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A b s t r a c t

This thesis presents and compares two very different models for nerve signal excitation and
propagation – the Hodgkin-Huxley model and the soliton model. The models are compared both
to each other on a more theoretical basis as well as to data from a series of experiments performed
on the medial giant axon and lateral giant axons of the large earthworm – lumbricus terrestris.
Experiments with colliding pulses were carried out, and annihilation of pulses were found in the
majority of measurements in agreement with expectations based on the Hodgkin-Huxley model.
The temperature dependence of the excitation threshold was investigated and found to be in
apparent qualitative agreement with the Hodgkin-Huxley model, though this was conclusively
proven. The results are on the other hand in direct disagreement with the soliton model. Lastly
the dependence of the excitation threshold on the concentration of added anaesthetics was
investigated. Two anaesthetic drugs were used – lidocaine and pentobarbital. The results show a
linear increase in threshold as a function of anaesthetic concentration as predicted by the soliton
model. Futhermore the local anaesthetic lidocaine and the general anaesthetic pentobarbital
show similar behaviour, which is also predicted by the soliton model. The similarities are however
not in disagreement with the Hodgkin-Huxley model, and in total the results, though not very
conclusive, have to be said are in better agreement with the Hodgkin-Huxley model than the
soliton model.

D a n s k a b s t r a c t

Denne afhandling præsenterer og sammenligner to grundlæggende forskellige modeller for eksita-
tion of propagation af nerve signaler – Hodgkin-Huxley modellen og soliton modellen. Modellerne
sammenlignes både med hinanden på et mere overordnet, teoretisk plan men også mere specifikt
på baggrund af resultater fra en række eksperimenter udført på den medial gigant axon og laterale
gigant axoner i store regnorm – lumbricus terrestris. Eksperimenter med kolliderende pulser blev
udført, og annihilation blev observeret i de fleste tilfælde i overensstemmelse med forudsigelser
fra Hodgkin-Huxley modellen. Temperaturafhængigheden af tærskelniveauet for eksitation af
aktionspotentialer blev undersøgt, og resultaterne er i umiddelbar kvalitativ overensstemmelse
med forudsigelser fra Hodgkin-Huxley modellen. Denne overensstemmels var dog ikke endegyldigt
vist. Resultaterne er dog i direkte modstrid med soliton modellen. Til sidst blev tærskelværdiens
afhængighed af koncentrationen af anæstetika undersøgt. To forskellige anæstetika blev brugt
– lidokain og pentobarbital. Resultater viser en lineær sammenhæng mellem koncentration af
anæstetika og tærskelværdien som forudsagt af soliton modellen. Yderligere viser det lokale
anæstetikum lidokain og det generelle anæstetikum pentobarbital ens påvirkning af nerven,
hvilket også er i overensstemmelse med soliton modellen. Denne lighed er dog ikke i modstrid
med Hodgkin-Huxley modellen, og alt i alt må resultaterne siges at stemme bedre overens med
Hodgkin-Huxley modellen end med soliton modellen.
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1 I n t r o d u c t i o n

The map of the world of neuroscience is one still full of blank spots. It is somewhat paradoxical
that we know as little as we do about the nervous system and particularly the brain, since we
have used just that – our brains – to figure out everything else we know about the universe.
The field of neuroscience is one of great interest to scientists of all different backgrounds around
the world and also to me personally. There are lots of very exciting perspectives in neuro-
science research in terms of clinical applications and disease treatment in addition to it just
being intrinsically interesting. All academia strives to achieve a better understanding of our-
selves in relation to the world around us. Ralph Waldo Emerson writes thus in his essay Nature [15]

"Every man’s condition is a solution in hieroglyphic to those inquiries he would put. He acts
it as life, before he apprehends it as truth. In like manner, nature is already, in its forms and
tendencies, describing its own design. Let us interrogate the great apparition, that shines so
peacefully around us. Let us inquire, to what end is nature?

All science has one aim, namely, to find a theory of nature. [...] Whenever a true theory
appears, it will be its own evidence. Its test is, that it will explain all phenomena. Now many
are thought not only unexplained but inexplicable; as language, sleep, madness, dreams, beasts, sex."

But no scientific discipline attacks this problem more literally and head on than neuroscience.
If we can talk about, where the self lives, its home has got to be the brain. Quite naively we
might therefore say, that if we want to understand ourselves, we have to understand the brain.
The reason why we know so relatively little about the brain is obviously due to the immense and
awe-inspiring complexity of the human body. So when asking the brain what it does for a living,
it is not likely to give us a simple answer.

The focus of this thesis is not on anything as complex as the brain or intricate neural
networks, but however on the underlying more basic phenomena – the propagation of a nerve
signal (action potential AP) down the axon of a single nerve cell. In 1952 Alan Hodgkin and
Andrew Huxley published their paper describing the later fittingly named Hodgkin-Huxley model
(HH-model) for nervous excitation and propagation [38]. This model has been the dominating
theory on the subject of nerve signal excitation and propagation since then. In spite of its great
explanatory power and agreement with experimental findings there are, however, as we will see
later, several problems with the model, and we are still left with a lot of unanswered questions.
In 2005 researchers at the Niels Bohr Institute in Copenhagen published a paper describing a
fundamentally different perspective on these phenomena [34]. This new model will be referred
to as the soliton model. In this thesis these two very different models (along with some other
alternatives) are discussed, and their predictions compared with new experimental data. In
particular the mechanism of anaesthetics is discussed.

The history of medicine is long. Irj who lived in the Pharaoh’s Egypt 1500BC was described
in the hieroglyphs on the door of his tomb as being:

"Palace doctor, superintendent of the court physicians, palace eye physician, palace physician
of the belly and one who understands the internal fluids and who is guardian of the anus."

Medicine’s ancient roots are even still honoured today in the Hippocratic oath that newly
trained physicians take when leaving medical school. Even though today we do not swear by
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Apollo the physician and Aesculapius the surgeon and various other Greek gods, our modern
version of the oath is still based on the original words of Hippocrates. Since the days of Irj
and Hippocrates medicine has come a long way and has matured out of the superstitions and
religious myths that permeated the field in its ancient youth and into a proper scientific field.
Due to the vast complexity of the subject matter, however, a lot of modern medicine is still based
to a great extend on empirical evidence without solid theoretical foundations, or what we in a
slightly less respectful wording might call trial and error. Anaesthesiology is a good example of
this. Anaesthetics are used every day on hospitals around the world, and anaesthesiologists know
exactly what and how much to administer for just the desired effect. Why and how it works on
the other hand is still somewhat of a mystery.

Many anaesthetics were discovered more or less by accident, and many were in fact at first
used for recreational purposes before their medical applications were realised. The American
physician Crawford W. Long partook, like so many people in his time, in ether frolics as a young,
aspiring medical student. He noticed that during these frolics, pain from bumps and bruises and
the like was dulled somewhat, and in 1842 he performed his first surgery on an etherised patient.
This operation was the first performed under general anaesthesia. Other early anaesthetics were
discovered in similar ways. Today the list of known anaesthetics is long, and we have abandoned
use of many such early drugs as ether, chloroform, and cocaine (local anaesthetic). On the list are
very diverse substances such as pure noble gases and more complex molecules such as isoflurane
or halothane. This chemical diversity has puzzled researches, as it was hard to imagine the effect
being down to the drugs binding to some sort of specific receptor in the nervous system in spite of
the German physician and Nobel Prize laureate Paul Ehrlich’s assertion that this is the only way
in which agents work. Corpora non agunt nisi fixata (agents only work when they are bound).

In figure 1 the famous Meyer-Overton correlation is seen. Meyer and Overton independently
discovered this correlation between the potency of an anaesthetic and its olive oil to gas partition
coefficient in 1899 and 1901 respectively. The more soluble in lipids a drug is, the more potent
its anaesthetic effect. This correlation along with the chemical diversity indicates that a more
general explanation might be required for the mechanism of anaesthetics than the substances
binding to membrane proteins. The soliton theory, as will be explained later on, offers an example
of such a general explanation. It is therefore interesting to look into the predictions made by this
theory as well as more conventional ones on the behaviour of action potentials in the presence of
anaesthetics. It is the aim of this thesis to do just that.

2 T h e o r y

In this chapter the background theory behind the two models of interest – the Hodgkin-Huxley
model and the soliton model – will be unfolded. The central phenomena characterising nerve
signals will be presented, and the two model’s explanations of these will also be presented. First
an introduction to basic neuroanatomy and -physiology is given. The Hodgkin-Huxley model
is then presented, as it is the generally accepted model for these phenomena and therefore the
one a contending model needs to challenge. Thereafter the soliton model will be introduced, and
lastly the two models will be compared in a general sense. Later on they will be compared and
discussed in relation to the specific experimental results of the present study.
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Figure 1: The minimum alveolar concentration (MAC) of a range of different anaesthetics plotted
as a function of their olive oil to gas partition coefficient at 37◦celsius. The minimum alveolar
concentration indicates the necessary concentration of vapour in the lungs in order to prevent
movement in 50% of cases when exposed to pain stimuli as under surgery. The lower MAC the
more potent the drug. The graph shows a clear correlation between the potency of a substance and
how well it dissolves in olive oil. Figure taken from [72].

2.1 N e rv e s

Before delving into the physics of nerve signals some elementary cell biology is necessary. The cell
theory was formulated in 1838 by Matthias Schleiden and Theodor Schwann. It states that the
cell is the fundamental building block of all life. The term cell is a very wide one. The human
body is estimated to be made up of around 35 trillion cells distributed over hundreds of different
types. Each type of cell is highly specialised and responsible for a very specific task in the body.
We are in this context interested in the nervous system composed of nerve cells – neurons. Again
neurons are not just neurons. There is a variety of different types of neurons from the sensory
neurons in the tips of your fingers to the pyramidal cells and the star shaped and therefore aptly
named astrocytes in your brain. In figure 2 three different types of neurons are shown. Even
though different neurons have quite different anatomy and perform very different tasks, they are
all still composed of only a handful of different functional regions. We will therefore for simplicity
consider a model neuron in order to understand the organization and function of neurons.

The neuron

In figure 3 two neurons are seen. A neuron consists of a cell body known as the soma (simply
greek for body – σω̃µα), several branch like projections sprouting out from the soma known
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Figure 2: Examples of three different neurons. On the left a motor neuron controlling muscles or
glands. In the middle a pyramidal neuron as found in the cortex and other parts of the brain. On
the right a Purkinje cell with its vast dendritic web as found in the cerebellum. On the left the
myelin is shown as blue wrapping. Figure taken from [69].

as dendrites, and a long cylindrical projection known as the axon. The soma contains the cell
nucleus, storing the cell’s genetic material, along with a variety of organelles responsible for
metabolism, protein synthesis, and other tasks vital for sustaining the cell. The dendrites collect
information from neighbouring neurons and relay it to the soma, where it is integrated, and
subsequently signals are sent down the axon at the end of which dendrites from other cells collect
the information, relaying the information to their soma, and the process continues. The role
of the axon is to transport information integrated in the soma to the next neuron. At the end
of the axon it branches out into small projections, which attach on to other neurons. These
connections between nerve cells are known as synapses. In most advanced animals (as well as in
some more primitive ones) the axon is surrounded by a layer of fatty material known as myelin
(see figure 2). The exact chemical composition of myelin varies, but it consists largely of water
and lipids. Lipids are a family of molecules comprising fats and waxes. Examples of familiar lipids
are cholesterol, stearin, and beeswax. The function of the myelin remains the same though, no
matter the composition. It acts as an insulator, and thereby it increases the conduction speeds of
the action potentials (in the HH-model that is). This will be discussed later in the sections Cable
theory and Strengths and shortcomings. The myelin sheath is produced by glia cells – Schwann
cells in the peripheral nervous system and oligodendrocytes in the central nervous system. There
are periodic gaps in the sheath known as the nodes of Ranvier. One section of myelin covering is
typically around a millimetre long, where as the nodes are of the order of micrometres. The nodes
of Ranvier are thought to be the active sites in relation to signalling due to the high concentration
of membrane proteins known as ion channels.

For a thorough introduction to neuroanatomy and physiology see for example [42].
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Figure 3: Sketch of two neurons with synaptic connections. Information delivered to the cell body
(soma) from the dendrites is integrated and relayed down the axon towards the synaptic terminals
at the end, where the signal is passed on to the postsynaptic cell. Figure taken from [70]

Signals

Now having introduced some basic neuroanatomy let us turn our attention to the actual nerve sig-
nals themselves. Already in ancient Greece the idea existed that the intent behind our movements,
in a physiological sense, originated from the brain. This idea was most famously described by the
Greek physician Galen of Pergamon [74]. Galen thought that weightless, invisible substances,
which he called animal spirits, flowed out from the ventricles in the brain and out into the muscles
causing them to contract or extend. The spirits also carried sensory input back the other way
to the brain. This very spiritual theory dominated for a surprisingly long time. The father of
modern philosophy Rene Descartes slightly modified the theory and brought it a little closer to
earth. He believed that instead of being mysterious, weightless, invisible substances the animal
spirits were actual liquids, and the nervous system was thus a hydraulic system. The spirits were
released from the pineal gland, where the soul also lived [74].

"[. . . ]it is necessary to believe that the spirits, flowing through the nerves into the muscles,
and inflating them sometimes more and sometimes less, now some, now others according to the
different ways in which the brain distributes them, cause the movements of all the limbs; and that
the little threads of which the internal substance of the nerves is composed serve the senses."

Jan Swammerdam a Dutch biologist showed that muscles could be brought to contract even
when separated from the brain thus disproving the theory of animal spirits. The first to discover
the connection between nerve signals and electricity was the Italian physician and natural scientist
Luigi Galvani.

There are several good stories about just how Galvani came about his discovery of animal
electricity as he called it [56]. The validity of these stories is probably dubious, but they are
quite cute nonetheless. Galvani conducted extensive anatomical research on frogs trying to prove
that their testicles resided in their legs. One day he had performed some experiments with static
electricity. Later the same day he dissected frogs on the same table, and when he touched the
exposed sciatic nerve with a scalpel that had picked up some charge, the leg of the frog twitched.
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Another story says that he was inspired, when he saw the legs of the frogs, his wife was preparing
for dinner, twitched when touched with the knife. Galvani started systematic investigations
into the phenomena and reasoned that nerve signals were in fact flowing electricity. Some of
Galvanis contemporaries did not agree with his reasoning among them such a prominent name as
Alessandro Volta, and the debate was still open the next half a century or so.

In the middle of the 19th century the remarkable work of physiologists Emil du Bois-Reymond
and his student Julius Bernstein cemented the relationship between electricity and nerve signals
as believed by Galvani. In figure 4 a measurement of what Bernstein called the negative variation
– what we today would call an action potential – is shown. This graph is from Bernstein’s original
publication and is presumably the earliest measurement of the action potential. For comparison
In figure 29 examples of extracellular measurements from the earthworm medial and lateral giant
axons are shown. The quality of Bernstein’s measurements is quite impressive. Bernstein also
showed that the nerve signals were in fact travelling electric wave pulses.

The action potential, as nerve signals are known today, is a phenomenon with a range of
defining characteristics. It is an all-or-none phenomenon, meaning that below some threshold
voltage the cells are not excited, and no signals are sent. When this threshold is surpassed, an
action potential is initiated. This AP looks exactly the same every time. The shape, duration
and amplitude is unaffected by the strength of the stimulus. The strength of the stimulus is
instead conveyed by sending more or fewer APs after each other in so called spike trains. Nerve
signals are thus in a sense digital in their nature. The shape of an action potential is as shown
In figure 8. The AP is a travelling self sustaining single wave pulse. In order to create such a
pulse a non-linear process is required. We will see different explanations of how this non-linearity
enters the picture. After a neuron has fired, there is a small period of time, in which the cell is
incapable of firing – the refractory period. Both the action potential and the refractory period
are typically on the order of microseconds in duration. The voltage changes involved in these
processes are relatively small – on the order of millivolts. All of these defining characteristics
need to be explained by any model for nerve signals. Both in the conventional Hodgkin-Huxley
model and the proposed soliton model the mechanisms behind action potentials are intimately
linked with specific nature of the cell membrane.

The cell membrane

In this section we will take a closer look at the structure of the cell membrane and discuss its
function in the HH-model. In the following section the function in the soliton model will be
discussed.

The cell membrane is what separates the inside of the cell from the outside, extracellular fluid.
It is primarily composed of lipids, which are bound together in a bilayer as can be seen In figure 5.
A lipid molecule consists of a hydrophilic head group and a hydrophobic hydrocarbon chain. The
lipid bilayer is, due to its non-polar center, impermeable to ions and other molecules dissolved in
the extracellular fluid – at least under most circumstances. This will be discussed in the section
Lipid pores. Embedded into the lipid membrane are different proteins. Some of these proteins are
thought to serve different purposes in relation to transport of ions across the membrane. Some
of these are passive transporters known as ion channels, others are active transporters. The
passive ion channels, though passive, do not let any ion through the gates. They are said to
be selective as they allow predominantly sodium, potassium, calcium or some other ion to pass
through. Some of these channels are always left open, and others are closed until activated. In
the latter case they are said to be gated. The gating mechanism can be electrical, chemical or
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Figure 4: Recording of the negative variation made by Julius Bernstein in 1871. The negative
variation is what we today know as an action potential. Figure taken from [56].

mechanical. In the case of a voltage gated channel (which are of primary interest in the present
context) the activation happens when the membrane is depolarized (or hyperpolarised for some
channels) and reaches a certain threshold potential, where another geometrical conformation of
the protein is energetically favourable. Some channels are also actively inactivated again once
another potential has been reached. An example of this is the sodium channel. This inactivation
is the reason for the refractory period mentioned earlier. This refractory period where no action
potentials can be initiated will become of interest later on when discussing the collision of two
counter-propagating action potentials. In 1957 Jens Christian Skou published his first article
describing the famous sodium-potassium pump, which later would earn him the Nobel Prize in
chemistry. One of only two Nobel Prizes awarded to a scientist at the University of Aarhus. The
sodium-potassium pump is an example of an active transporter. It pumps sodium out of the cell
and potassium into the cell. Due to these active transport membrane proteins the concentrations
of ions such as sodium, potassium, and chloride are kept at different levels across the membrane –
they maintain chemical gradients across the membrane. Due to the charged nature of ions, these
chemical gradients also lead to an electrical gradient across the membrane. The existence of these
gradients is what allows us to excite the cell. If the concentrations were just allowed to equilibrate,
the cells would not allow for the dynamic behaviour that is observed. We have now reached a
point, where we are ready for the first equation of this thesis. The Nernst equation describes
the equilibrium membrane potential for a given ion also known as the Nernst potential. At the
Nernst potential there is no net flow of ions across the membrane, and we have an equilibrium
situation. At membrane potentials different from the Nernst potential ions would flow across the
membrane in an attempt to return to equilibrium. The flow of ions changes sign at the Nernst
potential, so if there is an influx of ions at potentials above the Nernst potential, there is an
efflux of ions at potentials below the Nernst potential. For this reason it is often referred to as
the reversal potential.

Were all the ion pumps turned off, the ions would start to diffuse through the open channels
across the membrane down their chemical gradient, until the resulting membrane potential
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Figure 5: Sketch of a piece of cell membrane with examples of different types of proteins embedded
into the lipid bilayer. Figure taken from [73].

countered the chemical potential thus reaching some equilibrium state and potential. To begin
with we shall consider the case where the membrane is only permeable for one type of ion.
As biophysicists our jumping off point in the quest for this equilibrium potential is of course
the Boltzmann distribution. In this context, however, instead of talking about the probability
of finding an ion on one side or the other, we consider concentrations. By simply taking the
logarithm and rewriting slightly for a given ion S we then get

VS = Vi − Vo =
RT

zSF
ln
So
Si
. (2.1)

This is the Nernst equation where R is the gas constant, T the temperature, zS the valence
of the ion S, F Faraday’s constant and So and Si the concentration of the ion outside and inside
respectively. The Nernst equation only considers the case where one single type of ion is able
to traverse the membrane. In reality the membrane is permeable to a range of different ions in
varying degree. In this case it is necessary to use the Goldman equation

Vm =
RT

F
ln

(
PK[K+]o + PNa[Na+]o + PCl[Cl−]i

PK[K+]i + PNa[Na+]i+ PCl[Cl−]o

)
. (2.2)

We have for clarity here only considered the three most important ions. The Goldman
equation also considers the specific permeability of the different ions PIon. The Goldman equation
is however still fairly rough. The temperature dependence of 1/T should for example not be
taken too literally, as cells have a tendency to accommodate to temperature changes over time.
Effects of temperature will be discussed further later on. The resting potential of most neurons is
approximately -70mV. In the conventional HH-theory the thing of primary interest is the flow of
ions in and out of the cell and the resulting voltage changes across the membrane. The soliton
theory on the other hand considers more mechanical features of the membranes and changes in
these.

Again for further details see for example [42] or [37].

Phase transitions

As mentioned the membrane consists primarily of lipids organized in a double layer. We need to
consider the lateral organization of the molecules as well as the radial. That is we need to consider
the organisation in the plane of the membrane. It turns out that at biological temperatures the
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Figure 6: Heat capacity profile for four different types of biomembrane. From the top artificial
unilamellar dipalmitoylphosphatidylcholine (DPPC) vesicles, bovine lung surfactant, E.coli mem-
branes and bacillus substilis membranes. Clear transition peaks are seen in the immediate vecinity
of biological temperatures indicated by the dotted line – bovine body temperature of 37◦C. The
peaks shaded grey are transition peaks associated with protein folding. Figure taken from [34].

membranes are not organized in a strict lattice structure, but behave more like a liquid crystal,
as can be found in many flat screen TVs [34]. The molecules are more or less free to move around
among each other in the lateral plane. A few degrees below biological temperatures is found a
phase transition in a range of different membranes. When cooled the liquid crystal membrane
transitions to another phase state of more ordered and rigid structure. In fact they are seen to be
organized laterally in a triangular lattice. This more compact organisation results in a decrease
in membrane area. In figure 6 heat capacity profiles for four different types of lipid membranes
are shown. All four graphs show clear phase transitions near biological temperatures.

Transversally (or radially) a change is observed as well. The hydrocarbon tails are frozen into
a stretched out configuration, where at warmer temperatures they are more free to wiggle about.
This means the membrane thickens. In figure 7 this change is sketched out.

These changes result in an increase in membrane thickness of about 16%, an increase of
membrane volume of about 4%, and a decrease in membrane area of about 24% [34]. Here we
have implicitly assumed a membrane consisting of only one type of lipid. In reality biological
membranes are obviously much more complicated comprising different types of lipids in both
saturated and unsaturated forms and in addition to that all the different embedded membrane
proteins. This obviously complicates the image a bit, but nonetheless structural changes such
as thickening of the membrane and shortening of the nerves during pulse propagation have
been observed n experiments [63][13][62][29]. A range of other characteristics of the membrane
change radically near the phase transition. The membrane is compressed causing a rise in lateral
density. This steep rise in density causes a spike in the lateral compressibility. This increase in
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Figure 7: Organisational changes in the lipid bilayer below (left), at the verge (middle) and above
the phase transition (right). Figure taken from [25].

compressibility is what is going to allow the non-linear behaviour we are looking for. This will be
further unfolded later.

2.2 T h e H o d g k i n - H u x l e y m o d e l

In the following several sections the theory of the central components of the two models are laid
out to give an understanding of the differences in their nature. Some aspects that might not be
central to the models but play key roles in relation to the experiments performed for this thesis
will be expanded in detail, some here and some further in the experiments chapter.

The ionic hypothesis

The Hodgkin-Huxley model [38] or the ionic hypothesis is on the surface very simple, but at
closer look things are not as straight forward, as they seem at first glance. The ionic hypothesis
as the name suggests deals with currents of ions flowing into and out of the cell as the primary
cause of the electrical signal. It is in nature a purely electrochemical theory. When ion channel
proteins embedded in the membrane are opened, electrical and chemical gradients drive the ions
through the channels causing the membrane potential to change locally. All these currents of
charge can be easily described and understood using an equivalent circuit picture.

The ions travelling through the ion channels, by the virtue of their charge, represent an
electric current running through a resistor. As mentioned the ion channels are selective towards
specific ions. They thereby have a specific resistance, or equivalently conductance, for a given ion.
In Hodgkin and Huxley’s original work they discovered the particular importance of precisely
the sodium and potassium ions through a series of so called voltage clamp experiments. In a
voltage clamp experiment the researcher inserts an electrode into the cell and another is kept
outside. One can then control the voltage drop across the membrane and measure the resulting
current across it. When they had conceived the idea that the transmembrane current could be
separated into components carried by different ions, the next step was naturally to determine
what these ions were. This could be done by looking at the reversal potential for the measured
current and comparing it with those found for various ions using equation 2.1 in combination
with removing or substituting ions in the surrounding solution. The two main components of the
transmembrane current were identified as being sodium and potassium currents. It was found
that the conductances for sodium and potassium change on different time scales and differently
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Figure 8: Ion conductances for sodium gNa and potassium gK as well as the total membrane
conductance g during a propagated action potential V as a function of time. The graphs are
numerical solutions to equation 2.19 and are from Hodgkin and Huxley’s original paper [38].

as functions of voltage. This calls for some selective mechanism only letting sodium pass through
the membrane at the upstroke of the AP and then later also opening the gates for potassium ions.
The time dependence of the conductances can be seen In figure 8. The selectivity for the different
ions can be elegantly illustrated by applying certain neurotoxins such as tetrodotoxin (TTX)
or tetraethylammonium (TEA) to the surrounding solution. When TTX is applied all negative
(inward) currents are in voltage clamp experiments found to disappear. Conversely when TEA is
applied all positive (outward) currents disappear. This elegantly shows that the two components
of the combined current must happen in different ways. TTX will be making appearances from
time to time throughout this thesis

This selectivity has puzzled researchers, and different models for the mechanism of the
selectivity have been suggested over the years. Some suggested that the ions did in fact not travel
through passive channels but were actively transported by carrier proteins. Today researchers
have returned to the channel model, as it has been refined over the years. Naively we could
suggest that a channel filters out ions depending on their size. Obviously any channel can only
let through ions of smaller dimensions than the dimensions of its own pore. An important thing
to keep in mind is that an ion in an aqueous solution does not travel alone. Water molecules are
polar and they therefore tend to gather round the ions. This means that for instance a sodium
ion always travels with an entourage of water – the waters of hydration. Sodium and potassium
have the same charge, but since sodium is smaller, its charge is more localised and therefore it has
a larger water entourage than potassium, and effectively it is larger. This is not enough however.
This could explain why potassium is preferred over sodium but not the other way around. It was
proposed that inside the channel there is a filter, which requires the ions to shed their waters
of hydration in order to pass. This is only energetically favourable if the chemical bonds that
are formed with amino acid residues on the walls of the filter are able to compensate the energy
cost of shedding the waters of hydration. As we see the idea of selective ion channels is not a
trivial one devoid of problems. It is exactly this selection mechanism that grants the channels
their specific conductance and thereby also resistance for specific ions.

That was a small detour. Let us now return to establishing our equivalent circuit picture.
The membrane is by default non-permeable for ions. It separates the conducting intracellular
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Figure 9: Circuit diagram of the equivalent circuit used to describe the cell membrane and the
embedded proteins such as ion channels and pumps in the Hodgkin Huxley model. The membrane
represents a capacitor, the ion channels represent resistors with specific resistances for their
preferred ions. And the pumps maintain chemical and thereby electrical gradients across the
membrane which act as batteries continuously being charged by the pumps. Figure taken from [75].

and extracellular fluids. It has a non-zero resting potential. It thus acts as a capacitor with some
capacitance Cm. The active channels such as the sodium-potassium pump mentioned earlier
maintain the potential difference across the membrane. These chemical gradients act as batteries
producing an electromotive force, and the active transporters such as the sodium-potassium pump
continuously charge the batteries. The membrane with ion channels and ion pumps can therefore
be seen as a simple RC-circuit like the one shown In figure 9.

During the upstroke of an action potential charge runs from outside the cell into it. It flows
over the capacitor and over the resistors. The current flowing over the capacitor is

Q = CV ⇒ Im = Cm
∂Vm
∂t

+
∂Cm

∂t
Vm. (2.3)

If we assume the capacitance does not change significantly with time, we can neglect the last
term. This might be somewhat problematic, as will be discussed later on, but for now we will
discard the last term. The current running through say a sodium channel is given by Ohm’s law
as

INa = gNa (Vm − VNa) , (2.4)

where gNa is the conductance of the sodium channel, and VNa is the reversal potential of the
sodium channel given by the Nernst equation (2.1). Likewise we get a similar current contribution
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from the other ion channels (potassium and a leakage current), and combining these four currents
we get the Hodgkin-Huxley equation in its most generic form

I = Cm
dVm
dt

+ gNa (Vm − VNa) + gK (Vm − VK) + gl (Vm − Vl) . (2.5)

The subscript l in the conductance and reversal potential in the last term refers to a leakage
current of various ions. Though predominantly chloride, other ions contribute as well, and they
are all collected under this leakage term.

Equation 2.5 looks simple and elegant, and in a way it is, but partly because we have hidden
all the subtleties of the ion channel behaviour in the terms gNa, gK , and gl. The next challenge
is to find expressions for these functions. They are obviously functions of time, but as the sodium
and potassium channels are voltage gated, the conductances are also functions of voltage. They
also change with various thermodynamic parameters such as temperature as will be shown later.

The time and voltage dependencies were found simply by fitting experimental data and is not
based on a theoretical foundation. The refined equation is given as

I = Cm
dVm
dt

+ ḡNam
3h (Vm − VNa) + ḡKn

4 (Vm − VK) + ḡl (Vm − Vl) , (2.6)

where ḡIon is the maximal conductance for the given ion, n, m, and h are dimensionless
quantities between 0 and 1 indirectly expressing what ratio of channels are open at a given point
in time. The fraction of the maximal conductance for a given ion at a given point in time is
obviously given by the factors m3h and n4, and not by m, h, and n individually. The values for
the exponents of these factors n, m, and h – 4, 3, and 1 respectively – have since been given a
physiological interpretation. The idea behind this is that each ion channel protein consists of 4
subunits that all contribute to the opening and/or closing of the channel – all four have to open
for the channel as a whole to open. It has therefore been put forward that the four n’s in the
equation above each describe the probability of one of these subunits opening. Equivalently the
three m’s and one h for the sodium channel also correspond to subunits in the sodium channel.
This interpretation should not be taken too literally though. The exact values for the exponents
have been found simply from fitting to data and could might as well have had another value, and
they could even have been non-integer. The time dependence of the conductance is expressed by
the time dependence of the gating variables n, m, and h. Due to the binary nature of the ion
channels the time dependence can be described by a set of three simple master equations

dm

dt
= αm (Vm) (1−m)− βm (Vm)m

dn

dt
= αn (Vm) (1− n)− βn (Vm)n

dh

dt
= αh (Vm) (1− h)− βh (Vm)h, (2.7)

where the αion’s and βions’s are rate constants that depend on voltage but not on time. If we
divide the above equations with αion (Vm) + βion (Vm) we can rewrite the above equations thus

τm (Vm)
dm

dt
= m∞ (Vm)−m, (2.8)

and likewise for the other two, where τm is given by

τm (Vm) =
1

αm (Vm) + βm (Vm)
. (2.9)
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m∞ is given by

m∞ (Vm) =
αm (Vm)

αm (Vm) + βm (Vm)
. (2.10)

When writing the equations on this form we see that for a given value of Vm m changes with
time as an exponential function with time constant τm and goes towards the value m∞.

The explicit voltage dependencies found by Hodgkin and Huxley for αn,m,h and βn,m,h in the
squid giant axon are here included for completeness. They are given by

αn =
0.01 (Vm + 10)

exp
(
Vm+10

10 − 1
)

βn = 0.125 exp

(
Vm
80

)
. (2.11)

αm =
0.1 (Vm + 40)

1− exp (−0.1(Vm + 40))

βm = 4 exp (−0.0556(Vm + 65)) . (2.12)

αh = 0.07 exp (−0.05(Vm + 65))

βh =
1

1 + exp (−0.1(Vm + 35))
. (2.13)

Now that we have unpacked equation 2.5 it is apparent that the story is a little more
complicated than it would appear at first.

Cable theory

When an action potential is initiated, the transmembrane current behaves as described in the
previous section, but that local potential needs to be translated into a longitudinal current running
down the axonal cable. The appropriate differential equation to describe this – the cable equation
– can be derived fairly readily by considering and summing all the currents flowing into and out of
a segment of axonal cable of length ∆x [9].

We can expand our equivalent circuit picture in order to understand the longitudinal currents.
The circuit in figure 9 describes the mechanisms at a single point or small segment on the axon.
The axon comprises many such circuits connected to each other side by side in parallel. The
circuits are connected by the axoplasm inside the cell and the surrounding extracellular fluid
outside the cell. Outside the cell we have a large body of conducting fluid and therefore lots of
ions at our disposal, and we can therefore neglect the extracellular resistance. We cannot however
neglect the resistance of the axoplasm. The resistance of a segment of cable of length ∆x and
radius a must be RL = rL∆x/

(
πa2
)
, where rL is the longitudinal resistivity of the axoplasm.

Thus by Ohm’s law the current flowing through that segment is IL = −πa2∆V/ (rL∆x), where
∆V is the voltage drop across the segment. Taking the limit of ∆x→ 0 yields

IL =
−πa2

rL

∂V

∂x
. (2.14)

This is the longitudinal current at a given point on the axon. Again considering a piece of
axon of length ∆x the current running both into and out of the segment at the ends is given by
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the above expression, but there are other contributions we need to consider as well. We know that
the membrane acts as a capacitor so some current is needed to charge it: 2πa∆xcm∂V/∂t, where
cm is the specific membrane capacitance. Current running out of the cell through ion channels
is, expressed in terms of a current per unit membrane area im, and likewise for current injected
into the cell by an electrode ie, given as 2π∆xim and 2π∆xie respectively. Summing all of these
expressions and again taking the limit of ∆x→ 0 gives us the general cable equation

cm
∂V

∂t
=

1

2arl

∂

∂x

(
a2∂V

∂x

)
− im + ie. (2.15)

Assuming that the radius of the axon a does not change significantly with x, we can pull it
outside the derivative. If we assume that im fulfils Ohm’s law, we can simplify equation 2.15 to
get the linear cable equation

a

2rl

∂2V

∂x2
= cm

∂V

∂t
+
V

rm
+ ie. (2.16)

This can be further rewritten to clarify the interpretation of the equation by introducing the
length constant λ =

√
arm/2rl and the time constant τ = rmcm

λ2∂
2V

∂x2
= τm

∂V

∂t
+ V − rmie. (2.17)

The two quantities τm and λ set the scales for the time and spatial developments respectively.
Note that τm = rmcm is just the time scale from elementary circuit analysis of an RC-circuit. It
sets the time scale for charging and discharging the membrane capacitor.

If we realise that the right side of equation 2.16 is just the right side of equation 2.6 (plus an
injection current which we set to zero), we can combine the two equations to get [38]

a

2rl

∂2V

∂x2
= Cm

dVm
dt

+ ḡNam
3h (Vm − VNa) + ḡKn

4 (Vm − VK) + ḡl (Vm − Vl) . (2.18)

Hodgkin and Huxley assumed that the propagating AP fulfilled the linear wave equation
∂2V/∂x2 = (1/c)2∂2V/∂t2, where c is the conduction velocity. This is the same as making the
reasonable assumption that x = ct. Taking the differential we get ∂x = c∂t, since c is constant.
This allows us to remove the spatial derivative in the above equation leaving us an ordinary
second order differential equation

a

2rlc2

∂2V

∂t2
= Cm

dVm
dt

+ ḡNam
3h (Vm − VNa) + ḡKn

4 (Vm − VK) + ḡl (Vm − Vl) , (2.19)

This equation allows us to calculate the propagating AP in the Hodgkin-Huxley model. We
will in the next section find another differential equation describing APs (or solitons) in the
soliton model.

Before moving on to the soliton model we need to consider the effects of myelination in the
HH-picture. Myelinated axons are basically axons wrapped in extra layers of cell membrane from
the surrounding glial cells. This can be seen on figure 19. We can use the rule for capacitors in
series to find the inverse of the total capacitance of the myelinated segment by adding the inverse
of the capacitance for the individual layers. But instead of adding individual layers of myelin we
can integrate over the thickness of the membrane itself and the myelin. If a single layer of cell
membrane or myelin has capacitance per unit area cm and thickness dm, and the segment has
length L and radius a we thus get [9]
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1

Cm
=

1

cm2πdmL

∫ ao

ai

da

a
=

ln (ao/ai)

cm2πdmL
, (2.20)

where ai and ao are the inner and outer radii of the myelinated segment respectively. A
segment of myelinated axon has very low capacitance but very high membrane resistance. We
can therefore neglect the last term in equation 2.16, and if we also set ie = 0, we get the diffusion
equation

∂V

∂t
= D

∂2V

∂x2
, (2.21)

with a diffusion constant of D = πaiL/Cmrl. Note that the denominator in this diffusion
constant is the product of a capacitance and a resistance – a time constant for an RC-circuit.
The larger the denominator is (the RC-circuit time constant), the smaller the diffusion constant
and therefore the slower the propagation velocity. It is now clear that myelination leads to lower
membrane capacitance and thereby to a larger diffusion constant for the saltatory conduction and
thereby a higher conduction velocity. Another way of understanding the fact, that myelination
leads to larger conduction velocities, is that less current, and thereby time, is wasted trying to
charge the membrane because of the lower capacitance. Another feature of myelinated nerves
is that the conductances differ at different points on the axon. The ion channel proteins are
concentrated at the nodes of Ranvier where there is no myelin sheath. The concentration here is
significantly larger than in a given patch of equal size on a nonmyelinated axon.

2.3 T h e s o l i t o n m o d e l

In 2005 researchers at the Niels Bohr Institute in Copenhagen suggested a new model for nerve
signal propagation which is fundamentally different from the HH-model [34]. Where the HH-model
is electrochemical, based on ions passing through protein channels in the cell membrane to create
voltage spikes, the soliton model is in its nature mechanical (or acoustic) and thermodynamic. It
is interested in changes in the mechanical properties of the membrane due to a phase transition
as described in the section Phase transitions.

It has long been known that nerves contract during firing [63], and the changes in the other
spatial dimensions, that are quite naturally related to this contraction, have since been measured
[62]. These mechanical changes are completely ignored in the HH-model. For instance in the
derivation of the HH-equations we assumed that the capacitance of the membrane does not change
with time, and therefore we neglected the last term of equation 2.3. If the membrane changes
thickness this is obviously not true. These mechanical changes are at the very heart of the soliton
model. It is the propagation of these – as mechanical or acoustic waves – that is in focus.

The soliton model is a younger theory than the HH-model. In the HH-model a phenomenology
for the observations, made in particular in the first half of the 20th century, has been found
and established as consensus (for most cases) over the years. The model provides a fairly well
defined framework for describing a range of different phenomena related to nerve signals, as many
researchers over the years have spent considerable effort to refine and extend the theory. The
soliton model is very much still work in progress. This is worth keeping in mind when reading
the following sections. There are still missing pieces of the puzzle, but more and more pieces are
being found and put in place, and the model provides an increasingly complete picture. This also
means that we will spend some more time considering the soliton model than we did with the
HH-model in the sections above.

16



Solitons

A soliton is a wave pulse (or packet) that can maintain its shape and speed while travelling as
well as after collisions with other solitons. This latter fact will be important when we get to
discussing the experimental results. The stability of solutions to the governing equations, we will
derive in ths section, has been studied theoretically and it was found that they are stable under
head-on collisions. Solitons are known from a range of other fields and have been known for a
long time. Solitons were first described by the Scottish engineer John Scott Russell in 1834 [57].

"I was observing the motion of a boat which was rapidly drawn along a narrow channel by a
pair of horses, when the boat suddenly stopped—not so the mass of water in the channel which it
had put in motion; it accumulated round the prow of the vessel in a state of violent agitation, then
suddenly leaving it behind, rolled forward with great velocity, assuming the form of a large solitary
elevation, a rounded, smooth and well-defined heap of water, which continued its course along the
channel apparently without change of form or diminution of speed. I followed it on horseback, and
overtook it still rolling on at a rate of some eight or nine miles an hour, preserving its original
figure some thirty feet long and a foot to a foot and a half in height. Its height gradually diminished,
and after a chase of one or two miles I lost it in the windings of the channel. Such, in the month
of August 1834, was my first chance interview with that singular and beautiful phenomenon which
I have called the Wave of Translation."

Solitons can occur when non-linear effects are able to counterbalance the distortive effects of
the dispersion in the media. In a dispersive media the speed of sound will depend on frequency.
We know from Fourier theory that a solitary wave pulse has to be composed of several frequency
components. The shape of such a solitary wave pulse, travelling through a dispersive medium,
will therefore be distorted by the dispersion, as not all of the components are travelling equally
fast. The isentropic lateral area compressibility of the membrane κAS is found empirically to be
a decreasing function of frequency [34], and from fluid mechanics we have the expression for
the speed of sound c2 = 1/ρ0κ

A
S so the speed of sound in the cell membrane is through κAS an

increasing function of frequency.
The speed of sound is known to depend strongly on the density. The density of the membrane

changes dramatically in the neighbourhood of the before mentioned phase transitions that have
been found at temperatures slightly below biological temperatures. This introduces a non-linearity
into the system. As a pulse propagates it changes the mechanical properties of the membrane
which then in turn affect the propagation of the pulse. It is this non-linearity which is going to
allow solitons to propagate in nerve membranes. Non-linear effects also tend to distort waves
but in a different way than dispersion does. In the example of John Scott Russell’s translational
wave non-linear effects would try to break the wave as we see water waves doing at the shores.
The interplay between these two distortive effects allows solitons to exist when they exactly
counterbalance each other.

The jumping off point for a mechanical (or acoustic) wave description of nerve signals has to
be the wave equation

∂2∆ρA

∂t2
=

∂

∂x

(
c2∂∆ρA

∂x

)
. (2.22)

Here ∆ρA is the difference in lateral density of the membrane from the equilibrium value ρ0,
and c is the speed of sound. If the speed of sound was constant, the above equation would be
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exactly the regular linear wave equation. However we just noted above that the speed of sound
depends strongly on the local density. We will deal with this in a moment, but first we will
turn our attention to dispersion. Biological membranes show acoustic dispersion so in order to
accommodate this phenomenon in the mathematics we must include an extra derivative term in
our wave equation

∂2∆ρA

∂t2
=

∂

∂x

(
c2∂∆ρA

∂x

)
− h∂

4∆ρA

∂x4
. (2.23)

Here h is a constant which exact value has to be determined from experimental data. If
we plug in a plane wave solution ∆ρA = ρ0 sin (ωt− kx) with frequency ω, wavenumber k and
amplitude ρ0 into the above equation we get the dispersion relation

v2 =
w2

k2
= c2

0 + hk2 ≈ c2
0 +

hω2

c2
0

. (2.24)

This dispersion relation tells us that the propagation velocity increases with increasing
frequency which is what is expected based on experimental findings [34]. It is not given that
this dispersion relation describes the actual dispersion as best possible, and further data on the
frequency dependence of the compressibility would be required to illuminate this further, but
for now this relation more or less behaves in the way we want it to. It also has to be noted that
when we introduce the non-linear effects below we will no longer get the dispersion relation above.
It only holds for small amplitude waves (when only the first term of the Taylor expansion below
is kept).

Now let us turn our attention to the other effect trying to tear our soliton apart. The
non-linear effects. As mentioned above the speed of sound depends on the local lateral density
of the membrane. This is obviously a function of x, and therefore we cannot pull c outside the
derivative. We must use a non-linear wave equation instead. We therefore expand the speed of
sound around its equilibrium value in the fluid phase c0 keeping only terms up to second order

c2 =
1

ρAκAS
≈ c2

0 + p∆ρA + q∆
(
ρA
)2
. (2.25)

Here again p and q are constants, which need to be found from fitting to experimental data.
If we use this expression for the speed of sound our wave equation looks like this

∂2∆ρA

∂t2
=

∂

∂x

((
c2

0 + p∆ρA + q∆
(
ρA
)2) ∂∆ρA

∂x

)
− h∂

4∆ρA

∂x4
. (2.26)

Just as we used the wave equation to get rid of the spatial derivative in equation 2.18, we can
rewrite the above equation by introducing the new variable z = x− vt

v2∂
2∆ρA

∂z2
=

∂

∂z

((
c2

0 + p∆ρA + q∆
(
ρA
)2) ∂∆ρA

∂z

)
− h∂

4∆ρA

∂z4
. (2.27)

This is in the soliton model the equivalent differential equation to equation 2.18.

Lipid pores

In the last section we derived the governing equations for the mechanical pulses travelling down
the axonal membrane during signalling. These can be solved and they allow for solitons just as
hoped [45][6], but we will not delve further into the mathematics of solving the equations here.
When discussing the HH-model we talked about voltage changes and transmembrane currents.
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Our understanding of what nerve signals are has since the days of Galvani or at least since the
days of Bernstein been that they are electric pulses. So far while discussing the soliton model
we have not talked about voltage or currents or the like at all. Let us now take a look at how
electricity enters the picture in the soliton model.

In the HH-picture described earlier we assumed that ions travel through ion channel proteins
embedded into the membrane. In the 70s and 80s Erwin Neher and Bert Sakmann developed an
experimental technique known as the patch clamp technique [52]. This would later earn them
the Nobel Prize. A patch of membrane is isolated inside the tip of a glass micropipette with
an electrode inside of it. This allows the researcher to make recordings from a delimited area
of membrane. With sufficiently small pipettes one can isolate patches containing just one or a
few membrane proteins. This elegant technique shed further light on the details of the role of
ion channels in signalling. However while one can isolate a single membrane protein from the
other proteins, one cannot isolate it from the surrounding lipid membrane. One will always have
large numbers of lipid molecules in ones patch. In a square µm of membrane you would normally
find something on the order of 100s or 1000s of protein molecules, depending on whether it is a
myelinated nerve or not, but you would find several millions of lipid molecules [4]. From a certain
perspective it might be natural to ascribe the observed behaviour of a patch of membrane to
the thing that sticks out from the bunch – the proteins. But we cannot just neglect the lipid
membrane and assume that it plays no role in the transmembrane currents without testing it.
This has been tested. Various researchers have investigated the conductive properties of pure lipid
membranes, that is, in the absence of membrane proteins [55][51][20][32]. It has been found that
these pure lipid membranes show behaviour remarkably similar to that found in actual biological
membranes. In figure 10 is shown a comparison of the transmembrane current in a patch clamp
experiment on a biological membrane and on an artificial one devoid of membrane proteins.

Figure 10: Comparison of transmembrane current events from patch clamp experiments on a
biological membrane (acetyl choline receptor muscles in frog)(top) and DOPC:DPPC artificial
pure lipid membrane (bottom). Data are from [52] (top) and [31] (bottom). Figure taken from
[32].

It is known that applying an electric field to a cell can increase the permeability of the cell
membrane for various substances. This phenomenon is known as electroporation. In order for
these lipid pores, which have been observed, to have any significance for nervous signalling they
have to be able to form under biological conditions. There is, as we know, a nonzero electric
potential across the membrane of a neuron, but this is not enough to form pores able to explain
the voltage changes observed. Furthermore if the pores are to explain part of the electric pulse
associated with the action potential they must only form where the AP is. The typical resting
potential of nerve membrane is −̃70mV . The voltages applied in electroporation are on the order
of several hundreds of millivolts. The resting potential is thus not enough to account for these
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lipid pores. If we take a closer look at the thermodynamics of the situation, however, we find
something interesting [32][44].

To create a lipid pore some free energy barrier has to be overcome. In electroporation this
is accomplished by applying large voltages (in the context of cell biology). In the situation we
are interested in the properties of the membrane alone has to allow for pore formation without
application of some external force but simply through thermodynamic fluctuations. It has been
found that both the heat capacity, the compressibility and the permeation rates of various ions
change radically around the phase transition [34]. In figure 11 is shown graphs of the permeation
rate of sodium ions and rhodamine 6G dye molecules, along with heat capacity profiles and
profiles for lateral density and compressibility.

Figure 11: Left: permeation rate of rhodamine 6G molecules through DPPC:DPPG artificial lipid
membrane as a function of temperature (dots) and heat capacity profile for the same membrane
(solid line). The dotted line indicates the melting temperature. Middle: permeation rate of sodium
ions through a DPPG artificial membrane as a function of temperature (dots). The dotted line is
just to illustrate the tendency in the data. Right: heat capacity profile (top), lateral density profile
(middle) and lateral compressibility profile for an artificial DPPC membrane. Two first figures
found in [32] and the last one in [34]. Data from [55] (left, middle) and [34] (right).

We will now find relations between these quantities. In equilibrium thermodynamics we just
look for the state that maximises the entropy in order to find the actual state of the system.
Here we are, however, interested in fluctuations around equilibrium, and therefore we have to
look outside of the entropy maximum. For small variations δni of variables ni we can to a good
approximation expand the entropy to second order around its equilibrium value S0, and since S0

is the entropy maximum, the first derivatives are zero, so we discard the linear terms

S ≈ S0 +
1

2

∑
ij

∂2S

∂ni∂nj
δniδnj = S0 −

∑
ij

gijδniδnj , (2.28)

where gij = −0.5
(
∂2S/∂ni∂nj

)
. For notational clarity the δ before ni has been dropped in

the partial derivatives. This notation will be kept throughout these derivations. Boltzmann tells
us that the probability of a given fluctuation δni is given by

P (δni) = P0 exp

(
−S
k

)
= P0 exp

(
−giiδn2

i

k

)
, (2.29)

where k is the Boltzmann constant and P0 is a proportionality constant to normalize the
probability distribution. For a Gaussian distribution such as the above P0 is thus P0 =

√
gii/kπ.

Taking the second moment as a quantitative measure of the strength of the fluctuation we get
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〈δn2
i 〉 =

∫
δn2

iP (δni) dni =
√
gii/kπ

∫
δn2

i exp

(
−giiδn2

i

k

)
dni =

k

2gii
. (2.30)

Here the brackets indicate the expectation value or the thermodynamic average. The above
result can also be derived in a similar but stricter way by considering the second moments of the
Boltzmann distribution, as we have done above, but without using an expansion of the entropy
[23]. We can write this in terms of the corresponding thermodynamic forces Xi.

Xi =
∂S

∂ni
= −

∑
j

gijδnj ⇒ 〈δn2
i 〉 = k

(
∂Xi

∂ni

)−1

=
k

gii
. (2.31)

The above result tells us that the strength of the fluctuations are linked to the curvature of
the entropy potential through gii and also to changes in the relevant thermodynamic force. Now
let us look at the heat capacities. The heat capacities at constant volume and constant pressure
are defined as

CV =
∂Q

∂T
=
∂E

∂T
, CP =

∂H

∂T
, (2.32)

respectively, where Q is the heat, T is the temperature, E is the internal energy, and H is the
enthalpy. Rewriting the differentials and using the fact that XE = 1/T plus equation 2.31 we get

∂T = T 2∂

(
1

T

)
, ∂E = ∂nE , XE =

1

T
⇒ (2.33)

CV = − 1

T 2

(
∂XE

∂nE

)−1

=
〈δn2

E〉
kT 2

=
〈E2〉 − 〈E〉2

kT 2
. (2.34)

Likewise we get expressions for CP and the volume and area compressibilities κVT and κAT

CP =
〈H2〉 − 〈H〉2

kT 2
,

κVT =
〈V 2〉 − 〈V 〉2

V kT 2
,

κAT =
〈A2〉 − 〈A〉2

AkT 2
, (2.35)

where obviously V and A are the membrane volume and membrane area respectively. The
subscript T in κVT and κAT indicate that we are now talking about the isothermal compressibilities
whereas in the derivation of equation 2.26 we used the isentropic compressibility. On experimental
grounds it has been proposed that near the phase transition the change in membrane volume is
closely and simply related to the change in enthalpy. Similarly the change in membrane area is
also related to change in enthalpy [29][13]

∆V (T ) = γV ∆H (T ) , (2.36)

∆A (T ) = γA∆H (T ) ,

where γV and γA are just proportionality constants. Now we can combine the above expressions
with those in equation 2.35
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∆κTV =
γ2
V T

V
∆cP ,

∆κTA =
γ2
AT

A
∆cP . (2.37)

Now we have found relations that link the volume and area compressibilities to the heat
capacity at constant pressure. It is very reasonable to assume that the free energy necessary for
creating a pore should be closely related to the area compressibility. The membrane that used to
be, where the pore now is, obviously has to be pushed out of the way somehow. This has to be
easier, and therefore less costly in terms of energy, the larger the area compressibility is. We will
now find a relation that describes this intuitive assumption. We consider an area fluctuation of
∆A and expand the free energy as a function of ∆A around its equilibrium value F0 and keep
only terms up to second order. The linear term is neglected as one would expect both positive
and negative fluctuations ∆A. The difference in free energy then becomes

∆F =
1

2

∂2F

∂A2
∆A2. (2.38)

This can be rewritten in terms of the area compressibility

κTA = − 1

A

∂A

∂Π
⇒ ∆F =

1

2

1

κTAA
∆A2, (2.39)

where Π is the lateral pressure. This is equivalent to the potential energy derived from Hooke’s
law with an elastic constant of 1/κTAA. The probability of such a fluctuation is of course again
given by the Boltzmann factor, and we note that the probability of fluctuations of different sizes
is the same as long as the fraction ∆A2/κTA is the same. This means that the size of the pores
scales as

∆A2 ∝ κTA. (2.40)

Finally we want to link this to the permeability of the membrane. We proceed in the same
manner as above by expanding the permeability as a function of ∆A around its equilibrium value
P0 up to second order and discard the linear term. It is then just a matter of using equations
2.40 and 2.37 to get

P = P0 + α∆cP , (2.41)

where α is just a constant. In the phase transition the heat capacity, the compressibility
and the permeability of the membrane are all seen to change dramatically in strikingly similar
manners as seen In figure 11. We have now also found mathematical relations that link all of
these quantities. In the vicinity of the phase transition the area compressibility rises, and the free
energy needed in order to create a pore is lowered thus allowing for more and bigger pores thereby
increasing the permeability. The phenomenon that Hodgkin and Huxley measured – currents
of ions permeating through the cell membrane – has traditionally been ascribed to ion channel
proteins. But pure lipid membranes have shown similar behaviour and quantised currents. In
the HH-model the ion channel proteins are highly selective towards a preferred ion. We have not
mentioned selectivity yet when discussing lipid ion channels. It has been found that lipid ion
channels show selectivity to some extent [5]. In figure 12 current-voltage relations are shown for
different ions for a synthetic DPPC membrane.
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Figure 12: Transmembrane current as a function of voltage for a DPPC lipid membrane for
different monovalent ions – 1: Li, 2: Na, 3: K, 4: Rb and finally 5: Cs. The figure is taken from
[5].

In the discussion of I-V curves it is interesting to take a look at the effects of electrostriction
[33][50]. The charges on the two plates of a capacitor attract each other. This attraction causes a
mechanical force on the capacitor. This force is given by

F =
1

2
Eq =

1

2

Vm
D
q =

1

2

V 2
mCm

D
, (2.42)

where E = Vm/D is the electric field associated with the membrane potential Vm, q is the
charge on the capacitor and D is the thickness of the membrane. The quadratic dependence on
the voltage tells us that a hyperpolarisation of the membrane leads to a greater mechanical force,
and inversely depolarising the membrane leads to a smaller force. A strong force normal to the
membrane will suppress the gel phase as the membrane is thinner in the fluid phase. When the
electric force causes a change in membrane thickness from D1 to D2 the force does work given by

∆W =

∫ D2

D1

FdD ∝ V 2
m. (2.43)

It is therefore reasonable to assume that the free energy of pore formation is also related to
the square of the voltage

∆F = ∆F0 + αV 2
m, (2.44)

where ∆F0 is the free energy of pore formation without any applied voltage. α is merely a
proportionality constant. From Boltzmann statistics we have that the probability of finding an
open pore is given by

Popen (Vm) =
K (Vm)

1 +K (Vm)
, (2.45)

where K (Vm) is the equilibrium constant between open and closed pores
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K (Vm) = exp

(
−∆F

kT

)
. (2.46)

Through Ohm’s law this leads to a current-voltage relation as

Im = gpPopen (Vm − E0) , (2.47)

where gp is the conductance for a single pore and E0 is the Nernst potential. In [50] this
expression is compared to experimental data. It is found to describe data very well. The I-V
profiles found in pure lipid membranes are also compared to I-V curves for a particular family of
protein channels. The striking similarity indicates that these I-V curves might as well stem from
lipid pores as from protein channels.

It has been suggested that membrane proteins could play a role in catalysing and facilitating
pore formation [49]. The presence of proteins expectedly changes the thermodynamic properties
of the membrane. Some simple geometrical considerations nicely illustrate the effects of proteins.
A protein embedded into a lipid membrane does not necessarily have the same thickness as the
surrounding lipid. If it for instance is a little thicker it will tend to stretch the thickness of
the lipids in its neighbourhood. The phase transition is linked to geometrical changes of the
membrane, thus around the protein the gel phase is slightly favoured. This means around a
gel-favouring protein one expects to find greater fluctuations of for instance membrane area
making pore formation more likely. Lipid pores show several properties similar to those of a
protein channel and could potentially, at least in part, explain the voltage pulse accompanying the
soliton during signalling. Another phenomenon that might play a role in this is electromechanics.

Before discussing electromechanics we might note something about the nature of these two
models that has now become more apparent. The fundamental question in the comparison of
these models is which of the two pulses – the mechanical and the electrical – is the one primarily
responsible for driving the action potential. In the HH-model the mechanical perturbation of
the membrane, which is observed, must be a consequence of the electrical signal. In the soliton
model it is the other way around. We will later on discuss some other suggested models that are
somewhere in between these two views.

Electromechanics

It is reasonable to assume that the mechanical deformation of the membrane might affect its
electrical properties as well. The capacitance is an obvious example of an electrical property
which changes with variations in area and thickness of the membrane. In order to get the full
picture of the interplay between the electrics and the mechanics of the situation one would need
to consider a long series of possible effects. Below we will discuss only a couple of possibilities in
this context to illustrate the principles and ideas at work in the soliton model.

As mentioned the cell membrane consist mainly of a lipid bilayer. The exact chemical
composition of this lipid bilayer varies from membrane to membrane but the two individual layers
in a single membrane are not necessarily identical either [50][30]. They are differently charged
for instance. The non-zero resting potential of a neuron results in a charge asymmetry of the
two surfaces of the membrane. This asymmetry allows mechanical perturbations to change the
membrane potential. The Gouy-Chapman theory describes the interactions of a charged surface
with ions in a surrounding solution. The ions create a layer of surface charge on the cell membrane
in this case. The Gouy-Chapman theory also takes into account the effects of thermal motion and
describes how the potential due to the accumulated charges near the surface decays with distance
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from the surface. In [4] and [35] the membrane potential at the inner and outer surfaces of the
membrane have been estimated using the Gouy-Chapman theory. This is a first rough estimate
of the electromechanical effects at play, and in later publications by the same authors the view
of electromechanical phenomena in biomembranes has been refined. We will look at this below,
but seeing as the Gouy-Chapman approach was the first attempt to describe these phenomena,
we will also start here. The Gouy-Chapman theory yields an expression for the surface charge
density σ relating it to the surface potential V0 [30]

σ =
√

8ε0εc0kT sinh

(
eV0

2kT

)
, (2.48)

where ε is the relative permittivity of water, and ε0 is the vacuum permittivity, c0 is the
ionic strength, k the Boltzmann constant, and e the elementary charge. For small potentials
|eV0| < 2kT ⇒ |V0| < 50mV we can expand the hyperbolic sine function to zeroth order and get
[4]

V0 =
1

ε0εκ
σ, (2.49)

where κ is the Debye constant. σ is obviously different for the gel and the fluid phases of
the membrane. Using the above expression one can calculate an estimate for the voltage change
assocated with a propagating density pulse forcing the membrane through the phase transition.
This is found to be around 50mV [35][4] – roughly on the same order of magnitude as the voltage
change measured during an action potential. The membrane potential was predicted to change
from −100mV to −150mV .

We began this section by noting that the membrane capacitance would change if the spatial
dimensions of the membrane were to change. The capacitance of a parallel plate capacitor is
given by

C = ε
A

d
, (2.50)

where ε is the dielectric constant of the material, in our case the cell membrane, A is the area
of the capacitor plates and d is the distance between them. As previously mentioned both the
area and the thickness of the membrane changes locally during propagation of an action potential.
The area of a DPPC artificial membrane is 24.6% larger in the fluid state than in the gel state.
The thickness is on the other hand 16.3% smaller in the fluid state [4][33]. If we assume that
the dielectric constant of the membrane does not change with the membrane state we can find a
numerical relation between the capacitances in the two phases

Cf = ε
Ag(1 + 0.246)

dg(1− 0.163)
= 1.49Cg, (2.51)

where the subscript f ’s and g′s indicate the fluid and gel phases respectively. We see that the
capacitance changes significantly. We have to consider what this means for the membrane potential.
Furthermore just as we have various other susceptibilities linked to different thermodynamic
variables – heat capacity and temperature, compressibility and pressure etc. – we also have a
capacitive susceptibility [33].

dq =
∂q

∂Vm
dVm = ĈmdVm, (2.52)

where q is the charge, Vm is the membrane potential and Ĉm is the capacitive susceptibility.
The capacitive susceptibility tells us how strongly the charge of the membrane reacts to changes
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in membrane potential, just as the heat capacity tells us how much the internal energy (for
constant volume) changes with varying temperature. Just as for the other thermodynamic
susceptibilities, we have discussed previously, we can find a similar fluctuation relation for the
capacitive susceptibility

Ĉm =
〈q2〉 − 〈q〉2

kT
. (2.53)

And just as for the heat capacity a pronounced maximum is found around the phase transition.
This maximum means that at the phase transition even small changes in membrane potential
can cause dramatic increases in capacitance leading to large capacitive currents. The capacitive
susceptibility is given as

Ĉm =
dq

dVm
=
q (Vm + dVm, T )− q (Vm, T )

dVm
. (2.54)

Since q = CmVm, q (Vm + dVm, T ) and q (Vm, T ) are related to the area and thickness of the
membrane through equation 2.50

q (Vm + dVm, T ) =ε
Ag + ∆A (Vm + dVm, T )

Dg + ∆D (Vm + dVm, T )
(Vm + dVm) , (2.55)

q (Vm, T ) =ε
Ag + ∆A (Vm, T )

Dg + ∆D (Vm, T )
(Vm) .

In figure 13 a graph of the capacitive susceptibility as a function of voltage is shown along
with graphs of the area and density also as functions of voltage.

This peak in capacitive susceptibility around the phase transition will play a role in excitation
processes. In [33] the difference in capacitance between the two phases calculated in equation
2.51 has been translated into capacitive currents. If the change in capacitance from equation
2.51 happens over 0.5ms (the time scale for the upstroke of an action potential) it will result
in capacitive currents of 100µA/cm2 for Vm = 100mV compared to the ionic currents from the
HH-model for the squid giant axon of 100− 600µA/cm2.

If we take the differential of the charge accumulated on the membrane, assuming it is a
function of voltage Vm and mechanical force normal to the membrane F , we get

dq =

(
∂q

∂Vm

)
F
dVm +

(
∂q

∂F

)
Vm

dF , (2.56)

As noted earlier on several occasions a change in thickness is associated with a change in area
as well. We can therefore rewrite the above expression using the lateral pressure Π

dq =

(
∂q

∂Vm

)
F
dVm +

(
∂q

∂Π

)
Vm

(
∂Π

∂F

)
Vm

dF =

(
∂q

∂Vm

)
Π

dVm +

(
∂q

∂Π

)
Vm

dΠ. (2.57)

When the charge is constant i.e. dq = 0 we get

dVm = −

(
∂q
∂Π

)
Vm(

∂q
∂Vm

)
Π

dΠ =

(
∂Vm
∂Π

)
q

dΠ = βqdΠ. (2.58)

Here we have introduced the quantity βq. This is a kind of piezoelectric susceptibility and
describes changes in the membrane voltage Vm as the lateral pressure is varied. This was fairly
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Figure 13: Top: Capacitive susceptibility as a function of voltage for a DPPC membrane (full
drawn line). A pronounced peak is seen right at the transition from the fluid to the gel state. The
membrane capacitance is plotted as well (dotted line). The capacitance is seen to change from the
fluid to gel state. Bottom: Membrane area and thickness plotted as functions of voltage again for
a DPPC membrane. Figure taken from [33].

readily derived and is just one example of a conceivable electromechanical effect [24]. Another
example is what is known as flexoelectricity – electric changes induced by a flexing of the membrane
[50].

We ended the section The ionic hypothesis on the note that the HH-model is somewhat more
complicated than it seems at first glance. The last few pages have shown that the soliton model
is rather complex as well. The foundation and underlying idea is simple – everything is linked
to the phase transition – but the implications as seen above are somewhat intricate. It seems
that nerve signals just are a rather complicated affair, and, as is the case in most natural science
investigations, the exact details of how they work are secrets that mother nature is not willing to
give up that easily.

2.4 S t r e n g t h s a n d s h o r t c o m i n g s

In the previous several sections we have introduced the HH-model and the alternative soliton
model for nerve signals. The two models attack the problem from very different angles and focus
on very different aspects of the common phenomenon they are trying to describe and explain. The
HH-model is based on the idea of ion channel proteins embedded in the membrane opening and
letting ions flow through thus creating an electrical pulse. The soliton model is centered around
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the fluid/gel phase transition just below biological temperatures. This allows for propagation of a
density pulse which in turn through electromechanical effects and the creation of lipid channels
result in a copropagating electrical pulse. Both models answer questions about the nature of
nerve signals, but on the other hand both models leave a series of questions unanswered as well.
We will now take a look at the pros and cons of both models. In their original article [38] Hodgkin
and Huxley write thus

"The agreement must not be taken as evidence that our equations are anything more than an
empirical description of the time-course of the changes in permeability to sodium and potassium.
An equally satisfactory description of the voltage clamp data could no doubt have been achieved with
equations of very different form, which would probably have been equally successful in predicting
the electrical behaviour of the membrane. It was pointed out in Part II of this paper that certain
features of our equations were capable of a physical interpretation, but the success of the equations
is no evidence in favour of the mechanism of permeability change that we tentatively had in mind
when formulating them."

While the HH-model provide a mathematical framework that is able to reproduce many of
the characteristics of nerve signals there are some phenomenological problems with the model.
The equivalent circuit picture introduced earlier treats each component of the axon as an electric
component – the lipid membrane as a capacitor, the concetration gradients across the membrane
as batteries (the active transporters such as the sodium-potassium pump keep these batteries
charged), and the protein channels as resistors. When an AP is initiated current in the form of
ion fluxes flow across these resistors. Current flowing through a resistor creates heat independent
of the direction of the current. This means that in the HH-model heat is released both at the
up- and downstroke of the action potential. When the sodium channels open heat is produced.
When the potassium channels open, and the cell is repolarised, and from an electric point of view
returns to normal, heat is also produced. In total the action potential should be accompanied by
a measurable heat release. This is not what has been observed experimentally. At the upstroke of
the AP heat is released but that is then followed by a phase of heat absorption [40][1]. This has
been studied by various researchers through the years. In 1922 the English physiologist Archibald
Hill won the Nobel Prize in Physiology or Medicine for his studies on heat production in muscles.
It has been established that the reabsorption of heat is not due to conduction in the aqueous
medium. There is no significant net heat produced during an AP – the integral of the heat over
the course of the AP is aprroximately zero. It has further been found that the heat exchanges
involved in the process of propagation of APs in myelinated fibres is not located at the nodes
of Ranvier, which would be expected if it was due to the ionic currents running across resistors.
Since dQ = TdS for a reversible process no net heat release dQ = 0 also means no net change in
entropy dS = 0. When a protein channel opens, ions glide down their electrochemical gradient
in attempt to equilibrate the outside and inside concentrations. This is clearly an irreversible
process which increases the entropy of the system. The HH-model cannot explain this and in fact
it does not try to or even considers thermodynamics. It has to be noted in this context that the
permeation of ions through lipid pores obviously also is an irreversible process, which increases
the entropy. Hodgkin himself writes in his book [30]

"In thinking about the physical basis of the action potential perhaps the most important thing
to do at the present moment is to consider whether there are any unexplained observations which
have been neglected in an attempt to make the experiments fit into a tidy pattern. [...] perhaps the
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most puzzling observation is one made by A.V. Hill and his collaborators Abbott and Howarth
(1958). [...] Hill and his colleagues found that it was diphasic and that an initial phase of heat
liberation was followed by one of heat absorption. [...] a net cooling on open-circui was totally
unexpected and has so far received no satisfactory explanation."

This should naturally lead to investigations into a thermodynamic framework for understand-
ing nerve signals. Various researchers have looked into the phenomena from a thermodynamic
perspective, and fifty years after Hodgkin and Huxley published their original paper a thermo-
dynamic alternative model was proposed. We have discussed the soliton model in the previous
sections. The soliton model is a thermodynamic model, and it is based on reversible processes. It
solves the problems regarding heat, as heat is first released when the membrane is forced through
the phase transition and freezes. Heat is subsequently absorbed when the membrane melts and
returns to its natural fluid state. It has several other challenges however. But one neuroscience
model at a time.

Something we have already pointed out is the fact that changes in the mechanical proper-
ties of the membrane are ignored in the HH-model. Changes in thickness has been observed
experimentally [63]. These would cause a change in the capacitance of the membrane. This
is assumed to be constant in the HH-model. We noted earlier that if the membrane (DPPC
membrane – other membranes would behave differently) is forced all the way through the phase
transition the thickness would change by 16%. We calculated that this leads to a difference in
capacitance between the two phases of 50% (equation 2.51). This is clearly a quite significant
change. In biomembranes the difference will naturally be different due to the presence of proteins,
inhomogeneity in lipid composition and so on. The membrane is not necessarily forced all the
way through the transition either.

The HH-model has enjoyed great success since it was proposed around 60 years ago. Its great
predictive power and simple phenomenology is very compelling. Due to the extensive work laid
in furthering the theory over the years the burden of proof weighing on proponents of alternative
theories is significant. Given the above unresolved problems and the lack of a thermodynamic
aspect to the theory it is however important that investigations into these phenomena are made.

The soliton model leaves several central questions unanswered as well. It should be noted
that the model is work in progress and cannot be expected to have answers ready for all aspects
of nerve signals from the get-go, but there are several problems with the model. In the section
Signals we stated some defining characteristics of nerve signals. A central one is the all-or-none
behaviour of action potentials. In the HH-model this fits neatly with a threshold potential
necessary for conformational change of the protein ion channels and is reproduced nicely by the
math. In the soliton model this is unexplained. As the peaks in the various susceptibilities of
the membrane, pronounced as they are, are not delta functions one would expect threshold for
the onset of an action potential that is somewhat smeared out and not all-or-none. Analogue
signalling has been observed in some experiments in some situations [60][3], but the defining
all-or-none behaviour is observed every day in laboratories around the world and in all different
nerves. Recently results have been published regarding solitary elastic waves in membranes that
show a sharp excitation threshold. Though akin to the solitons of the soliton model the waves
described in [59] are not solitons as they do not survive collisions for instance.

The refractory period is another routinely observed phenomenon which is somewhat unclear
in the soliton model. Periodic solutions to the governing differential equation (2.26) showing a
refractory period have been found under the condition that the total length of the nerve be held
constant [65]. It has been found that there is a minimum distance between such peeriodic pulses
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corresponding to a refractory period. If the length is constant a positive change in lateral density
(a contraction) of the membrane must be accompanied by a section of membrane with a negative
lateral density change (an expansion). Because of pulse propagation this length of membrane
with negative density change also translates into a period of time where excitation is not possible.
Another feature of this negative density change is an undershoot – a hyperpolarisaton. This
follows from the exact same arguments presented in the section Electromechanics. The assumption
that nerves are kept at constant length in biological circumstances is not completely obvious
though.

Other problems are related to the effect of neurotoxins such as tetrodotoxin (TTX), which
take effect already at very small concentrations (orders of magnitude smaller than for local
anaesthetics) and signal propagation in non-myelinated axons. Tetrodotoxin is among other
places found in pufferfish. In Japan fugu (Japanese for pufferfish) is a delicacy. Because the
fish contains tetrodotoxin careless preparation of the fish can be fatal, and from time to time
it is. In the HH-model nerve poisons such as TTX find a natural explanation in binding to the
channel proteins thus inhibiting signals. In the soliton model an explanation has to be linked to
the substance altering the general state of the membrane.

The soliton model does not include a clear explanation for signal propagation in non-myelinated
axons and the significantly lower conduction velocity found in such axons. The conduction velocity
found for the solitonic solutions to the equation 2.26 resembles that found experimentally in
myelinated nerves. This is thought to be because transverse modes are locked out by the myelin
sheath. Transverse waves are known to be slower than longitudinal waves.

Anaesthesia

Before discussing the mechanism of action of anaesthesia both general and local in the two models
we should probably mention the differences between the two concepts. Anaesthesiology is an
interesting field both for the natural scientist as well as for the philosopher. The question of
how anaesthesia works is of course a question of how the body works, but it is also a question
of what conciousness is. Local anaesthesia is the medically induced local absence of sensation.
When at the dentist you are given a local anaesthetic drug to not feel pain from the drill. The
nerves in your teeth may not be susceptible to pain input, but the nerves in the rest of your body
works just fine as normal. General anaesthesia is the medically induced total loss of consciousness.
When under general anaesthesia you are not aware and you do not feel pain anywhere on your
body. The understanding of general anaesthesia would therefore tell us a great deal about what
the evasive concept of conciousness is. This phenomenological difference might hint at a possible
difference in underlying mechanism, but as we will see, neither local nor general anaesthesia is
completely if mostly understood.

A strength of the soliton model is that an explanation for the effect of both general and local
anaesthetics is readily obtained. The mechanisms behind general anaesthesia is still unclear in
the HH-picture. In figure 1 the Meyer-Overton relation is shown. It states that the anaesthetic
potency of a substance is related to its oil to water partition coefficient. This naturally leads to
the suspicion that the underlying mechanism is related to the lipid membrane rather than the
membrane proteins. There have been several lipid theories of general anaesthetic action within
the HH framework and there still are. In the soliton model the Meyer Overton relation has a
natural explanation through what is known as the freezing point depression law.

We consider an anaesthetic drug dissolved in a lipid membrane [25]. Suppose the drug is
perfectly soluble in the fluid phase of the lipid but not soluble in the gel phase. This is obviously
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an idealised situation, but for simplicity let us stick to this. The drug is dissolved in the membrane,
which is in the fluid phase, so a transition to the gel phase is unfavourable as the drugs has to be
disposed of in order to make the transition, since it is not soluble in the gel state. This causes
a shift in the phase transition towards lower temperatures. This phenomenon is something we
are familiar with from our everyday lives. We salt the roads when there is snow on them in
winter, and we add antifreeze to our windshield washer fluid and coolant for our cars. This works
because of the freezing point depression law. Returning to our anaesthetic in the membrane. The
chemical potentials of the lipid membrane in the fluid and the gel phase are given by

µf =µf0 +RT ln (xf ) , (2.59)

µg =µg0,

respectively where R is the gas constant, µf0 is the chemical potential of the fluid phase in the
absence of anaesthetic, and µg0 for the gel phase. xf is the molar fraction of the lipid. We have
xf = 1− xA, where xA is the molar fraction of the anaesthetic in the fluid phase. In equilibrium
we have µf = µg = µg0. This along with the above equation gives us

∆µ = µf0 − µg0 = −RT ln (xf ) . (2.60)

Since the change in Gibbs free energy is zero at equilibrium we have

∆µ = −RT ln (xf ) = ∆H − T∆S, (2.61)

where ∆H is the change in molar enthalpy during melting, ∆S is the change in molar entropy
during melting. During melting we have Tm = ∆H/∆S since the change in Gibbs free energy is
zero. Using this on the above equation we get

ln (xf ) = ln (1− xA) = −∆H

R

(
1

T
− 1

Tm

)
. (2.62)

If we now use a couple of approximations we arrive at the freezing point depression law. For
small xA we can approximate ln (1− xA) by its first order Taylor polynomium −xA. If we are
close to the melting temperature we can also make the approximation TmT ≈ T 2

m. Inserting these
two approximations above we get

∆T = T − Tm = −T
2
mR

∆H
xA. (2.63)

The above equation is exactly the freezing point depression law. It tells us that the freezing
temperature is shifted down linearly with anaesthetic concentration. Since the phase transition is
what facilitates signals in the soliton model this immediately explains the linear Meyer-Overton
relation, as the threshold is shifted. Note that this also means that the threshold for excitation
should increase linearly as a function of anaesthetic concentration. In addition it should in
principle always be possible to initiate a signal no matter how high the concentration. The phase
transition is merely shifted. It does not disappear. The shape of the transition is also altered,
which naturally also affects the ability to elicit APs. We will return to this when discussing the
experimental data.

Hypotheses for general anaesthetic action based on anaesthetics being dissolved in the lipid
membrane have also been proposed in the HH-picture, and in fact for a very long time the
majority of theories were lipid theories [66][18]. Arguments against such hypotheses include the
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existence of a cutoff in the effect of long chain alcohols. When you reach a certain legth the
anaesthetic effect vanishes and the substances cease to follow the Meyer-Overton relation. This is
puzzling as longer chain alcohols are more soluble in lipids and should therefore be more and more
potent anaesthetics with increasing chain length. In the soliton model this cutoff effect neatly
finds a natural explanation. Another way of understanding the freezing point depression law is
by looking at the freezing points of the individual substances being mixed. The freezing point of
a beer is about −2◦C. The freezing points of the two main constituents of beer – ethanol and
water – are respectively −114◦C and 0◦C. Since there is only a small amount of ethanol in beer
it only shifts the collective freezing point slightly towards that of ethanol. The freezing point of
n-alcohols increases with increasing chain length and at some point the freezing point of the pure
alcohol is above biological temperatures. If this is the case the alcohol cannot shift the freezing
point downwards but might even instead shift it upwards [25]. The soliton model also explains
why some substances that are highly soluble in the membrane and therefore should be potent
anaesthetics are in fact not. The downwards shift in temperature caused by adding a substance
is in the above derivation caused by the fact that the substance is soluble in the fluid phase but
not in the gel phase. If the substance is equally soluble in both phases it might not alter the
transition temperature significantly. There are however still several issues yet to be addressed.
We mentioned the strong effect of certain neurotoxins such as TTX which very efficiently kill
nerve signals without being particularly soluble in the membrane. Other drugs that do not fit
neatly in to the above presented picture are the so called nonimmobilisers. Nonimmobilisers are
drugs that only display one side of the expected anaesthetic effect – amnesia but not suppression
of movement(hence the name). In the beginning of the 20th century nonimmobilisers were used to
induce so-called twillight-sleep during labour [18]. Women were given a combination of morphine
and scopolamine. The mixture did not block pain sensation nor inhibit movement but it would
induce amnesia. After delivery the woman would believe it had been completely pain free as she
was told so and could not remember anything.

In the HH-picture the dominating lipid theory today says that the drug dissolves in the
membrane inducing a lateral pressure affecting the conformations of the protein ion channels.
Through the years there have been a wilderness of suggested mechanisms. Others believe
that general anaesthesia works through binding to specific targets. Today this is probably
the mainstream believe within the HH-framework. In 1984 Franks and Lieb published a very
influential paper presenting a correlation similar to the Meyer-Overton correlation but instead of
involving the lipid solubility of the drugs it considers inhibition of the enzyme firefly luciferase [19].
In figure 14 the correlation is shown. Just as the Meyer-Overton relation indicates a mechanism of
a general nature and related to the state of the lipid membrane the Franks-Lieb relation indicates
an underlying molecular mechanism.

The last couple of decades considerable effort has been spent trying to identify the specific
binding targets of general anaesthetics. Receptors for the neurotransmitter gamma-Aminobutyric
acid (GABA) is now believed to play a central role, in particular the GABAA receptor is thought
to be of key significance [66][18]. A neurotransmitter is a signal substance used to relay signals
across chemical synapses. GABA is the primary neurotransmitter involved in most inhibitory
processes in the central nervous system of mammals. It therefore makes sense that it should play
a role in the mechanism of general anaesthesia. It is difficult to say precisely which functional
form the threshold as a function of increased anaesthetic concentration would take in this picture
since it is a specific binding mechanism, but it is likely that it would be exponential or sigmoid
rather than linear.
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Figure 14: Potency of general anaesthesia as a function of potency of inhiibition of firefly luciferase.
Compare the above graph with the one seen In figure 1. Figure taken from [18].

3 E x p e r i m e n t s

In the last chapter we introduced the two models and the background theory underlying them.
We will now look at experimental data acquired through a series of different experiments carried
out in an attempt to test the applicability of the models in different situations. Three experiments
were carried out

• Collision of pulses

• Temperature dependence of threshold

• Dependence of threshold on added anaesthetic

In collision experiments a pulse was initiated in one end of the cord, then from the other end,
and lastly from both ends at the same time. The signals were recorded about two thirds of the
way between the two stimulation electrodes. The actual, measured signal, when the cord was
stimulated at both ends, was then compared to the sum of the individual signals with stimulation
only at one end at a time. The signals are expected to meet at about the halfway mark between
the stimulation electrodes. The signal from the stimulation electrode nearest the recording
electrode will always reach the recording electrode, but the signal from the other end collides
with the counter-propagating signal before reaching the recording electrode. This means that if
traces of both signals are found in the signal when both ends are stimulated simultaneously, the
two pulses have to have passed by each other in some way. This should not be possible according
to the Hodgkin Huxley model, but the soliton model allows for such behaviour.

In temperature experiments the threshold dependence on temperature is measured for tem-
peratures between about ∼ 6◦C and ∼ 26◦C. When cooling the cord we approach the phase
transition. This should result in a linear decrease in threshold with decreasing temperature
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and vice versa for increasing temperatures. If the cord is cooled below the melting/freezing
temperature of the membrane, it should not be possible to elicit signals at all. A few worms were
kept at higher temperatures (∼ 35− 40◦) for about a month, and measurements were recorded
from these as well. The idea behind this is that the membranes should acclimatise to the ambient
temperature over time thereby shifting the transition temperature towards higher temperatures in
this case. This should make it easier to cool the cord below the phase transition of the membrane.
Worms were normally kept in the fridge at 5◦.

In anaesthetic experiments the threshold dependence on added anaesthetic was measured.
In the present case lidocaine and pentobarbital were used. The soliton model predicts a linear
increase in threshold as already mentioned through the freezing point depression law. In addition
the general anaesthetic pentobarbital and the local anaesthetic lidocaine should show very similar
effects on the threshold, as both general and local anaesthetics are believed to function by the same
mechanism. From the HH-perspective local and general anaesthetics work in two possibly very
different ways. Local anaesthetics are believed to act by binding with ion channel proteins. The
threshold response to increasing anaesthetic concentration should probably rather be exponential
or sigmoid instead of linear – at least for local anaesthetics. A commonly accepted theory for
general anaesthesia is yet to be developed.

3.1 M a t e r i a l s a n d m e t h o d s

The earthworm

All three experiments were carried out using earthworm (lumbricus terrestris). Surprisingly
extensive research has been made into the anatomy, and physiology of the nervous system of
earthworms. See for example [27][39][21][8]. Earthworms were an ideal choice for the experiments
presented in the present paper, as they are cheap and easy to get hold of and handle. One
could have even just gone and dug them up in the backyard oneself if needed. Earthworms were
primarily bought at Stef ’s Fluebinding in Aarhus except for a brief period in winter, where they
were out of stock. Worms were then bought at Tropeland in Skanderborg. The earthworms
bought at Stef’s Fluebnding were reared in Germany by the compay Hansa Angelköder. The
worms bought at Tropeland were reared in Canada. It was originally planned but dropped due
to lack of time that lugworms were to be used as well. The earthworm has myelinated axons,
where the lugworm does not [28]. It would be interesting to see, if the nonmyelinated axons of
the lugworm would respond differently to the same experiments than the myelinated axons of the
earthworm.

The earthworm has a central nerve cord running down the length of the animal on the ventral
side – for those of us with slightly rusted latin skills, ventral in layman’s terms is the belly. In
this cord there are two (or three depending on how you count them) giant axons on the dorsal
side (the back) of the cord as well as a two smaller ones on the ventral side of the cord. The two
giant axons are the ones of interest. In figure 15 a cross section of the ventral cord is seen. For
better pictures see [27].

Three giant axons are clearly seen. A central one – the medial giant axon or medial giant
fibre (MGF) – flanked by two slightly smaller ones – the lateral giant axons or fibres (LGF). The
two lateral axons are connected, and they effectively function as a single axon. This is what
was meant when mentioned that whether there are two or three giant axons in the ventral cord
depends on how you count them. A hint of the connection (or anastomosis with a southern
European term) between the two lateral axons can also be seen In figure 15 – sticking out of the
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Figure 15: Histological image using a hematoxylin and eosin stain of a cross section of the ventral
cord in lumbricus terrestris. The medial giant axon and the two lateral giant axons are clearly
seen (top center). A hint of an anastomosis is seen sprouting out from the bottom of the left
lateral giant axon. A bunch of glial cells are seen to fill the center of the cord.

Figure 16: Sketch of the MGF and LGF. The anastomoses connecting the two LGFs are shown.
They connect the two axons at regular intervals. Figure taken from [39].

bottom right of the left lateral axon. In figure 16 a sketch is shown of the giant fibres in the
ventral cord, where the anastomoses are seen.

As can be seen when comparing figure 15 with figure 17 the lateral fibres change diameter
quite dramatically from the posterior tale end to the anterior head end of the animal. The MGF,
on the other hand, is relatively constant in diameter. It is also seen In figure 15 that the two fibres
are of almost the same size in the posterior end (see figure 18). According to [8] the diameter of
the MGF is 100µm throughout the length of the worm, where the diameter of the LGF ranges
from 4µm in the anterior end of the beast to 50µm in the posterior end.

In figure 18 the sizes of the three axons are clearly seen to be very similar.
The axons are loosely myelinated increasing the conduction velocity in cooperation with their
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Figure 17: Histological image of cross section of the ventral cord in the anterior end of the cord
near the brain. The LGFs are seen to be significantly smaller than the MGF. Compare to figure
15. Here a hint of an anastomosis is seen as well in the right LGF.

large diameters. Since the length constant (see Cable theory page 13) depends on the square root
of the radius, the propagation velocity increases as the square root of the radius. Enlarging axons
is one way of achieving faster propagation speeds critical for fast reflexes for example, but it is
not nearly as efficient as myelination [28]. The myelin of earthworm giant axons is not as tightly
wrapped around the axons as it is in for instance human myelinated nerves, where conduction
speeds of up to 100m/s are achieved. The conduction velocities of earthworm axons are around
20m/s [8][21]. From measurements made for the present paper, conduction velocities were found
to lie in the range 10− 20m/s for the MGF and 5− 10m/s for the LGF. Compare to results
for conduction velocities found in [22]. In figure 19 an electron microscopic image of the myelin
sheath of the MGF of the earthworm can be seen. Here it is clearly seen that the myelin is not
wrapped as tightly as it is around human myelinated nerves.

Several projections sprout out from both the medial and the lateral fibres. Side nerves
and unmyelinated collaterals sprout out from the sides and from the ventral side of the axons
respectively. On the dorsal side of the MGF are also found regular spaced circular openings in the
myelin sheath – like small chimneys [27]. These dorsal nodes are similar to the nodes of Ranvier
found in for example human myelinated nerves, but they do not wrap all the way around the
axon. These dorsal nodes are not found on the LGF, only on the MGF. In figure 20 a sketch of
a segment of nerve cord is seen with typical locations of all the projections marked. In [27] it
is argued based on electrophysiological data that the dorsal nodes play a role in excitation and
propagation similar to that of the nodes of Ranvier. That is active spots with significantly higher
ionic transmembrane currents during action potential propagation.
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Figure 18: Hstological image of cross section of the ventral cord. All three axon are clearly seen
to be of very similar size.
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Figure 19: Electron microscopic image showing the myelin sheath of the MGF in 11000 times
magnification.

The preparation

Earthworm weighing about 5g on average, but ranging from 1.5g to 9g, were used for the
experiments. The worms were sedated by leaving them in a 10% alcohol solution in tap water
for 8-15 min depending on size and vigor. After sedation the worms were washed in tap water.
The worm was then pinned down both longitudinally and laterally lying on its belly to a piece of
styrofoam using needles. The worm was cut open using a pair of scissors down the entire length
of the animal except at the ends, where it was pinned down. The body wall was then pulled out
to the sides and pinned down exposing the gut. The lateral ligaments holding the gut in place
were then cut using a scalpel, and the gut was removed. Here the preparation procedures diverge
depending on whether the preparation was for a collision experiment or a temperature/anaesthetic
experiment.

Collision experiments For a collision experiment the ventral cord was then liberated from the
underlying muscle tissue with a pair of micro-scissors. Preferably the whole nerve cord
without the brain was liberated. The cord was then left to rest in a saline solution (recipe
is found below) for around half an hour, and the preparation was then ready for use.

Temperature/anaesthetic experiments For a temperature/anaesthetic experiment the nerve
cord had to be prepared in a slightly different way due to the fact that it would be submerged
into a flowing liquid. Lateral incisions were made using a scalpel cutting the body wall from
both sides in to the nerve cord with a longitudinal distance of about a centimetre – then a
couple of millimetres (just enough for a pin to hold on to) – then about a centimetre again.
The nerve cord was then liberated in the centimetre long segments, but not in the short
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Figure 20: Sketch of a segment of nerve from the ventral cord of lumbricus terrestris. The MGF
and LGF of the dorsal giant fibres are shown. The side nerves are indicated (SN 1,2 and 3). The
filled out circles show the collaterals of the LGF, and the open circles indicate collaterals of the
MGF. The stars indicate locations of the dorsal nodes found in the MGF. Figure taken from [27].

segments. The body wall in the centimetre long segments was then removed exposing the
nerve cord. The millimetre long segments were left in order to be able to pin the cord down
during experiments. Usually the cord would be pinned down four places during experiments.

The saline

The saline used was made following the below recipe adapted from [12] and [22]

Substance Concentration [mM]
NaCl 75
KCl 4
Tris 10
Glucose 23
MgSO4 1
CaCl2 2

The saline was adjusted with NaOH to a pH of 7.4.

Collision experiments

Following the dissection the nerve cord was typically left to rest in the chamber used for
measurements (seen In figure 21) in plenty of the above described saline solution. When the cord
had rested, the saline was sucked out of the chamber with a pipette, so the cord was lowered
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Figure 21: Picture of the recording chamber used in the collision experiments. The chamber is
carved from a 2 by 7 cm block of acrylic glass. The groove is 6 cm in length, 0.5 cm wide and 1
cm deep. 21 electrode wires are inserted into the chamber in equidistant spacing of about 0.25 cm.
The electrodes are made of resistance wire with a resistance of 5.40Ω/m at 20◦C.

onto the array of electrodes. A little bit of saline solution was left in the bottom of the chamber,
and a lid was placed on top of the chamber in order to keep the atmosphere humid. The cord
dries out quickly and must be kept moist for the entire duration of the experiment.

The array of resistance wires were used both for stimulation and recording. For stimulation
two WPI A365 Stimulus Isolators were used. Stimulation duration was set to 50µs, and typical
stimulation strengths ranged from 20µA to 200µA. For recording a couple of simple pre-amplifiers
were built. A circuit diagram is shown In figure 22.

With a value of 500Ω for RG a gain of about 100 was achieved

G = 1 +
50kΩ

500Ω
≈ 100. (3.1)

The pre-amplifiers were connected to an Axon Instruments Cyberamp 380 and through an
Axon Instruments Digidata 1440 analog to digital converter to a computer. Recordings were
made in the program Clampex 10.2 also from Axon Instruments. All recordings were made at
room temperature (∼ 21.5◦C).

Temperature and aneasthetic experiments

For the temperature and anaesthetic experiments a slightly more advanced chamber was necessary.
It can be seen In figure 23. The reservoir where the nerve cord is placed and pinned down is 1.5
cm wide, 8 cm long, and 1 cm deep. The bottom 0.5 cm are filled with Sylgard silicone elastomer,
so the cord can easily be pinned down. This reservoir will be called the nerve chamber from now
on, where the greater surrounding reservoir will be referred to as the surrounding chamber. There
is an inlet for liquid in one end of the nerve chamber (bottom In figure 23). And in the other end
there is a small circular reservoir connected to the main reservoir by a small groove. From the
circular reservoir the liquid is pumped out of the chamber again. It is thus possible to maintain a
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Figure 22: Circuit diagram for the operational amplifiers built using the INA121 integrated circuit.
Diagram found in the datasheet for the INA121 chip [68].

stable water level without disturbing the water to much when pumping it out either. Perfusion
happens at an approximate speed of 1.6ml/min. With a chamber with a volume of 4ml this
means that the chamber is filled in around 2.5min. A Gilson Minipuls 3 peristaltic pump is used
for the perfusion. The actual nerve chamber described above is mounted on an elevation in the
middle of the surrounding chamber. Room is left around the elevation for water (and ice to
lower the temperature). An air pump of the kind normally used for aquariums (Marina 50 in the
present case) bought from a local pet shop is used to maintain some circulation in the cooling
water providing as homogeneous a temperature in the water as possible. A polyimide thermofoil
heating element from Minco was placed in the cooling water and connected to a power supply.
Temperature was measured in both ends of the nerve chamber using a Physitemp BAT-10.

Monopolar recordings were made using a silver electrode enclosed in a fine glass pipette of
about a couple of micrometres in tip diameter. The signals were measured in reference to the
surrounding liquid. The grounding electrodes can be seen In figure 23 as the black wires in both
ends of the nerve chamber. The recording electrode was connected to a head stage amplifier from
Axon Instruments (HS-2A) with a gain of 0.1LU. The head stage and electrode were mounted
on a micromanipulator from Sutter Instrument Co (MP-285) allowing precise spatial control of
the electrode. The head stage was connected to an Axon Instruments Axoclamp 2B amplifier,
which was then connected to the Cyberamp 380, and through the Digidata 1440 AD converter to
the computer. Recordings were again made using the software Clampex 10.2, while signals were
simultaneously monitored on an oscilloscope. All data from all experiments were analysed using
Matlab R2015b numerical programming software.
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Stimulation electrodes were made using two glass tubes normally used for pulling pipettes for
recording electrodes. A piece of the same wire used for the electrode array in the small chamber
used in collision experiments was inserted into and glued in place in the glass tubes. The two
tubes were placed immediately next to each other making for a distance between the two poles of
a couple of millimetres. The stimulation electrode was then connected to a WPI Stimulus Isolator
A 365. Bipolar stimulation was used. Two pulses of opposite polarity of 100µs each in duration
were sent with an interval of 300µs. This was done in order minimise leak from stimulation
electrode to ground of the recording electrode thus shifting the signal, as well as minimising
effects of the capacitive coupling between stimulation and recording electrodes resulting in a large
capacitive tale on the stimulus artefact. Stimulation procedures and programs were programmed
using a Master-8 stimulator from A.M.P.I. Stimulation frequency in all experiments was 1Hz.

In temperature experiments the whole nerve cord was placed on top of a small piece of acrylic
glass, which was placed in the middle of the nerve chamber. The cord was then pinned down in
the Sylgard using needles in the small pieces of muscle tissue left under preparation. That the
cord was elevated slightly, made it easier to control the water level around it. The water level was
kept so that the cord was just bathed in liquid, but only just. This significantly decreased noise
in recordings in comparison to measurements, where the electrode was submerged deeper in the
liquid, but still allowed for the liquid to cool the cord. The cord was then lid from below using
an Olympus Highlight 2000 cold light source. This made it possible to actually see the axons
under a regular microscope.

In anaesthetic experiments the cord was submerged completely in the liquid in the end,
where it was stimulated, for better uptake of the added anaesthetics. The other end of the cord
was elevated on a short piece of acrylic glass in a similar way as described above. Recordings
were made from the cord immediately after it emerged from the liquid. This was done in order
to minimize noise. Again the cord was lid from below. In both temperature and anaesthetic
experiments the cord was stretched somewhat both laterally and longitudinally, and a bit of
pressure was applied with the stimulation electrode in order to minimize movement of the cord.
Movement could not completely be avoided, but it was significantly decreased by stretching the
cord. In [21] a study of the effect of stretch on various parameters among others threshold is
presented, and the threshold is found to be constant under stretching of the cord. In addition we
are only interested in the relative threshold increase or decrease.

3.2 R e s u l t s

Collision experiments

When everything was set up as described above, the cord was stimulated in one end, and
the thresholds for both the MGF and the LGF were found. The measurements were made
using stimulation well above the threshold, to make sure that APs were evoked each time.
For measurements of the MGF alone there was obviously an upper limit to the stimulation
strength, because APs in the LGF would then also be evoked at stronger stimulation. Preferably
experiments were made with both the MGF and the LGF excited. This removes any doubt that
the potentials could be excited in different axons – one in the MGF and one in the LGF – and
thus merely pass by each other each, just driving along in their own respective lanes instead
of colliding and penetrating. In figures 24 and 25 a typical result can be seen. Measurements
were recorded from 7 worms in Aarhus plus 2 worms at the Niels Bohr Institute in Copenhagen.
In [22] a similar but more extensive study of colliding pulses in earthworm is presented. The
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Figure 23: The chamber used for temperature and anaesthetic experiments. The nerve chamber
itself is mounted on a pedestal allowing water to be poured into the surrounding chamber. The
plastic tubing through which the perfusion liquid is led is curled up in the surrounding chamber
allowing the liquid to be cooled down or heated up by the water before entering the nerve chamber.
A nerve is in the chamber and both stimulation (bottom) and recording (top) electrodes are seen.
The specific set-up seen is for an anaesthetic experiment.
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Figure 24: Superposition of three recordings. Red line: signal elicited by stimulating in just one
end. Blue line: signal evoked by stimulation in the opposite end. Black line: signal recorded when
stimulating simultaneously in both ends. On all three recordings APs in both the MGF and the
LGF are clearly seen. The black and red lines are almost identical, as would be expected, if the
pulses annihilated on collision. The peak at 0 ms is a stimulation artefact and not part of the
active response of the nerve. The distance from the red stimulator and the recording electrodes
was 1 cm. The distance between the blue stimulator and the recording electrodes was 2.75 cm.

authors found penetration in all samples consistent with the predictions of the soliton model. In
some cases annihilation was found at first, but after adjusting the worm’s position in relation
to the electrodes, penetration was obtained. In all of the samples used in the present study
several collision experiments were conducted for different electrode configurations. The recording
electrode was always placed about two thirds of the way between the stimulation electrodes.
Because of the fairly drastic diameter changes of the LGF as mentioned earlier, the conduction
velocity in the LGF depends on position. This has to be kept in mind when arranging the
electrodes, as (for the case of the LGF at least) the recording electrodes could thus in fact be at
the effective halfway mark even though not being placed at the actual halfway mark. In total 20
collision experiments were conducted in the lab in Aarhus. In three of these 20 penetration or
possible penetration was observed. In figures 26 and 27 examples of this are shown. In figures 24
and 26 the individual recordings from stimulation in each end separately are shown as the red and
blue lines. The black lines are the recordings of simultaneous stimulation in both ends. In figures
25 and 27 the recordings of simultaneous stimulation are shown as the red lines corresponding to
the black lines In figures 24 and 26. The blue lines show the sum of the two individual recordings,
and thus what would be expected, if the pulses were to penetrate each other perfectly. The lines
shown on all these four figures as well as figures showing examples of raw data from temperature
and anaesthetics experiments are averages of 10 individual traces taken immediately after one
another.

Despite the simplicity of this experiment it is difficult to find articles describing collision
studies. Tasaki published a paper in 1949, in which he claims that colliding pulses penetrate each
other [61]. The article is, however, not very transparent, and the results not very clear. The lack
of studies of this phenomenon is a bit surprising. The collision experiment is a very simple and
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Figure 25: Superposition of the signal recorded when the cord was stimulated in both ends
simultaneously (black line In figure 24) and the sum of the two individual signals (red and blue
line In figure 24 added together. The blue line is what one would expect to see, had the pulses
penetrated each other. It is clearly seen that the slower of the two individual signals is missing.

Figure 26: Superposition of three recordings as In figure 24. The distance between the blue
stimulator and the recording electrodes was 1 cm, and the distance between the red stimulator and
the recording electrodes was 2.5 cm. Only response from the MGF is seen.
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Figure 27: Actual recorded signal for simultaneous stimulation in both ends of the cord (red line)
and the sum of the two individual recordings (blue line) is shown. They are seen to be almost
identical.

efficient test of the HH-model versus the soliton model. The refractory period in the HH-model
means that the AP is followed around by a wake of inexcitable membrane. When the pulses
collide the APs would have to travel into the inexcitable wake of the other counterpropagating AP.
This leads to annihilation of both pulses. In the soliton model the AP is essentially an acoustic
wave travelling in the membrane. Mechanical waves, as we know, can simply pass by each other
as they like, in most cases at least. Some solitary pulses may be reflected or annihilate on collision
[14].

The results of the present study predominantly show annihilation of pulses, but in some cases
penetration or indications of penetration was also observed as shown above. In all of the three
recordings, where penetration (or signs of it) was seen, only one axon was excited. This leads
to the suspicion that maybe the signal from one end was evoked in say the MGF and from the
other end in the LGF. The pulses could thereby pass by each other without any problems and
perfect penetration would be obtained. As the diameter of the LGF approaches that of the MGF
towards the posterior region of the animal (see figure 18), the respective thresholds should also
approach each other. Typically excitation thresholds decrease with increasing diameter. It is in
fact seen that the thresholds can be very similar in the posterior end of the animal. For the case
presented above In figures 26 and 27 it was not possible to evoke more than one potential in each
direction. The cord could have been damaged during dissection. One could therefore imagine that
only the MGF was intact in one end, and that only the LGF was intact in the other end thereby
circumventing the problems of excitation thresholds and again leading to perfect penetration.

Temperature experiments

The temperature dependence of the stimulation threshold presents another easy test of the soliton
model versus the HH-model. The prediction in the soliton model due to its thermodynamic origin
is very clear. The picture is a little bit more cloudy in the HH-model. As mentioned earlier
in the theory chapter, the HH-model is not thermodynamically based, and therefore explicit
dependences on for example temperature for the excitation parameters have had to be inserted
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into the theory later on. Several studies have been conducted on the temperature dependence
of the excitation threshold. See for example [2][26][67]. The results are not exactly conclusive.
Even though it seems to be the case more often than not, that the threshold increases with
decreasing temperature, the studies do not agree upon how much or indeed just even how – the
functional form that is. In some cases the threshold was found to be an increasing function of
temperature, which at frst glance seems a fairly counterintuitive result. We will get back to a
more detailed and stricter analysis of the thermal behaviour of excitation mechanisms in nerves,
after we have presented the data from the present study. For now we can make a few notes
based on an every-day, common sense kind of reasoning. One always has to wary of one’s steps,
however, when relying on intuition and common sense. A decrease in temperature should make it
more difficult to overcome the free energy barrier needed for a conformational change of the ion
channel proteins. This is not necessarily so since the free energy barrier depends on temperature
as ∆G = ∆H − T∆S, but is not unreasonable to suggest that a decrease in temperature would
make it more difficult to overcome the free energy barrier. In the extreme case at a low enough
temperature the cytoplasm freezes, and in that case obviously no APs are possible, since the
phenomenon relies on the diffusion of ions through the cytoplasm. While moving towards this
extreme from a higher temperature, diffusion gets slower thus also slowing the ionic currents. It
has been observed that the the temporal width of the AP increases with decreasing temperature
as a result of this [38]. In our naivety we might also expect this to inhibit pulse excitation.
Therefore based on these simple considerations, the most intuitive temperature dependence of the
threshold in the HH-model seems to be a decreasing function that goes to infinity at the freezing
point of the cytoplasm.

In figure 28 the results from the present study is presented. When the threshold had been
measured for room temperature (∼ 21.5◦C), ice and water were added to the surrounding chamber.
Once the temperature had reached about 6◦C and settled (or as low as it could be driven), the
threshold was measured again. The heating element was then turned on, and the temperature
raised slowly. The threshold was measured at intervals of approximately 2◦C. The temperature
was measured in both ends of the nerve chamber. A temperature gradient down the length of the
chamber could not be avoided, and as seen on the graph the difference from one end to the other
was most pronounced at lower temperatures quite naturally. The two temperatures were then
averaged. The temperature is that of the liquid perfusing through the nerve chamber and over
the cord, but since the cord is very thin (a couple of millimetres in diameter), it is fair to assume
that the cord equilibrates to the ambient temperature of the liquid fairly quickly. The absolute
threshold value differs from sample to sample. It depends sensitively on a lot of low-practice
parameters such as the exact placement of the stimulation electrode. The measurements were
therefore not directly comparable and had to be normalised to room temperature meaning that
threshold at room temperature is one. Measurements were recorded from 6 worms. Plotted In
figure 28 is the measurements from both the MGF and the LGF from all 6 worms. In figure 29
raw data from a temperature experiment is seen for measurements at three different temperatures
(columns). Top row is subthreshold stimulation. Middle row is above MGF threshold, and the
bottom is above both MGF and LGF thresholds.

A decreasing exponential function is found to fit data well. This fits well with the arguments
presented a couple of paragraphs above. We will now briefly revisit the theory in order to better
understand the thermal behaviour of the threshold.

The rate constants α and β in the HH-model were by Hodgkin and Huxley simply fitted to
experimental data. They were not derived from some fundamental law of nature or underlying
theoretical foundation. The expressions in equations 2.11,2.13, and 2.12 are purely empirical.
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Figure 28: Temperature dependence of the excitation threshold. The uncertainty on the temperature
– directly related to the temperature gradient from one end of the nerve chamber to the other – is
seen to be largest at very low temperatures. The vertical errorbars are based on the assessment that
the threshold could be determined within 5µA. The red line is an exponential function fitted to the
data (a = 1.773(1.639, 1.907), b = −0.02903(−0.03407,−0.02399) with 95% confidence intervals).

Figure 29: Raw data from temperature experiment. Left column measured at 6.5◦C. Top: 150µA,
middle: 290µA, bottom: 300µA. Middle column measured at 13.1◦C. Top: 110µA, middle:
210µA, bottom: 215µA. Right column measured at room temperature 21.6◦C. Top: 95µA,
middle: 150µA, bottom: 180µA.
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This has to do with the fact that the idea of ion channel proteins, that today is generally accepted,
was not clearly developed at that time. Hodgkin and Huxley said themselves [38] (see section
Strengths and shortcomings) that

"...the success of the equations is no evidence in favour of the mechanism of permeability
change that we tentatively had in mind when formulating them."

Hodgkin and Huxley performed voltage clamp experiments and measured the currents resulting
from changes of the transmembrane potential. The idea of ion channel proteins was then formulated
on that basis. Therefore a deductive argument about the functional form of the expressions for
the transition rates α and β given in equations 2.11, 2.13, and ?? could not be expected until a
welldefined idea of the actual mechanism itself had been formulated. Given the idea of ion channel
proteins it makes sense to try to derive expressions for α and β from a thermodynamic jumping
off point. This has been done, and the result has quite aptly been named the thermodynamic
Hodgkin Huxley model. See for example [36][10][64][9][11].

The idea is that the channels are either open or closed, and the transition between the closed
and the open state is associated with overcoming a free energy barrier. This is the simplest
picture of an ion channel – either it is open, or it is closed. The picture can be refined by inserting
more states in between the closed and open states in a Markov chain manner. But for now let us
consider the simple case of just two states.

α(V ) = α0 exp

(
−∆G(V )

RT

)
,

β(V ) = β0 exp

(
−∆G(V )

RT

)
. (3.2)

The free energy is assumed to be a function of voltage and expanded into a Taylor series.
Protein structure and protein folding is immensely complicated and not at all understood yet, so
the exact form of the free energy difference might be difficult to predict, and therefore a series
expansion is applied. The free energy for the state i is thus

Gi = Ai +BiV + CiV
2 + ..., (3.3)

where Ai, Bi, Ci, and so forth are constants defining the specific free energy for the given
state. We insert this into equations 3.2, rewrite it slightly, and get

α(V ) = α0 exp

(
−
(
a1 + b1V + c1V

2 + ...
)

RT

)
, (3.4)

β(V ) = β0 exp

(
−
(
a2 + b2V + c2V

2 + ...
)

RT

)
,

where ai, bi, ci, ... are constants describing the difference in free energy between the two states
for each term. If we only keep terms up to first order in the Taylor expansion of the free energy,
we call the above equations the linear thermodynamic model, and if we include higher order terms
as well, we call it the non-linear model. In figure 30 a comparison of the standard HH-model, the
linear thermodynamic model, and the non-linear thermodynamic model is shown.

Even better fit to data can be achieved if a Markov chain is employed instead the binary
open-closed description of the channels used above and throughout this paper. Now this is all very
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Figure 30: Comparison of the HH-model, the linear thermodynamic model, and the non-linear
thermodynamic model with experimental data for the T-current in thalamic relay neurons. Blue
line: HH-model, green line: linear model, red line: non-linear model. Top left: steady state
activation. Top right: steady state inactivation. Bottom left: activation time constant, and bottom
right: inactivation time constant. Figure taken from [10].
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convincing at first glance, but the actual test of the thermodynamic HH-model is whether it can
describe data that is not used for determining the parameters. If one for a given temperature finds
values for the constants in the free energy expressions above can one then reproduce behaviour at
another temperature using those same values for the parameters. In [17] this has been tested
and it is found that it cannot. Despite that the thermodynamic HH-model is able to reproduce
data very well it does not solve the problem it set out to solve. It does not tell us anything useful
about the thermodynamics at play in the situation.

The threshold dependence on temperature must obviously be closely related to the temperature
dependence of the conductances – and in particular the sodium conductance (through the rate
constants). However it is not obvious in what way temperature changes the threshold in the
above thermodynamic HH-models. In [16] theoretical calculations of the temperature dependence
has been made in the HH-picture. The calculations are done by numerically solving an adapted
version of equation 2.6 with modified versions of the equations 2.7.

C
dV

dt
= I − ηIi, (3.5)

dm

dt
= φ ((1−m)αm −mβm) , etc.

where Ii simply indicates the ionic current. The temperature dependence is hidden in the two
new Greek letters η and φ introduced in the above equations. It is reasonable to assume that
temperature might affect how the conductances change. This assumption is the same as made in
deriving the thermodynamic HH-models above. We will only now implement it mathematically
in a slightly different manner by simply multiplying the rates of change of the gating variables
m,n, h with a factor of

φ = 3(T−6.3)/10. (3.6)

Here 6.3 is the temperature at which Hodgkin and Huxley performed their voltage clamp
experiments. The exact form of the expression above means that the gating varibles m, h, and
n each have a Q10-factor of 3. The Q10-factor measures how much a parameter is changed by
raising the temperature by 10 degrees. It was found experimentally that the conductances of
sodium and potassium change linearly with temperature with about 15% of their value at 15◦C

per degree [16]. In the same study significantly larger conductances than those found by Hodgkin
and Huxley were found (about 4 times greater) at the same temperature. These two effects are
included in the HH-equations by multiplying all of the conductances, or equivalently the total
ionic current, by

η = A (1 +B (T − 6.3)) . (3.7)

Here A represents the degree to which the conductances differ from those measured by Hodgkin
and Huxley at the same temperatures. B determines the rate of change of conductances with
temperature. In figure 31 numerical solutions of these equations can be seen. The apparent
U-shape that the threshold takes as a function of temperature might seem a bit surprising.

The interpretation is all to do with the interplay between, and relative sizes of, the time
constants for the processes involved in evoking an AP. At low temperatures the time constants
τm, τh, and τn are all large. They decrease with temperature. This makes intuitive sense, but we
also see that in the thermodynamic HH-model α and β depend on temperature as exp(−1/T ).
Inserting this into τ gives us a decreasing function of temperature. At low temperatures τm, τh,
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Figure 31: Threshold-temperature relation for stimulus of duration 1 ms. The solid lines are
solutions for B = 0 and broken lines are solution for B = 0.061 corresponding the change of 15%
of the value at 15◦C as mentioned in the text. The two uppermost lines (dashed and fulldrawn)
are for A = 4 and the two below are for A = 1. The dots are experimental results found by Sjodin
and Mullins 1958. Figure taken from [16].

and τh are all large compared to the membrane capacitor time constant τRC . The time constant
τm for sodium channel activation is smaller than τh and τn. This means that as temperature
increases, the effect of the decrease of the time constants will appear first for τm, as it becomes
comparable to τRC before the other two. τm controls the temporal length scale of sodium channel
activation – uptroke of an action potential. The faster the activation of sodium channels the
less stimulus necessary to evoke APs. This explains half of the U-shape curve – the left half
with negative slope. For larger temperatures τh and τn for sodium channel inactivation and
potassium channel activation respectively become so small that these processes begin to play a
role in excitation as well. Additionally for larger temperatures τm becomes so small in comparison
to τRC that the effect of increasing temperature saturates, and the decrease in τh and τn become
more significant than the further decrease in τm. This leads to the right half of the U with positive
slope.

The effect is also found to be a function of stimulus duration [16]. It is known that the
threshold value generally depends of duration. For shorter stimulus duration the threshold is
high and there is a minimum duration, below which you can stimulate as furiously as you want,
all to no effect, and inversely there is a minimum threshold, you need to surpass, no matter how
long the duration of the stimulus. This minimum threshold for infinite stimulation duration
– step function stimulus – is called the rheobase. The rheobase is found theoretically to be a
monotonically increasing function of temperature. This is the same behaviour as predicted by
the soliton model. The U-shape found for stimulus of limited duration and the dependence on
stimulus duration of the curve could explain the seemingly contradictory results found in the
literature for threshold-temperature experiments.

The modified HH-equations could in principle be solved for the present case to see how well
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they would describe the data. Values for α, β, A, and B would, however, be necessary for
the earthworm axons. Alternatively these parameters could be found through numerically and
iteratively solving the modified HH-equations for different values. This would probably be quite
time consuming and has not been done for the present paper. Preliminary computations indicate
that a very high value of A would be necessary to account for the present data. As illustrated In
figure 31 the effect of increasing A is to shift the minimum of the curve upwards and to the right.
The turning point for Sjodin and Mullins data (dots on the graph) is to be found (if it exists) far to
the right of the theoretical curves. The preliminary computations were made with the expressions
for α and β found by Hodgkin and Huxley for the squid giant axon (equations 2.11, 2.12, and
2.13). The above discussion of the threshold-temperature relation in the HH-model tells us that
a qualitative agreement between the data and the predictions from the HH-model is possible –
neither a qualitative nor quantitative agreement has concretely been demonstrated for the present
data though. The observed behaviour is however in direct conflict with the predictions made
by the soliton model. The threshold in the soliton model is related to how far we are from the
melting/freezing temperature of the membrane. By lowering the temperature we approach this
transition, and therefore the threshold should be lowered. Furthermore when we have ventured
below the phase transition, it should be impossible to evoke APs. Measurements were also made
from a worm which had been kept at about 35 − 40◦C for about a month, but it showed no
differences in the temperature dependence of the threshold. The threshold-temperature relation
in the soliton model is thus a linearly increasing function.

Anaesthetics experiments

As mentioned the mechanism of anaesthetic drugs is still up for debate, at least for the case of
general anaesthesia. Local anaesthetic action is generally agreed to be linked to binding of the
anaesthetic drug to specific targets on the sodium channel proteins. Below results are shown
and discussed for the dependence of threshold on anaesthetic concentration for both a local
anaesthetic drug – lidocaine – and a general anaesthetic drug – pentobarbital.

First the threshold was determined in the absence of anaesthetics. Then anaesthetic was
added to the Ringer’s solution flowing through the nerve chamber. After addition the drug was
given time to take effect – 15 minutes. The perfusion speed of the set-up was 1.6ml/min. Given
the volume of the nerve chamber of 4ml the liquid in the chamber is completely replaced after
about 2.5min. It takes just under 3 minutes for the liquid to reach the chamber. This means
that the effective equilibration period is 12 minutes, and during those 12 minutes the liquid is
completely replaced just under 5 times. After the equilibration period the threshold was measured
again, and more anaesthetic was subsequently added. The concentration was raised in equidistant
steps of 0.1mM for lidocaine and 0.2mM for pentobarbital (in some cases measurements were
recorded at concentrations in increments of 0.1mM). The threshold increase was measured for
ranges of concentrations (in the Ringer’s solution) of 0.1 mM to 0.6 mM for lidocaine and 0.2 mM
to 0.8 mM for pentobarbital. No higher concentrations were used in part due to loss of signals
and in part due to time considerations. With 15 minutes in between measurements plus time for
dissection and miscellaneous preparations it was not always practically possible to reach higher
concentrations.

Lidocaine

In figure 32 results for lidocaine are seen. Measurements were recorded from 7 worms. As in the
temperature experiments the thresholds were not the same in the different worms, since it depends
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Figure 32: Measurements of the excitation threshold as a function of the concentration of lidocaine
in the Ringer’s solution. Thresholds are normalized to the value measured in the absence of
anaesthetic. The colors indicate recordings from different axons. Both results for the LGF and
the MGF are plotted.

strongly on where the stimulation electrode is placed in relation to the cord. The thresholds
were therefore normalized such that the threshold measured in the absence of anaesthetic in the
Ringer’s solution is 1. The increase in threshold in the different worms can then be compared. It
was assessed that the threshold could generally be determined within 5µA. This uncertainty is
not plotted as errorbars, since they would only add confusion. The concentration in figure 32 is
the concentration in the Ringer’s solution and not in the nerve cord itself.

In figure 33 examples of raw data for the lidocaine experiment is shown. It is seen that the
pulses do not exactly line up. There was a slight jitter in position of the pulses just around the
threshold, but already just above the threshold the signals would settle at a from there on fixed
position. A possible explanation for this could be linked to the existence of the dorsal nodes. If
these play a central role in the excitation of the signal stimulus just at the threshold could be
enough to excite a node closer to the center of the stimulation electrode. When the stimulus is
increased it could then maybe be strong enough to excite a node just at the edge of the electric
field of the stimulation electrode thus reducing the latency in jumps corresponding to the distance
between nodes. As the distances between the nodes are of the order of a few hundred micrometres
the jumps in temporal position would with the conduction speeds found here (and reported
in other studies) be quite small – tens or hundreds of microseconds. Another probably more
reasonable explanation is that the cord could have moved slightly between measurements. It was
found that movement could not be completely avoided but was greatly minimised by stretching
the cord. The cord would at times move due to contractions in the still attached muscle tissue,
but after the muscle tissue relaxed the cord would approximately return to where it was before.

Other parameters could have been interesting to measure as well such as the amplitude of
the action potential, the latency and thereby the conduction velocity. Due to the fact that not
all of the cord between stimulation and recording electrodes was submerged (as described in the
materials and methods section), this was not possible. In [43] the amplitude of the compound
action potential in the sciatic nerve of frogs before and after application of anaesthetics was
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Figure 33: Examples of raw data for experiments with lidocaine. Left column: without lidocaine.
Top: 65µA, middle: 69µA, bottom: 103µA. Middle column: 0.1mM lidocaine. Top: 65µA,
middle: 69µA, bottom: 119µA. Right column: 0.2mM lidocaine. Top: 69µA, middle: 71µA,
bottom 133µA. A slight jitter in the position of the AP was seen at stimulus just around the
threshold. If the stimulus was increased only a few µA the signal would settle at a fixed position.
To the left in all nine examples is seen the stimulus artefact from the biphasic stimulus.

studied. With the experimental set-up used in [43], it was not possible to control the concentration
of the substances used. This was a key concern when designing the set-up for the experiments
presented in the present paper. It is difficult to measure the amplitude reliably using the chamber
seen In figure 23. In [43] a chamber similar to the one seen In figure 21 (used for the collision
experiments) was used. In [48] a similar study as [43] is presented, but conducted on humans. The
amplitude-stimulus curves found in the two articles are qualitatively similar, but the interpretation
of the data is quite different in the two cases. In the latter a great increase in threshold is observed
as well, which cannot fully be explained by the HH-model. The thing of primary interest in the
present study was therefore the threshold increase.

In figure 34 the measurements seen In figure 32 have been averaged and plotted as a function
of the concentration. This time the concentrations have been multiplied by the n-octanol:water
partition coefficient for lidocaine of 43 [25]. In the ideal case this should then be the concentration
in the membrane. Things in the real world are obviously not as in the ideal case, however. The
drug has to diffuse through the surrounding cord and into the membrane, and obviously the
membrane is not pure n-alcohol nor the Ringer’s solution pure water so the membrane:Ringer’s
solution partition coefficient might deviate somewhat from the value of 43 used here.

Lidocaine is a local anaesthetic. Local anaesthetics are generally believed to act primarily via
binding with sodium channel proteins thereby disabling them or at least inhibiting their action.
Local anaesthetics are not as diverse chemically speaking as general anaesthetics are. General
anaesthetics comprise all sorts of different types of substances, but local anaesthetic drugs fit
neatly into a particular chemical template. They consist of an aromatic ring linked to a terminal
amine via an ester or amide chain as shown In figure 35. The first local anaesthetic substance to be
discovered was cocaine. Cocaine is extracted from the leafs of the coca plant found predominantly
in South America. It was commonplace among the Incas to chew coca leafs for refreshment while
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Figure 34: Averaged results for measurements from 7 worms. The individual measurements are
shown In figure 32. The concentration is the bulk concentration in the Ringer’s solution multiplied
by a factor of 43 – the n-octanol:water partition coefficient for lidocaine [25]. This is done to get
an estimate of the concentration in the membrane.

working. The drug was extracted in the 19th century, and it was then put to use in medicine
among other places. Sigmund Freud famous for his psychoanalysis was an avid proponent for
the use of cocaine in medical practice. Him and his colleagues performed experiments on the
corneas of both frogs and themselves numbing the cornea with cocaine and poking at it with
needles to see when reflex reactions to the touch ceased. He wrote thus in a letter to his sister-in-law

"The cocaine business has indeed brought me much honor, but the lion’s share to others."

Cocaine is still very much in use today, but not in the medical services. Modern local
anaesthetics are however predominantly cocaine derivatives for example lidocaine, which was
synthesised in the mid 20th century. The cocaine inheritance can be found in many substances
in the -caine ending of their names. The chemical homogeneity found in the family of local
anaesthetics makes it easier to believe that the underlying mechanism of action is to do with
binding to specific targets.

The results seen In figure 34 show a nice linear dependence on the anaesthetic concentration.
The soliton model predicts a linear increase in excitation threshold. It has long been known that
general anaesthetics affect the membrane, and lipid theories of general anaesthetic action has
been proposed, and for a long time it was the mainstream view as has been discussed already.
In [25] local anaesthetics (for example lidocaine) are seen to shift the phase transition of the
membrane in the same manner as general anaesthetics, and it is proposed that the two types
of drugs share a common underlying mechanism. The affect of anaesthesia in the soliton model
is due to the depression of the freezing point. This is a linear function of the concentration. In
addition the signals should never disappear either. No matter how anaesthetised a nerve might be,
stronger stimulus should restore the signal, since the transition is just shifted. A slight distortion
of the transition profile is however also observed [25]. This will obviously also affect how the
signal behaves, but still it should be possible to restore the signal with sufficient stimulus.
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Figure 35: The chemical structure of local anaesthetics. An aromatic ring and a terminal amine
linked by either an ester or an amine chain. Figure taken from [7]

Again the predictions of the HH-model are a little more confuse. In the soliton model the drug
affects the nerve in a very general manner, but if the drugs bind to specific targets thereby disabling
or altering the response of individual ion channels, the overall response is a little more complicated
to predict. In myelinated axons the density of sodium channels at the active spots on the axons
– the nodes of Ranvier in for example human nerves and the dorsal nodes in the earthworm
MGF – is very high and significantly higher than necessary for eliciting action potentials. Again
proceeding with caution we apply our intuition and make a rough sketch of the possible behaviour
of the threshold increase as a function of concentration. When anaesthetising the axon the drug
can crudely be said to slowly take out sodium channels, but for low concentrations there are still
many channels still working, so the threshold is probably not affected that much. This picture of
the drug taking out or closing channels is obviously hugely simplified. In none of the different
theories for local anaesthetic action are the anaesthetics thought to act simply by closing channels.
They influence gating kinetics in more subtle and sophisticated ways. They also affect various
channels and do not bind solely to sodium channels. Local anaesthetics are just one class of
channel-blocking chemicals. We encountered TTX earlier in this paper for instance. TTX is not
an anaesthetic, but it does affect sodium channels. There is a range of different channel-blockers,
and they all work in slightly different ways. Local anaesthetics do tend to favour the closing of
gates however, so for illustrative purposes we will for now imagine the anaesthetic action being
thus. For higher and higher concentrations the fraction of channels being taken out out of the
total number of channels still working with each step-increase in concentration is also higher and
higher. In other words the loss of each individual channel becomes more and more severe, when
there are fewer and fewer ones left. One would therefore naively expect an increasing function
with a positive curvature. The above hadwaving argument assumes a linear relationship between
the concentration of the drug and the number of disabled sodium channels. This is not the case
(see figure 36).

We can describe the reaction of an anaesthetic drug (A) binding to a receptor (R) by the rate
constants for binding (k1) and unbinding (k−1)

A+R
k1−−⇀↽−−
k−1

AR, Kd =
k−1

k1
=

[A] [R]

[AR]
, (3.8)
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Figure 36: Fraction of maximal sodium conductance as a function of concentration of TTX. Figure
taken from [47].

where Kd is the dissociation constant. The fraction of receptors blocked by anaesthetics out
of all the receptors is

y =
[AR]

[AR] + [R]
=

[A]

[A] +Kd
=

1

1 +Kd/ [A]
. (3.9)

The above equation is known as the Langmuir adsorption isotherm. It immediately leads to
the following expression for the fraction of free receptors

1− y =
1

1 + [A] /Kd
. (3.10)

The fraction of receptors not closed by the anaesthetic drug directly translates into a fraction
of the maximal sodium conductance. This can be seen In figure 36. Here the above equation
is plotted along with actual measurements of the sodium conductance expressed as a fraction
of the maximum conductance plotted as a function of concentration of TTX. This is a typical
result from pharmacological studies of channel blockers. This behaviour is obviously not linear
as in the handwaving argument above. As we see it is difficult to predict the behaviour of the
threshold as a function of concentration. In principle if one assumes that the only effect of the
anaesthetic drug is to completely close sodium channels one could solve the HH-equation for
varying values of the maximal sodium conductance and find the concentration dependence by
applying the above formula (3.10). Local anaesthetics do, however, not work in this simplified
way and such an approach would be better suited for describing the effect of neurotoxins such as
TTX which binds much more specifically to sodium channels, and even then it would probably
still be a rough simplification.

The threshold is in general difficult to predict in the HH-model due to the fact that it does
not explicitly appear in the model. In order to find it one has to solve the differential equations
for varying stimulus and look for a sudden increase in response. The fact that the threshold does
not explicitly appear in the equations is obviously intimately linked with the fact that it has
only a somewhat opaque physiological explanation in the model. A certain potential has to be
reached for the ion channel proteins to change their conformation but what extracellular stimulus
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is necessary for this depends subtly on the conductances for various ions and the opening and
closing dynamics of the gates.

Naturally there are only a finite number of sodium channels in a given node. This means
that there is a natural upper limit for when action potentials can be evoked. When all channels
are affected and incapable of opening, no APs are possible, since no sodium can enter the cell.
Well before this situation arises, signals are lost, since less positive charge enters the cell over the
duration of the stimulus. The amount of charge is not necessarily enough to charge the membrane
to the threshold. This can be understood using a simplified model based on current-voltage
curves as proposed by Denis Noble [53] [41].

In figure 37 is shown the two major components (sodium and potassium) of the total membrane
current together with the combined current all as functions of membrane potential. This graph is
based on the assumption that m (activation of sodium channels) changes with time much faster
than both h and n (sodium inactivation and potassium activation respectively). If this assumption
is made one can at each membrane potential equate m to its steady state value m = m∞, while
h and n are held constant resulting in a linear current-voltage relation for the potassium current.
This is what is plotted In figure 37. At the resting potential no net currents are running across
the membrane – this is the leftmost intersection with the x-axis. As the membrane is depolarised
by a stimulus, a positive current is generated driving charge out of the cell thus repolarising it.
This happens until the second intersection with the x-axis – the threshold – is reached. There
the slope of the curve is negative. This means that for depolarisations larger than the threshold,
a negative current (into the cell) will be generated further depolarising the cell. This is the
self-re-enforcing phenomenon that leads to the all-or-none behaviour of APs. When the third
and rightmost intersection with the x-axis – the peak amplitude – is reached, the cell cannot be
depolarised further (actually rather positively polarised). A higher membrane potential only leads
to positive currents driving the potential down. Obviously h and n also change with time, and
at higher voltages potassium channels are opened, and sodium channels are closed again. This
raises the I-V curve for potassium, and decreases the sodium current, thus forcing the rightmost
intersection towards the left. This time development of the I-V curve can be seen In figure 38.

When the potassium channels open, and the sodium channels close, the amplitude is forced
down (towards the left), and the threshold is forced up (towards the right). At some point (as
seen on the curve C In figure 38) there is no threshold anymore – that is no intersection with
the x-axis besides at the resting potential. This illustrates the refractory period very elegantly.
This, albeit simplified, model serves as a great, intuitive illustration of some of the defining traits
of the AP. When anaesthetics enter the fray, the sodium conductance is changed, since fewer
channels are able to contribute. This in a way corresponds to what happens when the channels
start deactivating again after firing. The C curve In figure 38 is the combination of the sodium
and potassium currents. Thus there can be a non-zero sodium conductance even if it is impossible
to evoke APs – not all channels have to be blocked before the signals disappear. When the
sodium conductance is decreased by the anaesthetic drug, the peak amplitude decreases, and the
threshold increases. They thus move towards each other and typically meet at around the halfway
mark. If still more anaesthetic is added, the threshold disappears, and no signals are found. For
a typical neuron the resting potential is −70mV , the threshold potential is −50mV , and the
peak of the overshoot is 30mV . If the threshold and peak meet exactly half way, this results in a
maximum threshold increase of a factor of 3. In [21] the resting potential, threshold potential,
and the peak of the overshoot of the action potential in the earthworm medial giant axon were
investigated. The found values are approximately −71mV , −48mV , and 22mV respectively.
Applying the arguments above on this case gives us a maximal increase in threshold of about a
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Figure 37: I-V curves for the sodium and potassium components (full drawn lines) of the total
current (dashed line). The three intersections of the dashed line with the x-axis indicate the resting
potential, the threshold potential and the peak amplitude respectively from the left. Figure taken
from [41]

Figure 38: I-V curves for the net membrane current of a neuron (as the dashed line In figure
37). The lines A,B,C, and D represent current-voltage relations at different times in the firing
process. A represents the starting situation. When the membrane is depolarised the effects of
potassium channel opening and sodium channel closing become important resulting in the upwards
deflection of the I-V curve. At C and D the current is always positive (outwards) and thus no
APs are possible. Figure taken from [53].
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Figure 39: Measurements of threshold for increasing concentration of pentobarbital in the Ringer’s
solution. Measurements have been normalised so that the starting threshold in the absence of
any pentobarbital is set to one. Different colors indicate measurements from different axons.
Measurements from both the MGF and the LGF are shown. The concentrations are in the Ringer’s
solution.

factor 2.5.

Pentobarbital

In the last section results for experiments with the local anaesthetic lidocaine were presented.
In this section we will take a look at results for the general anaesthetic pentobarbital. We have
referred to pentobarbital as a general anaesthetic up until now, but this is not completely true.
Chemically speaking pentobarbtal belongs to the family of substances known as barbiturates.
Barbiturates are derivatives of barbturic acid. Barbituric acid was synthesised by Adolf von
Baeyer in 1864. There is a cute story attached to the name. Again as is the case with many of
these stories the truth value of the story is probably questionable. The synthesis process involves
condensation of the substance urea which is found in urine. The story goes that barbituric
acid is called thus because it was synthesised from the urine of a local waitress called Barbara.
Barbiturates such as pentobarbital affect the central nervous system. They have been used for a
wide variety of purposes. They are depressants, or what might in more colloquial terms be known
as downers, depressing stimulation in the central nervous system. The antonym for depressant is
stimulant, or upper. An example of a stimulant is cocaine – the first known local anaesthetic.
Barbiturates are today mainly used as anti-epileptics, though they have been used for other things
such as sleeping pills or for anxiety treatment. Today they have been replaced by benzodiazepines
for those purposes. We will discuss this link in a minute when discussing the mechanisms of
barbiturates. In some American states pentobarbital is further used for both capital punishment
and euthanasia of both humans and animals.

In figure 39 results are shown from experiments with pentobarbital. Again the thresholds
are determined with 5µA uncertainties, and again these uncertainties are left out in the interest
of clarity. The experiments were conducted in the exact same manner as the experments using
lidocaine – the only difference being the drug. Measurements were recorded from 7 worms.
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Figure 40: Examples of raw data from an experiment with pentobarbital. Left column: no
pentobarbital added to the Ringer’s solution. Top: 55µA, middle: 59µA, bottom: 150µA. Middle
column: 0.2mM . Top: 70µA, middle: 74µA, bottom: 208µA. Right column: 0.4mM . Top:
85µA, middle: 87µA, bottom: 280µA. All curves are averages of 10 individual traces recorded
back to back.

A slightly slower increase in threshold is seen and slightly higher concentrations were used.
Concentration was increased in steps of 0.2 mM (in most cases). In figure 40 is shown examples
of raw data from an experiment.

Again the signals do not exactly line up. As was discussed in the last section this is probably
due to movement of the cord. This fits with the observation that the signals line up increasingly
better with decreasing temperature (confer figure 29).

In figure 41 the averages of the individual results shown In figure 39 is shown with respective
uncertainties plotted as errorbars. A straight line is fitted to the data and is seen to agree well
with the results. The concentrations In figure 41 have, as in the section above, been multiplied
with the n-octanol:water partition coefficient of pentobarbital of 117 [25].

In [25] the mechanism of action of local anaesthetics and general anaesthetics including
barbiturates is proposed to be the same. We have already touched upon arguments for and
against this view and it will be further discussed later on. Before that discussion it is interesting
to compare the results from the lidocaine experiments with the results from the pentopbarbital
experiments. In figure 42 the results shown separately In figures 34 and 41 are shown together.
The two substances show not completely identical but similar behaviour.

The mechanism of action of barbiturates on the nervous system is as the mechanism of
general anaesthetics and many other things in neuroscience still not completely understood. As
mentioned barbiturates exhibit many different effects on the nervous system – anticonvulsant and
anxiolytic activity, sedation, hypnosis, general anaesthesia and in the end at too high dosages
death. All barbiturates exhibit these effects. Furthermore they all show them in phases related
to increasing doses [46]. This indicates that they act in a number of different ways. Several
interactions have been suggested. Especially their effect on GABA-receptors has been of particular
interest to researchers. Binding to GABA-receptors is believed to be one the major ways of
interaction with the nervous system of barbiturates much like it has been theorised for the case
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Figure 41: Averages of results shown In figure 39. Concentrations have been multiplied by 117 –
the n-octanol:water partition coefficient for pentobarbital.

Figure 42: Results from lidocaine experiments and pentobarbital experiments plotted together. The
results are the same that have been shown separately In figures 34 and 41. The concentration is
thus both that of lidocaine (multiplied by the partition coefficient for lidocaine) for the blue line
and that of pentobarbital (multiplied by the partition coefficient of pentobarbital) for the red line.
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of general anaesthetics. Another class of drugs that is believed to act as GABA receptor agonists
are benzodiazepines. As mentioned above benzodiazepines have replaced barbiturates in most
clinical treatments. Their similar effect makes sense if both classes of drugs act primarily by
influencing GABA-receptors. The effect on GABA-receptors of barbiturates and bezondiazepines
are not exactly similar and benzodiazepines have been found to be safer in clinical use hence the
replacement. Barbiturates are also thought to influence glutamate receptors and a number of
other ion channel proteins such as sodium, potassium, and calcium channels.

In figure 42 the two substances – lidocaine and pentobarbital – are seen to behave in a fairly
similar manner, but these are just two substances. Barbiturates have been found to have a wide
variety of psychoactive effects, but different barbiturates can also behave quite differently from
each other. In the present case pentobarbital and lidocaine are found to behave in a similar
manner on the earthworm giant axons for the range of concentrations used. It would be interesting
to test other substances on the same preparation with the same experiments. Originally it was
planned to use the local anaesthetic drug bupivacaine as well, but due to time constraints this
was dropped.

These measurements of the threshold increase should be compared with calorimetric measure-
ments of the heat capacity profiles for the concentrations used for a complete picture. In figure
43 this is shown.

The figure shows measurements of the heat capacity at constant pressure as a function of
temperature for samples of the concentrations used in the anaesthetics experiments described
above. It is clearly seen that the anaesthetics when added to the lipid membrane (in this case
an artificial DPPC pure lipid membrane) alters the phase transition. The lidocaine sample
shifted the transition temperature downwards with about 0.26◦C, while the pentobarbital sample
broadened the transition (a small downwards shift is also seen in the pretransition and apparently
a small upwards shift in the maintransition). It would obviously be ideal to measure the effect
of the samples on the actual earthworm nerve membrane. Though it has been done [54], it is
considerably difficult to extract samples of the actual membrane from the earthworm in quantities
sufficient for performing calorimetric measurements. As seen in figure 42 0.4 mM lidocaine and
0.6 mM pentobarbital both resulted in a threshold increase of approximately a factor 2. We
would therefore from the soliton model expect the two samples to affect the phase transition in
approximately the same way. As is seen In figure 43 this is not exactly the case. It would be very
interesting to see the effect of samples of other concentrations as well, but due to limited time
this was not possible.

4 D i s c u s s i o n

In the last two chapters first the background theory was presented, and the two models were
discussed in a more general sense in the section Strengths and shortcomings, then data from a
series of experiments conducted on the large earthworm (lumbricus terrestris) was presented. The
results are not as conclusive, as one could have hoped, but they show clear indications.

The majority of measurements recorded during the collision experiments showed annihilation
of pulses upon collision. This is in conflict with the predictions from the soliton model. In a couple
of cases seemingly penetration of pulses was observed. As explained in the section concerning the
collision experiment in the last chapter there are possible explanations for this, and it could in
fact be an artefact. In all the cases where penetration was observed, only signals in one of the
axons were evoked. This allows for the possibility that the signals were in fact not travelling in
the same axon – thus they would not collide. In one of the cases where apparent penetration was
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Figure 43: Top: Heat capacity profile at constant pressure for DPPC multilamellar pure lipid
membrane in the absence of anaesthetic (dashed line) and with added anaesthetics – 0.4 mM
lidocaine (black line) and 0.6 mM pentobarbital (red line). The pretransition is shown magnified in
the insert. Bottom: Main transition magnified. Results courtesy of Thomas Heimburg, University
of Copenhagen.

observed it was in fact only possible to evoke one signal in each direction. This is most likely
because the nerve cord had been damaged during dissection. The nerve cord is fairly robust and
can withstand a fair amount of stretching and twisting, but it is very possible that it could have
been damaged, such that one of the axons did not work. If one axon had been intact in one end
but not the other end and inversely for the other axon, the signals could have been travelling in
each their own axon. Whether or not this is in fact the case is, however, impossible to say. In
the other cases where both axons could be excited, it could possibly be due to the thresholds
of the two axons having been very close to each other. It was found from time to time that at
certain places on the cord, the thresholds would be within a few µA of each other or indeed
indistinguishable. There are thus possible explanations for the results found in the present study,
but the actual penetration of pulses in the three cases, where it was found, cannot be ruled out.
In the article [22] the authors present results from similar studies also on lumbricus terrestris giant
axons as well as lobster abdominal ventral cords. They found penetration of pulses in all of their
measurements. Even though there might be possible explanations for the anomalous observations
made in this study, it has still been observed in a more extensive study elsewhere. This has
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to be explained. The HH-model cannot explain this. The differences between the experiment
described in [22] and the experiment in the present study are hard to find. Obviously these
contradicting results have to have some explanation, but that explanation has yet to be found.
The experiment is very simple. The set-up and procedure were exactly identical – same stimulus
durations, frequencies and all other parameters were identical, and still contradicting results were
found. This is obviously somewhat unsatisfying, but the discrepancy in results indicates that
neither the HH-model nor the soliton model in their current forms tell the whole truth about
these phenomena in earthworms. Further studies would have to be conducted to shed light on
this.

Some authors have suggested theories similar to the soliton model describing solitary me-
chanical pulses based on the non-linear nature lent to the membrane by the fluid-/gel-membrane
phase transition – solitary wave pulses, but not solitons [59][58]. As discussed in the theory
chapter a true soliton is left unchanged by collisions with other solitons. This is why it is possible
for the signals to pass through each other in the soliton model. Solitary wave pulses do not
necessarily have to possess this property [14]. The authors also claim that their model explains
the all-or-none behaviour so characteristic of APs.

In the literature one finds surprisingly few studies on the behaviour of colliding pulses, and
especially now in the light of the new alternative theories being proposed predicting different
behaviour of colliding pulses, it is a particularly interesting experiment.

The temperature experiments showed temperature dependence of the excitation threshold in
apparent qualitative agreement with predictions from the HH-model and in direct disagreement
with predictions from the soliton model. There were several challenges with the experimental set-
up. More exact temperature control would obviously have been preferable, but the uncertainties
on the temperature of the measurements are in total acceptable. The uncertainties on the
temperature tend to increase at lower temperatures, where temperatures were more difficult to
keep at a steady level, and the temperature gradient from one end of the nerve chamber to the other
was larger. The data show a clear tendency, and it is found that an exponential function describes
the data well. The temperature was decreased by pouring ice into the chamber surrounding
the actual nerve chamber, and it was increased using an electric heating element. A feedback
temperature control system would have been a fairly easy improvement. The temperature gradient
down the length of the nerve chamber could probably not have been avoided but could have been
minimised by adding more inlets down the length of the nerve chamber. These improvements
would grant better quantitative data, but the qualitative behaviour of the data is quite clear and
seems unlikely to change significantly with such modifications. For a more complete temperature
study the exact quantitative behaviour predicted by the HH-model would have to be computed by
solving the modified HH-equations presented in the experiments chapter. Even though the data
seems in apparent agreement with the HH-model, the predictions from the modified HH-equations
vary greatly with varying stimulus duration for instance. These equations should probably not be
taken too literally though. The ways in which temperature is assumed to affect the threshold in
the derivation of the equations are somewhat simplified, and other effects should probably be
taken into account as well and/or the effects considered implemented in a more sophisticated
manner. The rates of change of conductance for all the different ions are assumed to change with
temperature in the same way, likewise for the change in ionic conductance. In other words all
channels are assumed to behave identically as a function of temperature. Based on the predictions
of the modified HH-equations it would be interesting to look at a wider temperature range – both
lower but also, and in particular, higher temperatures. The threshold should begin to increase
again around some temperature T0. It would be interesting to look for this temperature. The
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temperature range of the present study was determined downwards by the minimum temperature
reached (within a reasonable amount of time) after adding ice to the chamber and upwards in
part by the maximum temperature the heating element could produce (again within a reasonable
time) and in part by the maximum temperature reached before signals became too unreliable.
Signals were found to be significantly more stable at lower temperatures than at higher ones.

The results from the anaesthetic experiments are probably the least conclusive ones. The
exact functional form of the dependence on concentration is not readily deducible from theoretical
foundations in the HH-picture. There are more clear (and generally acknowledged) hypotheses
for the mechanism of action for local anaesthetics than for general anaesthetics, but still due to
the subtleties of the exact binding mechanism a threshold-concentration function is not readily
obtainable. The soliton model predicts a linear increase in both cases. The results found in
the present study are linear over the range of concentrations studied. For the case of general
anaesthetics it is particularly difficult to say how the threshold increase should go in the HH-model
due to the lack of a consensus on what the underlying mechanism is. The behaviour for the two
drugs lidocaine and pentobarbital was found to be approximately identical after multiplication
with their respective n-octanol:water partition coefficients. This is in agreement with predictions
from the soliton model, but is not in anyway in contradiction with predictions from the HH-model.
Further studies should be made, and the threshold increase compared between several other drugs
from both categories. If similar behaviour is found, this indicates that it is not unreasonable to
assume similarities in the mechanisms of action. The range of concentrations used was decided
in part by when reliable signals were lost. This does not necessarily mean no signals could be
evoked, but merely that they were deemed too unreliable for use. At times it was found at higher
concentrations that the threshold value would vary wildly, and that after stimulation at a certain
strength for a period of time signals would be lost, and higher stimulation was needed. If the
nerve was left to relax for a while without stimulation the threshold would then drop. Lidocaine
has been found to be sensitive to the frequency of stimulation – use dependent block. This could
possibly be an effect here. Reliable measurements under such conditions were not possible. It has
to be noted that in order to measure a signal, the signal first has to be evoked, and then it has to
travel down the length of axon between the stimulation and recording electrodes. This means
that signal loss could just as well be an expression of the loss of longitudinal conductance, as an
expression of the impossibility to evoke signals locally at the location of the stimulus electrode.
The loss of signals at sufficiently high concentrations seem in apparent conflict with the soliton
model. It should always be possible to restore signals, no matter how anaesthetised the nerve is,
by applying strong enough stimulus. On the other hand a threshold increase of up to a factor
of about 3 in average for lidocaine and slightly lower for pentobarbital was observed and in
individual cases increases of up to a factor of almost 4 was observed (confer figures 32 and 39).
This is in apparent conflict with the HH-model which expects signals to disappear at a threshold
increase of about 2-2.5. In [48] threshold increases of a factor of 7 were observed. Such high
increases in threshold fit with the soliton model, but the HH-model struggles to explain them.
There are thus observations pointing in both directions.

4.1 Concluding remarks

Different theories incorporating the mechanical changes associated with action potentials have
been proposed. We have dealt with the soliton model in detail, and we have also encountered a
theory describing non-linear mechanical pulses different from the soliton model [59]. Last year
an article was published describing what the authors call action waves. These action waves are
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mechanical responses to a propagating electrical signal. This model tries to explain the mechanical
changes as a function of the electrical changes. The exact nature of the mechanism producing the
electrical pulse is not considered. It might be a HH-type mechanism, but this does not matter
for the proposed model. It only considers what happens when an electrical signal has already
been produced. In the soliton model, on the other hand, the electrical pulse is driven by the
mechanical pulse.

Mechanical changes in the membrane and the heat profile associated with the AP have to
be explained somehow. Research into this might lead to a fundamental change in the way we
understand nerve signals, but it might also lead to a refinement of current theories. Under all
circumstances it will grant us a better understanding of nerve signals, which obviously are the
foundation for all neuroscience. To me it seems that the central question is to what degree the
electrical pulse drives the mechanical pulse or the other way around. One might be a result of
the other, but the two might also be part of an intricate feedback mechanism and thus coexist in
a symbiotic relationship. This is a question for future investigations to answer.

This thesis has tried to outline some of the challenges facing neuroscience at its most basic
level. Results from experiments carried out in earthworm axons have been compared with two
fundamentally different models on the subject – the Hodgkin Huxley model and the soliton
model. The results in this present study fit better with the predictions from the HH-model than
of the soliton model, but the results are not conclusively in favour of the HH-model, and there
are observations that are better explained by the soliton model. In addition, as pointed out
throughout the thesis, there are still several unanswered questions left by the HH-model that
need to answered. As these questions are of thermal and mechanical nature, the answers should
naturally be found in thermodynamics.
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