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Abstract

Cellular systems in Nature are inherently three-dimensional and can be
modeled as multi-layer of soft cells that are able to convert energy into me-
chanical forces that are used to move and modify their environment. This
ability, known as activity, drives numerous dynamical processes, such as tis-
sue morphogenesis, and wound healing. Aggregates of cells coordinate their
behavior to collectively self-organize in a variety of different patterns, that are
the foundation of life as we know.

This study introduces a 3D phase field model that is based on cellular
deformation and the transmission of mechanical forces both within and beyond
the layers of cells. The interactions are captured by adhesion and repulsion at
the cell interface and an interacting solid scaffold is introduced to understand
tissue formation on a substrate.

The numerical implementation shows the criteria that allow the cells to
merge into a single layer, pointing out the relevance of cellular re-organization,
while different patterns arise from the analysis of its mechanics. Forces and
stresses that arise locally, are transmitted to the whole multicellular system,
showing coordination in response to a change in the environment. The same
type of collective response is driving the system in different configurations
according to the degree of activity of the cells, highlighting the importance of
this ability.

The main purpose of this thesis has been to construct a valid framework
for understanding complex multilayer cellular phenomena. Starting from this
general framework, more layers of complexity can be added to account for
more complex geometries, and different cellular interactions within cells and
beyond.

Keywords: multi-layer, cellular system, activity, mechanical forces, tis-
sue morphogenesis, phase field, adhesion, active matter, substrate, collective
behavior
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Chapter 1

Introduction

Biological Importance

”The collective dynamics of cellular systems has gathered
increasing attention over the last decades [1], inspiring

experimental, theoretical, and numerical studies in an attempt to
unravel the underlying physical principles. Single cells are able to
convert chemical energy into mechanical forces [2], allowing them

to move and modify their local microenvironment [3]. At the
multicellular level, these forces are transmitted over tens of cell

lengths [4], driving non-local cellular flows [5], which
self-organizes into a vast range of patterns.”[6]

Collective dynamics arise from the ability of cells to self-organize and to drive
numerous processes such as tissue morphogenesis [7], wound healing [8], and
tumor progression[9, 10]. For instance see figures 1.2 and 1.1. This collective
behavior can be seen as simultaneous changes in multiple individuals, id est
collective, in the same environment, that are hard to restore on the bare
individual level. To be able to perform these behaviors, observed in nature,
two scales are playing a crucial role:

• The timescale has to be longer than the single-cell action time to allow
a broader communication within the system1;

• The system dimension is required to be greater than the single-cell
resolution2 in order to have a collection of individuals able to functionally
cooperate and coordinate with one another.

1For numerical comparison, actin polymerization dynamics, that leads single cell migra-
tion, occurs on a timescale of seconds to few minutes [11], resulting in a collective migration
on a timescale of tens of minutes, see timing in fig. 1.1.

2Reminding that an animal cell is ranging between 10 to 30µm in length, the system
can be composed by 10 to 100 cells, with overall size in the mm.
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Figure 1.1: Time course of wound closure in Madin Darby canine kidney cells,
adapted from [8]. Images are projections of confocal z-stacks.

Figure 1.2: Tissue
morphogenesis in
Drosophila, from
Wang
Lab/Epithelial
morphogenesis

Developments in experimental tech-
niques, at these mesoscale levels, have un-
covered the important role of mechanical in-
teractions between cells [12, 13, 14], that ac-
tively coordinate the movement, id est col-
lective migration, through mechanosensitive
adhesion complexes, such as focal adhesion
and adherens junctions that can detect and
decode physical signaling from the surround-
ings and coordinate the cellular response[15].
Therefore, tissue and cell mechanics can
drive developmental patterning by modifying
cell shape and structural integrity, thereby
altering cell behavior [16].

Notably, not only are cells able to
sense other cells but the coordination hap-
pens even through cell-substrate interac-
tions, where the very own physical properties
of the substrate3 such as stiffness, shape, and
friction are crucial in determining the out-
come [17, 18, 19]. To complicate the picture,
a more profound interplay between mechan-
ics and biochemistry has been shown in the

coupling of the interactions within cells and substrate [20].

The ability of cells to convert chemical energy into mechanical forces
is allowing them to do work, both onto the micro-environment and onto neigh-
bors by deformation of the cell interface, while driving the system out of equi-
librium in a feedback between shape deformation and active driving [21].
These properties give rise to complex phenomena, not yet fully understood
in their detailed form. However, the recent advances described above, have
highlighted mechanisms that can be modeled through physical interactions,
such as repulsion and adhesion, and mechanical forces.
On this note, it is worth spending a few words regarding interactions:

3The place where the cells are laid down

http://www.cdb.riken.jp/epm/research.html
http://www.cdb.riken.jp/epm/research.html
http://www.cdb.riken.jp/epm/research.html


BIOLOGICAL IMPORTANCE 5

(a) (b)

Figure 1.3: (a)Model of focal adhesion complex, from Nitric Oxide Research group,
(b)Diagram of different types of cells adhesion molecules (CAM) in
epithelial cells, adapted from [22]

• Adhesion: Cell adhesion is the process by which cells interact and
attach to neighboring cells, or extracellular matrix (ECM), through spe-
cialized molecules of the cell surface called CAMs, see figure 1.3(b). It
should not be regarded as just a ’gluing’ factor, in fact, it can be involved
in signal transduction for cells to detect and respond to changes in the
surroundings [23, 24] 4, being determinant for the overall architecture
of the tissue, and crucial for biological processes such as cell migration
[25] and wound healing[26, 27]. Disruptions in adhesion mechanisms,
by over- and under-expressing CAMs, cause cell invasiveness and metas-
tasis, for instance by overexpressing integrin [28, 29] a stronger focal
adhesion is promoted, id est stronger cell-ECM adhesion, while under-
expressing cadherin are allowed to migrate away from the primary cancer
source, lowering cell-cell adhesion[23].

• Repulsion: Cell repulsion is the dual counterpart of adhesion, aris-
ing from the interplay of biochemical and physical signaling, such as
electrostatic repulsion [30], mechanical forces like steric repulsion, and
downregulation of CAMs. A major role is played in tissue development,
where cells actively migrate while pushing or pulling one another in a
combination of forces and chemo-repellants[31, 4, 9].
Notably, a decrease in adhesion does not correspond directly to an in-
crease in repulsion. For instance, there are two major ligand-receptor

4These transmembrane molecules are able to sense both chemical and physical changes
in the environment, such as concentration gradients and substrate stiffness[9]

https://www.reading.ac.uk/nitricoxide/intro/migration/adhesion.htm
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pairs: Semaphorin-Plexin and ephrin-Eph. Semaphorins act through a
complex signaling pathway to inhibit integrin-mediated adhesion, allow-
ing cell repulsion while the second pair, once bonded, induces repulsion
or adhesion [32, 33, 34].

In these pages, the aim is to model the mechanics of tissues, through the
interactions as explained above, like skin epidermis5, a real example of a multi-
layer cellular system. A schematic representation of the skin can be seen in
the figure below (Figure 1.4), and from its stratification the reason behind this
study, since 3D modeling of tissues is in its infancy and not much is well known.

Figure 1.4: Schematic of the
stratified epidermis with
basal stem cells and
their progeny,
differentiated suprabasal
cells [35].

In this example of a multi-layer cel-
lular system, it is possible to identify dif-
ferent components such as:

• The dermis or corium is a layer of
skin between the epidermis (with
which it makes up the cutis) and
subcutaneous tissues, and forms
the basement ;

• The stratum basale is a single layer
of cuboidal basal cells. Some of
which can act like stem cells, called
basal keratinocyte stem cells;

• The rest of the epidermis is com-
posed of differentiated, daughter,
cells and is divided into three
layers, as depicted in the figure
1.4. Thus, forming the supra-basal
layer

Importantly, different cell layers have different properties, such as different
kinds of junctions that lead to different adhesive strengths. The stratum
corneum, for instance, presents tight junctions in greater numbers, to provide
a physical barrier with the outside. Hereafter, driven by simple principles,
these variations are not treated, but a generalization is straightforward.

5The word epidermis is derived through Latin from Ancient Greek epidermis, itself from
Ancient Greek epi ’over, upon’ and derma ’skin’
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Cells models: an overview

Since the collective dynamics of cellular systems have been observed, the ques-
tion of how to connect different scales, id est single-to.collective behavior, has
promoted the formulation of various mathematical and numerical models of
cell interactions.

Here, a broad overview of the main concepts behind the major models,
represented schematically is shown in the figure 1.5.
A fundamental separation has arisen within the modeling:

Figure 1.5: Overview of cell-based and
continuum models for
biological tissue, from [36]

• cell-based models, also called
agent-based models[37, 38], are
representing cells as discrete
entities, id est agents, and can
be further divided into:

1. Grid-based if cells are ini-
tialized on lattice sites;

2. Grid-free if cells or cells
components are initialized
as nodes on a network;

Their advantage lies in the easy
integration of single-cell pro-
cesses in the description of a
tissue. A schematic of their dif-
ferences is given in figure 1.6,
on the next page;

• Continuum models consider
the cells’ geometry, account-
ing for the spatial distribu-
tion of both intra- and extra-
cellular processes through solv-
ing partial differential equa-
tions[39](PDEs) derived from
continuum mechanics. This al-

lows the description of systems of cells at a macroscopic level, making
the large-scale description of tissue easier thanks to the advent of high-
performance computers. These models are approximating cells by a con-
tinuum density[40, 41, 42, 43, 44], giving rise to interfaces, both sharp
and diffusive, that are used to distinguish between the various elements
of the system; that can be related to phase changes across the borders,
therefore allowing the use of phase field models.
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Figure 1.6: Schematic classification of cell-based models, from [37]

In this work, a phase field model has been developed to simulate multi-
layer cellular systems. A detailed description is given in Methods with here a
simple intuition being proposed.

First proposed by Fix[45] and Langer[46] for solidification of binary alloy
and for pattern formation in a first-order phase transition, respectively, it is
used to model interfacial problems by substituting boundary conditions at
the edge with the partial differential equation for the evolution of an auxiliary
field, id est the phase-field, that performs as an order parameter6. The phase
assumes two distinct values, for instance, +1 and -1, in each phase, presence
or absence, with a smooth change in between around the interface, which
diffuses with a finite width. Therefore any location in the system is defined as
the collection of all points where the phase field takes a certain value. In the
infinitesimal interface width, the so-called sharp interface, the precise dynamic
of it is recovered. The beauty of this method lies in solving PDEs to avoid
explicit treatment of the interface’s boundary.

Over the last few decades, this idea has been implemented to investigate
cells dynamics: from single cell motility[47] to the migration of a few cells[48,
49] as well as for multicellular systems[50, 51, 21, 52, 53] and cell migration[54,
55, 56] but mostly in monolayers, both in two- and three-dimensions. Whereas
this study will focus on implementing and modeling multiple layers of cells
such as the skin epidermis; adopting as a starting point the results in [21,
53], where the active matter approach is taken into account since tissues have
shown to possess liquid crystal features.

6An order parameter is a measure of the degree of order across the boundaries in a phase
transition system
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This research aims to clarify the mechanical basis behind stratified cells’
behavior, such as the active coordination of their movements through mechanosen-
sitive adhesion complexes, enabling them to move upward or downward while
undergoing defined shape changes. Additionally, the study is investigating
aspects such as the maintenance of homeostasis and wound healing that have
been shown experimentally [35, 57, 58, 16].

The existing tools are inadequate: the interactions between layers of dif-
ferentiated cells with the basal stem cell layer are happening across multiple
stacked layers, and are hardly captured by the present frameworks. There-
fore, the extension and modifications on these, above-mentioned, models will
fill the existing gap in the knowledge of the mechanics involved in stratified
tissues, as well as point out some interesting, not well-known, features such
as how multi-layered cellular systems will actively become single-layered by
collective migration as well as some inherently three-dimensional phenomena
like cell extrusion and collective behavior.

By simulating a three-dimensional-multi-layer system, the aim is to explore
those intrinsic, fundamental processes of cell biology that require access to
both in-plane and out-of-plane forces in the cellular layers and in doing so,
to catch up with the experimental techniques, providing them a new tool
and breaking the two-dimensional, and semi-three-dimensional, approach used
today.

This will provide the foundations for more nuanced theoretical and com-
putational developments, setting a starting point for the understanding of
stratified tissues as well as giving a glimpse inside the biological world gov-
erned by mechanical forces.

Outline structure

In the following pages, there will be an accurate description of the theoretical
background and the mathematical features of the phase field model used, in
Methods.
Next in line the results of the simulations will be presented and explained in
Results.
Lastly, Conclusion & Outlook will be used to summarize and to provide future
developments, starting from this work.





Chapter 2

Methods

Phase field model

A phase-field model is a mathematical model for solving interfacial prob-
lems, where the phase is the spatial and temporal order parameter defined
in a continuum-diffused interface model. With the help of order parameters,
many types of complex mesoscale microstructure changes observed in mate-
rial science are described effectively [59], allowing to approach the evolution
of arbitrary morphologies without explicitly tracking the positions of the in-
terfaces.

Over the last few decades, this theory has been applied to many fields
ranging from binary alloys [60, 45] to active matter, see [52, 53] for a review.
Moreover, cellular systems have displayed features proper of liquid crystals,
such as nematic[61, 62, 63, 64, 65, 6, 66] and hexatic[67, 68, 69] order, allowing
the use of the mathematical background of phase separation developed to such
an extent. Here, a free energy functional is introduced to distinguish into two
phases, cell or empty space, and is used for the evolution of the system; an
educated guess for a double well potential has led to the Cahn-Hilliard free
energy [70].

As for describing the mechanics between the cellular system above, two
main interactions have been introduced to mirror the adhesive and repulsive
forces between cells in the system. The ability of the cells in converting the
energy into work has been introduced in the framework of active soft matter
with the help of an active term embedded into the mechanical forces, which
has been shown to drive the system out of equilibrium while exhibiting tissue
properties [53, 21].

11
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Field evolution

The system consists of two-to-three layers of N spherical cells, stacked one
upon the other. Each cell i is modeled as an active deformable droplet through
the three-dimensional phase field, ϕi = ϕi(x⃗) and initialized with radius r. The
interior and exterior of cell i corresponds to ϕi = 1 and ϕi = 0, respectively,
with a diffuse interface of length λ connecting the two regions at the midpoint,
ϕi =

1
2 , delineating the cell boundary.

The dynamics of the phase field ϕi is defined through1:

∂tϕi + v⃗ · ∇⃗ϕi = −δFtot

δϕi
, with i = 1, 2, · · · , N (2.1)

where v⃗i is the velocity of cell i and Ftot[ϕ,∇ϕ] is the three-dimensional
free energy functional accounting for cell mechanical properties. The velocity
enters Eq.2.1 via the advection term, effectively pushing each cell uniformly
as a whole without inducing any deformation of its interface.

A minimal version of the model has been used effectively to describe cell
monolayers [52], while a simplified version, not accounting for advection term,
has been applied to binary alloys [60, 71].

Here, the total free energy can be separated into two main components,
corresponding to the internal (Fint) and interaction (Finter) free energy,

Ftot = Fint + Finter (2.2)

responding to the interface of the cell and the interaction between both the
neighbors and the substrate. The model results from a three-dimensional ex-
tension of the two-dimensional free energy functional, described in [72, 73,
49], with additional terms to account for both cell-cell and cell-substrate in-
teractions. The substrate is therefore designed to be a static phase-field ϕsub,
meaning that it will not evolve while interacting with cells.

Internal free energy : Fint

Following the steps of [21], a simple set of equations is used to describe the
internal mechanical properties of the cell, namely a functional exhibiting two
distinct phases (presence and absence of the cell) and a soft volumetric con-
straint over the proper volume Vcell to make the cell compressible.

Fint = FCH + Fvol (2.3)

1reminding the reader that the functional derivative can be re-written as:

δF
δϕi

=
∂F
∂ϕi

−∇ · ∂F
∂∇ϕi
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The internal free energy can be regarded as two parts in Equation 2.3.
One is from the Chan-Hilliard free energy, and the other is representing a
soft volume constraint energy. Equation 2.4 is the Cahn-Hilliard free energy,
first introduced in [70], represents a simple formulation exhibiting two distinct
phases, as can be seen in Figure 2.1 representing the first term, or demixing
free energy, corresponding to a double-well potential with the minima at ϕ =
0 and ϕ = 1, while the second term is the mixing part that penalizes the
gradients. The γ here defines the stiffness of the cell[52], and its interface
becomes sharper as its width λ goes to zero until approaching a step function,
as shown in Figure 2.1 2, a behavior well approximated by a hyperbolic tangent
of size λ.

FCH =

N∑
i=0

γ

λ

∫
dx⃗

{
4ϕ2

i (1− ϕi)
2 + λ2(∇ϕi)

2
}

(2.4)

Figure 2.1: Interfacial profile for ϕ: The double-well potential corresponding to
the demixing free-energy, Cahn-Hilliard free-energy in eq. 2.4. The
inset shows the equilibrium phase field profile for different values of λ,
where a sharp interface is obtained for λ → 0

Equation 2.5 provides a soft constraint for the cell volume (relation 2.6,
where r is the cell radius), accounting for deformability of cells through the
compressibility µ, enforcing the constraint around the proper volume, where
in the absence of any form of adhesion, neither cell-cell nor cell-ECM, the cells

2Refer to [52] for the equilibrium phase ϕeq
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will relax into spheres of radius r, providing a large domain [74].

Fvol =
N∑
i

µ

{
1− 1

Vcell

∫
dx⃗ϕ2

i

}2

(2.5)

where : Vcell =
4

3
πr3 (2.6)

The required behavior is then described through the square potential of strength
µ ensuring the volumes of the cells Vi =

∫
dx⃗ϕ2

i are close to 4
3πr

3, penalizing
higher deviations from the proper value Vcell

3.

Interaction free energy : Finter

In this paragraph, a broad and intuitive explanation of the interaction term
is given and the nuance in the model is introduced: the cell-substrate in-
teraction, by the most recent work described in [53].

While most previous work on the same model [21, 52] has dealt with
interactions by reducing them to the cell-cell repulsion term in equation 2.9,
here even the cell-cell adhesion has been taken into consideration, in the form
shown in equation 2.10, as well as a parallel set of equations (Eq. 2.13, 2.12)
for the interactions with the substrate, represented by a new, independent,
phase-field ϕsub.

Finter = Frep + Fadh (2.7)

Fadh(rep) = Fcc
adh(rep) + Fcs

adh(rep) (2.8)

As shown in the above equations, the interaction free energy has been ini-
tially divided into two major components, namely Fadh and Frep representing
adhesion and repulsion potential, respectively. The superscript cc is referring
to cell-cell, and cs to cell-substrate free energy. It is worth noting that the
two components, to be consistent, have to carry different signs, id est, posi-
tive (+) for repulsion and negative (−) for adhesion; since the first provides
’more’ freedom to the cell, in the form of allowing more deformations and
easier movement, while the second binds the system to a more compact state.

A further division in each of the components just described has been car-
ried over, allowing a better understanding of the interactions that come into
play, for instance in the equation 2.8 it can be seen that for both adhesion and
repulsion, two main characteristics are considered: cell-cell and cell-substrate.

Moreover, the free energy comprises gradient contributions (∇⃗ϕ) account-
ing for, and distinguishing between, cell-cell (ωcc) and cell-substrate (ωcs)
adhesion as well as cell-cell (κcc) and cell-substrate (κcs ) repulsion [53] in the
following way:

3The volume is proportional to the square to ensure that it is always positive even when
the phase field is slightly negative which can happen during simulations [52]
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cell-cell interactions

The formulation has been created for simplicity’s sake. Nonetheless, it cap-
tures the main features of a multicellular system such as:

• Cell-cell repulsion, defined in equation 2.9, which penalizes regions where
two or more cells overlap through an energy scale κcc

λ
4. This term in-

tuitively represents the capabilities of the cells to maintain intercellular
space as well as the inability to compenetrate one another;

• Cell-cell adhesion, defined in equation 2.10, which by promoting adhe-
sion between the cells, it reduces the degrees of freedom of the system
making the core of the system more compact through an energy scale
ωcc
λ

4. Therefore representing the ability to tightly connect neighbors
through junctions and cooperation.

Fcc
rep =

N∑
i

∑
j ̸=i

κcc
λ

∫
dx⃗ϕ2

iϕ
2
j (2.9)

Fcc
adh =

N∑
i

∑
j ̸=i

ωcc

λ2

∫
dx⃗∇ϕi · ∇ϕj (2.10)

In the above formulation it can be noted that the repulsion is applied
across the cell interface, the surface that encloses the cell’s volume, as can
be seen by a comparison with the soft volumetric constraint where

∫
dx⃗ϕ2

i

also appears. While the adhesion comprises a more complex behavior due to
the presence of the gradients (∇ϕi) that allow it to act even within the cell
volume.

To improve the numerical stability, a new formulation of the cell-cell ad-
hesion has been introduced below(Equation 2.11). The detailed derivation
of the functional derivative is given in Appendix: New cell-cell adhesion and
example of calculation.

Fcc
adh =

N∑
i

∑
j ̸=i

ωccλ

∫
dx⃗(∇ϕi)

2 · (∇ϕj)
2 (2.11)

.

4with units of volumetric energy density, id est energy/volume
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cell-substrate interactions

Fcs
rep =

N∑
i

κcs
λ

∫
dx⃗ϕ2

iϕ
2
sub (2.12)

Fcs
adh =

N∑
i

ωcs

λ2

∫
dx⃗∇ϕi · ∇ϕsub (2.13)

However, in nature, the dynamic of clustered cells does not happen in
empty spaces 5, but rather it requires a scaffold to provide the optimal mi-
croenvironment for seeded cells: either synthetic or natural, like the protein
network of the extracellular matrix (ECM). This scaffold, here called more
generally substrate, helps cells attach to, and communicate with, nearby cells,
and plays an important role in cell growth, cell movement, and other cell
functions like coordinated motion and protrusion formation.

Therefore, it is natural and reasonable to include an environmental com-
ponent in the model. Driven by the same simplicity principles followed so far,
and in accordance with [53], a static phase-field, representing the substrate,
has been introduced, namely ϕsub representing a non-trivial boundary, such
as a wall [52, 75].

Note that its phase is defined to be an additional, different phase from
the cellular phases; while preserving the same overall idea, id est ϕsub = 1 for
the presence of the substrate and ϕsub = 0 for its absence; while ϕsub = 0.5
for its boundary. At the same time the substrate is static meaning that, once
defined, it does not evolve and maintains the same shape.

Here, by any loss of generality, the substrate is introduced as a rectangular
parallelepiped spanning the whole xy-plain, while having a smaller depth6, in
order to avoid edge effects7, and the cells are laid on top of it.

The cell-substrate interaction is carried over with the cells that are in
contact with, or close enough to the substrate (within a distance dinter ≈
2rcell) according to the equations 2.12, 2.13; it has to be noted they form
a complementary set to eq. 2.9, 2.10 where

∑
j ̸=i has been removed since

ϕsub ̸= ϕi ∈ ϕcell by definition.

5During the last five years the development of cells has been studied on the International
Space Station in a microgravity environment, and even then a supporting extracellular ma-
trix has been used, known as tissue chips. For reference NASA: Organs-On-Chips

6height(z) ≪ lenght(x),width(y)
7In such way that cells will not reach the edge of the substrate

https://www.nasa.gov/mission_pages/station/research/experiments/explorer/Investigation.html?#id=7912
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Two main features are represented by the above set of equations:

• Cell-substrate repulsion, defined in equation 2.12, which penalizes re-
gions where cells overlap with the substrate through an energy scale
κcs
λ

4. Intuitively, the repulsive effect, avoiding compenetration, allows
the formation of single-cell protrusions over the surface while reducing
cell-cell coupling [76].

• Cell-substrate adhesion, defined in equation 2.13, which by promoting
adhesion between the cells and substrate, reduces the degree of freedom
of the system by an anchoring effect through an energy scale ωcs

λ
4.

Cells that are adherent to a surface may coordinate their motion with
neighboring cells through protrusion waves that travel across cell-cell
contacts [76], hence allowing collective behavior.

The complex interplay between cells and substrate involves a plethora
of phenomena that can be divided into two main categories: substrate-
mediated cell response and cell-mediated substrate remodeling[77].
The focus of this work has been set over the first one8, which comprehends
cell proliferation9, differentiation9, and spreading with the formation of the
above-mentioned protrusions.

8The latter comprises synthesis, recruitment, and degradation of the extracellular matrix
9Not yet included into the model
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Dynamics

The velocity v⃗i, of each cell can be obtained from a force balance equation:
since Reynolds numbers are typically low (Re ∼ 10−4) for cell monolayers [78,
52], and an educated guess (Re ≪ 1) has been made for multilayer systems10,
the following overdamped dynamic can be assumed [79]:

ξv⃗i = F⃗ total
i = F⃗ act

i + F⃗ inter
i (2.14)

Here, ξ is the substrate friction coefficient and F⃗ total
i is the total force

acting on the interface of cell i [75, 21].
The exact definition of the total force can be changed accordingly to the

model to include different contributions arising from different sources such as
interactions with other cells or substrates (F⃗ inter

i ), and active forces (F⃗ act
i ) due

to the intrinsic activity of the cells that drives the system out of equilibrium11.
Following [75, 21, 53, 52], the microscopic interface forces can be modeled using
a macroscopic tissue stress tensor, σtissue according to:

F⃗ total
i =

∫
dx⃗ϕi∇⃗ · σtissue (2.15)

= −
∫

dx⃗σtissue · ∇⃗ϕi (2.16)

Equation 2.15 is representing the integral of the local force weighted by
the phase field ϕi, while equation 2.16 is the integral of the force exerted by
the stress tensor on the vector −∇⃗ϕi normal to the interface and pointing
outwards [21]12.

The above equations are used to connect the local properties of single cells
to the overall properties of the tissue; noticing that, in the limit of sharp
interface (id est λ → 0), eq. 2.16 tends to a contour integral over the surface
encompassing the cell volume [75].

10Reminding

Re =
ρviL

µ′

where

• ρ is the density,

• µ′ is the dynamic viscosity,

• vi is the flow speed,

• L is the characteristic linear dimension;

it is reasonable to extend the monolayer magnitude of Re to multilayers since the only thing
that changes is the height of the system

11Honorable mention to another possible component, the polar driving forces described
in [53, 52]

12The derivation from eq 2.15 to eq 2.16 can be done through the divergence theorem:∫ ∫ ∫
dx⃗∇⃗ · σ =

∫ ∫
dx⃗σ · n⃗, with n⃗ = −∇⃗ϕ
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Stresses

In analogy to continuum theories, the stress tensor can be separated into
passive and active components, to account for extensile characteristics such
as cell extension and alignment [80], in the following fashion:

σtissue = −PI − ζQ (2.17)

where P is the tissue pressure field, Q is the tissue nematic tensor and I is
the identity tensor while ζ quantifies the intensity of the field. More precisely,
the following relations have been used:

P =
N∑
i

δFtot

δϕi
=

N∑
i

(
δFinter

δϕi
− δFint

δϕi
) (2.18)

=

N∑
i

(
δFrep

δϕi
+

δFadh

δϕi
− δFCH

δϕi
− δFvol

δϕi
) (2.19)

Q =
N∑
i

ϕiSi (2.20)

Si ≡ −
∫

dx⃗

{
(∇ϕi)

T∇ϕi −
1

3
Tr{(∇ϕi)

T∇ϕi}
}

(2.21)

where Si is the deformation tensor of cell i [81] defined as above13, with its
eigenvalues and eigenvectors measuring the strength and orientation of the
main deformation axes of the cell. To ensure that Q is defined at each point
in space, the multiplication by the phase field is carried over.

By using equation 2.18, as noted in [49], provides much freedom in the
definition of the pressure field, which represents a simple elastic repulsion
force between cells.

The second term in the right-hand side of equation 2.17 is introduced to
provide a local active term, related to the deformation of cells via eq 2.20,
capable of driving the system out of equilibrium and to capture the active
nematic phenomenology of cells in analogy with active liquid crystals [75, 21,
5, 64]; that can be interpreted as dipolar force density distributed along the
cell interfaces, resulting in each cell pushing or pulling its neighbors depending
on the direction of their contact area with respect to the stress tensor[52, 21].

13The traceless part of −
∫
dx⃗(∇ϕi)

T∇ϕi
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Gathering everything up, the dynamic of the system can be described as
follows:

ξv⃗i = F⃗ total
i

= −
∫

dx⃗σtissue · ∇⃗ϕi

= −
∫

dx⃗(−PI − ζQ) · ∇⃗ϕi

=

∫
dx⃗(PI ) · ∇⃗ϕi +

∫
dx⃗(ζQ) · ∇⃗ϕi

=

∫
dx⃗{

N∑
i

(
δFrep

δϕi
+

δFadh

δϕi
− δFCH

δϕi
− δFvol

δϕi
)I } · ∇⃗ϕi +

∫
dx⃗{ζ

N∑
i

ϕiSi} · ∇⃗ϕi

= F⃗ inter
i + F⃗ act

i

Leading to:

F⃗ inter
i =

∫
dx⃗{

N∑
i

(
δFrep

δϕi
+

δFadh

δϕi
− δFCH

δϕi
− δFvol

δϕi
)I } · ∇⃗ϕi (2.22)

F⃗ act
i =

∫
dx⃗{ζ

N∑
i

ϕiSi} · ∇⃗ϕi (2.23)
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Numerical implementation

In this section, a broad overview of the implementation is given. The aim
is to understand the mechanics of a multi-layer cellular system with a focus
on the features that allow it to become a mono-layer in a process known
as morphogenesis. Each cell is modeled as an active deformable droplet. For
instance, the cells under examination may be epithelial cells and the substrate
may be viewed as the extracellular matrix (ECM).

To do so, each cell’s center is initialized on a cubic lattice14, at position x⃗,
via a Poisson sampling15 inside the chosen volume at given heights to form lay-
ers; to avoid overlapping cells the sampling volume has been decomposed into
independent components, namely a 2D xy-surface, where the actual sampling
takes place and fixed values of the z-axis according to: R3 = R2 × R1.

Moreover, to each center has been added the cell’s radius (r = 8, in lattice
units) in every direction to successfully build a spheroid with volume Vcell =
4
3πr

3. To each lattice point platt = (xlatt, ylatt, zlatt) and for each cell, a phase
field ϕcell

i (x⃗) = ϕi is assigned
16, where the usual initialization is used:

• ϕi = 1 if platt ∈ Vcell, for cells;

• ϕi = 0 if platt /∈ Vcell, for empty space.

Since the cells are placed over a substrate, a second field is initialized,
ϕsubstrate
i (x⃗) = ϕs

i ; that forms a rectangular box underneath the cells, which
spans the whole xy-plain and has a thickness of about one cell’s radius, in
order to avoid interactions with the edges. The same substrate field is used to
build a cubic box that surrounds the cells in the initialization process, after
which it is removed letting the cells free from the constraint.

Note that, for simplicity and without loss of generality, it is considered that
cell-substrate interactions take place solely between the bottom substrate and
the adjacent cells, and any further generalization is straightforward. During
initialization, the system is set as ”passive”, meaning that no activity (ζ = 0)
is involved and therefore the cells are only allowed to reorganize themselves.
Providing the system with enough time to settle during a passive, bounded by
cubic substrate, state, allows proper initialization resulting in more consistent
and biologically relevant results.

The follow-up process consists of a passive mode where the cells are free
to expand; while previously the bounded system strongly inhibits the growth.

14Considering lattice step-size to be 1 in arbitrary units
15Taking into account the required spacing between cells, id est at least spaced by the

cell radius
16For numerical implementation the assigned field is as big as the whole system volume:

(length * width * height)
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Evolution and Tools

The implementation of the evolution of the phase field, as described in Meth-
ods: Field evolution, can be described as follows:

Computing the functional deriva-
tives of the free energy and their sum

Computing active and interaction forces

Updating the phase field

Computing center of mass, ve-
locity, and isotropic stress

Figure 2.2: Flowchart for the simulations

More precisely, the derivatives of the phase field are computed with the
usual finite difference method using the central difference formula17, while an
example of computation of the functional derivative of free energy is given
in the Appendix: New cell-cell adhesion and example of calculation. The
evaluation of the sum of all the free energy terms is carried over according to
the pressure definition in equation 2.19, and a first update of the field is done
for the simple passive system (ζ = 0) by multiplying the result for the time
increment dt, since from equation 2.1:

dϕi(t)

dt
= −δFtot

δϕi
− v⃗i · ∇ϕi (2.24)

⇒ ϕi(t) = ϕi(t− 1) + dϕi(t) (2.25)

where : dϕi(t) = −

{∑
i

δF
δϕi

+ v⃗i · ∇ϕi

}
∗ dt (2.26)

17In the simple case:

∂ϕi(x⃗)

∂x
=

ϕi+1 − ϕi−1

2

∂2ϕi(x⃗)

∂x2
=

ϕi+1 − 2ϕi + ϕi−1

4

where i is the lattice node number
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Where the second term in the right-hand side of the equation 2.24 is present
if the system is considered active, namely ζ ̸= 0.

To analyze the system behavior, the following feature have been extracted
from the phase field evolution:

☞ Center of mass: The center of mass has been evaluated by the usual
discrete definition, namely:

Xi =

∑
imix⃗i∑
imi

where each position x⃗i corresponds to a lattice point, and the masses mi

are represented by the value assumed by a boolean masked phase field
(ϕi > 0.5) at the given points. In other words, 1 or 0 if the value of ϕi

at one point satisfies the masking criteria, id est inside or outside the
cell.

☞ Velocity: First of all, a distinction has to be made between the total
velocity of the i-th cell v⃗i and the tissue velocity V:

v⃗i =
F⃗ total
i

ξ
and V =

∑
i

ϕiv⃗i,

where the individual velocity is used to analyze single-cell movements
and is referred to the center of mass, coming from 2.14, while the latter
is giving a more broad idea of the flow of the system.

☞ Isotropic stress: To better understand the evolution of a multi-cellular
system, as described in the section Dynamics, the tissue stress tensor
σtissue has been analyzed by calculating its trace, known as isotropic
stress tensor:

σiso =
1

3
Tr(σtissue) ⇒

{
σiso > 0 for expansion
σiso < 0 for compression

representing the diagonal elements, comprising the tissue pressure as
well as the shape deformations according to the equation 2.17. Note
that the main components of the trace σii roughly represent the principal
stresses in the Cauchy stress tensor, giving an idea of the direction and
the intensity of the stress applied to the main surfaces.

☞ Coordination number: The number of neighbors of each cell in the
system has been taken into account to provide another indication of the
formation of a monolayer, that in a hexagonal close-pack symmetry is
6, from a multilayer, where in the same symmetry provide a variable
number from 9 (for the bottom layer) to 12 (for a middle layer). Note
that the evaluation of a neighbor is computed within a cell diameter
from each cell center, for instance
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Figure 2.3: Example of hexagonal close pack symmetry: A is the bottom
layer, B is the top layer

The vast majority of the model has been done using Python 3.10 and has
run both locally and on the High-Performance Computer at the University
of Copenhagen. The visualization of the system has been done using both
Matplotlib18 and Paraview19. The data analysis has been carried over with
Python and Matlab20.

Parameters

In this section, a general view of the parameters used in the simulations will
be given. Note that, the parameters per se have to be considered as a set
of unitless values that allow the simulations to be carried over without any
numerical instability, and any real-life comparison has to be handled with kid
gloves. For a better understanding of the scales involved, the magnitude of
the units involved is presented in Table 2.1, alongside the values used for the
implementation.

Moreover, in this section, a set of re-scaled parameters is presented to ide-
ally allow a broad comparison between the experiments and the simulations.
The idea is to use the well-known dimensionality of physical properties such
as force, velocity, energy, length, and time to obtain dimensionless numbers
through dimensional analysis, even when it means assigning different dimen-
sions to the parameters such as friction, that is notoriously dimensionless21.

18For a fast visualization based on a triangular-surface plot of the cells
19For visualization of the system with isotropic stresses and tissue velocity
20For publication quality plot, PubPlot
21In fact, usually dim(ξ) = 1, but here is assumed overdamped dynamics, meaning that

dim(ξv⃗i) = dim(F⃗i) ⇒ dim(ξ)
L

T
=

ML

T 2
⇒ dim(ξ) =

M

T

https://matplotlib.org/
https://www.paraview.org/
https://se.mathworks.com/products/matlab.html
https://se.mathworks.com/matlabcentral/fileexchange/47921-plotpub-publication-quality-graphs-in-matlab
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This nondimensionalization is used to reduce the number of dimensional vari-
ables in any equation into a smaller set of dimensionless parameters in accor-
dance with Rayleigh’s method of dimensional analysis and its formal counter-
part: the Buckingham π theorem. As can be noticed from Table 2.2, the actual
set of parameters used is (γ, ξ, R0), and from their combination is possible to
re-scale every other variable such as (σ, ω, v⃗i, t, len, κ).

Following [53], to focus on the interplay of cell-cell and cell-substrate adhe-
sion strengths, the following set of cell-substrate adhesion has been selected:
ωcs ∈ {0.0015, 0.002, 0.0025, 0.003, 0.015, 0.02} while cell-cell adhesion coeffi-
cients are mainly set by Ω = ωcc

ωcs
∈ {0.1, 0.5, 0.7, 1, 2, 3, 4, 5, 10, 20} according

to the different cases.
As discussed above, the initialization time is fundamental for coherence and
consistency and the initialization steps are set to be ninit ∈ {1000, 2000, 3000},
and the overall simulations are carried over with nsim ∈ {2000, 4000, 6000}
steps.

Simulation Parameters

Meaning Symbol Value Units

Elasticity γ 0.025 N
m

Interface width λ 3.5 µm

Compressibility µ 10 m2

N

Substrate friction ξ 10 Kg
s

Radius r 8 µm
Box size Lx, Ly, Lz 150, 150, 50 µm
Time increment dt 0.1 s
Adhesion ω
Repulsion κ

Table 2.1: Example and order of magnitude of parameters used in simulations

Re-scaling Factors

Meaning Symbol Value Units Re-scaling use

Elasticity γ 0.025 N
m Adhesion Coefficient

Characteristic velocity ν = R0
τ 0.02 m

s Velocity

Characteristic stress ς = γ
R0

0.003 N
m2] Stress components

Characteristic size R0 8 µm Lengths

Characteristic time τ = ξ
γ 400 s Time

Table 2.2: Re-scaling factors used during analysis

where M = mass, L = length, and T = time
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Re-scaled Parameters

Meaning Symbol Value

Length len
R0

Time dτ = dt
τ 0.00025

Velocity v
ν

Stress σ
ς

Adhesion ω
γ

Table 2.3: Example of re-scaled parameters used in data analysis



Chapter 3

Results

In this chapter, the results of the simulations based on the numerical imple-
mentation are presented. Two systems are examined :

1. A two-layer cellular system with analysis based on the overall behavior
using mainly averages over all its components and with the focus on when
it is developing into a monolayer;

2. A one-layer system with analysis based on the behavior of the neigh-
bors’ mechanical properties that allow a single cell in the upper layer to
merge into a confluent layer, followed by a focus on how it is happening.

Even if the two systems are conceptually similar, from an implementation
standpoint they differ in the order of magnitude of the parameters required
to make it stable and biologically relevant. Considering that the cells cannot
compenetrate one another, the activity required for the formation of a mono-
layer in the first system might result greater than in the latter if we compare
the timescales. Moreover, the same is valid for adhesion which has to be
greater to avoid cell scattering, resulting in a higher ’barrier’ to overcome for
the cells to detach and merge into one layer.
Nonetheless, the resulting phenomenon is the same, and with this in mind, it
is possible to make qualitative comparisons between the two, allowing a clearer
understanding of the mechanical basis that is behind the morphogenesis.

27
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Multi-layers

To understand the behavior of multi-layer cellular systems, at first, a second
active layer of cells is added on top of a single layer that is located over a solid
substrate. To effectively capture the properties behind the morphogenesis, the
center of mass (COM) is tracked and to it, velocities, stresses and a number of
neighbors are assigned according to the definitions presented in the previous
chapter: Methods. In figure 3.1 a two-layer system is represented composed

(a) t=0 (b) t=1.25 τ (c) t=2.5 τ

Figure 3.1: Example of a high activity system, id est ωcc = 1.2, ωcs = 0.6, ζ = 3.2,
where 44 cells are forming a monolayer starting from a two layer
system. In transparent red is the top layer of the substrate, color are
representative of the relative height of the system.

of 22 cells per layer, that is evolving into a compact monolayer, thanks to the
strong cell-cell adhesion, on a short timescale due to the high value of activity.

The same behavior is common to all confluent systems in this study: from
a compact system at the end of the initialization, as in figure 3.1(a), the lower
cells have to spread to create space for the allocation of the upper layer’s cells
that meanwhile are expanding, see upper cell in figure 3.1(b) that is bigger
than it previously was. Once some space is created the above cells are starting
to fill the gaps left by the motion of the lower ones to finally form a confluent
monolayer, as shown in figure 3.1(c). This process can be better understood
by looking at the three-dimensional trajectories, the two main examples of
formation and not formation of a single layer are shown in figure 3.2(a) and
3.2(b), respectively.

Trajectories

During either the formation of a single layer or the stabilization of a multi-
layer, it is noticeable that firstly the COMs of the upper layer are rising which
is representing the cells’ growth: in fact, since the cells’ growth is simultaneous,
two major components are at the base of the phenomenon, namely (1) cell
volume is increasing homogeneously in all directions, slightly moving to their
center, It is more noticeable if we focus on the lower layer of figure 3.2(b); and
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(2) the stacked layer is being pushed upwards even more in response to the
growth, this is clearer in figure 3.2(a).
Once the activity kicks in and the cells move away from each other, in one case
the above ones fill the lower gaps, represented by the straight vertical lines
in figure 3.2(a) allowing the formation of a single layer; while in the other
scenario, when the activity is low, they tend to stabilize on the upper layer,
depicted by short and convoluted lines as in figure 3.2(b).

(a) (b)

Figure 3.2: Example of a 3D trajectory tracking of the center of mass of each cell
in the two different scenarios: (a) Formation of a monolayer with
ωcc = 1.2, ωcs = 0.6, ζ = 3.2, and (b) Activity in a two layers system,
not forming a monolayer with ωcc = 0.6, ωcs = 0.6, ζ = 0.8. The dots
are the initial positions, the stars are the final positions and the dashed
lines represent the time evolution of the trajectories.

Therefore, during the evolution of the system, two main types of motion
are arising:

☞ The lower layer is expanding in contact with the scaffold due to the
interaction with the substrate. This happens radially outwards from
their initialized positions due to cell growth. The inflation pushes one
another away and increases the height of their center of mass since they
cannot expand below the substrate. Moreover, once the activity is in-
troduced, it drives cells to a stable configuration where the free energy
is minimized.

☞ The upper layer, not in contact with the substrate experiences the same
growth plus the initial push from below; while after gaps are created
their motion is linear and vertical due to activity and cell-cell adhesion
that are driving the system in a stable state and binding the cells to
form a confluent layer, respectively.
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Mean Squared Displacement

These two aspects are better captured by the Mean Squared Displacement
(MSD) of the system1

(a) (b)

Figure 3.3: Example of a Mean Square Displacement (MSD) of the center of mass
of each cell in the two different scenarios: (a) Formation of a
monolayer with ωcc = 1.2, ωcs = 0.6, ζ = 3.2, and (b) Activity in a
two layers system, not forming a monolayer with
ωcc = 0.6, ωcs = 0.6, ζ = 0.8.

In figure 3.3, both scenarios are depicted, clearly distinguishing two dif-
ferent types of motion based on the activity of the system and on the initial
height of the cell as can be seen from the two types of curves and their final
values. In fact, in figure 3.3(a), with high ζ, the system is dominated by ac-
tivity, and for greater values of MSD the shape corresponds to direct motion,
representing the top layer; instead, the lower final MSD values are initially
pushed by activity and then reach a maximum value that drops before the
final time, representing the lower layer whose cells form a configuration with
gaps in between and diffuse afterward, since they basically get confined by
adhesion, while a monolayer is formed.

On the other hand, in figure 3.3(b), for low values of ζ, the cells are still
driven by activity at first, but the system is ’frozen’ by adhesion further along
giving rise to a diffusive motion that does not allow the same amount of gaps
to form in the lower layer; the fact that there are greater values of MSD is an
indication that more cells from the top layer are not being incorporated into
the one below.

1The MSD is measured over time, in biophysics, to determine if a particle is spreading
slowly due to diffusion, or if an advective force is also contributing, referring to figure 3.4.
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Figure 3.4: Visual example of different behavior, adapted from [82].

Neighbors analysis

Another interesting aspect in the formation of a confluent monolayer is the
coordination number, id est the number of neighbors that each cell has at a
given time. For a single layer, in hexatic symmetry is six, while for a two-layer
is nine, due to three neighbors in the overlaying level, as described in Methods.
Moreover, here the coordination is related to the final height of the system, as
depicted in figure 3.5 where activity ζ and cell-cell adhesion ωcc are used to
map a parameter space representing the values of relative final z-coordinate.

(a) (b)

(c) (d)

Figure 3.5: Parameter space of activity (ζ) against cell-cell adhesion (ωcc) with
respective final height of the system for two values of cell-substrate
adhesion (ωcs ∈ [0.6, 2.0]) shown in (a) and (b), respectively
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Figure 3.5 is telling that the formation of a mono-layer is:

☞ (ωcs = min(ωcc)) Tightly bound to the activity ζ rather than to the
adhesion ωcc. The system will develop towards a mono-layer when the
activity is increasing as we can see in Figure 3.5(a).

☞ (ωcs = max(ωcc)) The monolayer formation is not happening, as shown
in 3.5(b). The system instead settles slowly in a two-layer configura-
tion for lower ζ and higher ωcs, while growing for any positive value of
activity.

Where the monolayer state is associated with a value of coordination equal to
6 neighbors per cell on average while the missed formation is corresponding to
9. These values can be related to the height evolution of the system, namely
a single layer is formed when the re-scaled height is closer to 1.0 2 while two
stable layers are present when its value is 2.0. Hereby, it should be noted
that this system is tightly packed during initialization, therefore bringing the
average initial height to 1.5, as can be seen in figure 3.6 where the two cases
are shown. In fact, without activity, the system relaxes into two layers after
growing, as shown in figure 3.6(b), while if active is going to achieve a single
layer. Therefore, increasing the value of the activity, in a numerically stable
range, provides transitions between two-to-one layer; the higher the activity
is, the faster this transition occurs, whenever a certain threshold is crossed.
In fact, the two states are both stable and form attractors for the system
where its activity is used to discriminate between them, as can be seen in the
appendix figure A.1.

(a) (b)

Figure 3.6: Example of the evolution of the height of the system in two different
scenarios: (a) Formation of a monolayer with
ωcc = 1.8, ωcs = 0.6, ζ = 3.2, and (b) Activity in a two layers system,
not forming a monolayer with ωcc = 2.0, ωcs = 2.0, ζ = 0.0.

2Meaning that the mean position of the system, assigned through the center of mass
(c.o.m.), is located at height ⟨h⟩ = radius
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Isotropic stress

This section is focusing on the development of isotropic stresses and their
evolution over time. A more accurate description of these components is
demanded later in the chapter where the setup results in clear behavior, but
here the idea is to highlight a pattern that emerges during the formation of
a monolayer, where the z-component of the stress, σz, increases above zero,
that represents extension along the axis allowing vertical expansion of the cells
which happens outward with respect to the substrate, that is impenetrable;
while the system undergoes compression along the other main components,
σx and σy, represented by the increasing negative value, as can be seen in
figure 3.7. Once again, the activity plays a crucial role in determining their
absolute value, since it represents the strength of the deformation. In fact,
when the activity is removed, the stress components evolve around zero and
do not allow the formation of a single layer.

(a)

(b)

Figure 3.7: Example of the evolution of the average stress of the system in two
different scenarios: (a) Formation of a monolayer with
ωcc = 1.2, ωcs = 0.6, ζ = 3.2, and (b) Activity in a two layers system,
not forming a monolayer with ωcc = 1.8, ωcs = 0.6, ζ = 0.8.
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Velocity

As for the isotropic stress, more details will follow in the next section for clar-
ity, and here are a few words to point out a pattern in the velocity profile
that is common to the monolayer formation. The components parallel to the
substrate, Vx and Vy oscillate around zero whenever the system is compact,
meaning that the cells do not scatter away due to a combination of low ad-
hesion and high activity, which is required for the formation of a confluent
monolayer. Nonetheless, the greater oscillations happen at the beginning for
high activity, that is the in-plane motion happens in the first part of the evo-
lution, see figure 3.8, to settle in position right after and barely move once
gaps are formed to allocate the upper cells.

The major deviation from zero happens across the vertical component Vz,
where the negative sign stands for the direction of motion, id est towards
the substrate. Once a minimum is reached, that happens fast, even the z-
component tends towards zero, showing a deceleration in the process due to
the interaction between the other cells and due to the active forces arising
from cell deformation that are slowing down the formation. At the very end,
every component stabilizes around zero, which means that the layer is ’frozen’
in place.

(a)

(b)

Figure 3.8: Example of evolution of the average velocity components of the system
in two different scenarios: (a) Formation of a monolayer with
ωcc = 1.2, ωcs = 0.6, ζ = 3.2, and (b) Activity in a two layers system,
not forming a monolayer with ωcc = 1.8, ωcs = 0.6, ζ = 0.8.
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Single cell interaction with a monolayer

To better understand how a cellular monolayer is formed, a single layer has
been initialized with one cell on top of it, as depicted in figure 3.9(a). Changing
values of cell-cell adhesion as well as activity is providing with a complete
picture of how these factors influence morphogenesis. In other words, this
system will provide an insight into the mechanism that drives cells from an
upper layer to be incorporated into a single confluent layer by analyzing simple
mechanical properties of the neighboring, underlying, cells.

(a) (b)

Figure 3.9: Examples of the system in exam: (a): initialization of one layer of
cells with one cell on top of it; (b): Formation of a single layer: the
cells are merging while deforming; arrows represent the velocity field of
the system. Colors represent stress magnitude: blue if low and red if
high, while in light brown is depicted the substrate.

Initialization

To set the stage, a proper initialization is carried over as a passive process,
without any activity, in order for the system to settle. In fact, even if it is
showing no motility, see figure 3.10, it is allowing a reorganization on a larger
scale, from the velocity field to the stress field, the latter shown in figure 3.9.

Figure 3.10: Analysis of average positions during initialization
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Active system

Here, is shown how the activity is influencing the formation of a confluent
layer.
First, by looking at how the average final height of the system is related to
activity and to cell-cell adhesion, as shown in figure 3.11(a), by fixing cell-
substrate adhesion at a low value, namely ωcs = 0.06:

☞ For ζ = max(ζ) the system is showing strong numerical instabilities for
any value of ωcc, not allowing any analysis even right after the initial-
ization;

☞ For ζ = min(ζ) the evolution is smooth towards one layer, see figure
3.11(b), the uppermost cell is being incorporated into the lower layer
while the other cells are deforming to better attach to the substrate3.
The higher the value of cell-cell adhesion ωcc the more compact the final
system will be.

☞ For min(ζ) < ζ < max(ζ), the transition is dominated by cell motil-
ity, meaning that they are wandering around, see the left side of figure
3.11(b) where the height is oscillating back and forth, and even detach
from one another before forming a single layer. This detachment, see
figure 3.12, is inhibited for greater values of ωcc while providing higher
deformations4, and explaining lower values of final height.

Seeing the behavior of the system as a whole, it is possible to analyze the
mechanics of the neighbors of the upper cell5. Two major features are central
for that purpose, namely the isotropic stress and the velocity. The overall be-
havior is represented in figures 3.13 and 3.17 where at time 5τ the uppermost
cell is getting incorporated in the lower layer, see figures 3.11(b) and 3.11(b),
making a switch in the z-component of the stress and velocity, meaning that
both from decreasing they hit a ’minimum’ and start increasing. This effect
is due to the fact that in the very early time, the upper cell is just touching
the lowers. therefore the system as a whole is trying to reach a stable configu-
ration where the free energy is minimized. Some time has to pass in order for
the perturbation to happen, namely the mechanical interactions between the
cells due to the morphogenic event are taking place; from there the neighbors
and the whole system are deforming and the behavior is changing until a new
stability is reached where the cells have moved.

3The cell deformation is also the reason of the presence of values of final height lower
than one.

4Tighter cells are pushing and pulling one another more providing greater stresses.
5Neighboring cells are hereby defined as cells within a cell diameter from the cell in the

upper layer
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(a)

(b) (c)

Figure 3.11: Parameter space of activity (ζ) against cell-cell adhesion (ωcc) with
respective final height of the system for cell-substrate adhesion
ωcs = 0.06. In (b) ωcc = 20ωcs and (c) ωcc = ωcs is shown the height
evolution of the system. For a higher level of activity, the system
shows numerical instabilities and does not evolve from its initialized
position, with a stripe in (a).
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(a) t=0 (b) t=5 τ (c) t=10 τ

Figure 3.12: Example of a high activity system, id est
ωcc = 0.6, ωcs = 0.06, ζ = 5.4, where the cells are wandering around
before the formation of a single layer.

Stress

The stress profile, in figure 3.13(a), is remaining unchanged over different
activity and cell-substrate adhesion values, while the magnitude of stresses is
increasing accordingly to the activity, as can be seen in figure 3.13(b) where the
final value is taken as a clear example; over time the value is behaving as shown
on the side. The x- and y-components of the stress are negative, meaning
that the cells are compressed in the respective direction, once a monolayer
is formed; whereas the vertical component is increasing and positive which
can be interpreted as the cells are expanding outside of the plane6, once the
merging has taken place. This is expressing that the incorporation of the
cells into one layer is happening along the z-axis while relaxation is happening
on the orthogonal directions of motion. Once the single layer is formed, if
the activity is removed, the system will relax across all directions; in fact,
returning stress values to their initial value around zero7 when the activity
alongside lower cell-substrate adhesion is scattering the cells away.

On the other side of the spectrum, a confluent layer is formed for lower val-
ues of activity and higher cells-substrate adhesion, as can be seen in the time
evolution in figures 3.14, where the x- and y-stress components of neighboring
cells do not reach a minimum in the same timescale but instead are going
down, building up compression in the surroundings and expanding along the
vertical axis, outside of the plain. This stress build-up is also the reason why
the magnitude of the stresses is overall higher, nonetheless the overall profile
is the same, as can be seen in figure 3.15.

6Remind that underneath the cells there is a solid undeformable substrate
7Note that the initial values of stress are in fact the values of the passive system after

initialization.
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(a)

(b)

Figure 3.13: Examples of evolution of (a) isotropic stress for neighboring cells for
fixed values of cell-cell adhesion and activity, while in (b) the average
final stress for different values of cell-cell adhesion and activity for
ωcs = 0.06

Posing attention on the fact that the higher values of stress on the z-
component, σz, are also due to the strong adhesion between cells, which is
required for the compactness of the final state since the system is not in a
dense state to begin with, while is surrounded by empty space to let the cells
free to move. In fact, when cell activity is low, the uppermost cell has to push
itself between other cells, deforming them; whereas at high ζ the cells are
moving away from each other faster, leaving more empty space for the cells to
merge in the single layer, as can be seen from the comparison between figure
3.14 and 3.12.

Remarkably, even lower levels of activity, for instance ζ = 0.03 in figure
3.15(b), are not allowing the morphogenesis even for higher of adhesion, where
instead the cells are deforming to adhere to the substrate while the uppermost
cell is steadily over them. From this, the importance of activity is resulting
clear as well as it is driving higher stresses on the neighboring cells which are
nonetheless maintaining the same profile over different combinations of values.
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(a) t=5 τ (b) t=10 τ (c) t=15 τ

Figure 3.14: Example of a low activity system, id est
ωcc = 0.4, ωcs = 0.08, ζ = 0.16, where the cells are confluent during
the formation of a single layer.

(a) (b)

Figure 3.15: Evolution of isotropic stress’ components with (a) ωcs = 0.08 and (b)
ωcs = 0.1, note the scale on the ordinate.

Lastly, it has to be noted how the cells are behaving in contact with the
solid substrate, an example can be seen in figure 3.16, where through the time
evolution is possible to note another reason for the behavior of σz depicted
above; in fact, since the cells cannot invaginate, it is contributing to the over-
all build-up of that component, Initially, the cells barely are touching the
substrate, as depicted in figure 3.16(a); after a while, figure 3.16(b), they are
coming in contact with it, building up positive stress that is mainly distributed
on the edge due to the increasing forces exerted from the substrate onto the
cells according to newton’s third law, which is also causing deformation of
the cells in accordance to the impenetrable scaffold setup and the outward
deformation. In figure 3.16(c) and 3.16(d) has to be noted the negative stress
components in the core of the cells that is pushing them inward providing an
out-of-plane contribution to the maintenance of the droplet shape as stated
by the volume constraint.
Remarkably, in the middle of the system can be seen greater deformations of
the neighboring cells that have to adapt to incorporate the upper cell, further
explaining the increase in their σz value. Moreover, this behavior is common
to all confluent systems.
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(a) t=0 (b) t=5 τ

(c) t=10 τ (d) t=15 τ

Figure 3.16: Example of a low activity system seen from below the substrate, id est
ωcc = 0.4, ωcs = 0.08, ζ = 0.16, where the cells are confluent during
the formation of a single layer. Note that is the same system in 3.14.
Positive stress stands for extensions and negative represents
contractions with respect to the cell interface.

Velocity

The velocity profile, shown in figure 3.17(a), is common to systems where a
monolayer is formed and the neighboring cells are not scattering away too fast
due to high activity, where instead the average end velocity is getting faster
to zero due to a reduction of coordination between cells that are moving ran-
domly as single cells do. In fact, once the cells are scattered away they tend
to settle, as can be seen in the time evolution in figure 3.12 where first the
cells move fast away from the others and then barely move.
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(a) (b)

(c) (d)

Figure 3.17: Examples of evolution of velocity components for neighboring cells for
(a) ωcs = 0.06, (b) ωcs = 0.1, and (c) ωcs = 0.12 while in (d) relation
between RMS velocity and different values of cell-cell adhesion and
activity

On the other side of the spectrum, a monolayer is not formed due to low
activity, even with higher adhesion values, as depicted in figure 3.18, is possi-
ble to note that the x- and y components of the velocity are oscillating near
zero, as shown in figure 3.17(b), not allowing the cells to scatter away from
their initial position while the in-plane component is negative, indicating that
the interaction with the substrate tends to drive them closer to it.

From the very first time-step, the velocity field is pointing away from
the cells, since it is not a stable configuration anymore when the activity is
introduced into the system; but after a while, it is rearranging to drive them
to the minimum of the free energy, that is different for different parameter but
is well represented by the direction of the arrows in figures 3.18, 3.14, and 3.12
where the more active the more the on-plane, Vx, Vy, components are parallel
to the substrate, can also be seen from the velocity average in figure 3.17.
In the end, once a stable configuration is achieved, only the Vz component
is nonzero but tending to it from below, reaching it whenever the activity
and the interaction with the substrate are removed. If ζ and ωcc are further
increased, it is possible to notice a disruption in the continuity of the average
velocity when the uppermost cell is getting incorporated, starting to interact
with the neighbors, meaning that at higher values the morphogenesis might
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(a) t=0 (b) t=5 τ (c) t=10 τ

Figure 3.18: Example of a low activity system, id est
ωcc = 0.5, ωcs = 0.1, ζ = 0.03, where the cells are not forming a
monolayer.

be happening roughly and the magnitude of the forces involved is spiking8.
The level of activity of the system is crucial in determining its fate during

the formation of a single layer: the higher the ζ is the greater the active driving
forces are, implying larger velocity components. A fast cellular re-organization
is promoting the formation of gaps in between the cells when the cell-substrate
adhesion is low, allowing in-plane motion. A slow re-organization, also pro-
vided by a strong adhesion with the substrate is not allowing motion over the
scaffold, ’locking’ the system in place. The monolayer formation is possible
when gaps are present within the lower layer, places where other cells can be
allocated. The intercellular adhesion is decisive in distinguishing between a
single confluent layer and a single scattered layer.

8Remind that the cell velocity is related to the forces via the friction coefficient vi =
F⃗ tot
i
ξ





Chapter 4

Conclusion & Outlook

It is wrong to think that the task
of physics is to find out how
nature is. Physics concerns what
we can say about Nature.

Niels Bohr

The current research aims to apply a quasi-three-dimensional phase field
model developed for cells monolayer in the context of active matter to a greater
plethora of physiological phenomena that take place in a full three-dimensional
environment such as tissue morphogenesis, here used as a case study. More-
over, the understanding of the mechanics behind multi-layer cellular systems
that are requiring both in-plane and out-of-plane forces has unveiled patterns
in either velocity and stress profiles.

The ability of cells to convert chemical energy into mechanical forces, that
allows them to move and modify their environment known as activity, has
been put to the test in different scenarios, resulting effective and crucial even
when the interactions are not just in-plane. In fact, this work has shown that
cell activity is required in order to give a simple explanation of biological
phenomena, and on that depends the fate of the system. This accounts for
the increased interest in this branch of interdisciplinary physics in the last few
decades.

Two simple interactions have been shown to capture the complexity of
biology and a useful division between cells and substrate has shown the im-
portance of the latter in tissue development: having a place to adhere provides
a constraint to the direct motion while ensuring the ability to reorganize in a
more energy-convenient configuration.

A cellular system evolves towards the minimum of free energy in order
to reach the stability that can be seen in nature at the same time pertur-
bations drive it out of equilibrium in this case through ζ, and by modifying

45
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the surroundings a new stability will be reached, and so forth giving birth to
cycles.

This points out the importance of being out of equilibrium, where things
might be difficult to understand, but thanks to simple models it is possible to
grasp the behavior of Nature. In this case thanks to active matter it has been
shown how it is possible to dive into the morphogenesis.

To briefly sum up, a mathematical, phase-field model of active droplets
was applied to a two-layer cellular system to demonstrate that it can be used
to describe tissue development in a three-dimensional environment. That was
a missing fragment in previous writings. This provides a new tool to approach
cellular dynamics in the context of collective behavior in a biophysical sense.
The analysis of the results has shown the importance of cellular activity in
shaping the fate of the cellular system in a physiological phenomenon.

The role of mechanical forces is crucial to understanding tissue morphogen-
esis. This research has shown how simple mechanical features such as isotropic
stress and velocity profile are shaped by the ability of the cells of performing
work on the surrounding, giving rise to precise patterns, independent of the
size of the system but rather depending on how active the system is. Not
less important are the interactions with the substrate that has been shown to
promote different states, namely:

☞ too low adhesion ωcs alongside some activity ζ are driving towards a
scattered final state, where cells are away from one another;

☞ too high adhesion is locking the system in place, not allowing cells to
move, even when the activity is resulting higher;

☞ For intermediate values of adhesion, the activity is decisive to set the
timescale of morphogenesis;

☞ At very high activity the system has shown non-physical behaviors even
for higher values of cell-substrate adhesion.

The study is in its early stage and limited by the choice of the parameters
that are embedded in the biological apparatus behind the physiological pro-
cess, such as the strength of adhesion, which is different for different junctions,
and which is here considered constant for all the cells for each simulation. To
a greater extent differential activity across layers where some of them are pas-
sive while others are changing over time. Another important aspect is the
approximation of cells being all the same. In fact, the shape is as different as
the interface between them, as well as their rigidity that changes, while here
it is fixed. Another limiting aspect is the finite size effect: the cellular system
considered here was pretty small compared to the thousands of cells that form
a real cell cluster.

A major limiting factor is to relate these results with real experiments:
what can be compared is the overall behavior for different scenarios since
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spurious values have to be taken cum grano salis even if the effort to make
them comparable has been made, making dimensionless quantities. Lastly,
this model is deterministic, while in Nature noise might help to drive the
system out of equilibrium and even factors outside of the cell may initiate a
chain reaction. On the other hand, there is the importance of the substrate
stiffness and shape that has not been explored here, as well as the different
substances or constraints that are surrounding the system.

Nonetheless, this is a first step in what seems to be the right direction for
describing living tissues with active matter, making a jump to a fully three-
dimensional system, even if with a simple model of collective behavior.

Therefore, this can open the door to future developments which can start
by removing some limits to the study, such as the implementation of different
levels of activity and cell-cell adhesion across different layers to extend the ap-
plicability of the model to more complex systems, which can also be described
with the introduction of other active driving forces such as polarization. Fu-
ture studies could fruitfully explore this issue further by changing the shape of
the scaffold as well as allowing cells to invaginate into it by changing its rigid-
ity. Future research on the parameter space ωcsvsζ, for longer times, might
reveal a sharper threshold for the formation of a single layer as well as provide
a possible relation between activity and the timescale of the self-organization.
In future work, investigating the pattern formed by the stresses and velocities
might prove important, either experimentally and theoretically in an effort to
understand the interdependence between their magnitude and the physiolog-
ical changes that are happening inside and outside of the cell. Developments
of the model may look into different geometries and configurations for both
cells and substrate, extending its validity. Future studies can also couple the
mechanics with fluid flows outside of the system as well as introduce different
components to simulate the effect of biochemical signaling and different drugs.

I look forward to reading further attempts which could prove quite bene-
ficial to the subject under discussion.
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Appendix

New cell-cell adhesion and example of calculation

Fadh =
N∑
i

∑
j ̸=i

ωλ

∫
dx⃗(∇ϕi)

2 · (∇ϕj)
2 (A.1)

δFadh

δϕi
=

∂Fadh

∂ϕi
−∇ · ∂Fadh

∂∇ϕi
(A.2)

observing :
∂Fadh

∂ϕi
= 0 (A.3)

while :
∂Fadh

∂∇ϕi
=

∑
j ̸=i

ωλ2 ∗ ∇ϕi · (∇ϕj)
2 (A.4)

Since ∇ · (⃗a · b⃗) = ∇(⃗a · b⃗) = a⃗ · ∇b⃗+ b⃗ · ∇a⃗
Follows:

δFadh

δϕi
= −∇ · (

∑
j ̸=i

ωλ2 ∗ ∇ϕi · (∇ϕj)
2) (A.5)

= −
∑
j ̸=i

2ωλ[∇ · (∇ϕi · (∇ϕj)
2)] (A.6)

= −
∑
j ̸=i

2ωλ[∇(∇ϕi · (∇ϕj)
2)] (A.7)

= −
∑
j ̸=i

2ωλ[∇2ϕi · (∇ϕj)
2 +∇ϕi · 2(∇ϕj∇2ϕj))] (A.8)

= −
∑
j ̸=i

2ωλ∇ϕj [∇2ϕi · ∇ϕj +∇ϕi · 2∇2ϕj ] (A.9)

= −2ωλ∇ϕi[∇ϕi(
N∑
i

∇2ϕi −∇2ϕi) + 2∇2ϕi(
N∑
i

∇ϕi −∇ϕi)] (A.10)

Where in the last equality is used
∑

j ̸=i Gj =
∑N

i Gi−Gi with G = ∇2ϕ and ∇ϕ respectively
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Height evolution versus activity

Figure A.1: Activity is deciding the fate of the system, from top to bottom it is
changing from ζ = 0.0 at the top to ζ = high at the bottom.
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