choosing the
definitive move to play, instead of the more common max child or ro-
bust child criteria, which we will call max reward.

• We do not want a random playout that finds the best path to just be
used to calculate an average and go to waste. Because of this, we also
fully expand the path that the maximum simulation took, which makes
sure the path will never be forgotten.

• By changing the final choice to max reward, we do not change how the
MCTS cycle itself plays out. This means that the algorithm will think
that paths which give good results on average are the most promising

to do random playouts from. We can add an extra term
√
σ2i +D/ni,

where σ2i =
∑
w2−w̄ini

ni
and D is a large constant, so that, during the

76 APPENDIX A. DEEPER DIVE INTO MCTS

selection policy, the algorithm might understand that paths which have
been seen to deviate highly from the mean are also to be considered.
This is because we are looking for the one best path in a one player
game, and we want the algorithm to also weigh in that consideration
in the selection stage. The form of the new term comes from the one
proposed in [70], but there are potentially other terms that we could
use, even ones that utilize the current maximum reward.

The effectiveness of these modifications is still something that we are study-
ing. But they work very well in the preliminary tests that we have run, and
there is reason to believe that with these modifications the QA results will also
improve. The τ = 10 game in Fig. 3.6a, for example, for which the MCTS
struggled, can be easily overcome by an MCTS algorithm with just the first
two modifications on this list to find an improved energy. These modifications
also give us the absolute certainty that the increasing of MCTS cycles will
always improve the choice of MCTS, with no exceptions.

Appendix B

QA to QAOA: what is lost on
the way

B.1 Discretizing the annealing schedule

The procedure to set bounds on the errors is adapted from the one in [52].
The differences are that here we make the case more general which allows us
to analyze non-linear schedules, and we provide a much more complete proof
of Lemma 1 of their paper.

Figure B.1: Linear QA schedule and a properly discretized linear QA schedule
such that the error is kept under control at all times.

77

78 APPENDIX B. QA TO QAOA: WHAT IS LOST ON THE WAY

General proof

Suppose we have two Hamiltonians H1(t) and H2(t), with their corresponding
time evolution operators U1(t) and U2(t). If we evolve an initial state |ψ(0)⟩
with each operator, for a total time τ , we define

|ψ1(τ)⟩ = U1(τ) |ψ(0)⟩ , |ψ2(τ)⟩ = U2(τ) |ψ(0)⟩ . (B.1)

We will assume that the operator norm (B.22) of the difference between the
Hamiltonians is at all times t at most as big as a function δ(t)

||H1(t)−H2(t)|| ≤ δ(t). (B.2)

The idea is to see how different both states can become after the evolution.
Let us look at the overlap ⟨ψ1(t)|ψ2(t)⟩, by differentiating it and making use
of the corresponding Schrödinger equations we find

d

dt
⟨ψ2(t)|ψ1(t)⟩ = −i ⟨ψ2(t)|(H1(t)−H2(t))|ψ1(t)⟩ . (B.3)

Defining u̇(t) ≡ d
dt ⟨ψ2(t)|ψ1(t)⟩, ∆H(t) ≡ H1(t) − H2(t), we integrate both

sides from an initial time t = 0, where the states where the same ⟨ψ(0)|ψ(0)⟩ =
1, to the total evolution time τ , and take the modulus on both sides:

|u(τ)− 1| =
∣∣∣∣∫ τ

0
dt ⟨ψ2(t)|∆H(t)|ψ1(t)⟩

∣∣∣∣ . (B.4)

We look at the right-hand side first: we may bound it from above like so∣∣∣∣∫ τ

0
dt ⟨ψ2(t)|∆H(t)|ψ1(t)⟩

∣∣∣∣ ≤ ∫ τ

0
dt |⟨ψ2(t)|∆H(t)|ψ1(t)⟩| ≤

∫ τ

0
dtδ(t),

(B.5)
where we have made use of the fact that the integrand can be at most as big
as δ(t) at all times. We now bound the left-hand side from below as

|u(τ)− 1| ≥ ||u(τ)| − |1|| = 1− |u(τ)|. (B.6)

The last step follows from the fact that |u(τ)| ≤ 1 for all times by definition.
We have thus arrived at the very useful expression

| ⟨ψ2(τ)|ψ1(τ)⟩ | ≥ 1−
∫ τ

0
dtδ(t), (B.7)

which limits how much the modulus of the overlap between the two states
can decrease by. From this last expression it follows that a bound exists for
|| |ψ1(τ)− ψ2(τ)⟩ ||. By using (B.1) we find that the square of the operator
norm is

||U1(τ)− U2(τ)||2 ≡ ⟨ψ(0)|(U †1(τ)− U †2(τ))(U1(τ)− U2(τ))|ψ(0)⟩ , (B.8)

B.1. DISCRETIZING THE ANNEALING SCHEDULE 79

which after making use of the unitarity of the time evolution operators, the
fact that the initial state is normalized, and inequality (B.7), brings us to

||U1(τ)− U2(τ)|| ≤

√
2

∫ τ

0
dtδ(t). (B.9)

This way we have found that if we can limit the operator norm of ∆H(t), we
can set an upper bound on how much the evolved states can deviate from each
other.

The case of QA

We do this for the case where H1(t) = H(t) = (1 − s(t))Hx + s(t)Hz is
the interpolated Hamiltonian from continuous QA, and H2(t) = Hstep(t) =
(1− s(ti)))Hx + s(ti)Hz, where, ti = ⌈ t

∆t⌉∆t its discretized version1. We
choose that the highest value of the schedule is used as sm, so that the differ-
ence between the Hamiltonians gives the worst case scenario. We now try to
set a bound on the size of their difference, in order to use the result proven in
the last section.

H(t)−Hstep(t) =

(
s

(⌈
t

∆t

⌉
∆t

)
− s(t)

)
(Hx −Hz), (B.10)

which, as long as s(t) does not vary too much within ∆t, we can approximate
by its first order expansion around the point ⌈ t

∆t⌉ =
ti
∆t =

t
∆t , as

s

(⌈
t

∆t

⌉
∆t

)
∼ s(t) + ṡ(t)

(⌈
t

∆t

⌉
− t

∆t

)
∆t, (B.11)

which, after inserting into (B.10), gives

H(t)−Hstep(t) = ṡ(t)

(⌈
t

∆t

⌉
− t

∆t

)
∆t(Hx −Hz) ≤ ṡ(t)∆t(Hx −Hz),

(B.12)
because the ceiling of a number and the number can differ at most by 1. The
operator norm of the difference is

||(H(t)−Hstep)|| ≤ δ(t) = ṡ(t)∆t||(Hx −Hz)|| = ṡ(t)∆t× poly(n). (B.13)

We made the very reasonable assumption that ||(Hx −Hz)|| is a polynomial
function on its size poly(n), which always holds by construction.

At this point we may bound the quantity ||U(τ)− Ustep(τ)|| as

||U(τ)− Ustep(τ)|| ≤

√
2

∫ τ

0
dtṡ(t)∆t poly(n). (B.14)

1The ceiling function is defined as ⌈x⌉ = min{m ∈ Z|m ≥ x}

80 APPENDIX B. QA TO QAOA: WHAT IS LOST ON THE WAY

If all time steps are of equal size, ∆t = τ/P and s(0) = 0, s(τ) = 1,

||U(τ)− Ustep(τ)|| ≤
√

2τ

P
poly(n). (B.15)

This is the exact same answer as if we had considered a linear schedule to
begin with, since in that case, we would have

Hstep(t) =

(
1− 1

P

⌈
Pt

τ

⌉)
Hx +

1

P

⌈
Pt

τ

⌉
Hz, (B.16)

so that, H(t) − Hstep(t) ≤ 1
M (Hx − Hz), and the integration would give the

extra missing τ factor, agreeing with [52]. The difference is that in this case
s was already linear in time so that we did not need to approximate it.

Figure B.2: Calculated error for the linear schedule for the toy model. The
orange and purple agree at τ = 1, and the green and purple at τ = 10, as
expected. The purple line goes down as it needs to be better than the others
once it has a higher P , which could be derived from our upper bound estimate.

A look at ||Hx −Hz||

By the triangle inequality we have

||Hx −Hz|| ≤ ||Hx||+ ||Hz||. (B.17)

For the case of 3-SAT, the maximum eigenvalue of Hz is the number of clauses
αn (because that is the energy of the worst possible bit assignment), whereas
for the toy problem we have that it is exactly 1. The maximum eigenvalue
of Hx is instead bounded by n, which can be seen by applying the triangle
inequality n times.

B.2. TROTTER SPLITTING THE TIME EVOLUTION OPERATOR 81

Therefore, we find that ||U(τ) − Ustep(τ)|| ≤
√

2τα(n+1)
P for a general 3-

SAT instance; and, for the toy model with n = 2, ||U(τ)− Ustep(τ)|| ≤
√

6τ
P ,

although we can reduce the upper bound by a factor 1√
2
as we know the exact

upper bound for ||Hz|| to be 1.

Figures B.1, B.2 where created with these results in mind. We see the
confirmation that the upper bounds are valid, and that we can keep the error
under control at all times by scaling P as τ poly(n).

B.2 Trotter splitting the time evolution operator

To arrive at the QAOA time evolution operator UTrotter(γ, β), it is sufficient to
Trotter-split the individual exponentials in Ustep(t) that we dealt with in the
last section. We look at the Trotterization of the mth exponential: Umstep =

e−i(1−sm)∆tmHx−ism∆tmHz → UmTrotter = e−i(1−sm)∆tmHxe−ism∆tmHz .

The size of the error will be given to leading order by the Baker-Campbell-
Hausdorff formula [72] to be

||U ′j − U ′′j || =
∆t2m
2

sj(1− sj)||[Hi, Hf]||+O(∆t)2. (B.18)

Since the operator norm satisfies the triangle inequality, we can say that

||[Hi, Hf]|| ≤ ||HiHf ||+ ||HfHi|| ≤ 2||Hi|| · ||Hf || = 2αn2 (B.19)

gives us an upper bound on the norm. With the other factors, assuming a
linear schedule we arrive at the conclusion that the norm of the difference
must be

||U ′(τ)− U ′′(τ)|| ∈ O
(
2αn2τ2

P 2

)
. (B.20)

By comparing it directly to the continuous QA evolution [52]:∣∣∣∣∣
∣∣∣∣∣U(τ)−

P∏
m=1

UmTrotter(τ)

∣∣∣∣∣
∣∣∣∣∣ ∈ O

(
τ2 poly(n)

P

)
. (B.21)

Since this tells us that we need a circuit depth that increases polynomi-
ally with the system size and annealing time, this is a way of proving the
universality of QAOA, by starting from the universality of QA [39].

82 APPENDIX B. QA TO QAOA: WHAT IS LOST ON THE WAY

B.3 Other proofs

Definition of operator norm

Let A be an operator. We represent its operator norm as ||A||,

||A|| ≡ sup
|ψ⟩≠0

||A |ψ⟩ ||
|| |ψ⟩ ||

, (B.22)

where ||v||, with v a vector (such as |ψ⟩), is the usual norm || |ψ⟩ ||2 ≡ ⟨ψ|ψ⟩.

Proof operator norm is submultiplicative

||AB|| = sup
|ψ⟩̸=0

||AB |ψ⟩ ||
|| |ψ⟩ ||

= sup
|ψ⟩̸=0

||AB |ψ⟩ ||
||B |ψ⟩ ||

||B |ψ⟩ ||
|| |ψ⟩ ||

≤ sup
|Bψ⟩̸=0

||AB |ψ⟩ ||
||B |ψ⟩ ||

sup
|ψ⟩̸=0

||B |ψ⟩ ||
|| |ψ⟩ ||

= ||A|| · ||B||.
(B.23)

Proof operator norm sets a bound on eigenvalues

As we saw in equation (B.22), we can define the equivalent to the L2 norm
for vectors for an operator A in the Hilbert space H as

||A|| = sup
|ψ⟩≠0

||A |ψ⟩ ||
|| |ψ⟩ ||

= sup
|ψ⟩̸=0

⟨ψ|A†A|ψ⟩
⟨ψ|ψ⟩

(B.24)

if this quantity exists, intuitively, it is saying is that A will scale a vector |ψ⟩
by at most said quantity. ie ||A |ψ⟩ || ≤ ||A|| |ψ⟩ , ∀ |ψ⟩ ∈ H.

In our case, the operator A was the difference between two Hermitian
operators, which is Hermitian. Therefore, there exists an orthonormal basis
{|a⟩} in which A is diagonal, so that

||A|| = sup
|ψ⟩≠0

∑
a,a′ ⟨ψ|a′⟩ ⟨a′|A†A |a⟩ ⟨a|ψ⟩

⟨ψ|ψ⟩
= sup
|ψ⟩≠0

∑
a |a|2| ⟨ψ|a⟩ |2

⟨ψ|ψ⟩
. (B.25)

We can now set an upper bound on this quantity. If amax is the maximum
eigenvalue of A, we have that

|amax|2 ≥ sup
|ψ⟩≠0

∑
a

|a|2| ⟨ψ|a⟩ |2, (B.26)

because | ⟨ψ|a⟩ |2 ≤ 1.

Appendix C

More noisy results

Here we very briefly show the results of testing a different kind of noisy en-
vironment than the simple Gaussian of Chapter 5.4 on the same example
instance for MCTS-guided QA. Inspired by [59], we model the quantum mea-
surement noise. This too samples the noise from a Gaussian distribution, but
the standard deviation of the distribution is given by

∆H =

√
⟨ψ(τ)|H2

z |ψ(τ)⟩ − ⟨ψ(τ)|Hz|ψ(τ)⟩2. (C.1)

This quantity vanishes when the state |ψ(τ)⟩ is an eigenstate of Hz, particu-
larly the ground state, and it increases as it gets further away from it as can
be seen in Figure C.1.

Figure C.1: Quantum measurement error strength as a function of the ratio
between the overlap of the evolved system |ψ(τ)⟩ with the ground state |ϕ0⟩ =
|↑↑⟩ and other eigenstates |ϕi⟩. The system is Hz = diag(0, 1, 1, 2), so that
the state |↓↓⟩ creates bigger fluctuations than the other eigenstates.

83

84 APPENDIX C. MORE NOISY RESULTS

Figure C.2: Resulting energies of MCTS in a noisy reward environment with
quantum measurement noise. We test it for the case of P = 3, 4, 5 Fourier
components. This is a more challenging noise for MCTS, and it was not able
to converge close to the noiseless case in 10 games for a few cases, so that it
would require more than 10 games for proper convergence.

Bibliography

[1] P. Shor, Algorithms for quantum computation: discrete logarithms and
factoring, in: Proceedings 35th Annual Symposium on Foundations of
Computer Science, 1994, pp. 124–134. doi:10.1109/SFCS.1994.365700.

[2] A. W. Harrow, A. Hassidim, S. Lloyd, Quantum algorithm for linear
systems of equations, Physical Review Letters 103 (15) (oct 2009). doi:
10.1103/physrevlett.103.150502.

[3] L. K. Grover, A fast quantum mechanical algorithm for database search
(1996). arXiv:quant-ph/9605043.

[4] J. Roffe, Quantum error correction: an introductory guide, Contem-
porary Physics 60 (3) (2019) 226–245. doi:10.1080/00107514.2019.

1667078.

[5] K. Bharti, et al., Noisy intermediate-scale quantum algorithms, Reviews
of Modern Physics 94 (1) (feb 2022). doi:10.1103/revmodphys.94.

015004.

[6] A. Frank, et al., Quantum supremacy using a programmable supercon-
ducting processor, Nature 574 (7779) (2019) 505–510. doi:10.1038/

s41586-019-1666-5.

[7] Z. Han-Sen, et al., Quantum computational advantage using photons,
Science 370 (6523) (2020) 1460–1463. doi:10.1126/science.abe8770.

[8] M. Cerezo, A. Arrasmith, R. Babbush, S. C. Benjamin, S. Endo, K. Fujii,
J. R. McClean, K. Mitarai, X. Yuan, L. Cincio, P. J. Coles, Variational
quantum algorithms, Nature Reviews Physics 3 (9) (2021) 625–644. doi:
10.1038/s42254-021-00348-9.

[9] T. Yamazaki, S. Matsuura, A. Narimani, A. Saidmuradov, A. Zarib-
afiyan, Towards the practical application of near-term quantum com-
puters in quantum chemistry simulations: A problem decomposition ap-
proach (2018).

85

https://doi.org/10.1109/SFCS.1994.365700
https://doi.org/10.1103/physrevlett.103.150502
https://doi.org/10.1103/physrevlett.103.150502
http://arxiv.org/abs/quant-ph/9605043
https://doi.org/10.1080/00107514.2019.1667078
https://doi.org/10.1080/00107514.2019.1667078
https://doi.org/10.1103/revmodphys.94.015004
https://doi.org/10.1103/revmodphys.94.015004
https://doi.org/10.1038/s41586-019-1666-5
https://doi.org/10.1038/s41586-019-1666-5
https://doi.org/10.1126/science.abe8770
https://doi.org/10.1038/s42254-021-00348-9
https://doi.org/10.1038/s42254-021-00348-9

86 BIBLIOGRAPHY

[10] A. Peruzzo, J. McClean, P. Shadbolt, M.-H. Yung, X.-Q. Zhou, P. J.
Love, A. Aspuru-Guzik, J. L. O’Brien, A variational eigenvalue solver on
a photonic quantum processor, Nature Communications 5 (1) (jul 2014).
doi:10.1038/ncomms5213.

[11] E. Farhi, J. Goldstone, S. Gutmann, A quantum approximate optimiza-
tion algorithm (2014). arXiv:1411.4028.

[12] A. Finnila, M. Gomez, C. Sebenik, C. Stenson, J. Doll, Quantum anneal-
ing: A new method for minimizing multidimensional functions, Chemi-
cal Physics Letters 219 (5) (1994) 343–348. doi:https://doi.org/10.

1016/0009-2614(94)00117-0.

[13] S. Kirkpatrick, C. D. Gelatt, M. P. Vecchi, Optimization by simulated
annealing, Science 220 (4598) (1983) 671–680. doi:10.1126/science.

220.4598.671.

[14] M. F. Ashby, D. R. Jones, Chapter 6 - driving force for structural change,
in: Engineering Materials 2 (Fourth Edition), International Series on Ma-
terials Science and Technology, Butterworth-Heinemann, 2013, pp. 109–
123. doi:https://doi.org/10.1016/B978-0-08-096668-7.00006-1.

[15] E. Farhi, J. Goldstone, S. Gutmann, Quantum adiabatic evolution algo-
rithms versus simulated annealing (2002). arXiv:quant-ph/0201031.

[16] A. Ichiki, M. Ohzeki, Upper bound inequality for calculation time in
simulated annealing analogous to adiabatic theorem in quantum systems
(2021). arXiv:2107.01792.

[17] S. Suzuki, A comparison of classical and quantum annealing dynamics,
Journal of Physics: Conference Series 143 (1) (2009) 012002. doi:10.

1088/1742-6596/143/1/012002.

[18] M. M. Wauters, R. Fazio, H. Nishimori, G. E. Santoro, Direct comparison
of quantum and simulated annealing on a fully connected ising ferromag-
net, Phys. Rev. A 96 (2017) 022326. doi:10.1103/PhysRevA.96.022326.

[19] E. Kapit, V. Oganesyan, Noise-tolerant quantum speedups in quantum
annealing without fine tuning, Quantum Science and Technology 6 (2)
(2021) 025013. doi:10.1088/2058-9565/abd59a.

[20] S. Arora, B. Barak, Computational Complexity: A Modern Approach,
1st Edition, Cambridge University Press, USA, 2009.

[21] D. Gosset, D. Nagaj, Quantum 3-SAT is QMA1-complete, in: 2013 IEEE
54th Annual Symposium on Foundations of Computer Science, IEEE,
2013. doi:10.1109/focs.2013.86.

https://doi.org/10.1038/ncomms5213
http://arxiv.org/abs/1411.4028
https://doi.org/https://doi.org/10.1016/0009-2614(94)00117-0
https://doi.org/https://doi.org/10.1016/0009-2614(94)00117-0
https://doi.org/10.1126/science.220.4598.671
https://doi.org/10.1126/science.220.4598.671
https://doi.org/https://doi.org/10.1016/B978-0-08-096668-7.00006-1
http://arxiv.org/abs/quant-ph/0201031
http://arxiv.org/abs/2107.01792
https://doi.org/10.1088/1742-6596/143/1/012002
https://doi.org/10.1088/1742-6596/143/1/012002
https://doi.org/10.1103/PhysRevA.96.022326
https://doi.org/10.1088/2058-9565/abd59a
https://doi.org/10.1109/focs.2013.86

BIBLIOGRAPHY 87

[22] A. Lucas, Ising formulations of many NP problems, Frontiers in Physics
2 (2014). doi:10.3389/fphy.2014.00005.

[23] G. E. Crooks, Performance of the quantum approximate optimization
algorithm on the maximum cut problem (2018). arXiv:1811.08419.

[24] J. R. McClean, S. Boixo, V. N. Smelyanskiy, R. Babbush, H. Neven,
Barren plateaus in quantum neural network training landscapes, Nature
Communications 9 (1) (nov 2018). doi:10.1038/s41467-018-07090-4.

[25] A. Braida, S. Martiel, I. Todinca, Anti-crossings occurrence as exponen-
tially closing gaps in quantum annealing (2023). arXiv:2304.12872.

[26] S. Morita, Faster annealing schedules for quantum annealing, Journal of
the Physical Society of Japan 76 (10) (2007) 104001. doi:10.1143/JPSJ.
76.104001.

[27] L. Kocsis, C. Szepesvári, Bandit based monte-carlo planning, Vol. 2006,
2006, pp. 282–293. doi:10.1007/11871842_29.

[28] M. Świechowski, K. Godlewski, B. Sawicki, J. Mańdziuk, Monte carlo
tree search: a review of recent modifications and applications, Ar-
tificial Intelligence Review 56 (3) (2022) 2497–2562. doi:10.1007/

s10462-022-10228-y.

[29] S. Russell, P. Norvig, Artificial Intelligence: A Modern Approach, 3rd
Edition, Prentice Hall, 2010.

[30] S. Thrun, Learning to play the game of chess, Advances in neural infor-
mation processing systems 7 (1994).

[31] S. Gelly, D. Silver, Monte-carlo tree search and rapid action value esti-
mation in computer go, Artificial Intelligence 175 (2011) 1856–1875.

[32] D. Silver, T. Hubert, J. Schrittwieser, I. Antonoglou, M. Lai, A. Guez,
M. Lanctot, L. Sifre, D. Kumaran, T. Graepel, T. Lillicrap, K. Simonyan,
D. Hassabis, Mastering chess and shogi by self-play with a general rein-
forcement learning algorithm (2017). arXiv:1712.01815.

[33] B. Sheppard, World-championship-caliber scrabble, Artificial Intelligence
12 (2002) 241–275. doi:10.1016/S0004-3702(01)00166-7.

[34] C. B. Browne, E. Powley, D. Whitehouse, S. M. Lucas, P. I. Cowling,
P. Rohlfshagen, S. Tavener, D. Perez, S. Samothrakis, S. Colton, A survey
of monte carlo tree search methods, IEEE Transactions on Computational
Intelligence and AI in Games 4 (1) (2012) 1–43. doi:10.1109/TCIAIG.

2012.2186810.

https://doi.org/10.3389/fphy.2014.00005
http://arxiv.org/abs/1811.08419
https://doi.org/10.1038/s41467-018-07090-4
http://arxiv.org/abs/2304.12872
https://doi.org/10.1143/JPSJ.76.104001
https://doi.org/10.1143/JPSJ.76.104001
https://doi.org/10.1007/11871842_29
https://doi.org/10.1007/s10462-022-10228-y
https://doi.org/10.1007/s10462-022-10228-y
http://arxiv.org/abs/1712.01815
https://doi.org/10.1016/S0004-3702(01)00166-7
https://doi.org/10.1109/TCIAIG.2012.2186810
https://doi.org/10.1109/TCIAIG.2012.2186810

88 BIBLIOGRAPHY

[35] C. Mansley, A. Weinstein, M. Littman, Sample-based planning for con-
tinuous action markov decision processes., 2011.

[36] P. Auer, N. Cesa-Bianchi, P. Fischer, Finite-time analysis of the mul-
tiarmed bandit problem, Machine Learning 47 (2002) 235–256. doi:

10.1023/A:1013689704352.

[37] The code developed for this work will be publicly available in, A. Agirre,
Code repository, https://github.com/agiandoni/quantumMCTS (2022).

[38] S. Bravyi, D. P. DiVincenzo, R. I. Oliveira, B. M. Terhal, The complex-
ity of stoquastic local hamiltonian problems (2007). arXiv:quant-ph/

0606140.

[39] T. Albash, D. A. Lidar, Adiabatic quantum computation, Reviews
of Modern Physics 90 (1) (jan 2018). doi:10.1103/revmodphys.90.

015002.

[40] A. Messiah, Quantum mechanics (1976).

[41] K.-P. Marzlin, B. C. Sanders, Inconsistency in the application of the
adiabatic theorem, Phys. Rev. Lett. 93 (2004) 160408. doi:10.1103/

PhysRevLett.93.160408.

[42] L. D. Landau, Zur theorie der energieubertragung. ii, Physikalische
Zeitschrift der Sowjetunion 2 (46) (1932).

[43] C. Zener, R. H. Fowler, Non-adiabatic crossing of energy levels, Pro-
ceedings of the Royal Society of London. Series A, Containing Papers
of a Mathematical and Physical Character 137 (833) (1932) 696–702.
doi:10.1098/rspa.1932.0165.

[44] A. V. Shytov, Landau-zener transitions in a multilevel system: An ex-
act result, Phys. Rev. A 70 (2004) 052708. doi:10.1103/PhysRevA.70.
052708.

[45] N. V. Vitanov, B. M. Garraway, Landau-zener model: Effects of finite
coupling duration, Phys. Rev. A 53 (1996) 4288–4304. doi:10.1103/

PhysRevA.53.4288.

[46] V. Mehta, F. Jin, H. D. Raedt, K. Michielsen, Quantum annealing for
hard 2-satisfiability problems: Distribution and scaling of minimum en-
ergy gap and success probability, Physical Review A 105 (6) (jun 2022).
doi:10.1103/physreva.105.062406.

[47] A. Soriani, P. Nazé , M. V. S. Bonança, B. Gardas, S. Deffner, Three
phases of quantum annealing: Fast, slow, and very slow, Physical Review
A 105 (4) (apr 2022). doi:10.1103/physreva.105.042423.

https://doi.org/10.1023/A:1013689704352
https://doi.org/10.1023/A:1013689704352
https://github.com/agiandoni/quantumMCTS
http://arxiv.org/abs/quant-ph/0606140
http://arxiv.org/abs/quant-ph/0606140
https://doi.org/10.1103/revmodphys.90.015002
https://doi.org/10.1103/revmodphys.90.015002
https://doi.org/10.1103/PhysRevLett.93.160408
https://doi.org/10.1103/PhysRevLett.93.160408
https://doi.org/10.1098/rspa.1932.0165
https://doi.org/10.1103/PhysRevA.70.052708
https://doi.org/10.1103/PhysRevA.70.052708
https://doi.org/10.1103/PhysRevA.53.4288
https://doi.org/10.1103/PhysRevA.53.4288
https://doi.org/10.1103/physreva.105.062406
https://doi.org/10.1103/physreva.105.042423

BIBLIOGRAPHY 89

[48] W. H. Zurek, Cosmological experiments in superfluid helium? (Oct.
1985). doi:10.1038/317505a0.

[49] T. Caneva, R. Fazio, G. E. Santoro, Adiabatic quantum dynamics of a
random ising chain across its quantum critical point, Physical Review B
76 (14) (oct 2007). doi:10.1103/physrevb.76.144427.

[50] J. Johansson, P. Nation, F. Nori, Qutip 2: A python framework for
the dynamics of open quantum systems, Computer Physics Communi-
cations 184 (4) (2013) 1234–1240. doi:https://doi.org/10.1016/j.

cpc.2012.11.019.

[51] T. M. Moerland, J. Broekens, A. Plaat, C. M. Jonker, A0c: Alpha zero
in continuous action space (2018). arXiv:1805.09613.

[52] W. van Dam, M. Mosca, U. Vazirani, How powerful is adiabatic quantum
computation?, in: Proceedings 42nd IEEE Symposium on Foundations
of Computer Science, IEEE, 2001. doi:10.1109/sfcs.2001.959902.

[53] S. Zielinski, J. Nüßlein, J. Stein, T. Gabor, C. Linnhoff-Popien, S. Feld,
Pattern qubos: Algorithmic construction of 3sat-to-qubo transformations
(2023). arXiv:2305.02659.

[54] J. Marques-Silva, Practical applications of boolean satisfiability, in: 2008
9th International Workshop on Discrete Event Systems, 2008, pp. 74–80.
doi:10.1109/WODES.2008.4605925.

[55] P. Cheeseman, B. Kanefsky, W. M. Taylor, Where the really hard prob-
lems are, in: Proceedings of the 12th International Joint Conference on
Artificial Intelligence - Volume 1, IJCAI’91, Morgan Kaufmann Publish-
ers Inc., San Francisco, CA, USA, 1991, p. 331–337.

[56] Q. Lin, X. Wang, J. Niu, A new method for 3-satisfiability problem phase
transition on structural entropy, IEEE Access 9 (2021) 2093–2099. doi:
10.1109/ACCESS.2020.3047930.

[57] Y.-Q. Chen, Y. Chen, C.-K. Lee, S. Zhang, C.-Y. Hsieh, Optimizing
quantum annealing schedules with monte carlo tree search enhanced with
neural networks (2022). arXiv:2004.02836.

[58] T. Caneva, T. Calarco, S. Montangero, Chopped random-basis quan-
tum optimization, Physical Review A 84 (2) (aug 2011). doi:10.1103/

physreva.84.022326.

[59] J. Yao, H. Li, M. Bukov, L. Lin, L. Ying, Monte carlo tree search based
hybrid optimization of variational quantum circuits (2022). arXiv:2203.
16707.

https://doi.org/10.1038/317505a0
https://doi.org/10.1103/physrevb.76.144427
https://doi.org/https://doi.org/10.1016/j.cpc.2012.11.019
https://doi.org/https://doi.org/10.1016/j.cpc.2012.11.019
http://arxiv.org/abs/1805.09613
https://doi.org/10.1109/sfcs.2001.959902
http://arxiv.org/abs/2305.02659
https://doi.org/10.1109/WODES.2008.4605925
https://doi.org/10.1109/ACCESS.2020.3047930
https://doi.org/10.1109/ACCESS.2020.3047930
http://arxiv.org/abs/2004.02836
https://doi.org/10.1103/physreva.84.022326
https://doi.org/10.1103/physreva.84.022326
http://arxiv.org/abs/2203.16707
http://arxiv.org/abs/2203.16707

90 BIBLIOGRAPHY

[60] M. E. S. Morales, J. D. Biamonte, Z. Zimborás, On the universality of
the quantum approximate optimization algorithm, Quantum Information
Processing 19 (9) (aug 2020). doi:10.1007/s11128-020-02748-9.

[61] Y. Ruan, S. Marsh, X. Xue, Z. Liu, J. Wang, The quantum approximate
algorithm for solving traveling salesman problem, Computers, Materials,
Continua 63 (2020) 1237–1247. doi:10.32604/cmc.2020.010001.

[62] G. Mbeng, R. Fazio, G. Santoro, Quantum annealing: a journey through
digitalitalization, control, and hybrid quantum variational schemes (06
2019).

[63] S. H. Sack, M. Serbyn, Quantum annealing initialization of the quantum
approximate optimization algorithm, Quantum 5 (2021) 491. doi:10.

22331/q-2021-07-01-491.

[64] L. Zhou, S.-T. Wang, S. Choi, H. Pichler, M. D. Lukin, Quantum ap-
proximate optimization algorithm: Performance, mechanism, and imple-
mentation on near-term devices, Physical Review X 10 (2) (jun 2020).
doi:10.1103/physrevx.10.021067.

[65] M. M. Wauters, E. Panizon, G. B. Mbeng, G. E. Santoro, Reinforcement-
learning-assisted quantum optimization, Physical Review Research 2 (3)
(sep 2020). doi:10.1103/physrevresearch.2.033446.

[66] V. Akshay, H. Philathong, M. E. S. Morales, J. D. Biamonte, Reachabil-
ity deficits in quantum approximate optimization, Phys. Rev. Lett. 124
(2020) 090504. doi:10.1103/PhysRevLett.124.090504.

[67] R. Fletcher, Practical Methods of Optimization, John Wiley & Sons, New
York, NY, USA, 1987.

[68] K. Godlewski, B. Sawicki, MCTS based agents for multistage single-
player card game, in: 2020 IEEE 21st International Conference on
Computational Problems of Electrical Engineering (CPEE), IEEE, 2020.
doi:10.1109/cpee50798.2020.9238707.

[69] R. Bjarnason, A. Fern, P. Tadepalli, Lower bounding klondike solitaire
with monte-carlo planning, Proceedings of the International Conference
on Automated Planning and Scheduling 19 (1) (2009) 26–33. doi:10.

1609/icaps.v19i1.13363.

[70] M. Schadd, M. Winands, H. Herik, G. Chaslot, J. Uiterwijk, Single-
player monte-carlo tree search, 2008, pp. 1–12. doi:10.1007/

978-3-540-87608-3_1.

https://doi.org/10.1007/s11128-020-02748-9
https://doi.org/10.32604/cmc.2020.010001
https://doi.org/10.22331/q-2021-07-01-491
https://doi.org/10.22331/q-2021-07-01-491
https://doi.org/10.1103/physrevx.10.021067
https://doi.org/10.1103/physrevresearch.2.033446
https://doi.org/10.1103/PhysRevLett.124.090504
https://doi.org/10.1109/cpee50798.2020.9238707
https://doi.org/10.1609/icaps.v19i1.13363
https://doi.org/10.1609/icaps.v19i1.13363
https://doi.org/10.1007/978-3-540-87608-3_1
https://doi.org/10.1007/978-3-540-87608-3_1

BIBLIOGRAPHY 91

[71] Y. Björnsson, H. Finnsson, Cadiaplayer: A simulation-based general
game player, Computational Intelligence and AI in Games, IEEE Trans-
actions on 1 (2009) 4 – 15. doi:10.1109/TCIAIG.2009.2018702.

[72] S. Klarsfeld, J. A. Oteo, The baker-campbell-hausdorff formula and
the convergence of the magnus expansion (Nov 1989). doi:10.1088/

0305-4470/22/21/018.

https://doi.org/10.1109/TCIAIG.2009.2018702
https://doi.org/10.1088/0305-4470/22/21/018
https://doi.org/10.1088/0305-4470/22/21/018

	Preamble
	Abstract

	Contents
	Introduction
	Background
	Outlook of this work

	Monte Carlo Tree Search
	Background
	Technical details
	The MCTS Cycle
	Making the final choice
	Conclusions

	Benchmarking MCTS

	Adiabatic Quantum Computation (AQC)
	Quantum Annealing (QA)
	Adiabatic Perturbation Theory
	Faster evolution regimes

	Toy model: flipping two spins with QA
	The toy model
	QA on the toy model

	MCTS plays the toy model
	MCTS-guided discretized QA
	Putting a bound on the error

	The 3-Satisfiability problem
	Description of k-SAT
	Encoding a k-SAT instance into the target Hamiltonian
	Toy model Hamiltonian

	MCTS-guided Quantum Annealing to solve 3-SAT
	Fourier gamemode
	Results on 3-SAT instances
	What MCTS is doing: a closer look at some results
	The noisy case

	Quantum Approximate Optimization Algorithm (QAOA)
	Theory
	The QAOA Ansatz

	MCTS-optimized QAOA on the toy model
	MCTS-optimized QAOA for 3-SAT
	Results

	Proposed solutions
	MCTS-initialized QAOA
	MCTS with iterative search space updates
	Discussion on an improved MCTS algorithm

	Conclusion and future directions
	Deeper dive into MCTS
	More tic-tac-toe benchmarks
	About the final choice
	Rewards in quantum optimization games
	Tree recycling: why and why not
	On possible MCTS modifications

	QA to QAOA: what is lost on the way
	Discretizing the annealing schedule
	General proof
	The case of QA
	A look at ||Hx - Hz||

	Trotter splitting the time evolution operator
	Other proofs
	Definition of operator norm
	Proof operator norm is submultiplicative
	Proof operator norm sets a bound on eigenvalues

	More noisy results
	Bibliography

