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Abstract

Müller ice cap is situated on Axel Heiberg Island in Arctic Canada. It is characterised by

a mountanious region separating the ice cap in the east from the outlet glaciers in the west.

Research has taken place on the outlet glaciers of the ice cap since 1959, but only limited

research has been conducted on the main ice cap, and no full depth ice cores have ever

been drilled. The interesting location of the ice cap facing the Arctic Ocean, the chance

of finding ice dating back to the Innuitian Ice Sheet, and the fact that no full depth ice

cores have been drilled, makes it an obvious place to do so. In order to achieve a long and

undisturbed chronology of the ice core, one needs to find a location for the drilling site,

where there is a great ice thickness, low surface velocity and little melt. In this project the

aim is to make surface velocity maps of the ice cap and estimate the ice thickness to be able

to come up with suggestions of possible drill site areas.

Surface velocities are calculated using feature tracking of optical satellite images from

the Landsat satellites in the period of 2004-2019. A median velocity map of all Landsat 8

velocity maps is used as validation in modelling the ice thickness and in the investigation

of possible drill site areas.

To estimate the ice thickness various methods are used and are being compared to the

ice thickness measured by Operation IceBridge. The first method is an iterative inverse

method where the ice sheet model PISM works as a forward model. The model is found

to work rather well on the ice cap, with a root mean squared error (RMS) of 138.9 m, but

overestimates the ice thickness on the outlet glaciers. The second model uses a simple

inversion of the shallow ice approximation. It overestimates the ice thickness in areas with

low surface slope, but has a RMS of 131.4 m on the ice cap. The third and and fourth

models uses Monte Carlo sampling methods of the shallow ice approximation without and

with sliding, respectively. The latter uses an initial ice thickness guess, and the modelled

ice thickness was proofed not to differ from that initial guess at all. The RMSs on the ice

cap of the two models were found to be 132.1 m and 129.9 m, respectively. Finally, the

fifth model uses the PISM setup but with an initial geometry defined by the SIA inversion.

The RMS on the ice cap is found to be 135.4 m.

Based on the median Landsat 8 surface velocity map, the modelled ice thicknesses and

the surface elevation from the Arctic Digital Elevation Model, a map of suggested drill

site areas is made. The site which fulfilled the criteria the most is located at 526629 m

easting and 8866463 m northing in UTM zone 15N. In this site the surface velocity is 1.2

m yr−1, the surface elevation is 1804 m and the modelled ice thicknesses varies from 535-

579 m. The melt in this area is estimated to be less than 20 melt days per year based on the

backscatter from Sentinel-1.
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1 Introduction

1.1 Historical data from the Müller ice cap

The Müller ice cap is situated in Arctic Canada on Axel Heiberg Island highlighted in Figure

1.1. It is characterised by a mountainous region separating the ice cap in the east from the outlet

glaciers in the west as seen in Figure 1.2. The ice cap is named after the Swiss glaciologist Fritz

Müller [Adams, 2000] who was the scientific leader of the yearly expeditions to Axel Heiberg

Island for many years [Müller, 1962]. Prior to Fritz Müller’s death the ice cap was named

Akaioa ice cap [Adams, 2000].

The yearly expeditions started in 1959 where stakes were put into White Glacier (marked

in the red square in Figure 1.2) to study the mass balance. Since then White Glacier has been

studied thoroughly [Cogley and Adams, 2000, Cogley et al., 1996, 2011, Hambrey and Müller,

1978, Müller, 1962, Thomson et al., 2016] and especially the mass balance is well studied with

almost yearly measurements [Cogley et al., 1996, Müller, 1962, Thomson et al., 2016].

Initially, very limited research was conducted on the ice cap. In the early years of the annual

expeditions to White Glacier the Müller ice cap was studied briefly. On the ice cap it was

found that during the summer of 1961 lakes were formed and drained within 24 hours. Thus,

Figure 1.1: Map showing the location of Axel Heiberg Island [Jagels et al., 2001].
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Chapter 1. Introduction

Figure 1.2: Satellite image of Axel Heiberg Island, the Müller ice cap and White Glacier marked

in the red square.

the entire ice cap was experiencing wet snow in the summer. It was suggested that the very

top might remain cold in very cold summers [Müller, 1962]. Because of the limited research

conducted on the ice cap, Koerner [1979] did a traverse on the ice cap in 1974 and gathered ice

cores studying the accumulation rates from the period 1962-1974. The accumulation rate was

found to be around 160-220 kg m−2 yr−1. From the ice cores, δ18O was also measured, and it

was found that the northwestern part of the ice cap is isotopically warmer than the southeastern

part. The northwestern part of the island faces the Arctic Ocean, indicating that the Arctic

Ocean works as moisture source in the northwestern part of the ice cap, causing the higher

amount of δ18O.

In the later years the ice cap has also been studied using remote sensing data. Winter sur-

face velocity maps, using speckle tracking of radargrams, have yearly been made since 2012

[Van Wychen et al., 2014, 2016]. Furthermore, Thomson et al. [2011] studied the aerial cov-
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1.2. Scientific perspective

erage of all ice masses on Axel Heiberg Island in the period of 1959-2001, and found that the

area of the Müller ice cap has increased by 1% excluding the outlet glaciers, respectively by

14% including them. Some of this advance can be described by the fact that some of the outlet

glaciers are surge type glaciers, but it is also suggested that the ice cover gain can be explained

by more ice being transported from higher elevations by increasing ice velocities. Hence, it

should be noted that the aerial increase does not necessarily mean volumetric increase.

1.2 Scientific perspective

The location of the Müller ice cap is of special interest as it is facing a part of the Arctic Ocean

where no full depth ice core has been drilled. Furthermore, there is a chance of finding ice

dating back to the Innuitian ice sheet, which was the ice sheet in between the Laurentide and

Greenland ice sheet during the last glaciation [England et al., 2006]. This makes the Müller ice

cap an interesting place to drill a full depth ice core.

Researchers from the University of Manitoba, Canada, and University of Copenhagen, Den-

mark, have therefore decided to drill such a full depth ice core on the Müller ice cap. What

remains is to determine the optimal location to perform the ice core drilling. This position de-

pends on many parameters, e.g. ice thickness, ice velocity, bedrock topography, surface melt

and summer temperatures, and thereby elevation. These effects have to be taken into account

to ensure that the highest number of years can be captured and that the ice stratification is such

that annual layer counting is possible. The aim of this thesis is thus to create surface velocity

maps and estimate the ice thickness of the Müller ice cap. The velocity maps and ice thickness

will then be used to narrow down on suggested areas where ground based radargrams are to be

conducted forming the base for the final drill location decision.

In this thesis I will first go through the basic theory related to ice flow necessary to follow

the subsequent chapters. This will be followed by a chapter on the surface velocities, and three

chapters on different methods of estimating the ice thickness. I will then combine these aspects

of the thesis into a discussion of advantages and disadvantages of the models. Finally, the thesis

is ended by my estimates of the best possible drill areas followed by a short conclusion.
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2 Theoretical background

This chapter provides a brief overview of the theory behind ice flow necessary to follow the

subsequent chapters of this thesis. All theory is based on Cuffey and Paterson [2010] and Greve

[2018] and it is further assumed that the reader is familiar with tensors.

2.1 Stress, strain and conservation laws

When dealing with the modelling of ice flow, it is of great importance to be able to describe the

different forces acting on the ice and how the ice itself reacts to these. This relation is explained

by using two quantities; the stress and the strain.

2.1.1 Stress

Stress is a measure of how much the ice is being pushed or pulled by external forces and is

defined as force per area. The stress tensor, σ, describes the stress applied on all sides of an

infinitesimal cube of ice inside the ice column (see Figure 2.1) and is given by

σ =







σxx σxy σxz

σyx σyy σyz

σzx σzy σzz






(2.1)

where the diagonal elements are the normal stresses and the off-diagonal elements are the shear

stresses. It is assumed that the ice is not rotating around itself but instead flows smoothly. This

Figure 2.1: Components of the stress tensor.
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2.1.2. Strain

requires the stress tensor to be symmetric (σij = σji) since angular momentum would not be

conserved if σij 6= σji and the cube would start to rotate.

Pressure, p, is a type of stress and if the ice is only under influence of isotropical pressure,

the stress tensor reduces to

σ = −pI, (2.2)

where I is the identity matrix. This means that the pressure can be defined as

p = −
1

3
tr(σ) = −

1

3
(σxx + σyy + σzz). (2.3)

For simplification ice is often considered to be an incompressible material, which means

that the pressure does not contribute to any deformation of it. Then, instead of dealing directly

with the stress tensor, one works with the deviatoric stress, τ , given by

τ = σ − tr(σ)I. (2.4)

It should be noted that the shear stresses of the stress and deviatoric stress tensors are identical.

2.1.2 Strain

Strain, ǫ, describes the deformation of the ice, and like stress it can be divided into normal and

shear strain. Consider an ice parcel of length L, where some normal stress (pulling) is applied

at the end of the parcel in the x-direction. Then the length of the parcel is increased by ∆L, and

the strain is defined by

ǫxx =
∆L

L
. (2.5)

When studying ice, the deformation in itself is not an interesting quantity, but rather the change

of deformation with time, given as strain rates. Consider the same case as above and let us

assume that the deformation happens over a time interval ∆t. Then the strain rate, ǫ̇xx, is

defined by

ǫ̇xx =
ǫxx

∆t
=

∆L

L∆t
. (2.6)

When ∆t → 0, ǫ̇xx = 1

L
dL
dt

and thus it can be shown that the full strain rate tensor, ǫ̇, reads

ǫ̇ =











∂vx
∂x

1

2

(

∂vx
∂y

+ ∂vy
∂x

)

1

2

(

∂vx
∂z

+ ∂vz
∂x

)

1

2

(

∂vx
∂y

+ ∂vy
∂x

)

∂vy
∂y

1

2

(

∂vy
∂z

+ ∂vz
∂y

)

1

2

(

∂vx
∂z

+ ∂vz
∂x

)

1

2

(

∂vy
∂z

+ ∂vz
∂y

)

∂vz
∂z











, (2.7)

where (vx, vy, vz) are the velocity components of the ice in the (x, y, z) directions of the velocity

field v. Like the stress tensor it can be seen that the strain rate tensor is symmetric.
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Chapter 2. Theoretical background

2.1.3 Conservation laws

The fundamental equations to describe how density, velocity and temperature evolve over time

can be derived by considering the conservation of mass, energy and momentum. In the follow-

ing the corresponding conservation laws are given. However, their derivations exceed the scope

of this thesis, but can be found in Greve [2018].

The conservation of mass is given by

∂ρ

∂t
+∇ · (ρv) = 0, (2.8)

where ρ is the density and ∇· is the usual sum of the spatial derivatives. In the case where ice

is considered an incompressible material eq. (2.8) can be reduced to

∇ · v = 0. (2.9)

The momentum balance reads

ρ
dv

dt
= ∇ · σ + f , (2.10)

where f are direct volume forces such as gravity. Finally the energy balance is described by

ρ
du

dt
= −∇ · q+ tr(σ · ǫ̇) + ρr, (2.11)

where u is the specific internal energy, q is the heat flux and r is the specific radiation power.

2.2 Ice flow

2.2.1 Glen’s flow law

The relation between stress and strain was first described by Glen [1955] and is therefore called

Glen’s flow law, which writes

ǫ̇ = Aτn, (2.12)

where A is called the creep parameter or rate factor and n is the creep exponent. Glen’s flow

law was empirically derived in laboratory experiments and is therefore not derived from first

principles. The rate factor is temperature dependent and is usually expressed by an Arrhenius

law as seen in Figure 2.2. A wide range of studies have tried to find the proper value of the

creep exponent, where most agree that it takes a value of approximately 3, but can range from

1 to 4 [Cuffey and Paterson, 2010].

2.2.2 Driving stress and basal shear stress

Glaciers and ice sheets flow due to gravity pulling down the ice. This downward force, called the

driving stress, τd, causes horizontal flow due to the slope of the bedrock and pressure gradients
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2.2.3. Parallel flow

Figure 2.2: The rate factor as a function of the temperature relative to the pressure melting

point, T ′ [Greve, 2018].

in the ice. In the case of an ice mass resting on a close to flat bed the driving stress can be

well-described by

τd = ρgHα, (2.13)

where g is gravity, H is the ice thickness and α is the surface slope. To balance the driving

stress there are a number of resistive stresses of which the basal shear stress (or basal drag), τb,

is considered the most important, and in the simplified cases that will be used in this thesis the

driving stress is assumed to be balanced by the basal shear stress such that

τb = τd. (2.14)

2.2.3 Parallel flow

Solving the full system of equations behind glacier flow is very complicated, which is why

simpler models are often used. One such model is parallel flow where it is assumed that the

glacier deforms by simple bed parallel shear. The problem is reduced to a 2D problem with no

flow in the y-direction and thus the deviatoric stress tensor can be reduced to

τ =







0 0 τxz

0 0 0

τzx 0 0






. (2.15)
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Chapter 2. Theoretical background

Figure 2.3: Schematic illustration of parallel flow from Greve [2018]. txz corresponds to τxz.

Since the flow is solely described by bed parallel shear, the vertical velocity of the ice is assumed

to be 0. This means that Glen’s flow law (eq. (2.12)) in this case reads

ǫ̇xz =
1

2

dvx

dz
= Aτnxz. (2.16)

It can be shown that it is reasonable to assume that the shear stress increases linearly with depth

[Cuffey and Paterson, 2010]. This means that

τxz = τb

(

1−
z

H

)

, (2.17)

with z and H as illustrated in Figure 2.3, which shows a schematic illustration of parallel flow.

Substituting eq. (2.17) into eq. (2.16) and integrating from the bottom (z = 0) to z gives

the velocity v(z) at depth H − z

v(z) = vb +
2A

n+ 1
τnb H

(

1−
(

1−
z

H

)n+1
)

, (2.18)

where vb is the velocity at the base of the ice. From this the surface velocity, vs can be found by

setting z = H

vs = vb +
2A

n+ 1
τnb H (2.19)

An integration from 0 to H of eq. (2.18) gives the ice flux, Q, and the depth averaged velocity,

v̄,

Q = vbH +
2A

n+ 2
τnb H

2 = v̄H (2.20)

2.2.4 Shallow ice approximation

In parallel flow only flow in the x-direction is taken into consideration, which is not very suitable

when studying ice caps or ice sheets. By using the same approximation that the ice deforms by
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2.2.4. Shallow ice approximation

simple bed parallel shear, but in both the x- and y-directions the deviatoric stress tensor reads

τ =







0 0 τxz

0 0 τyz

τzx τzy 0






. (2.21)

This approximation is called the shallow ice approximation (SIA) and it can be shown that

the exact same equations as in parallel flow are also valid here, where vs, vb and v̄ are the

magnitudes of the surface-, basal- and depth averaged velocity respectively. For the SIA to hold

it is assumed that the horizontal extent of the ice is much greater than the vertical extent. This

assumption is equivalent to assuming that the bed slopes are assumed to be sufficiently small.

If this is not the case the SIA breaks down and its predictions can not be trusted.
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3 Surface velocities from feature tracking

Knowing the surface velocity of the Müller ice cap is essential in the process of deciding upon

the drill site location, as high surface velocities can make the process of determining the age of

the layers more difficult. Furthermore, if the ice velocity down the ice column is not more or

less equal to zero, upstream corrections have to be made, as one cannot assume that the ice in

the ice core originates from that specific point on the surface.

For deriving surface velocities from remote sensing data several techniques exist of which

feature tracking [Raup et al., 2014] is the technique used in this thesis. Feature tracking can

be done both using radar and optical data to find matching features like crevasses, patterns,

debris etc. by image correlation. When doing feature tracking of optical data like satellite

images, this results in a whole grid of displacements which contains information about the

direction and magnitude of the surface flow. In this thesis I am using feature tracking of optical

satellite images to find surface velocities of the Müller ice cap. To do so I have used the Image

GeoRectification And Feature Tracking for python (pyImGRAFT) which is an open source

algorithm developed by Messerli and Grinsted [2014]. In this chapter I will describe how I have

used pyImGRAFT, present my results and discuss them briefly.

3.1 Deriving surface velocities using pyImGRAFT

ImGRAFT is a feature tracking toolbox created by Messerli and Grinsted [2014] from which I

have used the python version of the templatematch toolbox. The templatematch toolbox looks

for features in a given template region in an optical image and searches for those same features

in a given search region on another image taken at some later time. The feature tracking is done

using orientation correlation where the orientation of intensity gradient is calculated in each

pixel in the template region, to be matched with similar orientation of intensity gradient in the

search region of the second image [Fitch et al., 2002]. Figure 3.1 shows a schematic illustration

of the tracking process with template and search region.

The needed size of the template and search region varies from site to site and from what kind

of features that can be tracked. On ice caps and ice sheets the template region has to be rather

large to capture enough features to be tracked. In faster flowing areas such as outlet glaciers

where there are a lot of crevasses and other features that can be tracked, a smaller template

region can be used. The optimal search width should have a size where the features in the

fastest flowing regions are captured within it. This latter criteria also really depends on the time

in between the two images that are being tracked.

In the case of the Müller ice cap the goal is to capture the ice cap well, since that is where
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3.1.1. Satellite images

Figure 3.1: Schematic diagram to show the different components of the templatematch process

[Messerli and Grinsted, 2014].

we want to drill an ice core. Therefore, the template region is chosen to fit the ice cap and not

the outlet glaciers in the west (see Figure 1.2). To make sure all velocity maps are on the same

grid, one can give a grid as input to the templatematch algorithm, where I have used a 900 ×

900 m grid using UTM 15N (EPSG:32615).

3.1.1 Satellite images

The optical data used as input to pyImGRAFT are images from the Landsat 7 and 8 satellites.

Landsat 7 was launched in 1999 and is still active today, though the Scan Line Corrector failed

in May 2003 [NASA] resulting in stripes of missing pixels in the images which will be explained

in Section 3.1.1.1. Landsat 8 was launched in 2013 and the mission is still going flawlessly. For

both Landsat 7 and 8 I have used the panchromatic band which essentially is a black and white

image, and has a resolution of 15 m for both satellites.

In order to run pyImGRAFT, I need to pair up the different available scenes, whilst taking

into account certain criteria. The scenes should be from the same satellite (so either Landsat 7

or 8) and from the same path and row. Furthermore they should be almost cloud free over the

ice cap and cover most of it. In the process of choosing the right satellite images I have used
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Chapter 3. Surface velocities from feature tracking

both Landsat 4-5, 7 and 8. I have manually checked which path and row combinations cover

most of the ice cap, presented in Table 3.1.

Table 3.1: Path and row com-

binations of scenes that cover

the Müller ice cap. Path row

combinations marked with (*)

do not cover the entire ice

cap.

PATH ROW

056 002

087 242

055 002 (*)

057 002

058 002

054 003 (*)

060 002

059 002

To detect clouds on the ice cap one could use the quality as-

sessment band. However, I found that the computational time to

unpack all of the bits and detect whether there where clouds or

not on the ice cap was much longer than visually going through

all of the images. Some scenes do have a small amount of

clouds on the ice cap or on the outlet glaciers. This should not

cause any problems with pyImGRAFT since these areas sim-

ply will not be tracked by the templatematch. Furthermore, the

images should be from the summer months (June-September)

to ensure sufficient sun light for the tracking. This requirement

was also checked manually. Some scenes are removed due to

too little sun light. This is mostly the case for dates from mid to

late September.

The last criteria for the scenes to become an image pair is

the time step between them. To find the sufficient time step,

template, and search region, is a matter of trial and error. I

found that a time step between the two images of around one

year combined with a template region of 208 × 208 pixels and

a search region of 208+33 × 208+33 worked rather well on the ice cap. On the ice cap it was

not possible for me to do feature tracking between two scenes from the same summer (eg. a

scene from June and a scene from late August/early September) since the ice simply had not

moved enough to be able, to track it. Thus a time step of around one year was used and I have

chosen that any scene from June-September can be paired with any scene from June-September

the following year as long as the above mentioned criteria are met. No pairs where made from

Landsat 4-5 since the criteria were not met. A total of 71 and 45 pairs were made from Landsat

7 and 8, respectively, ranging from 2004/5 to 2018/19 (see Table 3.2).

Table 3.2: Number of image pairs per satellite and tracking year.

Satellite Year Image pairs Satellite Year Image pairs

Landsat 7 2004/2005 1 Landsat 7 2012/2013 5

Landsat 7 2005/2006 4 Landsat 7 2013/2014 9

Landsat 7 2006/2007 5 Landsat 8 2014/2015 16

Landsat 7 2007/2008 8 Landsat 8 2015/2016 17

Landsat 7 2008/2009 5 Landsat 8 2016/2017 3

Landsat 7 2009/2010 11 Landsat 8 2017/2018 4

Landsat 7 2010/2011 13 Landsat 8 2018/2019 5

Landsat 7 2011/2012 10
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3.1.1.1. Removing stripes from Landsat 7 scenes

(a) Before removing stripes (b) After removing stripes

Figure 3.2: Removal of stripes on Landsat 7 images using a random number from the gaussian

distribution from a 10 pixels radius from the pixel with a missing value.

3.1.1.1 Removing stripes from Landsat 7 scenes

In May 2003 the scan line corrector on Landsat 7 failed [NASA], resulting in stripes with miss-

ing values on the satellite images (see Figure 3.2a). In some cases this causes templatematch

to track the stripes instead of the ice, see Appendix A for an example of this. To reduce this

issue I fill each empty pixel with a random number from the gaussian distribution created from

the values of the pixels in a 10 pixels radius from the pixel with a missing value. This also

means that if an empty pixel is surrounded by empty pixels in a 10 pixels radius, the pixel will

remain empty. With this method a large part of the stripes are taken care of. In order to apply

this method to all of the areas with missing values a radius of 30 pixels has to be chosen, corre-

sponding to 450 m. I believe that it would be too crude to assume that the brightness of a point

450 m away is representative for the brightness of that specific point, why I did not use a radius

of 30 pixels. Figure 3.2 shows an example of an original satellite image from Landsat 7 with

stripes (left) and the same image after the above described method has been applied (right).

3.2 Feature tracking

The feature tracking is done using the templatematch function in pyImGRAFT. The inputs to

the function are the two satellite images to be tracked (stripe corrected images in the case of
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Chapter 3. Surface velocities from feature tracking

Landsat 7). To ensure that all outputs from the feature tracking process are on the same grid,

I use my before mentioned 900 × 900 m grid. This is transformed into pixel coordinates, i.e.

the pixel coordinates in the first satellite image which you want to track in the second satellite

image. Furthermore, the template and search width has to be specified, which were set to be

208 pixels corresponding to 3120 m and 241 pixels (3615 m), respectively. These numbers can

seem rather arbitrary. The explanation for that is that the size order was determined by the fact

that I wanted to be able to capture the ice cap well, rather than the outlet glaciers. The exact

size of the template and search width was a results of a performance test of pyImGRAFT, as

the computational time depends strongly on the difference between the size of the template and

search width. The reason for that is found in the fast Fourier transformations in pyImGRAFT.

Changing the template or search width with just one pixel can potentially double the computa-

tional time. Finally, an initial guess of displacement is needed in the feature tracking function,

thus if there is any offset between the two satellite images due to the georeferencing of the

images, this should be reflected in the initial guess of displacement.

The output from the feature tracking contains the actual pixel centers of the templates in the

first satellite image. They might differ slightly from the input of pixel coordinates because of

rounding. Furthermore it contains the displacement between the two satellite images. If there

is any offset between the image pairs I substract the offset from the displacements. The output

also contains the correlation coefficient of the matched template, the mean absolute correlation

coefficient over the search region, the signal-to-noise ratio and the feature tracking method. In

the case of pyImGRAFT, the only method available is the orientation correlation as mentioned

before.

The output is cleaned using the build-in cleaning function in templatematch. Tracked pixels

will be replaced by NaNs if the local strain is greater than 0.05 or if the signal-to-noise ratio is

less than 1. This cleaning process is done three times for all tracked image pairs. Obviously the

signal-to-noise ratio and the strain does not change after cleaning, but in the cleaning function

also lies that if a given pixel has a NaN value in one of the 8 neighboring pixels, that given

pixel will also be returned as NaN. Hence, after cleaning several times, there will not only be

NaNs in areas where the strain is too high or the signal-to-noise ratio is too low, but also in

the surroundings of these pixels. It should be noted that the maximum allowed strain and the

minimum signal-to-noise ratio used in this thesis is not the same as in the original source code

available on GitHub. In the original source code of templatematch the maximum strain and the

minimum signal-to-noise ratio are 0.1 and 1.02 respectively, meaning that I have chosen to be

more conservative in the cleaning process than implemented in the original source code.

This process of feature tracking is done for all of the 118 image pairs on my personal com-

puter. In the case of Landsat 8 image pairs the computational time is around 2-3 minutes for

each pair. With Landsat 7 the computational time is around 5-6 minutes due to the process of
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3.3. Velocity map results and discussion

removing stripes.

The displacement output from templatematch is in pixels per time between the two images.

This is transformed to m yr−1 using 1 year = 365.25 days for all of the image pairs, resulting

in 118 velcoity maps on the 900 × 900 m grid with the standard units of m yr−1. The velocity

maps contains three layers, two layers containing the x- and y-component (vx and vy) of the

velocity vector (v) and the third layer containing the magnitude of the velocity (v) calculated

by

v =
√

v2x + v2y . (3.1)

Even though the output from templatematch is cleaned, there are still some outliers present in

the velocity maps. These outliers are mostly due to melt, clouds, or in the case of Landsat 7, the

removal of stripes. The clouds can happen to have the same intensity pattern as the ice, and thus

false tracking can be an issue when clouds are present. Melt darkens the intensity of the ice and

can thereby have an influence. The story of the stripes sort of writes itself, as ”false features”

can be created in the process of filling the stripes using the method as described previously.

3.3 Velocity map results and discussion

Figure 3.3 and Figure 3.4 show the median of all Landsat 7 and Landsat 8 velocity maps re-

spectively. A figure of the median Landsat 8 velocity map with flow directions can be seen in

Appendix B. It can be seen that all areas have been tracked in the Landsat 8 velocity map, with

higher velocities on the outlet glaciers in the west and on the ice tongues in the east. The same

pattern can be seen in the Landsat 7 velocity map, though not all areas have been captured in

the feature tracking process. To have a closer look on why this is the case we look at the yearly

median velocity maps which are shown in Figures 3.5, 3.6 and 3.7. In all of the yearly median

Landsat 7 velocity maps it can be seen that there are gaps on the ice cap where templatematch

has not been able to track anything. Obviously, clouds play a role here, as some of the satellite

images do suffer from these, but they cannot be the main factor. In the interior of an ice cap

one would assume the surface velocities to be very low, if not almost zero. Therefore, these

gaps may be a result of the choice of template and search size together with the time in between

the image pairs. Furthermore, the removal of stripes may also cause issues at places with low

velocity, as small changes and errors in the brightness of the surface can result in false feature

tracking and in no feature tracking at all. Looking at the yearly median Landsat 8 velocity maps

in Figure 3.7 it can be seen that there are much fewer gaps where templatematch has not been

able to track anything. This suggests that the stripes in the Landsat 7 images are the main factor

behind the non trackable areas. From Table 3.2 it should be noted that the difference between

the number of image pairs per year does not play a big role since Figures 3.5c, 3.5e, 3.6c and
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Chapter 3. Surface velocities from feature tracking

Figure 3.3: Median of all Landsat 7 velocity maps.

3.7e are all medians of 5 image pairs. Further, there is clearly a difference between the velocity

maps from Landsat 7 and 8.

The Landsat 7 velocity maps does not only suffer from gaps, but also from unrealistic high

velocities in the interior of the ice cap. This is mainly due to false feature tracking which very

well could be a result of the stripes, or rather the removal of stripes. If I had used a smaller

search region it would not have been possible to track such high velocities, or correspondingly,

features so far away from the template region (see Figure 3.1). Choosing a smaller search region

would have caused problems on the outlet glaciers in the west, as I may not have been able to

catch the ice flow. Though the aim of this project is to capture the ice cap well, I still want to be

able to catch the outlet glaciers somewhat, why I chose not to decrease the search region.

There are cases of unrealistic high velocities in the interior of the ice cap from the Landsat 8

velocity maps (see Figures 3.7c and 3.7d), though the issue is more pronounced in the Landsat

7 velocity maps. In the Landsat 8 velocity maps it is more a signal of too few image pairs

available. This means that false tracking has a higher impact when taking the median of the

velocity maps.

The bad coverage and high velocities in the interior of the Landsat 7 velocity maps has lead
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3.3. Velocity map results and discussion

Figure 3.4: Median of all Landsat 8 velocity maps.

me to the conclusion of using the Landsat 8 median velocity map in Figure 3.4 as reference

frame for this project. It is available as a GeoTIFF on Zenodo (https://doi.org/10.

5281/zenodo.4290041) alongside with a list of all Landsat 8 images used in the feature

tracking process.

To estimate the uncertainty, σv, of the velocity map I have calculated the deviation between

the direction of the median Landsat 8 velocity and the slope from the Arctic Digital Elevation

Model (ArcticDEM) [Porter et al., 2018]. The ArcticDEM version used in this thesis has been

preprocessed such that any gaps has been filled by interpolating over the gaps. In practice there

was no gaps in the domain used in this thesis. Furthermore the resolution has been reduced to

130 m. The uncertainty is then calculated using

σv = std (|v × norm(α)|) , (3.2)

where std is the standard deviation and norm(α) is the normalised surface slope in both the x-

and y-directions. The uncertainty is being calculated in areas of 5×5 grid cells and can be seen

in Figure 3.8.

This way to estimate uncertainty is rather conservative as ice does not always flow down
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Chapter 3. Surface velocities from feature tracking

(a) (b)

(c) (d)

(e) (f)

Figure 3.5: Yearly median of the Landsat 7 velocity maps in the period 2004/2005-2009/2010
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3.3. Velocity map results and discussion

(a) (b)

(c) (d)

Figure 3.6: Yearly median of the Landsat 7 velocity maps in the period 2010/2011-2013/2014

slope, especially not in fast flowing areas such as outlet glaciers where there might be bumps in

the bedrock that the ice is flowing over, which also can be seen in Figure 3.8. In general it can

be seen that the uncertainty is relatively low except for the above mentioned case. The average

uncertainty is 0.9 m yr−1 and if I exclude the outlet glacier where the uncertainty reaches 16-28

m yr−1, the average uncertainty is 0.7 m yr−1.

To compare with existing velocity products of the Müller ice cap, Figure 3.9a shows the

median velocity map from 2014-2019 from Van Wychen et al. [2014]. The velocity maps are

made using speckle tracking of RADARSAT-2 images with 24 days in between the images and

have a mean error along the ice divide of 6.6 m yr−1. One image pair from each winter in the

period from 2014-2019 is being used to calculate the median. The resolution of the orginal

product is 100 m, but in Figure 3.9a I have interpolated it onto my 900 × 900 m grid.

Figure 3.9b shows the absolute difference between my median Landsat 8 velocity map (Fig-

ure 3.4) and the Van Wychen et al. [2014] median velocity map. Focusing on Figure 3.4 and

3.9a it can be seen the the general pattern and magnitudes of the velocities are the same, es-
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(a) (b)

(c) (d)

(e)

Figure 3.7: Yearly median of the Landsat 8 velocity maps in the period 2014/2015-2018/2019
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3.3. Velocity map results and discussion

Figure 3.8: Deviation between the direction of the median Landsat 8 velocity and the slope from

ArcticDEM.

(a) (b)

Figure 3.9: (a) Median velocity map from 2014-2019 using the velocity data from Van Wychen

et al. [2014]. (b) Absolute difference of my median Landsat 8 velocity map and the Van Wychen

et al. [2014] median velocity map. The absolute difference reaches 86 m yr−1 in some of the

outlet glaciers.
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Chapter 3. Surface velocities from feature tracking

pecially on the ice cap. Due to the original greater resolution on the Van Wychen et al. [2014]

velocity maps, the smaller outlet glaciers are captured much better. This causes a very high ab-

solute difference between the magnitudes of the velocities in these areas, reaching as high as 86

m yr−1. This issue was also mentioned in Section 3.1. If I had chosen a grid and a template and

search region that would capture all of the outlet glaciers, I would not have been able to capture

the ice cap. To go about this problem I could of course have chosen to run pyImGRAFT twice

for every image pair, one capturing the outlet glaciers and one capturing the ice cap and then

have combined the results afterwards with different resolutions in the two parts of the domain.

Due to my focus being on the tracking of the ice cap, I chose not to pursuit this method.
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4 Bedrock inversion using the Parallel Ice Sheet

Model

Several approaches on estimating the ice thickness are used in this thesis. This chapter presents

the first of those methods, and will be followed by chapters presenting the other approaches.

In this chapter I will describe how I have used the Parallel Ice Sheet Model (PISM) to model

the Müller ice cap to estimate the bedrock topography. First I will introduce the model (stable

version 1.1.4) of PISM [the PISM authors, 2018]. Then I will go through the method used to

model the bedrock and conclude with a discussion of my results.

4.1 PISM background

PISM is an open source time-dependent thermomechanically coupled ice sheet model that

solves an approximated version of the Stokes equations [Bueler and Brown, 2008, the PISM au-

thors, 2018]. Solving the full thermomechanically coupled Stokes equations is computationally

costly, which is why many ice flow models attempt to solve different approximated versions of

them.

PISM takes advantage of the shallowness of ice sheets to simplify the Stokes equations to

the SIA and the Shallow Shelf Approximation (SSA) to save computational time. Furthermore,

as the name of P(arallel)ISM indicates, the model is parallelised for optimisation, which is a

great advantage if one has access to a supercomputer.

4.1.1 The shallow approximations

The SIA, explained in Section 2.2.4, is a good approximation in ice sheets where the horizontal

extent is much greater than the vertical. This means that the flow is relatively simply (except at

the margin) and can be described by bed-parallel shear.

A sketch of a typical velocity profile using the SIA can be seen in Figure 4.1 to the left. One

can add sliding to the SIA by setting the basal velocity equal to some fraction of the surface

velocity, which is the case for the lighter grey area of the left figure in Figure 4.1.

In the SIA longitudinal stresses are neglected, but if you for instance think of an ice shelf

floating on water, where there no longer is a bedrock to prevent the ice from stretching, the

longitudinal stresses are suddenly very important and can not be neglected. In that case one

would use the SSA instead of the SIA. In the SSA the ice is assumed to have the same velocity

from top to bottom as can be seen in the center of Figure 4.1, since the ocean below the ice can

be treated as a ”free surface”.
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Chapter 4. Bedrock inversion using the Parallel Ice Sheet Model

Figure 4.1: Vertical velocity profiles from AntarcticGlaciers.org and Kirchner et al. [2011].

Other cases where it is important to take the SSA into account is when the ice is not flowing

over hard bedrock, but over soft sediment like subglacial till which is highly deformable. In

these cases the basal shear stress will be much lower than that described from the geometry and

the overburden load as in the SIA where τb = ρgHα. To describe these cases where there is a

deformable bedrock that still causes some basal shear stress one can use a combination of the

SIA and SSA. The velocity profile of the combined approximation can be seen to the right in

Figure 4.1. This coupled model is also a good approximation in fast flowing outlet glaciers and

ice streams.

4.1.2 Hybrid model

In PISM one can choose to use the hybrid model [the PISM authors, 2018], which is a com-

bination of the SIA and SSA. The SIA and SSA is run in parallel in every single grid cell and

time step, where the SSA is used as a sliding law. It is assumed that the basal shear stress, when

sliding occurs, is [Bueler and Brown, 2008, Schoof, 2006]

τb = −τc
vSSA

(

v2SSAx
+ v2SSAy

)1/2
. (4.1)

vSSA is the horizontal velocity using the SSA and vSSAx
and vSSAy

are the two components

of the SSA velocity vector. τc is the yield stress, which controls when sliding occurs or not.

If the applied stress reaches the yield stress, the ice will start sliding, otherwise the basal shear

stress is described by the SIA only. The yield stress is calculated using the Mohr-Columb model

[Bueler and Brown, 2008, Cuffey and Paterson, 2010]

τc = tanφ(ρgH − pw), (4.2)

where pw is the pore water pressure and φ is the till friction angle, which is a strength parameter

for the subglacial till.
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4.2. Data

To couple the SIA and SSA the velocities from the two models are combined such that the

final horizontal velocity v for further computations is

v = f(|vSSA|)vSIA + (1− f(|vSSA|))vSSA, (4.3)

where

f(|vSSA|) = 1−
2

π
arctan

(

|vSSA|

1002

)

(4.4)

and vSIA is the horizontal SIA velocity.

This hybrid model is what I have chosen to use when modelling the thickness of the Müller

ice cap, since I from satellite images (see Figure 1.2) and velocity maps (see Figures 3.3 and

3.4) know that there are regions with higher velocities where sliding most likely does occur.

4.2 Data

To run the coupled SIA+SSA hybrid model in PISM the input file has to contain:

• A grid with x and y coordinates

• Bedrock topography

• Ice thickness

• Surface temperature

• Surface mass balance

• Geothermal heat flux

The grid that I have used to run PISM is the exact same 900 × 900 m grid as I have used for

my velocity maps. It is used as basis for both input and output data from PISM.

An initial guess for the bedrock topography is needed, and for that I have used Farinotti et al.

[2019] (henceforth referred to as the Farinotti bedrock). The Farinotti bedrock is from a global

ice thickness estimate of all glaciers and ice caps worldwide and is made from up to five different

models [Frey et al., 2014, Fürst et al., 2017, Huss and Farinotti, 2012, Maussion et al., 2019,

Ramsankaran et al., 2018]. It is the icing on the cake originating from the Ice Thickness Models

Intercomparison eXperiment (ITMIX) [Farinotti et al., 2017], which compares 17 different ice

thickness models. The ITMIX results showed that more models would lead to a more robust

result, why up to five different models were used in Farinotti et al. [2019].

The Farinotti bedrock has a resolution of approximately 130 m, and is made using flow

bands to reduce the problem from 3 to 2 dimensions. The glaciers and ice caps are divided into

flow basins, extrapolating the flow band results into the flow basins, thus on some of the borders
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(a) (b)

(c) (d)

Figure 4.2: Input data of (a) bedrock topography, (b) surface elevation, (c) surface temperature,

and (d) surface mass balance, all on the 900 × 900 m grid.

between those flow basins, there are NaN values in the data set. These NaN values have been

replaced with the value from ArcticDEM in the corresponding position. Places with no ice in

the Farinotti bedrock, which are also NaN values, have been treated in the same way. After

doing this the bedrock is interpolated onto my grid and can be seen in Figure 4.2a. In hindsight,

I should probably have interpolated over the missing values in between the basins, rather than

replacing them with values from ArcticDEM. On the other hand it might not have caused much

difference since the bedrock is interpolated from a rather fine grid onto my coarser grid.

The initial guess for the ice thickness is simply ArcticDEM substracted by the Farinotti

bedrock. It is assumed that ArcticDEM represents the ground truth surface elevation, and it can

be seen in Figure 4.2b.

The surface temperature and the surface mass balance (SMB) is obtained from the Regional
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Climate Model HIRHAM5 [Langen et al., 2017, Mottram et al., 2017] (henceforth referred

to as HIRHAM). I have used the mean value from 1980-2014 and 1980-2016 for the surface

temperature and the SMB, respectively. The resolution of HIRHAM is 5 km. The mean SMB

on the ice cap from HIRHAM is 72.3 kg m−2yr−1. I have tried to find in-situ measurements of

the SMB of the ice cap, but as mentioned most of the research on Axel Heiberg Island has been

focused around White Glacier (see Figure 1.2), which also is the case when it comes to SMB

measurements [Cogley et al., 1996, Müller, 1962, Thomson et al., 2016]. Except for Koerner

[1979] who did a traverse on the ice cap and found that in the period from 1962-1973 the average

yearly accumulation was around 160-200 kg m−2 yr−1. Due to the sparse SMB measurements

from the ice cap I chose to go with HIRHAM. To prevent much ice growth outside of the current

ice cap, I have set the SMB to be zero outside of the ice margin. Figure 4.2c and 4.2d shows the

HIRHAM surface temperature and HIRHAM SMB on the 900 × 900 m grid, respectively.

Finally, the geothermal heat flux is set to be 0.055 W m−2 everywhere on the grid based on

Figure 2.4 in Minnick et al. [2018].

4.3 Modelling purpose and procedure

To generate a best guess of the ice thickness and thereby also bedrock topography, I have used

an iterative inverse method [Koldtoft et al., 2020, Pelt et al., 2013] by tuning to the surface

elevation, SDEM , from ArcticDEM assuming that the ice cap is in steady state. PISM is used

as a forward model in this process, where the bedrock, B, and the ice thickness, H , is changed

after each iteration, i, using

Bi+1 = Bi −K(Si − SDEM) (4.5)

Hi+1 = SDEM − Bi+1. (4.6)

Here K is a relaxation parameter which takes the value 0 below 500 m elevation. It then

increases linearly from 500-1000 m elevation, reaching the value of 0.5 at 1000 m elevation.

The relaxation parameter is there to prevent overcompensation when changing the bedrock

topography. Initially I used a uniform relaxation parameter of 0.5, but that caused the bedrock

to lower drastically underneath the outlet glaciers west of the ice cap. Thus, since I am mainly

focused at resembling the main ice cap, I chose this linearly increasing relaxation parameter

instead, to make sure not to change the bedrock too much underneath the outlet glaciers. The

low bedrock (and thereby also great ice thickness) also influenced the flow on the ice cap, since

the ice was dragged into the outlet glaciers.
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4.3.1 Modelling choices

Since the properties of the bedrock are unknown, 12 combinations of till friction angle and

enhancement factor, E, are modelled. The tested values of till friction angle and enhancement

factor are

φ ∈ {10, 20, 30, 40} (4.7)

E ∈ {1, 3, 6}. (4.8)

Every time the bedrock is changed after a forward modelling with PISM, the difference between

the modelled surface elevation and ArcticDEM should become smaller with the number of

iterations until a minimum is reached. In the ideal world one would continue making iterations

until that minimum is reached, but here computational time also needs to be taken into account.

Furthermore the closer your initial geometry is to the ground truth, the fewer iterations you

need. For this study I have chosen to do 10 iterations based on the results from Koldtoft et al.

[2020], resulting in 120 runs of PISM. It should be noted that one is not guaranteed that the

misfit between measured surface elevation and modelled surface elevation will reduce after

each iteration. However, this iterative inverse method which I am using have shown promising

results in other studies [Koldtoft et al., 2020, Pelt et al., 2013].

In the forward PISM modelling, it would be ideal to run the ice cap until steady state in each

iteration. Once again, this is not possible due to the computational load. Instead I chose to run

PISM for 2000 years with the argument, that if the surface elevation is still off after 2000 years,

changes in the bedrock should be made. One might need more iterations than 10 to reach the

minimum possible misfit between the modelled surface elevation and ArcticDEM.

I have used two different criteria for the ice margin when running PISM. One where the

ice is allowed to grow outside of the current ice margin, and one where the ice is cut off at the

current ice margin, by using the ocean kill calving option in PISM. In the latter case I have

set the bedrock to -100 m outside of the current ice cap and added a mask to the input file in

PISM. At all places where the initial ice thickness H 6= 0 the mask is set to grounded ice. At

places where H = 0 and all 8 surrounding cells also have an ice thickness of H = 0 the mask is

set to ice free ocean. In all other cases the mask is set to ice free bedrock. Notice that my mask

does not contain any floating ice.

4.4 Practical concerns when running PISM

As mentioned, PISM is build to run in parallel, why one can speed up the computational time

by using more than just one core. The number of optimal cores depends on the size of the

modelling domain, though one would think that the more cores the merrier. Because the cores
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need to communicate their boundary values of the domains to the other cores, simply increasing

the number of cores does not result in a faster calculation. There is a sweet spot, where the

communication overload of multiple cores is balanced by the increase in computational power

of more cores. The super computer that I have had access to during my thesis has 17 nodes

with 16 cores per node (I will call these ”small nodes”) and 12 nodes with 32 cores per node

(these will be called ”big nodes”). It has a hard time limit of 12 hours, meaning that a job will

be stopped if it is still running after 12 hours.

To find the optimal number of cores to run on I tried different combinations where I would

run one forward model of PISM for 2000 years and compare the computational time. The

combinations that I tried were 1 small node, 2 small nodes, 1 big node and 2 big nodes. I found

that running on 1 big node was the fastest, where running on 2 big nodes was slightly slower.

For the small nodes it was faster to run on 2 than on 1, but both slower than running on the big

nodes. Due to this test I decided to run on 1 big node when possible.

The time it took a 2000-year forward run of PISM, varied from around 10 minutes to only

having reached a couple of hundred years after 12 hours. This is due to the fact that PISM

changes the time step continuously depending on how fast the ice flows and deforms. One way

to go around the problem of hitting the time limit would be to run much fewer years making sure

not to hit the time limit and then do that until 2000 years is reached, change the bedrock and go

on from there. The problem about this method is that every time I start a PISM run, the job is put

into the queue on the super computer, and would sometimes be in that queue for up to 1-2 weeks

before the job would start, due to the high traffic and my low priority on the super computer. If

I had to run only 100 years at a time, this would mean that to complete 10 iterations, I would

not only be in the queue 10 times but 200 times. In this way I would not be able to complete the

runs in time for my final deadline. Luckily, Aslak had an extra stationary computer with 8 cores

that he did not use, why I chose to finish the iterations of those simulations that would hit the

time limit on that computer. On this stationary computer I obviously had no time limit, hence it

did not matter how long time the simulations would take, as long as they would be done within

the time frame of my thesis.

4.4.1 Deciding on a margin criteria

Due to the long computational time I realised that I would not be able to finish all of the itera-

tions for all parameter combinations for the two different margin criteria previously mentioned.

Therefore, I had a look at the results on those runs that I had finished to decide on which method

I would complete all runs with.

Figure 4.3a and 4.3b show the velocity maps with streamlines at year 2000 in the 10th

iteration of PISM with φ = 10 and E = 1 with and without ocean kill respectively. It can

be seen that the ocean kill criteria results in high surface velocities at the margin compared
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(a) With ocean kill (b) Without ocean kill

Figure 4.3: Velocity maps with streamlines at year 2000 in the 10th iteration of PISM with

φ = 10 and E = 1 with active ocean kill (a) and without active ocean kill (b). The

upper limit of the colour bar is chosen for easy comparison, the highest velocities are 446 m

yr−1 and 1259 m yr−1 for (a) and (b) respectively.

to the one with free margins. The high velocities at the margin are a direct result of cutting off

ice at the margin using ocean kill. It can be seen that Figure 4.3b shows more similarity

with my feature tracked velocities in Figure 3.4.

Figures 4.4a and 4.4b show a cross section of the modelled bedrock topography after each it-

eration of PISM with and without ocean kill respectively. Like in the velocity maps (Figure

4.3) these cross sections are the result of using a till friction angle of 10◦ and an enhancement

factor of 1. The outline of the ice in the figures are based on the surface elevation from Arctic-

DEM and the ice thickness measured with radar from Operation IceBridge [Paden et al., 2010,

updated 2019] (henceforth referred to as IceBridge). It can be seen that the two models differ

the most around 0− 37 km and 82− 110 km. Figure 4.5 shows the IceBridge flight line, where

the red line in the southernmost area of the ice cap is the 0− 37 km section, the blue line start-

ing from the south moving north and then west corresponds to the 37− 82 km section, and the

second red line of the flight line is from 82 − 110 km. This means that the two models differ

mainly at the outlet glaciers and less in the inner part of the ice cap.

I chose to use a margin criteria without an active ocean killmainly based on the velocity

maps in Figure 4.3. This combined with the fact that the runs using ocean kill in general

were slower and thereby I would have to rely more on the 8 cores stationary computer than the

runs without ocean kill.
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(a) With ocean kill

(b) Without ocean kill

Figure 4.4: Cross sections of the modelled bedrock topography after each iteration of PISM

with ocean kill (a) and without (b) using φ = 10 and E = 1.

4.4.2 Final PISM setup

The final setup of PISM is in ”raw” PISM command as follows
✞ ☎

p i smr − i i t e r 0 . nc −b o o t s t r a p −y 2000 −Mx 111 −My 126 −Mz 201 −z s p a c i n g e q u a l −Lz

4000 −s i a e 1 −s s a e 1 − s t r e s s b a l a n c e s s a + s i a −p s e u d o p l a s t i c −p l a s t i c p h i 10 −

s t r e s s b a l a n c e . s i a . l i m i t d i f f u s i v i t y t r u e − e x t r a f i l e e x t r a i t e r 0 1 0 1 . nc −

e x t r a v a r s thk , topg , u s u r f , v e l s u r f , v e l s u r f m a g , tempbase −e x t r a t i m e s 0 : 1 0 0 : 2 0 0 0 −

t s f i l e t s i t e r 0 1 0 1 . nc − t s t i m e s 0 : 1 0 : 2 0 0 0 −o i t e r 0 1 0 1 . nc &> o u t . i t e r 0 1 0 1
✝ ✆

Breaking it into parts pismr -i iter0.nc -bootstrap initiates PISM’s bootstrapping,

meaning that it creates the entire PISM modelling field using what is present in the iter0.nc

file as described in Section 4.2 and the commands to follow. -y 2000 -Mx 111 -My

126 -Mz 201 -z spacing equal -Lz 4000 tells PISM to run for 2000 years using

a 111 × 126 point grid in the horizontal direction and a 201 point grid in the vertical direction
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Chapter 4. Bedrock inversion using the Parallel Ice Sheet Model

Figure 4.5: Operation IceBridge flight line. The southernmost red line is from 0-37 km, the blue

line is from 37-82 km and the second red line is from 82-110 km.

with even space in between the grid points to an altitude of 4000 m. -sia e 1 -ssa e 1

-stress balance ssa+sia -pseudo plastic -plastic phi 10

sets the enhancement factor to 1 in both the SIA and SSA, tells PISM to use thy hybrid model

(SSA+SIA), enables the pseudo plastic power law (if this is not enabled the flow will be purely

plastic) and sets the till friction angle to 10◦. Around the outlet glaciers in the west there are

areas with high surface slopes where there in reality is no ice as a result of these high surface

slopes. When snow/ice is deposited on such sites in PISM it will cause high diffusivity and

since the time step in PISM is controlled by the diffusivity, I have to remove the upper dif-

fusivity limit by setting -stress balance.sia.limit diffusivity true. If this

is not done the ice flow in these areas will be too high to be captured in the time step which

would otherwise be used and this would cause PISM to fail. Since I am not concerned with

capturing the outlet glaciers well I have simply chosen to go about this problem of high diffu-

sivity in this way. Alternatively I could set the SMB highly negative in these areas, which in

hindsight could have been computationally advantageous as the time step becomes smaller and

smaller with increasing diffusivity. -extra file extra iter0 10 1.nc -extra vars

thk,topg,usurf,velsurf,velsurf mag,tempbase -extra times
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Figure 4.6: Cross section of the final bedrock topography of all the PISM runs.

0:100:2000 -ts file ts iter0 10 1.nc -ts times 0:10:2000 -o

iter0 10 1.nc &> out.iter0 10 1 creates all of the output files. First an extra file

which contains ice thickness, bedrock topography, surface elevation, surface velocity, magni-

tude of the surface velocity and the basal temperature at every 100th year from year 0 to year

2000. It should be noted that the bedrock topography does not change at all during a PISM run,

as isostasy is not taken into consideration, why it is foolish of me to have added it to the extra

file. A file with decadal variables of glacier volume and other features is created and finally the

final output of running PISM for 2000 years is created together with an out.-file describing

each and every time step.

This is how every iteration of PISM is done. The full code including the changing of the

bedrock after each iteration can be seen in Appendix C.

4.5 PISM results and discussion

Figure 4.6 shows a cross section of the final bedrock topography of all the PISM runs and

the Farinotti bedrock topography, with the ice cap outline given by the surface elevation from

ArcticDEM and the ice thickness from IceBridge. It should be noted that the output from PISM

is interpolated onto the IceBridge flight line which has a resolution of approximately 15 m. In

the figure it can be seen that the models differ the most at the outlet glaciers and have more

similarities on the ice cap. Furthermore it can be seen that the pattern of the initial guess of

bedrock (Farinotti) still is visible in all of the final PISM bedrocks, even though all bedrocks

have been changed 10 times according to the surface elevation. At the outlet glaciers it looks

like the models with a till friction angle of 10◦ in general perform better. This is because higher

till friction angles in PISM, causes PISM to reduce to a non-sliding SIA. Whereas, low till
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friction angles in PISM allows the ice to slide in all radial directions [Bueler and Brown, 2008].

Thus the basal shear stress in eq. (4.1) goes to zero when the till friction angle in the expression

of the yield stress (eq. (4.2)) goes to zero, as well. Hence it makes good sense that the models

with a low till friction angle performs better at the outlet glaciers. One could argue that it would

be interesting to test till friction angles of 5◦ and 15◦ as well.

Figure 4.7 shows the root mean squared error (RMS) of the modelled surface elevation com-

pared to ArcticDEM (upper panel), the modelled ice thickness compared to IceBridge (middle

panel) and the modelled ice thickness on the ice cap (blue part in Figure 4.5) compared to the

IceBridge thickness (lower panel). Starting at the top, since the model is tuned according to

ArcticDEM I would expect a decrease in RMS until some minimum in RMS is reached, where

the model cannot be further improved in the setup used. I do see such a decrease in RMS until

around iteration 6. The decrease in RMS is smaller than what I would have expected, which

might be because the initial guess of bedrock topography actually is a good guess. It could also

be because the models are not run until steady state is reached, so further improvement in RMS

might be done by running each forward model of PISM until steady state. This would be a place

to start if additional computational power were available.

Some of the models tend to get worse around iteration 8-10 than the minimum reached

around iteration 6 (φ = 10 E = 1, φ = 10 E = 3, φ = 10 E = 6, φ = 30 E = 1 and φ = 30

E = 3). A reason for this could be that the bedrock is changed too much after each iteration

meaning that a lower relaxation parameter in eq. (4.5) could have been needed. It is clear to

see that the models with φ = 10 are doing a much better job than all of the other models with a

RMS of around 100 m less than the others.

In the middle and lower panel of the figure we see that the RMS of the modelled ice thickness

compared to the IceBridge ice thickness increases with the number of iterations. Except for

φ = 10 E = 1 that ends up with a lower RMS after the 10th iteration than after the first.

The RMS does fluctuate a bit around iteration 4-8, but reaches what one could argue to be a

minimum after that. All of the other model runs tend to increase more in RMS and/or fluctuate

more. I would not expect a decrease in RMS in these two plots as the models have not been

optimised against the IceBridge data at all. Luckily, it can be seen that the RMS is much lower

on the main ice cap than when including the outlet glaciers, which emphasises that the models

certainly do perform a better job on the ice cap than on the outlet glaciers.

As mentioned in Chapter 3 the outputs from PISM are also to be compared with the Landsat

8 velocity map (Figure 3.4). Since PISM in general is working better at the main ice cap,

combined with the fact that I am only interested in the ice cap I have chosen to only use the part

of the velocity map which is shown in Figure 4.8. Be aware of the changed limits on the colour

bar which represents the minimum and maximum surface velocity in this region. The lowest

surface velocity tracked in this region is 9 cm yr−1.
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4.5. PISM results and discussion

Figure 4.7: Upper panel: RMS of the modelled surface elevation compared to ArcticDEM.

Middle panel: RMS of the modelled ice thickness compared to the IceBridge ice thickness.

Lower panel: RMS of the modelled thickness compared to the IceBridge ice thickness on the

ice cap marked in blue in Figure 4.5.
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Figure 4.8: Landsat 8 velocity map of the region to be used in the RMS study.

Figure 4.9: Root mean squared error of the modelled surface velocity compared to the surface

velocity from the Landsat 8 median velocity map in Figure 4.8.

Figure 4.9 shows the RMS of the modelled surface velocity compared to the surface velocity

from the Landsat 8 median velocity map as presented in Figure 4.8. It can be seen that the RMS

in general only is on the order of 2 m yr−1 and that there is no big difference between the RMS

after the first and the 10th iteration. The models with φ = 20 E = 6, φ = 30 E = 6 and φ = 40

E = 6 have the highest RMS in overall and the models with φ = 20 E = 1 and φ = 40 E = 1

have the lowest RMS.

Combining the results from Figures 4.6 and 4.7, it is easy to see that the model that performs

best is the one using a till friction angle of 10◦ and an enhancement factor of 6. Taking the RMS
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Figure 4.10: Bedrock topography using φ = 10 and E = 6.

of the surface velocity into account I would still choose that model as my main PISM result of

bedrock topography taking the low diverse in RMS of the surface velocity into account.

Figure 4.10 shows the bedrock topography (i.e. ArcticDEM subtracted by the PISM ice

thickness) of the main PISM result using φ = 10 and E = 6. Discontinuity in the bedrock

topography can be seen around the outlet glaciers in the southwestern region. This is because

PISM builds up ice in the outlet glaciers and I cut off any ice outside of the current ice cap

after each iteration, resulting in a very sharp margin. This would have been even worse if the

relaxation parameter had not been linearly increasing with altitude as mentioned in Section 4.3.

But why is PISM performing so badly at the outlet glaciers? The mean SMB from HIRHAM

is 72.3 kg m−2 y−1 and from Figure 4.2d it can be seen that the SMB is highly positive over

the mountains around the outlet glaciers, hence the massive build up of ice in that region can

be described by the SMB. This is probably also why I have had issues with high diffusivity as

mentioned in Section 4.4.2. One could argue that it would have been a good idea to subtract

the mean SMB from the entire SMB field to reach a mean of zero, to prevent the ice cap from

growing, which I also tried. This forced the ice to shrink in the northeastern part of the ice

cap, and ice would still build up in the outlet glaciers. That being said, I believe that the only

way to avoid this problem would be to create the SMB field myself based on the lapse rate,

altitude, temperature, the mass budget data from White Glacier [Cogley et al., 1996, Müller,

1962, Thomson et al., 2016] and the accumulation data from the ice cap by Koerner [1979].

Figure 4.11 shows the SMB as a function of elevation from HIRHAM compared to mean in-
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Figure 4.11: SMB as a function of elevation from HIRHAM (black dots) and mean in-situ

measurements from White Glacier from 1961-1990 [Cogley et al., 1996] (red triangles).

situ measurements from White Glacier from 1961-1990 [Cogley et al., 1996]. It can be seen

that HIRHAM in general overestimates the SMB, which is reflected in my results.

A study on HIRHAM’s performance over Vatnajökull in Iceland also shows an overestima-

tion of SMB on the upslope in complex terrain [Schmidt et al., 2017], similar to the mountainous

region on Axel Heiberg Island. Schmidt et al. [2017] furthermore discussed that the reason for

this simply lies in the precipitation scheme of HIRHAM. With that in mind, the HIRHAM SMB

certainly is one of the drivers behind the build up of ice on the outlet glaciers.

Another issue could also be that some of the outlet glaciers have been reported as surge-type

glaciers [Copland et al., 2003, Short and Gray, 2005, Van Wychen et al., 2014, 2016], which

definitely means that the ice cap (or at least the outlet glaciers) is not in steady state in contrast

to the assumptions made in this model. This can also be an explanation why PISM performs

bad at the outlet glaciers.

Thirdly we should remember that PISM is a simplified model using a coupling of the SIA

and the SSA. Whether this approximation has an impact on the issues at the outlet glaciers, is an

open question. A full Stokes model like Elmer/Ice [Gagliardini et al., 2013] could potentially

perform better, which could be tested in further studies. Nonetheless, I think that it would still
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Figure 4.12: Volume of the ice in glacierised areas as a function of time using iteration 10 of

the final model as input to PISM.

have a problem with the input data not resembling the truth sufficiently. Therefore, I think that

this is the main issue.

As seen in Section 4.4.2 I have used the same enhancement factor in the SIA and SSA. If

I had used different enhancement factors in the two approximations, I might have been able to

capture the outlet glaciers better. I would expect that the enhancement factor differs greatly on

the ice cap and on the outlet glaciers, respectively. Hence, it could be beneficial to set a lower

enhancement factor on the outlet glaciers, i.e. a lower enhancement factor in the SSA than in

the SIA as suggested in Ma et al. [2010].

In my PISM modelling I have used a constant till friction angle everywhere in the domain,

even though there are various options in PISM to make it spatially variable. This could of

course also have an influence on my results, but since all of the models with φ = 10 in general

are performing better (see Figure 4.7) I do not worry to much about this. The most intuitive way

to optimise this issue would be testing an even lower till friction angle on the outlet glaciers, or

letting PISM reduce to a full SSA on the outlet glaciers. This would definitely be an interesting

topic for further study, but it is out of the scope of this thesis.

Focusing on the choice of the best model again, two questions arise. How much do we trust

the modelled bedrock topography? Is the ice cap in steady state? To answer these questions

I have taken the ice cap geometry after the 10th iteration and let that run for 10,000 years, to

test whether it is in fact in steady state or not. Figure 4.12 shows the volume of the ice in the

glacierised areas as a function of time. It can be seen that the the volume increases in the first

4000 years before reaching a state where the volume fluctuates around the same value. This
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indicates that the model is not in steady state, although close to it. The fluctuations are caused

by surging of the outlet glaciers as a result of the SSA, whereas the fluctuations on the main ice

cap are smaller.

I only expect the model to perform well enough to come up with suggestions on where to

conduct ground based radargrams. Even though the ice cap has been observed not to be in

steady state [Thomson et al., 2011, 2016], otherwise assumed in this model, I still do believe

that the modelled bedrock does represent the true bedrock to this extent, especially because I

can blindly exclude the bedrock at the outlet glaciers from my results. Furthermore, as I am to

compare these results with several more models of the ice thickness, the combined result will

be more robust than this.
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5 Thickness inversion of the shallow ice

approximation

In this chapter I will describe a method to calculate the ice thickness, when the only known

parameters are the surface slope, the outline of the ice cap, the ice flux and a single radar flight

line with thickness measurements.

The motivation for applying this method is its simplicity, both theoretically and computa-

tionally.

Estimating ice thicknesses from sparse data was studied well in the ITMIX project [Farinotti

et al., 2017], where 7 out of 17 models only relied on a digital elevation model (DEM) and a

glacier outline. The ice flow equations of all 7 models are less approximated than the SIA.

Inspired by this, I test how well the ice thickness can be approximated by doing a simple least

squares regression of the SIA.

I will start by describing the model and the parameters needed in the model. This will be

followed by a presentation of my results and a discussion of them. The future possibilities of

this model will be discussed in a later chapter.

5.1 Deriving a thickness model assuming no sliding

Remembering the theory sections 2.2.3 and 2.2.4 on parallel flow and the SIA, we know the

average velocity down the ice column from eq. (2.20) which reads

v =
2A

n+ 2
ρngnαnHn+1 (5.1)

= cαnHn+1 (5.2)

where the constant c = 2A
n+2

ρngn is defined. By introducing the constant c the ice flux can be

reduced to

Q = cαnHn+2. (5.3)

Isolating the ice thickness then results in

H = Q
1

n+2 · α
−n

n+2 · c
−1

n+2 . (5.4)

Introducing a = 1

n+2
, b = −n

n+2
and k = c

−1

n+2 reduces eq. (5.4) to

H = Qa · αb · k. (5.5)
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Taking the logarithm on both sides then gives

logH = a logQ+ b logα + log k, (5.6)

which is a nice linear relationship between the logarithm of the ice thickness, the ice flux and

the surface slope. This allows me to conduct a least squares regression with a, b and k as tuning

parameters. The idea then is that if I know the ice flux and the surface slope all over the ice

cap I can do a least squares regression using the ice thickness from the IceBridge flight line to

obtain a, b and k. Assuming that the result from this regression is representative for the entire

ice cap, I can calculate the ice thickness everywhere on the ice cap. For this, a grid of 100 ×

100 m will be used.

5.1.1 Surface elevation

I have used the surface elevation from ArcticDEM, to do so I start by interpolating ArcticDEM

onto the 100×100 m grid. Since I know that I will not be able to catch small scale features,

I smooth the surface elevation. To do so I use a Gaussian filter with a standard deviation of

σ = 2.5 corresponding to 250 m. To apply the filter I make a mask with ones in areas with ice

and zeros in ice free areas. The mask is made from the Farinotti bedrock, but I could also just

have made a mask from an optical satellite image, drawing the present day margin. The surface

elevation is then smoothed with the Gaussian filter inside the mask. This is illustrated in Figure

5.1, which shows an example of smoothing of a single point with a value of one surrounded by

zeros. The figure to the left shows the single point and the figure to the right shows the result

after applying the above described smoothing.

The smoothed surface elevation is what will be used throughout this chapter.

Figure 5.1: Left: A single point with a value of one surrounded by zeros. Right: The result

after applying the smoothing.
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5.1.2 Surface slope

To calculate the slope from the smoothed surface elevation I simply calculate the gradients, dx

and dy, and from that calculate the surface slope by using

α =
√

dx2 + dy2 (5.7)

Since I need to take the logarithm of the slope (eq. (5.6)) the model breaks in places where

α = 0 since log 0 = −∞. This issue would result in an overestimation of ice thickness in these

areas. This is a well known issue in these kinds of models [Farinotti et al., 2009, 2017] and

the most common way to go around it is to introduce a minimum slope. In the ITMIX project

[Farinotti et al., 2017] the minimum slopes used in similar models ranged from 2◦-5◦. I have

chosen to use a minimum slope of 0.01 radians which is 0.6◦ as a higher minimum slope would

give the ice flux too much influence on the modelled ice thickness.

5.1.3 Ice flux

I have no data for the actual ice flux on the ice cap, thus I need to make a model of it. I have

chosen to make a model based on the HIRHAM SMB and the surface slope and assumed that the

ice only flows downhill, essentially calculating the balance fluxes. The mean SMB is subtracted

in order to simulate steady state. Furthermore the SMB is set to zero outside of the ice cap as

defined by the Farinotti bedrock. I sort the surface elevation array by elevation and start with

the highest point. In this cell the flux must be equal to the SMB. From that cell I let the ice flow

into the surrounding cells according to the surface slope. I assign a weight, w, to all of the 8

neighbouring cells such that

w = max(0, α)3, (5.8)

where α is the slope between the current cell and the neighbouring cell. This means that if the

slope is negative then w = 0. Then the ice flows to the neighbouring cells by

Qneighbour = Qneighbour +
wneighbour

∑

wallneighbours

Qcurrentcell (5.9)

I then repeat this process in the second highest elevation cell with the result from before, i.e.

Qcell = Qcell + SMBcell. (5.10)

To prevent the ice thickness to go towards infinity when taking the logarithm, I introduce a

minimum ice flux of 10−3 m s−1 per grid cell area. Note that both the SMB and thereby also

the ice flux is measured in m s−1 per grid cell area. In the end I have the ice flux in every single

grid cell as shown in Figure 5.2. From the figure it can be seen that all the areas outside of the

ice cap (as given by the Farinotti bedrock) have the value of the minimum allowed ice flux.
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Figure 5.2: The logarithm of the modelled ice flux.

5.2 SIA inversion results and discussion

With the above described model and data I can do a least squares regression of eq. (5.6) by

using the ice thickness from IceBridge, the surface slope and the ice flux to obtain a, b and k,

and apply the result to the entire ice cap. Since I am mainly interested in the main ice cap I only

perform the regression of the IceBridge flight line over the ice cap, shown in blue in Figure 5.3.

Figure 5.4 shows the cross section of the ice cap on the IceBridge flight line. The non-toned

part of the figure denotes the data used for the regression in eq. (5.6). The outline of the ice

is defined by the smoothed ArcticDEM surface elevation and the the IceBridge ice thickness.

The solid black line is the bedrock from my least squares regression where I have subtracted the

calculated ice thickness from the smoothed ArcticDEM. It can be seen that in some areas with

low surface slope there are some ”dips” in the bedrock, especially around 42 km. This is most

likely due to taking the logarithm of a very small number (i.e. the slope or ice flux).

The values of a, b and log k obtained are a = 0.087, b = −0.435 and log k = 5.174. This

results in n = 9.536 when using a = 1

n+2
and n = 1.540 when using b = −n

n+2
. The creep

exponent is usually around 2-4 [Cuffey and Paterson, 2010], indicating that this model might

be too simplified and that the ice cap is not in steady state as opposed to what is assumed in the

calculation of the ice/balance flux.
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Figure 5.3: Operation IceBridge fligt line. The blue part of the line is the part used in the SIA

inversion.

Figure 5.4: IceBridge flight line cross section with the modelled bedrock using the SIA inversion.
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From the model in eq. (5.6) we know that

log k = log c
−1

n+2 (5.11)

= log

(

(

2A

n+ 2
ρngn

)
−1

n+2

)

, (5.12)

rearranging and isolating for the rate factor, A, gives

A = 2
−2

n+2 ·
n+ 2

k2
ρ−ng−nk−n

(

2
1

n+2

)

−n

. (5.13)

When using ρ = 917 kg m−3, g = 9.8 m s−2 and n = 3 I get a rate factor of 2.06 ·10−23 s−1Pa−3

which corresponds to a temperature of just above 0◦C as seen in Figure 2.2.

Both the values of n and A are in the right order of magnitude, but they are not close to

realistic values. Especially because I get two such different values of n. I would not expect

to obtain correct values of n and A as the SIA is an approximation and the ice flux originates

from a model. All errors that there might be in the ice flux, the slope and in the SIA will be

captured in these tuning parameters, hence it would be crude to assume that it would result in

a true rate factor and a true creep exponent. Furthermore, this model does not take any sliding

into account, also affecting the tuning parameters. With the simplicity of this model in mind I

am satisfied with these results.

The values of a, b and k from the regression have then been used to calculate the ice thick-

ness of the entire ice cap. Figure 5.5 shows the bedrock topography using this methodology,

where I have subtracted the modelled ice thickness from the smoothed ArcticDEM to get the

bedrock elevation. It can be seen that there are places scattered across the bedrock where shal-

low spots and cliffs appear. This again is due to either low ice flux, small surface slope or both.

It can also be seen that the stream like pattern from the ice flux in Figure 5.2 has affected the

modelled bedrock.

From this ice thickness and the ice flux, I can calculate the average velocity down the ice

column using eq. (2.20) and plotted in Figure 5.6. It should be noted that the maximum velocity

is 353 m yr−1 although the colour bar is capped to 100 m yr−1, and the mean velocity is 1.4

m yr−1. On the ice cap it can be seen that the flow patterns are roughly the same as in Figure

3.4 with ice flowing out in the two tongues in the eastern and northeastern part. Due to the

higher resolution (100 m rather than 900 m), all outlet glaciers in the west are captured better

than previously. However, the magnitude of the velocities in general are too high, as compared

to Figure 3.9a. The ice divide is well defined and corresponds to what has been found in both

Figures 3.4 and 3.9a. This suggests that the modelled ice thickness is not to far off the ground

truth.

The advantages of this model are that the only needed variables are the SMB, the surface

elevation, an outline of the ice cap margin and a radar line with ice thickness measurements.
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5.2. SIA inversion results and discussion

Figure 5.5: Modelled bedrock topography using the SIA inversion.

Figure 5.6: Velocities calculated from the modelled thickness and ice flux.
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Chapter 5. Thickness inversion of the shallow ice approximation

Combined with the fact that the model takes no time to run, its performance is very good. With

a 100 × 100 m grid it takes a bit less than 3 minutes to run the model. Furthermore, it can

be shown that the model is not too sensitive towards the SMB. In fact, similar results can be

obtained by applying a uniform SMB, as shown in Appendix D. This means that this model

can easily be applied to other ice caps and glaciers as long as the surface elevation of the entire

ice cap is known, together with an outline of the glacier, and a radar line with ice thickness

measurements.

The disadvantages of this model are that no sliding is included, and it can be hard to interpret

the tuning constants a, b and k, because of its simplifications and assumptions. This might very

well be the cause of the unphysical values. Furthermore, we do not know how well this model

represents the areas outside of the IceBridge flight line. This issue will be treated further in

Section 7.1.
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6 Estimating the ice thickness using Bayesian

statistics

In the least squares regression of the SIA inversion in the previous chapter I was able to estimate

values of n and A within the right order of magnitude. However, since n and A were only

indirectly tuned, I knew that they would not necessarily resemble the truth. Thus, in this chapter

I will use a Monte Carlo (MC) sampling method to estimate the ice thickness using the SIA

both with and without sliding. Using a MC sampling method will allow me to discard the

tuning parameters, a, b, and k, from the SIA inversion and keep the physical expression, further

described below.

In glaciology, MC sampling methods have especially been used in estimating mass balance

and basal properties [Chandler et al., 2006, Colgan et al., 2012, Gardner et al., 2011, Machguth

et al., 2008]. In particular, these methods have been employed on well studied glaciers, where

the data quality and quantity resemble that of White Glacier, introduced in Section 1.1.

As a part of the ITMIX project [Farinotti et al., 2017], Brinkerhoff et al. [2016] used a MC

sampling method to estimate the ice thickness from the SMB, surface elevation change, and

surface velocity. The model solves a much less approximated form of the conservation laws

presented in Section 2.1.3 as compared to the SIA.

Werder et al. [2020] have also modelled ice thicknesses from MC sampling methods. They

used a combination of mass conservation and the SIA reduced to a 1D model by using elevation

bands. Thus, that model is simpler than the one from Brinkerhoff et al. [2016], but not as simple

as an inversion of the SIA which is what I will try to conduct within this chapter.

The chapter is structured such that I first will give a brief introduction to MC modelling and

present the Python package PyMC3 [Salvatier et al., 2016] which I will be using. Afterwards, I

will present the two models one at a time accompanied by their results.

All of the input data in this chapter is the same as in Chapter 5, this also implies that the

data is on a 100 × 100 m grid, that ArcticDEM is smoothed as described in Section 5.1.1, and

that ρ =917 kg m−3 and g =9.8 m s−2. Furthermore, the models presented here will be trained

on the data marked in blue in Figure 5.3.

6.1 Markov chain Monte Carlo

In short Markov chain Monte Carlo (MCMC) is one way to encode a Bayesian approach to

solve the problem at hand. A completed introduction of MCMC is a vast task outside the scope

of this thesis. I will, however, introduce the necessary parts, based on Tarantola [2005].
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Chapter 6. Estimating the ice thickness using Bayesian statistics

Imagine we have some data, d (i.e. the ice thickness), which can be described by some

physical relation, g (i.e. the SIA),

d = g(m), (6.1)

based on some model parameters, m (i.e. creep exponent, rate factor etc.). Bayes theorem reads

as follows

f(m|d) =
f(d|m)f(m)

f(d)
, (6.2)

where f(m|d) is the posterior distribution of the model parameters given the data, f(d|m) is

the likelihood of the data given the model parameters, f(m) is the prior distributions of the

model parameters and f(d) is the prior distribution of the data. Thus, this theorem states that

given a (prior) distribution of the probability of some parameters, one can update these estimates

given new data.

Instead of performing this tedious and complex update by hand, one can use a MCMC. What

it does is to perform a random walk through the full parameter space of the model, with param-

eter probabilities given by the priors. In contrast to the approximations normally employed

when optimising the parameters by hand, the MCMC deals just as well with non-Gaussian

prior distributions as Gaussian and further, the MCMC can keep track of hundreds of parame-

ters simultaneously. The random walk can be performed in several chains resulting in multiple

posterior distributions. Sampling in several chains, is a way to ensure that the global and not

only the local maximum is found.

PyMC3 is a Python package with a build-in MCMC sampler [Salvatier et al., 2016]. It offers

a wide selection of distributions allowing one to build the best model possible for the problem

desired to solve. Both the model with and without sliding will be build within PyMC3 and the

MCMC sampling method used in this thesis is the No-U-Turn Sampler (NUTS).

6.2 MC model without sliding

6.2.1 Method without sliding

Combining the parallel flow (eq. (2.20)) and the SIA inversion equations (eq. (5.6)), introduced

in Chapters 2 and 5, and implementing an enhancement factor results in

logH =
1

n0 + 2
logQ+

(

3

n1 + 3
− 1

)

logα + log

(

(

2EA

n2 + 2
ρn3gn4

)
−1

n5+2

)

. (6.3)

Here n0 to n5 are the creep exponents, which I have chosen to be allowed to differ, further de-

scribed below. This expression, combined with the same input data of IceBridge ice thickness,

surface slope, and ice flux, as in Chapter 5 can then be sampled using PyMC3 by assigning
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6.2.1. Method without sliding

prior distributions to all parameters. The prior distributions of the creep exponents, enhance-

ment factor and rate factor are chosen to be as follows

n0...5 ∼ TruncN (µ = 3, σ = 3, 1, 10) (6.4)

E ∼ U(1, 10) (6.5)

Ak ∼ Lognormal(µ = log 3.5, σ2 = 0.5), (6.6)

where A = Ak · 10−25. The notation ∼ means ”distributed as”. The shape of the prior distri-

butions are a result of trial and error with a combination of theory of the mean values [Cuffey

and Paterson, 2010]. Starting from the top with the six creep exponents, I have chosen to use

a truncated normal distribution with µ = 3 and σ = 3 and a cut off at 1 and 10 to prevent too

small and too large creep exponents. The prior distribution of the enhancement factor is chosen

to be uniform in the range from 1-10. The rate factor has been split into two, to save the model

from tuning on parameters on the size of 10−25. To do so I let A = Ak · 10−25. The prior

distribution of Ak is described by a log-normal distribution with µ = log(3.5) and σ = 0.5.

The choice of the log-normal distribution is done to prevent the rate factor of becoming less or

equal to zero.

The prior distributions of the model, y, described by eq. (6.3) and of the uncertainty of the

data, σdata, are set to be

σdata ∼ U(0, 10) (6.7)

y =
1

n0 + 2
logQ+

(

3

n1 + 3
− 1

)

logα + log

(

(

2EA

n2 + 2
ρn3gn4

)
−1

n5+2

)

(6.8)

y ∼ N (µ = y, σ = σdata). (6.9)

Meaning that a uniform prior distribution ranging from 0-10 is used to describe the uncertainty

of the observed data, the observed data being the logarithm of the IceBridge ice thickness. The

reason for the uniform distribution was to give the model more freedom than a normal distribu-

tion would have allowed. Finally, the prior distribution of the logarithm of the ice thickness as

described in eq. (6.3) is assumed to take the shape of a normal distribution with µ described by

eq. (6.3) and σ = σdata. Notice here that I am using the logarithm of the ice thickness rather

than the actual ice thickness. This is my way of ”normalising” the data, making it easier for

PyMC3 to do the sampling.

To do the actual sampling, I use 200 samples in 2 chains, i.e. 200 samples from the prior

distributions will be used to create two posterior distributions with 200 samples in each. This

will be done for all of the input parameters. The sampling is done after 1000 steps of tuning,

reassuring that the sampling is done after the burn-in time [Tarantola, 2005]. The posterior

distributions of n, Ak, E and σdata after the sampling can be seen in Figure 6.1. The blue and
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Chapter 6. Estimating the ice thickness using Bayesian statistics

Figure 6.1: Left: Posterior distributions of n, Ak, E, and σdata. Right: The variability as a

function of number of samples. The two colours represent the two chains.

orange colours represents the two chains. Looking at the creep exponent it can be seen that

two of them have a quite peaked posterior distribution meaning well-located values, whereas

the rest of them have quite flat posterior distributions with no clear peak. Ak and σdata both

have quite well defined posterior distributions. The enhancement factor on the other hand has

a quite uniform distribution. It should be noted that the rate factor and the enhancement factor

are closely connected, which influences its posterior distribution. It can also been seen that the

two chains are more or less similar in all cases, indicating that it is the global maximum which

has been found.

The right side of Figure 6.1 shows the value of the different features as a function of samples,

and thereby the variability as a function of time. It can be seen that they have all reached a steady

state, indicating that I have used enough tuning steps before the sampling starts.

From the posterior distributions in Figure 6.1 one can sample the posterior distribution of

the logarithm of the ice thickness. The ”best” guess for the ice thickness in the part that has

been used for the sampling is thus the mean of the posterior distribution, which I have plotted

against the actual IceBridge ice thickness in Figure 6.2a.

Since it shows the mean of the posterior distributions, one can not subtract the values of n,

Ak, E and σdata used to get this ice thickness. Thus to find those values I look into the statistics
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6.2.2. Results and discussion without sliding

(a) (b)

Figure 6.2: (a) Sampled ice thickness versus IceBridge thickness. (b) Calculated ice thickness

using the mean from Table 6.1 versus IceBridge thickness.

of Figure 6.1 tabulated in Table 6.1. Here, I have denoted the average of the mean and median

as ”mean-median” and ”std” is the standard deviation. To find the best suited values of n,

Ak, E and σdata I simply plotted the same plot as in Figure 6.2a using the mean, median and

mean-median values of the parameters and plugged into eq. (6.3), respectively. Instead of just

applying the ice flux and the slope from the part of the IceBridge fligt line used in the training

(shown in blue in Figure 5.3), I used the entire flight line. After that I interpolated it onto the

IceBridge flight line, which then was plotted against the IceBridge ice thickness. By comparing

the three different ”predicted versus true” plots with Figure 6.2a, I found that the values using

the mean resembled Figure 6.2a the most. Figure 6.2b then shows the predicted ice thickness

using the mean values in Table 6.1 against the IceBridge ice thickness. These values were then

plugged into eq. (6.3) and applied on the entire ice cap.

6.2.2 Results and discussion without sliding

Figure 6.3 shows the cross section of the IceBridge flight line with the modelled bedrock in

black. The surface elevation is given from the smoothed ArcticDEM. Like in the case of the

SIA inversion in Chapter 5, steep dips in the bedrock topography can be seen in some areas

with low surface slope. Likewise, higher fluctuations can be seen in the bedrock topography of

the outlet glaciers. These discrepancies are expected as the model is only optimised with data

from the single flight line shown in blue in Figure 5.3. It catches the broad features of the ice

cap but not the details.
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Chapter 6. Estimating the ice thickness using Bayesian statistics

Table 6.1: Summary and statistics of all sampled parameters. The mean-median is the average

of the mean and the median.

Mean Median Mean-median Std

n0 9.42 9.43 9.43 0.29

n1 2.32 2.32 2.32 0.09

n2 4.17 3.97 4.07 2.04

n3 2.71 2.65 2.68 0.94

n4 3.69 3.40 3.54 1.86

n5 3.58 3.49 3.53 1.24

Ak 4.00 3.51 3.76 2.05

E 5.68 5.69 5.68 2.54

σdata 0.334 0.334 0.334 0.003

Figure 6.3: IceBridge flight line cross section with the modelled bedrock as the solid black line.

The bedrock topography of the entire domain can be seen in Figure 6.4. Here it is a bit

more clear to see how the shape of the bedrock is influenced by the flux when comparing to

Figure 5.2. It is also interesting to discuss the found values of creep exponent as presented in

Table 6.1. n1-n5 all have values between 2 and 4, which is what one would expect from theory

[Cuffey and Paterson, 2010]. n0 on the other hand, is 2-3 times larger. Looking at eq. (6.3),

n0 is directly influenced by the ice flux. This suggests that the modelled ice flux, as explained

in Section 5.1.3, does not represent the actual ice flux of the ice cap. This is to be expected as

it is the balance fluxes that I have used under the assumption that the ice cap is in steady state.

It could also simply be a signal of the SIA being too crude of an assumption for the Müller ice

cap. Remembering the results from Chapter 5, the creep exponent related to the ice flux was

9.54. Exactly the differences in creep exponents were the reason for me not to collapse them

into one parameter, which in contrast is expected from theory.

The rate and enhancement factors were found to be 4.00 · 10−25 s−1Pa−3 and 5.68, respec-
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6.2.2. Results and discussion without sliding

Figure 6.4: Modelled bedrock topography.

tively. This corresponds to a temperature of just above −25◦C. Notice, that A and E are directly

related, thus if I had not introduced an enhancement factor, the value of the rate factor would

have increased. The new rate factor would thereby increase the corresponding temperature (see

Figure 2.2). This indicates that the enhancement factor on the Müller ice cap is greater than

1. It should be noted that the unit of the rate factor depends on the creep exponent, such that

the unit of A is s−1Pa−n. Thus, to prevent a very complicated unit of A now that the creep

exponent has been split into six, I choose to capture it in the enhancement factor. This means

that the enhancement factor is no more unitless. This shows the disadvantage of splitting the

creep exponent.

Investigating the ice flux brings us back to one of the key assumptions in the model of the ice

flux in Section 5.1.3. Namely the assumption that all ice flows downhill. This might not always

be the case, i.e. bumps in the bedrock topography may be visible in the surface topography,

causing the ice to flow uphill [Cuffey and Paterson, 2010]. Looking at the cross section in

Figure 6.3, this may very well be the case.

Remembering Figure 6.2b it can be seen that the model in general overestimates the ice

thickness. This is the case in places with small observed ice thicknesses. There is also a clear

pattern that some observed ice thicknesses around 400-600 m are overestimated. If we look at

the cross section in Figure 6.3, it seems that the overestimation of very small ice thicknesses

mostly takes place on the ice cap where the observed bedrock topography has some shallow

peaks above the modelled one. Furthermore the model has clearly overestimated the ice thick-
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ness at the very summit, where the observed ice thickness almost goes to zero. The overestima-

tion of the observed ice thicknesses of around 400-600 m can mainly be attributed to the two

outlet glaciers. Especially in the area around 90-110 km. This overestimation could very well

be due to the fact that the model is not trained to perform well in these areas, combined with no

sliding being modelled in this model of the SIA.

The advantages of this model are the same as in the SIA inversion in Chapter 5, including the

fact that the modelled ice thickness depends little on the SMB. Appendix E shows an example

of the results when using a uniform SMB with ones in every grid cell.

In contrast to the SIA inversion I have managed to resolve one of the disadvantages, namely

the interpretation of the tuning constants, since I am able to use eq. (6.3) as it is. Even so, the

values of n seem to be a bit off. In the following section it is tested whether this issue can be

resolved by adding sliding.

6.3 MC model with sliding

6.3.1 Method with sliding

As mentioned, the advantage of using PyMC3, is that it allows one to sample over any given

equation. Hence it gives me the possibility of including sliding. Recalling eq. (2.20) from the

definition of parallel flow and plugging in the basal shear stress the ice flux is given by

Q = vbH +
2EA

n+ 2
ρngnαnHn+2. (6.10)

The basal velocity is given by

vb = fvs, (6.11)

where vs is obtained by the median Landsat 8 velocity map (see Figure 3.4).

When sliding is included it is not possible to isolate the ice thickness directly, which is why

I have to sample over something else than the ice thickness, if I want to use PyMC3. Thus I will

be sampling over the ice flux calculated in Section 5.1.3. From the ice flux an estimate for the

ice thickness can be found by minimising the difference between the left and right hand side of

eq. (6.10), which will be further described later on.

The PyMC3 model, y, using eq. (6.10) with eq. (6.11) to describe the basal velocity is then
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expressed by the following prior distributions

n ∼ TruncN (µ = 3, σ = 3, 1, 10) (6.12)

E ∼ U(1, 10) (6.13)

Ak ∼ Lognormal(µ = log 3.5, σ2 = 0.5) (6.14)

f ∼ U(0, 1) (6.15)

σdata ∼ U(0, 1000) (6.16)

y = log

(

fvsH +
2EA

n+ 2
ρngnαnHn+2

)

(6.17)

y ∼ N (µ = y, σ = σdata). (6.18)

The prior distributions for n, Ak and E are the same as in the model without sliding, but only

using one value for all creep exponents. This also implies that A = Ak · 10−25. The prior

distribution of the uncertainty, σdata, of the logarithm of the ”observed” ice flux is described

by a uniform distribution from 0 to 1000. The prior distribution of f from eq. 6.11 is uniform

from zero to one, allowing the basal velocity to be in the range from 0 to vs. Like in the model

without sliding I use the logarithm of the ice flux as a ”normalisation” in the sampling.

Table 6.2: Summary and statistics of all sampled parameters. The mean-median is the average

of the mean and the median.

Mean Median Mean-median Std

n 3.03 3.02 3.03 0.07

Ak 3.68 3.14 3.41 2.06

E 5.11 4.89 5.00 2.48

f 3.55 ·10−7 3.55 ·10−7 3.55 ·10−7 1.52 ·10−8

σdata 1.67 1.67 1.67 0.02

The sampling is done in the same way as in the non-sliding model, with 200 samples and

2 chains. Once again 1000 steps are used in the tuning process before the actual sampling is

being done. The posterior distributions of n, Ak, E, f and σdata can be seen in Figure 6.5 with

the statistics presented in Table 6.2. It should be noted that to prevent very small numbers, the

surface velocity is kept in m yr−1, thus rescaling the size of f . The shape and the statistics of

the posterior distributions will be discussed further in the next section. As in the case without

sliding it can be seen that the number of tuning steps is large enough to be past the burn-in time,

and that the two chains have rather similar posterior distributions.

From the posterior distributions of n, Ak, E, and, f , posterior distributions of the logarithm

of the ice flux are sampled. Using the same method as in the case without sliding the ”best”

guess of the ice flux is plotted in Figure 6.6a against the modelled ice flux from Section 5.1.3.

Following the same line of argumentation as above I found that using the mean in eq. (6.10)
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Figure 6.5: Left: Posterior distributions of n, Ak, E, f , and σdata. Right: The variability as a

function of number of samples. The two colours represent the two chains.

resembled the sampled ice flux the most, which can be seen in Figure 6.6b. Notice that I have

used the entire IceBridge flight line in the latter figure.

With n, Ak, E and f found, these values are inserted into eq. (6.10) and (6.11), leav-

ing the ice thickness as the only unknown parameter. To estimate the ice thickness I use

scipy.optimize.fsolve which searches for the roots needed to make some expression

equal to zero. This means that I feed it with an expression which is equal to the left side of eq.

(6.10) minus the right side of eq. (6.10), i.e.

0 = logQ− log

(

fvsH +
2EA

n+ 2
ρngnαnHn+2

)

. (6.19)

Notice here that I have taken the logarithm on both sides of eq. (6.10). A first guess of the ice

thickness also needs to be fed into scipy.optimize.fsolve, where I have chosen to use

the ice thickness from the SIA inversion in Chapter 5. In the ideal world I would be able to run

this and get an estimate of the ice thickness with sliding on my 100 × 100 m grid. Due to the
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(a) (b)

Figure 6.6: (a) Sampled ice flux versus modelled ice flux. (b) Calculated ice flux using the mean

from Table 6.2 versus modelled ice flux.

amount of memory needed to do this, it was not possible. Therefore I chose to interpolate the

data onto my 900 × 900 m grid, which was also used in Chapter 3 and 4. Notice here that the

velocity obviously already is on the right grid which is why only the ice flux, slope, and SIA

inversion ice thickness were interpolated.

6.3.2 Results and discussion with sliding

Figure 6.7 shows the IceBridge cross section with the modelled bedrock as the black line. It

can be seen that even though the model has not been trained with data from the outlet glaciers,

it performs rather well in these areas. The bedrock topography on the ice cap is also captured

quite well, and resembles the true bedrock quite well, though not to the same detail. There is

only one significant dip in bedrock topography around 10 km, but that cannot be explained by

the slope or the ice flux and is believed to be an outlier. All in all this model does a quite good

job even in areas with low surface slope and flux in contrast to the model without sliding.

One could argue that since sliding has been included, it could make sense to use the entire

flight line in the training of the model. I have chosen not to do that since the main goal is, as

mentioned, to capture the ice cap as well as possible. Furthermore, I would expect a completely

different basal velocity on the outlet glaciers as on the main ice cap, like in the discussion of the

enhancement factor in Section 4.5 [Cuffey and Paterson, 2010, Ma et al., 2010].

The bedrock topography of the entire ice cap can be seen in Figure 6.8. The first thing that

becomes apparent when looking at this figure, is how pixelated it is due to the coarser resolution.
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Figure 6.7: IceBridge cross section with the modelled bedrock topography as the black solid

line.

Figure 6.8: Modelled bedrock topography

This would definitely be one of the first things to work on if I were to continue on this project.

Obviously an ”easy” fix would be to run on the supercomputer. Though I think that one of the

advantages of this model is that it can be run on a regular laptop, which is why I would rather

try to make that possible. A way to do it, would be to look into the options of parallelisation, or

to somehow do the minimisation in batches.

Returning to the posterior distributions of n, Ak, E, f and σdata in Figure 6.5 and Table

6.2, it can be seen that the mean of the posterior distribution of the creep exponent and the rate
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Figure 6.9: Modelled MC bedrock with sliding in black and the SIA inversion bedrock interpo-

lated onto the 900 × 900 m grid and then onto the flight line in dashed red.

factor is 3.03 and 3.68·10−25 s−1Pa−3 with a standard deviation of 0.07 and 2.06·10−25 s−1Pa−3,

respectively. This corresponds very well with theory [Cuffey and Paterson, 2010]. Note here

that the true unit of the rate factor is in fact s−1Pa−3.03 because of n = 3.03, but since it is so

close to 3, I chose to round the unit.

The enhancement factor is found to be around 5, which physically is possible. Do notice

that in this model (see eq. (6.10)), it is not possible to really distinguish between E and A.

Either way, they both seem to have the right order of magnitude as one would expect [Cuffey

and Paterson, 2010].

As it turns out, the output from the MC sampling has almost no influence on the estimated

ice thickness, if it even has any influence at all. In Appendix F the modelled bedrock topography

is shown when using a uniform SMB with ones everywhere. Here it is found that the output from

scipy.optimize.fsolve is the exact same as when using the HIRHAM SMB. Therefore

I tried to change the initial guess of ice thickness to a uniform one with ones in every single grid

cell, to see how much scipy.optimize.fsolve relies on the initial guess. Unfortunately

I found that the ice thickness then became equal to one in every single grid cell. This caused

my alarm bells to ring; what if the MC bedrock with sliding is only a result of interpolating the

SIA inversion ice thickness from a 100 m to 900 m grid? To investigate this I plotted both the

MC bedrock interpolated onto the IceBridge flight line together with the SIA inversion bedrock

which first has been interpolated onto the 900 × 900 m grid, and after that interpolated onto the

IceBridge flight line as shown in Figure 6.9. It can be seen that scipy.optimize.fsolve

unfortunately comes up with the exact same result as the initial guess.

This means that I have not successfully been able to add sliding to my model as I in reality

have just smoothed the SIA inversion bedrock due to the interpolation. Thus the biggest disad-
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vantage of this model is that I cannot do the sampling of the ice thickness, and have to use a

function like scipy.optimize.fsolve. Thus I think it would be worthwhile to set up a

new ice flow model where it is possible to sample the ice thickness itself. To do so I could have

a further look into the methods presented by Brinkerhoff et al. [2016] and Werder et al. [2020].

This would most likely also imply that much of the simplicity from the model presented here

would vanish, and the computational power needed would increase. However, as my studies

only represent the tip of the iceberg, there is definitely a lot of potential of using MC algorithms

to estimate ice thicknesses.

That being said, I will still use this result in my investigations of possible drill site areas.

It will be referred to as the MC model with sliding, but do keep in mind that it really just is a

smoothing of the SIA inversion.
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7 Model merging and discussion

In this chapter I will bring all of the pieces together into one big picture. First I will combine

Chapters 4 and 5 in order to create a last estimate of bedrock topography. Then I will compare

all modelled bedrock topographies/ice thicknesses, so that I can identify possible drill areas and

present ideas for future research.

7.1 Using the SIA inversion ice thickness in PISM

To test the validity of the SIA inversion model outside of the IceBridge flight line I will apply

the PISM methodology, in which the SIA inversion bed, see Figure 5.5, is used as an initial

bedrock topography guess. For future reference I will call this model the SIA+PISM model.

The bedrock topography is interpolated onto the 900 × 900 m grid. The algorithm is then run

for 10 iterations, updating the bedrock as described in Section 4.3. I will, however, not scan

all till friction angles and enhancement factors but rather use the optimal parameters, 10◦ and

6, respectively, from Section 4.5. Note here that I use ArcticDEM as described in Chapter 4,

and not the smoothed version as described in Section 5.1.1. In hindsight, I should have used the

smoothed bedrock as of Section 5.1.1 instead of that of Chapter 4 throughout the thesis. This

was unfortunately not possible as the simulations were already underway as this revolution

came about. Running all of the PISM runs again was not an option due to the computational

time.

Figure 7.1 shows the RMS of the modelled surface elevation compared to ArcticDEM, the

modelled ice thickness compared to the entire IceBridge flight line and the IceBridge fligt line

on the ice cap (marked in blue in Figure 4.5) and of the modelled surface velocity compared to

the surface velocity marked in Figure 4.8. It can be seen that the general minimum RMS is found

Figure 7.1: Root mean squared error of the surface elevation, ice thickness and surface velocity

as a function of iterations.
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Figure 7.2: Modelled bedrock topography from iteration 1.

around iteration 1-2 and that the RMSs of the surface elevation and the ice thickness are very

low compared to the runs where the Farinotti bedrock has been used (see Figure 4.7). The RMS

of the surface elevation compared to ArcticDEM is more or less steady throughout the runs,

suggesting that the minimum RMS has already been reached from the beginning. Furthermore

it can be seen that the RMS of the surface velocity is in the same order of magnitude as when

using the Farinotti bedrock as seen in Figure 4.9, except for the very last iteration where it

reaches more than 100 m yr−1. This suggests that my simple SIA inversion model performs

well also outside of the IceBridge flight line, and that my guess for bedrock topography using

this methodology actually is better than the Farinotti bedrock. This would most likely also be

the case if I had used one of the MC bedrocks as initial guess.

Figure 7.2 shows the modelled bedrock topography from iteration 1 (i.e. ArcticDEM sub-

tracted by the ice thickness at the end of iteration 1), the iteration with the lowest RMSs when

all parameters are taken into consideration.

Because the SIA inversion bedrock is interpolated onto a coarser grid and run in PISM, I

also get rid of the big dips in bedrock topography caused by the low surface slope. All of this

results in a smoother bedrock topography, as seen in Figure 7.3 which shows the IceBridge

cross section at iteration 1. It can be seen that the ice thickness is underestimated on the main

outlet glacier, probably due to the high enhancement factor. Using two different enhancement
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Figure 7.3: Cross section of the IceBridge flight line with the modelled bedrock topography at

iteration 1.

factors for the SIA and the SSA might improve the results. Future simulations should be similar

to the ones I have performed, with the only change of different enhancement factors in the SIA

and SSA, where the value for the latter is to be found. I believe this would improve the results

on the outlet glaciers without compromising those on the main ice cap.

7.2 Comparing all modelled ice thicknesses

Figure 7.4 shows the full IceBridge flight line cross section with all modelled bedrocks and

the Farinotti bedrock. Notice that I have used the smoothed version of ArcticDEM as surface

elevation. Not surprisingly, the biggest differences are found on the outlet glaciers, where

especially the PISM bedrock stands out. However, on the main ice cap not much difference is

to be seen between the SIA and the two MC models. In the case of MC without sliding, this

is obviously because they are based on the same equation but with different tuning parameters.

In the case of MC with sliding, the models are similar as the MC with sliding only represents a

smoothed version of the SIA inversion.

A close up of the modelled bedrocks on the ice cap can be seen in Figure 7.5. The Farinotti

bedrock alongside the two bedrocks that have been through PISM (PISM and SIA+PISM) show

many similarities in the pattern of the bedrock. The fact that the PISM bedrock shares similari-

ties with the Farinotti bedrock is not surprising as the latter was used as an initial guess in PISM,

but the fact that the SIA+PISM bedrock also shares the same similarities on the ice strikes me.

This pattern also showed up in all of the PISM models (i.e. Figure 4.6), indicating that it might

just reflect the ice dynamics in PISM, rather than the initial guess of bedrock topography.

Focusing on the bedrock on the ice cap from the SIA inversion and MC without sliding, it
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Figure 7.4: IceBridge cross section of all modelled bedrocks.

Figure 7.5: IceBridge cross section as marked in blue in Figure 4.5 of all modelled bedrocks.

becomes even more apparent how closely related they are, with the SIA inversion tending to

reach lower elevations. The MC with sliding bedrock shows the same features only smoother,

and thus does not reach as low or as high elevations compared to the other two.

To be able to compare all modelled bedrocks of the entire ice cap I have plotted them to-

gether in Figure 7.6 including the Farinotti bedrock for comparison. I will only compare the

models within the outline of the ice cap, shown in black. Notice, that the SIA inversion and MC

without sliding are on a 100 × 100 m grid, the Farinotti on its original 130 m grid, and the rest

are on the 900 × 900 m grid. All of the bedrocks share many of the same features, except for

the irregularities on the outlet glaciers in Figures 7.6c, 7.6d and 7.6e, the very low bedrock on

the southern outlet glacier in 7.6b, and its elevated northern part. Thus in the areas of interest

regarding drilling a full depth ice core, the bedrocks are quite similar.

Now that all ice thicknesses have been presented together, I want to just have a brief dis-
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(a) Farinotti et al. [2019] (b) PISM

(c) SIA inversion (d) MC without sliding

(e) MC with sliding (f) SIA PISM

Figure 7.6: All modelled bedrocks including the bedrock by Farinotti et al. [2019] for compar-

ison. The black line represents the outline of the ice cap.
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cussion on the rate factors (and thereby also enhancement factors) found in the SIA inversion

and in the two MC models. In the SIA inversion A was found to be 2.06 · 10−23 s−1Pa−3, and

no enhancement factor was used. In MC without sliding the rate and enhancement factors were

found to be 4.00·10−25 s−1Pa−3 and 5.68, respectively. Substituting the enhancement factor into

the rate factor, gives a rate factor of 2.27 · 10−24 s−1Pa−3. Doing the same in MC with sliding,

substituting the enhancement factor into the rate factor gives 1.88 ·10−24 s−1Pa−3. The standard

deviation of A from the two latter models is around 2 ·10−25 s−1Pa−3 and the standard deviation

of the enhancement factor is around 2-3. Taking these uncertainties into consideration, the rate

factor in the three models are more or less the same and corresponds to an unrealistic high ice

temperature just above 0 ◦C when no enhancement factor is taken into consideration (see Fig-

ure 2.2). This is of course an unrealistic high ice temperature. However, this does not take the

enhancement factor into account, but doing so results in an ice temperature well below -10 ◦C.

All of this indicates that the enhancement factor on the Müller ice cap is somewhere between 4

and 6, in agreement with my PISM results.

A summary of the RMS results is tabulated in Table 7.1. The RMS on the ice cap is calcu-

lated using the part marked in blue in Figure 4.5. It can be seen that all models perform better

than Farinotti on the ice cap and that the MC model with sliding performs the best.

Table 7.1: Comparison of all ice thickness products on the entire IceBridge flight line and on

the ice cap marked with blue in Figure 4.5.

RMS Farinotti PISM SIA inversion MC no sliding MC sliding SIA+PISM

All [m] 169.1 396.2 136.1 132.6 137.9 137.9

Ice cap [m] 146.3 138.9 131.4 132.1 129.9 135.4

If I had to decide on a best model, I am in doubt whether I would choose the SIA inversion

or the MC without sliding. The reason is that I really like the simplicity of the SIA inversion

combined with the fact that it takes around 3 minutes to run and ends up with roughly the same

RMSs as MC without sliding. MC without sliding does give one an insight into the tuning

parameters as compared to the SIA inversion, but it takes roughly 18 minutes to run, and ends

up with approximately equally good results. Both models have shown not to depend on the

SMB (see Appendices D and E). This is a huge advantage when the data is sparse. That being

said, they are both very unsmooth where SIA+PISM does offer a much smoother result with

approximately the same RMS.

All of the modelled ice thicknesses alongside with the corresponding bedrock topogra-

phies and surface elevations are available as GeoTIFFs on Zenodo (https://doi.org/

10.5281/zenodo.4290039).
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7.3 Suggestion for possible drilling areas

The goal of this thesis is to suggest areas where ground based radar should be performed in

preparation of drilling a full depth ice core. The optimal drilling site should fulfill a handful of

criteria: The site should have the thickest possible ice, have a minimal horizontal velocity and be

of highest possible elevation to reduce melting. To quantify this I made a scoring system based

on studies of equilibrium line [Cogley et al., 1996] and a discussion with Associate Professor

Bo Møllesøe Vinther, one of the leading scientists in the Müller ice core drilling project.

I used the 900 × 900 m grid as it has been used in the most models. Thus, all other data is

interpolated onto this grid. In addition to the modelled ice thicknesses (PISM, SIA inversion,

MC without sliding, MC with sliding and SIA+PISM), the scoring system is based on elevation

data from ArcticDEM and the Landsat 8 median velocity map (see Figure 3.4).

The score of every single grid cell is determined as follows:

Surface velocity < 5 m yr−1 1 point

Surface velocity < 2 m yr−1 1 point

Surface elevation > 1600 m 1 point

Surface elevation > 1700 m 1 point

PISM ice thickness > 500 m 1 point

SIA ice thickness > 500 m 1 point

MC no sliding ice thickness > 500 m 1 point

MC with sliding ice thickness > 500 m 1 point

SIA+PISM ice thickness > 500 m 1 point

Furthermore, if either the surface velocity exceeds 10 m yr−1, the surface elevation is below

1500 m or all modelled ice thicknesses are below 500 m, the total score in that grid cell will be

zero. This means that it is possible to get a total score of 9 points.

Figure 7.7a shows the Müller ice cap with scores and elevation contour lines every 100 m

from 1400-1700 m. It can be seen that grid cells with scores ≥ 1 are scattered in the western

part of the ice cap along the mountain range, besides from a few patches just northeast of the

southernmost outlet glacier. As this results in a rather large area to conduct ground based radar,

I have chosen to also make a figure only showing scores ≥ 7 (see Figure 7.7b). This results in

more or less one cluster at the very top of the ice cap. In the scoring system, the ice thickness

is essentially weighted higher than the surface velocity and elevation. It can be shown that the

pattern of interesting sites is more or less the same if the scores are weighted, so that the final

suggestion is not influenced significantly by the fact that the ice thickness ice weighted higher.

Furthermore, one could argue that weighting the ice thickness higher in the search of a full

depth ice core drilling site is reasonable.
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(a)

(b)

Figure 7.7: Top: Map of suggested drill sites with scores and a contour of the surface elevation

with contour lines every 100 m from 1400-1700 m. Bottom: Map of suggested drill sites with a

score of at least 7 and a contour of the surface elevation with contour lines every 100 m from

1400-1700 m.
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(a) Score (b) Surface velocity

(c) Surface elevation (d) Mean thickness

Figure 7.8: Zoom-in of score (a), surface velocity (b), surface elevation (c) and mean ice thick-

ness (d) in the area of interest.

A zoom-in in Figure 7.8a shows that the biggest cluster of high scored pixels can be found

around UTMx:525700, UTMy:8867000 (EPSG:32615). Here it can be seen that only one pixel

reaches a score of 9 (henceforth referred to as site #1), but the pixels in the area around it, also

have relatively high scores.

To see what this means in terms of surface velocity, surface elevation and ice thicknesses,

the Figures 7.8b, 7.8c and 7.8d show these fields, respectively. The ice thickness is the mean of

all modelled ice thicknesses. Notice, the colour bar is chosen such that dark green corresponds

to the most suitable drilling area in all subfigures in Figure 7.8, i.e. the velocity map is inverted.

Individual values for site #1 are given in Table 7.2. The difference in ice thickness originating

from all of the models varies quite a lot. Had I based my scoring solely on one model, the result
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Table 7.2: Surface velocity, elevation and modelled ice thicknesses for site #1.

Site #1

Surface velocity [m yr−1] 1.2

Surface elevation [m] 1804

PISM thickness [m] 535

SIA thickness [m] 579

SIA+PISM thickness [m] 562

MC without sliding thickness [m] 560

MC with sliding thickness [m] 579

Figure 7.9: Backscatter coefficient as a function of time at site #1, UTMx: 526629, UTMy:

8866463, EPSG:32615.

might be biased, but using the average makes my prediction more robust. However, this shows

how much variance there is in the results which is why the highlighted points in Figure 7.8a are

only suggested locations for additional measurements.

As mentioned it is also important to know how much melt is taking place, as one would

preferably do the drilling in a place with as little as possible. Alternatively, one could perform

the drilling prior to the onset of melting, but after the sun has returned obviously. Sentinel-1

measures the backscattering of light on the surface, and since water reflects approximately four

times more than ice, it can be used as a proxy for melt. Figure 7.9 shows the backscatter data,

treated with the Sentinel-1 Toolbox [Veci et al., 2014], as a function of time a the midpoint of

site #1 (UTMx: 526629, UTMy: 8866463, EPSG:32615). The backscatter showed here is only

from the HH band (Horizontal Transmit - Horizontal Receive Polarisation), which is why there

is noise around zero as the radar does not necessarily detect what is right below it. It should

be noted that I have used a ready made script on Google Earth Engine, where by choosing a

point on the Earth I could download the data from that specific point, which then is what I have

plotted.
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Figure 7.10: Average melt days per year in the period of 2016-2020. If the backscatter coeffi-

cient < -5 dB, it is considered a melt day.

From Figure 7.9 it can be seen that melt has occurred four out of six summers in the past six

years. In the years with the most melt, the melt kicked in at the end of June. This means that

a melt-free drilling season would start when sunlight permits it around March/April and end in

the middle of June worst case scenario. Figure 7.10 shows the average melt days per year in the

area of interest on the ice cap. In these calculations it is considered a melt day if the backscatter

coefficient < -5 dB, and only scenes from June-August are taken into consideration. Here it can

be seen that in the area with the highest scores the average number of melt days per year is less

than 20, which is on the lower limit that can be observed on the ice cap.

7.4 Outlook

With the SIA inversion and the MC without sliding I was able to estimate the ice thickness only

using the surface elevation (and thereby the slope), the glacier outline and one radar line with

ice thicknesses. It was shown that the SMB had very little influence on the final estimate of ice

thickness, thus these two methods rely only on remote sensing data.

Imagine that one of these two methods were applied to all glaciers with an available DEM

and at least one line of thickness measurements, for instance using the glacier thickness database

(GlaThiDA). Then one would be able to obtain tuning parameters for all of these glaciers.
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Those tuning parameters could then be compared with data, such as location on Earth, average

temperature, elevation etc., allowing one to do statistics on the relationship between these and

the tuning parameters. Especially the rate factor dependents strongly on temperature, thus the

chance of getting useful relationships out of the statistical studies, certainly is present. Thus if

a clear pattern shows up, this would allow one to make a global glacier estimate only using a

DEM and an outline of the glaciers. With these parameters it would be possible, and even quite

fast, to perform a SIA inversion of all glaciers and ice caps around the globe.

Most global glacier estimates, excluding the polar ice sheets, only provide the volume of

the glaciers [Dyurgerov and Meier, 2004, Grinsted, 2013, Radić and Hock, 2010, Radić et al.,

2014]. Only two global glacier estimates with ice thicknesses exists [Farinotti et al., 2019,

Huss and Farinotti, 2012], one of which is the Farinotti bedrock used in this thesis. One of

the ITMIX [Farinotti et al., 2017] main results was that averaging over many models resulted

in more robust results, which makes the future perspectives of the SIA inversion and the MC

without sliding even more interesting. In the future they could be a part of an even more robust

global glacier thickness estimate. In the end this would also lead to a better estimate of the

potential contribution to sea level rise, from all glaciers and ice caps around the world.

In terms of the Müller ice cap an even better estimate for the ice thickness could be made

after retrieval of ground based radar measurements. The SIA inversion and/or the MC without

sliding could then be applied again using not only the IceBridge data, but also the ground based

radar data. Depending on the amount of measurements one could also investigate the possibil-

ities of applying machine learning to such data. That is, one could use the radar measurements

as training data with input features such as surface elevation, slope, SMB etc.

Thus the methods and results from this thesis arise various ideas for interesting future re-

search. Especially studies of potential contribution to sea level rise from the glaciers, ice caps

and ice sheets are of great importance in these times of climate change.
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8 Conclusion

In this thesis, surface velocities and ice thicknesses of the Müller ice cap have been studied, for

the purpose of deciding where to conduct ground based radar in preparation for the drilling of a

full depth ice core.

Surface velocity maps with a resolution of 900 m have been made of all cloud free Landsat

7 and 8 scenes covering the ice cap. The main result is a median velocity map of all Landsat 8

maps. Due to the coarse resolution the surface velocity is not captured well on all of the outlet

glaciers, as the focus has been on the actual ice cap. The Landsat 8 median velocity map is

available as a GeoTIFF on Zenodo (https://doi.org/10.5281/zenodo.4290041)

alongside with a list of all satellite images used to create the velocity map.

In the process of estimating the ice thickness, five models have been used. All modelled

ice thicknesses are compared with the ice thickness measured from Operation IceBridge by

calculating the root mean squared error. Quickly summing up the models one by one. The PISM

model performs badly on the outlet glaciers, but it offers a smooth output of the ice thickness. It

takes a long time to run, and one might get better use of PISM in cases where more parameters

are known. Different combinations of till frictions angles and enhancement factors are tested,

and it was found that using a till friction angle of 10◦ and an enhancement factor of 6 resulted in

the lowest root mean squared error. The SIA inversion and the MC model without sliding offer a

fast procedure to estimate the ice thickness with a relatively low root mean squared error. They

both suffer from overestimation of ice thicknesses in areas with low surface slopes. The MC

model without sliding offers an insight into the physical parameters of the model in contrast to

the SIA inversion. In the second MC model, sliding was added in the SIA. Due to the adding of

sliding in the SIA, it was not possible to sample the ice thickness why the ice flux was sampled

instead. To estimate the ice thickness from the sampled parameters a minimisation function was

used. When the results from the MC model with sliding were investigated further, it became

clear that they were merely a smoothed version of the SIA inversion. In the final estimate of

the ice thickness, the result from the SIA inversion was used as initial guess of geometry in

PISM. As compared to the initial PISM runs, there was no overestimation of ice thickness on

the outlet glaciers. Furthermore, it was found that the root mean squared error in general was

smaller than in the initial PISM runs, suggesting that the SIA inversion geometry is closer to

the true geometry than the Farinotti geometry. All of the modelled ice thicknesses alongside

with the corresponding bedrock topographies and surface elevations are available as GeoTIFFs

on Zenodo (https://doi.org/10.5281/zenodo.4290039).

From the surface velocity map, the modelled ice thicknesses and the surface elevation from

ArcticDEM, a scoring system was created in order to suggest areas on where to conduct ground
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Chapter 8. Conclusion

based radar as preparation for drilling a full depth ice core. The optimal drill site should have

a great ice thickness, low surface velocity and have a high surface elevation to ensure the least

possible amount of melt. The position of the center of the grid cell with the highest possible

score is at 526629 m easting and 8866463 m northing in UTM zone 15N. In that cell the mod-

elled ice thicknesses are within the range of 535-579 m, the surface velocity is 1.2 m yr−1 and

the surface elevation is 1804 m. Furthermore, the average number of melt days per year in the

2015-2020 period was found to be less than 20.

This work shows how much one can actually do solely with remote sensing data, and will

hopefully save the Müller project group valuable time in the field searching for an optimal

drill site location. Furthermore, it might even improve the choice of drill site, as such thorough

pre-drilling investigations as presented here, are usually not done outside of the polar ice sheets.
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A Stripes in Landsat 7

An example of the output from templatematch when using the original Landsat 7 scenes with

stripes can be seen in Figure A.1a. It can easily be seen how templatematch matches the black

stripes rather than the ice underneath in several places. Even the outlet glacier in the northwest

cannot be tracked as we can see the arrows pointing in the opposite direction of the flow. It

should be noted that the colour bar is in pixels per passed time in between the two images.

Figure A.1b shows the feature tracking of the same image pair, but after the removal of stripes.
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Appendix A. Stripes in Landsat 7

(a) Before removing stripes

(b) After removing stripes

Figure A.1: Difference in feature tracking before and after the removal of stripes in Landsat 7.
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B Streamplot of the Landsat 8 velocity map

Figure B.1 shows a streamplot of the median Landsat 8 velocity map. It can be seen that in

areas with low velocity the directions of flow are a bit off.

Figure B.1: Streamplot of the median Landsat 8 velocity map.
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C PISM iterations

✞ ☎

”””

C r e a t e d on Tue Dec 10 0 8 : 5 2 : 2 1 2019

@author : ann−s o f i e

”””

i m p o r t numpy as np

i m p o r t x a r r a y as x r

i m p o r t os

i m p o r t t ime

### Th i s s c r i p t makes 10 i t e r a t i o n s where t h e bed i s b e i n g changed wi th p h i =10 and E

=1 .0

# Polygon of t h e i c e cap

i n p o l y = np . l o a d t x t ( ’ i n p o l y . t x t ’ )

# Data f o r t h e i n i t a l run

o r i g d a t a = xr . o p e n d a t a s e t ( ’ i t e r 0 . nc ’ , d e c o d e t i m e s = F a l s e )

B o r i g = np . a r r a y ( o r i g d a t a [ ’ t opg ’ ] ) # F a r i n o t t i bed rock

S o r i g = np . a r r a y ( o r i g d a t a [ ’ u s u r f ’ ] ) # ArcticDEM

B old = B o r i g

# r e l a x a t i o n p a r a m e t e r

K = np . c l i p ( ( S o r i g −500) / 5 0 0 , 0 , 1 ) ∗0 . 5

E = ’ 1 . 0 ’

p h i = ’ 10 ’

f o r i i n r a n g e ( 1 0 ) :

cmd = ’ s r u n −v −p b y l g j a −N 1 −n 32 −−c o n s t r a i n t =v2 −−mpi=pmi2 −−k i l l −on−bad−

e x i t p i smr − i i t e r ’+ s t r ( i ) + ’ . nc −b o o t s t r a p −y 2000 −Mx 111 −My 126 −Mz 201 −

z s p a c i n g e q u a l −Lz 4000 −s i a e ’+E+ ’ −s s a e ’+E+ ’ − s t r e s s b a l a n c e s s a + s i a −

p s e u d o p l a s t i c −p l a s t i c p h i ’+ p h i + ’ − s t r e s s b a l a n c e . s i a . l i m i t d i f f u s i v i t y

t r u e − e x t r a f i l e e x t r a i t e r ’+ s t r ( i ) + ’ ’+ p h i + ’ ’+E+ ’ . nc −e x t r a v a r s thk , topg ,

u s u r f , v e l s u r f , v e l s u r f m a g , tempbase −e x t r a t i m e s 0 : 1 0 0 : 2 0 0 0 − t s f i l e t s i t e r ’

+ s t r ( i ) + ’ ’+ p h i + ’ ’+E+ ’ . nc − t s t i m e s 0 : 1 0 : 2 0 0 0 −o i t e r ’+ s t r ( i ) + ’ ’+ p h i + ’ ’+E

+ ’ . nc &> o u t . i t e r ’+ s t r ( i ) + ’ ’+ p h i + ’ ’+E

os . sys tem ( cmd )

whi le os . p a t h . i s f i l e ( ’ i t e r ’+ s t r ( i ) + ’ ’+ p h i + ’ ’+E+ ’ . nc ’ ) == F a l s e :

t ime . s l e e p ( 6 0 )
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Appendix C. PISM iterations

d a t a = xr . o p e n d a t a s e t ( ’ i t e r ’+ s t r ( i ) + ’ ’+ p h i + ’ ’+E+ ’ . nc ’ , d e c o d e t i m e s = F a l s e )

S new = np . a r r a y ( d a t a [ ’ u s u r f ’ ] [ 0 , : , : ] )

B new = B old − K∗ ( S new−S o r i g )

H new = S o r i g − B new

H new = H new ∗ i n p o l y

H new [ H new<0] = 0

# Upda t ing t h e i n p u t f i l e t o PISM wi th a new bedrock t o p o g r a p h y and a new i c e

t h i c k n e s s

o r i g d a t a [ ’ t opg ’ ] [ : , : ] = B new

o r i g d a t a [ ’ t h k ’ ] [ : , : ] = H new

o r i g d a t a . t o n e t c d f ( ’ i t e r ’+ s t r ( i +1)+ ’ . nc ’ )

# Upda t ing ” o l d ” bed rock

B old = B new
✝ ✆
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D Using a uniform SMB in the SIA inversion

Figure D.1 shows the IceBridge flight line cross section with my modelled bedrock topography

using a uniform SMB with ones everywhere on the grid. The modelled bedrock of the entire ice

cap using a uniform SMB can be seen in Figure D.2.

Figure D.1: IceBridge flight line cross section using a uniform SMB with ones everywhere in

the grid.

Figure D.2: Bedrock topography using a uniform SMB with ones everywhere on the grid.
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E Using a uniform SMB in MC without sliding

Figure E.1 shows The IceBridge flight line cross section with my modelled bedrock topography

using a uniform SMB with ones everywhere on the grid. The modelled bedrock of the entire ice

cap using a uniform SMB can be seen in Figure E.2.

Figure E.1: IceBridge flight line cross section using a uniform SMB with ones everywhere in

the grid.

Figure E.2: Bedrock topography using a uniform SMB with ones everywhere on the grid.
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F Using a uniform SMB in MC with sliding

Figure F.1 shows The IceBridge flight line cross section with my modelled bedrock topography

using a uniform SMB with ones everywhere on the grid. The modelled bedrock of the entire ice

cap using a uniform SMB can be seen in Figure F.2.

Figure F.1: IceBridge flight line cross section using a uniform SMB with ones everywhere in the

grid.

Figure F.2: Bedrock topography using a uniform SMB with ones everywhere on the grid.
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G Drill site suggestions

Table G.1 shows the individual values (i.e. ice thickness, surface elevation etc.) for all of the

sites with a score of minimum 7. Be aware that the UTM coordinates are in zone 15 N. ”H -

XXXX” are the ice thicknesses for the individual models.
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Table G.1: Individual values for all sites with a score of at least 7. ”H - XXXX” are the ice thicknesses for the individual models.

Score UTMx UTMy S [m] vs [m yr−1] Melt [d yr−1] H - PISM H - SIA H - MC H - MCsl H - S+P Lat. Lon.

8 515829 8882663 1602.9 1.83 24 623 575 557 575 595 80.009 -92.183

7 514029 8881763 1629.2 3.97 25 501 598 578 598 517 80.001 -92.276

7 518529 8881763 1606.3 4.52 24 572 593 575 593 544 80.000 -92.044

7 521229 8881763 1614.3 4.15 17 600 560 542 560 570 80.000 -91.905

7 518529 8880863 1624.1 4.63 22 550 541 525 541 533 79.992 -92.045

7 523029 8879963 1611.5 3.87 22 553 589 570 589 518 79.983 -91.814

7 517629 8878163 1713.7 7.55 16 592 576 558 576 521 79.968 -92.093

7 522129 8875463 1730.7 9.15 16 652 615 596 615 596 79.943 -91.865

7 519429 8874563 1758.2 4.35 14 527 500 484 500 512 79.936 -92.004

7 523929 8874563 1745.4 4.27 16 502 687 665 687 477 79.935 -91.773

7 530229 8873663 1640.4 2.30 17 534 573 555 573 505 79.925 -91.452

7 522129 8872763 1785.6 3.22 15 496 542 524 542 534 79.919 -91.867

8 523029 8872763 1782.9 1.26 13 453 604 585 604 527 79.919 -91.821

7 524829 8870063 1839.5 3.88 13 439 648 627 648 532 79.894 -91.732

8 524829 8869163 1839.0 0.89 13 475 579 560 579 540 79.886 -91.733

7 524829 8868263 1837.2 2.28 14 484 577 559 577 550 79.878 -91.734

7 525729 8868263 1824.9 3.01 13 491 660 639 660 565 79.878 -91.689

7 522129 8867363 1895.9 1.40 13 225 543 525 543 285 79.871 -91.873

8 525729 8867363 1814.3 3.02 14 535 539 522 539 589 79.870 -91.690

8 526629 8867363 1795.1 3.97 13 537 692 670 692 542 79.870 -91.644

7 532029 8867363 1666.8 1.95 19 509 594 576 594 492 79.869 -91.369

7 532929 8867363 1648.5 3.60 19 603 716 695 716 597 79.868 -91.323

7 523929 8866463 1850.2 1.00 14 323 526 509 526 451 79.862 -91.782

8 524829 8866463 1835.1 1.63 12 480 640 620 640 563 79.862 -91.736

9 526629 8866463 1804.1 1.21 14 535 579 560 579 562 79.862 -91.645

7 525729 8865563 1816.1 3.21 14 490 616 596 616 544 79.854 -91.692

7 526629 8865563 1817.9 3.84 14 479 566 547 566 546 79.854 -91.646

8 532029 8864663 1711.4 0.91 15 529 623 604 623 460 79.844 -91.373

7 528429 8863763 1791.0 1.88 14 307 550 532 550 388 79.837 -91.557

7 531129 8861963 1792.1 0.60 14 386 568 551 568 393 79.820 -91.422

7 536529 8859263 1664.9 3.72 18 568 568 550 568 513 79.795 -91.153

8 537429 8856563 1683.4 0.39 19 507 678 657 678 509 79.770 -91.112

7 540129 8851163 1509.8 1.25 34 590 552 534 552 595 79.721 -90.985
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