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Abstract

Wherever multiple organisms coexist, there are population dynamics. This thesis set out to explore

the previously less well-described dynamics that arise when a population of pathogenic organisms

interact with populations of prey animals and their predators. The main question to be answered was

whether prey species can use the pathogens they carry as weapons against their predators, making

susceptibility to diseases not exclusively a problem from an evolutionary standpoint. It turned out

that this was indeed the case. We subsequently quantified when this effect would be important.

Finally, we discovered that ecosystems with multiple prey species exhibit chaotic behaviour when

affected by an enzootic disease.

The mathematical study of disease dynamics turned out to be highly relevant for the real world after

the outbreak of the COVID-19 pandemic. Some of the complexities of disease spread are missed

by traditional differential equation models of epidemics. Therefore, we produced several individual-

based models for testing and quarantine strategies to mitigate COVID-19. Our models allowed us to

investigate the impact of individual differences on epidemics. Under this headline, we examined the

interaction between inhomogeneous disease spreading - or superspreading - and population density.

We found that individual differences such as a tendency towards superspreading or inhomogeneous

networks may explain some unforeseen dynamics of COVID-19. Finally, we developed evolutionary

models that enabled us to guess at how SARS-CoV-2 may evolve in the future. The results of this

second section point to a new understanding of epidemic diseases and particularly how to describe

them mathematically.

Resumé p̊a dansk

Populationsdynamik findes alle steder, hvor flere levende organismer sameksisterer. Til at starte

med var denne afhandlings form̊al at udforske de dynamikker, der opst̊ar, n̊ar en population af

patogener interagerer med populationer af byttedyr og de rovdyr, der lever af dem.

Hovedspørgsm̊alet var, om byttedyrearter kan bruge de patogener, de bærer, som v̊aben mod

rovdyr. Dette ville i givet fald gøre modtagelighed over for en sygdom til en potentiel evolutionær

fordel for byttedyrene. Vores modeller viste, at dette var tilfældet, og vi forsøgte herefter

kvantitativt at ansl̊a, hvorn̊ar denne effekt ville have mest betydning. Vi opdagede ved samme

lejlighed, at økosystemer med flere byttedyrearter opfører sig kaotisk under p̊avirkning af en

enzootisk sygdom.

Matematisk sygdomsmodellering viste sig at være yderst relevant for den virkelige verden, da

coronapandemien brød ud. Traditionelle differentialligningsbaserede epidemimodeller overser dog

nogle af de finere detaljer ved sygdomsspredning. Derfor opstillede vi flere individbaserede modeller

for test- og karantænestrategier til inddæmning af COVID-19. Disse modeller tillod os at

undersøge, hvilken betydning, forskelle mellem individer har for epidemier. Herunder undersøgte vi

samspillet mellem inhomogen sygdomsspredning - dvs. superspredning - og befolkningstæthed. Vi
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konkluderede, at individuelle forskelle s̊asom varierende tendens til superspredning eller forskelle i

socialt netværk kan forklare visse uventede aspekter af COVID-19’s opførsel. Endelig udviklede vi

evolutionære modeller, der muligvis kan bruges til at forudsige, hvordan SARS-CoV-2 vil udvikle

sig i fremtiden. Resultaterne fra anden del af projektet antyder muligheden for en ny forst̊aelse af

epidemiske sygdomme og deres matematiske beskrivelse.
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Introduction

The world of living organisms is made up of countless individuals. Each individual may have

specific characteristics, behaviours, and idiosyncrasies which can be unpredictable and thus hard to

describe systematically. However, when individuals group together, the group will often show

emergent dynamics which are not directly predictable from individual properties. That could be

the cyclical fluctuations of some populations of predator and prey animals, or the exponential

spread of epidemic diseases and information in human societies. Finding an accurate way to

describe how populations of organisms behave and interact is a task relevant for fields as diverse as

ecology, epidemiology, and social science. It is also the overarching theme of this thesis. More

specifically, the main topic of this thesis is how infectious diseases affect and are affected by

population dynamics. The thesis is subdivided into two parts, one dealing with the first example of

predator-prey dynamics and the other dealing with disease spread in human societies. The

transition reflects the outbreak of the COVID-19 pandemic and the subsequent change in focus of

my own research, as well as that of many other researchers at the time.

In the first part, we investigate the interaction between predator-prey communities and pathogens.

The fundamental question of this section is whether carrying a pathogen is always a disadvantage

to its host species. Given the observation that many diseases are shared between species, is it

possible that a prey species could transmit a disease to its predator, thereby causing it more

damage than eating the prey is worth? If this is the case, one can imagine prey species using

diseases as a weapon against predators, thus gaining an evolutionary advantage. Along the way, we

make a variety of related discoveries. To figure out which ranges of parameter values for the

proposed models are reasonable, we make use of the fact that many ecological and physiological

parameters scale with animal body mass through the so-called allometric scaling. We use this to

show that the dynamics of predator-prey systems can be roughly estimated from knowing only the

average masses of the species involved. In order to investigate how much easier it is for a predator

species to survive if it is a generalist subsisting partially on an immune prey species, we introduce a

two-prey one-predator model. It unexpectedly turns out that such a model frequently gives rise to

chaotic fluctuations in animal and pathogen populations.

The work on disease modelling in animals leads up to the second half of this project, which

concerns the COVID-19 pandemic. Early in the pandemic, it became clear to us that traditional

1
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SIR-type models based on differential equations were inadequate in describing the dynamics of a

disease in a human society. Differential equation models are all mean-field, meaning that they are

based on the assumption that every member of a society interacts at a constant rate with every

other member, regardless of individual properties. One way to put it is that in a mean-field model,

one models family life by having every member of society go home to a different family every day.

The way we make up for this is by creating agent- or individual-based models of disease dynamics.

These models allow us to take into account individual differences in network, social behaviour, and

disease spread.

Our work in this field includes a model of disease spread in a society with social clusters around

families and workplaces, a model of inhomogeneous infectivity (”superspreading”) and how it

interacts with a geographically inhomogeneous population, and a model of the effect of mass testing

using an imperfect test. Finally, a group of models of disease evolution are also created using both

the individual- and differential equation-based framework. These include one SIR-based model of

disease evolution in an age-structured population, and individual-based models of the evolution of

superspreading and disease incubation and infectious periods.

The work outlined above has helped advance our understanding of disease dynamics in the animal

kingdom as well as in human society. The ecological models have shown that diseases may play an

important role in evolution and species extinction. The discovery of chaotic behaviour in

predator-prey-pathogen systems further suggests that disease dynamics in animals may be more

complex than previously thought. In a time when focus on zoonoses is greater than before due to

the pandemic, this knowledge may prove to have more than a theoretical interest.

During the course of the COVID-19-related part of the project, we have become increasingly aware

of the importance of individual differences in determining the course of an epidemic. Making

individual-based models of disease spread is not in itself new, but so far, more understanding of the

important ways in which they differ from SIR models has been needed. This is what our work seeks

to provide. Research carried out by Sneppen et al. [58] shows that the importance of

superspreading in COVID-19 may have been the reason why lockdowns were so effective against the

pandemic, since preventing mass gatherings disproportionately targets likely superspreader events.

The various COVID-19-related subprojects have made use of and built upon this understanding.

In the following, I will present an outline of the work done for my PhD in the form of a synopsis of

each major topic, followed by the published articles and unpublished manuscripts resulting from

this work.



Chapter 1

Predators, prey, and pathogens

1.1 Problem statement and objectives

Although mathematical modelling of population dynamics in ecosystems has been an area of

considerable interest for decades, much is still unknown about why ecological communities behave

the way they do. One major question is why mass extinctions occur, where large ecosystems appear

to collapse after periods of relative calm [57, 46, 47]. The role of infectious disease in the animal

kingdom is another question which has been opened up to studies with the development of more

sophisticated ecological and disease models [3, 49, 44, 34]. The fact that many infectious diseases

are shared between multiple host species has also received more attention in recent years [8, 41]. In

the present chapter, we want to connect the dynamics of infectious diseases in ecological

communities with the larger evolutionary picture. The work described here was published in the

articles [10, 15, 12], which are all appended after this chapter. As the topic of my master’s thesis

was disease in predator-prey systems and allometric scaling relations, there is also some overlap

between the present chapter and the thesis [9].

Suppose a prey species carries a disease which is enzootic to it, i.e., the prey species coexists with

the disease, with the number of infected having reached some steady state. Since we know that

many diseases can infect multiple host species, it is not implausible to imagine that such a disease

can be transmitted when a predator encounters or eats prey. Since a predator will need to eat prey

regularly to survive and reproduce, having some fraction of the prey be able to infect it with a

deadly or severe disease would be a major disadvantage for it. Carrying an enzootic disease could

therefore possibly be evolutionarily advantageous for a prey species, even if the disease is harmful

or deadly to the individual animals [9, 12]. This might in turn explain why some animal species

such as bats seem to act as reservoirs for a wide array of diseases which are transmissible to other

species [6, 9]. It may also shed some light on a possible reason for sudden extinction of predator

species, pointing back to the question of mass extinctions via the breakdown of food webs.

From this main question, a variety of related questions arise. A very practical matter is how to

3
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reduce the often large number of parameters arising when constructing eco-epidemiological models,

and how to determine realistic ranges for remaining parameters. Here, we ask whether there might

be some biological quantity which if not determines, then at least correlates with many other

parameters. As it turns out, animal body mass is such a quantity. We will explore how this can be

of practical use in constructing population dynamical models [9, 10].

Another question coming to mind is how a predator-prey-pathogen (PPP) system will behave over

time. Will it reach a steady state, exhibit cyclical dynamics, or something else entirely? Since there

are many possible configurations of ecological communities with both predators, prey, and

pathogens, this is a fairly broad question. We will here focus on the most interesting and, for our

analysis, most ecologically relevant examples.

Summary

The questions we want to answer are the following:

• When will carrying a disease which is transmissible to a predator be an evolutionary

advantage for a prey species?

• How can we parameterise our eco-epidemiological model in a way that allows us to estimate

realistic parameter ranges and avoid excessive unknown parameters?

• How will a model of a predator-prey-pathogen ecosystem behave over time?

1.2 Theory

Since it will be fundamental to answering the other questions, I will here begin by describing the

ideas behind our method for parameterisation. This method was developed as a part of my

master’s thesis [9], and a draft version of the resulting paper [10] was included in the thesis.

It has long been known that several biological parameters of a given species, including metabolic

rate, reproduction rate, and lifetime, scale with the average mass of the species. This is the

so-called allometric scaling. It gets this name because most of the scaling laws are power laws with

quarter-power exponents, whereas from the square-cube law we would expect the various

metabolism-related quantities to scale with animal mass to a power of some number of thirds.

Since all of the quantities involved in the Lotka-Volterra predator-prey equations are thus related

to animal mass, one way of reparameterising these equations could be to rewrite them in terms of

predator and prey mass. Such an idea has already been proposed before by Yodzis & Innes [67] and

further elaborated by Weitz & Levin [65]. First and foremost, we here wish to investigate how well

this method works as an order-of-magnitude estimate of predator-prey dynamics when applied to

the simplest possible model. We examine how well the method works by testing it on a few real

predator-prey systems. Once we know that the parameterisation yields at least a useable

order-of-magnitude estimate of the dynamics of a simple predator-prey system, we will use it to

parameterise a more complex PPP model [9].
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To describe a PPP system, we will build a model based on two well-known sets of dynamical

equations: The Lotka-Volterra (LV) model for predator-prey systems [40, 63] and the SIR model

for infectious disease [29]. Previous models along the same lines as ours do exist [27, 28], but

mostly either focus on a single-host disease or take a more purely mathematical approach than we

do [9, 12]. Similarities between SIR, predator-prey, and parasitism models have also been noted

[34]. What mainly sets the model we will propose apart from a model of parasitism is primarily the

absence of complex life history dynamics which are often present in parasites. In addition, the prey

is here assumed to be the primary host of the disease, whereas for parasites it is often the predator

[7].

Furthermore, our approach will focus on the broader evolutionary perspectives of diseases shared

between a prey and a predator. More specifically, we will look at the long-term survival of the

species involved. This is different from most other studies in the field which mainly focus on linear

stability of different equilibria. When attempting to transfer our conclusions to real-world

ecosystems our approach has certain advantages. For example, a predator-prey equilibrium might

be linearly stable, but if population sizes fluctuate too much, one or both populations might still go

extinct during large fluctuations. Our focus on extinction events will allow us to see if existence of

predators or disease is truly feasible in an ecosystem of a realistic size at a given set of parameter

values [9, 12]. Given the scarcity of data on epizootics in wild animal populations, it should

nonetheless be noted that our studies as presented here will examine predator-prey dynamics from

a purely theoretical angle.

Since the disease and the predator both subsist on the same resource - the susceptible prey - we

have some expectation that there will be competition between the two and thus possibly

competitive exclusion. The position of the predator is particularly precarious since it is assumed to

be a specialist in the basic version of our model, where there is only one prey and one predator

species [9, 12]. We therefore set up a version of the model with two prey species, of which one is

immune to the disease. We expect this to change the picture drastically by allowing the predator to

survive more often and possibly also to coexist with the disease [12].

While we do find this to be the case as we will see below, we also serendipitously discover that such

a system is chaotic for a wide range of parameter values [15]. This leads us to investigate the

nature and behaviour of chaos in a PPP system with two prey species. While the role of chaos in

ecosystems has been disputed [24], there has been a growing recognition that it might be inherent

in nature [26]. An ecological model was one of the first instances of chaotic behaviour to be studied

[42], and chaos has also been found in some Lotka-Volterra-derived models [23, 62, 31]. We here

examine chaos specifically in a predator-prey system following a disease outbreak. Epidemics are

known to frequently be unpredictable in human societies as well as animal ecosystems [45]. The

chaotic dynamics that arise in such a system might provide some of the explanation for the

apparently random occurence of epidemics and epizootics [15].
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Summary

• Allometric scaling of animal metabolism and many related quantities with body mass is well

known.

• This scaling has previously been used to parameterise ecological models. However, attempts

at quantifying how realistic the results of this are, and to use the method for modelling

purposes more generally have not been made. We will here begin by doing this.

• We will build our eco-epidemiological models on the LV model for predator-prey dynamics

and the SIR model for disease spread.

• One main novelty of our approach is the focus on the broad evolutionary perspectives of

multi-host epidemics in predator-prey systems.

• Finally, we hope that our work on chaos in PPP systems may provide an explanation for the

apparent randomness of epizootic outbreaks.

1.3 Model description

The Lotka-Volterra model for predator-prey dynamics gives the following equations for prey

population x and predator population y:

dx

dt
= αx− φxy (1.3.1)

dy

dt
= νxy − δy, (1.3.2)

where α is the prey reproduction rate, φ is the rate at which prey is eaten per predator, ν is the

predator reproduction rate per prey, and δ is the rate of predator starvation in the absence of prey.

In practice, we will here take all population quantities x, y, etc. to be densities so as to avoid

dealing with the absolute size of the ecosystem. The derivation shown here will follow that of Refs.

[9, 10]. Initially, we parameterise these equations using the allometric relations for mammals

compiled by Peters [52]. This gives us straightforwardly for the reproduction and starvation rates α

and δ:

α =
1

400
m−1/4x [1/day] (1.3.3)

δ =
1

19
m−1/4y [1/day]. (1.3.4)

Here, mx is the average body mass of a prey animal in kilograms, and my is that of a predator. For

the predator eating and reproduction rates φ and ν, more careful analysis is necessary. φ must be
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proportional to the number of prey a predator needs to eat to stay alive. We expect this to be

somehow related to predator metabolism, which scales as m
3/4
y . It must also be inversely related to

prey size, giving us a scaling relation of

φ = k
m

3/4
y

mx
[1/(predator · day)], (1.3.5)

where k is some scaling constant. The ratio between φ and ν must be equal to the number of prey

it takes to ”make” one predator. This must in turn be given by the ratio between the masses

divided by the ecological efficiency : how much of the energy gained from consuming prey will be

converted into predator mass. The ecological efficiency varies between a few percent and around 20

% depending on trophic level and the specifics of the species in question [38]. In our calculations,

we use an estimate of this efficiency of f = 10 %, the well-known ”ten-percent law”. The

ten-percent law is wrong, but given the various difficulties of estimating an average ecological

efficiency, it is likely the closest we can get to such an average without further complicating the

analysis. We then have for the ratio between φ and ν

φ/ν =
1

f

my

mx
. (1.3.6)

From this, we can derive a scaling relation for ν:

ν = kf
m

3/4
y

mx

mx

my
= kfm−1/4y [1/(prey · day)] (1.3.7)

[9, 10]. All this provides us with a good order-of-magnitude estimate of predator-prey dynamics.

However, the Lotka-Volterra model is in many ways too simple to accurately capture the dynamics

of real-world ecosystems. It has two main issues: first, it lacks a stable fixed point or limit cycle,

since the coexistence equilibrium in the classical LV model is an only marginally stable cycle.

Secondly, the fact that predator population drops very far whenenever prey population is low poses

a problem, since it would lead to extinction in any real ecosystem. At a later point, we will

therefore introduce a modified Rosenzweig-MacArthur model which resolves some of these issues.

To begin with, we will use the classical LV model to gain an understanding of the dynamics of the

system before and after a disease outbreak.

We arrive at the PPP model by adding infected categories and infection terms to the above

dynamical system.

dSx
dt

= αSx − βxxSxIx − φSx(Sy + Iy) (1.3.8)

dIx
dt

= βxxSxIx − φ(Sy + Iy)Ix − γxIx (1.3.9)
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Figure 1.1: A diagram of the interactions of the predator-prey-pathogen model. Pointy arrows
indicate positive relationships, while blunt arrows indicate negative ones. Figure from Ref. [12].

dSy
dt

= ν(Sx + Ix)Sy − βyySyIy − βyxSyIx − δSy (1.3.10)

dIy
dt

= βyxSyIx − βyySyIy − (γy + δ)Iy. (1.3.11)

These equations as well as the mass scaling relations were first proposed in my master’s thesis [9],

and the mass scaling relations formed the basis of the article [10]. βxx is the infection rate from

prey to prey, βyy is the predator to predator infection rate, βyx is the prey to predator infection

rate, and γx, γy are the disease death rates in prey and predator. Sx, Ix and Sy, Iy denote

susceptible and infected populations of predators and prey, respectively. To achieve these simple

equations, a number of assumptions had to be made. First of all, the disease is assumed to be a

hundred percent fatal. This is not a good assumption for most diseases, but it allows us to drop the

immune populations which would otherwise vastly complicate the dynamics of the system.

Furthermore, it is assumed that infected individuals do not contribute to reproduction. Finally, all

cross-species infection is assumed to be via predation. This means that the prey-to-predator

infection rate βyx could be written as pIφ, where pI is the probability of infection for each infected

prey eaten. Relatedly, we do not include a predator-to-prey infection term, since encounter with a

predator close enough to lead to disease transmission would also result in the death of the prey.

These assumptions lead to disease dynamics very similar to predator-prey or consumer-resource

dynamics, meaning that to some extent the disease behaves as a second predator [9, 12]. These

equations are relatively easy to modify to include a second prey species which is immune to the

disease. This is further explored in the last part of this chapter.
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We further parameterise the equations by noting that disease duration also scales with mass

according to Cable et al. [5], giving us

γi = cm
−1/4
i [1/day], (1.3.12)

where c is a constant that has been determined experimentally for a variety of multi-host diseases.

For our investigation, we use the c-value appropriate for rabies, but this is not crucial for our

results. To get an intuition for the magnitude of βij we conduct the investigation of parameter

space which will be presented below in terms of the basic reproduction number of the disease. The

basic reproduction number is a measure of how many individuals an infectious animal in a totally

susceptible population will transmit the disease to. We will here use the definition

Rij ≡
βijSi,eq
γj

, (1.3.13)

where Si,eq is the susceptible population of species i at the Lotka-Volterra equilibrium with no

disease. Rij now measures how many individuals of species i an infected member of species j will

infect at the LV equilibrium. It should be noted that this is not quite the mathematically rigorous

definition of Rij . This would instead be defined from the next generation matrix of the disease (see

the attatched manuscript, Ref. [16]), and would include corrections relative to the usual SIR

definition in order to take the demographic terms into account. However, as these corrections are

small and including them would again obscure our intuition for the magnitude of the infection

term, we decide to use the informal quantities Rij [9, 12].

We define an extinction threshold of 10−5 individuals per square kilometre. When the population

of predators, prey, or infected drops below this threshold, we count the given population as extinct.

A fluctuation leading to a period with such low population density would cause an extinction in

most conceivable real ecosystems.

When studying extinction events, we would like to avoid counting extinctions due to artificial

fluctuations caused by the unstable nature of the LV model. We therefore find it necessary to

modify the above equations to make the system more stable. The assumption that predators die at

a constant rate regardless of the availability of prey is also somewhat unrealistic. We therefore

propose a modified Rosenzweig-MacArthur model [55], where we let predation rates saturate and

predator death rates decline with increasing prey population.

dSx
dt

= αSx(1− (Sx + Ix)/K)− βxxSxIx − φ
Sy + Iy

Sx + Ix + ε
Sx (1.3.14)

dIx
dt

= βxxSxIx − φ
Sy + Iy

Sx + Ix + ε
Ix − γxIx (1.3.15)
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dSy
dt

= ν
Sx + Ix

Sx + Ix + ε
Sy − βyxSyIx − βyySyIx − δ

ε

Sx + Ix + ε
Sy (1.3.16)

dIy
dt

= βyxSyIx + βyySyIx − γyIy − δ
ε

Sx + Ix + ε
Iy (1.3.17)

[12]. Here, K is the prey carrying capacity and ε is the saturation constant for predation, signifying

that even when prey is plentiful, the predator population is not going to grow infinitely fast.

Obviously, we will now have to reparameterise the equations. The constants α and ν are now

maximal reproduction rates when food is abundant. We believe that these can be estimated based

on the inverse of the gestation period for the animals in question, which sets a definite upper limit

on reproduction. This analysis is again restricted to the case of mammals, but similar relations can

be found for egg incubation times in other animal classes. We now have

α ≈ 1

50
m−1/4x [1/day] (1.3.18)

ν ≈ 1

50
m−1/4y [1/(prey · day)]. (1.3.19)

The carrying capacity can be found directly from Ref. [52]:

K ≈ 1

200
m−3/4x [prey/km2]. (1.3.20)

Finally, the predator starvation rate δ is now determined by an assumption that when the prey

population is of the same order as the saturation constant ε the predator should be ”full” and thus

able to reproduce at least at a rate large enough to keep the population at a steady state. This

again gives us

δ ≈ 1

50
m−1/4y [1/day] (1.3.21)

[12]. The saturation constant ε is now the only free parameter left. It turns out that any value of ε

between 0.3K and 0.9K gives fairly similar results, as shown in the supplement of Ref. [12].

Therefore, we simply choose ε = 1
2K as the standard value in our further treatment of this model.

We are now left with a PPP model with the free parameters Rxx, Ryx, Ryy, and the masses of prey

and predator. It turns out that in the single-prey model, Rxx is by far the most important of the

infection parameters in determining species survival. This is reasonable, as given the limitation

imposed by the ecological efficiency, the number of predators will often be far smaller than the

number of prey. Predator-predator infection Ryy is therefore also neglected in the following, as we

see in Ref. [9] that it makes little difference for survival. In the two-prey model, prey-to-predator

infection will again play a key role. In the following section, we will show how well our
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mass-parameterisation of the simple Lotka-Volterra model holds up against reality. We will also

present the results of our examination of the parameter space of the above-mentioned free

parameters. This will show us for which parameter ranges we expect the predator and the

pathogen to survive. Finally, we will demonstrate in which regions of parameter space we expect

the system to behave chaotically.

Summary

• Most of the parameters in our predator-prey-disease model can be quantified via mass scaling

relations that are easily available from literature.

• In this way, we greatly reduce the number of free parameters.

• In addition, mass is a much more easily observable quantity than, e.g. carrying capacity or

predation rate.

• We present a simple PPP model based on the classical LV equations and a more complex but

hopefully also more stable model based on the modified Rosenzweig-MacArthur equations.

1.4 Results

From the mass-parameterised classical Lotka-Volterra model we are able to derive an estimate for

the ratio of prey to predator population, which has the advantage of being independent of the

unknown scaling factor k. We find that the equilibrium population ratio at coexistence will be

x

y
=
φδ

αν
≈ 21

f

(
my

mx

)3/4

(1.4.1)

[9, 10]. Furthermore, since this is a centre equilibrium we expect the populations to perform

cyclical fluctuations around it. From linear stability analysis, we find the expected period of the

cycle to be T = 2π√
αδ

= 2π(mxmy)
1/8. This is interesting since many animal populations are seen to

go through cyclical fluctuations in nature. These fluctuations are believed to be due to trophic

interactions and show their own allometric relationships [53, 60]. However, the scaling observed in

nature is closer to T ∝ m1/4
x [53]. Various explanations for this have been offered. We here propose

that since populations spend most of their time recovering, growing exponentially from a very low

level, the duration of cycles should be found by calculating how long the population of prey will

take to recover by exponential growth. If we know the peak and trough prey populations xmax and

xmin, we can therefore write up the equation

xmax = xmin eαT prey/km2, (1.4.2)

giving us for the cycle period T
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(a)

(b)

(c)

Figure 1.2: An overview of predator and pathogen survival in mx −my −Rxx parameter space. A
red circle indicates a set of parameters for which predators survive, while a black square indicates a
set of parameters where the pathogen does. In (a), predators are fully immune to the disease. Note
that they nonetheless are often driven to extinction due to prey depletion. In (b) predators can be
infected by eating infected prey. (c) shows the system with two prey species, of which one carries a

disease which can infect the predator while the other is immune. Figure from Ref. [12].
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T =
1

α
ln

(
xmax
xmin

)
days (1.4.3)

[9, 10]. This exhibits the quarter-power allometric scaling seen in nature which is independent of

predator mass. The only issue is that it can be hard to find a definite value for the ratio of

maximal and minimal prey populations.

When parameterising the classical LV model in the way shown above, we find that our results agree

much better with observations than the order-of-magnitude estimate we were hoping for.

Nonetheless, the predicted predator-prey population ratios are still off by a factor of about two,

much more than experimental error would account for. This is indicative of the fact that the LV

model is oversimplified, which is unsurprising. The results show that our mass parameterisation is

at least good enough to gain an intuition for realistic parameter ranges and correspondences

between different parameters [9, 10].

Having tested our parameterisation, we turn our attention to the predator-prey-pathogen system.

Here, we observe that as long as the predator is a specialist, i.e., there is only one prey species,

there is a zone of exclusion where the predator becomes unable to survive at intermediate disease

infectivities. At higher infectivities, it appears that the epidemic ”burns itself out” and goes extinct

after an initial intense epidemic leading to depletion of susceptibles. When the prey species is small

relative to the predator, the disease also causes the predator to go extinct even at higher

infectivities. This is due to the fact that a large predator has to eat many small prey to survive,

and in a situation where some fraction of the prey is infectious this is likely to lead to extinction of

the predator, even if the epizootic quickly burns itself out [9, 12]. An attempt at analytically

deriving the threshold predator-prey mass ratio for predator survival is made in our paper on the

topic [12]. A three-dimensional map of predator and disease survival in parameter space can be

seen in Fig. 1.2.

Remarkably, the predator is even excluded by the disease when the predators are completely

immune, leading us to believe that the periodic drops in prey population is enough to cause

extinction of the predator by starvation. When the predator and the pathogen subsist on the same

resource - the prey - there is a form of competitive exclusion. This was in turn what led us to look

at the case with one immune prey species [9, 12].

When adding a second, immune prey species with the same mass and basic characteristics as the

infected prey, the predator unsurprisingly survives in all cases when there is no interspecies

transmission of the disease. When there is transmission of infection from the infected prey to the

predator (Fig. 1.2(c)), we again see a zone of exclusion at intermediate infectivity. As opposed to

the one-prey case, there here is some coexistence of predator and disease, as well as some cases

where only predators survive at intermediate infectivities. Furthermore, the threshold

predator-prey mass ratio for predator survival appears to jump to a much higher value at higher
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Figure 1.3: Stability of the two-prey, one predator system with a disease. (a) and (b) show the
theoretically expected linear stability of the system as a function of a, b, and R. Suspected chaotic
parameter regions are shown in red, and the location of the chaotic attractor from Fig. 1.4 is shown
with an asterisk. (c) and (d) show comparable plots of our numerical measurements of the Lyapunov
exponent, and they correspond well with the theoretical expectations. Due to numerical error, stable
systems sometimes get a very small positive Lyapunov exponent. Parameter combinations with

negative Lyapunov exponents are left out. Figure from Ref. [15].

infectivities, meaning that a species of larger predators will more often be able to survive a short

epizootic since much of the prey they eat is immune [12].

At this point, we realised that the behaviour of the time series of the various populations near the

parameter space region with predator-pathogen coexistence was irregular and unpredictable.

Therefore, we decided to investigate if this irregularity was actually chaos and if so, whether

conditions could be derived for when it arises [15].

In true chaos, the trajectory of the system depends sensitively on initial conditions, so much that

even a tiny difference between two systems will make their trajectories diverge exponentially. The

Lyapunov exponent is a measure of the growth rate of this exponential divergence. We therefore set

out to numerically estimate the Lyapunov exponent of the two prey, one predator system for

different parameter values, and to calculate analytically where we would expect chaos to occur. As

a consequence, we therefore return to the basic, classical Lotka-Volterra model with a disease of

eqs. (1.3.8)-(1.3.11).



15

Linear stability analysis of this system shows that it has four biologically feasible fixed points. Only

two of these are potentially stable: One where the immune prey coexists with the predator,

reaching a classical LV equilibrium, and one where the susceptible prey coexists with the predator.

None of the equilibria where the disease becomes endemic is stable. We would therefore expect that

chaos can only occur when both of the predator-prey equilibria are unstable. We now derive the

conditions for this. First, we define the dimensionless equivalents of the reproduction/death rates

and predation coupling constants: a ≡ αsusc/γ, b ≡ αimm/γ, c ≡ φimm/φsusc, and d ≡ δ/γ, where

αsusc, φsusc are the reproduction and predation rates of the susceptible prey species and αimm, φimm

are the equivalents for the immune prey species. In terms of these dimensionless variables, the

conditions for linear stability of the two fixed points become

b > ac (1.4.4)

for the immune prey and predator equilibrium, and

b < ac and R < 1 + a (1.4.5)

for the susceptible prey-predator equilibrium. Chaos should thus only be able to occur when these

conditions are not fulfilled, for b < ac and R > 1 + a. When numerically determining the Lyapunov

exponents (see Fig. 1.3), we see that they are positive and greater than 5 · 10−3 for all parameter

sets that fulfill these conditions, meaning that the system is at least somewhat chaotic for any of

these parameter sets. This shows that we have correctly determined the conditions for chaos from

linear stability analysis. When analysing the trajectory of the system in the four-dimensional space

spanned by the four populations, we find that in the chaotic parameter regions, an attractor is

formed with a fractal dimension of 3.8± 0.1. This further demonstrates that the behaviour of the

system is genuinely chaotic [15]. The attractor can be seen in Fig. 1.4.

In terms of animal mass, if we assume the same equivalences as above the condition b < ac

translates to msusc/mimm > 1. If our theoretical framework holds, we should therefore mainly

expect to see chaotic behaviour when the immune prey species is smaller than the susceptible one.

Since the derived conditions are not very restrictive, we would expect chaotic behaviour to be very

common in nature. This might in turn explain the apparent randomness of epizootics. Furthermore,

in time series of population sizes, we observe that the various populations of susceptible and

infected prey and predators undergo enormous fluctuations over many orders of magnitude. This is

in part due to the simplifications of our model, but if similar dynamics occur in nature, it may also

be part of the explanation for why we see sudden population collapses and extinctions [15].

Summary

• By relating parameters of the Lotka-Volterra and Rosenzweig-MacArthur equations to

allometric mass scaling laws, we obtain realistic descriptions of the dynamics of predator-prey
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Figure 1.4: When the trajectory of the system in the chaotic region is plotted in susceptible prey
(xs) - infected prey (xi) - predator (z) space, a croissant-shaped chaotic attractor with a dimension

of approximately 3.8 emerges. Figure from Ref. [15].

systems, including the ratio of predator and prey population sizes and the duration of

population cycles.

• We use this to describe such a system under the influence of a pathogen. Here, we show that

predator and pathogen are likely to exclude one another through competition, since they are

both dependent on the same resource.

• In particular, predators have trouble surviving at intermediate disease infectivities where the

disease becomes endemic. They also often go extinct when the predator is so large relative to

the prey that it needs to eat many potentially infectious prey to survive.

• The pathogen on the other hand runs a high risk of using up its supply of susceptibles all at

once if it is very infectious.

• When including a second, immune prey, this makes it easier for the predator to survive and

coexist with the disease, but does not ensure predator survival unless the predator is itself

immune to the disease.

• The two-prey one-predator model with a disease in only one of the prey species shows rich,

chaotic dynamics. We are able to derive conditions for when chaos will occur.

1.5 Discussion

With the above results, we make some fairly sweeping conclusions. Given the many simplifying

assumptions that have to be made for us to reach these conclusions, we naturally have to insert a

number of caveats. First of all, as previously noted the Lotka-Volterra model is at best an

oversimplification of real predator-prey dynamics. Our paper on mass parameterisation gives an

idea of the accuracy of the estimates derived from the LV model [10]. Furthermore, the mass



17

parameterisation of the modified Rosenzweig-MacArthur model is derived somewhat more loosely

from the data in Ref. [52] than the model presented in our paper [10]. The disease dynamics of Ref.

[12] are also simplified quite a bit. Particularly the assumption that the disease is a hundred

percent deadly is somewhat unrealistic. Highly deadly diseases are not unusual in nature; a

prominent example of such a disease is rabies, which also has many potential host species and as

such was part of the inspiration for this analysis. However, including a possibility of recovery with

immunity would make the model more general, if also much more complicated [9].

Our addition of a second prey species to the system is an attempt at making the model more

generally applicable. The majority of predators have more than one potential prey, with even

relatively specialised ones often being able to switch prey in times when their preferred prey is less

available [61, 9, 12]. We demonstrate that a specialist predator will often be driven to extinction by

a disease outbreak in its prey species, even when it is not itself susceptible to the disease. This is

one reason why being a specialist predator is a highly precarious position. It has previously been

described that competition for resources may drive species towards specialisation [22]. Our results

might suggest an opposite drive towards generalisation, since subsisting on a single resource leaves

a species highly vulnerable if this resource should become depleted, for example due to an epidemic

[9, 12].

When examining the literature, we find that fairly few known predator-prey-pathogen systems exist

where the predator is susceptible to the disease. There are a few such systems among fish [25], as

well as one among chimpanzees and colobus monkeys [43] and many predator-prey-parasite systems

[33]. This does however not necessarily speak against our analysis. Our analysis shows that

predator-prey-pathogen systems with predator infection are relatively unstable, particularly if the

predator is a specialist. Based on this, we would expect such systems to be rare. Although our

inability to find them in literature are not proof that they do not exist, it is not surprising that

there are few studies of PPP systems with a predator that is susceptible to the pathogen [9, 12].

The recent pandemic has highlighted the need for a better understanding of epizootic diseases

among wild animals. Most human epidemic diseases start their life as zoonoses, animal diseases

that gradually develop the ability to spread among humans [66]. Looking into the potential reasons

for why some animal species develop into reservoirs for certain multi-host diseases and why

epidemics apparently randomly flare up in animal populations as well as in human society is highly

relevant in the context of understanding pandemics. This in turn points towards the next topic to

be examined in this thesis, namely modelling and understanding the COVID-19 pandemic.

In this project, we have shown that even a highly simplified predator-prey model yields useable

predictions about population dynamics when parameterised using allometric mass scaling relations.

As an additional benefit, our work on this parameterisation has suggested an alternative

explanation for the puzzling scaling relation of prey population cycle duration with prey mass,

which is seemingly completely independent of the predator. This method has allowed us to take a
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look at the bigger picture of disease and evolution. We find that particularly for small prey species,

carrying a disease can be a sort of evolutionary weapon against its predator. This is doubly true if

the disease is transmissible to the predator, but might even hold if it is not, since a specialist

predator in many cases will not be able to survive the regular depletions in prey population caused

by an enzootic disease. Specialisation therefore carries some risk to the predator species. We

suggest that this might drive a predator species towards greater generalisation.

Finally, we show that there is a possibility of chaos in predator-prey-pathogen systems with two

prey species, of which one is immune to the disease. We derive mathematical conditions for chaos

and find that they are fairly easily fulfilled. Chaos should therefore be common in predator-prey

systems following disease outbreaks. It is possible that this might explain the unpredictability of

epizootics. All in all, this work has presented some new ways of analysing and quantifying the

interaction between predation and disease. The knowledge we acquired through this project turned

out to be highly useful when we moved on to describing epidemics in human society, even though

the modelling methods used for this were different.

Summary

• The main caveats to note in this analysis are that the Lotka-Volterra model is of limited

applicability to the real world, and that few real diseases are fatal in all cases. Instead, they

often end with recovery with some degree of immunity.

• In general, few predator species are entirely specialist. The results from our model with a

single prey species might provide an evolutionary reason for this, suggesting a drive towards

generalisation. The model with two prey species is an attempt at making our work more

generally applicable, seeing as total specialisation is rare.

• We know of few specialist predator-prey-pathogen systems with pathogen transmission from

prey to predator. Since we find that such systems should be relatively unstable, this is hardly

surprising.

• Most human epidemics start out as zoonoses. A better understanding of epizootics would

therefore be immediately relevant, also from a human health perspective. Furthermore, the

knowledge gained from studying and modelling epizootics can be transferred to human

epidemics.



Chapter 2

Modelling a pandemic

2.1 Problem statement and objectives

The outbreak of the COVID-19 pandemic suddenly highlighted the need to understand epidemic

dynamics. Models could give an idea of the course of the pandemic and suggest possible routes of

mitigation. While the fundamentals of modelling diseases in animal populations are the same as for

modelling a pandemic, the intricacies of human societies complicate matters. Humans interact in

complex social networks and are able to respond to information about a spreading disease in a way

that animals are not. This is why new types of models are necessary to correctly understand the

spread of the pandemic.

So far, the predominant modelling framework for epidemics has been differential equation-based,

like the SIR model described in the previous part. However, we realised that such models have an

important limitation: They do not sufficiently take individual differences and social heterogeneities

into account. Previously, attempts have been made to model this by including more compartments

for each type of socialisation or age class in SIR-type models. However, since the assumption still is

that all interactions within these groups are mean-field and homogeneous, important structures are

still missed.

For example, network clusters form around families and other social groups. These clusters remain

roughly stable over time and may be isolated from each other, geographically or otherwise. This is

not accurately captured by including a compartment for each age class and having disease

transmission between compartments defined by an interaction matrix of mean-field transmission

rates. This limitation is particularly problematic when discussing lockdowns, which as we will see

exploit the fact that infection does not spread as easily when people spend most of their time at

home with the same few people. In the following, we will show that biological differences in

infectivity between individuals may have further amplified this effect.

Keeping this in mind, our goal here is to create new models for the spread of epidemic diseases

which are able to take social network and infection heterogeneities into account. A good modelling

19
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framework for this is agent-based or individual-based modelling. Using this, we attempt to create

models for the effectivity of lockdowns, testing and contact tracing. As we realise the importance of

infection heterogeneity - ”superspreading” - for the dynamics of the epidemic we also create a

model for the interaction between this heterogeneity and the geographical variations in population

distribution. As testing becomes more widespread, we model the potential effect of mass testing at

regular intervals as a tool for epidemic management. Finally, we try to shed light on the future

evolutionary direction of SARS-CoV-2 (and potentially other pathogens) through a set of

evolutionary models.

The work described in this chapter has resulted in the publication of two articles [11, 13], with

three more in preparation [16, 48, 14]. These articles are included after this chapter.

Summary

• We want to use individual-based models to more accurately model disease dynamics taking

into account individual differences. These are especially important when dealing with a

superspreader-dominated disease in a complex human society.

• Using these models, we will make an educated guess at the best strategies for lockdowns,

testing and contact tracing.

• We will attempt to shed light on the future evolution of the pathogen.

2.2 Theory

Using individual-based models to describe disease spread is not itself a new idea [51, 21], and these

models were also quickly put to use in the early days of the pandemic [19]. However, we set out to

use them in a new way, specifically where individual differences matter. As far as we are aware, our

model of testing, tracing, and quarantine, as presented in Ref. [11], was the first to make use of

individual-based modelling to show the efficacy of such measures.

Previously, studies have been made which estimate the number of social interactions each

individual has during the day, and which investigate in what social arenas these contacts take

place. This was greatly beneficial for our work and formed the basis for many of the assumptions

made in our first individual-based model. The data we needed to estimate how much of each

individual’s social interaction takes place in each social arena - the family, the workplace, among

friends, and in public - was taken from the BBC pandemic experiment [32].

Fairly quickly, researchers realised that COVID-19 exhibited some unexpected properties. For one,

infected individuals turned out to be able to transmit the disease before the onset of symptoms

[64, 36]. This made the disease harder to contain, especially when tests were scarce. Furthermore,

Endo et al. [18] showed that there was considerable individual variation in infectivity. Most people

did not infect very much, whereas a few individuals, dubbed superspreaders, caused the majority of

infections. This phenomenon was already known from the previous SARS coronavirus [39]. We
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realised that this would have a significant effect under the constraints of lockdown and social

network clustering [58].

As tests for SARS-CoV-2 infection became widely available, an idea was proposed by among others

Larremore et al. [35] that rapid tests could be used at regular intervals to quickly quarantine those

infected and thus mitigate the epidemic. This idea had already been implemented on a smaller

scale at various institutions [17]. We further investigated its expected effectivity, and this

mitigation strategy was later employed on a national scale in Denmark [4].

Finally, we have attempted to answer the still urgent question of which direction the evolution of

the pathogen will take. To do this we have made use of the theory of evolutionarily stable

strategies, or evolutionarily stable states (ESS). An ESS describes a situation where an organism

can outcompete any new mutant of its species with slightly different parameters and is thus

resistant to invasion by new mutants. This theory was first developed by Smith & Price [56] and

was subsequently further developed by among others Reed & Stenseth [54]. A theory of ESS for

parasites and pathogens has also been developed by Anderson & May [2], and we attempt to

expand this further by finding the ESS of a pathogen in an age-structured population.

The previous research presented here points towards some possibilities for new theoretical

investigations. Using the method of individual-based modelling, as well as the mathematical and

theoretical framework that we started developing in the first chapter, we try to create models to

answer the questions that are still unanswered in each area.

Summary

• Our work makes use of agent- or individual-based models to describe epidemic dynamics.

Several previous models of this kind do exist, but we use them specifically to investigate the

effect of individual differences on epidemics.

• It has been known for some time that diseases do not spread completely homogeneously. We

realise that this may be unexpectedly significant.

• During the first year of the pandemic, regular mass testing was proposed as a mitigation

strategy. We work further on assessing the effectivity of this strategy.

• Much of our work on evolution is based on the theory of evolutionarily stable states from

population ecology.

2.3 Models and results

2.3.1 Network model for testing and quarantine

For the first individual-based model for testing and quarantine, we use an SEIR model of the

disease progression, adding an exposed but presymptomatic state E to the basic SIR framework.

The incubation times for COVID-19, at least as caused by the wildtype SARS-CoV-2 virus, are
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Figure 2.1: An illustration of the network clusters, interaction rates, and disease progression of the
testing and quarantine model. Figure from Ref. [11].

roughly Gamma distributed with a mean duration of about five days [36]. This we model by

subdividing the E-state into four states with exponentially distributed durations with a mean of

1.25 days each. The two last of these stages are infectious to take into account presymptomatic

transmission. After the presymptomatic E-state is over, the infected then become symptomatic

and move to the I-state [11].

The main advantage of this individual-based model over differential equation models is the ability

to include social networks. In our model, we assume a simplified social network with society

divided into clusters around families, friend groups, and workplaces. Families sizes are distributed

as in data from Statistics Denmark [59], with a mean size of two persons. Workplaces contain ten

people each, while each friend group contains five. Each person is assumed to have two different

friend groups. We assume that everyone within each of these groups knows each other. People

spend 40 % of their time with their family, 30 % at work, and 15 % with friends. The remaining 15

% is spent with randomly selected contacts from the rest of society [11]. These numbers are

roughly based on Ref. [32]. See Fig. 2.1 for an illustration of the model.

Before implementing testing and quarantine, we first investigate the effect of placing restrictions on

each of the social arenas outside of the family. We see some effect of this on the peak number of

infected, although it is not overwhelming. Likewise, we see a small effect of reducing workplace

sizes from ten to five people. This makes it clear that we need more effective measures to control

the epidemic.

Such a measure could be mass testing and home quarantine of close contacts. To model testing and

quarantine, we allow everyone to get tested with some probability for each day of symptomatic
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Figure 2.2: The effect of testing and quarantine. (a) and (b) show the trajectory of the epidemic
if quarantine lasts five days and there is a probability of 10 and 20 percent respectively of being
tested per day of symptomatic illness. The shaded orange area shows the number of infected and the
blue area shows the number of people in quarantine. The black curve shows the epidemic trajectory
without mitigation. (c,d) show the peak infected fraction and average number of days spent in
quarantine as functions of testing probability per day of symptomatic illness and quarantine duration,

respectively. Figure from Ref. [11].

illness. When someone is found to be infected, we quarantine ”all the usual suspects”: their family,

workplace, and friends. They are quarantined for a set number of days and are then let out, unless

they have become symptomatic in the meantime. People are assumed to quarantine together with

their families. We measure the cost of this strategy by the number of days each person has to spend

in quarantine and its effectivity by the peak number of infected. This is a reasonable measure in a

situation where the healthcare system might be strained during the epidemic peak [11].

We find testing and quarantine to be much more effective than a simple reduction of the contact

rates. It reduces the peak number of infected by two-thirds, even if the probability of getting tested

is only ten percent per day of symptomatic illness and the duration of the quarantine is five days.

However, we find that the cost of this is relatively high, with each person on average getting

quarantined twice during a well-controlled epidemic. We try to mitigate this cost by varying the

duration of the quarantine. This shows that a quarantine duration of approximately five days is

optimal for reducing the peak number of infected. At longer quarantine durations, the effect

plateaus [11].

To make this model more applicable to the pandemic situation, we try including a ”lockdown” near
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Figure 2.3: A diagram of the dynamics of the model for population density and superspreading.
A superspreader in the countryside may have many interactions with the same few people and thus
almost certainly infects them. However, as there is a limited number of neighbours, this superspreader
is not nearly as effective as the one in the city who spends little time with a diverse group of people.
The figure was adapted from Ref. [13] and was also used in our poster at the Epidemics8 conference.

the beginning of the simulation where all non-family interactions are reduced by 75 % . Here, a

possible fault in the model should be noted, as people are not assumed to then spend more time

with their families during lockdown, as would otherwise be realistic. After 30 days, the lockdown is

relaxed and replaced by a testing and quarantine system. We find that replacing a lockdown with

such a system is a viable strategy, preventing a resurgence of the epidemic after reopening [11].

2.3.2 Superspreading and population density

After Sneppen et al. [58] realised the possibly crucial role of superspreading, we wanted to create a

model taking this into account. We also wanted to explore the interaction between varying

population density and superspreading.

To do this, we model society as consisting of agents on a lattice, instead of the network described

above. The behaviour of the system then automatically becomes dependent upon population

density. Here, we use a simpler model of the disease progression, sticking to the SIR framework

with an exponentially distributed infectious period lasting five days on average. Although agents

are stationary, we allow each agent to interact with a number of others for each timestep, drawing

the distance to the other agent from a distribution p(r) = r0e
−r/r0 . This distribution is consistent

with data for short distance travel [50]. If the interacting agent encounters an empty site instead of

another agent, the interaction attempt is counted as failed and a new attempt is made until the

required number of daily interactions is achieved. This is done to make sure that everyone is

equally social. People in the countryside spend the same amount of time around others as people in

the city, there are just fewer neighbours to choose from [13]. Fig. 2.3 shows a diagram of the action

of superspreaders in cities and the countryside in this model.

Most importantly, we draw the infection probability of each infectious agent from a Gamma

distribution with some overdispersion parameter k. A small k means that a small number of
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Figure 2.4: Incidence of disease over time in connected regions of different population density. (a)
shows the case without superspreading, while (b) shows the case with superspreading. We see that
when disease spread is dominated by superspreading, the epidemic never really gets started in areas
with low population density. Figure from our poster at the Epidemics8 conference. A similar figure

is found in Ref. [13].

superspreaders cause most of the infections. For wildtype SARS-CoV-2, k is estimated to be

around 0.1, meaning that 10 % of the infected cause approximately 80 % of new infections.

In some iterations of the model, we include a large ”city” with a population density of ρ = 1 in the

middle of the lattice to highlight the role of the city in driving the epidemic. When trying to

quantify the difference between areas of different population densities and the importance of disease

spillover, we instead split the lattice into five sections of highly different density [13].

Simulating disease spread in an inhomogeneous population on a lattice, we observe that the

superspreader-dominated disease will spread very rapidly in densely populated ”cities” but much

more slowly in the surrounding, sparsely populated ”countryside”. This leads to an irregular

epidemic curve with an early peak. We hypothesise that this might be part of the explanation for

the unexpected appearance of COVID-19 epidemic curves, which were also characterised by peaks

that long preceded herd immunity. Furthermore, we see that the threshold for disease percolation,

that is, when the attack rate suddenly jumps from a few percent to nearly 100 %, depends strongly

on the overdispersion parameter k. At k = 0.1, the percolation threshold is about five times higher

than for k = 1 [13], corresponding to the overdispersion of influenza [20].

Plotting the disease incidences for areas of different population densities, we see a much more

sensitive dependence on population density for superspreader-dominated diseases than for more

homogeneously spreading diseases (see Fig. 2.4). We thus expect COVID-19 and other heavily

overdispersed diseases to be mainly city phenomena, at least barring other social factors [13].
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(B) Testing with limited compliance
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Figure 2.5: Heat map of the effectivity of a mass testing strategy. The effectivity is quantified
as the ratio between effective reproductive number with testing and maximal reproductive number
achieved when the outbreak is unmitigated. (a) shows the value of this ratio given test sensitivity
(x-axis) and interval between tests in days (y-axis) assuming full compliance with the mass testing
strategy. (b) shows a similar plot, but here the compliance is varied instead of sensitivity. Sensitivity

is here assumed to be 70 %. Figure from Ref. [4].

2.3.3 Repeated mass testing model

The repeated mass testing model is a very simple individual-based model created for a report [4]

produced for the State Serum Institute. It simply consists of a small lattice of agents interacting

with, and possibly infecting, a random neighbour at every timestep. Once every T timesteps, every

agent is tested and anyone who is infected is quarantined with a probability p, depending on the

sensitivity of the test. We then measure how many secondary infections arise from one index case

and use this to predict the effectivity of a repeated mass testing strategy using an imperfect test.

As can be seen in Fig. 2.5, repeated mass testing can reduce the effective reproductive number of

COVID-19 quite drastically if done frequently enough. Here, the frequency of the testing matters

as much if not more than the sensitivity of the test. We also see that a limited compliance has a

similar effect as a reduced test sensitivity. These results point the way to a testing and quarantine

strategy where society can be kept open while everyone is tested regularly. A similar type of

strategy was implemented in Denmark from spring 2021 [4].

2.3.4 Evolutionary models

To study the evolutionary future of SARS-CoV-2, we create a somewhat different model. This

model is not individual-based, but based on a set of age-structured differential equations modified

from Li et al. [37]:

dSi
dt

= ai−1Si−1 − aiSi − δiSi + ω(Ri + R̃i)−
∑

j

βijSiIj −
∑

j

β̃ijSiĨj (2.3.1)
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dIi
dt

= ai−1Ii−1 +
∑

j

βijSiIj − (ai + di + δi + γi)Ii (2.3.2)

dRi
dt

= ai−1Ri−1 + γiIi − (ai + di + ω)Ri (2.3.3)

dĨi
dt

= ai−1Ĩi−1 +
∑

j

β̃ijSiĨj − (ai + di + δi + γ̃i)Ĩi (2.3.4)

dR̃i
dt

= ai−1R̃i−1 + γ̃iĨi − (ai + di + ω)R̃i (2.3.5)

[16], where the indices represent the number of the age class, and S, I, and R are susceptible,

infected, and recovered populations as usual. a is the aging rate, ω represents the immunity waning

rate, βij is the infection rate from class j to class i, δi is the natural death rate in age class i, di is

the corresponding death rate due to disease, and γi is the recovery rate. The variables and

parameters with tilde are those of the mutant strain.

If we are to be able to find an ESS, we need to make the fundamental assumption that there is a

relationship between disease duration γ and infection rate β. That is, the age-dependent recovery

rate γ is treated as an evolutionary parameter such that β = β(γ). We find this to be a reasonable

assumption as it should not be possible to have a disease which is both infinitely infectious and

very long-lasting, even though this would be ideal from the perspective of the pathogen. There

must therefore be some kind of tradeoff between the two variables, forcing the pathogen to balance

longevity with infectivity [16]. This is the so-called tradeoff hypothesis [2, 1].

In order to determine the ESS of the pathogen in this model, we find the conditions necessary for a

mutant to be unable to invade. This condition is given by the gradient equation

∇γ̃Rinv(γ, γ̃)|γ̃=γ = 0, (2.3.6)

where Rinv is the effective reproductive number of the invading mutant at the existing equilibrium.

That is, the ESS must be a local maximum of the effective reproductive number as a function of γ,

or else an invader with a higher reproduction number upon invasion would be able to take over in

the future.

Starting from eq. (2.3.6), if we assume that disease dynamics happen at a much faster timescale

than aging and natural death, we may reduce the equation to

∂

∂γ̃l

βllŜl(γl)

(al + γ̃l + dl + δl)
|γ̃l=γl = 0, (2.3.7)
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Figure 2.6: Finding the ESS when infectivity β depends on recovery rate γ is equivalent to finding
the point where a straight line through γ = −(non − disease loss rate) touches the graph of β(γ)

[1]. Our work is a generalisation of this result to multiple age classes. Figure from Ref. [16].

where Ŝl(γl) is given by

Ŝl(γl) =
αlS0

1 +
∑n

k=2 αk
, (2.3.8)

and

αi =
Πi
k=2ak−1
ak + δk

. (2.3.9)

Carrying out the differential from before, we are left with the equation

β′ll(γl)Ŝl(γl)(al + γl + dl + δl) = βll(γl) (2.3.10)

[16]. This is equivalent to generalising a well-known result found when studying ESS for parasites

[2]. It also shows that the lower the natural death rate is in an age group, the longer the disease

may be expected to last in this age group at the ESS (see Fig. 2.6). Further details of the

derivation can be found in Ref. [16].

We make use of a similar idea to determine an evolutionarily stable state for the disease duration.

The idea here is that a pathogen causing a very long-lasting illness may have time to cause a lot of

new infections during the infectious period, i.e., a longer disease duration may lead to a higher

reproductive number Reff . However, this slow disease may be outcompeted by a faster variant

with a lower Reff , since the faster variant can go through more disease generations in shorter time,

growing exponentially with each generation. Furthermore, in a human society a long-lasting disease

also increases the risk of the infected person getting quarantined or becoming bedridden at some

point during the infectious period, limiting the utility of a long disease duration [14].

The way we approach this problem is, however, very different from the above ESS problem. We

construct an agent-based model letting the simulated virus freely mutate and observing which
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Figure 2.7: (a) The exponential growth rate of the disease as a function of its duration for β =
1, c = 1. We see that this function has an optimum for T = e. (b) The recovery rate γ of successive
variants in a simulation where we let symptomatic individuals be quarantined with some probability.
We see that whether we start from a high or a low value, they approach the same optimum. β = 0.5,

pquarantine = 0.1. Figures from Ref. [13].

variant(s) end up dominating.

From our simulations of the evolution of disease duration, we find that at the endemic state, a

disease which infects at a constant rate per day will always gain an advantage by evolving a

longer-lasting infectious period. This changes if there is some probability of being quarantined or

beginning self-isolation for each day of symptomatic illness. In this case, there will be an optimum

disease duration [14].

If instead of the endemic state we consider a state where a disease is spreading exponentially, such

as early in an epidemic or when containment measures fail, the picture is different. Here, we see

that shorter-lasting diseases will sometimes win out over longer-lasting ones, simply because their

exponential growth rate in number of cases is higher. We derive the following expression for the

exponential growth rate of a disease in terms of the duration of the infectious period:

r = (βT )
1

(1+c)T − 1, (2.3.11)

where r is the daily exponential growth rate of the number of cases, β is the daily infection rate, T

is the duration of the infectious period, and c is the proportionality between this and the duration

of the incubation period, assumed to be constant. This function has a local maximum for T = e/β.

Thus, we conclude that, although there is no optimal disease duration at an endemic equilibrium of

an unmitigated disease, the duration of the infectious period will have an optimum in the cases

where (a) symptomatic individuals can be quarantined or (b) the epidemic is exponentially growing

[14].

Sometimes, studying stable states is not necessary or desirable if we are to gain an overview of the
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”direction” of evolution. In the final model presented here, as shown in the attached paper [48], we

again let new variants arise randomly in agents on a network. Here, the variable evolutionary

parameter is the overdispersion k. We then simply quantify how k affects the chance of survival of

new variants, and how k is expected to evolve over time under given constraints, such as a

lockdown which reduces the number of contacts of each agent. By using this method, we do not

have to look for a final, stable state. Instead, we can examine how k evolves on its own. This

method is somewhat more mathematically simple and still gives an idea of where new variants of

SARS-CoV-2 are heading.

Simulating disease spread on an Erdős-Renyi network where overdispersion is the evolutionary

parameter, we find that over time, there will be a tendency for variants to evolve towards a higher

k, i.e., less prominent superspreading. This is most notable in environments where the diversity of

contacts is limited, i.e., during a lockdown that restricts large gatherings. Without a lockdown,

there is limited benefit to spreading more homogeneously, leading to a slower evolution towards

homogeneous spreading. If we reduce disease infectivity without limiting the number of individual

contacts per person, we also see a much slower evolution towards homogeneity, demonstrating that

it is the reduction in connectivity that makes homogeneity so evolutionarily advantageous for new

variants.

At the same time, we find that an emerging variant with a small k will be more vulnerable to

extinction due to stochastic fluctuations than a more homogeneously spreading one. This makes

sense when one considers that when a highly overdispersed new variant emerges, the first few that

are infected with it are unlikely to be superspreaders. If none of them spreads the new variant

effectively, it will go extinct. Thus, a high overdispersion is evolutionarily disadvantageous for a

new variant in two ways [48].

Summary

To describe the dynamics of COVID-19 we design and explore the dynamics of the following models:

• An individual-based model incorporating a network with clusters around families, workplaces,

and friend groups. This model allows for testing and contact tracing. Using this model, we

show that mass testing and quarantine can be effective at mitigating the pandemic, even at

low testing rates and for relatively short quarantine durations.

• A geographical model of population density and superspreading. We see that if a disease is

dominated by superspreading, it means that this disease becomes very effective at spreading

in densely populated areas, but much less effective at spreading in sparsely populated areas.

• A mean field, but still individual-based model of a mass-testing strategy with an imperfect

test. Testing everyone with a test of low sensitivity is a viable strategy for controlling a

COVID-19 outbreak, as long as people are tested frequently enough.

• An ODE-based model of the evolution of infectivity and disease duration in an age-structured
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population. At the evolutionarily stable state, we expect a pathogen like SARS-CoV-2

spreading in an age-structured population to evolve a disease duration that depends on age,

such that the disease lasts a long time, but has a low infection rate per day in groups with a

low natural death rate. On the other hand, it should evolve towards a high daily infection

rate and a short duration in groups with a high natural death rate.

• Individual-based models of the evolution of disease overdispersion and the duration of the

infectious and incubation periods. These models show that

– Evolution will generally favour a less overdispersed disease with a higher k-value if the

diversity of contacts between individuals is limited, for example by a lockdown.

– At the endemic state, there is no optimal duration of the infectious period. However, if

there is a probability of being quarantined for each day of symptomatic illness or if the

epidemic is in an exponentially growing phase, there is an optimum.

2.4 Discussion

In this part of the thesis, we have shown a few examples of cases where individual differences in

network and propensity for superspreading matters. These cases are best modelled using

individual-based models. We have also shown that in order to accurately capture the long-term

dynamics of a pandemic, evolution has to be taken into account. Both the infectivity, recovery rate,

and overdispersion of the disease are subject to evolutionary pressures. Furthermore, the structure

of human society and the restrictions imposed by pandemic mitigation efforts shape these

evolutionary pressures.

The models presented here are highly idealised and thus only provide a rough image of the

magnitude of the various effects. The network used in our testing and contact tracing model

assumes a highly simplified network with a small number of very regular clusters centered around

families, workplaces etc. We also assume a relatively small family size, as is found in Danish

society. We tried to run the model with larger family sizes, which appeared to not make much of a

difference [11]. Furthermore, the fact that lockdown and quarantine in this model are assumed to

simply reduce the overall number of social interactions people have in a day is somewhat

unrealistic, as less time spent in public should result in more time spent with the family. A final

caveat to note is that we, crucially, neglect overdispersion in this model, as its importance had not

yet come to our attention when the model was devised. Had we included it, the relative effect of

lockdown as compared with testing and quarantine might have been greater.

With respect to the second model, it was created at a time in the pandemic when only one

epidemic wave had occurred in the west, and COVID-19 was still largely a city phenomenon. This

turned out to not be a firm rule for the disease, with large waves being seen in rural parts of the US

in autumn 2020. This illustrates that social and climatic effects cannot be ignored [13]. The
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superspreader phenomenon may also have changed with the emergence of new variants such as

Alpha (B.1.1.7) and Delta (B.1.617.2). These variants are suspected of having more homogeneous

infectivity profiles, as the distribution of viral loads in those infected is less skewed than for

wildtype SARS-CoV-2 [30, 48]. Nonetheless, overdispersion is not unique to SARS-CoV-2 [39], so

the results achieved here should still have wide applicability.

There is some doubt about the tradeoff hypothesis on which we build our ESS model in an

age-structured population, and particularly whether it may be expressed as a simple dependence

β = β(γ) [1]. Despite this, we chose to make this assumption anyway, as some form of tradeoff is

necessary for an ESS to exist. In the case of disease duration, such a tradeoff arises naturally. The

model of overdispersion evolution here has the advantage that its purpose is not to look for an ESS,

and therefore, there is no need to assume a tradeoff. Instead, we can simply observe the direction of

evolution of k.

Based on this work, we have gained a significantly better understanding of the dynamics of

COVID-19 and epidemic diseases in general. We have realised the great potential effect of both

superspreading and evolution during a long-lasting pandemic. In response to this, we have created

models to examine these effects. Especially the topic of evolution is quickly gaining in importance

as population immunity grows and the COVID-19 pandemic thus transitions from an initial

epidemic state to a longer-term endemic state. During the pandemic many models have been

created trying to describe the physics of disease spread in a social system. This type of modelling

will still be highly important as we enter the pandemic endgame.

Summary

• One of the main points of this part of the thesis has been the development of disease models

that are able to take individual differences and social structures into account. We have shown

how both these factors may shape the course of a pandemic.

• It is important to keep in mind the simplifications made here. For example, the network of

our testing and quarantine model is highly simplified, the geographical model neglects social

effects, and the tradeoff hypothesis of our age-structured evolutionary model is controversial.

• The pandemic has highlighted the utility of physics-inspired modelling of disease spread. This

will remain important in understanding the behaviour of COVID-19 on a longer timescale.



Conclusion and perspectives

In this thesis, we have conducted an investigation into the population dynamics of a variety of

different systems. In particular, we have focused on the action of diseases on animal and human

populations. Infectious diseases change the population dynamics of different animal species, and

they affect and are themselves affected by the social structures of human societies.

We have seen that infectious diseases may shape the evolution of animals by providing prey species

with a potential weapon against their predators. Even if a predator species is not directly affected

by a disease, epizootics in its preferred prey may still cause its population to collapse, and

potentially even extinction. Incidentally, we discovered the utility of even very simple

mass-parameterisation methods in estimating the parameter values of population dynamic

equations. As a similar spinoff from our main work on diseases and evolution, we discovered that a

disease outbreak in one prey species may cause chaotic behaviour in ecosystems with multiple prey

species.

In response to the COVID-19 pandemic we have shown that to properly model a disease spreading

in a complex human society, it is not enough to know the number of infected and their interaction

rate with the rest of society. Instead, the most effective models will also take the structure of

networks and the range of individual biological characteristics and behaviours into account. This

has the added benefit of allowing for easy modelling of network-specific mitigation strategies such

as contact tracing.

Building on this, our work on superspreading has shown that to limit the spread of a

superspreader-dominated disease such as COVID-19 (at least as caused by the wildtype

SARS-CoV-2 variant), it is not as important to reduce the total amount of social interaction as it is

to reduce the diversity of contacts.

Finally, our studies on pathogen evolution show us that the structure of society and the mitigation

measures we impose to control the pandemic are important in shaping the future of SARS-CoV-2

and thus of the pandemic. Specifically, we show that a pathogen in an age-structured population

may evolve an age-dependent infectivity profile and duration. Furthermore, pathogens are likely to

generally evolve towards a more homogeneous infectivity with a smaller tendency towards

superspreading. The latter is particularly true when lockdowns restrict the diversity of social

contacts. Quarantine measures may also affect disease duration by limiting the evolutionary utility

33
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of a very long infectious period for a pathogen.

The two topics studied under this project are connected. First of all they both fall under the broad

headline of disease dynamics. Perhaps more importantly, since pathogens as mentioned above are

frequently shared between species, epizootics in animals may result in a pandemic among humans.

As we have seen during the pandemic, a disease is capable of jumping back and forth between

humans and other animal hosts. During this process, it may pick up new evolutionary traits by

adapting first to one host and then the next. Such multi-host evolutionary dynamics could be an

interesting and highly relevant topic for future research. Generally, the role of pathogens in species

and ecosystem evolution still contains many unanswered questions which deserve to be explored

further.

The individual-based approach that turned out to be enlightening for the study of human

epidemics might also prove useful when studying animal communities, where our ecological models

are based on the assumption of mean-field dynamics. Individual animals may be subject to many of

the same biological and behavioural variations as humans, meaning that the individual-based

approach could shed further light on the dynamics of trophic interactions, evolution, and disease

dynamics. One obstacle to this is the fact that limited data exist on epizootics in wild animals,

which has also been one reason why the present ecological analysis remains largely theoretical.

With the current focus on epidemics and consequently on zoonoses, it is to be hoped that more

research into this field will be done in the future.

In conclusion, our work has expanded our knowledge of the wide range of dynamics that arise in

the interplay between human and animal populations and a disease. The pandemic has made it

very clear that the mathematical study of population and disease dynamics is very much relevant

for human society. Understanding how animals and pathogens interact with each other and with

humans, and how these populations evolve over time, is therefore vital if we are to understand

current and future epidemics.
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Articles for chapter 1

The following articles form the basis of the chapter on ecological disease models. Articles 1 and 2

are based partly on preliminary work done during my master’s project. Therefore, there may be

some overlap between chapter 1 and my master’s thesis, Ref. [9]. An earlier draft of article 1 was

appended to the master’s thesis. Article 3 is based entirely on work done during the PhD, though

the PPP equations of this article are derived from the same SIR/Lotka-Volterra framework as those

of the master’s thesis. All articles were completed and published during the PhD.

1. Eilersen, A. and Sneppen, K. (2019). Applying allometric scaling to predator-prey systems,

Physical Review E 99 (2): 022405.

2. Eilersen, A. and Sneppen, K. (2020). The uneasy coexistence of predators and pathogens,

The European Physical Journal E 43 (7): 1–7.

3. Eilersen, A., Jensen, M. H. and Sneppen, K. (2020). Chaos in disease outbreaks among prey,

Scientific Reports 10 (1): 1–7.
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Notes on relation to master’s project: The mass parameterisation model and associated

equations were developed during my master’s project [9], and as previously mentioned a draft

version of this article was appended to the master’s thesis. Nonetheless the article is included here,

as it was completed during the PhD with significant additions to the data section being made after

the completion of the master’s degree. Furthermore, the work done here forms part of the basis of

the rest of the ecological work presented in chapter 1. Therefore, it is my impression that the

chapter would be less complete without this article.
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In population dynamics, mathematical models often contain too many parameters to be easily testable. A way
to reliably estimate parameters for a broad range of systems would help us obtain clearer predictions from theory.
In this paper, we examine how the allometric scaling of a number of biological quantities with animal mass may
be useful to parameterize population dynamical models. Using this allometric scaling, we make predictions about
the ratio of prey to predators in real ecosystems, and we attempt to estimate the length of animal population cycles
as a function of mass. Our analytical and numerical results turn out to compare reasonably to data from a number
of ecosystems. This paves the way for a wider usage of allometric scaling to simplify mathematical models in
population dynamics and make testable predictions.

DOI: 10.1103/PhysRevE.99.022405

I. INTRODUCTION

When modeling the dynamics of ecological communities,
a recurring problem is the difficulty of estimating model
parameters. If we desire to develop a model that can describe
real ecosystems, a common approach is to add terms and pa-
rameters to account for as many real-world complications as
possible. The result is, unfortunately, that many of the models
end up being too complicated to actually make any definitive
predictions due to uncertainties about the often large number
of parameters. A model that requires precise measurements of
parameters for every individual system one wishes to study
will of course be interesting for the isolated case, but it will
be difficult to derive more general principles from it. We
believe that a simplified model that makes approximate but
clear predictions might be a more useful approach. In this
paper, we will argue that, by using allometric mass scaling,
it is possible to estimate the parameters of the classic Lotka-
Volterra predator-prey equations in such a way that this highly
idealized model can be used to predict the behavior of actual
populations. It is our hope that we will be able to rewrite all
parameters of the equations in terms of only two quantities:
prey mass and predator mass. We will also look at the im-
plications of body size for the period of animal population
cycles. By doing so, we wish to conclusively demonstrate the
usefulness of allometric mass scaling relations in population
modeling.

The fact that many ecological variables scale allometrically
with animal body mass has attracted increasing attention in
recent years. Ginzburg and Colyvan [1] go as far as to call the
allometries fundamental laws of ecology, comparing them to
Kepler’s laws in physics. Peters [2] compiled a list of variables
exhibiting allometric scaling, which we will make use of in
this paper. For example, generation time and metabolic rate
correlate with mass to powers of (approximately) 1/4 and

*andreaseilersen@nbi.ku.dk
†sneppen@nbi.ku.dk

3/4, respectively. It is these relationships that we will exploit
to write the Lotka-Volterra equations in terms of animal
body mass. For a compelling attempt at finding a theoretical
foundation for these quarter-power scaling laws, see the work
of West et al. [3].

On the larger ecosystem scale, there are also examples of
allometric scaling. In particular, many animals—most promi-
nently rodents such as lemmings—exhibit a regular popu-
lation cycle. The time elapsed between peaks in abundance
of such animals tends to scale with the average mass of
the animal. Empirically, the scaling relation is found to be
T ∝ m0.26 [4]. We wish to argue for a theoretical basis of this
relationship.

Yodzis and Innes [5] use mass to parameterize a system
of equations similar to generalized Lotka-Volterra equations,
with consumer and resource (whether plant or animal) sub-
stituted for predator and prey. Their model assumes that
the predator reproduction will saturate with increasing prey
population, giving the predator a Holling type II or type III
functional response. Also, they argue that the strength of the
predator-prey interaction should scale with the ratio of prey
mass to predator mass to some power and that it should be
possible to determine the coefficients of this scaling law from
measurable biological quantities. With the model in place,
they analyze the linear stability of the dynamical system and
find that, for certain predator-prey mass ratios, it will have
a limit cycle with a period T ∝ m1/8

C m1/8
R , where mC is the

consumer (predator) mass and mR is the resource (prey) mass.
We will here proceed down a similar path, though our

model will be notably simplified and our approach to the
predator-prey functional response will be different. The orig-
inal Lotka-Volterra equations on which we will be basing our
model assume that the predation and predator reproduction
rates increase in proportion with prey population density, a
so-called Holling type I functional response. We here assume
that prey population is always far from the carrying capacity
of the ecosystem, resulting in a prey reproduction rate that
is also proportional to prey population. Instead of trying to
determine a biologically reasonable coefficient for the scaling
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of interaction strength with the predator-prey mass ratio, we
will let the coefficient remain unknown. We will determine the
equilibrium populations in terms of this unknown coefficient.
Luckily, it turns out that when we look at the ratio of the
populations, this coefficient cancels out. Thus, our method
still yields useful information.

Finally, we will look at the period of population cycles.
The simplest version of the Lotka-Volterra equations has a
nontrivial equilibrium which is a center rather than a limit
cycle. Here we likewise find a period of T ∝ m1/8

C m1/8
R as men-

tioned above. In order to obtain the empirically determined
m1/4 relationship with population cycle length, Yodzis and
Innes point out that one can assume a direct proportionality
between predator (consumer) size and prey (resource) size.
While this relationship may hold in many systems (see, e.g.,
Ref. [6]), it certainly does not in such cases as the wolf-moose
system studied by Peterson et al. [4], and the relationship is
hardly well defined in systems where the resource is a plant.
Ginzburg and Colyvan [1] even present a critique of the whole
idea of using only the linearization of the Lotka-Volterra equa-
tions to predict the length of population cycles. It would there-
fore be preferable if we could derive a relationship between
prey mass and cycle period that is independent of predator
mass. This is what we will attempt to do in the following.

The model put forward here is thus an application of the
basic idea of Yodzis and Innes to a heavily simplified system
of equations, without making attempts at determining the
exact interaction strength between predator and prey directly.
It is our hypothesis that even such a simplified model will
still give reasonable order-of-magnitude predictions about real
ecosystems.

II. PARAMETERIZING THE LOTKA-VOLTERRA
EQUATIONS

The original Lotka-Volterra predator-prey equations read
as follows [7]:

dx

dt
= αx − βxy, (1)

dy

dt
= γ xy − δy. (2)

Here x denotes prey, y predator, α the per-capita reproduc-
tion rate of prey, and δ the per-capita death rate of predators
in the absence of prey. The interaction strengths β and γ are
slightly harder to define. β denotes the risk of each prey being
eaten per predator, and γ represents the increase in predator
reproduction rate per prey. These latter two parameters are of
course more difficult to estimate than the first two, and we will
therefore need to find a way around this obstacle.

As opposed to Yodzis and Innes, we choose to work
with animal abundances rather than biomass densities. We
do this because it is conceptually easier and data are more
readily available for abundances than for biomass densities
for the systems that we wish to study. A complication arising
from this is that when working with abundances, there is
a distinction between somatic growth (individuals growing
larger) and reproductive growth, which would be unimportant
if we were to work with biomass densities. We shall therefore

ignore the finer details of animal reproduction and growth and
simply assume that all growth results in the production of
new individuals. Furthermore, we assume that the populations
are large enough and reproductive events evenly distributed
enough in time that population growth can be modelled as
continuous rather than discrete.

According to Peters [2], we then have the following empir-
ical relation for reproduction rate:

α = 1
400 m−1/4

x (day−1). (3)

In the cited mass scaling relations, all masses are in kilo-
grams. As the predator-prey pairs we will be examining here
are all mammals, we shall be using the mass scaling relations
that apply to mammals. For cold-blooded animals such as
reptiles the relations will be different, though not radically so.

It should be possible to calculate the death rate of predators
in the absence of prey from the so-called turnover time. This is
defined as the average time it will take an animal to metabolize
its entire energy reserves. In turn, this can be calculated from
the metabolic effect. Again from [2]

tturnover = 19m1/4
y (day). (4)

This implies

δ = t−1
turnover = 1

19 m−1/4
y (day−1). (5)

The coupling coefficient β we assume to be proportional
to predator ingestion rate. We believe this to be justified, since
the more a given predator consumes, the higher the per-capita
risk of being eaten by it should be for the prey. The predator
ingestion rate in terms of energy scales with mass as [2]

I ∝ m3/4
y [J (day predator)−1]. (6)

The number of individual prey that a predator needs to eat
to satisfy this energetic demand is inversely proportional to
prey mass, and we therefore write β as

β = k
m3/4

y

mx
[(day predator)−1], (7)

where k is an unknown proportionality constant. Knowing
the equilibrium population of prey or predator should make
it possible to determine k if this is desired.

Our parametrization thus deviates notably from that of Yo-
dzis and Innes, since they assume that the predator death rate
and the interaction strength scale with the ratio of prey mass
to predator mass to the power of 3/4 (here converted to abun-
dance rather than biomass, as was originally used). Strictly
speaking, the ingestion rate of y predators reflects some kind
of average prey consumption rate at average prey abundance.
What we really need here is the slope of predator kill rate as a
function of prey abundance. Furthermore, the units of the in-
gestion rate is [J (predator day)−1] ∝ [prey (predator day)−1]
and not [(predator day)−1] as we need it to be for our units
to match. Despite all this, we still believe that the allometric
scaling of the ingestion rate is a reasonable approximate
measure of the predator’s ability to consume and therefore of
the dependence of consumption rate on prey abundance. We
now only need to find a way around not knowing the exact
proportionality.
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The slope of predator kill rate with prey abundance that
really constitutes β depends on a number of factors (tempera-
ture, prey population density, predator satiation, etc. [2]), and
it is probably not possible to make a universal estimate of it.
Instead, we let k embody all these complications and tune it
to fit the systems that we will study. As mentioned above, it
fortunately cancels out in the final calculation of the prey to
predator population ratio anyway.

The relation between the number of prey eaten and the
number of predators produced can be derived approximately if
we know the ecological efficiency η of the predator-prey inter-
action. The ecological efficiency here refers to the percentage
of prey biomass that is converted into predator biomass.
Ecological efficiencies vary considerably depending on the
nature of the interaction [8], and it is therefore difficult to find
an estimate that is both precise and general. For systems with
a low predator-to-prey mass ratio and positive correlation of
biomass density with body mass, ecological efficiency should
be high (η ≈ 35%) according to a review by Trebilco et al. [9],
which, however, deals with aquatic ecosystems. Lindeman’s
original paper similarly shows an efficiency that rises with
trophic level [8]. On the other hand, a case study of the
Isle Royale wolf-moose system that we will discuss below
suggests that the wolves have a much lower efficiency than we
would expect based on the above (η ≈ 2%) [10]. In laboratory
experiments, a figure of about η = 10% is observed [10], and
for lack of a better estimate, we shall use this so-called 10%
law in our calculations. Given that we are not going for an
exact description of any one particular interaction, we believe
that it is justified to use this rough estimate.

The relation between mass of consumed prey (mx,c) and
mass of produced predator (my,p) is now

my,p = ηmx,c, (8)

assuming that prey and predator have similar energy content
per unit mass. Rewriting this in terms of numbers of individual
predators produced (Ny,p) and prey consumed (Nx,c), we get

Ny,p = my,p/my = mx,c

my
η = mxNx,c

my
η. (9)

In the Lotka-Volterra equations, the number of predators
produced per unit time is given by the term

Ny,p = γ xy (10)

and the number of prey consumed by the term

Nx,c = βxy. (11)

Thus, we get the following relation between β and γ :

γ = mx

my
ηβ = km−1/4

y η [(day prey)−1]. (12)

We have now written all the parameters of the equations in
terms of the animal body masses alone, with k from Eq. (7)
being the only parameter that remains to be determined.
However, we can get around this by focusing our attention
on the equilibrium predator-to-prey population ratio instead
of the absolute populations.

The Lotka-Volterra equations have the nontrivial equilib-
rium

(x, y) =
(

δ

γ
,

α

β

)
, (13)

which is neutrally stable. The equilibrium ratio between prey
and predator populations is therefore

x/y = βδ

αγ
= 21

η

(
my

mx

)3/4

. (14)

This number depends only on the masses. We see that
due to the factor 1/γ this ratio is inversely proportional to
ecological efficiency, so that if our estimated 10% efficiency
is a factor 2 too great, then we will estimate a ratio that is half
the “correct” value.

III. THE PERIOD OF POPULATION CYCLES

The Jacobian matrix of the Lotka-Volterra equations at the
nontrivial steady state has the eigenvalues (i

√
αδ,−i

√
αδ),

meaning that for small perturbations away from equilibrium,
the system will oscillate over time with a period of T = 2π√

αδ
.

This leads to the aforementioned scaling of population cycle
period with mass T ∝ m1/8

x m1/8
y , contrary to the observed

T ∝ m1/4
x . A problem with using linearization in this case is

that the period thus obtained only applies when oscillations
are relatively small. Population cycles in actual predator-prey
pairs, such as the vole-weasel pair in northern Scandinavia,
can involve fluctuations over two orders of magnitude [11].
When solving the equations numerically, we see that much
of the time, the population of prey will be in a state of
slow, exponential recovery, while the predator population
slowly approaches zero. When the prey population recovers,
the predator population quickly explodes, initiating a swift
collapse of the prey population. The collapse phase observed
in real rodent cycles does indeed appear to be notably shorter
than the growth and peak phases, and the corresponding
predator cycles are similarly observed to be very sharply
peaked [11,12]. We therefore believe that the dynamics can
be realistically modelled as consisting of a slow exponential
growth phase and a fast collapse phase. Using this two-
timescale assumption, we will try to derive an expression for
the period T of population cycles. Splitting more complex
predator-prey models into slow and fast phases has previously
been done by Rinaldi and Muratori [13]. In the following, we
shall use a similar basic idea but a different mathematical
approach and solve for the period T rather than maximal
abundance as they did. An illustration of the cycle and its fast
and slow segments can be seen in Fig. 1. For our derivation,
we will use the maximum and minimum prey density of a
cycle, which should be easily obtainable from observations
and available in the literature.

The slow approach to and subsequent drifting away from
the saddle point at (0,0) is what takes up the majority of the
orbital period of the system. For this reason, we will here
attempt to derive an approximate relation for the cycle length
by looking at the behavior around the saddle point at (0,0)
instead of the center at ( δ

γ
, α

β
). Although the period of the

cycle is mainly determined by the hyperbolic approach to the
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FIG. 1. An illustration of the dynamics of the predator-prey sys-
tem. This numerical solution is based on parameters appropriate for
the lynx-hare system discussed below. The line shows the trajectory
of the system in predator-prey space, and the circles are all spaced
evenly in time at a separation of 50 days. The distinction between a
fast and a slow segment of the trajectory can be clearly seen from
the spacing of the circles. Note also that equilibrium abundances are
practically identical to mean abundances, meaning that we can use
the two interchangeably.

saddle point, the oscillation still happens around the center
equilibrium at ( δ

γ
, α

β
). As can be seen in Fig. 1, the time

average populations are very close to the equilibrium popu-
lations at the center. We therefore do not believe that there is
a contradiction between using the saddle point linearization to
determine the oscillation period but determining population
ratios based on center equilibrium values.

Using the linearization around the center equilibrium, we
obtain a period that is independent of initial conditions but
which does not match observations, as the assumption that
initial conditions are close to the equilibrium breaks down
in the real systems studied here. Instead, we assume that the
initial conditions are far from the center equilibrium. For this
asymptotic approximation, the period will depend on initial
conditions and the calculated period matches observations
better.

Starting from a population xmin, the prey population should
grow as follows:

x(t ) = xmineαt . (15)

When predator population is low, prey population grows
unobstructed. After one period of length T , we should have
the maximal population density

xmax = x(T ) = xmineαT . (16)

The time it will take the population to recover to a density
of xmax now becomes

T = 1

α
ln

(
xmax

xmin

)
= 400 ln

(
xmax

xmin

)
m1/4

x (day). (17)

We thus get the m1/4
x relation found empirically. The above

expression should be valid when the amplitude of oscillations

is very large, so that the period of the predator-prey cycle
is dominated by the slow growth phase which in the Lotka-
Volterra model occurs at low predator abundances. Note,
however, that we at no point have assumed that the population
crash should be due to the influence of a predator. We just
assumed that the crash was fast and did not extend the period
length or influence the exponential growth phase significantly.
The derivation here should therefore be equally valid if a
population crash is caused by, e.g., a shortage of food or an
epidemic. Given that in the case of many rodents it is unclear
if it is actually predation that drives the cycle [15], this is a
significant advantage.

Another interesting feature of this expression is the log-
arithmic scaling with population maximum-minimum ratio.
Hanski has already hinted at such a scaling relation for the
vole-weasel system [16]. In his 1991 paper, he shows that
ln ( xmax

xmin
) correlates with latitude and that oscillation period

also correlates with latitude. Oscillation period thus also cor-
relates with the logarithm of the maximum-minimum ratio. It
is possible that we have found a theoretical explanation for
this correlation.

In the next section, we will demonstrate that Eq. (17)
roughly fits the pattern seen in oscillating populations in
nature, although there is a significant deviation between pre-
dicted and observed numbers. For the prey-predator ratios,
on the other hand, the parameters derived above mostly give
realistic results.

IV. COMPARING THEORY WITH DATA

The classic example of a system described well by the
Lotka-Volterra equations is the interaction between the Cana-
dian lynx (Lynx canadensis) and the snowshoe hare (Lepus
americanus). Although there has been some doubt as to
whether the hare population cycle is driven primarily by
predation or other factors, there seems to be evidence that
changes in hare mortality are mainly due to predation [23].
The population density of hares oscillates from around 8 to
just under 200 per square kilometer over the 8- to 10-year-long
cycle [24]. The average density of lynx ranges from 0.03 to
0.3 km−2 [25].

To see how well our model fits with observations, we plug
the average masses of lynx, on average roughly 11 kg [20],
and hares, roughly 1.6 kg [26], into the equations and solve
them numerically. We choose initial conditions corresponding
to the density per square kilometer when hare abundance is
lowest (x0 ≈ xmin = 8 and y0 = 0.3, due to the phase differ-
ence between lynx and hare population oscillations, we let
lynx population start out high and hare population start out
low). We then tune the parameter k to obtain the correct
ratio between cycle highs and lows. The result can be seen in
Fig. 2(a). Our simulation predicts an average prey to average
predator population ratio that is quite close to the observed
values. The period is off by about a third, which, given the
simplifications of the model, is not a bad estimate. The fact
that the population collapse takes such a short time in our
simulation contributes to our underestimating the period. In
reality, the collapse takes about 1–2 years [24]. The spiky
appearance of the graph is also not very naturalistic. However,
taking increasing predation from other predators, increasing
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FIG. 2. (a) A numerical simulation of the Lotka-Volterra equations for lynx and hare; xmax ≈ 180 km−2, x0 = xmin ≈ 8 km−2, y0 = 0.3,
and k = 1.05 × 10−2. The period is just under 2000 days, or 5.5 years, and the average hare density is 51 km−2. Average lynx density is
0.059 km−2. The ratio of the averages is 860 hares per lynx. As can be seen from the logarithmic plot, the predicted predator oscillations
are too violent, with extinction of lynx at the cycle minimum. When this does not actually happen, it may be due to the fact that lynx can
survive partially on other prey when hare population is low [14]. (b) The solution obtained using the masses of voles and weasels. xmax ≈
104 km−2, x0 = xmin ≈ 102 km−2, y0 = 20, and k = 2 × 10−4. We still see a cycle somewhat shorter than the observed, with an estimated
T ≈ 2.3 years. Again, the predator oscillation is unrealistically violent. Average vole density is 2100 km−2 and weasel density is 4.6 km−2,
giving 460 voles per weasel.

susceptibility to disease, and other complicating factors that
increase with population density into account would most
likely lead to a more rounded shape of the peaks, similarly to
the one seen in actual observations. It turns out that the time
average abundances are fairly close to the predicted equilib-
rium abundances in all of our numerical solutions. We shall
therefore use mean abundances and equilibrium abundances
interchangeably when validating our results.

We also plug the masses into Eqs. (14) and (17). The
theoretical estimates obtained this way and their uncertainties
can be seen in Table I. For this particular system, we estimate a
period of T ≈ 1400 days. Compared to the observed period of
around 3000 days, the error is about 50%. As far as order-of-
magnitude estimates go, this is still reasonable. Neglecting the
duration of the collapse phase is probably part of the reason
for this error. For comparison, the cycle period obtained from
linearization gives us 2π√

αδ
= 550

(mxmy )1/8 = 770 days, which is far
too short. This again underlines the usefulness of approxi-
mating the cycle as a series of instantaneous collapse phases
followed by exponential growth phases.

Another case where the basic Lotka-Volterra equation
might be useful is the interaction between the vole (Micro-
tus agrestis) and least weasel (Mustela nivalis) in northern
Scandinavia, as mentioned above. Although there still is some

doubt about the role of predation in the cycle here as well,
there is evidence that predation plays at least a significant
part. Vole density ranges from 102 to 104 km−2 over a cycle,
while weasel density ranges from 1 to 20 km−2 and is strongly
correlated with vole density at northern latitudes [16]. The
cycle is observed to be about 4 years long in the areas we are
interested in [11]. A numerical solution of the Lotka-Volterra
equations for these parameter values can be seen in Fig. 2(b).
This numerical solution gives us an estimate of the period T ≈
830 days = 2.3 years and of the prey-predator ratio of 460
voles per weasel. A comparison between theoretical results
calculated using the derived expressions and observations can
again be seen in Table I.

Large population oscillations are observed in some rodent
species even when there is no single obvious predator feeding
on the rodent. One example of this is the northern collared
lemming of Greenland (Dicrostonyx groenlandicus) [17]. We,
of course, cannot use such an example to test our hypothesis
about prey-predator population ratios, but we may still use it
to examine the accuracy of the derived period. The results
of our examination can be seen in the table, and both the
estimated period and the error are similar to those of the vole.

As a final example, we will consider the wolves (Canis
lupus) and moose (Alces alces americanus) of Isle Royale in

TABLE I. Table of the data used and the values calculated, including uncertainties. Numbers are rounded to the highest uncertain digit
[16–22].

System my (kg) mx xmax xmin Observed x/y ratio Theoretical x/y Obs. T (days) Theoretical T

Lynx-hare 11 ± 1 1.6 ± 0.1 180 ± 80 8 ± 4 600 ± 400 850 ± 70 3000 ± 200 1400 ± 300
Vole-weasel 0.08 ± 0.01 0.025 ± 0.002 (1.0 ± 0.2) · 104 100 ± 50 200 ± 200 510 ± 60 1600 ± 200 730 ± 90
Wolf-moose 33 ± 1 350 ± 10 – – 40 ± 20 42 ± 2 – –
Lemming osc. – 0.064 ± 0.003 1000 ± 200 14 ± 5 – – 1460 ± 0 860 ± 80
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FIG. 3. (a) The observed and theoretically calculated prey-predator population ratios for the wolf-moose, vole-weasel, and hare-lynx
systems. Here the full line shows the predicted power law. The dotted line shows the theoretically calculated prey-predator ratio for half the
ecological efficiency used in this paper (5%), while the dashed line shows the prey-predator ratio calculated for twice the used ecological
efficiency (20%). (b) The observed and calculated periods of population oscillations for voles, lemmings, and hares. The black line shows the
corresponding mass power law where we have set ln ( xmax

xmin
) = 4. This number is close to the values for the vole and lemming oscillation. The

dotted and dashed lines show the (mxmy )1/8 scaling law predicted from linearization, where my is that of lynx and weasel, respectively. We
could not calculate an oscillation period for the moose of Isle Royale, and no single predator is known to cause the lemming oscillation, so
they each only occur in one of the plots. Data points and error bars show the numbers without any rounding.

Lake Superior, Michigan. On this island, wolves and moose
coexist in isolation, with very little interference from other an-
imals. Due to the small size of the island, animal populations
are so small that random events (such as the introduction of
parvovirus to the wolf population in 1980) will have a large
influence on the population, which seems to fluctuate almost
erratically [27]. Therefore, we cannot determine an observa-
tional population cycle length for this system. However, the
average populations should reflect an equilibrium ratio that
should be predictable from wolf and moose mass. As can be
seen in Table I, we obtain an accurate estimate of this ratio.

Based on these cases we may conclude that our idealized
model works as an order-of-magnitude estimate of the behav-
ior of ecosystems. There is a discrepancy between the derived
period of population oscillations and what is observed, and
this discrepancy cannot be explained entirely by experimen-
tal uncertainty. However, our results reproduce two patterns
observed empirically, which have not yet been theoretically
explained. One is the apparent scaling of oscillation periods
with mass to the quarter power. Another is the scaling of
period with ln ( xmax

xmin
). We will therefore argue that the derived

expression is of interest despite the discrepancy.

V. DISCUSSION

As predicted in the Introduction, we have been able to
parameterize the Lotka-Volterra equations using animal body
mass in such a way that they provide fairly accurate pre-
dictions of the equilibrium predator-prey population ratio.
When we also know the amplitude of the fluctuations of prey
population, we obtain analytical estimates of the oscillation
periods that reproduce the patterns found in nature, albeit with
a discrepancy. Notably, our approximate expression for the

cycle period exhibits the same allometric mass scaling as the
one found empirically. Furthermore, it shows a logarithmic
scaling of period with the ratio of maximum to minimum
populations, which is also found in data. The ratios of average
prey population to average predator population found in our
simulations fit relatively well with real-world data. For the
population ratios, the uncertainty of population counts and
animal weights explain the errors in two of three cases. Our
prediction of the amplitude of predator oscillations, however,
is unreasonable in comparison with observations, possibly be-
cause of the assumption that the predator is entirely dependent
on one prey species.

Of course, even though our model was only meant as a
crude estimate, we need to address why we see the discrep-
ancy that we do between theory and observations. In the case
of the prey-predator population ratios, the uncertain estimate
of ecological efficiency is a likely source of error. The range
of ecological efficiencies observed in the real world is so large
that it poses a challenge to this kind of population dynamical
modeling. If our estimated efficiency is a bit too low, then it
will explain the discrepancy, as can be seen in Fig. 3.

The period is off by a larger percentage, and it is less
clear what might cause the error. One drastic assumption that
we have made is that it takes no time for animals to grow
to adult size. We have considered whether this delay might
explain some of the error. To take the time required to reach
full size into account, we have attempted a numerical solution
of the equations while including a time delay in predator and
prey reproduction. Unfortunately, this does not significantly
change the oscillation period. Another possible source of error
is the assumption that collapse is instantaneous. In reality, it
does take some time, though not as long as the exponential
growth phase. If the duration of the collapse phase also
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scales with animal mass, then it would help explain why we
consistently underestimate the period by about 50%.

Finally, our model is a mean-field theory, whereas, in
reality, geographical separation does play a role. Maybe the
fact that real predators have to seek out the prey and that prey
may survive for longer in some locations than in others may
serve to slow the dynamics of real, geographically extended
ecosystems. This, however, is a subject that we will leave for
future studies.

Despite these discrepancies, our work demonstrates that,
by using the many available allometric mass scaling laws,
it is possible to obtain reasonable predictions from even
very simple population dynamical models. This fact should
have wide applications in population dynamics. Another area
where this could be applicable is in epidemiology. The incuba-
tion and recovery times of a variety of diseases with multiple
host species have already been shown to scale with host
mass [28], and Dobson [29] has studied a multihost disease
model parameterized using mass. A possible further use of the
model described here could be to construct an epidemiological
model taking predation into account. Models of epidemics
in predator-prey systems have been proposed before [30],
but they often contain so many unknown parameters that
an examination of parameter space becomes difficult. Here

a parametrization using mass could significantly reduce the
number of free parameters.

In 1992, Yodzis and Innes pointed out that the application
of mass scaling relations to population dynamics can poten-
tially make it a lot easier to make realistic estimates of the pa-
rameters involved. Still, to our knowledge, only recently have
the predictions of a mass-parameterized population dynamical
model have been tested against real-world data. The scaling of
reproduction rate with animal mass has also provided us with
a possible explanation for the relationship between population
cycle length and mass, at least in systems where the amplitude
is large. This is, for example, very much the case for several
rodent and lagomorph species. In conclusion, we find that
the allometric mass scaling laws that apply to a variety of
biological quantities could potentially prove highly useful in
population dynamics.
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Abstract. Disease and predation are both highly important in ecology, and pathogens with multiple host
species have turned out to be common. Nonetheless, the interplay between multi-host epidemics and
predation has received relatively little attention. Here, we analyse a model of a predator-prey system with
disease in both prey and predator populations and determine reasonable parameter values using allometric
mass scaling relations. Our analysis focuses on the possibility of extinction events rather than the linear
stability of the model equations, and we derive approximate relations for the parameter values at which
we expect these events to occur. We find that if the predator is a specialist, epidemics frequently drive
the predator species to extinction. If the predator has an additional, immune prey species, predators will
usually survive. Coexistence of predator and disease is impossible in the single-prey model. We conclude
that for the prey species, carrying a pathogen can be an effective weapon against predators, and that being
a generalist is a major advantage for a predator in the event of an epidemic affecting the prey or both
species.

Introduction

Predation is one of the fundamental modes of interaction
among living organisms. Mechanisms similar to predation
are found in anything from mammals to bacteria. Another
equally important factor is epidemic disease, which is also
found on all scales in the ecosphere. In recent years it has
become clear that many epidemic pathogens are shared
between several species [1], of which some presumably
prey on each other. If the predator runs a risk of becoming
infected when eating infected prey, it is possible that the
prey species will be able to use the pathogen as a weapon
against the predator. This could even be a very effective
evolutionary strategy, given that prey species are often
much more numerous than their predators, leading to a
high infection pressure against the predator species [2].
On this basis, we propose the hypothesis that a disease
shared between a prey species and its predator will turn
out to be a major problem for the predator, and thus per-
haps a long-term advantage for the prey. However, if the
predator has several prey options, epidemics should pose
much less of a threat to it, as it can just feed on an immune
prey species in the event of an epidemic.

� Supplementary material in the form of a .pdf file available
from the Journal web page at
https://doi.org/10.1140/epje/i2020-11966-7
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The dynamics of predator-prey-pathogen interactions
in general have received some attention in recent decades.
Most attention has been given to the interaction between
predators and single-host epidemics or parasitism [3–7].
Lafferty et al. [8] have attempted to coordinate the vari-
ations on Lotka-Volterra and SIR models that have been
proposed to deal with predation, disease, and parasitism.
In their work, they propose a general framework under-
lying all consumer-resource models. However, the inter-
play between predation and multi-host infectious disease
specifically has not been as thoroughly studied. Though
this is partly justified by the similarity between parasitism
and multi-host epidemic disease, the pathogen that we
here want to study lacks the life-cycle dynamics associ-
ated with trophically transmitted parasites [8].

A few models similar to the one we will put forward in
this paper do exist. Hsieh and Hsiao [9] have constructed
one such model, and Han et al. [10] briefly cover another.
These examples focus their analyses on the linear stabil-
ity of the fixed points of their system, whereas we will
focus on extinction events. We choose this focus, since
an epidemic outbreak at least initially is a perturbation
away from equilibrium which may temporarily drive pop-
ulations to such low densities that it would lead to extinc-
tion in the real world. We will attempt to derive analytical
relations for the boundaries between predator-, disease-,
and prey-dominated regions of parameter space.

When analysing epidemiological models, it is diffi-
cult but crucial to determine what parameter ranges are
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reasonable. A discussion of this problem is often missing
from more theoretical treatments [9,10]. Therefore, we will
here attempt to use the allometric mass scaling laws for
many demographic and epidemiological quantities to esti-
mate the range of parameters.

It has long been known that quantities such as repro-
duction rate and metabolic effect scale with animal mass
to some quarter power [11]. Attempts have been made in
ecology to use this to predict the behaviour of predator-
prey systems [12–14]. More recently, it has been shown
that disease recovery and death rates also scale with an-
imal mass [15], which is useful in epidemiological mod-
elling [16]. The parameterisation that we will use here
will be based in part on our previous work on parame-
terising the Lotka-Volterra predator-prey equations [14].
The mass scaling relations are for the most part fairly
general across different classes of animals. We will here be
using the mass scaling relations valid for mammals. One
could construct similar models for predation among other
animals by mainly changing the constants of proportion-
ality [11], and we would therefore expect our model to
be relevant even for non-mammals. Only when looking at
entirely different organisms such as bacteria do we need
to be more careful, as the mechanisms that might be re-
sponsible for the scaling are different [17]. Nonetheless,
a similar scaling law for metabolic effect exists even for
bacteria [18].

In summary, the questions that we will try to answer
here will be whether an epidemic affecting a prey species
can drive a predator species to extinction, and if so, for
what parameter values this will be most likely. We also
want to examine the effect of a predator being a generalist,
i.e. having an alternative prey option that is not affected
by the epidemic.

The model

To study this system, we use the Rosenzweig-MacArthur
equations for predator-prey interactions [19], but with a
modified predator death rate:

dx

dt
= αx(1 − x/K) − φx

y

x + ε
, (1)

dy

dt
= νy

x

x + ε
− δy

ε

x + ε
, (2)

where x is prey, y is predator, α is the per capita prey
reproduction rate and δ is the predator starvation rate in
the absence of prey [20]. K is the prey carrying capac-
ity and ε is the half-saturation constant for predators. φ
and ν are coupling constants of the functional and numer-
ical responses, respectively [21]. We choose to modify the
predator death rate, since we do not expect this rate to
be constant with respect to prey population. Instead, it
should approach δ when there is no prey and the preda-
tors starve at a constant rate, and zero if there is a lot
of prey. The last part holds if starvation is assumed to be
the primary cause of death for predators, as in the Lotka-
Volterra model [20].

We will combine these equations with the SIR model,
which gives the following equations for the changes in pop-
ulation during an epidemic:

dS

dt
= −βSI, (3)

dI

dt
= βSI − γI, (4)

dR

dt
= γI. (5)

Here, S denotes susceptible individuals, I infected, and R
recovered or dead individuals. β gives the rate at which
each infected individual infects susceptible individuals,
and γ gives the death or recovery rate of the infected [22].

When constructing our model, we shall make the as-
sumption that the disease is always deadly, as the pos-
sibility of recovery with immunity will vastly complicate
the analysis in a predator-prey system. Furthermore, we
assume that infection from predator to prey is impossible,
as any close encounters between the two species are likely
to cause the immediate death of the prey. When mod-
elling the system below, we find that varying the predator-
predator infection rate makes relatively little difference.
Figures illustrating this can be found in the supplement.
For the sake of simplicity, in the following we will there-
fore only treat the case where the majority of predator
infections stem from prey, and predator-predator infec-
tions can be neglected. We also let only healthy animals
reproduce, although both healthy and infected predators
eat prey. Combining the SIR and Rosenzweig-MacArthur
models, we end up with the following equations for the
single-prey system:

dSx

dt
= αSx(1 − (Sx + Ix)/K)

−βxxSxIx − φ
Sy + Iy

Sx + Ix + ε
Sx, (6)

dIx

dt
= βxxSxIx − φ

Sy + Iy

Sx + Ix + ε
Ix − γxIx, (7)

dSy

dt
= ν

Sx+Ix

Sx+Ix+ε
Sy−βyxSyIx−δ

ε

Sx+Ix+ε
Sy, (8)

dIy

dt
= βyxSyIx − γyIy − δ

ε

Sx + Ix + ε
Iy. (9)

The equations for the number of dead individuals have
been dropped, as they add no information when the
disease is universally fatal. Subscripts here denote the
species, with βij being the coefficient for infection from
species j to species i. If we set the probability of infection
when eating an infected prey equal to 1, the infection coef-
ficient βyx becomes equal to φ

Sx+Ix+ε , as the number of in-
fected prey eaten equals the number of predators infected.

It should be noted that the exact functional form of
these equations is not very important for the conclusions
of this study. In the Electronic Supplementary Material,
we show a parameter sweep analogous to the one found
in fig. 1, but using the classical Lotka-Volterra equations
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with linear functional and numerical responses. This turns
out to not significantly affect the conclusions of this study.

From [11,14,23] we can find relations between predator
and prey mass (mx and my) and the parameters α, δ, φ,
and ν. We want α and ν to represent theoretical maximal
reproduction rates for prey and predators respectively. In-
stead of using the data from growing populations in the
wild, where starvation, disease and other complications
practically always play a role, we believe that the theo-
retical cap on reproduction should be set by the gestation
period. α and ν should thus be the inverse gestation pe-
riod [11]:

α ≈ 1/tg ≈ 1

50
m−1/4

x , ν ≈ 1

50
m−1/4

y [1/days],

(10)
with mass in kilograms. A similar mass scaling law can
be found for the incubation period of species that lay
eggs [24]. We assume that when the predator is satis-
fied (Sy ≈ ε), the predator population is constant, giv-

ing us δ ≈ 1
50m

−1/4
y as well. In order to calculate how

many prey the predators need to eat to reproduce this
much, we must know the ecological efficiency η. The
ecological efficiency, defined as the fraction of consumed
prey biomass converted into predator biomass, we esti-
mate to be 10% although the quantity varies significantly
with trophic level and the specifics of the species [25,26].
Knowing the efficiency, we can calculate the number of

prey eaten as φ Sx

Sx+εSy =
my

ηmx
ν

Sy

Sx+εSx, which implies

φ =
10my

mx
ν =

m3/4
y

5mx
Finally, also from Peters [11], we

have the following approximate relation for the carrying
capacity:

K ≈ 200m−3/4
x [prey/km

2
]. (11)

This relation is valid if we assume that the prey is a mam-
mal and accept that the metabolic scaling exponent 3/4 is
the “true” theoretical value of the empirically estimated
scaling exponent (∼ 0.61) of the carrying capacity. By
using this carrying capacity relation, we decide that the
units of the population densities are [km−2]. ε is difficult
to determine, and we therefore choose to set ε = K/2.
We believe this to be reasonable, as it allows the predator
population growth to saturate before the prey population
reaches its carrying capacity. However, as can be seen in
the supplement, we can set ε to practically any value be-
tween 0.3K and K and still get similar results.

To extend the predator-prey model to the predator-
prey-disease case, we also need to know the scaling rela-
tions for disease duration. According to Cable et al. [15],
both the time until first symptoms and the time until re-
covery or death scale as t = cm1/4, where c is an experi-
mental constant. Here, we shall use the constants appro-
priate for rabies. We choose to use these constants since
we need an estimate of the order of magnitude of the scal-
ing coefficient. It should be stressed, however, that the
disease modelled here does not correspond to any single
real-world disease, since we also wish to study the effects
of varying its infectivity.

According to Cable et al. the duration of the period
during which the infected individual is symptomatic can

be written tI ≈ tD − tS = (c2 − c1)m
1/4, where c1 and c2

are the scaling coefficients appropriate for the time until
first symptoms and death, respectively. We assume that
this period is of the same order as the infective period
of the disease. The constants have been determined using
statistical analysis, and their values are c1 = 9 (4, 19) and
c2 = 16 (7, 32), where the numbers in parentheses are the
boundaries of the confidence interval from p = 2.5% to
p = 97.5% [15,27]. γi can now be found as 1/tI,i.

Finally, to make the parameterisation more intuitive,
we choose to express infectivity in terms of a quantity Rxx

related to the basic reproduction number (R0) of the dis-
ease. The basic reproduction number represents the num-
ber of secondary infections that occur when exposing an
infected individual to a completely susceptible population.
The reproduction number is related to the infection coef-

ficient as Rij =
βijSi,0

γj
in the SIR model [2], where Si,0

is the initial density of susceptible individuals of species i
at the onset of the epidemic. R0 has the important prop-
erty that if it is less than 1, the disease-free equilibrium is
stable in the SIR model. We find that for the prey-prey re-
production number Rxx to have this property in the case
with immune predators, we cannot simply use the formula
given above. Instead, we would have to add a correction,
so that Rxx → Rxx − α

γx
(1 − δε

νK ). Nonetheless, for sim-

plicity we will here use the formula Rxx =
βxxSx,0

γx
, since

the correction is quite small (∼ 0.1) for most parameter
values in our parameterisation. If we choose the starting
population Sx,0 to be the predator-prey equilibrium in the

absence of disease, we have Rxx = βxxδε
γxν .

R0 ranges from 1, where an epidemic is barely able to
sustain itself, up to 18 in measles [28]. We here vary Rxx

from 1 to 10. The cross-species reproduction number Ryx

will be determined by the number of prey eaten by preda-
tors which in turn depends on their mass ratio. As the ini-
tial predator population, we similarly choose the predator-

prey equilibrium value, Sy,0 = αε
φ

Kδν+Kν2−δ2ε−δεν
ν2K , which

reduces to Sy,0 = αε
φ given our parameterisation.

By using this parameterisation, we are now left with
only five parameters: Prey mass, predator mass, ε, prey-
prey disease reproduction number, and the infection prob-
ability when predators eat infected prey. If we fix this
probability at 1, we save another parameter. This is not
always a good approximation [29]. However, varying the
infection probability has a much smaller effect than vary-
ing mi or Rxx, as is demonstrated in the supplement. We
therefore choose to fix the probability at 1. The mass pa-
rameterisation further ensures that the values of the pa-
rameters used are at least biologically plausible.

Examining parameter space

Based on the theoretical setup of our model we can make
some predictions about the behaviour of the system in dif-
ferent regions of parameter space. Since the disease cou-

pling constant βxx = Rxxγx

δε ν =
m1/2

x

700 Rxx is larger than the
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maximal predator growth rate per prey ν
ε =

m3/4
x

5000m
1/4
y

for

all parameter values except very high prey mass and very
low predator mass, we expect that if the disease survives
the initial outbreak and following depletion of suscepti-
ble prey, it will competitively exclude the predator. Given
that we introduce an extinction threshhold, much of the
behaviour of the system will depend on whether any of the
populations reach this threshhold in the initial large ex-
cursion from equilibrium caused by the epidemic. We can
derive an approximate expression determining if the dis-
ease or the predator will go extinct when prey population
is initially depleted.

When hit by the epidemic, the prey population will be
reduced to approximately Ssurv ≈ Sx,0e

−Rxx [2]. We may
assume that while the populations of predators and in-
fected prey are also low, the prey will grow approximately
exponentially from this low population. If τx is the time
it takes for the prey to recover, this assumption gives us

Sx ≈ Sx,0e
−Rxxeατx = Sx,0, (12)

τx ≈ Rxx

α
. (13)

Similarly, the time τy it will take for the predator pop-
ulation to reach the extinction threshhold C assuming ex-
ponential decay can be found as

Sy,0e
−δτy ≈ C =⇒ τy ≈ −1

δ
ln

(
C

Sx,0

)
. (14)

By comparing eqs. (13) and (14), we find that the
predator species will be able to survive the initial period
of starvation if the inequality

Rxx < −α

δ
ln

(
C

Sy,0

)
= −

(
my

mx

)1/4

ln
(
10−6m3/4

y

)

(15)
is fulfilled. An analogous expression

Rxx < −α

γ
ln

(
C

Sy,0

)
= − 7

50
ln

(
10−7m3/4

x

)
(16)

can be derived, giving the condition for the disease to sur-
vive the initial suppression of the susceptible prey popula-
tion. However, since the disease growth rate is much higher
than the predator growth rate, the assumption that the
infected population declines exponentially until the prey
population has recovered completely is no longer approxi-
mately true. This expression therefore underestimates the
value of Rxx where the transition from predator extinction
to disease extinction occurs, as we shall see in fig. 1.

Finally, since the dependence of Ssurv on Rxx is ex-
ponential, we may assume that most prey will contract
the disease in the initial oubreak, Ix ≈ δε

ν . Using this,
we can derive a relation between predator mass and prey
mass at the boundary where disease spillover drives the
predator to extinction. The number of prey eaten must
be roughly equal to the number of predators for disease
spillover to become a serious threat. We therefore have

that φ
IxSy

Ix+ε ≈ Sy. Given our assumption that Ix ≈ Sx,0 at
the epidemic peak, this implies that

δε

ν
≈ ε

φ − 1
. (17)

By using the mass parameterisation given above, we
can finally derive the relation

m3/4
y ≈ 100ηmx. (18)

When m
3/4
y > 100ηmx, the predator is driven to ex-

tinction by disease spillover during the initial epidemic. If
some portion of the prey population is immune, as we will
discuss below, this mass limit becomes higher.

To test the validity of these expressions, we perform
a parameter sweep where we let the different masses and
the reproduction number vary logarithmically. We scan a
region of parameter space large enough that the species
falling within this region are interestingly different.

By inspection of numerical solutions to the model
equations, we have found that after the disease outbreak,
the populations will usually perform damped oscillations
of initially large amplitude around some equilibrium. Al-
though the new post-outbreak equilibria might be stable,
the initial perturbation may cause the population to tem-
porarily reach such low values that it would lead to extinc-
tion in any system with a discrete number of individuals.
As initial condition, we choose the nontrivial equilibrium
of eqs. (1) and (2) to avoid introducing further, artificial
oscillations into the system.

We introduce an extinction threshhold of C = 10−5. If
a population dips below this value, we consider it extinct.
It should be noted that the precise value of the thresh-
hold makes a relatively small difference in the end result,
as might be expected due to the logarithmic relations of
eqs. (15) and (16). After solving the equations numeri-
cally over T = 20000 days, we classify the end state of the
system into one of four categories: Scenarios with preda-
tor survival, disease persistence, disease-predator coexis-
tence, and scenarios where only the healthy prey popu-
lation survives. To filter out transient predator-pathogen
coexistence, we let the simulation run up to 105 days if
there is still coexistence at the end of the first simulation.
Plots of the regions of parameter space with predator sur-
vival and disease persistence can be seen in fig. 1.

From the plots, we see that our estimates of the be-
haviour of the system are approximately correct. When
the epidemic does not directly affect the predators
(fig. 1(a)), the predators usually survive at high Rxx. As
predicted, for high prey mass, low predator mass, and high
Rxx, the predator may go extinct due to starvation during
the initial outbreak. We see a “zone of exclusion” at inter-
mediate Rxx where the disease persists, even if its upper
boundary is higher (around Rxx = 4) than predicted from
eq. (16) (Rxx = 2.26). Since the disease growth rate is
always higher than the predator growth rate for these pa-
rameters, the disease always drives the predator to extinc-
tion if it becomes endemic. The gap at intermediate Rxx is
thus evidence of competitive exclusion between predator
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Fig. 1. Parameter space regions where the predator survives
or the disease persists, as a function of prey mass mx, preda-
tor mass my (both in kg), and disease reproduction number
between prey Rxx. The coordinates of each red dot indicates a
set of parameter values where the predator survives, while the
location of the black squares indicate parameter values with
disease persistence. If (a) the predators are immune, preda-
tors usually survive at high Rxx. On the other hand, if (b)
the predators are susceptible, they survive at high Rxx only if
they are not too large compared to the prey. In (c), an immune
prey is included alongside the susceptible one. The susceptible
predators survive regardless of disease infectivity, as long as
the predator is not too large compared to the prey. At low
Rxx there is predator-disease coexistence. If the predator is
not susceptible, it always survives (figure not shown).

and disease, which both subsist on the same resource, the
susceptible prey.

In the case where predators are susceptible to the dis-
ease (fig. 1(b)), the diagram again confirms our expecta-
tion that predators survive at high Rxx if they have less
than the predicted mass relative to the prey mass. All in
all, the diagrams and our approximate calculations show
that sharing a pathogen with a prey species will often

cause the predator to go extinct. In fact, even an outbreak
of a prey-specific epidemic can cause predator extinction,
at least if the predator is a specialist.

The effect of an additional, immune prey species could
be interesting to study, since this would provide the preda-
tor with a resource not shared with the pathogen. We
would expect this to soften the effect of competitive ex-
clusion. If there is disease spillover, the predator may still
be driven to extinction as predicted by eq. (18), but the
threshhold mass will be higher if a part of the prey pop-
ulation is immune. To test this hypothesis, we modify
eqs. (6)–(9) to include another prey that is unaffected by
the disease. We assume that the immune prey is similar
to the susceptible prey and simply set their parameters
to be equal. The initial combined prey population is the
same as before, and the prey species do not compete. We
get the results seen in fig. 1(c).

There is a striking difference compared to the case with
only susceptible prey. We here see the same effect as in
fig. 1(b), that predators bigger than a certain mass need
to eat a lot of prey and that disease spillover therefore
leads to predator extinction at high predator masses. If
we instead assume that predators are immune, they always
survive. At lower Rxx, the mass threshhold is not nearly
as clear and cannot be easily derived through analytical
arguments. The reason for this is that the system becomes
chaotic in this region, which also leads to predator-disease
coexistence in some cases. This has been shown and ex-
amined in more detail in a previous study [23].

To elucidate the nature of the transition between the
endemic state at intermediate Rxx and the predator-
dominated state at higher Rxx, we plot the local min-
ima of the infected prey and predator population time
series as functions of a control parameter in fig. 2. Fig-
ure 2(a) shows that the assumption that disease extinc-
tion is caused by a large dip in number of infected after
the initial outbreak is correct. We see the global mini-
mum value of the number of infected prey decrease with
Rxx until it reaches 10−5, at which point the disease dies
out. Figure 2(b) concerns the case with two preys and
examines the nature of the transition from predator ex-
clusion to predator-disease coexistence. The figure shows
two time series at different prey masses. It can be seen
here how chaotic behaviour of the system may lead to dis-
ease extinction for one set of parameters and a decaying
chaotic transient leads to predator-disease coexistence for
another.

Discussion

The most striking conclusion to be drawn from this study
is that an emerging epidemic in a specialist predator-prey
system will tend to drive the predator, but not the prey,
to extinction. Packer et al. have previously concluded that
there are many situations in which a predator species
might keep prey epidemics and parasites in check [7]. The
argument that we will make based on this study is the
converse: Given our dynamical model, epidemic pathogens
will make life hard for predators. The parameter sweeps
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Fig. 2. Graphs illustrating the nature of transitions between different regions of parameter space. In (a) we plot the local minima
of the timeseries of the infected prey population (black) and predator population (red) as a function of the control parameter
Rxx. Like a bifurcation diagram, this provides information about the fixed points of the system, but also makes it possible
to observe when the population reaches the extinction threshhold during an initial, large excursion. The diagram shows the
transition from a predator-dominated state at low Rxx to a disease-dominated state at intermediate Rxx, to another predator-
dominated state at high Rxx. The latter transition happens when the global minimum reaches the extinction threshhold, while
the former happens when the predator-prey equilibrium becomes unstable at Rxx ≈ 1. Here, mx = my = 1. Panel (b) shows
two timeseries illustrating the transition from a state with predator-disease coexistence (upper panel) at mx = 0.063 to a
predator-dominated state at mx = 0.40 (lower panel) in the version of the model with two prey species. We see that the system
is at least transiently chaotic. my = 0.063 and Rxx = 1.26.

show that disease and specialist predators cannot coexist.
We believe this to be an example of the disease competi-
tively excluding the predator. Both the pathogen and the
predator share a resource —the susceptible prey— and
in such cases, long-term coexistence is impossible [30]. As
the spread of the disease is not limited by saturation or
energetic concerns, it will tend to win over the predator.
What saves the predator in our model is the extinction
threshhold which means that very infectious diseases do
not become endemic.

The implication of this conclusion is that we should
see very few ecosystems with specialist predators, prey,
and a shared pathogen in the real world, as they are in-
herently unstable. One potential caveat is that we have
here focused on mammals, using the mass scaling relations
and assumptions relevant for mammalian predator-prey
systems. However, due to the near-universality of mass-
scaling relations in animals [18] we expect that most of
the relations derived here should be easily transferable to
other classes.

In the large region where the predator goes extinct
but the pathogen becomes endemic, carrying the pathogen
may still turn into an advantage for the prey species. From
evolutionary biology, we know that when a pathogen be-
comes endemic in a given species, there will be a pressure
for it to evolve to become less lethal over time [31]. This
allows the pathogen to live longer in each host, and possi-
bly to spread more effectively. An initially fatal epidemic
can thus end up becoming harmless to its primary host
species. If it has wiped out the predator in the process,
this will represent a win-win situation for the prey species.

Finally, as an additional result, predators that are
much bigger than the size of their prey are a lot more

vulnerable to infection with a shared pathogen from their
prey, since they need to eat more potentially infected indi-
viduals to survive. This is true even for generalist preda-
tors and is an obvious consequence if a large percentage
of the prey population is infected. What is less obvious
is that the upper bound on predator to prey mass ratio
drops abruptly when Rxx dips below the disease persis-
tance threshhold in the generalist predator case. Above
this threshhold, a generalist predator species can be many
times the size of its infectious prey species and still not go
extinct due to infection. Below the threshhold, a preda-
tor species larger than the infected prey will be driven to
extinction by cross-species infections. A further complica-
tion in this region of parameter space is the emergence of
chaotic behaviour, which means that within a relatively
small region, there are cases where the pathogen dies out,
where the predator dies out and where both coexist.

The physical reason behind the change in threshhold
mass is that at high infectivities, the epidemic quickly uses
up the supply of susceptibles and dies out. Therefore, a
smaller portion of the predator population has time to
be infected. This result, in addition to energetic concerns
about hunting very small animals, could lead to an evolu-
tionary pressure for predators to not grow too large com-
pared to their prey.

Given all of the above, we conclude that epidemic dis-
eases can serve as an evolutionary weapon against spe-
cialist predators. A pathogen infecting a prey species
will competitively exclude any specialist predator species,
even when the predator is not itself susceptible to the
pathogen. Epidemics shared between predator and prey
may help impose an upper limit on the predator-prey size
ratio, since eating a lot of small prey is dangerous if the
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prey is infectious. The negative effect of prey disease on
the predator is however weakened a lot when we take
into account additional, immune prey species. The un-
easy coexistence of predators and pathogens should make
specialist predator-prey-disease systems rare in the real
world. Our study supports the conclusion that being a
specialist predator is a highly vulnerable position when
the prey is affected by an epidemic pathogen, and that
being a generalist should be evolutionarily favourable for
predator species. Normally, one would expect that com-
petitive exclusion presents a drive towards speciation and
specialisation [32]. Our model, on the contrary, provides
an example of how the inherent vulnerability of specialists
will drive species towards generalisation.

In conclusion, our study supports the idea that shared
epidemic diseases could be a much more important factor
in the coevolution of predator and prey species than they
are usually given credit for.
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Outcomes for different values of the half-saturation constant ε

(a) (d) (g)

(b) (e) (h)

(c) (f) (i)

Figure 1: Plots showing the distribution of predator survival (red circles) and disease persistence (black squares)
scenarios in parameter space for the three versions of our model. The coordinates of the markers indicate the parameter
values leading to the given scenario, with prey mass mx and predator mass my in kg. Row 1 (a,d,g) shows the model
with immune predators, row 2 (b,e,h) susceptible predators, and row 3 (c,f,i) the model with two prey species, one
immune and one susceptible, as well as susceptible predators. In the first column, figs. (a-c), we have set ε = 0.1K.
Here, the system appears to be unstable, at least when there are two prey species (fig. (c)). When ε = 0.3 (figs. (d-f)),
we get a distribution of predator survival and disease persistence similar to the one shown in the main text of this
paper. This remains true for ε = 0.95K (figs. (g-i)). When ε > K, the predator reproduction rate remains smaller
than the death rate for all possible prey densities, and the model is therefore invalid for these ε. We see that in the
range from ε = 0.3K to ε ≈ K, the exact value of ε makes little difference, and we are therefore justified in taking it
to be K/2.
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Outcomes for different prey-predator and predator-predator infectivities

(a) (c)

(b) (d)

Figure 2: The effects of varying the infection probability when predators eat prey, pI . The locations of the red dots in
parameter space indicate parameter values leading to predator survival, while black squares indicate parameter values
leading to disease persistence. (a) shows the one-prey system for pI = 0.1 and (b) shows the two-prey system, also for
pI = 0.1. (c)-(d) show the same two systems for pI = 0.5.
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(a) (c)

(b) (d)

Figure 3: Plots demonstrating the effect of varying the rate of infection from predator to predator, here expressed via
the parameter Ryy which we have defined as Ryy ≡ βyySy,0/γy, where y0 = αε/φ is the initial density of predators
at the Lotka-Volterra equilibrium without disease. It is analogous to the basic reproduction number for prey-prey
infections, Rxx. (a) and (b) show the parameter values leading to predator survival (red dots) and disease persistence
(black squares) for Ryy = 1.26 in the one-prey and two-prey models respectively. The coordinates of the markers
indicate the parameter values. (c) and (d) show the outcomes for the same two models, but for Ryy = 5.01. Given the
magnitude of change of Ryy, the changes in predator survival are relatively minor.

Parameter sweep with alternative functional form

As an argument for the generality of our conclusions, we repeated the parameter sweep of the main paper, but using
the classical Lotka-Volterra equations to model predator-prey interactions:

dx

dt
= αx− φxy (1)

dy

dt
= νyx− δy. (2)

We here choose the parameterisation α = 1
50m

−1/4
x , δ = 1

50m
−1/4
y , φ = 10−3m

3/4
y /mx, ν = φ mx

10my
. The reasoning

behind this parameterisation can be found in our previous paper [1]. We have slightly modified the parameterisation
of α and δ in order to get parameter values of the same order of magnitude as those used in the main model.

4



(a)

(b)

(c)

Figure 4: This figure shows parameter sweeps analogous to the ones shown in the main paper, but using the classical
Lotka-Volterra equations with no prey carrying capacity and linear functional and numerical responses. The appearance
of parameter space is highly similar to that of the main paper. (a) shows the case with immune predators, (b) the case
with disease spillover from prey to predator, and (c) the case with two prey species, one susceptible and one immune.
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chaos in disease outbreaks among 
prey
Andreas eilersen*, Mogens H. Jensen & Kim Sneppen

epidemics are highly unpredictable, and so are real-world population dynamics. in this paper, we 
examine a dynamical model of an ecosystem with one predator and two prey species of which one 
carries a disease. We find that the system behaves chaotically for a wide range of parameters. Using the 
allometric mass scaling of animal and disease lifetimes, we predict chaos if (a) the disease is infectious 
enough to persist, and (b) it affects the larger prey species. This provides another example of chaos in a 
Lotka-Volterra system and a possible explanation for the apparent randomness of epizootic outbreaks.

Real ecosystems are full of noise and unpredictable dynamics. In systems as unpredictable as the ecosphere, it 
seems reasonable to look for chaos. Nonetheless true chaos has long been regarded as unlikely in nature. When a 
model of an ecological system gives rise to chaotic behaviour, it has been taken as an argument against the exist-
ence of such a system1, although this view has been gradually changing for the past few decades2.

A component of ecosystems that is known to frequently be unpredictable is disease3. In this paper, we will 
therefore examine whether the interplay between a generalist predator (here modelled as a predator with two 
prey species) and a pathogen that affects one of the preys can cause chaotic dynamics. We will prove that under 
our assumptions it can, and derive the conditions for this to happen, as well as examine on what timescale chaotic 
effects become noticeable. Our main argument is that chaos may be behind the unpredictability of epizootics.

A truly chaotic system depends so sensitively on initial conditions that it appears to be unpredictable despite 
being deterministic. Even a tiny change in initial conditions (the proverbial “flap of the butterfly’s wings”) can 
drastically change the outcome. Dynamics like these are particularly interesting in the context of epidemiology.

One of the most well-known examples of chaos is the logistic map, originally a discrete map model of animal 
reproduction4. Despite some prominent early examples of chaos originating in ecology, the focus in the study 
of chaos was elsewhere. Fewer instances of chaos were found in ecological models in continuous time such as 
the one presented here, and the topic therefore received less attention. Nonetheless, chaotic behaviour has been 
predicted from continuous time mathematical models in some cases2. A few important examples include models 
with two competing prey species5–8, N competing species9, and an omnivore-prey-resource system10. See also the 
review by Hastings et al.2 for an overview of the earlier work on this topic. A more recent discovery is the fact that 
chaos occurs even in a simple discrete time Lotka-Volterra system11.

More recently, the view of chaos as a solely destabilising factor that leads to ecosystem collapse has therefore 
mellowed a bit. Earn et al.12 even suggest that chaos might have a stabilising effect by desynchronising separate 
ecosystems and thus enabling species re-immigration, the so-called rescue effect13. Chaos is thus increasingly 
thought to be an inherent dynamic in ecosystems2. The study presented here lends further support to this view.

Below, we will see that in a system governed by the classical Lotka-Volterra equations, chaos should often be 
expected when a predator-prey system is exposed to a serious disease. More precisely, we will show that in a sys-
tem where a generalist predator subsists on two prey species, a disease becoming endemic in one of them can lead 
to chaos. This system is visualized in Fig. 1, including a typical trajectory for the four variables.

The assumption that the dynamics can be described well by the Lotka-Volterra equations with linear func-
tional responses is fairly restrictive. In nature, it will correspond to an ecosystem where prey equilibrium popula-
tions are far from the carrying capacity and it thus makes the applicability of this study more narrow. Nonetheless, 
some of the basic features of the model presented below are present in nature (e.g. predator-prey oscillations14 and 
periodic epidemics15), and we therefore believe it to capture some essential features of real ecosystems, although 
it may be very approximate.

Most epidemics are notoriously unpredictable16, particularly in the cases of zoonoses and vector-borne dis-
eases17, and it has previously been considered whether seasonality or noise might drive chaos in the dynamics 
of certain childhood diseases16,18,19. Furthermore, a few papers have examined the potential chaotic behaviour of 
enzootics in predator-prey ecosystems, usually with infection in the predator20,21, but also in the prey22. However, 
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to our knowledge, chaos and disease have not been studied in the context of generalist predators, which must 
be assumed to be more common in nature than entirely specialist predators. Neither has chaos been discovered 
before in the simplest possible predator-prey-disease models with linear functional and numerical responses and 
mass-action disease dynamics. It is this discovery that we will present and analyse in this paper. Hopefully, it will 
further elucidate the role of chaos in ecosystems and the interplay between disease and predation.

the model
We base our model upon the classical Lotka-Volterra equations23, to which we add a second prey species and 
combine it with the SIR model24. To simplify the analysis, we assume that the disease is 100 percent fatal, as recov-
ery with immunity would give rise to a number of new steady states and complex scenarios. This model is in part 
based on an earlier model25, though this had non-linear functional and numerical responses. The older model 
also exhibits chaotic behaviour, and we will examine it in the supplement.

In order to achieve the most basic system of equations, we assume that all functional and numerical responses 
are linear, that there is no competition between the prey species, and that there is no carrying capacity on the 
prey nor the predator. It should however be noted that chaos is still possible in systems with nonlinear functional 
responses and a prey carrying capacity. We further assume that healthy and infected animals are equally difficult 
to catch and equally nutritious for the predator. Thus, we arrive at the following equations:
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where xs and xi are healthy and infected populations of the susceptible prey species, y is the population of the 
immune prey species, and z is the population of predators. αx,y are the reproduction rates of the prey species, β is 
the infection coefficient of the disease, and γ is the death rate of infected individuals. Finally, εx,y are the coupling 
constants signifying the rate of individual prey of species x and y being eaten per predator, while ηx,y are the pred-
ator reproduction rates from eating prey of species x and y, and δ is the predator starvation rate in the absence of 
prey. This is far too many parameters to allow us to get any meaningful information out of the system. Therefore, 
we rescale it to a timescale and characteristic populations that reflect the dynamics of the system.

First, let t̃  ≡ γt, meaning that we will measure time in units of the time it takes an infected prey to die. Thus, 
the lifetime of the disease is our timescale. We also choose the unit of prey population sizes to be the 
Lotka-Volterra equilibrium populations in a prey-predator system with only that prey species and the predator. 
The unit of predator population is similarly chosen as the equilibrium predator population in a Lotka-Volterra 
system with only the susceptible prey and the predator. Finally, the unit population of infected prey is the same as 
for susceptible prey. This means that ~ ~ ~≡ ≡ ≡
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Figure 1. Diagram of the system and time series of the numerical solution. (a) A visual representation of the 
system. Pointy arrows indicate a positive effect, while blunt arrows indicate a negative one. Self arrows indicate 
reproduction/death that is independent of the other species. Not shown is the interaction between predators 
and infected individuals, which the predator can eat, although it cannot itself be infected. We expect the number 
of infected prey to be so small at any given time that it usually does not contribute much to predator growth. 
The system is still chaotic if we remove the predator reproduction term from eating infected prey. The panel (b) 
shows a simulation of the system. Note especially the large variations in number of infected. Parameters used are 
a = 7/400, b = 0.0208, c = 2, d = 0.3098, R = 1.5.
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where a ≡ αx/γ, b ≡ αy/γ, c ≡ εy/εx, d ≡ δ/γ and R ≡ β x(0)/γ = βδ/γηx. R (often called R0 for a given epidemic) is 
the basic reproduction number of the disease at the initial susceptible prey density xs = 1. The basic reproduction 
number is defined as the number of new infections caused by one infected individual dropped into a susceptible 
population. In real epidemics R varies from around 1, the minimum required for the epidemic to start, up to 
around 18 in extremely infectious diseases such as measles26. This rescaling allows us to reduce the number of 
unknown parameters from nine to five, and also rids us of the coupling constants ηx,y whose size and relationship 
with εx,y are hard to determine. From now on, we will drop the tildes and simply use x,y,z etc. to refer to dimen-
sionless variables. With so relatively few parameters, extracting information from the equations should be easy. 
This is what we will do in the following section.

Stability analysis. If for some parameter values the system has only one stable fixed point, we will intuitively 
expect it to not be chaotic. Therefore, we should be able to learn more about the potential for chaos in the system 
by looking at the stability of the fixed points. The physically possible (i.e. where no populations are strictly nega-
tive), nontrivial fixed points of the system 2 are
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For the first fixed point, where the susceptible prey and the predator reach an equilibrium, we have two real 
and two purely imaginary eigenvalues of opposite sign. The real eigenvalues are (b − ac, R − 1 − a). We expect 
this fixed point to be (marginally) stable if the real eigenvalues are both negative, i.e. if b < ac and R < 1 + a. This 
translates into a situation where the disease is infectious enough to spread and the immune prey reproduces 
slowly relative to the susceptible prey.

The second fixed point, where the immune prey and the predator coexist in a Lotka-Volterra equilibrium, 
similarly has two conjugate imaginary eigenvalues and two real ones, (−1 − b/c, a − b/c). As b and c are always 
positive, we expect the first eigenvalue to be strictly negative. The second will be negative and give rise to stability 
if b > ac, opposite of the other fixed point.

The third fixed point, an analogue to the Lotka-Volterra steady state but with the pathogen replacing the 
predator, has two imaginary and two real eigenvalues like the others. One of the real ones is c, however, which we 
know is always positive, so this fixed point is unstable as long as there are two prey species.

Finally, the fixed point with coexistence of all populations has eigenvalues that are the fourth roots of some 
function of the parameters. As we know that the fourth roots of any number will be four complex numbers at 
orthogonal angles in the complex plane, their real parts will always have mixed signs, and this equilibrium will be 
unstable. Our stability analysis shows that there are two stable fixed points in which the system might end up: If 
the disease is less infectious than some threshhold R < 1 + a, and it holds that the immune prey reproduces slower 
than the threshhold b < ac, it will end up in the first fixed point, where only the susceptible prey and the predator 
persist. If the opposite is true, b > ac, the system will end up in the second fixed point regardless of R. Two dia-
grams of the conditions for stability can be seen in Fig. 2(a,b). On the other hand, if both

R > 1 + a and b < ac, none of the fixed points will be stable. We expect that if any chaos occurs, it will happen 
in this region. However, in order to prove that the system becomes chaotic, we will first have to numerically solve 
the equations and measure the Lyapunov exponent λ.

Lyapunov exponent and chaotic transitions. In order to determine whether the system is truly chaotic, 
we use a variant of the Benettin algorithm27 to estimate λ. Instead of repeatedly measuring and renormalising a 
unit perturbation vector using the Jacobian, we simultaneously integrate two adjacent trajectories, measure and 
renormalise their separation vector, integrate again starting with the renormalised separation vector and so on. 
This method should be equivalent to the Benettin algorithm, as long as we do not change the direction of the 
separation vector upon normalisation. We thereby determine whether the (small) perturbation vector grows or 
contracts. In a chaotic system, we should expect two infinitesimally close trajectories to drift apart at an exponen-
tial rate, giving a positive Lyapunov exponent. To reduce the number of false positive tests for chaos, we estimate λ 
at two different points in the time series for each set of parameters and choose the lowest of the two values. As can 
be seen in Fig. 2(c,d) the measurements of the Lyapunov exponent fit with what we expect from linear stability 
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analysis, with a far higher λ in regions where chaos is possible. Inspection of the time series of the numerical 
solutions reveal that the system is in fact not chaotic when the estimated λ < 0.01.

In Fig. 3 we see (a) the trajectory of the system for R close to the transition to chaos where it seems to be qua-
siperiodic, and (b) a chaotic attractor in xs − xi − z-space. The attractor has a fairly regular shape with a streaked 
surface as expected for a structure with a fractal dimension. Here, the variable y (immune prey) has been left out 
for ease of plotting. It was left out because it represents the predator interactions with prey that are less specific 
than the interactions with susceptible prey. The transition to chaos occurs rapidly and is almost discontinuous. 
We can therefore rule out the period-doubling route to chaos, as is confirmed by a plot of the peak values of the 
time series of xs (Supplemental Fig. 2). Based on the appearance of the trajectory in phase space near the transi-
tion (Fig. 3a), we instead believe the transition to happen through a region with quasiperiodic behaviour.

Discussion
A central question to ask is what parameter values that are realistic. To address this, we will look at the four 
parameters of the model a, b, c and d in terms of the mass of the involved animals. It is a well-known fact that the 
reproduction rate and metabolism scale with animal mass28,29. Disease duration has also been shown to exhibit 
such scaling30. Yodzis & Innes, Dobson, Weitz & Levin, and Eilersen & Sneppen have all attempted to use this to 
derive information about population dynamics and epidemiology31–34. Using the relations found in Peters28 and 
Cable et al.30, we have that the reproduction rate is mx

1
400

1/4α ≈ −  [days−1] and the disease infection period, cal-
culated as the difference between disease death time and time until first symptoms, is ti = γ−1≈ kmx

1/4 [days]. 
Here, mx, my, mz are the masses of the susceptible prey, immune prey, and predator (in kilograms), and k depends 
on the disease. For example, k is approximately 7 [days/kg1/4] for rabies30. We will use this value in our calculations 
below, as we need an order of magnitude estimate of the coefficient. Note, however, that the disease described here 
is a hypothetical disease and not in fact rabies.

Figure 2. Diagrams of the analytically derived linear stability of the system and the numerical measurements of 
the Lyapunov exponent. (a) Stability of the predator-immune prey equilibrium as a function of the susceptible 
and immune prey reproduction parameters a and b. We see that the system will end up in this fixed point 
if b > ac. (b) Stability of the predator-susceptible prey equilibrium as a function of a and the disease basic 
reproduction number R. The system will end up at this fixed point if b < ac and R < 1 + a. Thus, we can conclude 
that chaos is possible only if b < ac and 1 + a < R. The approximate location of the chaotic attractor plotted in 
Fig. 3 is marked with an asterisk. (c,d) show all parameter values resulting in a Lyapunov exponent λ > 0. Note 
that when looking at the timeseries, we observe no chaos for λ < 0.01. In (c), the system is expected to become 
periodic for a > 0.5, as 1 + a > R. This explains the low λ-estimate near this value. The colour of the markers 
indicate the magnitude of λ. The diagrams look almost exactly as expected based on linear stability analysis. 
Parameter values used: (c) c = 2, d = 0.3098, R = 1.5, (d) b = 0.0208, c = 2, d = 0.3098.
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Similarly, the predator starvation time is approximately its body mass divided by its metabolism, giving 
ts = δ−1≈ = m20 20m

m z
1/4z

z
3/4

[days]. Now, we can find approximate relations for all the dimensionless parameters:
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To estimate c, we have assumed that the number of individuals of a given prey species eaten by the predator 
will be roughly inversely proportional to the body mass of that species.

We see from these estimates that for a given disease there are in fact only two parameters that matter: The size 
ratio of the susceptible and immune prey species, and the size ratio of the susceptible prey and the predator. 

Interestingly, we also see that the condition for chaos b < ac translates to 
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> . Thus, our model predicts that an epizootic may cause chaos if it affects the larger of a predator’s prey 

species. As chaos should occur for a wide range of realistic parameter values, it should be fairly common in the 
wake of epizootics. This of course assumes that our model is a good approximation of nature, which we will dis-
cuss below. Furthermore, two-prey one-predator systems should be closer to most real ecosystems than the clas-
sical Lotka-Volterra system, since the classical model assumes an entirely specialist predator, which is rare in 
nature. Even mostly specialist predators are known to have alternative prey in times of scarcity35.

What does chaos mean for the ecosystem? The immediate consequence is unpredictable population dynam-
ics. As mentioned in the introduction, the onset of epidemics and epizootics is already known to be unpredict-
able, but this is often ascribed to stochastic randomness. Our discovery that chaotic dynamics are plausible in 
ecosystems with three or more species where one is host to a pathogen adds an alternative explanation for this 
unpredictability.

Based on this model, in the wild one would expect to observe the disease lying dormant for long periods 
between outbreaks while the infected population is low, and then suddenly and unpredictably breaking out. The 
model presented here predicts very low minimum infected populations for some parameter values, so in some 
cases it would probably correspond to real-world pathogens that either die out locally but persist globally, or to 
pathogens that can survive in some dormant state outside a host. In any case, our assumption that a predator has 
multiple prey species of different sizes that are susceptible to different diseases should hold almost universally, 
making our model quite general.

Despite this, some important limitations of the model must be noted. The Lotka-Volterra equations upon 
which our work is based present a highly simplified and slightly pathological image of ecosystems. One issue is 
the fact that the classical Lotka-Volterra model with linear functional responses and growth terms gives rise to 
center equilibria whose orbits depend on initial populations. To avoid this, one could assume that prey species 
grow logistically. We briefly tried this, and it seemingly makes chaotic dynamics transient by damping oscilla-
tions. The conclusion that chaos is widespread is thus dependent on the validity of our assumptions, especially 
that the Lotka-Volterra model can be used as a rough approximation of real ecosystem dynamics. This is more 
likely to be true when prey populations are far from the carrying capacity.

In this paper, we have shown that following a disease outbreak, chaos will occur in a two-prey one-predator 
ecosystem for a wide range of parameters - specifically when the disease affects the larger prey species and is infec-
tious enough to become enzootic. As opposed to previous, similar studies by e.g. Hastings & Powell5 or Tanabe 
& Kumi10, chaos occurs in the system studied here even without prey-prey competition or nonlinear functional 
responses. Our model therefore represents an example of a relatively minimal system that still shows complex 
dynamics, where the eco-epidemiological models discussed in the introduction require nonlinear responses to 
show chaotic behaviour. Furthermore, some light has been shed on the interaction between generalist predation 

Figure 3. The evolution of the trajectories in xs − xi − z-space for different values of R. (a) at R = 1.025 where 
the system becomes quasiperiodic near the chaotic trasition. Other parameters were set to a = 7/400, b = 0.0208, 
c = 2, d = 0.3098. The fourth dimension, y, has been projected out. (b) Chaotic attractor for R = 1.5. The 
attractor has a characteristically streaked surface, and we estimate its dimension as D0 = 3.8 ± 0.1. The colour of 
the line indicates time, with darker colours signifying later times. Here, we have removed the initial transient.
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and disease. The discussion of how alternative prey species may cause chaos in the context of epizootics has like-
wise not been explored in the eco-epidemiological studies referenced above. The results presented here are based 
on the classical Lotka-Volterra model and our conclusions thus depend on its validity, which may be questionable. 
Nonetheless, the fact that we do not have to impose very tight constraints on parameter values is an argument for 
the existence and importance of chaos in ecosystems. Most importantly, our results provide one plausible expla-
nation for the apparent unpredictability of epizootics.
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As mentioned in the main paper, Eilersen & Sneppen1 have previously explored an alternative predator-prey-disease model
with non-linear functional and numerical response functions. The proposed system of equations is

dxs

dt
= αxs(1− (xs + xi)/K)−βxxxsxi − ε

z
xs + xi + y+ ks

xs

dxi

dt
= βxxxsxi − ε

z
xs + xi + y+ ks

xi − γxi (1)

dy
dt

= αy(1− y/K)− ε
z

xs + xi + y+ ks
y

dz
dt

= η
xs + xi + y

xs + xi + y+ ks
z−δ

ks

xs + xi + y+ ks
z.

Here, we have introduced the half-saturation constant ks and the prey carrying capacity K. It is also worth noting that the
constants α , δ , ε , and η now represent maximum values of their respective terms and thus have to be estimated anew. In the
cited paper, these quantities are estimated to be

α ≈ 1/tg ≈
1

50
m−1/4

x , η ≈ 1
50

m−1/4
y ≈ δ [1/days] , K ≈ 200m−3/4

x [prey/km2],

(a) (b)

Figure 1. (a) A plot showing all parameter combinations that result in chaos, here defined as λ̃ > 5 ·10−3. The colour of each
data point represents the value of λ̃ . Chaos mainly occurs around R = 1 and the range of R that leads to chaos expands at
higher prey mass and lower predator mass. In (b), we see a diagram of the peak values of xs as a function of R, equivalent to a
bifurcation diagram. The diagram shows that the chaotic transition happens through period doubling bifurcations. The masses
used are mx = my = 0.4 kg.

1



using the allometric scaling method described in the discussion. The model being correct thus depends on the mass parameteri-
sation being correct, but the parameterisation on the other hand allows us to model the system with only three free parameters.
We have assumed that both prey species have similar mass for simplicity. Nonetheless, the linear stability analysis of this
system is fairly complicated and will not necessarily give us any useful information. We shall therefore restrict ourselves to
measuring the Lyapunov exponent of this system as a function of prey mass, predator mass, and disease reproduction number,
as well as examining the nature of the transition to chaos.

Even without stability analysis, we expect a transition to take place near R = 1, as this is where the epidemic becomes
viable at Lotka-Volterra equilibrium populations. We measure the Lyapunov exponent using the same method as above. As the
equations are no longer scaled to the natural time scale of the system, we rescale the measured exponents as λ̃ = λ/γ . Thereby,
we get a new exponent, λ̃ , which gives the speed of divergence of neighbouring trajectories in units of disease durations. As can
be seen in figure 1 (a), chaos in this system exists primarily at low R. The range of R-values where chaos can occur generally
grows with prey size and shrinks slightly with predator size.

Figure 1 (b) shows a diagram of the peaks of the susceptible prey (xs) time series. From this diagram, we see clearly how
the transition to chaos takes place through a series of period-doubling bifurcations.

This documents that when using nonlinear functional and numerical responses, chaos can occur in a predator-prey-disease
system. It even happens when the prey masses are equal, which we otherwise would not predict using the simpler model with
linear response functions. As saturating response functions are probably more realistic in many ecological systems, this result
strengthens our argument for the ubiquity of chaos in the wake of disease in predator-prey systems.

Chaotic transition of the system studied in the main paper

Figure 2. A plot showing the maximal values of xs for the model system studied in the main paper as a function of the disease
basic reproduction number R. The plot is analogous to fig. 1 (b). We see no signs of period doubling bifurcations, nor any other
bifurcations, and we can therefore rule out that the transition to chaos takes place through this route. Instead, we believe that
the transition is quasiperiodic. The trajectories near the transition, shown in fig. 3 (a) in the main paper, further support this
conclusion. Parameter values used: a = 7/400,b = 0.0208,c = 2,d = 0.3098.
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Cost–benefit of limited isolation 
and testing in COVID‑19 mitigation
Andreas Eilersen1,2* & Kim Sneppen1,2

The international community has been put in an unprecedented situation by the COVID‑19 pandemic. 
Creating models to describe and quantify alternative mitigation strategies becomes increasingly 
urgent. In this study, we propose an agent‑based model of disease transmission in a society divided 
into closely connected families, workplaces, and social groups. This allows us to discuss mitigation 
strategies, including targeted quarantine measures. We find that workplace and more diffuse social 
contacts are roughly equally important to disease spread, and that an effective lockdown must target 
both. We examine the cost–benefit of replacing a lockdown with tracing and quarantining contacts 
of the infected. Quarantine can contribute substantially to mitigation, even if it has short duration 
and is done within households. When reopening society, testing and quarantining is a strategy that is 
much cheaper in terms of lost workdays than a long lockdown. A targeted quarantine strategy is quite 
efficient with only 5 days of quarantine, and its effect increases when testing is more widespread.

The 2020 coronavirus (COVID-19) pandemic has raised the need for mitigation efforts that could reduce the 
peak of the  epidemic1,2. To fulfill this need, theoretical modelling can play a crucial role. Traditional epidemio-
logical models that assume universal or constant infection parameters are not sufficient to address case specific 
strategies like contact tracing. Therefore, we have developed an agent-based epidemiological model which takes 
into account that disease transmission happens in distinct arenas of social life that each play a different role 
under lockdown: The family, the workplace, our social circles, and the public sphere. This subdivision becomes 
especially important when discussing such efforts as contact tracing. Using an estimated weight of social contacts 
within each of these four  spheres3 we discuss the effect of various mitigation strategies.

At the time of writing, both classical mean field  models4,5 and agent-based  models2,6,7 of the COVID-19 epi-
demic have already been made. The models often assume contact rates and disease transmission to be stratified 
by  age3,8,9. In our model, we focus on social and work networks. This will directly allow us to test the effectiveness 
of localized quarantine measures. In addition we allow a fraction of the contacts to be non-specific, representing 
random meetings.

Within families, several age groups may live together. At the same time, disease transmission within the 
family is probably the variable that is the most difficult to change through social distancing. Furthermore, there 
is doubt as to what extent children carry and transmit the  disease10. By ignoring age as a factor our agent-based 
model implicitly weights children on equal footing with anyone else, and our model is not designed to address 
scenarios where one specifically targets older people.

Analysing what role each area of social life plays also allows us to separately treat leisure activities, and since 
these play a smaller economic role than work, they may be restricted with a smaller toll on society. Furthermore, 
if widespread testing and contact tracing is implemented, a compartmentalisation like the one we are assuming 
here will help in assessing which people should be quarantined and how many will be affected at any one time.

In the following, we will investigate two closely related questions. First, how a lockdown is most effectively 
implemented, and second, how society is subsequently reopened safely, and yet as fast as possible. To answer the 
first, we must examine the relative effects of reducing the amount of contacts in the workplace, in public spaces, 
and in closely connected groups of friends. For the second question, we will look for viable strategies for mitiga-
tion that do not require a total lockdown. Here, we will focus on the testing efficiency and contact  tracing11. Our 
results will hopefully be helpful in informing future containment and mitigation efforts. 

Methods
Our proposed model divides social life into family life which accounts for 40% of all social interactions, work 
life accounting for 30%, social life in fixed friend groups accounting for 15%, and public life which accounts 
for another 15%3. Fig. 1 shows a schematic representation of the model. Interactions in public are taken to be 
completely random and not dependent on factors such as geography, density or graph theoretical quantities. 

OPEN
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Within families, workplaces, and friend groups, everyone is assumed to know everyone. Each agent is assigned 
one family and workplace, as well as two groups of friends. Workplaces on average contain ten people, whereas 
each friend group on average contains five. In the simulation runs presented here, we use a population of N = 5000 
agents. Increasing the number of agents changes the outcome very little, except for minimising stochastic noise. 
We also do not allow migration in or out of the system.

We use a discrete-time stochastic algorithm. At each time-step (0.5 days), each person has one interaction 
with some other person. A “die roll” decides whether the person will interact with family, friends, work, or the 
public. The respective odds are the above-mentioned percentages 40:30:15:15. If the public is chosen, an entirely 
random person is selected, otherwise a person is drawn from a predefined group (family etc.). For each inter-
action, an infectious person has a fixed probability of passing on the disease to the person they interact with.

The family size distribution of is based on the distribution of Danish  households12. The average number of 
people per household is approximately 2, and large households of more than 4 people have been ignored, as 
they account for less than 10% of the population. We believe that in a country where family sizes are larger and 
there are fewer singles, the family would be more important to the spread of disease. We test the effect of larger 
families in the supplement (Figs. S1–S3) and find that it does not change our overall conclusions.

We simulate the progression of disease using an SEIR model with four exposed states, E = E1 + E2 + E3 + E4, 
each lasting on average 1.25 days, corresponding to a mean incubation period of 5 days. The exposed states are 
presymptomatic, meaning that people will not get tested in the incubation period. We let stages E3;4 be as infec-
tious as the I-stage, as data suggest that a substantial fraction of COVID-19 transmission happens before the 
onset of  symptoms13. Multiple exposed states are included in order to get a naturalistic distribution of incubation 
periods. Li et al.10 report that the mean incubation period is approximately five days and the reported distribution 
is fitted well by the gamma distribution we obtain from our four E-stages.

A further problem is the duration of the infectious period (I). Viral shedding has been observed to last up 
to eight days in moderate  illness14. On the other hand, according to Linton et al.15, the median time from onset 
to hospitalisation is three days. A bedridden patient (even if not hospitalised) is likely to transmit the disease 
less. To fit the observed mean serial intervals of 4.6 days of Nishiura et al.13 we model the infectious period as a 
single state with an average duration of three days. In addition, the infectious presymptomatic period lasts on 
average 2.5 days. In comparison Ref.16 uses a serial interval distribution with mean of 6.5 days. Other authors 
have suggested a longer serial  interval10 with presymptomatic infections.

Finally, the transmission rate of the disease is estimated from an observed rate of increase of 23% per day in 
fatalities in the USA. This also fits the observation of a growth rate of ICU admissions of about 22.5% per day in 
 Italy17. With our parameters this is reproduced by a basic reproduction number R0 ~ 3 (as we allow transmission 

Figure 1.  A diagram of the model structure. Each agent has a network consisting of a family, a workplace and 
two groups of friends. The family accounts for 40% of interactions. Work accounts for 30% and socialisation 
with friends accounts for a further 15%. The members of each of these 3 groups are fixed throughout the 
simulation. Finally, 15% of interactions happen “in public”, which we implement as an interaction with a 
randomly chosen other agent. Everyone in the work and friend sub-graphs are assumed to be connected to each 
other. Below the graph, the underlying mechanisms of the disease are shown. We divide the exposed state into 
four in order to get a more naturalistic gamma distribution of incubation periods. The two last exposed states 
are infectious, but asymptomatic, meaning that individuals will not get tested. This is to include presymptomatic 
infection. In our simulation we set the family groups to an average of 2 people, and the work network to 10 
completely interconnected people. The friend network consists of two groups with five in each.
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in both directions when selecting two people, this is simulated by a rate for transmission of 0.2 per encounter). 
Li et al.10 estimate R0 at 2.2 based on a growth rate of 10% per day in confirmed COVID-19 cases in Wuhan 
prior to Jan. 4.

Having calibrated the model in this way, we want to explore mitigation strategies for the corona epidemic. 
Specifically, we will investigate the relative importance of the areas of social life, and the extent that reducing 
workplace size reduces disease spread. Moreover, we will examine the possible gain and cost by simple contact 
tracing and light quarantine practices.

Results: mitigation strategies
To illustrate the relative importance of the workplace and public life, we consider the scenarios in Fig. 2a. In the 
first scenario, nothing is done. In the second, contacts within the workplace are reduced by 75%, while in the 
third, contacts with friends and the public are reduced. Finally, we compare these with similar scenarios, but 
where good hygiene or keeping a distance reduces the probability of infection from all types of encounters by half.

In the figure, we see that the effects of reducing workplace and social contacts are roughly of the same mag-
nitude. This reflects the assignment of 30% weight to each of these contact types. The slightly larger effect of 
social contacts reflects our assumption that these connections are less clustered than the workplace network. The 
two latter graphs show the scenarios where we both reduce infection probability within one group by 75% and 
overall infection probability by 50%. They show that an effective lockdown requires both restrictions of the time 
spent in the workplace and in the public sphere, and measures that reduce infection probability by increased 
hygiene and physical distancing.

The above results provide one useful piece of information. If the effect of workplace and social contacts are 
of the same order, it is of little importance which one is restricted. Ideally, both will be restricted for a period. 
However, when restrictions need to be lifted, authorities will primarily be able to control the workplace, whereas 
the social sphere relies on local social behavior. Obviously, it is economically more sustainable to lift the one 
with the largest social consequences first, by allowing people to return to work while encouraging keeping social 
gatherings at a minimum.

If restrictions are lifted before a substantial level of immunity is achieved, the epidemic will re-ignite. There-
fore, we now examine what can be done to minimise spread in the reopened workplaces.

One possible strategy is to reduce the number of people allowed at any one time in each workplace. In Fig. 2b, 
we compare an epidemic scenario where the average number of employees per workplace is 10 with an epidemic 
where this number is reduced to 5. We further assume that the number of contacts per coworker remains the 
same, meaning that the number of contacts per person drops when workplace size is reduced.

It can be seen that fragmentation of physical spaces at workplaces could have a significant effect on the peak 
number of infected. In a situation with a risk of straining the healthcare system, this could be part of a mitigation 
strategy. Once again, the strategy becomes relatively more effective if the infection probability per encounter is 
also reduced. Compared to the cases with no workplace size reduction, making workplaces smaller leads to a 
greater relative reduction in peak size if infection probability is lower, completely eliminating the epidemic at 
an infection probability reduction of 50%.

A more local strategy that can be employed when reopening society is widespread testing and contact trac-
ing. As mentioned above, Hellewell et al.11 have suggested that this can be effective in containing COVID-19 
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Figure 2.  Comparison of various strategies with and without a reduction in transmission probability per 
encounter. (a) Reducing contacts in different social contexts by 75% through a lockdown. It can be seen that 
work and social contacts play roughly the same part in disease transmission. A reduction of infection probability 
makes the strategies relatively more effective. Reducing work contacts, for example, reduces the peak height by 
roughly 40% (relative to no intervention) if infection probability is high. If the infection probability is lowered, 
the strategy completely eliminates the epidemic. The apparent missing graphs in the figure are due to the 
epidemic dying out completely when a lockdown is combined with hygienic measures. (b) A similar comparison 
of the effects of reducing workplace sizes by half. This strategy is also relatively more effective if infection 
probability is reduced. The strategy also eliminates the epidemic at a lowered infection probability versus only a 
30% reduction if infection probability remains high.
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outbreaks provided high efficiency in detecting infected individuals. Contact tracing has previously been modeled 
in relation to other  epidemics18, and used successfully against  smallpox19 and  SARS20.

One obstacle to the widespread implementation of this strategy is the difficulty of tracing contacts. Therefore, 
we will here implement a crude form of contact tracing where we (1) close the workplaces of people who are 
tested positive for the disease, (2) isolate their regular social contacts for a limited period, and (3) keep sympto-
matic individuals in quarantine until they recover. We will see that such a 1 step tracing and quarantine strategy 
(1STQ) can give a sizeable reduction in disease spread while costing fewer lost workdays than overall lockdown. 
Our simulations include the limitations imposed by not being able to trace the estimated 15% of infections from 
random public transmissions. Thus, the strategy does not require sophisticated contact tracing but could be 
implemented based on infected people being able to recollect their recent face-to-face encounters with friends.

It should be noted that we here quarantine persons in their own households, thereby making our contact trac-
ing strategy easier to implement in practice. In particular, family members of a quarantined person are still free 
to interact outside their home if they are not themselves tested positive. The drawback of such light quarantine 
practices is that infected persons in quarantine may still transmit the infection to their families.

Figure 3 examines how increased testing efficiency systematically improves our ability to reduce the peak 
disease burden. This would then be a more cost efficient way to mitigate the pandemic than a complete lockdown 
where each person would lose several man-months. Even detecting as little as 5% of COVID-19 infected per day 
(which with an average symptomatic disease duration of 3 days corresponds to finding approximately 15% of the 
infected) can potentially reduce the peak number of cases by 50%. If 10% efficiency is possible, corresponding 
to detecting about a third of infectious cases, then peak height could be reduced by a factor of almost three with 
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Figure 3.  The effect of quarantine duration and testing probability. (a,b) show examples of epidemic trajectories 
for a quarantine length of 5 days and a daily testing probability of 10 and 20% respectively. The blue section of 
the curve shows the fraction of people who are in quarantine but healthy or presymptomatic, while the orange 
section shows the fraction who are ill. (c,d) show the peak fraction of population infected (left y-axis) and time 
spent in quarantine (right y-axis) as a function of testing chance and quarantine length. The number of days 
in quarantine was calculated using our standard group sizes which connect each person to approximately 20 
others. The average quarantine time scales proportionally with this assumed connectivity. (c) With a quarantine 
length of 5 days, it is possible to reduce the peak number of infected by eight percentage points, corresponding 
to a 60% drop, if the probability of infected people being tested is only 10% per day of illness. However, the price 
of this is that each person is on average quarantined once during the epidemic. If testing is more widespread, 
the epidemic peak can be further reduced, until it finally becomes unstable at a testing probability of around 
40% per day. (d) Epidemic peak and time spent in quarantine as a function of quarantine length for a testing 
probability of 20% per day. The average time spent in quarantine increases linearly with the length of quarantine. 
On the contrary, the effect of quarantine on the peak height appears to stagnate at approximately 5 days.
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less than two weeks in quarantine per person during the entire epidemic. This is illustrated in Fig. 3a where peak 
height is reduced from 0.13 to 0.04 at 10% testing efficiency.

The main cost of the quarantine option is the quarantine time. Figure 3d examines the efficiency versus cost 
of as a function of quarantine length. It can be seen that there is little gain in extending the quarantine period 
beyond the 5-day duration of the incubation period. For this reason we opted for 5 days in quarantine in panel (a, 
b). As a consequence, an average person will stay around 12 days in quarantine during the course of the epidemic 
with a testing probability of 10% per day. This time can be reduced if people can be convinced of smaller work 
environments and fewer face-to-face contacts per week. Fragmentation of our networks into smaller groups will 
reduce both quarantine overhead and the direct transmission of the disease (Fig. 2b, orange curve).

A prolonged lockdown will hugely disrupt society, and it is questionable whether a complete eradication of 
the virus is possible anyway. Therefore, most governments have aimed at softening the epidemic curve, with 
varying degrees of success. The one step contact tracing with testing and quarantine is a means to this end and 
would work most effectively in combination with other efforts to reduce R0.

Finally, we investigate whether an aggressive testing and contact tracing strategy could work if implemented 
at a late stage in an epidemic. This could be relevant if for example the strategy is part of an effort to reopen 
society after a period of lockdown.

In Fig. 4, we show two possible scenarios where testing and contact tracing is implemented after a 30-day 
lockdown with a 75% reduction of the work and social spheres. The lockdown is initiated when 1% of the popu-
lation is infected. In (a) we subsequently test and quarantine the infected and their contacts for 5 days, while 
in (b) the required quarantine is set to 10 days. We assume a testing efficiency of 20% chance of detection for 
each day a person is symptomatic. The progression of the epidemic without testing is marked by a black graph 
for comparison.

From the figure one sees that the strategy of even relatively short quarantines also works with a late onset. At 
a realistic detection probability, it prevents a resurgence of the epidemic. Nonetheless, it is quite costly initially, 
with a very high peak in number of quarantined people. Importantly, the effect does not increase with a longer 
quarantine period, but the cost is substantially larger.

Discussion
Pandemics such as the one caused by COVID-19 can pose an existential threat to our social and economic life. 
The disease itself is serious and leaves specific epidemic signatures and characteristics that make traditional 
contact tracing difficult. In particular it is highly infectious, can sometimes be transmitted already two days after 
exposure, and a large fraction of transmission happens before the onset of symptoms. As such it is difficult to 
contain without a system-wide lockdown of society. Nonetheless, a successful containment in South Korea used 
contact tracing. This motivated us to explore a one-step contact tracing/quarantine strategy (1STQ).

Using reasonable COVID-19 infection parameters we find that the 1STQ strategy can contribute to epidemic 
mitigation, in the sense that it can reduce the peak number of infected individuals by about a factor of two even 
with a realistic testing rate of 10% per day of illness. This was illustrated systematically in Fig. 3. The main cost 
was people in self-quarantine and not contributing to the workforce. In comparison one has to consider that a 
society-wide lockdown with similar reduction in peak height would have to last for about 100 days (see Fig. 2). 
Thus, the lockdown would require of order 100 days of quarantine (or at least extensive social distancing) per 
person, whereas testing and isolation only requires on average around 15 days per person with a 5-day quarantine 
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Figure 4.  Various trajectories of the epidemic when combining a lockdown and a late-onset 1STQ strategy. (a) 
shows a possible course of an epidemic where restrictions in public and work life (by 75%) are implemented 
when 1% are infected and lifted after 30 days, being replaced by a testing and tracing regime with a testing 
probability of 20% per day and quarantine duration of 5 days. The black line shows the fraction of infected if no 
testing is implemented. We see that this level of testing and quarantine is sufficient to prevent a resurgence of the 
epidemic. (b) is similar, but here quarantine lasts 10 days. This is about as effective as (a) but costs a lot more in 
terms of number of people in quarantine.
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even at high testing probabilities. Importantly these numbers can be reduced if people are able to lower their 
number of contacts.

A noticeable objection to the 1STQ strategy is the fraction of cases with so weak symptoms that people do 
not contact health authorities. The effect of such limitations is in our model parameterized through the detection 
probability. From Fig. 3c one sees that when the detection probability goes below 3% (a rate of 1% per day) the 
peak reduction of the 1STQ strategy becomes only of the order 1 percentage point. It should also be noted that, 
since we rely on symptoms to determine who stays in quarantine, and people in the infectious/symptomatic stage 
are assumed to always stay in quarantine, we implicitly assume that all infected persons develop at least some 
symptoms at some point. This may be a break from reality.

The increasing availability of tests may also change the perspectives of the 1STQ strategy. With widely avail-
able rapid tests, it will be possible to test everyone regularly, and to test all quarantined persons before they leave 
quarantine. Supplementary Figure S4 deals with the results of such a testing strategy and finds that it makes it 
possible to totally control the epidemic, or to mitigate it without quarantining any healthy individuals. To put 
this into perspective, the drawbacks of widespread, but slow testing is examined in the supplementary Fig. S5. 
Here, we find that the 1STQ strategy is most efficient with no test delay, and that delayed contact tracing is 
comparable to a primitive lockdown.

One interesting point which we have not examined here, is that real-world social networks are heterogeneous, 
with a large variance in number of contacts. It may be expected, for example, that workers in customer-facing 
positions in shops will have a high risk of catching the disease and passing it on. The effects of this heterogeneity 
is examined more closely in Ref.21 Here, it is concluded that heterogeneity in the number of contacts enhances 
the effect of contact tracing, since persons with many contacts are both more likely to pass on the disease and 
more likely to be quarantined.

In Ref.11, the authors suggest a 1STQ strategy similar to the one we here model. The main points of the present 
analysis is the focus on mitigating instead of eradicating the epidemic, our suggestion of a shorter quarantine 
length, and the implementation of quarantine together with other members of the household instead of total 
isolation. Our stochastic, agent-based approach also allows for local failures due to the limited duration of 
quarantine (people may not yet be symptomatic when exiting quarantine) and the non-traceable public contacts 
(set to 15%).

Finally, one noticeable finding is that contact tracing and reduction of contacts per person is still feasible even 
at a later stage of the epidemic. As can be seen in Fig. 4, a lockdown and subsequent reopening with testing and 
contact tracing is highly effective in controlling the epidemic. Our study that lockdowns have an important role to 
play in epidemic mitigation, but that they can be replaced by a 1STQ strategy once the epidemic is under control.

The COVID-19 pandemic has set both governments, health professionals, and epidemiologists in a situation 
that is more stressful and more rapidly evolving than anything in recent years. Due to the uncertainties caused by 
a situation in flux, it is difficult to predict anything definite about what works and what does not. The empirical 
observation that lockdowns worked in both China, and in a milder form in Denmark shows that our assump-
tion of a 75% reduction in specific infection rates under lockdown is realistic. Our main result is that some of 
these restrictions can be replaced by testing, one-step contact tracing and short periods of quarantine. This is far 
cheaper than total lockdowns. Perhaps most importantly, these measures work best in combination. As is highly 
relevant to the current epidemic stage of COVID-19, we pinpoint that 1STQ can be successfully implemented 
also at a late stage of the epidemic where testing may become massively available.

Data availability
Plots of alternative variants of our model (including alternative testing strategies and larger family sizes) can be 
found in the supplementary material. The code used to produce the plots shown in this article is available on 
Figshare under the URL https ://doi.org/10.6084/m9.figsh are.12206 735.v4.
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The effects of family size
To examine the effect of the family size distribution on our conclusions, we have repeated the figures of the main article with
twice as large families. That is to say, single households now contain two people, previously two-person households contain
four etc. We see that while this somewhat affects the shape of the epidemic curve, it does not significantly influence any of our
conclusions.
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Figure S1. (a) A comparison of various containment strategies that include a lockdown reducing social or work contacts by
75 %. We see that if we combine these measures with improved hygiene or social distancing, reducing the transmission risk per
encounter by half, this is sufficient to stop the epidemic completely. This is the same conclusion as in the main article. (b) The
effect of reducing workplace sizes by half, from 10 to 5 people per workplace on average. As in the main article, this has a
significant effect on the epidemic, and in this version of the model, it is also enough to fully mitigate it if combined with
hygienic measures that halve the infection probability.
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Figure S2. (a) and (b) show epidemic trajectories and fraction of people in quarantine for testing probabilities of 10 and 20 %
per day respectively. The black line shows the epidemic trajectory in the absence of testing and contact tracing. (c) shows the
infected fraction of the population at the peak of the epidemic (left axis) and the average number of days each person spends in
quarantine during the epidemic as a function of daily testing probability while symptomatic. (d) shows the same variable but as
a function of quarantine duration. It can be seen here as well that little is gained from quarantine beyond five days. When
quarantine lasts longer than about 18 days, the epidemic becomes unstable, sometimes dying out.
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Figure S3. Two examples of epidemic trajectories when combining a lockdown with a 1STQ strategy. When 1 % of the
population is infected, a lockdown is implemented, reducing social and work contacts by 75 %. It is lifted after 30 days and
replaced by a testing and contact tracing strategy with a daily testing probability of 20 % for symptomatic individuals. The
duration of the quarantine in panel (a) is five days and in (b) it is ten days. We see that the longer quarantine does not change
the effect on the epidemic much, but it does increase the number of people in quarantine.



Weekly tests
In this section, we let all agents get tested regularly at a one-week interval in addition to a 20 % daily testing probability for
symptomatic individuals. This strategy will become increasingly feasible with increasing availability of rapid tests. It can be
seen that weekly tests are sufficient to contain the epidemic if contacts of the infected are quarantined (fig. S4(a)). If only the
infected themselves are quarantined, it is still enough to mitigate the epidemic as seen in panel (b), giving us a situation where
no healthy persons are unnecessarily quarantined. With as widespread testing as this, it is assumed that everyone is tested
before leaving quarantine, meaning that no presymptomatic individuals are let out of quarantine.
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Figure S4. (a) Infected and quarantined fraction of the population if everyone, in addition to tests of the symptomatic, take
one weekly test, thus also discovering any presymptomatic cases. This is enough to keep the epidemic in check. In (b) the same
strategy is followed, but only the infected themselves are quarantined. This still significantly reduces the epidemic peak. The
unmitigated epidemic trajectory is shown by the black curves.



Delayed test results
In the following, we examine the effect of a delay in obtaining test results. We assume that people who are tested have to wait
for a number of days before getting the result, thus delaying contact tracing and quarantine. We find that the effect of contact
tracing only subsides slowly with increasing test delay, as seen in fig. S5. This we believe is due to the effect of the large
number of people in quarantine at the peak of the epidemic. Even though the contact tracing efforts are less effective when
test results are delayed, having a large fraction of the population in quarantine works as a primitive lockdown, lowering the
epidemic peak by "brute force".
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Figure S5. This figure shows the effect of delayed test results on the peak fraction of infected and the average number of days
spent in quarantine during the epidemic. We see that the peak fraction of infected grows linearly with the delay, until the effect
is nearly gone after ten days. At the same time, the amount of time spent in quarantine decreases. Part of the mitigation at long
delays is expected to stem from the fact that a significant portion of the population is quarantined, and therefore less infectious,
at all times. The testing probability is here set to 20 % per day of symptomatic illness and the quarantine length is set to five
days. The testing delay is assumed to not affect people’s ability to leave quarantine.
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SARS-CoV-2 superspreading in cities vs the countryside
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Eilersen A, Sneppen K. SARS-CoV-2 superspreading in cities vs the countryside. APMIS. 2021; 129: 401–407.
The first wave of the COVID-19 pandemic was characterized by an initial rapid rise in new cases followed by a peak
and a more erratic behaviour that varies between regions. This is not easy to reproduce with traditional SIR models,
which predict a more symmetric epidemic. Here, we argue that superspreaders and population heterogeneity would pre-
dict such behaviour even in the absence of restrictions on social life. We present an agent-based lattice model of a dis-
ease spreading in a heterogeneous population. We predict that an epidemic driven by superspreaders will spread
rapidly in cities, but not in the countryside where the sparse population limits the maximal number of secondary infec-
tions. This suggests that mitigation strategies should include restrictions on venues where people meet a large number
of strangers. Furthermore, mitigating the epidemic in cities and in the countryside may require different levels of restric-
tions.

Key words: COVID-19; model; superspreading; population density; epidemiology.
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At its onset the coronavirus disease 2019 (COVID-
19) pandemic shocked the world, with the number of
new cases and deaths growing more than 20% per
day in the main hotspots [1]. With a growth rate this
high, the disease was expected to spread through the
population in less than six months without mitiga-
tion, and to reach a peak after three months, at
which point 30% of the population would have had
the disease [2]. This, however, was not how the initial
wave of the epidemic played out [3].

While most of the epidemic undoubtedly was
halted due to mitigation efforts, it is striking that
even in countries that have implemented a very
light lockdown, such as Sweden, the epidemic
peaked long before herd immunity was achieved.
Furthermore, even societies that slowly reopened
businesses and public life did not experience an
immediate explosive resurgence of the epidemic
expected given the low levels of immunity and the
speed with which the disease spread initially [3].

Here, we will propose an agent-based lattice
model of an infectious disease that spreads in a
geographically heterogeneous population. The
model is a simplified depiction of the dynamics of
viral infection with severe acute respiratory syn-
drome coronavirus 2 (SARS-CoV-2), with its

characteristic parameters. We will examine the
effect of the heterogeneous infection pattern that is
so characteristic of this disease, using a gamma dis-
tributed infectiousness with dispersion factor
k = 0.1 from [4]. Infection heterogeneity is a feature
of several epidemic diseases [5] and plays a particu-
larly important role for COVID-19 [4,6–8]. In indi-
vidual events, a single person has caused dozens of
infections [9]. At the same time, the attack rate
within households has been reported to be very
low, at less than 20% [10], despite prolonged close
contact. This suggests that the majority of COVID-
19 patients infect very little. In [11] an agent-based
model was used to demonstrate that the Achilles
heel of an epidemic driven by superspreaders was
public social contacts, while the repeated contacts
to smaller family and work groups were less dan-
gerous.

Looking at COVID-19 data from the first wave
in the United States in the analysis by [12], it is
clear that a rapidly spreading epidemic occurs pri-
marily in densely populated areas. In less densely
populated areas, the epidemic onset is delayed, and
in rural areas, the epidemic never really starts, with
most cases appearing to be spillover from the cities.
The daily per capita mortality at the first peak in
[12] varies by a factor of ten between the most and
least densely populated areas in the United States.
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The density dependence of COVID epidemics
could in principle be explained by the higher chance
of meeting infected people in dense areas. However,
only 1% of COVID-19 spread was outdoors in
China [13], suggesting that only indoor meetings
count. Furthermore, only few infections happen
within households [10], suggesting that it is social
visits and meetings in confined areas that facilitate
infection [14]. We will base our model on these
observations.

METHODS

Our model plays out on a lattice of side L with periodic
boundary conditions. Each lattice site may either be
empty or contain one agent. The agents can be in one of
three states, susceptible, infectious or recovered. Individu-
als interact with their neighbours with a frequency fmeet

which is constant and fixed along with the mean infec-
tion probability per meeting to give the desired number
of secondary infections at the onset of the epidemic, R0.
The distance that agents travel we draw from the distri-
bution pðrÞ¼ 1

r0
e�r=r0 with a mean of r0 = 10 sites unless

stated otherwise. The real probability distribution of tra-
vel distances for cars has in Italy been determined to be
an exponential function below 20 km, and then a power
law with a steeper cut-off around 500 km [15]. The inter-
action radius r0 is not by itself a meaningful parameter.
Rather, it is the number of neighbours within this radius,
given by πρr20 (where ρ is the population density) which
determines the behaviour of the system, as will be
demonstrated below. A diagram of the model can be
seen in Fig. 1.

COVID-19 is known to be transmitted before the onset
of symptoms [16]. For simplicity, rather than using the
susceptible-exposed-infectious-recovered (SEIR) modelling
framework, we combined the exposed, presymptomatic
state and the overlapping infectious period into one single
infectious period of 1/γ = 10 days. Given the geometry of
the system, this leads to a measured serial interval of

approximately 6 days, slightly higher than most sources
estimate [17,18]. However, it is a small difference, and
given the simplifications of our model we judged that it
would not be meaningful to fit this parameter precisely to
the observed value. Infected agents randomly leave the
infectious state with a rate of γ per day, meaning that the
duration of the disease is exponentially distributed. The
implications of using a different distribution of disease
durations are explored in the supplement.

When an infectious agent i interacts with a susceptible
agent, the susceptible agent will become infected with a
probability pi that is specific to the infecting agent. We
draw these probabilities from a gamma distribution with
dispersion factor k = 0.1 [4,5], within the range observed
for COVID-19 [4,6,8]. The distribution is normalized to
give an average reproduction number R0 of 3 at a popula-
tion density of 1 at the onset of the epidemic.

The geographical heterogeneity of the population is
modelled by placing a square ‘city’ of side L/5 on a lattice
with periodic boundary conditions and lattice size L. The
city has the population density 1, that is all sites are occu-
pied, and the city population is thus L2/25. The city is sur-
rounded by ‘countryside’ with a population density and
total population of 24 L2/25.

Importantly, we assume that the rate of interactions per
agent is kept the same in both city and countryside, mean-
ing that we assume that people are equally social. If an
agent in the countryside attempts to interact with an
empty site, the attempt is counted as failed, and new
attempts are made until the number of contacts is the
same as in the city, where all sites are occupied.

Thus, people in the countryside interact with a smaller
set of people while still spending the same amount of time
on social activities. In a wider perspective, this proposes
that density dependence of disease spreading is more due
to difference in diversity of contacts than due to differ-
ences in time spent around other people. Thereby our
model assumes an infection rate that depends on density,
but not in a simple linear fashion as sometimes assumed
[19].

We seed the disease within the city. Even if we were to
seed it randomly, the city would usually be hit early on
provided that the epidemic catches on.

Fig. 1. Model: A superspreader in a city interacts a little with a lot of people and will infect some fraction of them. On the other
hand, a superspreader outside the city will interact a lot with each of a smaller set of people. The superspreader then infects practically
all of them, but there is a lower cap on the number of secondary infections.
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RESULTS

In Fig. 2, we consider a disease with heterogeneous
infection rates and study how simulated epidemic
trajectories depend on population density. One sees
that the dynamics resembles that of a SIR model at
values much lower and much higher than the criti-
cal density. In the low regime, the epidemic only
spreads in the city which is relatively well-mixed,
whereas in the high regime, the countryside begins
to resemble the city more and more. In both
extremes, the fraction of infected individuals rises
and falls symmetrically. The figure illustrates how
the epidemic is ‘stretched out’ in the intermediate
density range. The epidemic has the longest lifetime
when is just above the percolation threshold crit, as
the disease still spreads in the countryside, but is
nonetheless slowed down by the lower population
density.

In Fig. 3A,B, we measure the attack rate of the
epidemic in a homogeneously distributed popula-
tion in order to find the percolation threshold,
below which the epidemic will stop propagating.
Panel (A) identifies crit � 0.01 for a homogeneously
spreading disease. In contrast, a disease with an
overdispersion of k = 0.1 has a much higher critical
density crit � 0.04, as seen in (B). The same figure
demonstrates that it is not the density alone that

determines the ability of the disease to percolate,
but rather the number of neighbours, proportional
to r0. The overdispersed simulation and the simula-
tion with homogeneous infection were done with
same average disease transmission rate and the fac-
tor ∼ 4 difference in critical density comes about
because a disease with k = 0.1 has 10% of the
infected being responsible for 80% of the infections.
Thus, most people do not transmit the disease, and
it is therefore the density of the few people who do
spread the disease that sets the critical threshold.

Since our model analysis centres on superspread-
ers as a main driver of the epidemic, Fig. 3C com-
pares epidemics with and without superspreaders. It
can be seen that with no superspreaders, the epi-
demic will spread unhindered in the countryside,
albeit more slowly since the countryside is geo-
graphically larger than in the city.

This leads to a graph similar to two superim-
posed SIR-like models. If superspreaders are pre-
sent, however, the epidemic may spread both
slowly and erratically in the countryside and con-
tinue long after herd immunity is achieved in the
city.

The dependence of the percolation threshold on
the dispersion parameter k is further investigated in
Fig. 4, which shows the attack rate as a function of
both the number of neighbours and k. The figure
shows that the percolation threshold increases dras-
tically at low k, meaning that a superspreader-dri-
ven epidemic requires more social contacts per
person in order to spread. Once the epidemic
becomes sufficiently overdispersed (k < 0.05), it is
no longer viable.

In Fig. 5, we try to replicate the data compiled
by [12] and see that local disease incidence in a
model with heterogeneous infectivity is indeed
much more population density dependent than a
model assuming homogeneous infectivity. This fits
well with the cited data, which suggest a strong
dependence of COVID-19 incidence on population
density. It has already been known for years that
the spread of epidemics is population density
dependent [19]. Here, we show that this dependence
is enhanced by heterogeneous infectivity. Impor-
tantly, as opposed to traditional disease models, we
assume that everyone is equally social, but that the
set of available contacts is smaller in sparsely popu-
lated regions. The significance of this will be dis-
cussed further below.

The delayed onset and erratic behaviour of the
countryside epidemic obviously depend on the den-
sity and other characteristics of the countryside and
the assumed travelling pattern of individuals. Also,
real countryside contains a diverse pattern of smal-
ler and large settlements. Therefore, we considered
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Fig. 2. Epidemic trajectories: Infected fraction of the popula-
tion over time changes with the countryside population density
ρ. In the low- regime, increasing the population density
stretches the curve, as the epidemic spreads further from the
city. When ρ is above ∼ 0.06, the epidemic again approaches
the behaviour of a SIR model, as the epidemic now spreads
unhindered across the whole system. Around ρcrit, there is a
large variation in the duration of the epidemic. The parameters
used are γ = 0.1, r0 = 10, fmeet = 10 and dispersion parameter
k = 0.1.
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a system with several cities distributed on a lattice
with side length L = 1000 (Fig. 6). The system
mimics the observed city size distribution, which is
fairly close to the Zipf law [20,21]. The random dis-
tribution of smaller cities is not entirely naturalistic,
since evidence suggests that real cities are organized
in a fractal pattern [22,23]. A figure using a city dis-
tribution closer to a fractal can be found in the
supplement. For illustrative purposes, we chose a
density in the countryside that is close to but below
the percolation threshold for the disease (ρ = 0.03).
With this below-critical spreading, we observe cities

that are spared and cities that are nearly completely
infected. In reality assuming near critical spreading
in the countryside would not be necessary for glo-
bal spread, since people occasionally travel long
distances [15], facilitating rare direct transmissions
between distant cities.

DISCUSSION

Based on the above, we suggest that the lopsided
appearance of COVID-19 epidemic curves can be

A

C

B

Fig. 3. Comparison of models without and with superspreaders. Panel (A) shows the attack rate as a function of the number of
neighbours within the radius of interaction (∼ ρr0) in a population where everyone infects with the same rate. (B) shows attack
rate with heterogeneous infection rates, using a gamma distribution with dispersion factor k = 0.1. The two overlaid curves
demonstrate that the parameter r0 does not affect the physics of the system, and what really determines the ability of the disease
to percolate is the number of neighbours, proportional to ρr0. (C) Epidemic trajectory when superspreaders dominate (blue) and
when infectiousness is evenly distributed (red) for equal countryside population density and radius of interaction (ρr0 = 6).
When superspreaders are the main drivers of the epidemic, it is strongly impeded once the city has reached herd immunity.When
everyone infects equally, the epidemic simply spreads radially out from the city, leading to a ‘second wave’ in the countryside.
Parameters are as in Fig. 2.
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explained by heterogeneous infection ability com-
bined with a geographically heterogeneous popula-
tion. However, our model makes a number of

assumptions and breaks from reality, whose impor-
tance must be discussed.

First and foremost, the distribution of full and
empty lattice sites does not represent the geographi-
cal distribution of people as such. Rather, it repre-
sents the density of contacts. The density ratio
between people in the countryside compared to an
inner city is much lower than what is used in our
model. On the other hand, persons living outside
the cities may be more mobile than city-dwellers.
The density contrast of agents on our lattice repre-
sents the combined effect of these factors.

A further complication is the distribution of dis-
ease duration and incubation periods. We here
assume a simple exponential distribution of infec-
tious period duration, whereas the real mechanics
of COVID-19 includes presymptomatic transmis-
sion and a broad gamma distribution of incubation
periods [17]. A different infectious period distribu-
tion might complicate our findings. Therefore, we
examine the effect of a gamma distributed infec-
tious period duration in the supplement. We find
that, while changing this distribution has an effect
on the percolation threshold, it does not change
our fundamental conclusions.

2 4 6 8

  r
0
2

0

0.2

0.4

0.6

0.8

k

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

A
tta

ck
 r

at
e

Fig. 4. Dependence of attack rate on density and k. Since
the variable determining percolation is not the absolute den-
sity, but the number of neighbours, we plot ρr0 on the x-axis
rather than ρ. It is seen that the disease percolates muchmore
easily at a higher k, which implies a more homogeneous
infectivity. The more overdispersed the disease (correspond-
ing to lower k), the more neighbours are required for percola-
tion.
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Fig. 5. Epidemic trajectory in regions of varying density.
When infectivity is homogeneous (top), the epidemic is a lot
less sensitive to a lower population density than when the
epidemic is driven by superspreaders (bottom). Here, the epi-
demic is nearly absent in the low-density regions and appears
to be driven by spillover. Inset illustrates the layout of the lat-
tice.
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Fig. 6. Simulation with multiple cities: Infected individuals
are shown in red, susceptibles are green, empty sites are white
and recovered are black. City size distribution mimics Zipf’s
law [23], such that there is one city of with 40,000 inhabi-
tants, 4 with 10,000, and so forth. The graphs show the frac-
tion of the population currently infected as a function of
time for three example runs of the simulation. Here, ρ = 0.03
and the other parameters are the same as the above figures.
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It has long been discussed how disease transmis-
sion rate depends on population density [19,24,25].
We here present a new way of looking at this prob-
lem. A classical SIR model with pseudo-mass
action transmission would assume a simple linear
dependence of R0 on population density, implicitly
assuming that people become more social by living
in a densely populated area.

Our model makes a different assumption: People
will be equally social regardless of population den-
sity, but when population density is lower, the
groups that they spend time with will be less
diverse. The number of possible unique contacts for
each individual declines linearly with population
density, but people in sparsely populated areas are
likely to have multiple encounters with the same
persons, as their communities are smaller.

If, however, the epidemic is dominated by super-
spreaders who only need one or a few encounters
to transmit the disease, the duration of each
encounter becomes less important as even a rather
brief contact to a superspreader is likely to lead to
infection. Instead, what limits the action of super-
spreaders is their number of unique contacts.
Superspreaders that interact with only a small,
tight-knit group will inherently be highly limited in
how many secondary infections they can generate.

If superspreading makes a disease vulnerable to
variations in population density, we should conversely
expect to see that diseases with a homogeneous infec-
tivity, that is a dispersion factor close to or above 1,
exhibit little variation with population density. One
example of a disease with a homogeneous infectivity
is influenza, with an estimated dispersion factor of
k = 0.94 for the 1918 pandemic flu [26]. When exam-
ining the incidence of seasonal influenza, which we
assume to have a similar dispersion factor, [27] find
no consistent variation with population density. This
is a point in favour of the link between superspreading
and population density dependence.

Finally, the effect of lockdowns and changes of
social behaviour is important. A previous paper [11]
suggests that even moderate mitigation may limit the
action of superspreaders by reducing the maximal
number of people any person can be in contact with.
If this hypothesis is true, bans on gatherings and a
reduction in public social life would lead to early
peaks in the number of new cases. Our study com-
pounds this finding and suggests that a change in
behaviour is not strictly necessary to cause an epi-
demic peak well before herd immunity has been
achieved. Mitigation strategies that primarily target
cities may well be sufficiently effective in bringing
down the epidemic. However, large events like funer-
als, weddings or festivals are not included in our
model and will of course facilitate spreading in any

location. Finally, if there is a large difference in atti-
tude towards the disease in the city and the coun-
tryside, this can significantly change the behaviour
of the epidemic in the countryside relative to the
city. All in all, how governments and populations
have responded to the pandemic has likely had a
crucial effect on its trajectory. Our model investi-
gates how it would have played out in the absence
of these complicating factors.

CONCLUSION

Despite some caveats, our model reproduces the main
aspects of geographical heterogeneity and suggests a
new view on density dependence of epidemic dynam-
ics. An epidemic with a large heterogeneity in infec-
tion rates is predicted to be most intense in large cities
while it slowly tapers off in the countryside. This is
consistent with what we see in data from the first half
year of the COVID-19 pandemic [12,28]. Our results
thus favour the hypothesis that the COVID-19 pan-
demic is driven by superspreaders, and that the
observed quick exponential growth phase, early peak,
and slow, erratic recovery phase are in part conse-
quences of combining heterogeneity of infectivity with
a heterogeneous population density.

Of course, restrictions limiting social contact were
crucial to the overall COVID-19 pandemic, and
behavioural societal changes remain a central part of
a pandemic that still after a year is far from reaching
herd immunity. Our model predicts that anything
that limits the diversity of contacts, be it population
density or limits on gatherings, will have an outsized
effect on disease spread. In comparison, simply limit-
ing the number or duration of contacts will not be
as effective unless the diversity is also decreased. A
superspreader still spreads quite effectively given ten
encounters with ten different individuals, but is
much less effective given 20 encounters with only five
different people. The present work suggests that
future epidemiological models should take contact
diversity into account if they are to properly capture
the dynamics of COVID-19 and other diseases with
large transmission heterogeneity.
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COVID-19 superspreading in cities versus the countryside -

supplement

Andreas Eilersen and Kim Sneppen

Different distribution of infectious periods

In order to take into account that the duration of illness caused by COVID-19 does not actually follow
a neat exponential distribution, we have here considered the case where the duration of infection is
gamma distributed as well, though with a dispersion factor greater than one (k ≈ 4). We repeat the
central figures 3 and 5 from the main article in order to see if a different distribution of infectious
period durations changes our results. The gamma distribution should give fewer people with a very
short disease duration, though both distributions have a relatively long tail. The mean duration of
infectiousness is the same as in the main article (10 days). An important complication, that individuals
with a long period of illness are likely to be hospitalised or otherwise isolated for part of it and thus
less infectious, has not been accounted for here.

We find that, while the different distribution of infectious periods does lower the percolation thresh-
hold slightly and also diminishes the population density dependence of the epidemic, it does not fun-
damentally change our conclusions.
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Figure 1: (a) and (b) show attack rates as a function of ρr20, a measure of the number of neighbours
within a radius of r0. (a) shows the case with no infectivity overdispersion (k = 1) and (b) shows the
case where infectivity is overdispersed with k = 0.1. We see that the system behaves similar to the
main model, but with a slightly lower percolation threshhold in both cases. (c) shows the probability
distribution function for disease duration used here.
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Figure 2: A comparison of the effect of population density on an epidemic that is not overdispersed
(top) and an overdispersed epidemic (bottom). As above, the duration of illness is gamma distributed.
The effect of density is somewhat reduced in the overdispersed case, but still noticeably greater than
the non-overdispersed case. The smaller number of people with very short disease durations using this
distribution seemingly also helps the epidemic spread more effectively.
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Fractal city distribution

The random distribution of cities used in fig. 6 of the main article is not entirely realistic. Rather,
there is evidence suggesting that real geographical distribution of cities follows a fractal pattern [1,2].
We therefore repeat the figure here with a (partially) fractal distribution of cities. The results of this
simulation are fairly similar to the random city distribution.
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Figure 3: A simulation where, instead of a random distribution, the cities are laid out in a fractal
pattern. We see that this makes little difference from the random distribution shown in the main
article. The lower panel shows epidemic trajectories from three test runs.
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The SARS-CoV-2 ancestral strain has caused pronounced super-
spreading events, reflecting a disease characterized by overdisper-
sion, where about 10% of infected people causes 80% of infections.
New variants of the disease have different person-to-person varia-
tions in viral load, suggesting for example that the Alpha (B.1.1.7)
variant is more infectious but relatively less prone to superspread-
ing. Meanwhile, mitigation of the pandemic has focused on limiting
social contacts (lockdowns, regulations on gatherings) and decreas-
ing transmission risk through mask wearing and social distancing.
Using a mathematical model, we show that the competitive advan-
tage of disease variants may heavily depend on the restrictions im-
posed. In particular, we find that lockdowns exert an evolutionary
pressure which favours variants with lower levels of overdispersion.
We find that overdispersion is an evolutionarily unstable trait, with a
tendency for more homogeneously spreading variants to eventually
dominate.
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One of the major features of the coronavirus pandemic has1

been overdispersion in transmission, manifesting itself2

as superspreading. There is evidence that around 10% of3

infected individuals are responsible for 80% of new cases (1–4

4). This means that some individuals have a high personal5

reproductive number, while the majority hardly infect at all.6

A recent study has shown this is reflected in the distribution of7

viral loads which is extremely wide, with just 2% of of SARS-8

CoV-2 positive individuals carrying 90% of the virus particles9

circulating in communities (5). Overdispersion is in fact a key10

characteristic of certain diseases (6–8). However, this is by no11

means a universal signature of infectious respiratory diseases.12

Pandemic influenza, for example, is characterized by a much13

more homogeneous transmission pattern (9–11).14

As an emerging virus evolves, its transmission patterns may15

change and it may become more or less prone to superspreading.16

The Alpha (B.1.1.7) variant of SARS-CoV-2 has been reported17

to be ∼ 50% more transmissible than the ancestral SARS-CoV-18

2 virus under varying degrees of lockdown (12–14). Meanwhile,19

others have shown that the Alpha variant possesses a higher20

average viral load and a reduced variability between infected21

persons, compared to the ancestral strain (15, 16). It remains22

to be seen how this reduced variability affects the transmission23

patterns of the virus.24

The altered viral load distributions seen in persons in-25

fected with the Alpha variant have also been investigated at26

the level of individual mutations. The spike protein of the27

Alpha variant prominently features the N501Y substitution28

(asparagine replaced by tyrosine at the 501 position) as well29

as the ∆H69/V70 deletion (histidine and valine deleted at30

the 69 and 70 positions). Investigators found that the viral31

load is, on average, three times as great for the Alpha variant 32

compared with the ancestral strain (16). Furthermore, viral 33

load distributions in samples taken from persons infected with 34

a variant with the ∆H69/V70 show a lower variance, whether 35

or not they also have tyrosine at the 501 position. However, 36

the difference in variance was most pronounced for those sam- 37

ples which had the deletion as well as the 501Y mutation. 38

Similarly, an analysis of samples with the N501Y mutation 39

show that they have a higher median viral load as well as a 40

substantially diminished variance compared to those without 41

it. Using data from Ref. (15), we calculate that the viral loads 42

in samples of the Alpha variant are associated with a lower 43

coefficient of variation of approximately 2, compared to 4 for 44

the ancestral strain. Importantly, the exact relation between 45

viral load and infectiousness is not well understood; however, 46

a higher viral load is logically expected to increase the risk of 47

disease transmission. By this logic, the decreased variability 48

in the viral load for the Alpha variant may translate into a 49

reduced overdispersion in transmission. 50

In this paper, we use a mathematical model to study the 51

competition between idealized variants which differ in their 52

level of overdispersion (k) and their mean infectiousness. Our 53

focus is on exploring whether overdispersion confers any evo- 54

lutionary (dis)advantages, and whether non-pharmaceutical 55

interventions which restrict social network size and transmis- 56

sibility change the fitness landscape for variants with varying 57

degrees of overdispersion. While it is evident that a higher 58

mean infectiousness confers an evolutionary advantage to an 59

emerging pathogen, it is not a priori obvious if a competitive 60
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advantage can be gained by specifically altering the variability61

in infectiousness (while keeping transmissibility unchanged).62

Our recent studies have shown that the presence of overdisper-63

sion makes a pandemic far more controllable than influenza64

pandemics when mitigating by limiting non-repetitive contacts65

(17) and personal contact network size (18). We therefore spec-66

ulate that restrictions which alter social contact structure may,67

conversely, provide a fitness advantage to variants with more68

homogeneous transmission, and may thus play a role in viral69

evolution.70

Across several diseases, individual variations in infectious-71

ness have been approximated by a Gamma distribution (6)72

characterized by a certain mean value and a dispersion pa-73

rameter known as k, which is related to the coefficient of74

variation (CV ) through CV = 1/
√
k. In the simplest of cases75

(a well-mixed population), infection attempts are modeled as76

a constant-rate (Poisson) process, which leads to a personal77

reproductive number which follows a negative binomial distri-78

bution. The dispersion parameter k characterizes the degree of79

transmission heterogeneity; a lower k corresponds to greater80

heterogeneity. For small values of k, it approximately corre-81

sponds to the fraction of infected individuals responsible for82

80% of new infections The value for the SARS-CoV-2 ancestral83

virus is around 10%, corresponding to a k-value of approxi-84

mately 0.1. Other coronaviruses are also prone to superspread-85

ing, with the k-values of SARS-CoV-1 and MERS estimated86

at 0.16 (6) and 0.26 (19), respectively. To explore questions of87

how such overdispersion affects fitness and pathogen evolution,88

we use an agent-based model of COVID-19 spreading in a89

social network, as originally developed in Ref. (18).90

Overdispersion in personal reproductive number – i.e. su-91

perspreading – is a phenomenon that requiresmeans (biological92

infectiousness) as well as opportunity (social context). Super-93

spreading can have diverse origins, ranging from purely be-94

havioural to biological (8, 20). However, a recent meta-review95

(21) compared the transmission heterogeneity of influenza96

A (H1N1), SARS-CoV-1 and SARS-CoV-2 and found that97

higher variability in respiratory viral load was closely associ-98

ated with increased transmission heterogeneity. This suggests99

that biological aspects of individual diseases are decisive in100

determining the level of overdispersion, and thus the risk of101

superspreading.102

Initial survival of variants103

The words fitness and competitive advantage may take on104

several meanings in an evolutionary context. For our purposes,105

it is especially important to distinguish between the ability106

of a pathogen to avoid stochastic extinction and to reproduce107

effectively in a population.108

To quantify the ability to avoid stochastic extinction we109

use a branching process to simulate an outbreak of a variant110

with a given level of overdispersion in a naive population. We111

then record whether it survives beyond the first 10 generations112

of infections, as a measure of the ability of that variant to take113

hold. Repeating these simulations multiple times allows us114

to compute the survival chance of each variant as a function115

of its infectiousness and overdispersion, in the absence and116

presence of mitigation (Fig. 1). Since we are dealing with a117

few related quantities, some definitions must be made. By118

the basic reproductive number (R0) we mean the average num-119

ber of new infections which each infected person gives rise to120
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Fig. 1. Initial survival chance depends strongly on overdispersion and mod-
erately on lockdown status. A) The epidemic spreads in an unrestricted setting
(homogeneous mixing contact structure) B) The epidemic spreads in a situation with
limited social connectivity (modeled as an Erdos-Renyi network of average connec-
tivity 10). The survival chance is computed by simulating several outbreaks, each
starting from a single infected individual in a susceptible population. This initial in-
dividual is infected with a variant of a given overdispersion. For each outbreak, the
variant is recorded as having survived if it does not go extinct within 10 generations.
The dashed white line indicated parameters for which the variant has a 5% chance
of surviving. The biological mean infectiousness (horizontal axis) has been scaled
such that it equals the basic reproductive number (R0) in the homogeneous mixing
scenario of panel A. For details on these calculations, see the Materials and Methods
section.

when all contacts are susceptible. This is in contrast to the 121

effective reproductive number (known variously as R, Rt and 122

Re), which is affected by population immunity. Note that R0 123

as well as Re are context dependent, since behaviour (and 124

mitigation strategies) will affect e.g. the number of contacts 125

that a person has and thus the reproductive number. Another 126

parameter entirely is the (biological) mean infectiousness, by 127

which we mean the rate at which transmission occurs when an 128

infected person is in contact with a susceptible person. This is 129

a property of the disease and not of the social environment. In 130

Fig. 1, the independent variables are thus the mean infectious- 131

ness and the dispersion parameter, both of which are assumed 132

to be properties of the disease. The details of the calculation 133

can be found in the Materials and Methods section. 134

In the unmitigated scenario (Fig. 1A), the procedure is rel- 135

atively straightforward. A single infected individual is initially 136

introduced, with a personal reproductive number z drawn from 137

a negative binomial distribution PNB[Z;R0, k] with mean value 138

R0 and dispersion parameter k. Thus, this individual gives 139

rise to z new cases, and the algorithm is reiterated for each of 140

these subsequent infections. 141

In the case of a lockdown scenario, in terms of restrictions 142

of the number of social contacts (Fig. 1B), the algorithm is 143

slightly more involved. In this case, a degree c (the number of 144

contacts) is first drawn from a degree distribution (in this case 145
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a Poisson distribution, to mimic an Erdös-Renyi network). A146

biological reproductive number ξ (the infectiousness) is then147

drawn from a Gamma distribution with mean value R0 and148

dispersion parameter k. The actual personal reproductive149

number z is then drawn from the distribution150

P (z; ξ, c) =
(
c

z

)(
1− e−ξ/c)z (e−ξ/c)(c−z)

. [1]151

This reflects that the personal reproductive number z is, natu-152

rally enough, limited by the number of distinct social contacts153

c. This algorithms is then reiterated for each of the z new154

cases.155

Similar results can be obtained analytically by considering156

the probability that an infection chain dies out in infinite157

time. Let that probability be d and let pi, i ∈ {0, 1, . . . } be158

the distribution of personal reproductive number (i.e. pi is159

the probability that a single infected individual will infect i160

others). Then the extinction risk d is the sum:161

d = p0 + p1d+ p2d
2 + . . . [2]162

where the first term on the right hand side is the extinction163

risk due to the index case producing no new infections, the164

second term is the case where the index case gives rise to165

one branch of infections which then dies out (this being the166

reason for the single factor of d in the second term) and so on.167

Since each new branch exists independently of the other, the168

extinction events are independent and the probabilities may169

be combined by simple multiplication as in Eq. Eq. (2).170

We find that the survival chance depends very strongly171

on overdispersion (Fig. 1), with more homogeneous variants172

(k ∼ 1) having a good chance of survival while highly overdis-173

persed variants (k ≤ 0.1) are very unlikely to survive beyond174

10 generations. This finding fits well with the general pat-175

tern of overdispersed spreading, namely that many individuals176

hardly become infectious while a few pass the disease onto177

many others. The uneven distribution of infectiousness makes178

heterogeneous diseases more fragile in the early stages of an179

epidemic, and thus more prone to stochastic extinction.180

For the case of homogeneous mixing (Fig 1A) and the num-181

ber of generations tending to infinity, Lloyd-Smith et al (6)182

performed a similar calculation using the generating function183

method described in Eq. 2. For a disease with R0 = 3 and a k184

value of 0.16 (similar to what they estimated for SARS-CoV-1),185

the survival chance was found to be 24%. Our model yields186

the same figure in the unmitigated connectivity→∞ limit.187

To assess the effect of lockdown-like non-pharmaceutical188

interventions on the initial survival chances of a pathogen, we189

performed an analogous computation in a socially restricted190

setting (Fig. 1B). Compared with the unmitigated scenario of191

Fig. 1A, it can be seen that the mitigation has an effect on the192

survival chance, affecting highly overdispersed variants (small193

k) much more than their more homogeneous counterparts194

(with the same mean infectiousness). This result is parallel195

to the effect of lockdown-like interventions on the competitive196

advantage of a variant, which we explore in the next section.197

In Ref. (20), the authors study stochastic extinction of198

a superspreading disease under a targeted intervention they199

call cutting the tail. They introduce a cutoff value Ncutoff200

for the personal reproductive number, and if a person has a201

personal reproductive number z ≥ Ncutoff, a new z is drawn202

until one below the threshold is obtained. Since the disease is203

highly heterogeneous, this process is analogous to ”removing” 204

a potential superspreading event and replacing it with a much 205

lower personal reproductive number (typically z = 0). This is 206

exactly why the intervention is rightly called targeted. Their 207

approach is thus based on viewing superspreading entirely as 208

an event-based phenomenon, where one can directly remove 209

superspreading events above some threshold size, and instead 210

let the individuals take part in other less risky events. Our 211

approach, on the other hand, assumes superspreading to be 212

due to a combination of high individual biological infectious- 213

ness and opportunity, e.g. a large number of social contacts. 214

These two viewpoints are complementary in obtaining a com- 215

prehensive description of superspreading phenomena, rather 216

than mutually exclusive (17). 217
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Fig. 2. Simulations of the emergence of a new variant. An initially dominant
(”ancestral”) strain with dispersion parameter k = 0.1 (red) has initially infected 1%
of the population. The figure follows the emergence of a new variant (purple), which
has the same biological mean infectiousness, but is more homogeneous (k = 0.2).
Initially, 0.01% of the population is infected with the emerging variant. The two variants
exhibit perfect cross-immunity. The initial scenario is a partially locked-down society
(modeled as an Erdös-Renyi network with 10 contacts/person). When the new variant
reaches 20% of all current infections (around day 65), the lockdown is completely
lifted (modeled by a homogeneous mixing contact structure with the same total social
time available per person). A) Incidence of each strain as a function of time since
the new variant was introduced. Notice that the new variant spreads approximately
exponentially until day 65 (see also panel B), whereas the ancestral strain stays
at about 1% incidence. When restrictions are lifted, both surge. B) Same data as
panel A, but plotted on a logarithmic scale. In this plot, exponential growth shows
up as a straight line, and it is thus clear that the new variant spreads approximately
exponentially during the lockdown phase. C) The relative proportions of the old
and new variants. In the locked-down society, the new variant has a distinct fitness
advantage, as revealed by its increasing share of infections. Once restrictions are
lifted around t = 65 days, the fitness advantage is lost and the two variants spread
equally well.
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Competitive advantage is determined by context218

We now turn to the competition between two variants which219

have already managed to gain a foothold, and so have moved220

past the initial risk of stochastic extinction. This is a separate221

aspect of “fitness”, distinct from the initial survival ability222

described in the last section. Fig. 2 explores the competi-223

tion between two strains which differ only in their level of224

overdispersion. The ancestral variant has a broad infectious-225

ness distribution (k = 0.1) while the other – the new variant –226

is more narrowly distributed (k = 0.2). In the initial partial227

lockdown scenario, each person is only allowed contact with228

10 others, At first, the fraction of infections due to the new229

variant is observed to grow rapidly. When it reaches a 20%230

share of active infections, around day 65, the lockdown is231

lifted (simulated by a shift to a homogeneous mixing contact232

structure). Naturally, this more permissive contact structure233

causes a surge in both variants (Fig. 2c). However, the frac-234

tion of infections owing to each variant suddenly stabilizes,235

indicating that the more homogeneous new variant has lost236

its competitive advantage in the unmitigated scenario.237

This sudden loss of competitive advantage demonstrates238

conceptually that the fitness of variants with different pat-239

terns of overdispersion depends on context, in the form of240

non-pharmaceutical interventions or the absence thereof. To241

quantify this dependence, we separately simulate the spread242

of several pathogen variants, each with its own specified mean243

infectiousness and dispersion parameter k, and measure the244

resulting basic reproductive numbers. In each case we let the245

pathogen spread in an Erdös-Renyi network with a mean con-246

nectivity of either 10 or 50, to simulate scenarios with either247

a restricted or fairly open society. The results are shown in248

Fig. 3, where the competitive (dis)advantage of each variant249

is plotted as a function of its a given biological mean infec-250

tiousness and dispersion. The infectiousness is given relative251

to the SARS-CoV-2 ancestral strain which is set to average252

infectiousness = 1 and has dispersion k = 0.1. This average253

infectiousness of 1 corresponds to a basic reproduction number254

of R0 = 3 in a well-mixed scenario, representative of COVID-255

19 (22). In the socially restricted case with only 10 contacts,256

the competitive advantage depends strongly on the dispersion257

parameter, as evidenced by the contour lines in Fig. 3A. The258

dashed white contour in the figure indicates variants which259

spread as well as the ancestral strain. Concretely, a variant260

with just half the biological infectiousness of the ancestral261

strain has no substantial competitive disadvantage, provided262

it is sufficiently homogeneous (k & 1.0). In the more socially263

connected scenario (Fig. 3B), the competitiveness of a strain264

is observed to depend less strongly on dispersion, and is pri-265

marily determined by biological mean infectiousness. Viewed266

more broadly, these results imply that an observed increase267

in R0 for an emerging variant may be due to a combination268

of changes in transmission patterns (k) and biological mean269

infectiousness270

So far, our focus has been on mitigation strategies which271

rely on reductions in contact network. However, even when272

societies reopen by allowing contact with an increased num-273

ber of individuals, non-pharmaceutical interventions which274

decrease transmission risk per encounter may be in force.275

These may include face masks and regular testing. In the276

Supporting Information, we show that interventions which277

decrease the transmission risk per encounter (i.e. per unit of278

contact time) in fact decrease the competitive advantage of 279

more homogeneous variants. These types of interventions thus 280

have essentially the opposite effect, relative to strategies which 281

reduce social connectivity. 282
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Fig. 3. Relative fitness of variants. The color indicates the basic reproductive
number that each variant exhibits under the given circumstances. The dashed white
line indicates variants which have the same fitness as the ancestral strain, which is
estimated to have k = 0.1. The biological mean infectiousness (horizontal axis) has
been scaled such that it equals the basic reproductive number (R0) in a homogeneous
mixing scenario. A) Spread of the disease in a connectivity 10 Erdös-Renyi network,
corresponding to a partial lockdown. B) Spread of the disease in a connectivity 50
Erdös-Renyi network, corresponding to a mostly open society.

Interventions exert selection pressure 283

As the observed differences in the viral load distributions of 284

the Alpha (B.1.1.7.) variant and the ancestral strain suggest, 285

overdispersion is not a fixed property, but rather one that may 286

evolve over time. Furthermore, the SARS-CoV-2 pathogen 287

has been estimated to mutate at a rate of approximately 2 288

substitutions per genome per month (23), translating to about 289

one mutation per three transmissions. In Fig. 4, we explore 290

the consequences of overdispersion as an evolving feature of 291

the pathogen. In these simulations, the virus has a mutation 292

probability of 1/3 at each transmission. When it mutates, the 293

overdispersion factor is either increased (by a factor of 3/2) or 294

decreased (by a factor of 2/3). Thus, we assume no drift on 295

the microscopic scale, but one may arise macroscopically due 296

to selection pressure from the environment. It should of course 297

be noted that while the assumed mutation rate is realistic for 298

SARS-CoV-2, many mutations will be neutral and only very 299

few mutations will affect transmission dynamics. As such, the 300

present model will likely overestimate the magnitude of the 301

drift in overdispersion. It is however conceptually robust – 302

decreasing the mutation rate merely slows down the drift, but 303

the tendency remains. 304

In our simulations, we find that there is always a tendency 305
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for overdispersion to decrease (i.e. for the k value to increase),306

leading to more homogeneous disease transmission. This makes307

sense, since we have already established that heterogeneous308

disease variants are more likely to undergo stochastic extinc-309

tion (Fig. 1) and that they have a competitive disadvantage310

as soon as contact structures are anything but well-mixed311

(Fig. 3). In the absence of any interventions, the tendency312

to evolve towards homogeneity is quite weak (Fig. 4A), but313

when a partial lockdown is instituted, the picture changes314

dramatically and the k value increases exponentially. The315

conclusion is thus that lockdowns exert a selection pressure on316

the virus when it comes to overdispersion, towards developing317

a less superspreading-prone phenotype.318

One may of course object that the scenarios of Fig. 4A (un-319

restricted spread) and 4B (partial lockdown) are not directly320

comparable, since the epidemic in 4A unfolds much more321

rapidly. For this reason, we have included the scenario shown322

in 4C, where the transmission rate per encounter has been323

lowered, but social structure is unrestricted. The transmission324

rate is lowered such that the initial daily growth rates in Fig.325

4B and 4C are identical (11%/day averaged over the first 14326

days). This slightly increases the growth of k over the course of327

the epidemic, but to a much lower level than in the lockdown328

scenario, demonstrating that it is indeed the restriction of329

social network that provides the selection pressure driving k330

upwards.331

Discussion332

With this paper we have demonstrated that the relative success333

and survival of mutants of a superspreading disease depends on334

the type of mitigation strategies employed within a population.335

The choice of a certain mitigation strategy may well amount to336

selecting the next dominant variant. If, for example, a simple337

lockdown is enacted while still allowing people to meet within338

restricted social groups, the evolution of more homogeneously339

spreading disease variants may become favoured.340

The spreading of an emerging virus in a human society is341

a complex phenomenon, where the actual reproductive num-342

ber depends on sociocultural factors, mitigation policies and343

self-imposed changes in the behaviour of citizens as awareness344

grows in the population. The spread of a disease such as345

COVID-19 cannot simply be characterized by a single fitness346

quantity like the basic reproductive number R0, but will also347

depend on the heterogeneities of transmission patterns within348

the population. If schools are open, mutants which spread349

more easily among children may be selected for, whereas rapid350

self-isolation of infected individuals may tend to favor vari-351

ants which temporally separate disease transmission from the352

development of symptoms. We have focused on modeling the353

evolutionary effects of biological superspreading in the context354

of mitigations such as lockdowns which have been implemented355

globally during the COVID-19 pandemic. We found that such356

lockdowns will favour the emergence of homogeneously spread-357

ing variants over time.358

Our findings also have implications for the assessment of359

new variants. They highlight the importance of taking overdis-360

persion into account when evaluating the transmissibility of an361

emerging variant. We have shown that the disease can spread362

more effectively not only by increasing its biological mean363

infectiousness, but also by changing its pattern of transmission364

to become more homogeneous. Practically, this means that365

transmission data obtained under even partial lockdown can 366

lead to an overestimation of the transmissibility of an emerging 367

variant. We thus call for an increased focus on measuring the 368

overdispersion of variants, as this may be critical for estimat- 369

ing the reproductive number of new variants. These estimates 370

in turn determine the required vaccination levels to reach herd 371

immunity. 372
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Fig. 4. Evolution of overdispersion is driven by imposed restrictions. In these
simulations, random mutations occur which alter the level of transmission overdisper-
sion in a non-directed fashion. However, external evolutionary pressures are seen to
drive the disease towards developing more homogeneous spreading patterns. The
filled red curve shows the combined incidence of all strains. The purple curve shows
the average dispersion factor k in the infected population (with higher k corresponding
to a more homogeneous infectiousness). The shaded purple area shows the 25% and
75% percentiles of the distribution of dispersion factors in the infected population. A)
The pathogen evolves in an open society with no restrictions imposed (homogeneous
mixing contact structure). B) Partial lockdown, with an average social network connec-
tivity restricted to 15 persons. C) No restrictions on social network, but infectiousness
lowered by other means (e.g. face masks).

Materials and Methods 373

We use an individual-based (or agent-based) network model of 374

disease transmission as originally developed in Ref. (18). In this 375

section, we present only a brief overview of the basic model, and 376

refer to Ref. (18) for a more detailed description. We then go on 377

to describe in detail the simulations and calculations which are 378

particular to this manuscript. 379

The disease progression model consists of four overall states, 380

Susceptible, Exposed, Infected and Recovered. The exposed state 381

has an average duration of 2.4 days and is subdivided into two 382

consecutive states with exponentially distributed waiting times (i.e. 383
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having constant probability rate for leaving the state) of 1.2 days384

each, thus constituting a gamma distributed state when viewed as385

a whole. The infectious state is divided into two states as well, of386

1.2 and 5 days in duration, respectively.387

Each individual in the model is associated with a fixed social388

network. Only a subset of edges are activated in each timestep, to389

simulate a contact event. In the simulations of this work, we always390

use either an Erdös-Renyi network with finite mean connectivity, or391

a homogeneous-mixing contact structure, which is also obtainable392

as the infinite connectivity limit of an Erdös-Renyi network.393

When an edge connecting a susceptible and an infectious in-394

dividual is active, there is a certain probability per unit of time395

for disease transmission to occur. This rate is determined by the396

individual infectiousness ri of the infectious agent, which is drawn397

from a gamma distribution with dispersion parameter k before the398

individual has become infectious. As such, the infectiousness for399

any given individual is assumed constant throughout the infectious400

stage of the disease. The infectiousness distribution determines an401

upper bound on size ∆t of the the timesteps in the model, since402

the inequality ri ·∆t < 1 must hold for all agents. A timestep of403

size ∆t = 30min was used throughout, since this was sufficient to404

ensure that the inequality was satisfied.405

Below we go into more detail as to how the simulations involving406

multiple strains were performed.407

Stochastic extinction. The stochastic extinction (or, conversely, sur-408

vival) plots of Figure 1 in the main text rely entirely on a branching409

process algorithm with sampling of probability distributions with410

an analytic description. In practice, we have performed the compu-411

tation by numerical sampling.412

In each generation of the epidemic, the computation is reiter-413

ated. Without loss of generality, we therefore here describe a single414

generation which initially has I infected individuals. Note that for415

the initial generation, I = 1 infected individuals.416

• For i ∈ {1, . . . , I}:417

– Draw individual infectiousness ξi from Gamma distribu-418

tion Pξ(ξ; k, µ)419

– Draw number of contacts c from a Poisson distribution420

with a given mean connectivity.421

– Given number of contacts c, draw personal reproductive422

number zi from the distribution Eq. (3)423

Pz(z; ξ, c) =
(
c

z

)(
1− e−ξ/c)z (e−ξ/c)(c−z)

. [3]424

• Let the number of newly infected be I =
∑

i
zi and repeat the425

algorithm with this new value of I.426

If the number of infected I ever drops to zero, the outbreak is said427

to have undergone stochastic extinction in that generation. By428

performing multiple such branching process simulations for each429

value of the parameters µ (mean infectiousness) and k (dispersion430

factor) we build up a statistic of the survival chance of each specific431

variant. To generate Figure 1, this is repeated for two different432

values of the mean connectivity c.433

Two-strain competition simulations. In Fig. 2, two strains spread434

simultaneously in the population of N = 106 individuals. Initially,435

0.99% of the population are infected with the heterogeneous ”old”436

variant (k = 0.1), while 0.01% are infected with the more homo-437

geneous ”new” variant (k = 0.2). Once a person with a given438

variant infects a susceptible individual, the characteristics of the439

variant are passed on to the newly infected individual, such that440

the infectiousness of this person is drawn from a Gamma distri-441

bution with dispersion parameter k set by the variant. In other442

words, these simulations assume that no further mutations affecting443

overdispersion occur, allowing us to track solely the competition of444

two differently-dispersed variants within a population.445

Evolutionary model. In Fig. 4, we allow the pathogen to stochasti-446

cally mutate upon transmission, with the mutations affecting the447

degree of overdispersion. In the simulations, the pathogen mutates448

on average once for each new host it is transmitted to (i.e. with449

mutation probability p = 1/3) and the mutations are assumed to 450

always affect overdispersion, by either increasing the k value by a 451

factor of 3/2 (i.e. k → 3k/2) or decreasing it by a factor of 2/3 452

(i.e. k → 2k/3). On a microscopic level, the dispersion level thus 453

performs an unbiased (multiplicative) random walk. The value of 454

this step-size parameter is arbitrarily chosen, and as such the simula- 455

tions can only be regarded as qualitative and conceptual. However, 456

although no intrinsic bias is built into the mutation mechanism, 457

external selection pressures may drive the level of overdispersion in 458

the population up or down, as is explored in Fig. 4. 459

In Fig. 4C, the average infectiousness of the strain is lowered so 460

as to produce an initial growth rate that is identical to that of 4A, 461

namely 11% per day in the first 14 days of the epidemic. 462
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INTERVENTIONS TARGETING
TRANSMISSION RISK

In the main text we have primarily considered the
evolutionary pressures exerted by mitigation strategies
which rely on reductions in social connectivity, such as
lockdowns. However, other mitigation strategies may
rely not on limiting the number of distinct individuals
that a person interacts with, but rather on decreasing the
transmission rate when contacts do occur. Examples of
such strategies include the use of face masks, which work
primarily by decreasing the number of emitted virions,
and physical distancing which exploits the decrease in
viral concentration as distance to the source is increased.
In Fig. 1, we consider two scenarios in which a more ho-
mogeneous variant with dispersion factor k = 0.2 emerges
in the background of the k = 0.1 ancestral strain. Note
that the curves in Fig. 1 show the relative share of infec-
tions owing to the emerging variant and not the absolute
incidence. In both of the cases studied, social connectiv-
ity is initially quite restrictive, with each person allowed
only 10 contacts. At time t = 25days, restrictions are
relaxed, simulated by increasing average connectivity to
50. This is where the two scenarios diverge: in one of
them, the infection risk per encounter is halved, while
in the other it stays the same. It is of course expected
that halving the infection risk will cause a lower overall
epidemic, but what is not obvious is how it will affect
the competition between the two variants. As expected
from Fig. 3 of the main text, the competitive advantage
of the new variant is reduced by going from 10 to 50 so-
cial connections, as is reflected in both of the curves in
Fig. 1 bending off at t = 25days. However, more notable
is the fact that the competitive advantage of the new
variant is substantially reduced when restrictions are put
in place which decrease the infection rate. The conclu-
sion is thus that heterogeneous variants are particularly
vulnerable to lockdown-type interventions, where social
network size is reduced, while more homogeneous vari-
ants are more susceptible to interventions which reduce
infectiousness during each encounter.

In Fig. 2 we show the absolute incidence of the two

variants in another simulation experiment where the two
types of interventions are in force simultaneously. Ini-
tially, only the (partial) lockdown is in force, with so-
cial connectivity restricted to 10 persons. At t = 35
days, another non-pharmaceutical intervention which re-
duces the transmission risk per encounter by 20% is put
in force. This is seen to reduce the more homogeneous
emerging variant to marginal spread while the ancestral
strain starts to decline.
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FIG. 1. Re-opening society while putting other re-
strictions in place. The plot shows the relative abundance
of a new, more homogeneous variant (k = 0.2) as a function
of time. At time t = 0, the new variant makes up 10% of in-
fections, while the rest owe to the more heterogeneous ”old”
variant (k = 0.1). Until time t = 25 a partial lockdown is
in place, modeled by restricting personal contact networks to
only 10 persons on average. At t = 25days, society is par-
tially opened, simulated by allowing contact with 50 different
persons. The red line represents a scenario where the opening
of society is accompanied by other restrictions, reducing the
infection risk per encounter by half. As such, the diversity of
contacts encountered is increased, but the infection risk per
encounter is decreased. In the scenario shown by the yellow
line, infection risk per encounter is unaltered. Clearly, these
interventions negatively affect the competitive advantage of
the more homogeneous variant.

∗ bjarkenielsen@nbi.ku.dk
† andreaseilersen@nbi.ku.dk
‡ lonesimo@ruc.dk

§ sneppen@nbi.dk



2

0 20 40 60 80 100

Time [days]

0.0%

0.5%

1.0%

1.5%

2.0%

In
fe

ct
ed

k=0.1 (more heterogeneous)

k=0.2 (more homogeneous)

FIG. 2. Two variants with dispersion parameters k = 0.1
and k = 0.2 spread in a socially restricted society with a per-
sonal contact network size of 10. From time t = 35days, non-
pharmaceutical interventions are introduced which reduce the
rate of transmission by 20%. This is enough to reduce the
more homogeneous (k = 0.2) variant to marginal growth,
while the heterogeneous variant dies out.
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ABSTRACT 

To understand the dynamics of a pathogen we need to understand both its ecology and evolution. 

Ecological dynamics of many diseases have been investigated in socially age-structured models, not 

the least COVID-19. However, limited effort has been made to ask evolutionary questions, in 

particular questions regarding what the Evolutionarily Stable Strategy (or ESS) might be like. Here 

we ask what the ESS of the infection rate in an age-structured model might be. We demonstrate that 

the ESS of a pathogen is highly dependent upon the background age-dependent mortality rates but 

is independent of the demography of the host population. Our findings apply to a general epidemic 

pathogen in a human population. More importantly, they collectively contribute to understanding 

the long-term fate of novel pathogens such as SARS-CoV-2 that are currently early in their 

evolution.  

 

Introduction 

The fate of pandemic diseases has long been considered in the field of epidemiology and 

evolutionary biology. Such considerations have been even higher on the agenda ever since the onset 

of the COVID-19 pandemic 1 2. The initial evolution of an emerging pathogen is far from any 

evolutionary equilibrium since the pathogen is not optimised for its host. However, historical 

evidence from other pathogens 3 4 5 have shown that in the long-term, less lethal variants of the 

pathogen will often win over more virulent variants. Investigating how pathogen evolution may 

modulate epidemic dynamics is therefore a highly relevant research topic. In particular, there is an 

urgent need to shed light on the evolution of the virulence and transmissibility of emerging 

pathogens such as SARS-CoV-2 from the initial pandemic phase to the possible endemism.  

An Evolutionarily Stable Strategy (ESS) is a strategy where no mutant variant of a pathogen or 

other organism is able to invade and displace the resident variant. Such strategies have long been 

investigated in parasite and pathogen systems 6 7, and ecological systems 8 9 10 11.  

Given the many variants of the pathogen, ESS is the key to investigate the possible future of SARS-

CoV-2. For example the evolutionarily optimal length of the pre-symptomatic infectious period 

have been examined 12 13. It is worth noting that the disease burdens of many human pathogens are 

highly stratified with age. Pilot studies have shown that the age pyramid and social interactions over 



age groups may have shaped disease dynamics among humans 14 15 16 17 18 19 20. Therefore, it is vital 

to explicitly investigate the evolutionary fate of a disease in a socially age-structured population. 

By using age-structured ecological epidemiology models, we investigate the expected ESS of a 

pathogen. We do so under the assumption of a trade-off between the infectivity and the duration of 

the disease caused by the pathogen. This is a common assumption in ecology 3 and is necessary if 

we want the pathogen evolution to have a stable state. 

 

Methods and Materials 

Model framework 

1. The ecological epidemiology model (the Eco-Epi model) 

Based on our previous model 21, we develop a susceptible-infected-recovered-susceptible (SIRS) 

model (fig. 1a) partitioning the population into n age classes to simulate the epidemic dynamics in 

an age-structured population. In the following, we only consider a single strain (hereafter “resident 

strain”).  

𝑑𝑆𝑖
𝑑𝑡

= 𝑎𝑖−1𝑆𝑖−1⏟    
𝑎𝑔𝑖𝑛𝑔

− 𝑎𝑖𝑆𝑖⏟
𝑎𝑔𝑖𝑛𝑔 𝑜𝑢𝑡

− 𝛿𝑖𝑆𝑖⏟
𝑛𝑜𝑛−𝑑𝑖𝑠𝑒𝑎𝑠𝑒 𝑑𝑒𝑎𝑡ℎ𝑠
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−∑𝛽𝑖𝑗𝑆𝑖𝐼𝑗
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𝑖𝑛𝑓𝑒𝑐𝑡𝑖𝑜𝑛

 

𝑑𝐼𝑖
𝑑𝑡
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𝑎𝑔𝑖𝑛𝑔
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𝑖𝑛𝑓𝑒𝑐𝑡𝑖𝑜𝑛

− 𝑎𝑖𝐼𝑖⏟
𝑎𝑔𝑖𝑛𝑔

− 𝛾𝑖𝐼𝑖⏟
𝑟𝑒𝑐𝑜𝑣𝑒𝑟𝑦

+ 𝑑𝑖𝐼𝑖⏟
𝑑𝑖𝑠𝑒𝑎𝑠𝑒 𝑑𝑒𝑎𝑡ℎ𝑠
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𝑛𝑜𝑛−𝑑𝑖𝑠𝑒𝑎𝑠𝑒 𝑑𝑒𝑎𝑡ℎ𝑠

 

                                                                                                                                               (1) 

𝑑𝑅𝐼,𝑖
𝑑𝑡

= 𝑎𝑖−1𝑅𝑖−1⏟    
𝑎𝑔𝑖𝑛𝑔

+ 𝛾𝑖𝐼𝑖⏟
𝑟𝑒𝑐𝑜𝑣𝑒𝑟𝑦

− 𝑎𝑖𝑅𝑖⏟
𝑎𝑔𝑖𝑛𝑔

+ 𝛿𝑖𝑅𝑖⏟
𝑛𝑜𝑛−𝑑𝑖𝑠𝑒𝑎𝑠𝑒 𝑑𝑒𝑎𝑡ℎ𝑠

+ 𝜔𝑅𝑖 

 

Here, 𝑎𝑖 is the aging rate for age class 𝑖, 𝑑𝑖 and 𝛿𝑖 is the disease-induced and background (or non-

disease induced) death rate, respectively, 𝛾𝑖 is the recovery rate. 𝜔 is the uniform rate of loss of 

immunity over age groups, and 𝑆0 is the total population size. 𝛽𝑖𝑗 are infection rates from age class 𝑗 

to 𝑖, depending on the rate of interaction between the relevant age classes and on an inherent 

infectivity of the infected member of age class j. The equation for the first age group needs to be 

modified to account for new births: 

𝑑𝑆1
𝑑𝑡

=∑(𝑑𝑖(𝑆𝑖 + 𝐼𝑖) + 𝛿𝑖)

𝑛

𝑖=1

− 𝑎1𝑆1 + 𝜔𝑅1 −∑𝛽1𝑖𝑆1𝐼𝑖

𝑛

𝑖=1

        (2) 

 

2. The extended Eco-Epi model 



To study potential invasions from new mutants, we extend the above model by including an 

additional strain (hereafter “mutant strain”) (fig. 1b). Accordingly, 𝐼 ̃ is the number of infections 

that are induced by the mutant strain in age group 𝑖. Of note, the mutant strain may have different 

infectivities 𝑏𝑖𝑗 and recovery rates 𝑔𝑖 as compared with the resident strain. We assume that the 

disease mortality, loss of immunity, and aging rate are the same for both the resident and mutant 

strains: 

 

𝑑𝑆𝑖
𝑑𝑡

= 𝑎𝑖−1𝑆𝑖−1 − 𝑎𝑖𝑆𝑖 − 𝛿𝑖𝑆𝑖 + 𝜔(𝑅𝑖 + 𝑅�̃�) −∑𝛽𝑖𝑗𝑆𝑖𝐼𝑗
𝑗

−∑𝑏𝑖𝑗𝑆𝑖𝐼�̃�
𝑗

 

𝑑𝐼𝑖
𝑑𝑡
= 𝑎𝑖−1𝐼𝑖−1 +∑𝛽𝑖𝑗𝑆𝑖𝐼𝑗

𝑗

− (𝑎𝑖 + 𝛾𝑖 + 𝑑𝑖 + 𝛿𝑖)𝐼𝑖 

𝑑𝑅𝑖
𝑑𝑡

= 𝑎𝑖−1𝑅𝑖−1 + 𝛾𝑖𝐼𝑖 − (𝑎𝑖 + 𝛿𝑖 + 𝜔)𝑅𝑖                  (3) 

𝑑𝐼�̃�
𝑑𝑡
= 𝑎𝑖−1𝐼 ̃𝑖−1 + ∑𝑏𝑖𝑗𝑆𝑖𝐼�̃�

𝑗⏟      
𝑚𝑢𝑡𝑎𝑛𝑡 𝑖𝑛𝑓𝑒𝑐𝑡𝑖𝑜𝑛

− (𝑎𝑖 + 𝑔𝑖 + 𝑑𝑖 + 𝛿𝑖)𝐼�̃� 

𝑑𝑅�̃�
𝑑𝑡

= 𝑎𝑖−1𝑅 ̃𝑖−1  + 𝑔𝑖𝐼�̃�⏟
𝑚𝑢𝑡𝑎𝑛𝑡 𝑟𝑒𝑐𝑜𝑣𝑒𝑟𝑦

− (𝑎𝑖 + 𝛿𝑖 +𝜔)𝑅�̃� 

With the extended eco-epi model, we investigate the conditions for when a mutant strain will be 

unable to invade a population and thus when the ESS will occur.  

 

Figure 1. An illustration of the models and parameters. (a) shows the eco-epi model with a single 

strain, while (b) shows the extended eco-epi model with resident and mutant strains. The age 

structure is not shown in this illustration. 



The analysis – Deriving the evolutionarily stable strategy (ESS) 

We define an ESS as a strategy where the resident strain 𝐼 dominates the epidemic dynamics in a 

population such that a new mutant strain 𝐼 ̃ fails to invade and induce an outbreak regardless of its 

biological characteristics 10.  Mathematically, this means that at the ESS, the equilibrium disease 

state (𝑆, 𝐼, 𝑅, 𝐼 ̃, 𝑅 ̃) = (𝑆, 𝐼, 𝑅, 0,0) will be linearly stable with the effective reproduction number for 

the resident strain 𝑅𝑒𝑓𝑓(𝐼) = 1 and that for the mutant strain 𝑅𝑒𝑓𝑓(𝐼 ̃) < 1.  

The effective reproductive number for each of the variants can be calculated as the largest 

eigenvalue of their next-generation matrices. For simplicity, we assume that age-specific 

characteristics of the susceptibles and the infected individuals contribute multiplicatively to the 

infection rates, i.e., 𝛽𝑖𝑗 = 𝑥𝑖𝑦𝑗. With this assumption, the reproductive number is the trace of the 

next generation matrix: 

𝑅𝑒𝑓𝑓 =∑∑
𝛽𝑖𝑗𝑆�̂�∏ 𝑎𝑘

𝑗−1
𝑘=𝑖

∏ (𝑎𝑘 + 𝛾𝑘 + 𝑑𝑘 + 𝛿𝑘)
𝑗
𝑘=𝑖

𝑗

𝑖=1

𝑛

𝑗=1

  ,                   (4) 

Here, 𝑆�̂� denotes the disease-free equilibrium populations given by  

𝑆1̂ =
𝑆0

1 + ∑ 𝛼𝑘
𝑛
𝑘=2

 

𝑆�̂� =
𝛼𝑖𝑆0

1 + ∑ 𝛼𝑘
𝑛
𝑘=2

 

where 

𝛼𝑖 =
Π𝑘=2
𝑖 𝑎𝑘−1
𝑎𝑘 + 𝛿𝑘

 

Let us express the reproductive number of the invader using the above equation: 

𝑅𝑖𝑛𝑣 =∑∑
𝛽𝑖𝑗(𝛾�̃�)𝑆�̂�(𝛾𝑖)∏ 𝑎𝑘

𝑗−1
𝑘=𝑖

∏ (𝑎𝑘 + �̃�𝑘 + 𝑑𝑘 + 𝛿𝑘)
𝑗
𝑘=𝑖

𝑗

𝑖=1

𝑛

𝑗=1

  .               (5)       

Now, the ESS occurs when 𝑅𝑖𝑛𝑣 < 1 for all �̃� ≠ 𝛾. At the ESS the invader cannot gain an 

advantage over the resident strain by changing 𝛾. It is therefore a necessary condition that 

∇γ̃𝑅𝑖𝑛𝑣|�̃�=𝛾 = 0 . 

All terms that do not depend on �̃�𝑙 vanish when taking the derivative with respect to �̃�𝑙, meaning 

that only terms where 𝑗 > 𝑙 remain. We can now write up 𝑛 equations 

𝜕

𝜕𝛾�̃� 
∑∑

𝛽𝑖𝑗(𝛾�̃�)𝑆�̂�(𝛾𝑖)∏ 𝑎𝑘
𝑗−1
𝑘=𝑖

∏ (𝑎𝑘 + �̃�𝑘 + 𝑑𝑘 + 𝛿𝑘)
𝑗
𝑘=𝑖

𝑗

𝑖=1

= 0 .

𝑛

𝑗=𝑙

              (6) 



Infectivity (𝛽 = 𝛽(𝛾)and 𝑏 = 𝛽(�̃�)) and recovery rate (𝛾 and 𝑔 = �̃�) differ among variants. The 

terms of this sum all contain a number of factors of the form 
1

𝑎𝑗+𝛾𝑗+𝑑𝑗+𝛿𝑗
⋅

𝑎𝑗−1

𝑎𝑗−1+𝛾𝑗−1+𝑑𝑗−1+𝛿𝑗−1
⋯

𝑎𝑖

𝑎𝑖+𝛾𝑖+𝑑𝑖+𝛿𝑖
 . If we assume that the disease dynamics happen on a much faster 

timescale than aging, any term with 𝑖 ≠ 𝑗 – which contains multiple such factors – will be much 

smaller than 1. We can therefore neglect these terms and write the above equations as  

𝜕

𝜕𝛾�̃� 

𝛽𝑙𝑙(𝛾�̃�)𝑆�̂�(𝛾𝑙)

(𝑎𝑙 + �̃�𝑙 + 𝑑𝑙 + 𝛿𝑙)
|𝛾 ̃=𝛾 = 0 .                                               (7) 

Carrying out the derivative, we end up with 

𝛽𝑖𝑖
′ (𝛾𝑖) ⋅ 𝑆�̂�(𝛾𝑖) ⋅ (𝑎𝑖 + 𝛾𝑖 + 𝑑𝑖 + 𝛿𝑖) = 𝛽𝑖𝑖(𝛾𝑖)                 (8) 

 

For the concept of an ESS to be meaningful here, we have to assume that the infectivity is a 

function of some evolutionary parameter(s). For simplicity, we apply the trade-off hypothesis 4 and 

thus assume a trade-off between the infectivity of the disease (𝛽) and its recovery rate (𝛾). With a 

concave function 𝛽(𝛾), we can now find the ESS by solving the equation (8) for each of the age 

groups. This is a generalisation of a well-known result from evolutionary ecology to a model with 

multiple age classes 1.  

 

Figure 2. An illustration of eq. 8. Solving the set of equations is equivalent to finding the point 

where a line through −(𝑎𝑖 + 𝛿𝑖 + 𝑑𝑖) is tangent to the trade-off function 𝛽(𝛾𝑖). The higher the 

background and disease mortalities are, the higher the value of 𝛾𝑖 will be at the ESS. 

 

Assuming that the infection rate from group 𝑖 to 𝑗 is proportional to some pairwise contact rate 

between these groups, multiplied by an infectivity function 𝛽(𝛾𝑖), equation (8) becomes 

𝑐𝑖𝑖𝛽
′(𝛾𝑖) ⋅ 𝑆�̂�(𝛾𝑖) ⋅ (𝑎𝑖 + 𝛾𝑖 + 𝑑𝑖 + 𝛿𝑖) = 𝑐𝑖𝑖𝛽(𝛾𝑖)                    (9) 



where 𝑐𝑖𝑖 is the contact rate within group 𝑖. We see that the contact rate, 𝑐𝑖𝑖, cancels out. This means 

that the ESS of the disease does not vary with the assumed form of 𝛽𝑖𝑗 and association between the 

rate of infection and contact. 

 

Results and discussion 

The age-specific values of 𝛽 and 𝛾 at the ESS are associated with the corresponding disease fatality 

rate and the background mortality as demonstrated in eq. (8). By characterizing the ESS using age-

specific 𝛽𝑖𝑖(𝛾𝑖), our study indicates that an ESS will only exist if 𝛽𝑖𝑖(𝛾𝑖) are concave functions 

since 𝛾 = 0 or 𝛾 = ∞ would otherwise always be optimal for the disease. Thus, a higher 

background or disease-related mortality rate implies a higher 𝛽 and 𝛾 at the ESS in a given age 

group. This means that evolution would inflate the infection rate for age groups with fatal disease or 

higher background mortality, whereas evolution would lower the infection rate for age groups with 

a low mortality (fig. 2). 

Our results imply that the ideal state of a pathogen is to be very infectious for a short period of time 

in population groups with a high background and disease-related mortality, and less infectious for a 

long time in other groups. Consistent with our findings, previous studies have shown substantial 

numbers of asymptomatic (but still infectious) COVID-19 cases in young people 22 23. A study has 

also suggested that COVID-19 patients with risk factors such as high age or obesity shed more virus 

aerosols and are thus more likely to be superspreaders 24.  

We show that at the ESS, the intensity of the infectious period should increase with background 

mortality. This finding is, from the perspective of evolutionary strategy, consistent with the severity 

of the disease increasing in proportion with the age of the patient 25. If the disease is shorter but 

more intense among people with a higher background mortality, we might expect the risk of death 

from the disease to scale with background mortality. More importantly, the already highly variable 

fatality rate of COVID-19 leads us to predict that it might end up having disease progressions that 

are particularly stratified by age, more so than other diseases (see fig. 2). On the other hand, the 

maximum 𝑅 will for some realistic assumptions about 𝛽 be higher among young people due to their 

lower background mortality. If 𝛽(𝛾) takes a form as shown in fig. 2, with 𝛽(𝛾) ∝ 𝛾𝑝  where 𝑝 < 1, 

𝑅 =
𝛽(𝛾)

𝛾
  will be a decreasing function of 𝛾. This would suggest that young people might inherently 

be better drivers of an epidemic like the present one than older people, at least as it evolves to 

become endemic. 

So far, at least one emerging variant of SARS-CoV-2, namely B.1.1.7, has been shown to have a 

higher effective reproduction number among younger people 26. This may support our hypothesis. 

However, whether this truly agrees with our predictions will depend on how the new, more 

infectious variants affect the duration of the disease in different age groups. 

   

Conclusion 

In this contribution we have derived conditions for an evolutionarily stable strategy for a pathogen 

spreading in an age-structured population. We find that these conditions vary with the background 



mortality at the given age group, and with the fatality rate of the disease. Groups with higher 

mortalities are predicted to end up with shorter, more intense infectious periods given our 

assumption of a trade-off between disease infectivity and duration. The social structure and 

interaction rates of society are found to have little influence on the final ESS, though they may still 

influence the path the pathogen takes to get there. 

Finally, our results are only specific to age-based social structure because we include aging in our 

model. If we drop aging, our results can be generalised to any other kind of socially stratified 

society. Our results are therefore sufficiently general to be applicable to a variety of pathogens that 

spread in a society with a rich social structure. These findings may help shed some light on the 

eventual fate of pandemic diseases, and thus what direction we should expect to see a new disease 

evolve.  
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Supplementary figure to the article “Evolutionarily Stable 

Strategies (ESS) in a socially age-structured epidemic model” 

 

The figure below shows the trajectories of the evolutionary parameters of different age groups as 

we algorithmically maximise the basic reproductive number of a disease in age-structured 

populations. Contact rates between different age classes are based on contact data also used in 

(Stenseth & Li, 2021) from various countries. We take the inherent infectivity 𝛽𝑗 of infected 

individuals of class j to be given by the tradeoff function 𝛽𝑗 = 𝐴𝛾𝑗
𝑝
, where we here set 𝐴 = 2 and 

𝑝 = 0.9. The infection rate between groups i and j thus becomes 𝛽𝑖𝑗 = 𝐴𝑐𝑖𝑗𝛾𝑗
𝑝
 where 𝑐𝑖𝑗  is the 

contact rate. The figure shows that the endpoint of 𝑅0 maximisation, here taken to be the ESS, is 

highly similar, even in countries with wildly different demographies and social structures. 



    

   

Figure S1. Trajectories of the pathogen as we algorithmically determine the ESS in six countries. 

The 𝑅𝑒𝑓𝑓-maximisation algorithm is applied to countries with older populations (Italy, UK and 

Japan) and younger populations (South Africa, Brazil and the US). The assumed trade-off function 

is 𝛽 = 2 ⋅ 𝛾0.9. This very slightly concave function was chosen to for illustrative purposes, to let the 

values of 𝛾𝑖 be obviously different at the ESS. The background and disease related mortality rates 

are set to 𝛿𝑖 + 𝑑𝑖 = 10−4 ⋅ 𝑖2. The graphs are averages of 100 runs of the algorithm. 
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ABSTRACT

Given the present pandemic and the constantly arising new variants of SARS-CoV-2, there is an urgent need to understand
the factors driving disease evolution. In this paper, we will investigate the tradeoff between the speed at which a disease
progresses and its infectivity. Using SIR and agent-based models, we show that in the exponential growth phase of an epidemic,
there will be an optimal duration of new disease variants, balancing the advantage of developing fast with the advantage of
infecting many new people. In the endemic state, this optimum disappears and lasting longer is always advantageous for the
disease. However, if we take into account the possibility of quarantining the infected, this leads to a new optimum disease
duration. This work provides some much needed understanding of the factors that affect the evolution of new SARS-CoV-2
variants and other emerging pathogens.

Introduction
Since the emergence of SARS-CoV-2, multiple variants of the virus with significantly different dynamics have arisen. The
variants have supplanted each other in successive waves, letting us observe as the disease has gradually evolved. Since we are
in the midst of this evolutionary race towards more infectious, less immunogenic, and faster spreading variants, it is highly
necessary to understand what drives new variants to be successful. In the present article, we will focus on the tradeoff between
the duration of the infectious period and latency time of a disease, and the number of secondary cases each infected individual
generates. We assume that each infected individual transmits the disease with a roughly constant rate for each day of the
infectious period. This means that a long disease duration should lead to a higher effective reproductive number, Re f f , that is,
to more secondary infections. However, a long disease duration might also eventually become a disadvantage to the disease, as
it makes it slow to develop. This is exacerbated if there is a link between the duration of latency time and infectious period. We
will derive relations and create an agent-based model to show when an optimum disease duration exists.

Some work has already been done on modelling the evolution of SARS-CoV-2 and other similar pathogens. Saad-Roy et
al. studied the evolution of a presymptomatic infectious state under the assumption that such a state is less infectious1, or in
the context of superinfection and within-host competition2. In addition, the relationship between the duration of a disease or
parasite infection and the infection rate has been studied under the assumption of a tradeoff function between the two3, 4. These
findings have analogues in other ecological relationships, such as predation5, 6. However, the possibility that having a long
infectious period might simultaneously be an advantage and a disadvantage for a disease has not been studied in detail.

Model setup
We assume that the infection rate of a disease is roughly constant for the duration of the infectious period, giving a linear
relationship between disease duration and number of secondary cases. This is likely not entirely naturalistic7, 8, but since a
longer duration of the infectious period leads to more opportunities of passing on the infection, there must be some positive
relationship between the two.

Analytically, we will exclusively look at the initial, exponential growth phase of the epidemic. In this phase, it will be
an advantage of a disease to be fast-growing, whereas in a full SIR simulation of an epidemic, the disease with the highest
Re f f will win. However, in the case when a society is far from herd immunity, exponential growth will occur when a disease
starts spreading. This has for example been the case for most of the world for most of the COVID-19 pandemic. Mitigation
efforts has artificially kept society far from herd immunity, meaning that whenever Re f f grew above 1 and the disease started
spreading, we saw exponential growth. The scenario we look at is thus not as limited as one might think.

When we wish to study the evolution of the disease in an endemic state with a high degree of existing immunity in the
population, we instead use an agent-based model. In this model, we let agents randomly infect each other, with some small
probability of producing a mutant strain for each infection. A new mutant will have a duration of infectiousness that is



Figure 1. A plot of growth rate as a function of disease duration T as derived in eq. 3. Here, we set c = β = 1. We see clearly
that the growth rate has an optimum.

slightly different from its parent strain. We will then run the simulation over a long period of time to see which strains end up
dominating.

Finally, we add a quarantine rate to the agent-based model. This is supposed to represent how individuals have some
chance of becoming symptomatic, being contact traced, or otherwise being diagnosed for each day of illness. We should
therefore expect that people suffering from a very long-lasting infectious disease will eventually self-quarantine. This quarantine
probability might change the evolutionary dynamics of the disease.

Results
Optimum disease duration for exponential growth
In the exponential growth phase of an epidemic, the number of infected individuals is approximately

I(t)≈ R
t

τ+T
0 = (1+ r)t (1)

where R0 is the basic reproductive number of the disease, τ is the latency time, T is the duration of the infectious period,
and r is the epidemic growth rate. We now want to calculate the growth rate as a function of these parameters:

r = R
1

τ+T
0 −1 (2)

In the exponential growth phase, the variant with the highest growth rate will quickly come to dominate. If each infected
individual transmits the disease at a constant daily rate β , and we assume some constant relationship c between the latency time
and duration of infectiousness, we can write

r = (βT )
1

(1+c)T −1. (3)

This function has a local maximum for T = e/β . A plot of the growth rate as functions of T for various β and c can be
seen in fig. 1. An illustration of the initial exponential growth phase for different disease durations can be seen in fig. 2. In a
situation where the disease is growing exponentially, e.g., when an epidemic is breaking out or control measures are failing, the
variants that balance the need to be fast with the need to be highly contagious will win. This is, however, not always the case as
we shall see in the following.
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Figure 2. A simple simulation of the initial exponential phase of an epidemic given different values of the recovery rate γ , i.e.,
different disease durations. We see that up to a certain optimum, the disease grows faster for larger values of γ , but afterwards a
larger γ leads to slower exponential growth. This illustrates the analytically derived growth rate shown in fig. 1.

The unmitigated endemic state
In the case where the epidemic is completely unmitigated and infectious individuals are never quarantined, it will always be
possible to increase the infectivity of the disease by lengthening disease duration. From our agent-based simulations (fig. 3 (a))
we see that the successfully invading variants will continuously develop lower and lower recovery rates, that is, longer and
longer disease duration. This happens regardless of the initial disease duration. Therefore, we conclude that a pathogen in an
unmitigated endemic state will always evolve to last longer. In practice, there will always be some form of mitigation, which is
what we investigate below.

Endemic state with quarantine
Finally, we consider the case when each infectious, symptomatic individual has some probability p of isolating themselves
for each day of the infectious period. In this case, we see from simulations (fig. 3(b)) that there will be an optimum disease
duration which new variants approach over time. If we start out with a pathogen with a longer disease duration, it will develop
towards shorter disease durations and vice versa, as opposed to the case above. Therefore, we can conclude that in the case
where infected individuals sooner or later will isolate themselves and stop infecting, there will again be some optimal disease
duration.

Discussion
The results of this analysis show that in some cases, being fast-acting can be an evolutionary advantage for a pathogen, even if
it comes at the cost of a lower reproduction number. This includes the case when the population is far from herd immunity
and the number of infected is growing exponentially, or if the infected have some probability each day of self-quarantining.
These situations are expected to occur frequently in real life. For example, during the COVID-19 pandemic mitigation efforts in
various locations often kept the local Re f f at or below 1. When such efforts failed or were relaxed, local epidemics entered a
new exponential growth phase. In the case of most infections, we would also expect the onset of symptoms to increase the
chance that individuals stay home or are bedridden, effectively self-quarantining.

These results are particularly interesting in the context of the pandemic, especially as they may help explain the swift
takeover and large impact of the delta variant. The Delta variant has been shown by some studies to have a somewhat shorter
incubation time and significantly shorter generation time9 than the wild-type virus10, 11. Other studies have, however, questioned
whether the difference in incubation time is significant12. If the new variant is truly faster than the wild-type, it may help
explain its rapid takeover, although its higher infectiousness is of course the primary reason. More importantly it may help
explain why countries that had previously successfully pursued a zero-COVID strategy came to struggle containing the new
variant. If a variant is faster, it will according to this model do much better than a slower variant in a situation with a high
probability of quarantine for each day of infection.

The direction in which the evolution of SARS-CoV-2 is moving is a question which urgently needs to be answered to
understand the future of the disease and its mitigation and the end of the pandemic. Here, we have examined the specific topic
of the duration of the incubation and infectious periods of COVID-19. We show that under a couple of realistic assumptions,
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Figure 3. Evolution of variants over time. The figure shows the recovery rate γ (i.e., the inverse disease duration) of new
variants (a) in the system with no mitigation at all and (b) in the system where symptomatic individuals self-quarantine with
some rate p = 0.1/day. β is here set to 0.5. We see that when people are able to self-quarantine, the variants gradually evolve
towards some evolutionarily stable state, whereas this does not appear to be the case if there is no quarantine.

there is a tradeoff between disease infectivity and speed. A fast disease may be able to outcompete a slower, more infectious
disease in the case with exponential growth in number of infected or with quarantine of symptomatic individuals. Previously, it
has been shown that mitigation strategies may interact with pathogen evolution by disproportionately affecting superspreaders,
benefitting homogeneously spreading diseases13. The present work shows that mitigation efforts may also drive the pathogen to
evolve towards a shorter disease duration.
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