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Imagination is more important than knowledge. For knowledge is
limited to all we now know and understand, while imagination em-
braces the entire world, and all there ever will be to know and un-
derstand.

– Albert Einstein



Abstract

Unmodified phospholipid membranes show a pronounced increase in the trans-
membrane permeability in the gel-fluid phase transition regime. Fluorescence
correlation spectroscopy was used to determine the characteristic time it takes
for the fluorescence dye rhodamine 6G chloride to escape from large unilamel-
lar vesicles composed of dipalmitoylphosphatidylcholine. The observed self-
diffusion rates of the fluorophores could be changed by more than six orders of
magnitude by inducing a phase transition in the membranes by adjusting the
temperature or adding a general anaesthetic to the phospholipid membranes.
The results are compared to numerical simulations based on the Monte Carlo
method. In the numerical model the pore formation processes are similarly
found to be closely coupled to the area fluctuations of the membrane, which are
also strongest at the transition point.
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Part I

Introduction
More than three decades ago Papahadjopoulos et al. (1973) showed that the
permeation rate of Na+ ions through unmodified phospholipid bilayers could be
increased by several orders of magnitude when the temperature was close to the
melting temperature of the membrane.

Similar findings were made by other groups that same year. It was found that
the electrical conductivity of DPPC membranes exhibited a pronounced max-
imum in the vicinity of the transition temperature (Wu and McConnell (1973)),
and that the rate of transport through bacterial membranes is enhanced at the
onset of the lateral phase separation in the membranes (Linden et al. (1973)).

The following year it was found by Yafuso et al. (1974) that under certain
conditions, spontaneous conductance changes (ion channels) could be induced
in oxidised cholesterol lipid films.

Half a dozen years later Antonov et al. (1980) and Boheim et al. (1980)
demonstrated that the appearance of ion channels could be induced in pure
lipid membranes by lowering the temperature to the melting temperature of the
membrane. Even more interestingly, this could be done in a reversible manner.

A few years later Kaufmann and Silman (1983a,b) similarly demonstrated
that they could also reversibly induce ion channels by changing the pH of the
bulk solution on one side of the bilayer. Additionally, by increasing the pro-
ton concentration even further, they could return the system to a state of low
conductance.

These findings led them to suggest that any mechanism that would lead to
large fluctuations in the membranes should similarly induce ion channels – a
fact that has since then been shown in a number of studies (Strom-Jensen et al.
(1984), Maynard et al. (1985), Antonov et al. (1985), Yoshikawa et al. (1988),
Kaufmann et al. (1989), Woodbury (1989), Antonov et al. (2005)).

Up till then – and to a large degree still – most studies on ion channels
have implicitly been assuming that the lipid bilayer serves as an essentially
inert matrix of high resistance and that the channels observed occur within the
pore-forming proteins that are present in the bilayer.

However, the spontaneously formed pores give rise to discrete conductance
jumps, which have an uncanny resemblance to the conductance of protein-
channels. This spontaneous and stochastic gating process across the membrane
may be due to the repeated opening and recovery of defects induced by lateral
density fluctuations, as this would account for the increased permeability of the
membrane when the fluctuations are strong, as is the case when near a phase
transition.

The melting transition of biological membranes tends to lie just below body
temperature, thus making it easy to get into the melting transition by changing
the local pH, pressure or voltage across the membrane. It has been shown that
anaesthetics shift the melting transition to lower temperatures. This means that
the membranes are further from the transition conditions and thus less likely
to enter the phase transitions, which are necessary for the biological function.
Therefore, it is not unreasonable to speculate that the lipid bilayer could play
an active part in the functional control of biological membranes.



2

The purpose of this project is to study – both theoretically and experiment-
ally – how the permeability of lipid membranes varies with temperature and
how this dependence changes if another membrane variable is varied.

For this purpose we have chosen to study synthetic, unilamellar lipid vesicles,
as these offers a simple, well-defined system that makes it possible to measure
permeation rates, and how these change with temperature and other membrane
variables.

This is done in two ways: by measuring the rates directly with the use of
Fluorescence Correlation Spectroscopy (FCS), and by means of Monte Carlo
simulations.

With FCS it should be possible to measure how fast fluorescent molecules
leak out of the vesicles at a given temperature by looking at the time evolution
of the correlation curves of the system.

The Monte Carlo simulation will be based on a two-state Ising model with
the various parameters being determined – where possible – by calorimetric
measurements. These simulations of the lipid membrane provide information
about both the thermodynamic properties of the system and domain formation
and fluctuations, and consequently the permeability of the system. The results
of the numerical work can then be compared with the FCS measurements to
allow for a detailed description of the system and the possible implications for
the physiology of biological cells.

Fig. 1: The basic idea behind the FCS experiments. Left: The initial state of
the system, where all of the dye is trapped inside the vesicles. Middle: After a
while some of the dye will have leaked out due to spontaneous pore formation.
Right: In the end there will be no concentration gradient, and the vesicles will
be mostly empty.
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1 Composition of Membranes

Lipid bilayers are found everywhere in the living world, with plasma membranes
forming a 5nm thick skin around every eukaryotic and prokaryotic cell. Organ-
elles and other intracellular structures such as the endoplasmic reticulum, the
nucleus of eukaryotic cells, mitochondria, and the chloroplasts of green plant
cells are all surrounded by lipid membranes, as are several animal and plant
viruses.

Cell membranes are primarily constructed from lipids and proteins, and are
generally arranged in topologically closed surfaces which physically separate the
intracellular components from the extracellular environment. At the most fun-
damental level they function as selective barriers, which allow living cells to
maintain an intracellular composition that is different from that of the extracel-
lular solution. The barrier function is provided by the lipid bilayer, as the hydro-
phobic core of the bilayer has a very low dielectric constant compared to water (a
factor of ∼ 40). This results in a prohibitively large transfer energy for moving
ions from the aqueous solution into the bilayer core (Paula et al. (1998)).

Ever since Overton (1899) concluded that cells must be surrounded by a
”fatty oil”, there have been speculations on the structure and properties of
the cell membranes. The first evidence of a bilayer structure was obtained
by Gorter and Grendel (1925), who predicted and demonstrated that the lipid
membrane was indeed a bilayer by comparing the surface area of different animal
(and human) erythrocytes to the ”surface occupied by all of the lipoids of the
chromocytes.”

Fig. 2: Illustration of an idealised animal cell. The plasma membrane is a thin
phospholipid bilayer that acts a selective barrier between the inner and outer
part of the cell. Inside the cell itself, membranes also appear in different organ-
elles like the endoplasmic reticulum, the Golgi complex and the mitochondria.
The endoplasmic reticulum is involved in the synthesis of e.g. lipids, steroids
and proteins. The Golgi complex is a network of flat membranous sacs that pro-
duce, change and store proteins, while the mitochondria are involved cellular
respiration and the production of ATP from nutrients. The picture was taken
from http://probes.invitrogen.com.

http://probes.invitrogen.com
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Fig. 3: Models for cell membranes. Left: The fluid mosaic model of
Singer and Nicolson (1972). The phospholipids are arranged in a discontinu-
ous bilayer with the polar head regions being exposed to the aqueous phases
while the hydrocarbon tails are sequestered away. The proteins are partially
or fully embedded in the fluid membrane and are largely randomly distrib-
uted, though they may locally form aggregates. Right: The mattress model
of Mouritsen and Bloom (1984). Transmembrane proteins or polypeptides are
located in an environment that is primarily determined by the mismatch in the
hydrophobic regions of the lipids and the amphiphilic molecules.

The first commonly accepted membrane model came ten years later. It
was proposed by Danielli and Davson (1935), who suggested that cells must be
surrounded by ”lipoidal material” that was sandwiched in between two layers of
proteins. The membrane itself was considered to be homogeneous and it could
be either solid or liquid.

This model persisted for several decades, undergoing only some minor revi-
sions with the introduction of the electron microscope studies, where Robertson
(1957) observed a characteristic trilaminar appearance consisting of two darker
outer lines and a lighter inner region. The interpretation was that all cell mem-
branes must have a common structure (the ”unit membrane”), where the darker
lines must be protein layers and the light region the lipid bilayer.

This model was eventually refined by Singer and Nicolson (1972), where they
proposed a fluid mosaic model for the gross organisation and structure of the
proteins and lipids of biological membranes. In their model the lipids are ar-
ranged in the form of a bilayer, in which the proteins are embedded and can
diffuse freely (see Fig. (3)).

Since its proposal this model has been subjected to further refinement to
take into account that lipids and proteins may distribute inhomogeneously
(Mouritsen and Bloom (1984), Jacobsen et al. (1995)), and that domains rich
in sphingolipids and cholesterol (so-called ”rafts”) may form in the membrane.
This lateral heterogeneity has a strong influence on diffusion and directed trans-
port in the membrane as well as signalling pathways (Simons and Ikonen (1997)).

The lipid and protein composition of the various membranes shows a large
variation. For instance, in nerve membranes (myelin) one finds a high percentage
of sphingomyelin lipids. One also finds a large range for the percentage of
unsaturated fatty acids as well the amount of charged lipids between different
membranes (Heimburg (2007)). The reason behind this diversity in membrane
composition still remains unresolved (Tien and Ottova-Leitmannova (2003)).

When bacteria are grown under different environmental conditions (different
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temperature, pressure, salinity, pH), they display a different lipid composition
(Hazel and Williams (1990), Heimburg (2007)). They can regulate the com-
position of their membranes by either changing the number of double bonds
in the hydrocarbon chains, or by changing the chain lengths. Desaturases –
that is enzymes that can introduce carbon-carbon double bonds – are nor-
mally synthesised by expression of the relevant genes when the temperature
is lowered. At higher temperatures, a protein binds to the enzymes and thereby
inactivates them (Jensen and Prentø (1994)). This ability to regulate the com-
position of the membranes to cope with the effects of different environmental
conditions is known as homeoviscous adaptation (Marr and Ingraham (1962),
Sinensky (1974)), and numerous examples of this phenomenon have been found
(see MacDonald (1988) and the references therein).

The cells of eukaryotic organisms also make use of both the regulation of
the number of double bonds in the hydrocarbon chains as well as adjusting the
concentration of cholesterol to control the state of the membranes. Therefore,
the number of double bonds and amount of cholesterol will increase with de-
creasing temperature for poikilothermic animals1. Similarly, it has been found
that the cell membranes of deep sea fish also show homeoviscous adaptation to
pressure2 (MacDonald (1988), Hazel and Williams (1990)).

Another example can be found in trouts that have been raised at different
temperatures. Here it has been found that the lipid composition of their livers
changes with temperature. Likewise, it has been found that the brain syn-
aptic membranes of teleost fish display different lipid compositions depending
on whether their habitat is arctic, temperate, or tropical (Logue et al. (2000)).
Arctic animals, such as seagulls and reindeer, also have high amounts of unsat-
urated lipids in the membranes near the feet/hooves, whereas membranes near
the thigh have relatively few double bonds (Fox (1972), MacDonald (1988)).

It is also known that hibernating animals will start off by adjusting their
membranes to function at lower temperatures (Aloia and Raison (1989), Jensen
and Prentø (1994)).

This adaptation can even be found in humans, where it is a well-established
fact that chronic alcoholics have higher amounts of saturated lipids and choles-
terol in their red blood cells (Benedetti et al. (1987), Parmahamsa et al. (2004)),
to compensate for the changes induced by the alcohol.

A different – and still not quite understood – change in the membranes
happens during anaesthesia. Anaesthesia occurs when the membranes of the
nerve cells absorb certain hydrophobic compounds, which changes their state as
a result. This change inhibits the cells’ ability to receive and process signals. A
couple of thermodynamically based explanations have been proposed.

One theory is that the anaesthetic alter the transverse pressure profile of the
membrane, thereby influencing the conformations and function of the embedded
proteins (Cantor (1997a,b)).

Another possibility has been proposed by Heimburg and Jackson (2005),
who argue that the nerve pulse is in fact a propagating density pulse (soliton).
The effect of the anaesthetic would then solely be due to the induced melting

1I.e. vertebrate animals, such as fish and reptiles, where the body temperature varies with
the temperature of its surroundings.

2For lipid bilayers the transition temperature increases with pressure by 0.1–0.4K/MPa,
depending on the exact composition. For most phospholipids, this value lies in the vicinity of
≈ 0.23K/MPa (Hazel and Williams (1990)).
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point depression which alters the amount of free energy needed to generate a
pulse. It thus predicts that anaesthesia can be reversed by adjusting e.g. the hy-
drostatic pressure, pH or pCa, so that the free energy of the membrane returns
to its original value (Heimburg and Jackson (2007a,b), Seeger et al. (2007)).

In conclusion, the composition and state of the lipid membranes must play
an important role for biological function, as it would be rather easy to lower
the melting temperature significantly by introducing unsaturated lipids or cho-
lesterol, if only soft and fluid membranes were required.

1.1 Fatty acids and phospholipids

Fatty acids are carboxylic acids of the form RCOOH, where the R represents
a long hydrocarbon chain. They are usually not found in their free state in
cells, but are instead components of covalently bonded molecules, such as phos-
pholipids or triglycerides where two or three fatty acids are linked to a glycerol
backbone. In the case of the phospholipids, the remaining -OH group in the
glycerol is replaced by a phosphate group -PO4 which, in turn, is linked to yet
another group that is normally referred to as the polar head group.

Like all lipids in biological membranes, phospholipids are amphiphilic in
nature (i.e. they have both a polar and a non-polar region). The length of
the non-polar hydrocarbon chains lies in the range from 12 to 24 carbons with
the typical value being 16 or 18 (Eisenberg and McLaughlin (1976), Heimburg
(2007)).

The polar head groups of phospholipids may be chosen from a variety of
organic compounds, such as choline, ethanolamine, serine and glycerol.

Both serine and glycerol phospholipids have negative charge due to the phos-
phate group, while choline and ethanolamine are zwitterionic but have no net
charge. The naming convention for a phospholipid reflects, in part, its fatty

Fig. 4: Left: Dipalmitoyl phosphatidylcholine (DPPC). Middle: 1-Octanol.
Right: 2-Bromo-2-chloro-1,1,1-trifluoroethane (halothane).



2 PREVIOUS PERMEABILITY STUDIES 7

acid composition. For example, a phospholipid containing two palmitic acids
(16 carbons each) and a choline group is called dipalmitoyl phosphatidylcholine
or DPPC for short. Common abbreviations include:

• phosphatidylcholine: PC

• phosphatidylethanolamine: PE

• phosphatidylserine: PS

• phosphatidylglycerol: PG

In many membranes the fraction of charged lipids is around 10−20%, though it
can be as high as 40%, as is the case for mitochondria (Heimburg (2007)). This
will of course have an influence on the electrostatic potential of the membranes.

While the phospholipids are major component of cellular membranes, there
are other kinds of lipids present, such as glycolipids and cholesterol.

Glycolipids are similar to phospholipids in that they have a pair of hydro-
carbon chains, but the phosphate group is replaced by a sugar residue (based
on a ring of five carbons and one oxygen).

Cholesterol, on the other hand, is a member of the steroid family and is com-
monly found in the membranes of eukaryotic cells. For instance, in erythrocytes
the cholesterol content may be 20% or even higher (Parmahamsa et al. (2004),
Heimburg (2007)).

2 An Incomprehensive Summary
of Previous Permeability Studies

Present theories of ion channel formation (whether in artificial bilayers or in
cell membranes) favour the notion of ion channels being formed by specific
proteins that are embedded in the membrane and provide pathways for fast and
controlled flow of selected ions along their electrochemical gradients.

This activity is used to explain action potentials in nerves, muscles and other
excitable cells, and is thought to form the basis of all movement, sensation and
thought processes in living beings.

While it is well-known that certain proteins and peptides can create se-
lective ion channels and thereby regulate the permeability of the membrane, it
seems less well-known that pores can transiently form in protein-free membranes
due to thermal fluctuations. This phenomenon can make permeation rates
much higher than expected from the Arrhenius law, especially in states where
there are strong lateral density fluctuations (Papahadjopoulos et al. (1973),
Wu and McConnell (1973), Nagle and Scott (1978), Antonov et al. (1980),
Cruzeiro-Hansson and Mouritsen (1988) Kaufmann and Silman (1989), Corvera
et al. (1992), Seeger et al. (2007), Heimburg (2007)).

An interesting feature of these spontaneously formed pores is that they ex-
hibit features normally considered to be indicative of protein channels includ-
ing stepwise conductance changes, flickering, ion selectivity, and inactivation
(Woodbury (1989)).

While physiological studies provide detailed information about the func-
tional properties of ion channels, there has been a notorious lack of structural
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knowledge about them. Even the famous potassium channel from the Hodgkin-
Huxley theory was only crystallised in 1998 by Roderick MacKinnon (who was
awarded the Nobel Prize already in 2003 for this feat), even though the Hodgkin-
Huxley theory was proposed more than 50 years ago (Hodgkin and Huxley
(1952)).

Prior to the publication of the first studies of quantised currents through
proteins by patch clamp, Yafuso et al. (1974) reported spontaneous conduct-
ance changes and multilevel conductance states in pure black lipid membranes
made from oxidised cholesterol.

Two years later Neher and Sakmann (1976) performed the first patch clamp
experiments (which also won them the Nobel Prize in 1991). This was the
first time single-channel currents were recorded in biological membranes. Since
then an enormous number of patch clamp studies have been performed, so for
a thorough discussion of this field see Hille (2001).

Despite the omnipresence and vital nature of lipid membranes, most studies
have for a long time tended to ignore them and simply consider them as be-
ing homogeneous and impermeable barriers without any noteworthy properties
(Tien and Ottova-Leitmannova (2003)).

The fact that the membrane permeability increases strongly under certain
conditions is rarely considered in measurements on protein-channels. For in-
stance, the simple act of applying suction or a transmembrane voltage in patch
clamp experiments can induce a phase transition in the membrane (Kaufmann
and Silman (1989)).

Furthermore, even when some protein-channels are found to be influenced
by the lipid membrane (Schmidt et al. (2006), Lee (2006)), it is usually only
specific binding/interaction with proteins that is considered, and rarely the ther-
modynamics of the system as a whole.

Consequently, the studies of pure lipid membrane systems are few and far
between, though their importance is starting to dawn on the scientific com-
munity (Hilgemann (2003)).

In Antonov et al. (1980) the electrical conductance of protein-free mem-
branes made from synthetic DSPC was examined. It was discovered that at
the phase transition temperature long-lived current fluctuations appeared. In
this article they tentatively proposed that such channels could in fact conduct
the known transmembrane ionic currents, without the direct involvement of
protein-channels.

In Antonov et al. (1985) (and also more recently, such as in Antonov et al.
(2005)) they followed up on their findings. The capacitive and ionic currents
through bilayer lipid membranes formed from dipalmitoylphosphatidic acid were
studied, and it was found that by causing a phase transition by introducing Ca2+

ions, they could observe single ion channel events in the bilayer lipid membranes.
Two years before that, Kaufmann and Silman (1983b) published a systematic

study on how ion channels through lipid bilayer membranes could be induced
by changes in the pH of the system. Specifically, they found that there was a
certain threshold for the proton concentration at which otherwise stable lipid
bilayers of very low conductivity would show resolved ion channels. Further
acidification would reduce the permeability of the membrane to a much lower
value, indicating that this was related to a transition in the membrane.

In Kaufmann et al. (1989) they published their extensive studies on how ion
channel fluctuations in pure lipid bilayer membranes could be controlled in a
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deterministic fashion by changing any of the intensive thermodynamic variables,
such as voltage, surface pressure, pH, and temperature. This led them to con-
clude that the reversible fluctuations in the membrane are responsible for the
opening and closing of aqueous defects in the lipid bilayer.

Other groups have observed similar properties of protein-free phospholipid
membranes. Boheim et al. (1980) and Yoshikawa et al. (1988) both verified
that fluctuations and stepwise changes in the electrical current across a syn-
thetic membrane could be induced by having the system near its phase trans-
ition temperature.

Likewise, Woodbury (1989) found that channel-like current fluctuations in
planar lipid bilayers could be observed when pure lipid vesicles fused with the
membranes.

Finally, it has been found that the membrane phospholipid composition and
state affects the function (conductivity, opening and closing statistics, mid-
points of activation, etc.) of certain protein-channels. (Turnheim et al. (1999),
Schmidt et al. (2006)). Furthermore, the various channel activity parameters
also show a pronounced peak in the transition regime (Cannon et al. (2003)).

In summary, it has been found that

• The permeability of lipid membranes depends strongly on the temperat-
ure, with a pronounced peak at the phase transition temperature (Papa-
hadjopoulos et al. (1973), Georgallas et al. (1987), Corvera et al. (1992),
Heimburg (2007)).

• Ion channels appear in any lipid bilayer even in the absence of any further
membrane component, and they reversibly open and close. These fluc-
tuating channels are thought to be due to structural changes (transient
pores) in the lipid bilayer during the melting-transition of the phosphol-
ipids (Yafuso et al. (1974), Antonov et al. (1980), Boheim et al. (1980),
Antonov et al. (1985), Yoshikawa et al. (1988), Woodbury (1989), Kauf-
mann and Silman (1989), Antonov et al. (2005)).

• The spontaneously formed pores exhibit stepwise conductance changes,
flickering, ion selectivity, and inactivation (Woodbury (1989)).

• The probability of an event can be controlled by all of lipid variables, such
as voltage, surface pressure, pH, pCa, and temperature (Antonov et al.
(1980), Boheim et al. (1980), Kaufmann and Silman (1983a), Kaufmann
and Silman (1983b), Antonov et al. (1985), Kaufmann and Silman (1989),
Antonov et al. (2005)).

• The typical time scales of ion channel opening and closing in both tran-
sient pores as well as in protein-channels are similar to the characteristic
relaxation time of the membrane (Seeger (2006), Seeger et al. (2007)).

• The function of certain protein-channels depends strongly on the compos-
ition and state of the lipid environment (Turnheim et al. (1999), Cannon
et al. (2003), Schmidt et al. (2006), Lee (2006)).
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Fig. 5: Electric current fluctuations (left) and corresponding histograms (right)
recorded in planar BLM from DPPC in 1M LiCl with the transmembrane po-
tential clamped at 50mV. At temperatures above (a: T = 50◦C) and below
(c: T = 35◦C) the current fluctuations are practically absent and only noise is
observed. At the temperature of the main phase transition of the system (b:
T = 43◦C) one can see a series of single and double current fluctuations with a
well-defined amplitude. Adapted from Antonov et al. (2005).
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Part II

Theory
This part introduces all of the theory needed for this project. As the phe-
nomenon investigated in the thesis is a thermodynamic one, the first section
will describe some of the basic thermodynamics of lipid membranes.

As the two primary methods of investigation used in this thesis are Fluores-
cence Correlation Spectroscopy and Monte Carlo simulations, the basics of both
of these methods will also be discussed in some detail.

3 The Thermodynamics of Membranes

3.1 Phase transitions

Phase transitions occur when there is a singularity in a system’s free energy or
one of its derivatives. This can normally be observed as a sharp change in one
or more of the properties of the system. There are many examples of this, such
as the transition from solid to liquid, from paramagnet to ferromagnet, or from
normal conductivity to superconductivity.

Another example is, of course, amphiphilic molecules in solution, which
can exhibit fairly exotic behaviour. These molecules have a hydrophilic po-
lar head group and two hydrophobic hydrocarbon tails, which means that in
an aqueous system, the polar heads of the lipids will be orientated towards the
polar, aqueous environment, while the hydrophobic tails seek to minimise their
contact with the water as shown in Fig. (6).

If there is a surface they will migrate there and as a result lower the surface
tension – hence their use as soaps.

The phase diagrams of solutions of lipids – and surfactant molecules in gen-
eral – are mainly determined by the concentration of the solute, though pH,
salinity, pressure and temperature can also have a strong influence, as in the
case of DMPG, which displays quite complex (and still not fully understood)

Fig. 6: Self-assembly of lipids in water gives different structure, depending on
the lipid concentration, the molecular structure, etc. (a) Bilayer. (b) Unilamel-
lar vesicle. (c) Micelle. (d) Inverse micelle.
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phase behaviour (Heimburg and Biltonen (1994)). In fact, lipids display a great
diversity of structure over a very narrow range of chemical and physical para-
meters that are close to physiological conditions – more so than any other class
of biological molecules (Hazel and Williams (1990)).

When the concentration is increased micelles form. These are groups of lip-
ids arranged in a spherical or cylindrical configuration, so that the polar heads
shield the hydrocarbon tails from the aqueous environment. If the concentra-
tion is increased even further, the system can undergo a transition to other
geometries, such as a state where micelles are ordered in a cubic or hexagonal
array or a sponge phase where the intervening spaces are filled with water.
Other transitions are also possible, such as when the lipids are arranged into
bilayers but move freely within it like a two-dimensional fluid, and a further
transition to a so-called ripple phase, where lines of lipids are in in the fluid
state (Heimburg (2000)), and finally a fully fledged crystalline state, where the
lipids are ordered on a triangular lattice.

One will find different states of lipid membranes depending on the temper-
ature. When the temperature is decreased, four different states occur:

• Lα: In this state all the lipid chains are disordered (fluid) and the lateral
order of lipids is random (liquid). Therefore, this phase is also called the
liquid-disordered phase, or simply the fluid phase.

• P′
β : This is the so-called ’ripple’-phase, where the system is partially solid

and partially fluid, and has a periodic super structure (Heimburg (2000)).

• Lβ : Crystalline molecular order (solid) in the membrane phase, chains
are ’all-trans’ (ordered) and tilted. This phase is sometimes called the
solid-ordered phase, or alternatively the gel phase.

• Lc: Crystalline in three dimensions.

The transition between these four phases occurs at well-defined temperatures.
The transition temperature depends on a number of factors, such as the chain
length, chain saturation (number of carbon-carbon double bonds), head group
size and charge, etc. The transition temperatures can also be altered by co-
addition of cholesterol, peptides, general anaesthetics (e.g. halothane or chloro-
form), binding of molecules to the surface, etc.

3.2 Transitions in phospholipids

The physical properties of the lipid membranes can be studied in detail by
using model systems prepared from pure (synthetic) lipids, and has been done so
extensively in the last couple of decades (Hinz and Sturtevant (1972), Heimburg
(2007)).

As described in Sec. (1.1) a phospholipid has two hydrocarbon chains. Each
of the C–C bonds of the hydrocarbon chains allows for rotations to take place,
with three distinct energy minima at ±120◦ angles as shown in Fig. (7).

Of the three minima, the trans configuration displays the lowest energy,
with a difference of approximately 2.5kJ/mol with respect to the gauche− and
gauche+ configurations.

In the ground state of the system both chains adopt an all-trans configur-
ation, and as this can only be done in one way, the state has an entropy of
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Fig. 7: Lipid chains may have various conformations. Different conformations
can be generated by rotation around the C–C bonds in the chains (’trans-gauche’
isomerizations). The configuration with the lowest energy is the ’all-trans’ con-
figuration, which has a characteristic zig-zag pattern as shown in Fig. (4). The
conformations with ’gauche’-isomers display higher internal energy, but also
have a much higher degeneracy. Thus the conformation of the chains will de-
pend strongly on the temperature. Furthermore, the different lipid conforma-
tions will occupy different volumes and areas, so the lipid conformations will
also depend on bulk and lateral pressure. Figure adapted from Gennis (1989).

S0 = S0
0 + R ln(1) = S0

0 . If we let γ denote the mean probability to find a
gauche-isomerization in a CH2–CH2 bond (an exited state), the entropy of the
chains will be given by

∆SCH2 = −kB

∑
i

Pi lnPi = −kB · 2 ·
(

γ

2
ln

γ

2

)
− kB(1− γ) ln(1− γ), (1)

where Pgauche− = Pgauche+ = γ/2 and Ptrans = (1− γ).
At high temperatures all the trans and the gauche states will be equally

probable, so for T →∞ we have that γ → 2/3 and

∆SCH2 = −kB · 3 ·
(

1
3

ln
1
3

)
= kB ln 3. (2)

A hydrocarbon chain with n carbon atoms has (n − 2) bonds which lead to
distinguishable configurations after rotation, and the entropy of the disordered
chain is therefore

∆S = ∆S0 + 2(n− 2)∆SCH2 , (3)

that is, it is proportional to the length of the chain. The factor 2 stems from
the fact that there are two chains in each lipid.
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For the enthalpy of the excited state we similarly find

∆H = ∆H0 + 2(n− 2)∆HCH2 (4)

with ∆HCH2 = γ · 2.5kJ/mol.
If we assume that a the lipid will only be found in one of two states – all-trans

and disordered – the (chain) melting point can be defined as the temperature
at which the ground state and the excited states are equally likely:

Pdisordered(Tm)
Pall−trans(Tm)

= K(Tm) = 1 (5)

⇒ ∆µ = ∆H − Tm∆S = 0⇒ Tm =
∆H

∆S
(6)

As is evident from Eqs. (3)–(6) this temperature depends on the length of
the hydrocarbon tails. However, in general there are a number of other factors
which can strongly influence its value. As mentioned in Sec. (1) the presence
of double bonds will generally reduce the melting point of the system, thus
allowing organisms to easily adjust the melting point of their lipid membranes
by adjusting the ratio of unsaturated/saturated lipids. Electrostatic interactions
between the lipids’ head groups also plays a major role, as the strength of this
effect depends strongly on pH and salt concentrations, making it possible to
quickly induce changes. Pressure as well as the electric potential across the
membrane will also influence its state.

For most natural lipids the melting temperatures are in the biologically re-
levant temperature regime (−20◦C to +60◦C) (Tien and Ottova-Leitmannova
(2003), Ivanova et al. (2003)), and in general biological membranes have a trans-
ition temperature approximately 15K below the organism’s temperature (Heim-
burg and Jackson (2005)), though the transition is rather broad (≈ 10–15◦C).

Fig. 8: Chain-melting transition of a phospholipid bilayer. When going from
low to high temperature there is an increase in the enthalpy, ∆H, and the
entropy, ∆S. The change in the chain configurations also means that the
membrane changes area by approximately 33% and thickness by approximately
−13% (Heimburg (1998)).
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3.3 Fluctuations

The lipid bilayer fluctuates reversibly in any state, and from these fluctuations
a large number of properties of the system can be derived.

The excess heat capacity at constant pressure of a system, cp, can easily be
derived from the fluctuation-dissipation theorem (Hill (1962)) as follows.

cp ≡
(

d〈H〉
dT

)
p

(7)

=
(

d

dT

)
p

∑
i

Hi · e−Hi/RT

Z
, where Z ≡

∑
i

e−Hi/RT (8)

=
∑

i

H2
i · e−Hi/RT

RT 2 · Z
−
∑

i

Hi · e−Hi/RT

Z

∑
j

Hj · e−Hj/RT

RT 2 · Z
(9)

=
〈H2〉 − 〈H〉2

RT 2
, (10)

where R is the gas constant and T the temperature. Here the sums are over all
the possible states of the system.

Another example is the isothermal area compressibility, κA
T , which can be

derived in a similar fashion:

κA
T ≡ −

(
1
〈A〉

d〈A〉
dΠ

)
T

(11)

= − 1
〈A〉

(
d

dΠ

)
T

∑
i

Ai · e−Hi/RT

Z
(12)

=
〈A2〉 − 〈A〉2

〈A〉RT
, (13)

where Π is the lateral pressure (where H = E + pV + ΠA + . . .).
Thus the excess heat capacity is proportional to the fluctuations in the en-

thalpy, while the area compressibility is proportional to the fluctuations in the
area of the system. This turns out to be extremely useful relations when per-
forming Monte Carlo simulations.

Since the membrane volume only changes by ≈ 4% during the transition
(Heimburg (1998)), the relative thickness fluctuations must be approximately
equal to the relative area fluctuations. This means that the membrane thickness
fluctuations are large when the isothermal area compressibility is large.

Furthermore, it is known that membranes become more pliable during the
chain-melting transition (Heimburg (1998)). In fact, it has been found that
the lateral compressibility and the excess heat capacity are proportional func-
tions near the chain-melting transition (Heimburg (1998), Ebel et al. (2001)),
meaning that both the area and the enthalpy fluctuates strongly during the
transition.

Moreover, it has been shown that the relaxation time after a perturbation
of the system is similarly related to the fluctuations of the system (Grabitz et
al. (2002), Seeger (2006), Seeger et al. (2007)).

The presence of these fluctuations means that the hydrophobic barrier of
the flexible hydrocarbon chains will inevitably disappear locally given sufficient
time.
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As a pore (hydrophilic or not) is an allowed state of the membrane, it
seems reasonable to assume that the probability of occurrence would be much
higher when the lateral density and thickness fluctuations of the membrane are
strongest, such as during the chain-melting transition.

3.4 Models for permeability

As mentioned in Part (I) the permeation rate of ions and small molecules
through unmodified lipid membranes increases by several orders of magnitude in
the transition regime. The reason for this anomaly is still not fully understood,
though a possible explanation is offered by at least two models, which – for ease
of reference – will be called the ’line defect model’ and the ’pore model’. Both of
them are based on thermodynamic grounds and they should not be considered
to be mutually exclusive.

The line defect model was first proposed by Träuble and Haynes (1971)
and later Papahadjopoulos et al. (1973) and subsequently followed up on by
Cruzeiro-Hansson and Mouritsen (1988). They proposed that the increase in
permeability is caused by line defects that occur at the interfaces between do-
mains and the bulk, which can facilitate the solubility and diffusion of water
and other small solutes through the membrane. These defects appear because
of the mismatch in the area of fluid state and gel state lipids, which makes it
impossible to have optimal (hexagonal) packing of the lipids. This theory would
thus predict that the permeability should increase in the phase transition when
domain formation and local fluctuations are strong. Furthermore, the permeab-
ility should increase with increasing interfacial area, which happens when the
cooperativity (line tension) of the system is decreased.

Another possible mechanism (the pore model) was proposed by a number
of people (Linden et al. (1973), Wu and McConnell (1973), Nagle and Scott
(1978), Doniach (1978), Kaufmann and Silman (1983a,b), Kaufmann et al.
(1989), Ivanova et al. (2003)). This mechanism assumes that the particles
permeate through transient hydrophilic pores that are the result of thermal
fluctuations. Thus no dehydration or hydrophobic barrier has to be involved.
They suggested that the probability of forming a pore should solely depend
on the fluctuations in the area (and consequently the lateral compressibility)
of the system. As this quantity is directly proportional to the heat capacity
(Ebel et al. (2001)), this theory predicts that the permeability would decrease
at the transition midpoint if the cooperativity of the system is reduced, as this
lowers and broadens the heat capacity profile. Thus the permeability would
decrease near the phase transition temperature, but increase in the wings of the
heat capacity profile.

These thermodynamic models are, in a sense, very minimalistic models in
that they incorporate the fewest possible assumptions about the diffusion mech-
anism, and neither implies a detailed structural model of the defects.

As mentioned, these two models are not mutually exclusive, but one of the
mechanisms will be the dominant one, while the other will simply provide an
alternative pathway for permeation.

It was shown in Paula et al. (1998) that the permeation of halide ions through
phospholipid bilayers seems to favour the solubility-diffusion mechanism. How-
ever, it seems difficult to explain the discrete nature of the ion channel currents
based on this mechanism. However, under certain conditions the pore mechan-
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Fig. 9: Models for permeation. Left: The solubility-diffusion mechanism.
Particles enter the hydrophobic core through some small defect and then diffuse
across the bilayer. Right: The pore mechanism. Particles traverse the bilayer
through transient hydrophilic pores caused by thermal fluctuations.

ism may be more favourable and could give rise to the transient and stepwise
conductance changes.

Whatever the specific case may be, these thermodynamic interpretations
of ion channel opening and closing due to lipid bilayer fluctuations are free of
adjustable parameters, and make several testable predictions.

3.4.1 Model of passive ion transport

The following is loosely based on the derivation found in Cruzeiro-Hansson and
Mouritsen (1988).

Let us consider a vesicle of volume V (T ) with an internal ion concentration,
c(t) = N(t)/V (T ). For such as system the number of ions leaving the vesicle,
dN(t), at time t will be given by

dN(t) ∝ c(t)v(T )A(T )P (T )dt, (14)

where v(T ) is the velocity of the colliding ion, A(T ) is the internal area of the
vesicle, and P (T ) is the probability of the ion crossing the membrane once it
hits it.

From the kinetic theory of gases we know that the velocity of the ions follows
a Maxwell-Boltzmann distribution, with 〈v(T )〉 ∝

√
RT/M, where M is the

molar mass of the ion. Inserting this expression into Eq. (14), we have that

dN(t) ∝M−1/2A(T )−1/2T 1/2P (T )N(t)dt. (15)

In the line defect model (Papahadjopoulos et al. (1973), Cruzeiro-Hansson and
Mouritsen (1988)) it is assumed that the probability, P (T ), of an ion crossing
should be closely related to the boundaries between the fluid and gel domains.
In this model P (T ) can be written as a sum of three terms, namely

P (T ) = ai(T )pi + ag(T )pg + af (T )pf , (16)

where ai, ag and af are the fractions of the membrane area occupied by the
interfaces, and by the gel and fluid lipids not associated with an interface. The
corresponding regional probabilities of permeation are pi, pg and pf respectively.

As previously mentioned, the line defect model assumes that the interfacial
area is associated with a very high relative regional permeability, pi � pg, pf .
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The idea behind this is that there should be a high defect density in the inter-
facial region which could cause leakiness due to imperfect molecular packing.

In the pore model the probability is phenomenologically related to the iso-
thermal area compressibility by (Nagle and Scott(1978))

P (T ) = P0 + P2κ
A
T = P0 + P ′

2∆cp, (17)

where P0 is the crossing probability for the homogeneous states, and is assumed
to be a monotonously increasing function of the fluid fraction (due to the in-
crease in the average lipid spacing). The second equality sign stems from the
observation that the lateral compressibility is a linear function of the excess
heat capacity (Ebel et al. (2001), Heimburg (2007)). Both P0, P2 and P ′

2 may
be temperature dependent, though it is assumed to be relatively weak.

By integrating Eq. (15) one arrives at a simple expression for the fraction,
f(t, T ), of ions still inside the vesicle

f(t, T ) =
N(t)

N(t = 0)
= e−kpt with kp ∝M−1/2A(T )−1/2T 1/2P (T ), (18)

where kp is the characteristic permeation rate of the system. For a constant
P (T ) the temperature dependence of kp would be rather weak, as it would
only change by a factor of ≈ 0.9 when going from 25◦C to 45◦C for a DPPC
membrane.



4 FLUORESCENCE CORRELATION SPECTROSCOPY 19

4 Fluorescence Correlation Spectroscopy

Fluorescence Correlation Spectroscopy (FCS) was first introduced by Magde et
al. (1972) to measure the chemical rate constants and diffusion coefficients of
a chemically reactive system at equilibrium. This was done by measuring the
temporal correlations of the fluctuations in the fluorescence intensity, arising
from the thermodynamic concentration fluctuations.

Since then the experimental method has been improved upon and has suc-
cessfully been used to make concentration and aggregation measurements and
study confined, anomalous, and rotational diffusion, active transport processes,
bacterial motility, and even conformational changes in proteins (Schwille and
Haustein (2002)).

This section will introduce the basic theory behind FCS which will be needed
for the data analysis.

4.1 Basic correlation function

The correlation function is a measure of the self similarity of a signal, F (t). It
is normally defined as

G(τ) ≡ 〈F (t + τ) · F (t)〉
〈F (t)〉2

(19)

or alternatively, as the correlation of the fluctuations in the signal,

G(τ) ≡ 〈δF (t + τ) · δF (t)〉
〈F (t)〉2

, (20)

which will only differ from Eq. (19) by an additive constant (namely −1).
In FCS one measures the fluorescence of the sample (hence the name), which

for a dilute system can be expressed as

F (t) = κεQ

∫
all space

Ω(r) · c(r, t)dr, (21)

where κ is the efficiency of the fluorescence detector (including the detector
quantum efficiency, its sensitivity to the particular wavelength range, and losses
in the optical system), ε is the molar extinction coefficient of the fluorophore
at the wavelength of the exciting laser radiation, Q is the fluorescence quantum
yield of the fluorophore, Ω(r) is the fluorescence detection efficiency profile, and
c(r) is the concentration of fluorescent particles.

By writing the concentration as a mean plus a deviation, c(r) = 〈c〉+δc(r, t),
Eq. (21) becomes

F (t) = 〈F 〉+ κεQ

∫
all space

Ω(r) · δc(r, t)dr ⇒ (22)

G(τ) =
s

Ω(r)Ω(r′) · 〈δc(r, t + τ) · δc(r′, t)〉drdr′

〈c〉2(
∫

Ω(r)dr)2
. (23)

Assuming free diffusion in three dimensions and a Gaussian detection efficiency
profile, one can with a bit of effort show that (see e.g. Widengren (1996) or
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Petrov (2005)) for a system with only one fluorescent species, the correlation
function is given by

G(τ) =
1
〈N〉

[
1 +

τ

τD

]−1[
1 +

τ

ω2τD

]−1/2

, (24)

where 〈N〉 is the mean number of fluorophores in the observation volume, τD

is the characteristic diffusion time, and ω ≡ z0
r0

is the ratio of the longitudinal
and radial dimensions of the fluorescence detection efficiency profile.
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Fig. 10: Top: Schematic illustration of a fluorophore diffusing through the con-
focal volume. As the particle gets closer to centre of the focus the fluorescence
intensity increases, resulting in a peak in the intensity trace. Bottom left: Fluor-
escence intensity traces for two different samples recorded with a multichannel
counter and then integrated with different bin widths. Bottom right: The res-
ulting auto correlation curves. As can be seen from the figure, τD is the time
value at half height. The black, solid lines are fits by Eq. (24).
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4.2 Multiple species

The system to be studied will be composed of several fluorescent species with
various and changing brightnesses, so Eq. (24) will need to be expanded. As
this kind of FCS study has not been published at the time of this writing, a
substantial part of the theoretical work was to derive the relations necessary for
the description of such a system.

For a system containing several types of fluorophores, each with their own
characteristic diffusion times and brightnesses, the fluorescence signal will then
be given by

F (t) =
∑

i

Fi(t) (25)

=
∑

i

κiεiQi

∫
all space

Ω(r) · ci(r, t)dr. (26)

Again, we can define ci(r) = 〈ci〉+ δci(r, t), together with a ”brightness”, Bi ≡
κiεiQi, and we thus have that

δF (t) =
∑

i

Bi

∫
Ω(r) · δci(r, t)dr (27)

⇒ G(τ) =

∑
i,j〈δFi(t + τ) · δFj(t)〉

〈
∑

k Fk(t)〉2
(28)

=

∑
i,j

s
Ω(r)Ω(r′)BiBj · 〈δci(r, t + τ) · δcj(r′, t)〉drdr′

(
∑

k Bk〈ck〉)2(
∫

Ω(r)dr)2
. (29)

If we assume that there is no correlation between different species, we will have
that

〈δci(r, t + τ) · δcj(r′, t)〉 = δij〈δci(r, t + τ) · δci(r′, t)〉, (30)

which means that our correlation function simplifies to

G(τ) =
∑

i B2
i

s
Ω(r)Ω(r′) · 〈δci(r, t + τ) · δci(r′, t)〉drdr′

(
∑

j Bj〈cj〉)2(
∫

Ω(r)dr)2
. (31)

Recalling the solution for a single species, Eq. (24), we can define a function

Gi(τ) ≡
s

Ω(r)Ω(r′) · 〈δci(r, t + τ) · δci(r′, t)〉drdr′

〈ci〉2(
∫

Ω(r)dr)2
(32)

=
1
〈Ni〉

[
1 +

τ

τDi

]−1[
1 +

τ

ω2τDi

]−1/2

. (33)

Using this definition, our final equation becomes

G(τ) =
∑

i B2
i 〈ci〉2Gi(τ)

(
∑

j Bj〈cj〉)2
(34)

=
∑

i B2
i 〈Ni〉

(
∑

j Bj〈Nj〉)2

[
1 +

τ

τDi

]−1[
1 +

τ

ω2τDi

]−1/2

. (35)

Note how the relative amplitude of a given species is proportional to its bright-
ness squared, B2

i . This means that bright fluorophores will tend to dominate the
measured correlation curve, which can make it difficult to observe dim fluoro-
phores, even if their relative concentration is high.
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4.3 Extruded vesicles

When extruding vesicles in a solution containing free dye, the number of fluoro-
phores trapped inside a given vesicle will follow a Poisson distribution.

So let us consider a system consisting of equal-sized vesicles (thus τDi =
τDj ≡ τD), but with different brightnesses, as they contain different amounts of
fluorophore.

If we first consider the denominator of Eq. (35), we have that
∞∑

i=0

Bi〈Ni〉 =
∞∑

i=0

Bip(Bi)〈Nv〉, (36)

where 〈Nv〉 is the mean number of vesicles (of any brightness) in the observation
volume, and p(Bi) is the probability of finding a vesicle with brightness Bi.

If we let i be the number of fluorophores contained in a single vesicle, and
assume that this will follow a Poisson distribution3, we have that

p(Bi) =
e−B̃B̃i

i!
and Bi = iB1 (37)

where we have introduced the brightness of a single fluorophore, B1, and the
average number of fluorophores per vesicle, B̃ ≡ 〈B〉

B1
. Also, it has been assumed

that there is no self-quenching.
Now the sum trivially yields

∞∑
i=0

Bi〈Ni〉 = 〈Nv〉
∞∑

i=0

Bip(Bi) (38)

= 〈Nv〉〈B〉, (39)

which is the same as for a system with a well-defined vesicle brightness.
The nominator can easily be evaluated as follows

∞∑
i=0

B2
i 〈Ni〉 = 〈Nv〉B2

1

∞∑
i=0

i2
e−B̃B̃i

i!
(40)

= 〈Nv〉B2
1B̃

∞∑
i=1

i
e−B̃B̃i−1

(i− 1)!
(41)

= 〈Nv〉B2
1B̃

∞∑
i=0

(i + 1)
e−B̃B̃i

i!
(42)

= 〈Nv〉B2
1B̃(B̃ + 1) (43)

= 〈Nv〉〈B〉2
[
1 +

B1

〈B〉

]
(44)

Thus the correlation function for a system consisting of equal-sized vesicles with
a Poisson distribution of brightnesses is

G(τ) =
1 + B1/〈B〉
〈Nv〉

[
1 +

τ

τD,v

]−1[
1 +

τ

ω2τD,v

]−1/2

. (45)

Note the factor 1 + B1/〈B〉 compared to Eq. (24).
3For non-interacting particles (an ideal gas) the number of particles in a given volume

element will strictly follow a Poisson distribution.
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4.4 Free rhodamine and Poisson distributed vesicles

The system to be studied consists of free rhodamine 6G chloride (R6G) mo-
lecules, as well as large unilamellar vesicles (LUV) with a fairly well-defined size
(approximately 100nm in diameter). As these vesicles will have a distribution
of R6G molecules inside, the correlation function for the system becomes

G(τ) =
B2

1〈NR6G〉
(B1〈NR6G〉+ 〈B〉〈Nv〉)2

[
1 +

τ

τD,R6G

]−1[
1 +

τ

ω2τD,R6G

]−1/2

+
〈B〉2〈Nv〉(1 + B1/〈B〉)

(B1〈NR6G〉+ 〈B〉〈Nv〉)2

[
1 +

τ

τD,v

]−1[
1 +

τ

ω2τD,v

]−1/2

(46)

=
〈NR6G〉

(〈NR6G〉+ B̃〈Nv〉)2

[
1 +

τ

τD,R6G

]−1[
1 +

τ

ω2τD,R6G

]−1/2

+
B̃2〈Nv〉(1 + B̃−1)

(〈NR6G〉+ B̃〈Nv〉)2

[
1 +

τ

τD,v

]−1[
1 +

τ

ω2τD,v

]−1/2

. (47)

The fraction B̃ ≡ 〈B〉
B1

can be determined by making two separate measurements.
From Eq. (21) it follows that

〈Fi(t)〉 = 〈Bi〉〈ci〉
∫

all space

Ω(r)dr ∝ 〈Bi〉〈Ni〉 ⇒ (48)

B̃ ≡ 〈B〉
B1

=
〈Fv〉
〈FR6G〉

〈NR6G〉
〈Nv〉

(49)

=
〈Fv〉
〈FR6G〉

Gv(τ = 0)
GR6G(τ = 0)

1

1 + B̃−1
⇔ (50)

B̃ =
〈Fv〉
〈FR6G〉

Gv(τ = 0)
GR6G(τ = 0)

− 1, (51)

where 〈Fv〉 is the mean fluorescence of a solution consisting purely of vesicles
(with R6G inside), 〈FR6G〉 is the mean fluorescence of a solution which only
contains free R6G, and Gv and GR6G are their respective correlation functions.

4.5 Leaking vesicles

If we consider a system which, at first, consists purely of vesicles with a Poisson
distribution of rhodamine inside, and no free rhodamine, the correlation function
will change with time as the rhodamine leaks.

If we assume that the probability of a given rhodamine molecule leaking out
is independent of the concentration inside the vesicle, then the distribution of
the number of rhodamine molecules inside the vesicles will start to deviate from
the Poissonian one.

For the sake of convenience, let us assume that the mean number of molecules
trapped is large (i.e. B̃ � 1), so the Poisson distribution can be approximated
by a normal distribution

p(Bi) =
e−B̃B̃i

i!
' 1√

2πσ2
exp

(−(i− B̃)2

2σ2

)
. (52)
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If we let f(t) denote the fraction of the rhodamine molecules which is still
trapped inside vesicles4, and Bi(t) the brightness of a vesicle which initially
contained i rhodamine molecules, then we have that

B̃(t) = f(t)B̃0 and σ2 = f2(t)B̃0 and f(t = 0) = 1 (53)

where B̃0 denotes the initial mean number of rhodamine molecules per vesicle.
Using these definitions and approximating the summations in Eq. (35) by

integrals, it follows that
∞∑

i=0

B2
i 〈Ni〉 = 〈Nv〉B2

1

∞∑
i=0

i2 · p(Bi, t) (54)

' 〈Nv〉B2
1

f(t)
√

2πB̃0

∫ ∞

0

x2 exp

(
−(x− f(t)B̃0)2

2f2(t)B̃0

)
dx (55)

=
〈Nv〉B2

1

f(t)
√

2πB̃0

∫ ∞

−f(t)B̃0

(f(t)B̃0 + x)2 exp

(
−x2

2f2(t)B̃0

)
dx (56)

' 〈Nv〉B2
1

f(t)
√

2πB̃0

∫ ∞

−∞
(f(t)B̃0 + x)2 exp

(
−x2

2f2(t)B̃0

)
dx (57)

= f2(t)〈Nv〉B2
1B̃2

0 +
〈Nv〉B2

1

f(t)
√

2πB̃0

∫ ∞

−∞
x2 exp

(
−x2

2f2(t)B̃0

)
dx (58)

= f2(t)〈Nv〉B2
1B̃2

0 +
〈Nv〉B2

1

f(t)
√

2πB̃0

Γ(3/2)(
2f2(t)B̃0

)−3/2
(59)

= f2(t)〈Nv〉B2
1B̃2

0 + f2(t)〈Nv〉B2
1B̃0 (60)

= f2(t)〈Nv〉B2
1B̃2

0

[
1 +

1

B̃0

]
(61)

The sum in the denominator can be calculated in a similar fashion, yielding
∞∑

i=0

Bi〈Ni〉 = 〈Nv〉B1

∞∑
i=0

i · p(Bi, t) (62)

' 〈Nv〉B1

f(t)
√

2πB̃0

∫ ∞

0

x · exp

(
−(x− f(t)B̃0)2

2f2(t)B̃0

)
dx (63)

' f(t)〈Nv〉B1B̃0, (64)

The average amount of free rhodamine, 〈NR6G(t)〉, in the observation volume
at a given instant is

〈NR6G(t)〉 = (1− f(t))B̃0〈Nv〉, (65)

and hence the denominator sum becomes

B1〈NR6G〉+
∞∑

i=0

Bi〈Ni〉 = B1(1− f(t))B̃0〈Nv〉+
∞∑

i=0

Bi〈Ni〉 (66)

4 f(t) will thus also be related to the permeation rate of the lipid membranes via Eq. (18).
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= B1B̃0〈Nv〉, (67)

which is, of course, independent of time.
The correlation function for this system will then be given by

G(τ, t) =
1− f(t)

B̃0〈Nv〉

[
1 +

τ

τD,R6G

]−1[
1 +

τ

ω2τD,R6G

]−1/2

(68)

+
f2(t)
〈Nv〉

[
1 +

1

B̃0

][
1 +

τ

τD,v

]−1[
1 +

τ

ω2τD,v

]−1/2

. (69)

It’s worth noting that most of the parameters are independent of time, and
can be therefore – in principle – be determined beforehand or from the initial
measurements on the system.

For instance we have that

1
〈Nv〉

[
1 +

1

B̃0

]
= G(τ = 0, t = 0), (70)

while B̃, 〈Nv〉, ω, and the τD’s can be determined as mentioned earlier.
Thus once we have a series of measurements, the only free parameter will be

f(t), which is then easily determined by fitting.

4.6 Tetramethylrhodamine dextran

The characteristic permeation rate will depend strongly on the size of the fluoro-
phore, since a larger fluorophore would diffuse more slowly. Furthermore, the
fluorophores will only be able to get through the larger pores (of which there
tends to be less due to the large energy cost), reducing the rate even further.

To study this we chose to use labelled dextran, which consists of about 16
glucose residues plus approximately one tetramethylrhodamine group on aver-
age. However, the actual number of labels per dextran molecule would – to
good approximation – follow a Poisson distribution. As the number of dextran
molecules per vesicle also follows a Poisson distribution, the actual number of
labels per vesicle would be a Poisson distribution of Poisson distributions. This
will, of course, influence the correlation function in a somewhat non-trivial way.

First, let us consider a vesicle with a known number of dextran molecules
inside. For such vesicle the number of labels (i.e. the ”brightness”) will also
follow a Poisson distribution, as a sum of Poisson distributed random variables
will also follow a Poisson distribution, provided that they are independent of
each other.

Thus, the probability of finding a vesicle with i labels inside, provided it
contains j dextran molecules is:

pj(i) =
e−j·L · (j · L)i

i!
, (71)

where L is the average number of labels per dextran molecule.
Consequently, the probability of finding a vesicle with i labels, given a Pois-

son distribution of dextran molecules, is simply the probability of finding a
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vesicle with j dextrans times the probability given in Eq. (71), summed over all
j’s.

pB(i) =
∞∑

j=0

e−D · (D)j

j!
· e−j·L · (j · L)i

i!
, (72)

where D is the average number of dextran molecules per vesicle.
Using this probability distribution, we can calculate the effect on the correl-

ation function.
First off, we have the average an average brightness of a vesicle (i.e. the

average number of labels per vesicle) given by
∞∑

i=0

Bi〈Ni〉 = 〈Nv〉B1

∞∑
i=0

i · pB(i) (73)

= 〈Nv〉B1

∞∑
j=0

e−D ·Dj

j!

∞∑
i=0

i · e−j·L · (jL)i

i!
(74)

= 〈Nv〉B1

∞∑
j=0

e−D ·Dj

j!
· (jL) (75)

= 〈Nv〉LD ·B1, (76)

i.e. the product of the averages, which will probably not surprise anyone.
Less trivial is the average of the brightness squared:

∞∑
i=0

B2
i 〈Ni〉 = 〈Nv〉B2

1

∞∑
i=0

i2 · pB(i) (77)

= 〈Nv〉B2
1

∞∑
j=0

e−D ·Dj

j!

∞∑
i=0

i2 · e−j·L · (jL)i

i!
(78)

= 〈Nv〉B2
1

∞∑
j=0

e−D ·Dj

j!
· (jL) · (jL + 1) (79)

= 〈Nv〉B2
1

∞∑
j=0

e−D ·Dj

j!
· (jL) · (jL + 1) (80)

= 〈Nv〉B2
1 ·
(

L2
∞∑

j=0

j2 e−D ·Dj

j!
+ L

∞∑
j=0

j
e−D · (D)j

j!

)
(81)

= 〈Nv〉B2
1 · (L2(D2 + D) + LD) (82)

= 〈Nv〉(LD + L + 1)LD ·B2
1 (83)

Thus, the correlation function for this system is:

G(τ) =
〈NTMRd〉L(L + 1)

(L〈NTMRd〉+ LD〈Nv〉)2

[
1 +

τ

τD,TMRd

]−1[
1 +

τ

ω2τD,TMRd

]−1/2

+
〈Nv〉LD(LD + L + 1)

(L〈NTMRd〉+ LD〈Nv〉)2

[
1 +

τ

τD,v

]−1[
1 +

τ

ω2τD,v

]−1/2

(84)

As can be seen from Eq. (84), the lower the degree of labelling, L, and the
fewer dextrans there are per vesicle, D, the more important it is to take it into
account.



5 COMPUTER SIMULATIONS 27

5 Computer Simulations

It could be argued that modern physics research can be divided into three areas,
namely theoretical, experimental, and computational. The use of computers to
mimic physical systems as accurately as possible provides a useful and unique
tool to bridge the gap between theory and experiment, as they can provide
well-behaved experimental systems.

The range of applicability and accuracy of computer models is only lim-
ited by the computational processing power available – a limitation which gets
less severe every year, thanks to the continual5 development of more advanced
computer technology.

5.1 The different approaches

There are very few statistical mechanical models that have been solved analyt-
ically. Even the famous spin- 1

2 Ising model for transitions in ferromagnets has
only been solved for one and two dimensions, where the latter has only been
performed for zero field, in a reputedly mathematical tour de force6.

However, for the study of lipid melting and the lateral organisation of mem-
branes, one has several options.

5.1.1 Mean-field theory

In the bygone age of slow computers, it was necessary to resort to approximation
methods, such as the widely used mean-field theories.

The main idea behind mean-field theory is to focus on one particle and
assume that the most important contribution to the interactions with the en-
vironment is determined by the mean field of all the other particles. In effect,
this will reduce the multi-body problem to a one-body problem. For instance,
if one third of the particles are estimated to be in the +1 state (fluid state in
the case of lipids) and two thirds in the -1 state (gel state), one can calculate
an effective nearest neighbour environment. This will, in turn, give a new and
better estimate for how likely it is for a given particle to be in either state, and
one can then arrive at a solution by iteration.

One rather severe limitation of mean-field theory is that it does not take
fluctuations in the environment into account. As mentioned, each particle is
assumed to only interact with the mean state of all the other particles in the
system (hence the name). Therefore, mean-field theory does, by its very nature,
not provide any information about the microscopic organisation of the system.

In general, this means that mean-field theory is only valid when fluctuations
are unimportant, so while mean-field theory has been applied with a fair amount
of success in the past7, these kinds of problems are better handled by using
computer simulations nowadays, and their properties are now known in great
detail from numerical work.

5For a long time the development increased exponentially, – an empirical observation called
Moore’s Law – though it seems to have slowed down a bit in the recent years.

6This feat was performed by the Nobel laureate Lars Onsager in 1944 (Onsager (1944)).
7In general they improve as the number of neighbours or the range of interactions increases.

They usually give good estimates for the phase diagrams of three-dimensional systems, and
it can be shown that the values predicted for critical exponents are correct for systems with
more than four dimensions.
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5.1.2 Molecular dynamics

Molecular Dynamics simulation is a method that can be used to calculate the
structural and dynamical properties of a system. In these kinds of simulations
the atoms or particles of the system are treated classically.

Given a set of initial coordinates and velocities for the particles of the system,
the time evolution of the system through state space (known as a trajectory)
can then be computed by numerically integrating Newton’s equation of motion,
based on the intermolecular interactions of all the particles.

The accuracy of any Molecular Dynamics simulation will strongly depend on
the accuracy of description the potential energy of the system. The interactions
are normally described by semi-empirical functions which have been paramet-
erised to represent the interactions between the particles of a real system. In
most semi-empirical or effective force fields used to describe molecular systems
the potential energy is given by a set of non-bonded (electrostatic and van der
Waals forces) and bonded (stretching, torsion and bending) interactions.

From this trajectory many dynamic and thermodynamic properties of the
system can be gauged, assuming that the calculated trajectory is representative
of the phase space of the system.

While Molecular Dynamics simulations do lead to the most accurate inform-
ation on membrane structure, they have one rather severe disadvantage: they
are painfully slow. At the time of this writing, simulating the time evolution of
a patch of membrane containing a few hundred lipids over a couple of hundred
nanoseconds will take several months on a high-performance computer cluster.

As many biological processes lie in the microsecond to millisecond regime,
such processes are quite beyond what is feasible in the near future.

5.1.3 Coarse grain models

As mentioned above, making Molecular Dynamics simulations of large scale
cooperative phenomena is still not realistically possible. Therefore one has to
look for other methods. On the opposite end of the detail scale are the so-
called coarse grain models, which makes use of reduced representations, i.e.
they use ”pseudo-atoms” to represent groups of atoms or molecules instead of
explicitly representing every atom. Also, an oft-used simplification is to place
the molecules on a lattice. Furthermore, for such lattice models, the molecules
are usually constrained to interact only with their nearest neighbours, which
make the programs significantly less computationally demanding.

The solutions of such models can then be numerically calculated with the
help of the powerful Monte Carlo method, which makes it possible to make
simulations of systems with thousands of particles on a normal desktop com-
puter. Despite its simplicity, this method can yield solutions for fairly complex
problems, and is a powerful tool for describing large scale structures and cooper-
ativity phenomena. However, it should be noted that this method normally only
gives information about the equilibrium state and time scales does not play a
role. One can to a certain extent circumvent this, though, by carefully choosing
how one performs the Monte Carlo steps (Hac et al. (2005)).

Due to the nature of the problem at hand and the limited time frame, a
Monte Carlo simulation using a coarse grained lattice model seems to be best
suited to tackle the problem.
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5.2 The Monte Carlo method

The Monte Carlo method is a particularly powerful and versatile approach which
was introduced by Metropolis et al. (1953) at the dawn of the computer age.
Monte Carlo simulations encompass a very broad variety of algorithms and
variations, from what is generically known as statistical sampling to the more
recent Quantum Monte Carlo. It is a universal algorithm that can be applied to
a large range of systems, but it is especially useful when studying systems with
a large number of coupled degrees of freedom (liquids, disordered materials,
polymers, or even economics). In fact, its relative efficiency (when compared to
other numerical methods) increases with the dimension of the problem. Monte
Carlo simulations – like genetic algorithms and neural networks – are stochastic
and they rely heavily on the use of random or pseudo-random numbers to mimic
the fluctuations characteristic of finite temperatures.

In short, a Monte Carlo simulation can be thought of as a random walk
through state space, where every possible state is accepted with a certain prob-
ability8. If properly set up, the Monte Carlo simulation will bring the system to
its equilibrium state (or rather equilibrium distribution of states), which makes
it possible to evaluate thermodynamic averages for the equilibrium state.

This method is fairly straightforward to implement and analyse, making it
ideally suited as a first attempt at understanding the cooperative behaviour of
a system.

5.2.1 Importance sampling

A common aim in statistical mechanics is to determine the average value of
some thermodynamic observable, such as the enthalpy, area or magnetisation,
which is a weighted sum over all possible states:

〈X〉 =
∑

i XiWi∑
j Wj

=
∑

i Xie
−Hi/RT∑

j e−Hj/RT
(85)

For a two-state Ising model on a lattice with N sites, this sum will be over 2N

configurations. So even for a relatively small system this number will be so large
that a direct evaluation will be impossible. For instance, if N = 100 one would
have to sum over 2100 ≈ 1030 configurations, which would not be possible to
complete within one’s lifetime9.

So for anything but the most conservative system sizes, getting an exact
answer by direct evaluation is simply impossible. However, there are two im-
portant considerations that make Monte Carlo simulations useful by ensuring
that a good estimate can be calculated with high accuracy.

1. Most of the time 〈X〉 does not contain a lot of information about the sub-
states and will only depend on the average of some quantity. If we have

8To be a bit more technical, this is more generally known as Markov chain Monte Carlo.
The Markov chain Monte Carlo methods (including the simple random walk Monte Carlo
methods), encompasses a class of algorithms for sampling from probability distributions based
on constructing a Markov chain that has the desired distribution as its equilibrium distribu-
tion. In general, it is fairly simple to construct a Markov Chain with the desired properties.
The difficulties consist of generating a procedure which will quickly converge to the equilibrium
distribution within an acceptable error.

9A modern supercomputer can perform around 1015 floating point operations per second,
meaning that it would take approximately forty million years to finish!
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a representative set of states, Si, we can get a very accurate estimate for
〈X〉. For the area 〈A〉 for example, a system of N lipids can only have
N + 1 different values. Therefore, a representative set for this system will
be of order N .

2. Despite the fact that what we are summing is a product of two quantities
Xi, Wi in many cases (in statistical physics at least) the weights, Wi, will
be finite only in a small region. That is, even if the number of configura-
tions outside this region is very large, if their weight is exponentially small
the answer will depend almost exclusively on a tiny fraction of the entire
parameter space.

So in other words, if one can find a representative set of configurations to sum
over, and picking from these at random, it is possible to get a good estimate for
〈X〉. Even better, if one can select configurations such that the ones with larger
weights are more likely to be chosen, then one can obtain an equally accurate
answer by summing over even fewer terms.

5.3 A model for lipid membrane systems

Our model is based on the famous spin 1
2 Ising model. This model was first

proposed by Wilhelm Lenz in 1920 to study the phase transition of ferromagnets
at the Curie temperature (Brush (1967)). It was later fully worked out by his
pupil Ernst Ising for the one dimensional case (1925), while the two-dimensional
case was worked out by Lars Onsager 19 years later (Onsager (1944)).

At its most basic, the Ising Hamiltonian is given by

H = − ε

2

∑
〈i,j〉

σiσj − h
∑

i

σi, (86)

where σi = ±1 are the two spin states allowed on each lattice site, ε is the nearest
neighbour interaction parameter (also known as the coupling constant), and h
is the magnetic field. Here 〈i, j〉 denotes that the sum is only over nearest neigh-
bours. The first term in Eq. (86) is responsible for the cooperative behaviour
and the possibility of a phase transition.

This simple model is of great importance and has wide applicability, as any
two-state system can be mapped onto it with only slight modifications. Ex-
amples include β-brass, lattice gas, CuZn mixing, and of course lipid membrane
melting.

Another important aspect of the Ising model is that any critical exponent de-
rived for it are universal, i.e. they apply to any model that can be mapped onto
the Ising model. Mean-field theory has been used to derive some of these crit-
ical exponents, but as previously mentioned, the microscopic details/structure
is neglected, leading to slightly wrong numbers (Yeomans (1992)).

The two-state Ising model for the melting of lipid membranes was first pro-
posed by Doniach (1978), and the fundamental assumptions are essentially the
following: each lipid molecule can only be in one of two states, namely

• A gel state with low enthalpy Hg and low entropy Sg

• A fluid state with high enthalpy Hf and high entropy Sf
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Though more complex lattice models such as the 10-state Pink model have
been used in the literature (Pink et al. (1980), Mouritsen et al. (1983)), the
added complexity of these models does not significantly alter the overall physical
behaviour of the two-state model (Mouritsen et al. (1983)). The reason for
this is that the melting transition is a cooperative phenomenon with a length
scale much larger than a single lipid, making the modelling of molecular details
superfluous. In addition, the two-state model has the advantage that it contains
very few parameters, all of which can be determined by calorimetric experiments
(Ivanova and Heimburg (2001)).

The interactions between molecules are normally governed by van der Waals
and electrostatic forces as well as interchain steric repulsion. However, in our
model each lipid will only interact with its nearest neighbours on the lattice.
This is, of course, an approximation, as it neglects the lipids’ interactions with
next-nearest neighbours and the other membrane leaflet.

Lastly, all of the lipids are assumed to be hexagonally packed10, which means
that each lipid has z = 6 adjacent lipid neighbours (z is the so-called coordina-
tion number). The assumption of a hexagonal packing does not strictly hold in
the fluid phase, and will consequently also influence the shape of the domains.
Also, this will neglect the contributions to the entropy from the spatial disorder-
ing, but since the melting transition is dominated by the chain melting entropy,
the effect of this will be minor (Doniach (1973)).

With these approximations it is only necessary to consider three kinds of
interactions, namely

• The interaction between two gel lipids εgg

• The interaction between two fluid lipids εff

• The interaction between a fluid lipid and a gel lipid εfg

If all of the lipids are in the gel state, the Gibbs free energy of the gel phase,
Gg, will be given by

Gg = N

[
(H0,g − TS0,g) +

z

2
εgg

]
, (87)

where N is the number of lipids, H0,g is the enthalpy per lipid, and S0,g is the
entropy per lipid. Correspondingly for the fluid phase we have that

Gf = N

[
(H0,f − TS0,f ) +

z

2
εff

]
. (88)

In general there will be a distribution of fluid and gel lipids, where we have

• Nfg contacts between fluid and gel lipids

• Ngg = (zNg −Nfg)/2 contacts between two gel lipids

• Nff = (zNf −Nfg)/2 contacts between two fluid lipids

10This is realised by placing the lipids on a triangular lattice with periodic boundaries,
resulting in a topology akin to that of a torus.
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where Nf is the number of fluid lipids and Ng = N − Nf the number of gel
lipids.

For such a configuration, the total Gibbs free energy will be

G = Ng(H0,g − TS0,g) + Nf (H0,f − TS0,f )
+ Nggεgg + Nfgεfg + Nff εff (89)

= Ng(H0,g − TS0,g) + Nf (H0,f − TS0,f )

+
ZNg −Nfg

2
εgg + Nfgεfg +

ZNf −Nfg

2
εff . (90)

So if we define ∆H ≡ (H0,f + Z
2 εff ) − (H0,g + Z

2 εgg) and ∆S ≡ S0,f − S0,g,
Eq. (90) reduces to (Sugar et al. (1994))

G = Gg + Nf (∆H − T∆S) + Nfg

(
εfg −

εgg + εff

2

)
(91)

≡ Gg + Nf (∆H − T∆S) + Nfgωfg. (92)

In this model ωfg is a cooperativity parameter, corresponding to the coupling
constant in the spin1

2 Ising model. What’s more, ωfg is the only free para-
meter of the model, as both ∆H and ∆S can be obtained from calorimetric
measurements.

This model is essentially a two-state Ising model on a triangular lattice with
a temperature dependent field. So if we set σi = −1 for lipids in the gel state and
σi = +1 for those in the fluid state, the ”field” would be h = (T∆S −∆H)/2.

Note that at the transition point h = 0, and one can therefore apply some
of the analytical results from two-dimensional spin1

2 Ising model results. For
instance, for a triangular lattice the critical interaction strength is given by
(Wannier (1945))

ω = RTm
ln 3
2

= 1434.77 J/mol, (93)

for Tm = 314.15K.
As mentioned, this model is based on a two-dimensional Ising model which

is obviously not correct on molecular scales since it only contains two states
of the lipid (compared to the ∼ 1014 states a DPPC molecule can assume) –
which is, of course, a gross approximation. Furthermore, interactions with the
other monolayer as well as fluctuations in the third dimension are also ignored.
However, the two-dimensional Ising model has its strength in the description
of macroscopic fluctuations (Mouritsen et al. (1983)), irrespective of molecular
details, and is quite successful despite its apparent simplicity.

5.3.1 Adding complexity

The two-state model described in Sec. (5.3) is as simple as it gets, and has been
studied in great detail by a number of people (Doniach (1978), Mouritsen et
al. (1983), Mouritsen and Zuckermann (1985), Ivanova and Heimburg (2001),
Ivanova et al. (2003), Hac (2003), Seeger (2006), Seeger et al. (2007)).

To simulate the influence of anaesthetics on the system, as well as having
the possibility of having pores, Eq. (92) will need to be expanded somewhat.



5 COMPUTER SIMULATIONS 33

It is straightforward to show that for a system with pores (p) and anaesthet-
ics (a) the Gibbs free energy of a given sub-state (micro-configuration) is given
by

G = Gg + Nf (∆H − T∆S)
+ Nfgωfg + Npfωhf + Npgωpg

+ Napωap + Nagωag + Nafωaf (94)

where the nij are the number of contacts between particle of type i and j, and
the ωij ≡ εij − (εii + εjj)/2 are the associated interaction parameters.

If any of the ωij are equal to zero, the particles of type i and j will mix
ideally.

It should be noted that this model does not take the entropic contribution
from pore shape and size fluctuations into account.

5.3.2 Determination of model parameters

As mentioned in Sec. (5.3) there are three parameters which need to be de-
termined if one wants to describe the most basic one-component two-state lipid
system, namely the melting enthalpy, ∆H, the melting entropy, ∆S, and the
cooperativity parameter, ωfg.

For the more advanced simulations, another five interaction parameters will
be needed, namely ωaf (anaesthetic/fluid), ωag (anaesthetic/gel), ωap (anaes-
thetic/pore), ωpg (pore/gel), and ωpf (pore/fluid).

Fortunately, the first five parameters can be obtained from calorimetric ex-
periments, while the remaining three will need to be guesstimated from per-
meation measurements.

Specifically, one can obtain the melting enthalpy and entropy of the lipids
from the heat capacity profile of one-component lipid system: the enthalpy
change of the transition is obtained by integrating over the heat capacity in the
relevant temperature interval, i.e.

cp =
dH

dT p
⇒ ∆H =

∫ T+∆T

T

cpdT. (95)

The entropy change can then easily be determined via Eq. (6), as the transition
midpoint, Tm, can be read off the heat capacity profile directly.

The cooperativity parameter, ωfg, relates directly to the width of the trans-
ition peak, and can consequently be determined by fitting the simulated heat
capacity profiles to the experimentally measured one.

The five remaining interaction parameters, ωij , can be obtained indirectly
from various other experiments. The simulation is not particularly sensitive to
the values of ωag and ωaf , so a common choice for them is to assume ideal
mixing with the fluid phase, i.e. ωaf = 0, and less favourably with the gel phase
with ωag = ωfg (Ivanova and Heimburg (2001), Ivanova et al. (2003)).

Determining the remaining three parameters (ωap, ωpg and ωpf ) can, in prin-
ciple, be done by comparing the simulated permeability (basically the average
number of pores) to measurements.

Even before doing this, it is possible to predict a number of relations, if
we assume that hydrophobic matching is a major determinant of the nearest
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neighbour interactions. Firstly, if the added anaesthetic is strongly hydrophobic,
it seems reasonable to assume that ωap � ωfg, as the cooperativity parameter,
ωfg, is largely determined by the hydrophobic mismatch between a fluid and
gel state lipid.

Similarly, this should mean that ωag > ωaf for two reasons: 1) the lipid in
the gel state would have a larger part of the hydrophobic chains exposed to the
water, and 2) the fluid phase is more loosely packed, meaning that defects and
spaces between the lipids (i.e. pores) would be more likely to appear than in
the tightly packed gel phase.

5.3.3 Evaluation by Monte Carlo simulations

Sec. (5.3) introduced a statistical mechanical model for the description of pore
formation in a system with one species of lipids. As this model is obviously
beyond what can be solved analytically, numerical evaluation by means of Monte
Carlo simulations was used.

To do this one first has to define the various Monte Carlo steps. At it’s
most basic (i.e. a one-component system without anaesthetics and no pore
formation), only one Monte Carlo step is needed, namely one that allows the
lipids to change their state (a ”melting step”). As we are using the two-state
Ising model as a basis, each lipid is assumed to be in either an ordered (gel) or
disordered (fluid) state.

For the more advanced models (multiple lipid species, anaesthetics, pore
formation, etc.), it is also necessary to include the possibility for any two
particles to swap positions (i.e. a ”diffusion step”). In general, allowing a
non-physical diffusion step where any two particles can be exchanged, and not
just neighbouring particles, will tend to make the system equilibrate faster, and
will not influence the equilibrium distribution of states.

Lastly, for the simulations to work, it is necessary to include a Monte Carlo
step which allows for the creation/sealing of a pore. The details of this step will
be described in Sec. (5.6.3).

Whether a given step is accepted or not, depends on difference in the free
energy of the old and the new system configuration. However, any step should
always have a finite likelihood to be accepted in order to ensure ergodicity – i.e.
with the use of these three types of Monte Carlo steps, it must be possible to
change the system’s configuration to any state.

5.3.4 The transition probability

Having a statistical mechanical model is only half the work – one also has to
obtain actual information from it. As very few models are tractable to analyt-
ical approaches or direct evaluation, one needs another way to handle this, as
described in Sec. (5.2.1).

At the heart of the sampling algorithm is the step where a given substate is
either included or rejected.

The purpose of the rejection sampling algorithm is basically to generate a
sequence of samples from a probability distribution that is difficult to directly
sample from, such that ∑

i XiNi∑
j Nj

→
∑

i XiWi∑
j Wj

, (96)
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where Ni is the number of times the state Si was summed, and Wi are the
Boltzmann weights as in Eq. (85).

The program generates a series of random configurations, which will then
be accepted or rejected in the sum according to some probability, which are
functions of the weight ratios. Two conditions must be fulfilled for Eq. (96) to
hold (Frenkel and Smit (2001)):

1. The probability to accept a state, Si, must be proportional to its weight,
Wi.

2. The random generation of configurations must be ergodic11, i.e. given
sufficient time, all possible configurations must eventually be generated.

The transition probability should, of course, be normalised and also obey de-
tailed balance, i.e.

WiPi→j = WjPj→i ⇒ (97)
Wi

Wj
=

Pj→i

Pi→j
= e−(Ei−Ej)/RT (Boltzmann) (98)

So by defining Pi→j ≡ F (e−∆E/RT ), where F (x) can be any function that fulfils

F (x)
F (1/x)

= x (99)

Though there is (in principle) an infinity of functions that fulfil this, the two
most common choices are (Metropolis et al. (1953), Glauber (1963)):

• The Metropolis algorithm: F (x) = min(x, 1)

• The Glauber algorithm: F (x) = x
1+x

While both give choices yield the same result after infinitely long time (and
usually also finite time), the Metropolis algorithm can be more susceptible to
getting stuck in metastable states, as it never rejects a change to a state with a
lower free energy.

This can lead to problems near the critical point, so or this reason we chose
to use the Glauber algorithm in this project.

It seems physically intuitive that with these choices for the transition prob-
abilities the system will tend asymptotically (t→∞) to a steady state in which
the probability of an arbitrary configuration is proportional to e−Ei/RT .

For instance, if we consider Ni systems in a state Si and Nj in state Sj , and
let Ej < Ei, it is possible to construct a move such that the a priori probability
of moving from state Si to Sj is the same as that to move from Sj to Si.

For instance, using the Metropolis algorithm, the number of transitions from
Si to Sj and from Sj to Si is given by

11An ergodic system is a system that will accesses all states of the phase space after infinitely
long time. Furthermore, averaging over very long times (t → ∞) will lead to the same
statistical average value as the averaging over a very large system (N →∞). Hence one can
also average one single system over long times, instead of averaging over a large number of
systems. This is known as the ’ergodic theorem’.
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Fig. 11: A comparison of the acceptance probabilities for the Metropolis al-
gorithm and the Glauber algorithm.

Ni→j ∝ Ni (100)

Nj→i ∝ Nje
−(Ei−Ej)/RT . (101)

The net number of transitions will therefore be

∆Ni→j ∝ Ni −Nje
−(Ei−Ej)/RT (102)

Alternatively, using the Glauber algorithm, we have that

Ni→j ∝ Ni
1

1 + e−(Ei−Ej)/RT
(103)

Nj→i ∝ Nj
e−(Ei−Ej)/RT

1 + e−(Ei−Ej)/RT
(104)

⇒ ∆Ni→j ∝ Ni −Nje
−(Ei−Ej)/RT

1 + e−(Ei−Ej)/RT
(105)

Regardless of the specific choice, the system will converge to a steady state
where

∆Ni→j = 0⇒ Ni

Nj
=

e−Ei/RT

e−Ej/RT
(106)

in accordance with Boltzmann statistics.

5.4 Evaluation of thermodynamic averages

Using the introduced model and evaluating it by means of Monte Carlo simula-
tions one has the possibility of studying different properties of the system.

Once the system has equilibrated, all of the observables will fluctuate around
their thermodynamic average value. Some of the observables, such as the av-
erage number of pores, or the average fraction of the system in the fluid state,
can be obtained directly by simply averaging over many configurations.
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Other observables, such as the heat capacity or the area compressibility, can
fairly easily be derived from the fluctuations of the system variables. As shown
in Eq. (10) and (13), the fluctuations in the enthalpy are directly proportional to
the excess heat capacity, while the fluctuations in the system’s area are directly
proportional to the lateral compressibility.

Thus is straightforward to determine e.g. a heat capacity profile for the
model, by repeating the procedure at different temperatures.

The exact temperature dependencies of the various observables are closely re-
lated to the cooperativity of the system (ωfg), as the fluctuations at the melting
point get larger when ωfg increases. However, at the same time large fluctu-
ations will tend to happen in a narrower temperature range12, and equilibration
will take longer.

It should be mentioned here, that the values obtained are, by the very nature
of the method, subjected to statistical errors. Suggestions for how to deal with
this will be discussed in Sec. (5.9).

5.4.1 Evaluation of local fluctuations

In contrast to mean field models, Monte Carlo simulations give information
about the structural properties of the system, as a direct visualisation of the
system configurations is possible. During the simulation the instantaneous con-
figuration of the system can be written to a file making it possible to make a
graphical representation of the system by using e.g. a ray tracing program such
as POVray (see Fig. (13)).

Furthermore, it is also rather straightforward to determine the strength of
the local fluctuations in the lipid states. This can be done by disabling the
diffusion and the pore formation/sealing steps at some point during the simula-
tion13, and then monitoring how often each lipid changes state (averaged over
a sufficient number of melting steps per lipid).

Using the state parameter, σi, that was introduced in Eq. (86), we can define
the local fluctuations of lipid i as the variance of σi, i.e.

fi = 〈σ2
i 〉 − 〈σi〉2 (107)

= 1− 〈σi〉2, (108)

where we have used the usual convention, i.e. σi = −1 for the gel state and
σi = +1 for the fluid state. At T = Tm it is, per definition, equally likely to be
in either state, meaning that

〈σi〉2 = 0⇒ fi = 1. (109)

Far away from the melting point, one of the states will be favoured, so

〈σi〉2 = 1⇒ fi = 0. (110)

So the higher fi is the stronger the fluctuation, which can be visualised by
introducing a colour code, as shown in Fig. (13).

12In effect, this will mean that the heat capacity profile will get narrower, but its amp-
litude will increase so as to keep the integral over cp constant (as the transition enthalpy is
independent of the cooperativity).

13This can be justified by the fact, that lipid chain conformations change on a time scale
several orders of magnitude faster than any lateral diffusion in the system (Holzwarth (1986)).
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Fig. 12: Top: Fluctuations in the enthalpy at different temperatures. Bottom:
The resulting heat capacity profile.
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Fig. 13: The local fluctuations of a two-component system in its phase trans-
ition. Here the colour code is: black=weak (f = 0), red=medium (f = 0.5) and
yellow=strong fluctuations (f = 1).

From these pictures it is immediately obvious that fluctuations are strongest
at the interfaces between the domains and the bulk, or in the vicinity of anaes-
thetics.

5.5 Implementing the Monte Carlo method

The Markov chain14 is generated in the following way:

1. One starts from the actual system configuration, S1. Then one of several
possible trial moves are performed (see Sec. (5.6) for details), resulting in
a new configuration, S2.

2. Calculate the difference in the free energy of the two configurations, ∆G =
G(S2)−G(S1).

3. With this free energy difference one can calculate a Boltzmann factor, i.e.
K(T ) = e−∆G/RT , where R is the gas constant and T the temperature.

4. Generate a random number, z, with z ∈ [0 : 1], and compare it to the
acceptance probability, Pacc ≡ K(T )

1+K(T ) .

5. If z < Pacc then the new configuration, S2, is accepted. If z > Pacc

then the new configuration is discarded, and the system reverts to the old
configuration, S1.

This procedure is the well-established Glauber algorithm (Glauber (1963))
as discussed in Sec. (5.3.4). Alternatively, one can use the Metropolis algorithm,
where one sets the probability to Pacc = K(T ) or Pacc = 1 if K(T ) > 1. As both
algorithms obey detailed balance, they will lead to the same result15. However,
in this project we chose to use the Glauber algorithm as the use of the Metropolis

14A Markov chain is a series of states of a system which are conditionally independent of
the past states (the path of the process).

15To be more precise, they will only lead to the same result after sufficiently long runtime
as the equilibration times may differ.
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Master Procedure

Generate a lattice in a random state.
Set the temperature, T Î [T :T ] low high

Repeat the Basic 
Procedure N Ń  timeslipids EC

(equilibration w/o holes)

Repeat the Expanded 
Procedure N Ń  timeslipids EC

(equilibration with holes)

Repeat the Expanded Procedure
N Ń  times and store the datalipids SC

N  is the number of equilibration cyclesEC

N  is the number of sampling cyclesSC

In
cr

e
a

se
 T

Process the data (calculate heat capacity,
compressibility, averages, errorbars, etc.)

and write results to a file

Fig. 14: Flowchart of the program. For the description of the Basic and the
Expanded Procedures see Fig. (15).

algorithm can lead to problems near the critical point and metastable states,
since a change to a state with a lower free energy is never rejected.

Once we have defined the Monte Carlo steps and a procedure, we can also
define a Monte Carlo cycle. In my program, a Monte Carlo cycle is defined as
one iteration (on average) of the Basic or Expanded Procedure (see Fig. (15))
per lattice site.

5.6 The Monte Carlo steps

The following sections will outline the general structure of the program. For
some of the more technical details of the implementation see Appendix E.

The master architecture of the program is shown in Fig. (14). As can be seen
from the flowchart, the program starts from a random state (usually with 50:50
distribution of gels and fluids), which is then allowed to equilibrate allowing
only for diffusion and changes in lipid states.

Once equilibrated, the pore formation (and pore sealing) procedure is turned
on, and the system evolves until it has found equilibrium. Letting the system
equilibrate in two rounds makes the whole equilibration process a lot smoother,
as it will reduce the number of pores left over from the initial (and favourable)
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Basic Procedure

Pick a lattice site at random

Not a lipidLipid

Attempt to change 
state (”melt/freeze”)

Attempt diffusion

Pick another lattice site at random

Store data

Attempt diffusion

z £ 0.20

Pick a lattice site
at random

Attempt to 
seal the pore

Expanded Procedure

Generate a random number, z Î [0:1]

z > 0.20

Proceed as in the
basic procedure

Pore Not a pore

Attempt to
create a pore

Pick another lattice site at random

Attempt diffusion

Store data

Fig. 15: Flowcharts of the Monte Carlo routines.

system configuration. Once equilibrium has been achieved, the simulation is
allowed to run for NSC Monte Carlo cycles.

At the end of the simulation, various averages and thermodynamic quantities
(such as the excess heat capacity and the compressibility) are determined by
averaging over the simulated distribution of states.

〈X〉 =
1

NSC

NSC∑
n

Xn. (111)

Statistical errors were determined by use of the blocking method (see Ap-
pendix F for details), and graphical representations of the system were generated
with a raytracer program (POVray).
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Fig. 16: The ”melting” step. Turquoise represents fluid state lipids, while the
gels are brownish. In addition to the change in the free energy due to chain
ordering/disordering, there is a contribution from the interaction with unlike
nearest neighbours. In this example we see that ∆Nfg = 2 and ∆H and ∆S
are positive numbers.

5.6.1 Melting step

The most oft-used Monte Carlo step is the one that allowed for changes in lipid
state from gel to fluid and vice versa (”melting step”):

1. Select a lattice site at random.

2. If an anaesthetic or pore is picked, perform the diffusion step instead as
described in Sec. (5.6.2).

3. If a lipid is picked, temporarily change its state (gel↔ fluid) and calculate
the change in free energy according to Eq. (94), i.e.

∆G = ∆H − T∆S + ∆Nfgωfg + ∆Npfωpf + ∆Npgωpg

+ ∆Napωap + ∆Nafωaf + ∆Nagωag (112)

4. Calculate the acceptance probability

Pacc =
K(T )

1 + K(T )
where K(T ) ≡ e−∆G/RT (113)

5. Compare Pacc to a random number, z ∈ [0 : 1].

6. Accept the change if z < Pacc, and otherwise revert the lipid to the original
state.

7. Use the final configuration (whether the change was accepted or not) to
calculate the value of various thermodynamic observables, Xn.

5.6.2 Diffusion step

After the ”melting” step has been performed a ”diffusion” step is always at-
tempted. While not strictly necessary in a one-component system (as diffusion
is only necessary for the pores and anaesthetics), this step will greatly help the
system avoid getting caught in metastable states.
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1. Select two lattice sites at random and temporarily swap the two particles.

2. Calculate the resulting change in free energy, ∆G, as in Eq. (112).

3. Calculate the acceptance probability

Pacc =
K(T )

1 + K(T )
where K(T ) ≡ e−∆G/RT (114)

4. Compare Pacc to a random number, z ∈ [0 : 1].

5. Accept the change if z < Pacc, and otherwise revert the system to the
original state.

6. Use the final configuration (whether the change was accepted or not) to
calculate the value of various thermodynamic observables, Xn.

5.6.3 Pore step

The two previously described Monte Carlo steps make up the basic steps. Our
model has two more possible Monte Carlo steps, namely one that creates pores
and one that seals pores.

The basic idea behind these steps is the observation that a lipid changes
area by approximately 25% when it goes from the fluid to the gel state. So if
three fluids simultaneously change states, one can create a pore which has an
area that is equal to a gel state lipid. Thus this step both conserves the number
of lipids and also the area as

Abefore = 3Afluid = Aafter = 3Agel + Apore (115)

where a fluid state lipid has been assigned an area of four units, and a gel/pore
an area of three units (3 · 4 = 3 · 3 + 3).

First pore formation is described. This step can be applied if anything but
a pore is picked.

1. If a lipid or an anaesthetic is picked, check the surroundings (nearest
neighbours) for lipids in the fluid state. If there are three or more, tem-
porarily create a pore by changing the three fluids into gels, and moving
the ”central-particle” to the ”end” of the lattice, increasing the number
of lattice sites by one (see Fig. (17)).

2. Calculate the resulting change in free energy according to Eq. (94), i.e.

∆G = 3(∆H − T∆S) + ∆Nfgωfg + ∆Npfωpf + ∆Npgωpg

+ ∆Napωap + ∆Nafωaf + ∆Nagωag, (116)

where ∆H and ∆S refer to the change in enthalpy and entropy of a single
lipid.

3. Calculate the acceptance probability

Pacc =
K(T )

1 + K(T )
where K(T ) ≡ e−∆G/RT (117)
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4. Compare Pacc to a random number, z ∈ [0 : 1].

5. Accept the change if z < Pacc, and otherwise revert the system to the
original state.

6. Use the final configuration (whether the change was accepted or not) to
calculate the value of various thermodynamic observables, Xn.

In order to obey detailed balance, there must also be a possibility to seal a pore.
This could take place if a pore was picked:

1. First, check the surroundings (nearest neighbours) for lipids in the gel
state. If there are three or more, temporarily seal the pore by changing
the three gels to fluids, and moving the ”end-particle” into the pore, thus
reducing the number of lattice sites by one (see Fig. (17)).

2. Calculate the resulting change in free energy, ∆G, as in Eq. (116).

3. Calculate the acceptance probability

Pacc =
K(T )

1 + K(T )
where K(T ) ≡ e−∆G/RT (118)

4. Compare Pacc to a random number, z ∈ [0 : 1].

5. Accept the change if z < Pacc, and otherwise revert the system to the
original state.

6. Use the final configuration (whether the change was accepted or not) to
calculate the value of various thermodynamic observables, Xn.

Fig. 17: The pore forming step. Turquoise represents fluid state lipids, while
the gels are brownish. The red particle can be either a lipid or an anaesthetic.
In this Monte Carlo step three lipids simultaneously change state while the red
particle is moved to or from the edge of the lattice. For details on how the
neighbourhood of the ”last” particle was defined see Appendix E.
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5.7 Domain analysis

An important and immediately obvious observation that can be made from
Monte Carlo snapshots, is that when the temperature gets close to the transition
temperature, Tm, small domains (or clusters) of fluid lipids start to appear in the
gel phase (as long as the temperature remains below the transition temperature).
The average size and number of these domains increase as the temperature
approaches Tm. At Tm the fluid state domains percolate and form a macroscopic
phase that coexists with the gel phase. The picture is then reversed when the
temperature is above Tm, where domains of gel state lipids appear in the fluid
phase.

The temperature range where this occurs strongly depends on the value
of the cooperativity parameter, ωfg. Furthermore, the larger the cooperativ-
ity parameter, the more compact the domains are at the melting point (see
Fig. (42)), as the system will seek to minimise the number of the energetically
unfavourable fluid/gel interactions. Only if ωfg gets very large one will find sys-
tems that are exclusively in the gel or fluid state (see Appendix G.1), though in
general there is no macroscopic phase separation, but rather domains of various
size and composition.

The presence of such heterogeneity is the direct result of local thermal dens-
ity fluctuations. Consequently, they are derived from first principles and are
not a consequence of any initial assumptions. Furthermore, these fluctuations
are directly related to the lateral compressibility of the system, as shown in
Sec. (3.3).

The appearance of such membrane heterogeneities will naturally have a
strong impact on the biological function, as it can dramatically alter commu-
nication pathways and dynamics.

Monte Carlo simulations can provide information about the microscopic con-
figurations in thermodynamic equilibrium, provided the characteristic length
scales are much larger than the atomic level, but still smaller than the system
size. For such systems, the statistics of the domain distributions can easily be
calculated from these configurations.

Following the definitions in Mouritsen and Zuckermann (1985), we define
domains by a nearest neighbour connectivity criterion, so an α-domain (α =
g, f) is simply defined by the requirement that all lipids must be in the α-state,
and that any lipid in the cluster must be connected to any other lipid in the
cluster by a series of nearest neighbour bonds on the (triangular and periodic)
lattice.

The instantaneous distribution of the domains will then be described by their
size distributions, where the size, lα, of an α-domain is defined as the number
lipids in the domain. The number of domains of size lα is denoted nα

l . The
probability of occurrence, Pα(l), of a domain of size lα will then be:

Pα(l) =
nα

l∑
l n

α
l

, where α ≡ g, f. (119)

Once the probability distribution has been determined, a number of useful
quantities can be calculated, such as the average domain size:

l =
∑
l≥2

lαPα(l), (120)
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Fig. 18: Left: Lipid domains in phospholipid monolayers imaged by atomic
force microscopy as a height-difference map. (a) Image of DMPC (25× 25µm2)
and (b) DPPC (20 × 20µm2) monolayers at their respective critical points.
Image was taken from Nielsen et al. (2000). Right: Lipid domains in giant
unilamellar vesicles. Top: DMPC/DPPC mixture at T = 28◦C. Bottom:
DLPC/Dipentadecanoylphosphocholine mixture at T = 26◦C. Unpublished
data from our group (courtesy of Christian Leirer, NBI, University of Copenha-
gen).

where the sum above has been restricted to only include actual domains, i.e.
clusters comprised of at least two lipids.

By averaging Pα(l) over a large number of equilibrium configurations, the
thermal ensemble averages of cluster properties can subsequently be obtained.

The existence of large domains near the transition temperature has been
verified numerous times, both experimentally (see Fig. (18), Leidy et al. (2001),
Hac (2003), Hac et al. (2005), Bagatolli (2006)), as well as by simulation
(Mouritsen et al. (1983), Tien and Ottova-Leitmannova (2003), Seeger et al.
(2005), Hac et al. (2005), Marrink et al. (2005), Seeger (2006)).

5.8 Multi-component membranes

The Ising model can also be adapted to describe membranes with different lipid
species (e.g. DMPC and DSPC). For such systems it is necessary to modify
the expression for the free energy, Eq. (92), as the number of different kinds of
(non-trivial) nearest neighbour interactions increases as NLS(2NLS − 1), where
NLS is the number different lipid species in the system. So for a two-component
system we have six nearest neighbour interactions parameters, namely

• Between gel and fluid lipids of species A, ωfA,gA

• Between gel and fluid lipids of species B, ωfB ,gB

• Between gel lipids of species A and B, ωgA,gB
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• Between fluid lipids of species A and B, ωfA,fB

• Between gel species A and fluid species B, ωgA,fB

• Between gel species B and fluid species A, ωfA,gB

Additionally, each lipid species has a distinct melting enthalpy and entropy,
meaning that there are ten(!) parameters to be determined, without even con-
sidering the possibility for pore formation or added anaesthetics.

The Gibbs free energy of such a system is then given by

∆G =
NLS∑

i

Nfi
(∆Hi − T∆Si)

+
1
2

∑
α=f,g

∑
β=f,g

NLS∑
i

NLS∑
j

Nαi,βj
ωαi,βj

(1− δαi,βj
) (121)

Apart from the added complexity in the expression for the free energy, Eq. (121),
one can proceed exactly as for the one-component system. For a two-component
consisting of DMPC and DSPC a series of heat capacity profiles from experi-
ment and Monte Carlo simulations is shown in Fig. (31) and (51). The nearest
neighbour interaction parameters ωαi,βj

are determined by fitting the excess
heat capacity profiles to calorimetric measurements.

The details of the microscopic configurations will, of course, also depend on
the mixing ratios and on the temperature.

5.9 Considerations in the data analysis

A number of things have to be taken into account when setting up the system
and when analysing the data.

5.9.1 Influence of the starting configuration

As the system is initially in a completely random configuration it will most
likely not be near the equilibrium during the first iterations of the simulation
and should not be included in the final averages.

In general it can be difficult to determine how many iterations should be ex-
cluded. This problem becomes even more acute if the simulation is performed
near the critical point, as the additional problem of critical slowing down will
come into play. As criticality is approached, the range of the correlations in-
creases and the time for relaxation to equilibrium τ will diverge.

Fortunately, the severity of this problem is suppressed in a finite system,
as correlations are restricted. Therefore, the smaller the system, the quicker
equilibrium can be achieved for a given temperature. However, at the same
time finite-size corrections become more apparent, so a balance between these
and equilibration times must be struck.

Another problem is that a system can become stuck in a metastable state
and feign true thermal equilibrium. The severity of this problem will depend
on both the nature of the phase transition (first order or continuous) and the
choice of sampling algorithm (Metropolis, Glauber, etc.).
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Fig. 19: The approach to equilibrium starting from a completely random con-
figuration. The black lines are the running averages. As can clearly be seen,
the closer the temperature is to Tm, the larger the fluctuations and the longer
it takes before equilibrium is found (critical slowing down). Also note that even
when far away from the transition temperature it takes several hundred MC
cycles before the influence of the initial state becomes negligible in the running
averages.

Fig. (19) shows an example of the raw data from a simulation, illustrating
the approach to equilibrium and the importance of excluding the initial config-
urations. Note that equilibrium is attained after only a few Monte Carlo cycles
for temperatures sufficiently far from the critical point but a slower relaxation
and larger fluctuations (both in amplitude and mean lifetime) are observed as
Tm is approached.

In general, it is far better to err on the side of throwing away too much data,
than it is to be too optimistic, as Fig. (19) clearly shows.

5.9.2 Finite-size effects

Because one is always limited to simulating a finite system, finite-size effects
must be taken into account.

Far away from the transition point the correlation length is small compared
to the system size, making this effect negligible as the errors due to the limited
number of lipids will be small compared to statistical errors.

However, as one approaches the transition the problem will become more pro-
nounced, as the correlation length is limited by the system size. Consequently,
any singularities associated with the phase transition will be shifted and roun-
ded.
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5.9.3 Statistical errors

One issue that has to be dealt with when making Monte Carlo simulations is the
trade-off between having good sampling and computation time. Furthermore,
to obtain a reliable estimate for the equilibrium value of an observable, 〈X〉, the
average must be taken over a time significantly longer than that over which the
Monte Carlo states are correlated. As with everything else, this becomes more
difficult near the phase transition or if the system has metastable states.

There are several possibilities for estimating the statistical error. The sim-
plest way is to average over several independent simulations. However, this
method has the disadvantage that the system must be equilibrated anew for
each set of data.

Another way is to divide the equilibrium configurations into independent
blocks and calculating X for each block. This gives a set of (essentially) inde-
pendent estimates of 〈X〉, and standard data analysis can be applied to determ-
ine the statistical error. The problem is to know how long the block of states
must be, so that the different blocks can indeed be considered independent of
each other. One method is to perform the analysis using several different block
sizes. When the blocks are long enough the variance becomes independent of
the block size. More advanced methods are discussed in Appendix F.
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Part III

Experiments
This section presents both the numerical and the experimental results, as well
as the techniques used. These techniques are mainly Fluorescence Correlation
Spectroscopy (FCS) and Monte Carlo simulations, though Differential Scanning
Calorimetry (DSC) and Dynamic Light Scattering (DLS) was also used.

6 Materials and Methods

This section describes the sample preparation as well as the experimental meth-
ods and considerations. The results are shown and discussed in Sec. (7).

6.1 Preparation of vesicles

The sample preparation is a somewhat involved affair. The procedures are
described below in some detail, but for step-by-step descriptions see the Appen-
dices.

6.1.1 Extrusion

For the FCS experiments large unilamellar lipid vesicles (LUV) of DPPC (Avanti
Polar Lipids, Birmingham/AL, USA) with 5mol% DPPG were used.

The sample was prepared by dissolving each of the lipid components sep-
arately in organic solvent (dichloromethane:methanol 2:1), after which the two
components were mixed in the desired ratio.

This mixture was then dried by heating while exposing it to an air stream.
The remaining organic solvent was removed by placing the sample in a high
vacuum desiccator over night.

Multilamellar lipid vesicles (MLV) containing dye were then prepared by
adding the dye solution (50µM rhodamine 6G and 200mM NaCl in Millipore
water) to the dry lipids and heating it to about 10K above the melting tem-
perature while stirring it for about an hour. The solution was also vortexed a
couple of times during the stirring process.

This process results in multilamellar lipid vesicles, which must then be ex-
truded to give unilamellar vesicles. The extruder (Avestin Europe GmbH,
Mannheim, Germany) consists of two mechanised syringes pressing the solu-
tion through a polycarbonate filter with a pore size of 100nm. The extruder
was placed in a brass block which could be heated by a heat bath, so the system
would be above the melting temperature of the lipid membranes (T = 49.6◦C)
while being extruded (so as to make the membranes softer and easier to extrude).

Before starting the extruder setup, 1ml of the lipid solution was transferred
to one of the two syringes, after which the syringes were put back into the
extruder block and kept there for 15 minutes to ensure that the sample and
extruder had a constant temperature.

The extrusion was carried out very slowly (about 1.5 minutes to empty a
syringe) so that the filter would not break, and repeated dozens of times to
ensure that the vesicles had a narrow size distribution.
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After the extrusion process the LUV solution was taken from the syringe
which was initially empty, as this ensures that all lipid vesicles have been through
the polycarbonate filter at least once.

For a more thorough description of the extrusion procedure, see Appendix A.
To check the quality of the extruded vesicles some dynamic light scattering

measurements were also performed. The measurements were performed at 25◦C
(and hence in the gel state of the vesicles), and the results can be seen in
Fig. (20). The distribution were obtained by making a regularised least squares
fit (using a smoothness constraint) of a sum of 200 exponential functions to the
measured autocorrelation functions. The resulting distribution is consequently
the widest and most featureless distribution that is still consistent with the
measurements, so the actual distribution is therefore likely to be much narrower.
What is clear is that it is a monomodal distribution, indicating that there seems
to be no strong aggregation going on. Having a monomodal distribution also
makes it possible to do a second order cumulant analysis. This gave an average
hydrodynamic radius of r = 54.6± 0.3nm, with a polydispersity factor of 0.03.
For comparison, the instrument gave a polydispersity factor of ≈ 0.02 for a
known mono-disperse solution, indicating that the vesicle distribution was very
narrow, thus justifying the use of the equations derived in Sec. (4).

Taken together with the good agreement of the theoretical fits obtained
from the FCS measurements, it can be concluded that the solution was close to
being mono-disperse, with the scatterers (vesicles) having an average diameter
of ≈ 100nm in the gel state. The ≈ 33% increase in lipid area when going from
gel state to fluid state (Heimburg (1998)) means that the vesicles’ diameter
would increase by ≈ 15%.

6.1.2 Chromatography

After the vesicles have been prepared by extrusion it is necessary to separate
the vesicles from the free dye in order to have concentration gradients in the
system. This was done by size exclusion chromatography.

Before the actual separation could be performed, the gel column needed to
be prepared and equilibrated. This step is crucial to get decent results. The
full details can be found in Appendix B, but is also illustrated in Fig. (22).

The chromatography procedure was as follows: Set up a clean disposable
glass Pasteur pipettes (the longer the better) with a small piece of sterile glass
wool plugged in the neck. Clamp the column in a vertical position, and add
some Millipore water and the G50 Sephadex gel. Thereafter, let a minimum of
three column volumes of a NaCl solution run through the column to block all
non-specific binding sites.

Once the gel column had been prepared, the sample was poured in and
collected again in five or six fractions of varying concentration and separation.

On a general note, make sure that the ambient temperature is at least 10K
below the phase transition temperature to prevent unnecessary dye leakage dur-
ing the separation procedure.

The prepared samples were stored in a refrigerator to prevent leakage, and
a fresh batch was prepared if the sample got more than two weeks old. When
used for the actual FCS measurements, the sample was usually diluted by a
factor of 50-100 with a 200mM NaCl solution, so as to have 1-2 vesicles in the
confocal volume on average.
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Fig. 20: Distribution of the scattering contributions obtained from dynamic
light scattering. The average hydrodynamic radius for each of the distributions
is listed in the upper right corner.
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Fig. 21: The resulting distribution of vesicle sizes, as obtained from Fig. (20).
The scattering amplitude of a scatterer is proportional to its molar mass squared,
so A(r) ∝ nrM2

r ∝ nrr
4, where A(r) is the scattering amplitude, r the radius,

and Mr and nr are the molar mass and the number of scatterers with radius r.
The average hydrodynamic radius for each of the distributions is listed in the
upper right corner.
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Fig. 22: Chromatography procedure. (a) Preparation of gel column. (b) Sep-
aration of vesicles and free rhodamine.
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6.2 Fluorescence correlation spectroscopy measurements

Fluorescence Correlation Spectroscopy (FCS) uses fluctuations in the fluores-
cence signal to get information about diffusion processes. The necessary theory
is derived in Sec. (4).

For a step-by-step description of the measuring procedure see Appendix C.

6.2.1 Experimental setup

In order to see large fluctuations, one needs a small confocal volume. This was
realised through a confocal setup which is schematically shown in Fig. (23).

The confocal fluorescence setup used consists of a Nd:Yag laser (LASER
2000, Reno/NV, USA) with an emission maximum at a wave length of 532nm
(green) emitting coherent, linearly polarised light (power 5mW, beam diameter
0.36mm). The laser power could be adjusted by inserting optical density filters
(OWIS, Staufen, Germany) into the light path. Typically the laser power was
reduced by a factor of 400 (OD 2.6) in order to minimise the photobleaching16

of the fluorophores inside the slow moving vesicles. To further reduce the effect
of photobleaching, a computer controlled shutter was used to block the light
path when data wasn’t being collected.

The first (and rather sensitive) part of the setup was a ×20 telescope (two
lenses with focal lengths of 5mm and 100mm) that magnifies the beam diameter
to 7.2mm, so that the laser beam will properly fill the back of the objective.

The laser light is then reflected by a dichroic mirror (reflecting light with
a wavelength shorter than 537nm, while transmitting light with a longer wave
length) into a water immersion objective17 (Olympus Optical Com, Hamburg,
Germany; UPLAPO 60×W; N.A. 1.20; W.D. 0.25mm); F.N. 26.5; C.C. 0.13-
0.21 µm; objective focal length 3mm).

When the fluorophores in the sample are hit by the laser light, they are
excited to a higher energy level followed by an immediate decay whereby a
photon is released with a wave length longer than the excitation wave length
(see Sec. (6.5)). Some of the fluorescence light then re-enter the objective and
is transmitted back towards the dichroic mirror. The wave length of the fluores-
cence light is chosen so that the dichroic mirror will transmit instead of reflect.

The signal is then further filtered as the light passes through a bandpass
filter. This filter cuts off the background signal originating from the Raman
scattering of the water in the sample, as well as residual reflected light from the
laser.

After being filtered, the fluorescence signal passes through a small pinhole
(OWIS, with a diameter of 30µm, 50µm or 100µm) which is crucial for defining
the detected confocal volume of the setup. Changing its size results in a bigger
or smaller detection volume (see Fig. (24)). Typically a 100µm pinhole was
used, creating a ellipsoidal detection volume of approximately 0.8µm× 2.5µm.

16Photobleaching is when a fluorophore permanently loses the ability to fluoresce due to
photon-induced chemical damage and covalent modification. The bleaching rate increases
markedly if the excitation irradiance is larger than ≈ 103W/m3 (Eggeling et al. (1998)).

17By placing a drop of water between the objective and the coverglass, one gets much greater
light collection efficiency due to the high refractive index of the water. It does, however, also
mean that there is strong thermal contact between the objective and the sample, which can
cause complications as discussed in Sec. (6.3.1).
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Thereafter, the light is split into parallel and perpendicularly polarised light
by the polarising beam splitter (Linos; SBB/450-1100nm). Two avalanche pho-
todiodes (SPCM-AQR-13, Perkin Elmer, Boston/MA, USA), which allow single
photon counting, register the fluorescence signals of the parallel or the per-
pendicular polarised light. These signals were then correlated by a hardware
Flex5000 correlator card from Correlator.com (Bridgewater/NY, USA).

The setup used was built by Agnieszka Hac, so for a more thorough descrip-
tion of the setup see Hac (2003).

6.3 FCS complications

While performing these experiments, a number of difficulties were encountered.

6.3.1 Temperature control

Heating the sample homogeneously turned out to be a major issue, as the heat-
ing jacket tended to get substantially hotter (as much as 10K) than the heated
objective (which also had good thermal contact with the sample due to the
water drop in between) if the ambient temperature was significantly lower than
the desired temperature. In addition to having an ill defined temperature meas-
ure of the sample, this also resulted in convection. While such directed motion
distorts the correlation curves, this can be taken into account in the analytical
expression (Schwille and Haustein (2002)). More importantly, the convection
led to an exchange of sub- and super-transition vesicles which made it next
to impossible to extract a meaningful measure for the permeation rate at high
temperatures. Increasing the ambient temperature to about 40◦C by placing
a simple hot air heater beneath the optical table as well as wrapping the ob-
jective and its heater in cotton and aluminium foil, did alleviate this problem
somewhat, but a complete control of the temperature was not possible with the
current setup. The precision of the temperature measurements was estimated
to be about 0.5K at best.

6.3.2 Vesicle leakage

It also turned out to be difficult to heat the sample quick enough to avoid
having most of the dyes leak out while heating it. This meant that the per-
meation rates calculated for the experiments above the phase transition tem-
perature were problematic to determine with any reliability. Simply preheating
the sample just prior to the measurements was not sufficient, nor did diluting a
high concentration sample in a preheated solution help. To solve this problem,
we also tried using tetramethylrhodamine dextran (3000 MW, anionic) for the
measurements above the phase transition, as a larger fluorophore would have a
lower permeation rate, thus making it possible to heat up the sample without
severe leakage before the actual measurements. This, however, had its own
issues as discussed in Sec. (7.3).

6.3.3 Electrostatic interactions

Having a positively charged dye (rhodamine 6G chloride) and negatively charged
lipid head groups (1,2-Dipalmitoyl-sn-Glycero-3-[Phospho-rac-(1-glycerol)] (so-
dium salt), a.k.a. DPPG), also caused complications, as the electrostatic at-
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Fig. 23: The FCS setup. Top: A schematic illustration of the setup. Bottom:
A raytraced image of the setup.
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Fig. 24: The basic principle of the pinhole. Light reaching the first pinhole
lens from the centre of the focal plane of the sample will travel parallel to the
axis of symmetry, and is thereby focused exactly on the pinhole. The further
from the focal plane centre, the less parallel the light will be when it reaches the
pinhole lens. In effect the pinhole will block any fluorescence light that does not
originate from the focal region, and thus provides axial resolution. The size of
the pinhole must be greater than the diffraction limit, but too large a pinhole
will defeat its purpose.

traction prevented leakage, and caused the free rhodamine molecules to stick to
the surface of the vesicles. Simply adding 200mM NaCl reduced this interaction
as the ions screened the charges significantly, reducing the Debye length to less
than 1nm.

6.3.4 Evaporation

The high temperatures caused the water drop between the objective and the
cover glass to evaporate, which meant that as time went by, the light collection
efficiency decreased as drop got smaller. Replacing the drop was of course
possible and necessary, but it did disturb the sample somewhat, which would
show up in the measured signal. Evaporation of the sample itself was also an
issue, as this caused the concentrations to change with time as well as cooling
the surface. This, however, could be prevented by sealing the cuvette well with
Parafilm.
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6.3.5 Count rates for rhodamine

As the entire setup was heated by about 20K meant that the thermal expansion
of the system was quite significant, and could at times ruin the calibration. As
the exact alignment of the cover glass, differences in the background signal, etc.
also changed things a bit, it turned out to be next to impossible to get an exact
measure for the count rate per rhodamine molecule. Typically the uncertainty
was on the order of 10–20%.

6.3.6 Air bubbles

Small air bubbles often formed on the cover glass, which could completely ruin
a data series. Degassing the sample prior to the measurements did alleviate this
problem somewhat, but did not completely eliminate it.

6.3.7 Adding an anaesthetic

When adding an anaesthetic to the sample, a number of things has to be taken
into account. Firstly, it is fairly difficult to find exact and reliable numbers for
the partition coefficient, β, which also apply to the system under consideration.

When calculating the concentration of the anaesthetic in the membranes,
the general expression can easily be derived, giving

β ≡ Cmem

Cbuffer
⇒ (122)

Cmem =
βnanae

βVmem + Vbuffer
, (123)

where β is the partition coefficient, Cmem is the concentration of anaesthetics
in the membranes, Cbuffer is the concentration of anaesthetics in the buffer,
Vmem is the volume of the membranes, and Vbuffer is the volume of the buffer,
and nanae is the amount of anaesthetic added to the system (in moles).

Due to various uncertainties in the preparation of the sample (such as ex-
trusion and the chromatography procedure, as well as the usual uncertain-
ties in weighing, etc.), the exact amount of lipid in the system is hard to
determine. However, if the amount of lipids in the system is very low (i.e.
βVmem � Vbuffer), the Eq. (123) can be approximated by

Cmem ≈ β
nanae

Vbuffer
, (124)

i.e. it is linear in the partition coefficient. So any inaccuracy in the value of
the partition coefficient will result in an equally inaccurate determination of the
concentration of the anaesthetic in the membranes.

In this project the following values for the partition coefficients were used
(values taken from Firestone et al. (1986)):

• Octanol (DPPC/water): β = 387

• Halothane (DPPC/water): β = 50

Secondly, actually adding the anaesthetic requires some care, as it has to
be mixed with the entire sample almost instantaneously, to avoid having a cer-
tain fraction of the vesicles becoming completely saturated, while others are
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left nearly untouched. Furthermore, as the anaesthetics used tend to be al-
most water insoluble, there is always the risk of having tiny droplets forming
in the sample, which can severely disrupt the signal as they scatter the laser
light. Lastly, one should also take care not to add so large amounts that some
of the vesicles are completely destroyed (dissolved) by it, which will cause an
instantaneous release of dye.

6.4 Fitting the data

Once a correlation curve has been measured, it is, of course, necessary to fit the
analytical expressions that were derived in Sec. (4) to the data. However, there
is a slight problem in doing this, as the correlation curve for this system can
only give five parameters (the two step amplitudes, the two time scales and the
shape of the tail as shown in Fig. (25)), while we actually have at least six free
parameters (average number of free fluorophores, average number of vesicles,
average number of fluorophores per vesicle, the two time scales, and the ratio
of the longitudinal and radial dimensions of the focus. If using TMR dextran,
there’s also the average number of labels per dextran).

For a system where the number of fluorophores is conserved, there are no
free parameters and Eq. (51) can be used. Unfortunately, rhodamine 6G has
a strong tendency to stick to the cuvette walls, making it necessary to find an
alternative approach.

This problem was handled by making a measurement on free fluorophores
beforehand. Here, there will only by three to four variables to fit (average num-
ber of fluorophores, time scale, ratio of the longitudinal and radial dimensions
of the focus, and possibly the average number of labels per dextran), which is
fittable from the amplitude, the position of the half-height, and the shape of the
tail. Also, from the average intensity of the signal, and signal per fluorophore
can be determined, which in turn can be used to determine the total (average)
number of fluorophores in the focus in the two-component system.

Normally, the degree of labelling (i.e. the average number of labels per
dextran) is provided by the manufacturer, giving us one less variable to worry
about. Also, the ratio of the longitudinal and radial dimensions of the focus is
setup-dependent, and will therefore just need to be determined once and for all.

While the characteristic diffusion time scales depend on temperature, these
can also just be determined beforehand, though better fits might be obtained,
if these are fitted each time as they are subjected to statistical variations. This
leaves us with just three parameters, namely the average number of free fluoro-
phores, 〈NR6G〉, average number of vesicles, 〈Nv〉, and the average number of
fluorophores per vesicle, B̃, which can be determined from the two amplitudes
and the total number of fluorophores in focus.

Written in a more concise form, we have that:

G(τ) = 1 + AR6G

[
1 +

τ

τD,R6G

]−1[
1 +

τ

ω2τD,R6G

]−1/2

+ Av

[
1 +

τ

τD,v

]−1[
1 +

τ

ω2τD,v

]−1/2

, (125)

where
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Fig. 25: Correlation function for a two component system. For the sake of
clarity the time scales are a factor of 1000 apart, whereas the vesicles and free
rhodamine only differ by a factor of about 200.

AR6G ≡
〈NR6G〉

N2
tot

and Av ≡
〈Nv〉B̃2

N2
tot

(
1 +

1
B̃0

)
. (126)

Here we have also introduced Ntot, which is the total number of fluorophores
that is in the confocal volume on average

Ntot ≡ 〈NR6G〉+ B̃〈Nv〉 (127)

=
〈Ftotal〉

Fone fluorophore
(128)

Fitting to the two amplitudes, AR6G and Av, gives much more numerically fits
than trying to fit directly to the Ni’s, which would otherwise be an issue when
there is very little rhodamine in free solution.

All fits and data analysis were performed using self-made IGOR Pro routines.

6.5 Dye spectra

The dye used in most of the experiments was rhodamine 6G chloride (Xanthylium,
9-(2-(ethoxycarbonyl)phenyl)-3,6- bis(ethylamino)-2,7-dimethyl, chloride; MW
479.02). This laser dye is pumped by the 2nd (532 nm) harmonic from a Nd:Yag
laser, and it has a remarkably high photostability, high quantum yield, low cost,
and close proximity to the absorption maximum, making it well suited for FCS
studies.

A few of the experiments made use of labelled dextran (D3307; dextran-
tetramethylrhodamine, MW 3000, anionic), which consists of about 16 sucrose
molecules, plus 0.3–0.7 tetramethylrhodamine groups per dextran.



6 MATERIALS AND METHODS 61

The absorption and emission spectra for rhodamine 6G chloride and tetra-
methylrhodamine are shown in Fig. (27). The maxima in the absorption and
emission spectra are at 528nm and 551nm for rhodamine 6G, while they are
located at 555nm and 580nm for tetramethylrhodamine.

6.6 Differential Scanning Calorimetry

Differential Scanning Calorimetry (DSC) is a powerful thermoanalytical tech-
nique by which one measure a number of characteristic properties of a sample,
such as fusion, melting, crystallisation, as well as certain chemical reactions.
This method has also been used to study of melting processes in artificial or
biological membrane systems for than three decades now (see e.g. Hinz and
Sturtevant (1972)).

In short, one measures the difference in the amount of heat required to in-
crease the temperature of a sample and a reference as a function of temperature.
Depending on the nature of the process (exothermic or endothermic), more or
less heat must flow to the sample. For instance, as a gel state lipid membrane
melts (an endothermic phase transition) it will require more heat flowing to the
sample in order to increase its temperature at the same rate as the reference.

The basic principle of DSC instrument is shown in Fig. (28). The DSC con-
sists of two cells that are enclosed by an adiabatic shield to prevent uncontrolled
heat leakage. One cell is filled with sample (e.g. a lipid/buffer solution) and the
other with a reference solution (usually a buffer).

The temperature of the cells is then increased linearly as a function of time
while keeping the temperature difference between the two cells at zero.

If an exothermic or endothermic process takes place within the sample, there
will be a significant deviation in the difference between the two heat flows (∆P =
Psample − Preference 6= 0), and a peak will show up in the DSC curve.

By integrating the excess power, ∆P , with respect to time, the excess heat
flow to the sample is consequently

∆Q =
∫ t+∆t

t

∆P (t′)dt′ ' ∆P ·∆t (129)

The heat capacity is given by the energy needed, ∆Q, to heat the system ∆T
at constant pressure, i.e.

∆cp =
(∆Q

∆T

)
p

=
∆P

∆T/∆t
(130)

where ∆T/∆t is known as the scan rate.
So by simply monitoring the power difference of the two cells one has a direct

measure of the excess heat capacity of the sample substance, from which one
can easily derive the transition enthalpy and entropy (see Sec. (5.3.2)).

The heat capacity profiles in this thesis were all recorded using a VP-DSC,
produced by Microcal (Northhampton/MA, USA). In all the experiments the
pressure in the calorimeter was approximately 50psi = 3.4atm (above atmo-
spheric pressure), and the scan rate was 5K/hour.
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Fig. 26: Left: Example of a dextran molecule (tetramethylrhodamine group
and hydrogens not shown). Dextran is a complex, branched polysaccharide
made from glucose residues. This example consists of 18 residues, but the TMR
dextran purchased had distribution going from ≈ 10–20. Right: Molecular
structure of rhodamine 6G chloride. For a schematic representation of the dyes,
see Fig. (56) in the Appendix.
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Fig. 27: Left: Absorption and emission spectra for rhodamine 6G chloride
at different concentrations. Figure was adapted from Zondervan et al. (2003).
Right: Absorption and emission spectra for tetramethylrhodamine at pH 7.0.
Figure was adapted from www.invitrogen.com.
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Fig. 28: A schematic drawing of a Differential Scanning Calorimeter. A sample
and a reference cell are isolated from the outer environment by an adiabatic
shield. The temperature difference between the two cells, ∆T , is kept zero. The
difference between the heat flows to each of the cells, ∆P , is proportional to the
excess heat capacity.
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Fig. 29: DSC measurement of the excess heat capacity profile for the system
under study. The blue curve is large unilamellar vesicles of DPPC with 5mol%
of DPPG in 200mM NaCl and nanomolar concentrations of rhodamine 6G. The
green curve also has approximately 7mol% 1-octanol in the membranes.
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Fig. 30: The excess heat capacity profile for large unilamellar DPPC vesicles de-
termined by DSC. The peak at 33◦C is called the pre-transition, and is thought
to be due to ripple formation (Heimburg (2000)). The peak at 41◦C is the
chain-melting transition. This data was provided by Thomas Heimburg, NBI,
University of Copenhagen.
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what uneven baseline. This data was provided by Thomas Heimburg, NBI,
University of Copenhagen.
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7 Experimental Results

This section presents all of the results from the FCS experiments.

7.1 Fluorescence correlation spectroscopy

The primary focus of the experimental work was the study of permeation rates
through synthetic phospholipid membranes, with the use of fluorescence correl-
ation spectroscopy.

While other methods can (and have been) used to measure permeation rates,
no-one has successfully used FCS to do this and published it.

The basic idea behind these measurements is that the characteristic per-
meation rates of the lipid membranes can be determined by analysing the time
evolution of the measured correlation curves (see Fig. (32)).

From such curves one can obtain the average number of dyes trapped per ves-
icle, B(t), which will follow an exponential decay to zero, provided the concen-
trations are sufficiently low to neglect dyes reentering the vesicles (see Fig. (33)).

If the leakage is less than total (e.g. due to dyes sticking to the vesicles
or aggregating inside them), the B(t) curve will go to some constant, non-zero
value.

7.2 Rhodamine 6G permeation

The majority of the FCS studies were on the permeation rates of rhodamine 6G
chloride out of large unilamellar vesicles made from DPPC and slight amounts
of DPPG (a negatively charged lipid, which was used to prevent the vesicles
from aggregating or fusing together).

7.2.1 Control by temperature

A systematic series of measurements of permeability rates, kp, as a function of
temperature was carried out. The results are shown in Fig. (34) and proved to
be in accordance with the previous findings (see Papahadjopoulos et al. (1973),
Corvera et al. (1992) and Heimburg (2007)).

What is not shown in the figure is that the characteristic permeation time
scale was on the order of weeks or even months when the system was at 5◦C, and
on the order of days when at 25◦C. The fastest time scale shown is approximately
100 seconds, but is quite likely to be faster as this was on the border of what
could be reliably measured. It was estimated that the fastest time scale was on
the order of tens of seconds or even faster, so by changing the temperature by
≈ 13% (from 5◦C to 41◦C), the permeation rate could be changed by more than
six orders of magnitude.

However, making measurements close to or above the phase transition turned
out to be troublesome. This was due to the very fast permeation rate in the
phase transition, which was on a time scale of less than a minute. This made it
impossible to make reliable measurements, as everything had leaked out before
the system had settled enough (turbulence, convection, and rhodamine sticking
to the cuvette walls, tended to disrupt the measurements for the first couple of
minutes) to record reliable correlation curves.
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Fig. 32: The observed evolution of the correlation curve, G(τ). As time goes
by, dye leaks out of the vesicles and this fast diffusing population appears as a
second bump on the measured correlation curves. In an ideal experiment all of
the dyes would be released, making the end result a normal correlation curve
of the dye in free solution. The red correlation curve for the rhodamine was
not part of this data series, but is simply shown as a reference. Top: 38.4◦C.
Bottom: 39.3◦C.

The few permeation rates above the phase transition were obtained by dis-
regarding an initial quick permeation time (caused by the finite time it took to
heat the sample through the transition), and only fitting to the slowly decay-
ing tail of the B(t) curves. Consequently, there is an inherent uncertainty in
these numbers as the permeation rates were a combination of several permeation
rates.



7 EXPERIMENTAL RESULTS 67

30

25

20

15

10

5

0

B
(t

)

20x10
3

151050

t [s]

 B(t)

 Fit

30

25

20

15

10

5

0

B
(t

)

500040003000200010000

t [s]

 B(t)

 Fit

Fig. 33: The evolution of the average number of rhodamine molecules per
vesicle, B(t), at two different temperatures. The solid lines are least squares fit
of an exponential function with an offset. Top: 37.1◦C. τp = k−1

p = 4.8 ·103 sec.
Bottom: 38.4◦C. τp = k−1

p = 1.2 · 103 sec.

7.2.2 Control by anaesthetics

A number of experiments at constant temperature were also performed. Both
of the thermodynamic theories predict that the transmembrane permeability
is determined strongly coupled to the thermodynamic state of the membrane,
so a change in any of the membrane variables should influence the observed
permeation rate. To demonstrate this effect we chose to alter the state of the
system by adding of one of two kinds of general anaesthetics, namely 1-octanol
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Fig. 34: The measured permeability rates, kp, and the excess heat capacity, cp,
as functions of temperature. The error bars show the uncertainties in the least
squares fit to the B(t) curves, and do not take into account any of the other
sources of error. The uncertainty in the temperature is about ±0.5K. The three
yellow data points were obtained on the same day, without new temperature
measurements being made between the experiments. Thus if the temperature
measurement was off, all three points should be shifted together. Lastly, the
three data points above the phase transition are a whole lot more uncertain
than their error bars indicate (see text).

and halothane (see Fig. (4)).
From the heat capacity profiles (Fig. (29)) one would expect a significant in-

crease in the permeation rate at temperatures close to (but below) the transition
temperature, as the increase in the lateral compressibility will be proportional
to the increase in the heat capacity. Similarly, the interfacial area of the domains
also increases dramatically when an anaesthetic is added.

As can be seen from Fig. (36) and (35), there was a large increase in the
permeation rates, in good agreement with what one would expect from the
thermodynamic data (Fig. (29)).

Additionally, a few experiments of a slightly different character were also
performed. Here the temperature was also kept constant at a temperature
several degrees below the transition. Then after approximately one hour, the
state of the system was changed ”instantaneously” by either adding octanol to
the sample, or by increasing the temperature to ≈ 45◦C as quickly as possible.
Both changes caused an abrupt shift in the permeation rate as can be seen from
Fig. (37).
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Fig. 35: Measured B(t) with varying amounts of 1-octanol in the membranes
at T = 37.6◦C. The solid lines are least squares fit of an exponential function
with an offset.
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Fig. 36: Measured B(t) with varying amounts of anaesthetics in the membranes
at T = 36.3◦C. The solid lines are least squares fit of an exponential function
with an offset.
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Fig. 37: Measured B(t) at T = 37.1◦C. Left: Sudden increase in temperature.
Right: Sudden addition of 1-octanol. The arrows indicate when the changes
were made.
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7.3 Tetramethylrhodamine dextran permeation

As mentioned above, the permeation rates of rhodamine 6G chloride seems to
be on the order of seconds or tens of seconds in the phase transition, which made
it next to impossible to make reliable measurements above the phase transition,
as everything had been released during the heating of the sample.

To circumvent this problem, we tried to repeat the experiment with tetra-
methylrhodamine dextran (approx. 3000 g/mol) instead of rhodamine 6G chlor-
ide (479.02 g/mol), as the larger molecule diffuse more slowly and would only
be likely to leak through very large (and thus less probable) pores.

Unfortunately, the time scale of the permeation at the transition midpoint
turned out to be on the order of days (see Fig. (38)). Consequently, these
measurements were aborted after a few days, as this was too impractical to be
of use.

The stability of these measurements did, however, provide one critical piece
of information, namely that the vesicles did not break apart or fuse together
when in the phase transition or when repeatedly heated and cooled.
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Fig. 38: The average number of dextran molecules per vesicle, D(t), as a func-
tion of time at T = 41.1◦C. As can be seen, no leakage could be detected after
one hour. Repeated heating and cooling through the transition did not alter
D(t) noticeably.
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8 Simulation Results

As explained earlier, a major aim of the project was to compare Monte Carlo
simulations with experiment. One of the great strengths of such simulations is
that they can give information about the spatial structure of the membrane,
making it possible to visualise membrane heterogeneity and domain formation
directly.

Unless otherwise noted, all simulations were performed on 100 × 100 + 30
lattices, where the incomplete row with 30 lipids was there to minimise the
influence of the lattice oddity (described in Appendix E).

The typical simulation was allowed to equilibrate for NEC = 2 · 104 to 105

Monte Carlo cycles two times, first without pores involved, and then again
with pore formation allowed. The actual sampling was then done over another
NSC = 105 to 5 · 105 cycles. Most of the calculated curves presented in this
thesis were in addition averaged over several independent runs.

8.1 One-component system

The main focus of the numerical work was on simulation of a one-component
system mimicking a DPPC membrane.

The parameter values used in the simulations are shown in Table (1). The
values for ∆H, ∆S and ωfg are identical to those used in Ivanova et al. (2003).
The choice that ωaf = 0 (i.e. ideal mixing with the fluid phase) and ωag = ωfg

is based on the considerations made in the same article and in Ivanova and
Heimburg (2001).

The results from these simulations were in good qualitative agreement with
the experiments, in that they show a pronounced peak in the phase transition.
While the program does include a number of free parameters (namely the in-
teraction parameters between pores and lipids), a number of insights can be
derived from the output.

Fig. (41) and Fig. (42) shows how the permeability (number of pores) of
the system depends on the cooperativity, ωfg. As can be seen, a lowering of
the cooperativity results in a higher number of fluid/gel interactions (i.e. more
ramified domains), but is also seen to reduce the maximum heat capacity (and
consequently the lateral compressibility). This clearly shows that in this model
the permeability of the system is strongly coupled to the lateral compressibility
and not the interfacial area of the domains (which is closely related to the
number of fluid/gel interactions in the system).

Typical microscopic configurations for different temperatures are shown in
Fig. (40). Domains on all scales – from pairs to cluster on a similar scale as the
system – can be observed. Naturally, a given cluster fluctuates in size as time
goes by, as expected.

A couple of difficulties were encountered when these simulations were made.
Firstly, black lipid membrane experiments have shown that the density of pores
in a DPPC bilayer is only around 50 pores per mm2 of membrane surface,
even at the transition point (Antonov et al. (2005)). As this area is more than
eight orders of magnitude larger than a typical simulations (≈ 5 · 105Å2) there
should only be a pore around one out of every four million time steps. This,
of course, will require that the simulation runs for a ludicrously long time, in
order to get anything resembling decent statistics. Therefore, it was decided to
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Fig. 39: Simulated one-component system (DPPC) with error bars calculated
via the blocking method described in Appendix F. The solid line is a cubic spline
fit. Top: Simulated excess heat capacity. Bottom: Simulated permeability
profile (i.e. the average number of pores, which is assumed to be proportional
to the probability of crossing, P (T )).
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Fig. 40: Snapshots of the system at two different temperatures (top: T = 39◦C,
bottom: T = 41◦C). Gel state lipids are brownish, fluid state turquoise, and
pores black.
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Fig. 41: Simulated one-component system (DPPC) with varying cooperativity.
The reference value (100%) is ωfg = 1326J/mol. The 108.2% corresponds to
ωfg = 1434.77J/mol, i.e. the critical value from Eq. (93). Top: The simulated
excess heat capacities. Bottom: The average number of pores in a system with
10030 lipids. The slight shifts in the locations of the maxima are caused by the
differences in the average number of pores.
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Fig. 42: Top: Fraction of the lipids that are in the gel state. Bottom: Fraction
of the nearest neighbour interactions that are fluid/gel interactions. As can
be seen from this figure, lipids tend to have neighbours in the same state for
ωfg > 0 as expected. In other words, the higher the cooperativity, the lower
the degree of ramification of the domains. Shown for different values of the
cooperativity parameter as in Fig. (41).
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Parameter Value used [J/mol]
∆H 36400
∆S 115.87 K−1

ωfg 1326.0
ωpf 2254.4
ωpg 4508.0
ωpa 13260.0
ωaf 0.0
ωag 1326.0

Table 1: Parameter values used in the simulations of DPPC, unless otherwise
noted. Note that ωfg is close to the critical value given in Eq. (93).

lower the energy cost of forming a pore, in order to have a few dozen pores in
the membrane in the phase transition. This, however, caused other problems,
as the interaction between pores and lipids was still very unfavourable, which
means that the pores would tend to aggregate. This sometimes led to runaway
aggregation, which would take system out of equilibrium and cause the program
to crash. Lowering the interaction energies sufficiently to alleviate this problem
would in turn result in very large numbers of pores, which would then distort
the heat capacity profile significantly, which was not acceptable either.

In the end, I opted for a set of parameters (see Table (1)) which allowed
for enough pores to give decent statistics, but still low enough to not influence
the heat capacity of the system significantly (see Fig. (43)). The ”runaway
aggregation problem” was circumvented by disallowing pore-pore interactions.
While unphysical and inelegant, the effect on the results should be negligible,
as the pore density was so low as to make pore-pore interactions insignificant
(as they seem to be in real membranes).

8.1.1 Lateral compressibility

As can be seen from Fig. (44), the simulated heat capacity is proportional to
the lateral compressibility near the phase transition, as expected from exper-
iments (Ebel et al. (2001)). For a two-state model this is hardly surprising,
as the enthalpy fluctuations are dominated by the changes in the chain en-
thalpy (≈ 36kJ/mol), and not the nearest neighbour interactions (≤ 6 · 1326 ≈
8kJ/mol).

8.1.2 Pore formation

The exact appearance of the pores vs. temperature profiles will of course depend
on the choice of parameters (see Fig. (45)). However, for a large range of
interaction values, the permeability profile shows a strong peak at the phase
transition temperature, and the position of this peak was found to always follow
the peak of the heat capacity profile.

As can be seen from Fig. (46) the distribution of pores at a given tempe-
rature is governed by a Poisson distribution, which shows the following two
things: 1) the probability of forming a pore is very small, and 2) the pores form
independently of each other, as required to follow such a probability distribution.
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Fig. 43: Comparison of the calculated heat capacity profiles for simulations
with and without pore formation involved. As can be seen from the figure,
there is a shift of about -0.15K in the transition temperature as well as a slight
broadening of the profile. This is due to the difference in the pore interaction
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8.1.3 Influence of anaesthetics

Including a non-melting species in the system (an ”anaesthetic”) provided fur-
ther insights into the mechanisms at work, and could be compared to the ex-
perimental findings.

The anaesthetics that are located at the interfaces between domains and
bulk will lower the overall line tension, and causes a broadening of the heat
capacity, and – depending on how well it mixes with either phase – a melting
point depression (Ivanova and Heimburg (2001)).

As can be seen from Fig. (48) the permeability curve follows the heat capacity
profiles, being both shifted and broadened in a similar fashion.

These results are consistent with the experimental finding, that the permeab-
ility at sub-transition temperatures can be significantly enhanced by addition
of an anaesthetic. The data also supports the idea that it is the fluctuations of
the whole system that determines the likelihood of the formation of a pore.

The interactions between the pores and the anaesthetics were set to be ex-
tremely unfavourable (as would be the case for a strongly hydrophobic mo-
lecule), so as to not have the anaesthetics serve as nucleation points for pore
formation. For less unfavourable interactions between the pores and the anaes-
thetics this was actually the case, as can be seen from the bottom most graph
in Fig. (48).

8.2 Beyond one-component systems

In addition to the simulations of the DPPC membranes, a couple of Monte Carlo
simulations of a two-component system were also performed. The results are
shown in Fig. (50) and (51).

Determining a good set of values for the interaction parameters can be a very
time-consuming process, so I settled for something that gave the same qualitat-
ive behaviour as a mixture of DMPC and DSPC. As can be seen from Fig. (31)
and (51), the simulated results are fair, but not in perfect agreement with the
DSC measurements. However, they are close enough to give some confidence in
the numerical results. Also, it should be noted that the experimental heat ca-
pacity profiles were obtained from a multilamellar system, which influences the
exact shape somewhat. In particular, the onset and termination of the phase
transition are sharper in a multilamellar system than in a unilamellar one.

Due to the limited time frame of the project, these simulations were not
optimised and studied to the same extent as the one-component ones, and should
therefore only be seen as a proof of concept.

As can be seen from the figures, the two-component system qualitatively
follows the same behaviour as the one-component one, with a significant increase
in the average number of pores in the phase transition. The sharp peaks in the
heat capacity profile do not seem to appear in the permeability profile, though
that could simply be a matter of adjusting the interaction parameters.

As mentioned in Sec. (5.4.1) the simulations of two-component system can
also provide information about the local fluctuations of the system18. It is
immediately obvious from Fig. (52) that the local fluctuations are strongest

18Actually, it is also possible to do this with one-component systems, though it requires
more care as the domains are not stable entities in such systems. Therefore one is limited to
averaging over time scales much shorter than the typical lifetime of a domain.
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Fig. 47: Snapshots of the system at different temperatures and anaesthetic
concentrations. Gel state lipids are brownish, fluid state turquoise, anaesthetics
white, and pores black. Note how the onset of domain formation is influenced
by the anaesthetics.
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Fig. 48: Simulated one-component system (DPPC) where varying amounts
(0%, 5%, and 10%) of the lipids have been replaced by unmeltable particles
(”anaesthetics”).
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Parameter Value used [J/mol]
∆H1 26330
∆H2 50740
∆S1 88.61 K−1

∆S2 154.72 K−1

ωf1g1 1353.0
ωf2g2 1474.0
ωf1f2 414.15
ωg1g2 940.85
ωf1g2 1887.6
ωf2g1 1702.8
ωpf1 2254.2
ωpg1 4508.4
ωpf2 2254.2
ωpg2 4508.4

Table 2: Unless otherwise noted, these were the parameter values used in
the Monte Carlo simulations of the two-component system. The values for the
melting enthalpies and entropies were taken from Seeger (2006).

near the domain boundaries, which means that one would expect pore forma-
tion to occur close to such interfaces. Similarly, it has been shown that pep-
tides and proteins (and other membrane-soluble molecules) strongly affect the
fluctuations in their immediate environment and thereby the local compress-
ibility (and thus also the permeability), elastic constants and relaxation times
(Ivanova and Heimburg (2001)). In effect this means that the role of such mo-
lecules need not be exclusive defined by their intrinsic function, but also by their
influence on the physical properties of their immediate environment.

8.2.1 Biological complexity

Simulation of a system closer to the complexity of a biological membrane was
also carried out (see Fig. (54)). Here, thirteen different lipid species were
used (in equal amounts), and all interactions were based purely on the hydro-
phobic matching of the lipids, using the values from the DPPC simulations as a
guideline. This was of course a necessity, as fitting to experimental data would
be daunting prospect, since there are 325 different interactions to determine for
a system with just 13 lipid species!

A few simulations of a 13-component system which also included a fraction
of unsaturated lipids were also performed. This was modelled by reducing the
melting points of the unsaturated lipids by 50K, but keeping the interactions as
for the saturated lipids (data not shown).

A detailed analysis of these simulations is quite beyond the scope of this
thesis, but the results seems promising in that the system shows large scale
domain formation and exhibits a broad phase transition, not unlike what has
found for biological membranes. Pore formation was not implemented in these
simulations due to lack of time.



8 SIMULATION RESULTS 83

5000

4000

3000

2000

1000

0

H
e

a
t 

c
a

p
a

c
it

y
 [

J
/m

o
l·
K

]

6050403020

Temperature [°C]

 Data points

 Cubic spline fit

60

50

40

30

20

10

0

A
v

e
ra

g
e

 n
u

m
b

e
r 

o
f 

p
o

re
s

6050403020

Temperature [°C]

 Data points

 Cubic spline fit

Fig. 49: Simulated two-component system (50:50) with error bars calculated
via the blocking method described in Appendix F. The solid lines are cubic
spline fits.
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Fig. 50: Simulated two-component system (50:50) with varying values for the
fluid/gel interaction parameters. The 100% are the values given in Table (2).
As can be seen the average number of pores qualitatively follows changes in the
heat capacity profile.
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Fig. 51: Simulated two-component system with various mixing ratios. As can
be seen the increase in the permeability follows the shifts in the heat capacity
profile.
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Fig. 52: Domain formation and local fluctuations of a two-component system
at different temperatures. The temperature increases linearly from T = 20◦C
(upper left) to T = 60◦C (lower right). Notice how the fluctuations are strongest
in the phase transition and at the interfaces between domains and the bulk.
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Fig. 53: Simulated heat capacity of a system comprised of 13 different lipid
species (equal amounts; chain lengths varying from 10–22). Interactions between
lipids were based solely on their hydrophobic matching.

Fig. 54: Snapshot of a 13-component system with 1000×1000 lipids at T = 1◦C.
Red and brown nuances are gel state lipids, while green and turquoise are fluid
state lipids. Notice the broadness and the pronounced wings of the transition.
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Part IV

Conclusions and Perspectives

9 Conclusions

The primary aim of this thesis was to gain a better understanding of how the
melting transition influences the transmembrane permeability of artificial mem-
branes through both experiments and simulations.

It was shown by use of fluorescence correlation spectroscopy that the per-
meability of unmodified phospholipid membranes depends strongly on the ther-
modynamic state of the system, exhibiting a pronounced peak in the transition
regime in agreement with previous studies (Papahadjopoulos et al. (1973),
Georgallas et al. (1987), Corvera et al. (1992), Heimburg (2007)). This beha-
viour is likely to be a direct consequence of the enhanced lateral compressibility
of the membranes, which leads to spontaneous pore formation.

While there were some experimental difficulties in obtaining a clear-cut per-
meation rate profile for high temperatures, two central facts were established:

• The characteristic permeation times (inverse rates) for rhodamine 6G
chloride through DPPC bilayers could be changed by more than six orders
of magnitude by increasing the temperature by only 10%. The observed
time scales were on the order of weeks at 5◦C, days at ≈ 25◦C, hours at
≈ 35◦C, minutes at ≈ 40◦C, and seconds at ≈ 41◦C. Above the transition
point, the rate was seen to decrease again.

• The permeation rates could similarly be strongly influenced by adjusting
another of the intensive thermodynamic variables of the membrane. Here
two different membrane-soluble drugs were tested, namely halothane and
1-octanol – both of which are known to be general anaesthetics. While
these two drugs are structurally quite different, they had similar effect on
the permeation rates, indicating that the enhanced permeability was not
due to some special pore forming property of the drug, but rather a more
general effect.

Assuming that the numerical simulations contain the essential physics of the
system, it was shown that the permeability (i.e. the number of pores in the
system) curves seem to qualitatively follow the heat capacity (and hence the
lateral compressibility), being both shifted and broadened to a similar degree.
This behaviour was demonstrated for a variety of circumstances, such as for
different cooperativities, in the presence of anaesthetics, and for two-component
systems at various mixing ratios. Within this model, this finding speaks strongly
in favour of the compressibility theory.

Taken together with the experimental results and similar studies by other
groups, it is expected that any phospholipid bilayer will exhibit a pronounced
anomaly in the permeation rates at the chain-melting transition where the ther-
modynamic fluctuations in the lateral density (area) are strongest.

In conclusion, the findings in this thesis support the notion that the ther-
modynamic state and fluctuations of the membranes are of critical importance
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to their functional properties. It provides a mechanism for regulating the trans-
membrane transport which is based on the physics of the membrane as a ther-
modynamic system rather than on single molecule properties.

10 Perspectives

10.1 Future research

While it was found that temperature is a variable that is notoriously difficult
to control, the theoretical framework that was developed for the FCS studies
is – as demonstrated – by no means limited to such studies. In fact, a number
of other membrane variables (e.g. pH, pCa, different membrane-soluble sub-
stances, etc.) could be systematically tested with very few or no changes to the
experimental procedure. In particular, future studies could focus on determin-
ing which mechanism for the permeation (line defects or pore formation) is the
dominant one for different molecules. The two mechanisms can, in principle, be
distinguished as they give different predictions. For instance, at the transition
point a lowered cooperativity would according to the line defect model increase
the permeation rate, whereas the pore model predicts a decrease.

Likewise, studies on different lipid mixtures and even biological membranes
should present no additional problems, and could provide definite evidence for
the relevance of this phenomenon for biological systems. In particular, it could
be interesting to additionally investigate pore formation in a ”biological” system
(a membrane with a dozen or more lipid species) by Monte Carlo simulation,
and how the dynamics and statistics of the pore formation would change if local
perturbations were made.

Given the numerous experimental difficulties involved in using FCS to meas-
ure permeability rates, a different approach might also be worth investigating.

One possible method would be to use labelled lipids such as TRITC DHPE
along with a suitable dye quencher, and then simply measure how the overall
count rate decays as the quencher leaks into the vesicles. This way, it would
be possible to heat and equilibrate the sample before adding the quencher, thus
avoiding the problems with dye leakage while the vesicles are heated through the
phase transition. However, one should take care to avoid quenchers that interact
strongly with the membranes themselves, as this could change the dynamics of
the system in undesirable ways.

In addition, with this method it wouldn’t be necessary to perform chroma-
tography (always a somewhat tricky affair), and the size (and size distribution)
of the vesicles wouldn’t matter either, as long as their curvature is sufficiently
low to have a negligible influence on the phase transition.

In effect this method should have none of the difficulties of the correla-
tion spectroscopy and does not require as large a number of assumptions when
analysing the data. In particular, the measurements would not be affected by
convection or vibrations.

Finally, these findings could also be of more technological interest, as it could
be used for controlling drug delivery, for instance (Davidsen et al. (2002)). It
could also be used to carry out controlled biochemical reactions between few
or even single molecules, by having reactants in small vesicles that are in turn
enclosed by giant vesicles that have been immobilised on a surface. One can
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then systematically release the reactants by increasing the temperature to the
transition temperature of the enclosed vesicles, while still staying below that of
the giant vesicles (Christensen and Stamou (2007)).

10.2 Implications for biology

The underlying premise of this thesis is that thermodynamics of the membrane
itself is of major biological relevance.

As previously mentioned, biological membranes are known to have transition
temperatures close to the organism’s temperature, regardless of the temperat-
ure, hydrostatic pressure, or salinity of the environment. What’s more, it is well
known that organisms will adapt the lipid composition of their membranes if
subjected to prolonged changes in their environment (homeoviscous adaptation).
This suggests that there must be a specific reason for having the membranes
in a certain, well-defined thermodynamic state which is quite sensitive to small
changes in the environment (Hazel and Williams (1990)).

In addition to the changes in the transmembrane permeability, it is known
that both elastic constants, bending moduli, relaxation timescales and even the
function of certain proteins depend strongly on the thermodynamic state and
fluctuations of the membrane. Thus a likely explanation would be that is fa-
vourable for the system to be in a state where the strength of the membrane
fluctuations can be easily controlled in vivo by simply varying any of the intens-
ive thermodynamic variable in such a way that the corresponding susceptibility
increase or decrease as needed (Kaufmann et al. (1989)).

For example, it has been found that certain drugs (such as neurotransmitters,
antibiotics, and – as demonstrated – general anaesthetics) influence the heat
capacity profile significantly and thus also the membrane permeability. Thus
the release of e.g. neurotransmitters would – in addition to their specific binding
– give rise to a brief permeability change in nearby membranes. This would in
turn result in an ion flow that alters the membrane potential of the cell.

It is already known that certain membranes change resting potential in re-
sponse to a short-term change in temperature (see MacDonald (1990) and the
references therein).

Changes in the pH due to e.g. enzyme activity leads to a protonation of lipid
head groups, which will induce a change in phase behaviour. Thus, such activ-
ity can lead to higher fluctuations locally, and can therefore indirectly induce
pore formation (Kaufmann (1977), Kaufmann and Silman (1983a,b)). In fact,
it has been shown that in the presence of acetylcholine acetyholinesterase in-
duces ion channel properties (Kaufmann and Silman (1980)). The hydrolysis of
acetylcholine by acetylcholinesterase is known to be of great importance during
synaptic transmission.

On a similar note, it is known that the local fluctuations and elastic con-
stants are strongly influenced near peptides (Ivanova et al. (2003), Oliynyk et
al. (2007)), thus making it possible for peptides that do not form pores to
influence the transmembrane permeability.

In summary, a deep understanding of the thermodynamics of the system is
of great importance for a complete description of the physiology of biological
systems, as the state (and thus properties) of the membranes are easily and
locally alterable by varying membrane variables such as the pH, salt concen-
trations, or transmembrane electrical fields (e.g. an action potential). This
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approach serves to create a more holistic picture of how the thermodynamic
properties of biological membranes can be used for physiological control. In
particular, the thermal fluctuations can provide a physical mechanism for the
control of the permeability, and should therefore be important for the descrip-
tion and understanding of any process which involves passive transport through
the membrane, such as osmotic regulation, electrical excitability of cells, re-
lease of enzymes or chemical transmitters (e.g. calcium or neurotransmitters),
and the absorption and secretion of salts and nutrients to name but a few
(Giocondi and Le Grimellec (1991), Alberts et al. (1994)).

10.3 Anaesthetics

A wide variety of chemically diverse substances (e.g. nitrous oxide, octanol,
chloroform, procaine, and even the noble gas xenon!) can act as general anaes-
thetics. The fact that general anaesthetics are additive and lack of any char-
acteristic structure would seem to indicate a non-specific interaction. Hence, it
seems reasonable to speculate that the anaesthetic action is related to changes
in the properties of the lipid membranes, and not to specific interaction with
proteins. This project has irrefutably shown that changes in the thermody-
namic state of the membrane by addition of anaesthetics can have a significant
influence on the membrane’s permeability and therefore its ability to maintain
concentration gradients.

Even though the use of anaesthetics was introduced into clinical practise
more than one and a half century ago, the molecular mechanism behind it still
remains unclear. Current theories favour the notion of anaesthetics that bind
to ligand-gated ion-channels, thereby restricting their function. However, there
are several competing theories. It has been proposed that the conformational
changes of the embedded proteins are indirect, as they stem from changes in
the transverse pressure profile of the membrane caused by the presence of an-
aesthetics in the membrane (Cantor (1997a,b)).

In a recent paper by Heimburg and Jackson (2005) it was proposed that the
nerve pulse is actually a propagating soliton, i.e. an electromechanical rather
than purely electrical phenomenon. In this model, a lowering of the melting
temperature would result in an increase of the free energy threshold of soliton
propagation. Part of this theory was inspired by the more than 100 year old
Meyer-Overton rule which states that the anaesthetic potency of a substance is
almost linearly correlated with its solubility in olive oil (Heimburg and Jackson
(2007a)). This model is radically different from the accepted one by Hodgkin and
Huxley (1952), but it provides a quantitative explanation of a large number of
seemingly unrelated phenomena, such as the pressure reversal of anaesthesia and
why inflammation and the addition of divalent cations reduce the effectiveness
of anaesthetics (Heimburg and Jackson (2007a,b)).

In the soliton model the lipid membrane is forced by about 85% through the
melting transition by the soliton (Heimburg and Jackson (2007b)). One would
consequently expect an increase in the nerve membrane permeability due to
the enhanced thermal fluctuations. In fact, it is well known that permeability
increases during an action potential (Hodgkin and Huxley (1952)). However,
this increase in the permeability of the nerve membrane during an action po-
tential is normally attributed to the opening of ion-selective protein channels.
As mentioned in Sec. (2) single channel currents of membranes show discrete
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conductance steps, even in the absence of protein-channels (see Fig. (55)). Es-
pecially the work by Antonov et al. (2005) verifies that the phase transition and
the enhancement of fluctuations is closely related to the appearance of quant-
ised currents. In all cases – membranes both with and without proteins or
peptides – one additionally finds ion selectivity, i.e. that different ions have
different permeation rates. Interestingly, it has been found that the effect
of selectivity is most pronounced in the transition regime of the membrane
(Georgallas et al. (1987)). This means that one should be careful when inter-
preting ion channel data, since conductances may be due to lipid pores and not
necessarily protein channels.

In general, a disruption of the system by some membrane-soluble substance
(general anaesthetics, neurotransmitters or antibiotics, for instance) can severely
influence the dynamics of the system (domain formation and structure, protein
diffusion and clustering, signal cascades, pore formation, budding events, pulse
propagation, etc.), which could account for the influence of general anaesthetics
(Seeger et al. (2007), Heimburg and Jackson (2007a)).
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Fig. 55: Example of a trace of the number of pores as a function of Monte Carlo
time in a 50 × 50 system. Though the stepwise nature of the trace is a direct
consequence of the model, the pores obey statistics that are not unlike what is
observed for real systems (see Fig. (5)). It should be mentioned that the reason
for this stepwise nature of the current traces of real membranes is still not fully
understood (Heimburg (2007)).
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Part V

Appendix
This part is included so other people may reproduce the work of this thesis. It
should not be necessary to read it to understand the thesis itself, but is simply
here as documentation.

A Extrusion procedure

The procedure for extruding the vesicles was as follows:

• Measure out an appropriate amount of lipids, making a 10mM solution. If
the vesicles only consist of one type of lipid (e.g. DMPC or DPPC), then
simply dissolve it in a 200mM NaCl solution. If a mix of lipids is necessary
(e.g. DPPC and DPPG) dissolve the lipids in a 2:1 mix of dichlorometh-
ane:methanol, and then let the solvent evaporate in a desiccator (vacuum
chamber) before dissolving the mix in a 200mM NaCl solution.

• Add sufficient rhodamine 6G chloride to the solution to make the con-
centration 50µM, which should result in approximately 20± 5 rhodamine
molecules per vesicle.

• Wrap the vial in aluminium foil in order to prevent unnecessary pho-
tobleaching of the dye, and then heat it to about 10 degrees above the
phase transition temperature while stirring it for an hour or so.

• Meanwhile, turn on the heat bath for the extruder, setting it to 49.6◦C.

• Once the sample has been thoroughly heated and stirred, transfer it to the
extruder syringe and put the filled syringe in the extruder for 15 minutes
or so, thus allowing the syringe and the sample to get heated to the same
temperature as the extruder itself.

• Extrude slowly (about one cycle per two minutes), and make sure that
it’s done an odd number of times, thus ending up with the sample in the
opposite syringe. This should reduce the amount of dust and aggregates
in the sample (as this will be left in the first syringe) and it will ensure
that all of the vesicles have been through the filter at least once.

• Once done, transfer the extruded sample to a small vial and store it in the
fridge. As there are no concentration gradients at this point, dye leakage
will not be an issue.

B Chromatography guide

B.1 The G50 chromatography column

Before the actual separation (via. size exclusion chromatography) could be
performed, the column needed to be preparation and equilibrated. This step is
crucial to get decent results.
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• Weigh out 5g of Sephadex G50 Superfine chromatography gel (Fluka, Bio-
Chemica).

• To pre-swell the gel, add approximately 200ml of Millipore water. Excess
water is added to allow the gel to swell without the risk of drying out.

• Allow the solution to stand for 3 hours at 80◦C or overnight at room
temperature.

• Once pre-swelling has occurred, allow the gel to settle and then pour off
the gel slurry supernatant to remove the gel fines. Failure to remove the
gel fines may cause the chromatography column to become blocked during
use, ruining the entire preparation.

• To ensure that the gel fines are removed, resuspend the gel in 200ml of
Millipore water, allow it to settle, and pour off the gel slurry supernatant
as before. Repeat until no more fines can be discerned.

• Resuspend in 100ml of Millipore water. The gel should now be ready for
usage.

B.2 Chromatography procedure

Once the gel has settled, chromatography can be performed, using the following
procedure. Also see Fig. (22) for guidance.

• Set up a clean disposable glass Pasteur pipettes (the longer the better)
with a small piece of sterile glass wool plugged in the neck (use a long and
narrow pipette to push the wool down the Pasteur pipette), and ensure
that the column is vertical and well clamped into position. Add enough
Millipore water or buffer to occupy about 20% of the column volume and
drain to about 10% of the column volume to remove air from the column
fittings.

• Mix the pre-swollen Sephadex G50 gel so that the gel slurry is homogen-
eous. Use another Pasteur pipette to fill the column with the gel slurry,
taking care to avoid producing bubbles. Note that the gel slurry should
not be too thick for pouring as air bubbles will become trapped in the
column. Keep adding gel until it packs to a level ≈ 2cm below the top of
the column. Also, make sure that the ambient temperature is at least 10
degrees below the phase transition temperature of the sample to prevent
dye leakage during the separation procedure.

• Equilibrate the column with buffer. Ensure that the buffer is at room
temperature before use, so as to reduce the risk of air bubbles forming
in the column. It is suggested that a minimum of three column volumes
are run through the column to block all non-specific binding sites on the
column. This usually takes an hour or two.

• Pour the sample into the column and add more buffer as needed, in order
to keep the column from drying out.
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• Collect fractions (of about 200µl each) in five or six Eppendorf tubes, thus
getting different grades of separation and concentration of the vesicles and
the free rhodamine particles.

• Store the samples in a fridge to prevent leakage. When used for the actual
FCS measurements, dilute the sample with buffer by a factor of 50-100.

C FCS procedure

The FCS measurements used the following procedure:

• Heat the entire instrument to approximately the desired temperature.
This can be done by placing a hot air heater under the optical table.
In addition, mount a water bath heated mantle/jacket on the objective,
to get better temperature control. This part can easily take a couple of
hours before everything has equilibrated.

• Clean a chambered coverglass19 (i.e. a cuvette), taking care to avoid dust
contamination.

• Transfer 500µl of solution to one of the wells and then degas it approxim-
ately 10 minutes. Remove any air bubbles that form in the well.

• Measure the temperature of the objective water drop using a thermo-
couple. Additionally, make a measurement in a cuvette well filled with an
oil with a low evaporation rate (to reduce the cooling effect of evapora-
tion).

• Seal the well with some Parafilm, mount the heating jacket and place the
cuvette over the water immersion objective.

• When making measurements of rhodamine 6G, wait for at least 10 minutes,
allowing rhodamine adsorption to the cuvette walls to reach equilibrium.
This will also give the sample time to get heated to the desired temperat-
ure and for turbulence to die out.

• Make sure the focus is well inside the sample and not too near the cover
glass, and calibrate the instrument until a maximum signal is achieved.
Normally, simply adjusting the pinhole will suffice.

• Record a dozen correlation curves (30-60 seconds sampling) to check whe-
ther the system has fully equilibrated, and then determine the focus radius,
characteristic diffusion time scale, and counts per second per rhodamine
molecule.

Once the setup has been calibrated and good rhodamine data has been obtained,
a systematic series of measurements were carried out. This was done by making
short script that could control the laser shutter as well as the Flex5000 correlator
card.

A typical series consisted of 50-100 correlation curves, where each curve had
a sampling time of 50-60 seconds, and was separated by a 5-6 seconds pause with

19NUNC Lab-Tek Chambered #1.0 Borosilicate Coverglass System.



D STRUCTURES OF THE DYES iv

the shutter blocking the light path. Measurements at temperatures very close to
the transition temperature used shorter sampling time (≈30 seconds) and longer
sampling times (≈120 seconds) at low temperatures. The pause between meas-
urements was always 10% of the sampling time, in order to eliminate differences
in the photobleaching of the system.

D Structures of the dyes

The schematic structures of the dyes used in this thesis. For ease of reference
the more colourful representations are also shown in Fig. (56).
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Fig. 56: Left: Dextran. Right: Rhodamine 6G chloride.
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E Lattice complications

One complication associated with having a variable lattice size and periodic
boundary conditions is that there are two of the sites which will have an ill-
defined neighbourhood.

In my program this was solved by allowing these two sites to have only five
nearest neighbours as shown in Fig. (57). The error that this produces should
be negligible, as lipids are much more likely to have neighbours in the same
state for ωfg > 0 (see Fig. (42)).

Fig. 57: The solution to the lattice oddity. The light grey lattice represents
the periodic boundary conditions, and is therefore the bottom of the lattice.
When adding or removing a particle from the lattice ”end”, only the yellow
and the red interactions change. The green lattice sites are the sites with ill-
defined neighbourhoods, where the dotted lines represent interaction with itself
(in effect having no free energy cost and only five nearest neighbours).

F Estimating errors

As previously mentioned, there will always be a trade-off between having good
sampling and acceptable computation time. The problem becomes immediately
apparent when calculations one tries to calculate thermodynamic quantities near
critical points – a phenomenon known as critical slowing down. While there are
methods that can suppress this problem, doing so would in it self be a major
undertaking, and has not been done in my program.

Even when far away from a phase transition, there is still the issue of finite
sampling, which introduces statistical noise in any of the calculated thermody-
namic observable.

As mentioned in Sec. (5.4), the time series that one obtains from the sim-
ulations show correlated fluctuations, which requires some additional consid-
erations, as standard data analysis methods assume that the data points are
uncorrelated, which is rarely the case in these kinds of simulations. The prob-
lem becomes more severe the nearer one is to a critical point, as the correlation
times and lengths diverge at the critical point itself. However, a number of
methods can be used to give estimates for the confidence intervals for a given
quantity.
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F.1 The moving blocks bootstrap

The most straightforward and primitive method is simply to make dozens of
simulations, and then use the usual statistical methods for obtaining confidence
intervals. This, however, is a very time consuming affair, as one would have
to equilibrate the system for every simulation, and it might not be a realistic
option, if one simulation takes, say, a week or more to perform.

A slight improvement over the method above would be to take the time series,
and divide it into intervals of around 10 times the characteristic correlation time
of the fluctuations (which can easily be obtained beforehand by autocorrelating
the time series). This would ensure that the estimates of a thermodynamic
quantity obtained from the different intervals would be (essentially) independent
of each other, and one could proceed as before and obtain error estimates for
the derived observable. In essence, this method simply does away with the need
to re-equilibrate the system for each estimate.

Better yet would be to use the Moving Blocks Bootstrap method (see Ef-
ron and Tibshirani (1994) for a more thorough introduction). To generate the
so-called bootstrap realisation of the time series, one first needs to choose an
appropriate block length, `, and then consider all possible contiguous blocks
of this length. Then one samples (with replacement) from these blocks and
connect enough of them to form a bootstrap time series, which is of roughly
the same length as the original time series. So if the block length is `, then we
sample k ≈ n/` blocks.

Using this bootstrap, we can then estimate our thermodynamic quantity.
This entire process is then repeated a couple of hundred times, after which we
can perform the standard data analysis, as the estimates from each bootstrap
time series are, to a good approximation, independent.

So the basic idea is to choose a block size, `, that is large enough so that
observations more than ` Monte Carlo apart will be practically independent of
each other, while retaining any correlation present in the observations that is
less than ` Monte Carlo cycles apart.

It should be noted that the choice of block size, `, is quite important, though
an effective methods for making this choice has still not been developed to the
best of my knowledge.

F.2 The blocking method

Another very useful, though less general, method for obtaining error estimates
on averages of correlated time series, is the so-called blocking method or bunching
method. (see Flyvbjerg and Petersen (1989) for a more thorough discussion).

This method is quite powerful and should ”combine maximum rigour with
minimum computation and reflection.”

In short, this method can be used to estimate the lower bounds for the
variance, σ2(x), of averaged variable, x, by iteratively ”blocking” the data. The
procedure is as follows.

Transform the data set x1, . . ., xn into half as large a data set x′1, . . ., x′n,
where

x′i =
1
2
(x2i−1 + x2i), (131)

n′ =
n

2
. (132)
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If we then define x′ as the average of the n′ ”blocked” data points, we still have
that

x′ = x, (133)

as the average of averages is, of course, the same as the average over the entire
data set20.

So if we start with a data set x1, . . ., xn, we can compute c0, where c0 is
defined as

c0 ≡
1

n(n− 1)

n∑
k=1

(xk − x)2. (134)

This gives us a first estimate and a lower bound for σ2(x), as it can be shown
that

〈c0〉 ≤ σ2(x). (135)

By iteratively applying the blocking transformations Eqs. (131)–(132) to the
data set, one can compute c′0 as estimates for 〈c′0〉. This sequence of estimates
will increase until a fixed point is reached, where it will remain constant (within
fluctuations).

This constant value is the best estimate for σ2(x), and one can even estimate
the standard deviation on our estimate c′0 for σ2(x), namely

σ2 ≈ c′0 ± c′0

√
2

n′ − 1
, (136)

which can be useful to know when determining whether the fixed point has been
reached yet.

In the case that the fixed point is not reached before n′ ≤ 3, one can the use
the largest value obtained for c0 as a lower bound on σ2(x).

One of the great advantages of this method is that due to the geometric
nature of the blocking procedure, the number of operations needed for obtaining
the estimate for σ2(x) is only O(2n).

In this thesis the blocking method was used to determine the uncertainties in
the average number of pores (x ≡ Nh) and in the heat capacity (x ≡ (H−H)2).

G Assorted curiosities from the simulations

During the development of the Monte Carlo program a great number of different
bug checks and data outputs were made. Some of them might be of interest,
and are therefore presented here.

G.1 Bifurcation

Out of simple curiosity, a bifurcation diagram of the system was also made.
As can be seen from Fig. (58) a supercritical pitchfork bifurcation occurs at
T = Tm and ωfg = 1434.77J/mol (if there were no finite-size effects). Though

20Except if there’s an uneven number of data points, in which case some information will
be lost, and the two values will differ slightly.
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Fig. 58: Bifurcation diagram for a 50×50 system (DPPC), with no pore forma-
tion. The dashed lined is the theoretical critical value from Eq. (93). The finite-
size effects are evident near the critical point at T = 41◦C and ωfg = 1434.77
J/mol.

the figure only shows the stable solutions, there is, for instance, also a solution
for T = Tm with a constant fluid fraction of 0.5. However, this solution is
unstable for ωfg > 1434.77J/mol and will practically never occur due to the
constant thermal disturbances of the system.

G.2 Cooperativity and domains

The average size of the domains is shown in Fig. (59). A domain is defined
as a cluster of lipids (two or more) in the fluid state when below the melting
temperature, and gel state lipids when above. The size is simply the number of
lipids in the cluster.

A peculiar observation that was made, was that the distribution of domain
sizes seem to be almost independent of ωfg at T = Tm, as shown in Fig. (60).
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Fig. 59: Average domain sizes in a simulated one-component system (DPPC)
with varying cooperativity, ωfg. The reference value (100%) is ωfg =
1326kJ/mol. The 108.2% corresponds to ωfg = 1434.77J/mol, i.e. the crit-
ical value from Eq. (93) The slight shifts in the location of the maxima are due
to different number of pores in the system.
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Fig. 60: The domain size distribution for different values of ωfg at T = Tm

in a simulation without pores or anaesthetics involved. Note that the slope is
independent of ωfg, which is not immediately obvious from the snapshots shown
in Fig. (61). The offset is due to the slight differences for very small domains
(lα < 3). The fitted function shown is f(l) = 0.58 · l−1.94.
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Fig. 61: Representative micro configurations for different values of ωfg at T =
Tm in a simulation without pores or anaesthetics involved.
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