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Abstract

This thesis is concerned with the analysis of anisotropic flow. Conventional methods
in flow analysis has estimated the flow as an average over many events. In this thesis
I will present a method based on the methods used for the study of Cosmic Microwave
Background (CMB) which may allow for an event-by-event anisotropic flow determination.

In the thesis the basic theory of heavy ion high energy physics is touched with a
special focus on the flow phenomenon and the conventional methods for flow analysis. A
brief description of the ALICE detector is given. The theory behind the CMB method is
presented as well as the mathematical foundation for this method.

Most of the analysis is performed on simulated event, and in this case the analysis
reveals that the method with a high degree of precision is able to recalculate the flow and
symmetry plane of up to the eighth order of the flow. The very last part of the thesis
is concerned with analysis on real events from the Time Projection Champer (TPC) in
ALICE.
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Dansk Resume

Denne afhandling beskæftiger sig med analyse af anisotropisk flow. Konventionelle metoder
i flow analyse har estimeret flowet som et gennemsnit af mange begivenheder. I denne
afhandling vil jeg præsentere en metode baseret p̊a de metoder, der anvendes til un-
dersøgelse af kosmisk mikrobølge baggrund (CMB), som kan give mulighed for en begivenhed-
til-begivenhed bestemmelse af anisotropisk flow

I afhandlingen er den grundlæggende teori for tungions højenergifysik med særligt
fokus p̊a flow fænomenet og de ?konventionelle metoder til flow analyse præsenteret. En
kort beskrivelse af ALICE detektoren er givet. Teorien bag CMB metode præsenteres
s̊avel som det matematiske grundlag for denne metode.

Størstedelen af analysen er udført p̊a simulerede begivenheder, og i dette tilfælde viser
analysen, at fremgangsmåden med en høj grad af præcision er i stand til at genfinde input
flowet og symmetriplanen op til den ottende orden. Den allersidste del af afhandlingen
beskæftiger sig med en analyse af virkelige begivenhed fra the Time Projection Champer
(TPC) i ALICE.
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Chapter 1

Relativistic heavy ion collisions

1.1 The standard model

The Standard Model is the key product from the studies of particle physics. It gives
an explanation of which particles today are believed to be fundamental, and how their
interactions. The idea of fundamental particles dates back as early as the 6th century
BC, where the ancient Greeks speculated in the composition of our universe. However it
was first in the 19th century that the idea picked up speed when Dalton concluded that
all known matter is built from atoms. Rutherford discovered in 1909 with his famous
experiment that the atom is not fundamental and in 1919 he found evidence for the
proton. Since then a continuous development of the field made it clear that not even the
protons (and neutrons) were fundamental, and eventually a formulation of the Standard
Model was made.

The Standard Model in its present form, consists of a surprisingly few number of
particles, which are divided into groups and subgroups. There are two main groups: the
fermions and the bosons. The fermions are all matter particles and can be divided into
two groups: the quarks and the leptons. The quarks are represented in table (1.1). Spin
is an intrinsic form of angular momentum. All fermions are spin-1

2
particles whereas all

bosons posses an integer spin number. In fact a boson is defined as a class of particles
that posses an integer spin, whereas the fermion is defined as being any class of particles
with a half integer spin.

Quarks are combined to make hadrons. A baryon is a combination of three quarks,
and a meson is combination of two quarks. The mesons have integer spin, and hence they
are bosons, whereas the baryons have half-integer spin and hence they are fermions.

The other group of fundamental fermions are the leptons represented in table (1.2)

The bosons are represented in table (1.3). The bosons are the mediators or force
carriers, making it possible for the fermions to interact with each other. The photon
is the mediator of the electromagnetic interaction, and couples to any particle with an
electric charge. Photons couples to any of the fermions, except the neutrinos, it is massless
and travels at the speed of light.

The Z and W± bosons are mediators of the weak interaction. The weak interaction
leads to radiactive decay of the fundamental particles and couple to any of the fermions
including the neutrinos.

The gluon is the mediator of the strong interaction. It carries a color charge, and
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1.1. THE STANDARD MODEL

Name Symbol Charge Spin Mass
Up u +2

3
1
2

2.4 MeV/c2

Down d −1
3

1
2

4.8MeV/c2

Charm c +2
3

1
2

1.27GeV/c2

Strange s −1
3

1
2

104MeV/c2

Top t +2
3

1
2

171.2GeV/c2

Bottom b −1
3

1
2

4.2GeV/c2

Table 1.1: The six quarks of the Standard Model

Name Symbol Charge Spin Mass
Electron e− −1 1

2
0.511 MeV/c2

Electron neutrino νe 0 1
2

< 2.2eV/c2

Muon µ −1 1
2

106MeV/c2

Muon neutrino νµ 0 1
2

< 0.17MeV/c2

Tau τ −1 0 1.78GeV/c2

Tau neutrino ντ 0 1
2

< 15.5MeV/c2

Table 1.2: The six leptons of the Standard Model

Name Symbol Charge Spin Mass
Photon γ 0 1 0
Gluon g 0 1 0

Z Boson Z0 0 1 91.2GeV/c2

W Boson W± ±1 1 80.4eV/c2

Higgs Boson H 0 1 Unknown

Table 1.3: The bosons, also known as the mediaters of the standard model. The Standard
Model Higgs Boson has not been proven yet to exist, but is a prediction of the Standard Model
in order for the other particles to acquire mass. However recent results has found a Higgs like
particle with spin 0, and a mass of 126.0GeV/c2. Further analysis is needed in order to determine
whether this is the Standard Model Higgs Boson.

couples to the quarks. Although it does not appear from the table, all quarks carries
a color charge, and the particles couple together into a color neutral state, so that all
hadrons are color neutral. This report is especially concerned with the strong interaction,
and a more thorough description will be given in the following section.

One of the weaknesses of the Standard Model, has for a long time that if only the
experimentally observed and confirmed particles exists, they will all be massless1. It is a
well known fact that our universe is not massless. Several solutions have been proposed

1Actually it is not a weakness of the standard model, since the standard model also includes the Higgs
Boson, furthermore at the moment of writing the Higgs boson has been found and confirmed as a Higgs
boson.
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CHAPTER 1. RELATIVISTIC HEAVY ION COLLISIONS

to get around this issue. In 1964 six scientists in three different articles [1]-[3], proposed
the existence of a boson, that possessed such properties that the time-like particles would
acquire mass. One of the writers was Peter Higgs [1] who gave name to the particle. The
particle has, at the moment of writing, not been proven to exist, and one of the main
goals for the Large Hadron Collider is to prove its existence. However recent discoveries
from both the ATLAS and CMS [4] detectors at CERN have shown the existence of an
unknown particle. CMS has observed an excess of events at 126GeV/c2, with a statistical
significance at 5.0 standard deviations. The chance that this is random background is
about less than one to three millions. The results from ATLAS are even better, where a
Higgs like particle with a mass at 126.5 GeV/c2 was found. The local statistical signifi-
cance was at 5.9 standard deviations as shown in figure fig. (1.2). The probability that
this is just random background fluctuations, is one to 588 millions. However the global
significance is only 5.1 standard deviations. At the time of writing tha particle has been
confirmed as the long searched for Higgs boson [51] further data is needed to investigate
whether this is the Standard Model Higgs Boson.

Figure 1.1: Results from the CMS detector, different channels stemming from a Higgs particle.
The combination of these channels yields a statistical significance of 5.0 standard deviations

The particles listed in table (1.1)-(1.3) have antiparticles. The properties of an an-
tiparticle are generally the same as for the ordinary particle except that charges is of
opposite sign. This is however only in general. As shown in table (1.1)-(1.3), not all of
the particles carry charges. Consequently the photon as well as the Z boson and Higgs,
are their own antiparticles. The gluon carry color charge, however there are eight types
of gluons. These are referred to as a gluon octet. The antiparticle of any of the gluons is
contained in this octet, and therefore the gluon octet is its own antiparticle. The neutri-
nos do not carry any charge. It is not certain whether the neutrino is its own antiparticle.
Experimental differences in spin has been found between the neutrino and the supposed
antineutrino, but it is not certain that this difference can be ascribed to the fact that they
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1.1. THE STANDARD MODEL

Figure 1.2: Results from the ATLAS detector. The combination of three channels that orig-
inates from a Higgs particle yields a local statistical significance at 5.9 standard deviations.
However the global significance would only be 5.1.

are each others antiparticle [5].

1.1.1 Quantum Chromodynamics

Quantum Chromodynamics (QCD) is the theory of the strong interaction. As mentioned
above this interaction is mediated by gluons. The name comes from the fact that it is
the strongest of the four fundamental interactions. It is 100 times stronger than the
electromagnetic interaction and 1014 times stronger than the weak interaction [8]. In
the standard model the quarks are the only fundamental particles which are affected by
the strong interaction. Just like in the electromagnetic case the quarks carry charges of
the strong interaction. But where in the electromagnetic case there is only one positive
and one negative charge, in QCD there are three different “positive” charges and three
“negative” charges. The charges are labelled with the names of colors (this has nothing
to do with physical colors), red (r), green (g) and blue (b) for the “positive” charges,
where the “negative” charges are labelled as anticolors of the “positive”. They are called
antired (r), antigreen (g) and antiblue (b). In QCD the mediators the gluons do them
self carry charges with important consequences: The first is that the gluons can couple to
each other, and the second is that the gluons are able to change the charge of the particle
it interacts with. However charge will always be conserved. This means that if a particle
carries red charge and changes its color to blue in the interaction with a gluon, then the
gluon must have carried an antired and a blue charge.

Although quarks and gluons fit perfectly into the Standard Model they have actually
never been observed. So QCD will have to answer for this difference between theory and
phenomenology. The answer lies in the color confinement.

The way quarks behave when they are coupled with the strong interaction, can be
compared to the behaviour of a rubber band. When quarks are separated the tension
increases with distance. In other words the greater the distance is between two particles,
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CHAPTER 1. RELATIVISTIC HEAVY ION COLLISIONS

the more energy is required to separate them even further. At some point in the process
of separating the particles, enough potential energy has been built up for a new pair of
quarks to be created to which the original pair of quarks will couple, and hence it is not
possible to observe free quarks. This is illustrated in figure (1.3). The seperation of quarks
at high energies leads to a narrow banded spray of hadrons which is known as jets.

Figure 1.3: The figure displays how a charm and anticharm quark are separated. When the
distance between the quarks increases energy and tension builds up. The bond between the
original quark pair breaks when the potential energy reaches a level where a new pair of quarks
can be created.

The property that the coupling constant decreases with distance is known as asymp-
totic freedom and was proven in 1973 [7]. Figure (1.4) is a summery of measurements
of the strong coupling constant αs (which is not a constant). It shows how αs decreases
with increasing energy, and hence increases with distance.

This makes it interesting to go to the other limit the limit with very short distances
between the quarks. In this case the coupling between the quarks will basicly not exist
and it is possible to consider the quarks as freely moving particles. The very same thing
would happen if the temperature is increased sufficiently. So the goal is to create a very
dense and/or hot matter and then study the behaviour of the particles. This matter is
called the quark gluon plasma (QGP) figure (1.5) shows the regime of the QGP.

1.1.2 Quark Gluon Plasma

QGP is expected to exist in two places in the universe, one is inside the neutron stars
(or even denser cosmic objects like black holes) where densities are very high. And
the other is in the laboratory where it is possible to create high energy densities by
smashing two high energetic nuclei into each other. In the simplest case the transition
from ordinary nuclear matter to QGP can be compared to a thermodynamical phase
transition. Particles will go from a bounded state to a state where they can interact
more freely. Just like water which changes from liquid to gas at a specific temperature.
The requirement that the phase transition happens at a specific temperature is that the
matter is in thermodynamical equilibrium. In the same way if the nuclear matter is in
thermodynamical equilibrium the phase transition will happen at a specific temperature,
the critical temperature. Calculations indicate that the critical temperature is Tc ≈
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1.1. THE STANDARD MODEL

Figure 1.4: The coupling constant of the strong interaction. This is a summery of data from
several measurements. It is clear from the figure that the coupling constant is not at all a
constant, and that it decreases with increasing energy [8].

Figure 1.5: The diagram shows the regime where QGP is possible. The red curved arrow
indicates where in the diagram to place the relativistic heavy ion experiments from RHIC and
LHC

175MeV [10]. However it is uncertain whether and when thermodynamical equilibrium
is to be expected and hence the temperature can vary. In a certain temperature interval
near the critical temperature hadron gas is expected to be found inside the QGP. This
effect is known as bubbles.

There is another effect, that is the flow. When nuclei are smashed into each other,
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CHAPTER 1. RELATIVISTIC HEAVY ION COLLISIONS

a rapidly expanding fireball is created. This expansion will follow a certain pattern de-
pending on whether the particles can be regarded as unbounded. This will be elaborated
much further in chapter 4, for now it suffice to say that evidence of flow was first detected
in the Relativistic Heavy Ion Collider (RHIC) at Brookhaven university, in 2001 with an
energy at

√
sNN = 130 MeV [11].

1.2 Heavy Ion Collisions

It turns out that one of the best ways to study QGP is by colliding heavy ions into each
other at relativistic speeds. The heavy ion physics can be divided into three regions of
energy.

i The intermediate energy region

ii The relativistic energy region

iii The ultra-relativistic energy region

Where the first two regions covers the energy upto 10GeV [9]. Experiments in this region
have basicly been used for extracting information about the Equation Of State (EOS) of
the heavy ion reaction. A lot of theoretical work about the QGP which is now possible
to be tested has been done based on collisions in these regions.

The Ultra-relativistic region covering physics with energies above 10GeV, is the one
that concerns this report. In this region it is possible to examine properties of the QGP.
The QGP is being examined at the Relativistic Heavy Ion Collider (RHIC) at Brookhaven
National Laboratory (BNL) with energies up to 250GeV per nucleon, and the Large
Hadron Collider (LHC) at CERN with energies up to 7 TeV per nucleon. This report is
mainly concerned with projects connected to the ALICE (A Large Ion Collider Experi-
ment) collision detector at LHC and a further description of this detector will be given
in chapter (2). The current section will cover some of the basic properties and standard
expressions of a collision.

1.2.1 Geometry of a collision

There are several ways of defining a coordinate system for a collision. The coordinate
system can be defined with respect to a fixed laboratory frame or by certain aspects of
the collision which will determine the orientation of the coordinate system. The coordinate
systems mentioned below, all have the Center of Mass (CM) as origin in common. In the
laboratory frame the coordinate system can be defined by using Cartesian coordinates.
The z-axis is parallel to the beam direction. The x and y axes spans the plane orthogonal
to the beam direction, and is designated the transverse plane with the x-axis parallel
to the local horizontal pointing towards the center of the accelerator, and the y-axis is
perpendicular both to the x- and the z-axis [27].

If the nuclei do not collide head on, such that there individual center of masses are
displaced by on amount b with respect to each other, the x-axis will be placed parallel to
the displacement vector ~b, and the plane spanned by the beam axis and the vector ~b is
designated as the reaction plane. The coordinate system can be tilted in order to make
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1.2. HEAVY ION COLLISIONS

the x and y axes span the reaction plane as shown in figure (1.6). In the following a frame
which is oriented with respect to the reaction plane, will be referred to as the collision
frame.

Figure 1.6: The coordinate system of a collision, with the x-axis parallel to the displacement
vector ~b, making the x and y axes span the reaction plane.

Spherical coordinates are often used instead of Cartesian coordinates. The variables
are the radius r, the polar angle θ and the azimuthal angle φ. The azimuthal angle covers
the transverse plane, and the polar angle covers the xz-plane [27]. The variable θ which
is either in degree or radians is often replaced by the pseudorapidity η given by equation
(1.3) in section 1.2.5. In the laboratory frame φ = 0, is placed at the horizontal line
pointing towards the center of the accelerator. The spherical coordinates are illustrated
in figure (1.7).

x

φ

θ

z

y

Figure 1.7: The coordinate system of a collision using spherical coordinates. The z-axis is the
beam axis.
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CHAPTER 1. RELATIVISTIC HEAVY ION COLLISIONS

1.2.2 Physical properties of a collision

In relativistic heavy ion collisions, an atom is stripped off all its electrons to isolate the
nucleus. In the RHIC, gold nuclei are preferred whereas in LHC lead are the nuclei
most commonly used. The nucleus is not electrically neutral and hence it is possible to
accelerate it by creating a magnetic field. The nucleus reaches relativistic velocities, and
hence relativistic effects must be taken into consideration.

This means that particles are subjected to Lorentz contraction, for example for a lead
nucleus with radius 5.92 fm2 travelling at speed 0.9999996c (7TeV) the radius of the
nucleus in the beam direction would only be 5.14 · 10−6 fm or 8.67·10−5% of the radius
of the nucleus transverse to the beam direction. So in the CM frame the colliding nuclei
can be considered as two very flat discs approaching each other. The consequence of the
collisions of the nuclei is that a huge amount of energy will be stored in a very small
volume.

For a collision that is not head on, parts of the nuclei will continue essentially without
being affected by the collision. These are called spectators. The remaining parts which
interact, are called the participants.

1.2.3 Evolution of a collision

A hydrodynamical model is used for description of a collision. The model requires a
local thermal equilibrium, which means that in a small region it is always possible to
define a temperature. A lot of experimental data has successfully been explained by the
hydrodynamical model. Although results from LHC and RHIC suggest a local thermal
equilibrium [13], it is however still uncertain whether an equilibrium of QGP before phase
transition to hadronic gas (HG) is ever reached. The process of reaching equilibrium is
called thermalization.

In the initial stage of a collision, participants penetrate into a state, designated “a
fireball”, of very high temperature and with partons3 interacting freely. This state is in
no sense in equilibrium. Thermalization is reached through collisions of the constituents
of the fireball. The fireball is surrounded by vacuum, and it will start expanding itself
into the vacuum due to thermal pressure. In a small energy interval around the phase
transition from QGP to hadronic gas HG, hadrons will start to form, which means that
entropy is decreasing. Since the second law of thermodynamics do not allow for an overall
decrease of entropy it means that the system will have to expand very rapidly, but with
a constant temperature.

After the phase transition a freeze out stage is reached. This stage is divided into two
substages. The chemical freeze out which is reached when the production of hadrons has
stagnated because the expansion happens so fast that hadron producing inelastic collisions
do no longer contribute to the hadron production. Local thermodynamic equilibrium can
be maintained due to elastic collisions. As the system continues to expand and cool down,
a stage is reached where the average distances between the hadrons is so large that effects
from the strong interaction disappears. Collisions between the hadrons will happen so
rarely that local thermodynamic equilibrium can no longer be maintained and the laws

2This value is reached by taking r = r0
3
√
A where r0 ≈ 10−15 fm is the radius of a single nucleon, and

A = 207 is the number of nucleons in lead
3gluons and quarks
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of hydrodynamic break down. This is called the kinetic freeze out. A space time diagram
of the situation is seen in figure (1.8), and in figure (1.9) a four step model of a collision
is shown.

Figure 1.8: The evolution of a fireball from initial collision to kinetic freeze out plotted in a
space time diagram. At the bottom of the diagram the two incoming nuclei is drawn along the
diagonal and hence indicating the relativistic speed.

Figure 1.9: A model of a relativistic heavy ion collision. At the top the initial step is the nuclei
approaching each other. Second step is right after the collision with formation of QGP and the
process of thermalization. Third step is the expansion of the fireball and hadronization. And
the fourth step is the kinetic freeze out. In the bottom is shown the Lorentz contraction of a
nuclei with increasing speed.
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1.2.4 Rapidity

It has proven useful to infer a parameter for velocity. It is defined as

y =
1

2
ln
E + pz
E − pz

(1.1)

Where pz is the z component of the momentum, and thus the momentum in the beam
direction. It can be rewritten in the form

y =
1

2
ln

1 + pz
E

1− pz
E

= tanh
pz
E

= tanh−1(βL) (1.2)

[30] where βL = pz
E

is the longitudinal velocity. The reason for using rapidity instead of
velocity is that the rapidity is additive under a longitudinal boost. For example a particle
moving with rapidity y in a frame with rapidity dy will have rapidity y+dy to an observer
outside the frame.

1.2.5 Pseudorapidity

Another important variable is the pseudorapidity. If the angle θ of an emitted particle
with respect to the beam direction is known, one can calculate the pseudorapidity by
making the approximation that mass contribution to the energy at high momentum is
negligible. Starting from the rapidity

y =
1

2
ln
E + pz
E − pz

=

√
m2 + ~p2 + ~p cos θ√
m2 + ~p2 − ~p cos θ

≈ ~p+ ~p cos θ

~p− ~p cos θ

= − ln tan
θ

2
≡ η (1.3)

[30] where η is defined to be the pseudorapidity it is convenient to work with because the
only information needed is the angle. Another reason for working with the pseudorapidity
is that it has very high resolution around the beam axis whereas it decreases for larger
angles of θ. E.g. the angles from π

4
to π

2
has pseudorapidity from 0.88 to 0, whereas the

angles from 0.0001 to π
4

has pseudorapidity from 10 to 0.88. In a collision most of the
particles produced from the fireball will be detected at small angles and hence it is useful
to have a higher resolution at these angles.

1.2.6 Transverse energy

The transverse momentum (~pT ) is the component of the momentum in the transverse
plane. It is an important factor in particle collisions, because a significant and unknown
portion of the incoming energy escapes the detector along the beampipe. Consequently
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the momentum is not conserved in the beam direction. However it is possible to determine
the momentum in the transverse plane. Since momentum conservation is expected the
net transverse momentum must equal zero unless some particles have not been detected.
The missing transverse momentum is given by

6 ~pT = −
∑
i

~pT (i) (1.4)

where the sum runs over each final state particle [26]. The missing transverse energy
( 6 ET ) can be derived from the magnitude of the missing transverse momentum. It is
worth mentioning that the scale in transverse direction is larger than the scale in the
beam direction due to the Lorentz contraction of the system [31].

1.2.7 Multiplicity

Another variable is the multiplicity, which is simply the number of produced particles.
Most of the times multiplicity refers to the number of produced charged particles. It
is convenient to give the multiplicity as a function of the pseudorapidity, and hence the
given multiplicity is given for a certain region in η. The multiplicity will be expressed as

dN

dη
or

dNch

dη
(1.5)

where the first expression is for all produced particles, and the second expression is for
the produced charged particles only.

1.2.8 Impact parameter

As previously noted a collision may not always be head on. The center of mass of the indi-
vidual nuclei may displaced an amount b as illustrated in figure (1.10). This displacement

Figure 1.10: The collision geometry, where the impact parameter b is shown.

b is called the impact parameter. The impact parameter can not be detected directly,
so in order to determine the impact parameter one will have to determine some aspects
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of how the system would be affected by different impact parameters. Collisions with
different impact parameter may be qualitatively as well as quantitatively different. One
of the obvious differences is the multiplicity and the energy in the transversal direction
(ET =

∑
iEi sin θi).

Instead of using the impact parameter, centrality can be used instead. The centrality is
basicly the same as the impact parameter, although centrality is a fractional dimensionless
number, where as the impact parameter is a distance. Centrality is a number between 0%
and 100%, where 0% is the most central event, and 100% is the most peripheral event.
It is possible to relate the collision centrality to the number of observed particles and
neutron spectators.

Models are developed to estimate the initial geometric configuration (including the
impact parameter and number of spectators and participants) of the collision from the
centrality. The models can generally be divided into two classes: The optical Glauber
model, and the Monte Carlo Glauber model. The Monte Carlo Glauber model assumes
all particles in the nucleus to be fixed at a stochastically determined position inside the
nucleus, and then the nuclei are collided assuming that each nucleon follow a straight line
along the beam axis. This imply that prior to the collision the number of spectators and
participants is known if the impact parameter is known. The position of the nucleons is
usually determined by assuming an even distribution in each shell of the nucleus, so that
the distribution is only a function of the nucleus radius.

Figure (1.11) shows a distribution of 65000 events, where the centrality is calculated.
The vertical lines separate the centrality classes such that the grey area farthest to the
right represent the 5% most central events.

Figure 1.11: Collision centrality based on 65000 events. The 80% most central events are
shown. The red line is a Monte Carlo Glauber prediction of the particle production. And the
black line is the actual data.
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Chapter 2

CERN Facility and the ALICE
detector

This chapter is devoted to a description of the LHC particle accelerator at CERN and the
ALICE detector. The main data analysis in this thesis is performed on simulated events,
however some analysis is also performed on real data extracted from a subdetector system
in ALICE labelled as the Time Projection Chamber. Furthermore the analysis currently
performed on simulated events, targets a more extensive analysis on real data from ALICE.
A brief introduction to the LHC and CERN will be given, followed by a more thorough
description of the ALICE experiment. In the last part of the chapter a description of the
Time projection Chamber will be given.

2.1 CERN

The CERN (from french: Conseil Européen pour la Recherche Nucléaire, translated as
European Council for Nuclear Research) laboratory was founded in 1954 in order to probe
the fundamental structures of the universe, as one of Europe’s first joint ventures and now
has more than 20 member states. It is located at the franco-swiss border and is a complex
of accelerators and detectors (see figure (2.1)), where the LHC currently is the accelerator
reaching the highest energies.

2.1.1 LHC

Although there are other accelerators at CERN, LHC is the largest and is in fact the
largest and most powerful accelerator in the world. It consists of a 27 km. long ring built
of superconducting magnets with a number of accelerating structures to boost the energy
of the particles along the way. When the detector is fully upgraded it is expected to
accelerate protons up to 14 TeV per nucleon pair (

√
sNN =8 TeV is currently the highest

CM energy reached [49]) or lead ions up to 5.76 TeV per nucleon pair (The lower energy is
due to the uncharged neutronic dead weight). The particles inside the accelerator travels
along opposite directions in separate beam-pipes before they are made to collide in the
detectors. They are guided along the tunnel with a strong magnetic field supplied by
superconducting electromagnets kept at temperature of 1.9K. In order to avoid collisions
with gas molecules a vacuum pressure at 10−13 atm. is kept in the beam-pipes.
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2.1. CERN

(a) (b)

Figure 2.1: The CERN Laboratory: Panel 2.1a represents a scaled map of the CERN facility
at the franco-swiss border. Panel 2.1b represents a schematic overview of the CERN facility,
where the red and green lines indicate the travel pathes of the proton and ion beams respectively,
before injected into the LHC.
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LHC is mainly focused on proton-proton collisions, however shorter periods (typically
one month a year) are devoted to heavy ion collisions. The ions used for the collisions
are Pb-ions. The initial injected particles are Pb-Atoms, which will have to be stripped
off all its electrons in order to get the Pb82+ ion used in the collisions. This is a four step
procedure, where the first step is to strip the Pb-Atoms of 27 electrons to get Pb27+ by
use of an Electron Cyclotron Resonance source. A current of the Pb27+ ions are injected
to the linear accelerator LINAC 3, where the energy is boosted to 4.2 MeV per nucleon.
Before injected to the Low Energy Ion Ring (LEIR) the ions are stripped off an additional
27 electrons. In LEIR the energy is further boosted to 72.2 MeV per nucleon. From LEIR
the ions are injected to the Proton Synchrotron (PS) where the energy is further boosted
to 5.9 GeV per nucleon. Before entering the Super Proton Synchrotron the Pb54+ ions
are stripped off their last 28 electrons. In the SPS the lead ions are accelerated to 177
GeV per nucleon. Eventually each LHC ring will be injected with 592 bunches each
containing 7 × 107 lead ions. The filling takes approximately 10 minutes. The whole
process is schematized in figure (2.2) and in figure (2.1b) where the path is represented
by the green line. Protons take a slightly different path as they are first injected through
the linear accelerator LINAC 2 instead of LINAC 3. After LINAC 2 they are boosted
in the Proton Synchrotron Boorster (PSB). The rest of the path is the same as for ions,
although protons are boosted to a higher energies and obviously protons do not have to
be stripped off the electrons.

ECR

Pb→Pb+27

LINAC 3

Pb+27 →Pb+54

4.2 MeV

LEIR

72.2 MeV

PS

Pb+52 →Pb+82

5.9 GeV

PSP

177 GeV

LHC

Figure 2.2: The path of lead atoms before injected to the LHC accelerator.

2.1.1.1 The four experiments

10 experiments are associated with the LHC, whereof seven of these use detectors. The
four major experiments are the ALICE, ATLAS, CMS and LHCb where ATLAS (A
Toroidal LHC ApparatuS) and CMS (Compact Muon Solonoid) are general purpose de-
tectors (where the general purpose is to shed light on inconsistencies in the standard
model) designed to cover the largest range of physics possible. ATLAS and CMS are
designed independently of each with advantages and disadvantages. This is of vital im-
portance since this allows for cross-confirmation of any new discovery between the two
experiments. The research areas of ATLAS and CMS ranges between the search for the

17



2.2. THE ALICE DETECTOR

now discovered Higgs boson, the breaking of supersymmetry, dark matter and a more
precise determination of the mass of the top quark among others.

The ALICE (A Large Ion Collider Experiment) experiment has a more specific purpose
namely to create and investigate the QGP.

The LHCb (Large Hadron Collider beaty) experiment is designed to study interactions
between b-hadrons, where b-hadrons are hadrons containing a bottom quark. The purpose
of b-physics is to explain the asymmetry between matter and antimatter by measuring
the charge-parity (CP) violation of b-hadrons.

2.2 The ALICE detector

Although both ATLAS and CMS also analyse the phenomena, ALICE is the detector
specificly designed for the study of QCD and in particular the behaviour of QGP. The
physics programme of ALICE includes lighter ion collisions and at lower energies in order
to vary energy density and interaction volume, as well as the high energy Pb-Pb collisions
with the highest multiplicities anticipated at LHC for which it is designed. ALICE is
located at point 2 (see figure (2.1a)) on the french site of the border. The beam line
running through ALICE is 44 m. underground. The detector is built by a collaboration
including more than 1000 physicists and engineers from 105 institutes and 30 countries.
The overall dimensions of ALICE is 16 × 16 × 26 m. and a total weight of 10000 t.
The major task in the design of the ALICE detector, is to deal with the high particle
multiplicity which were predicted to be in the range of two to five times larger than
the highest multiplicities measured at RHIC. In order to measure the higher rate of
particles per event, the beam interaction rate is significantly reduced as compared to
proton collisions, this allows for slower detectors with higher precision.

2.2.1 Composition

A particle detector generally consist of several layers of subdetector system which can be
divided into three groups.

Tracking detectors: Reveal the path of a particle by letting the particles pass through
and interact with a suitable substance

Calorimeters: Stop, absorb and measure a particle’s energy

Particle-identification detectors: Pin down a particle’s identity

The subdetector systems in ALICE can be devided into a central barrel part and a
forward muon spectrometer. The central part covers angles between cos θ = (±

√
2

2
or in

terms of pseudorapidity |η| = 0.9 and is embedded in a large solonoid which is visualized
in figure (2.3) as the red part surrounding the central detector. Unless otherwise noted
all subdetector systems cover the full azimuthal range between 0 and 2π.

The three innermost detectors are tracking detectors. From the inside out these are
the Inner Tracking System (ITS) surrounding the beam pipe. The ITS consists of six
cylindrical layers of high resolution silicon detectors: Two Silicon Pixel Detectors (SPD)
for the innermost layers, two Silicon Drift Detectors (SDD) for the following two layers
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Figure 2.3: Overview of the ALICE detector

and two Silicon micro Strip Detectors (SSD) for the two outermost layers. The ITS
practically contributes to all physics topics addressed by the ALICE experiment. That
includes to improve the momentum and angle resolution for particles reconstructed by the
Time Projection Chamber (TPC), and to reconstruct particles traversing dead regions of
the TPC.

The TPC is the next subdetector system surrounding the ITS. It is the main tracking
detector of the central barrel and is optimized to provide charged-particle momentum
measurements with good two-track separation, particle identification and vertex deter-
mination. The next detector subsystem is the Transition Radiation Detector. Its main
purpose is to provide identification of electrons with momenta higher than 1 GeV/c.

The Time Of Flight (TOF) is designed to provide particle identification in the inter-
mediate momentum range. Together with ITS and TPC, TOF provides event-by-event
identification of large samples of pions kaons and protons.

The following subdetector systems do not carry the full azimuthal range. They are The
High Momentum-Particle Identification Detector (HMPID), the PHOton Spectrometer
(PHOS) and ElectroMagnetic CALorimeter (EMCAL), where both EMCAL and PHOS
are electromagnetic calorimeters. Only one more subdetector system will be mentioned
(although ALICE consists of more). The Zero Degree Calorimeter (ZDC) consists actually
of two identical detectors each placed 116 m. away on either side of the interaction point.
Its purpose is to measure the impact parameter of the collisions.
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2.2.2 The Time Projection Chamber

The TPC is main tracking detector in ALICE. It is designed to handle an extreme charge
particle multiplicity density of dNch

dη
= 8000, leading to about 20000 primary and secondary

tracks. No TPC has ever been able to handle this abundance of tracks before. It is built
to cover a pT range of 0.1 < pT < 100 GeV/c. The TPC consists of a field cage with
voltage gradient of about 400 V/cm and a high voltage of 100 kV electrode in the axial
center (see figure (2.4). Inside the 90 m3 field cage is a gas consisting of 90% Ne and 10%
CO2. When charged particles are traversing through the gas, the gas is ionised and the
liberated electrons start drifting towards the end plates of the detector where they are
registered by one of the 557568 readout pads. Depending on the momentum and charge
of the particles, the trace will be more or less bent due to the magnetic field provided
by the solonoid surrounding the detector. The bending of the particle trace and drifting
of electrons is illustrated in figure (2.5). The maximum drift distance is 2.5 m. with a

Figure 2.4: Sketch of the TPC subdetector system

Figure 2.5: Drifting of electrons as they are ionised by the charged particle traversing the
TPC. Note the bending of the trace due to the magnetic field.
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maximum drift time of 92µs. making the TPC the slowest detector in ALICE.
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Chapter 3

Fourier expansion and Spherical
harmonics

This chapter is devoted to the introduction of some of the mathematics used in this
thesis. As it will be shown in chapter (4) certain aspects of the particle distribution can
be approximated in terms of a Fourier series which is a one-variable continuous function
given by a superposition of even and odd periodic functions. The advantage of using this
form is that it is possible to investigate the degree of both local and global symmetries
and antisymmetries of a given function or signal.

In this thesis the derivation of the Fourier series is achieved by computational power.
This chapter will introduce the Fast Fourrier Transform (FFT) which is a way of imple-
menting some algorithms that allows for a faster calculation than the classical way of
calculating the Fourier Series.

Since the Fourier series do only take one variable it can only describe the particle
distribution in the plane. To describe a collision on a sphere the associated Legendre
polynomial can be used in order to obtain spherical harmonics which is better suited for
a description of the morphology of an entire collision. This chapter will give a description
of the Fourier series, the Fourier transform and the discrete Fourier transform. A brief
introduction to the FFT will be given, and finally the spherical harmonics will be reviewed.

3.1 The Fourier series

A function f(x) may be expanded into a Fourier series if it satisfies the following conditions

i) f(x) must be periodic.

ii) f(x) must be single valued.

iii) f(x) must have only a finite number of maxima and minima within one period.

iv)
∫ x0+L

x0
|f(x)|dx <∞, where L is a constant satisfying that

f(x) = f(x+ L) (3.1)
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[23]. Equation (3.1) is the definition of a periodic function. If f(x) satisfy these conditions
it can be expressed as

f(x) =
a0

2
+
∞∑
n=1

[an cos(ωnx) + bn sin(ωnx)]

=
∞∑

n=−∞

cne
iωnx

(3.2)

where

an =
2

L

∫ x0+L

x0

f(x) cos(ωnx)dx

bn =
2

L

∫ x0+L

x0

f(x) sin(ωnx)dx

(3.3)

and

cn =
1

L

∫ x0+L

x0

f(x)e−iωnxdx (3.4)

and

ωn =
2nπ

L
(3.5)

This is the conventional way of writing the Fourier series expansion of a function f(x),
where the right-hand side of equation (3.2) is the Fourier series, and equation (3.3) de-
scribes the Fourier coefficients.

The first of the conditions mentioned above, can be circumvented if the function under
consideration is only over a finite interval. This is done by imagining a continuation of
the function in such a way that it becomes periodic. However there are several ways of
making this continuation resulting in different periods which will have to be taken into
consideration when using equation (3.2), this is illustrated in figure (3.1).

3.1.1 Discrete Fourier Transformation

If f(x) is nonperiodic and defined for all x ∈ ]−∞;∞[ The Fourier series can not be
achieved. Instead a Fourier transformation can be calculated. In this case L → ∞ and
accordingly ∆ω ≡ ωn − ωn−1 = 2π

L
→ 0. Considering equation (3.4) this implies that the

Fourier coefficients becomes continuous functions of ω, which eventually implies that the
Fourier transform f̃(ω) is given by

f̃(ω) =

∫ ∞
−∞

f(x)e−iωxdx (3.6)

[23]. It appears from equation (3.6) that f̃(ω) is an expression for the strength of the
complex sinusoids at a given frequency ω.

Sometimes f(x) is not a continuous function, but a finite set of samples, at equally
spaced values of x. This is more like the situation in particle physics, where the segmen-
tation of the detector, only allows for a discrete description of the particle distribution.
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0 L

(a)

0 L 2L

(b)

0 L 2L

(c)

0 L 2L

(d)

Figure 3.1: Different ways of extending a nonperiodic but finite ranged function.

This is a special case of equation (3.6). Under these conditions the Fourier transformation
becomes

f̃(k) =
N−1∑
n=0

fn exp

(
−i2πkn
N

)
(3.7)

Where N is the number of samples and fn is the n’th sample value or equivalently fn =
f(xn) where xn is the x-value at the position of the n’th sample. Each f̃(k) represents
the magnitude of the sine and cosine components with a given frequency. In principle any
value of k is valid, but no more than N outputs can be used to determine the degree of
symmetries and antisymmetries in a dataset. This is because each data sample is treated
as a rectangular column. If there are more than N outputs, the Fourier transformation
is fitted to the contours of the sample columns which contain no information.

The discrete Fourier transformation is a dataset of finite range which do not have to be
periodic, hence the dataset is imaginatively extended to an infinite periodic set, the same
way as was shown in figure (3.1b). The principles of the discrete Fourier transformation
are shown in figure (3.2). It is seen that the columns represent a discrete set of values
f(x).

3.1.2 Fast Fourier Transform

The calculation of equation (3.6) requires N2 multiplications. A Fast Fourier Transform
(FFT) is an algorithm that reduces this number of operations by dividing the original
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Figure 3.2: The principles of the discrete Fourier transform. The columns represent a data set
with a finite number of samples. The curve is the approximated periodic function.

problem into smaller subproblems in such a way that

∑
cost(subproblems) + cost(mapping) < cost(original problem) (3.8)

[24] meaning that the cost of the calculations of the subproblems plus the cost of gathering
the solutions of the subproblems into one solution of the original problem, must not exceed
the cost of the direct calculations needed to solve the original problem. In fact the use of
FFT has allowed for a reduction of multiplications from N2 to N log2N multiplications.

The FFT algorithm is not a specific algorithm. It is any algorithm that produces
exactly the same result as the result of direct calculations of the discrete Fourier transform
but with fewer calculations. Neither is there a specific algorithm which is the fastest. For
a given dataset of N samples, the fastest way of making the Fourier transform depends
on several things e.g. the size of N in the dataset and the platform on which the FFT is
evaluated. One example of how the platform is relevant is the Winograd Fourier Transform
which is designed to reduce to the number of floating point multiplications in the FFT.
This is an advantage when using computational power. However the cost is a lot of extra
additions and data transfers as compared to other FFT algorithms [25].

A mathematical derivation of the FFT will not be given in this thesis. It is not required
to understand the underlying math of the FFT in order to understand the results, since
the results of the FFT is exactly the same as the result of the direct calculations of the
discrete Fourier transform.
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3.2 Spherical harmonics

The spherical analogue of the Fourier Series is the Spherical Harmonics (SH) making it
possible to analyse frequencies of the symmetries and the antisymmetries on a sphere. SH
are used in a variety of fields, e.g. computation of the atomic electron configurations, and
the solution of the Schrödinger equation in spherical coordinates. Of more relevance for
this thesis, which will be apparent in chapter 5, is the use of SH in the analysis of cosmic
microwave background.

The spherical harmonics are defined by

Y m
l (θ, φ) = (−1)m

√
2l + 1

4π

(l −m)!

(l +m)!
Pm
l (cos θ)eimφ (3.9)

where l and m are discrete numbers, with −l ≤ m ≤ l, and Pm
l (cos θ) is the associated

Legendre polynomial. For m ≥ 0 Pm
l (cos θ) is given by

Pm
l (x) =

1

2ll!
(1− x2)m/2

dl+m

dxl+m
(x2 − 1)l (3.10)

if m < 0 it can be calculated from equation (3.10) by the relation

P−ml (x) = (−1)m
(l −m)!

(l +m)!
Pm
l (x) (3.11)

[23]. A couple of things should be noted about equation (3.9). m determines the φ
dependence, and consequently if m = 0 there is no dependence in φ. The dependence
on θ is determined both by m and l. Thus only the case where l = m = 0 would have
θ-dependence on Y m

l (θ, φ). It is mathematically allowed for l to be zero, in this case

Y 0
0 (θ, φ) =

√
1

4π
would be constant resembling a perfect sphere.

From equation (3.11) it is seen that

Y −ml (θ, φ) = (−1)m[Y m
l (θ, φ)]∗ (3.12)

where the asterix denotes complex conjugation. Consequently it is common only to eval-
uate the SH for m ≥ 0.

The SH are often visualized on a sphere, since the SH are derived to represent functions
on the sphere. The disadvantage of this representation is that only half of the function
can be seen on a 2-dimensional paper. Figure (3.3) shows the real part of the spherical
harmonics for l = 5 and for {m ∈ N|0 ≥ m ≥ l|} drawn in a cartesian coordinate system
where the sphere has been folded out on a plane. This allows for the functions to be fully
visualized. The pattern remains the same when the imaginary part is included.

The SH form a complete set in the sense that any function of θ and φ can be expanded
as a sum SH’s. Thus a function f(θ, φ) can be written as

f(θ, φ) =

∫ 1

−1

∫ 2π

0

=
∞∑
l=0

l∑
m=−l

almY
m
l (θ, φ) (3.13)
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(a) l = 5, m = 0 (b) l = 5, m = 1

(c) l = 5, m = 2 (d) l = 5, m = 3

(e) l = 5, m = 4 (f) l = 5, m = 5

Figure 3.3: The spherical harmonics for l = 5 and all values of m. There is no dependence on φ
for the m = 0 part. There is an increase of the multipoles in the φ-direction as m increases. The
multipoles in the θ-direction decreases as a consequence of the higher order derivatives which
eventually leave the θ-dependent part as a constant multiplied by (1− x2)m/2 with x = cos θ.
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where alm is a weight coefficient given by

alm =

∫ 1

−1

∫ 2π

0

[Y m
l (θ, φ)]∗f(θ, φ)dφd cos(θ) (3.14)

Thus the alm is of utmost importance when analysing a function, since it tells the degree
of symmetry and antisymmtry at a given frequency. In equation (3.13) l is allowed to go
to infinity. Just like in the discrete Fourier transform this does only make sense if the
function f(θ, φ) is a continuous function. If f(θ, φ) is a finite discrete dataset l should not
exceed the number of samples in f(θ, φ).
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Chapter 4

Anisotropic Flow

As discussed in chapter (1), a central collision at a given CM energy yields the highest
particle production, and hence one a central collision is can be suspected as being of
higher interest than a noncentral collision. Indeed for several years the central collisions
has been the preferred [19]. However the noncentral collisions exhibit hydrodynamical
properties which can not be observed in central collisions. These properties arises due to
the geometry of the collision where the volume containing interacting matter is anisotropic
in the azimuthal plane. The anisotropy can not be allowed in central collisions, since a
(perfect) central collision is symmetric in all directions. In this chapter a definition and
description of the collective anisotropic flow will be given. Since the results in this report
are only concerned with the anisotropic flow which arises from non central collisions, very
little attention will be devoted to the isotropic radial flow..

A physical description of the flow phenomenon and the motivation for studying this
phenomenon, will primarily be described through flow of second order known as elliptic
flow, although some higher order flows will also be reviewed briefly. The last part of
this chapter will focus on the methods applied to determine the reaction plane and the
amplitude of the flow.

4.1 The flow phenomenon

The phenomenon that a large number of particles moves either in a common direction
or with a common velocity is referred to as collective flow [18]. This collective motion is
present in a heavy ion collision due to the fact that a very dense zone of compressed nuclear
matter is formed and hence a pressure from the inside creates an expanding fireball, as
discussed in chapter (1). Flow signals the presence of multiple interactions between the
particles produced in the collision. Interactions amongst the particles is exactly what is
needed for thermalization so that the strength of the flow becomes a measurement of the
degree of thermalization [20].

In the case of a very central collision the pressure gradient in both the azimuthal and
polar angle will be approximately zero, and the flow will be isotropic in all directions. In
a noncentral collision, the fireball will be almond shaped as shown in figure (4.1), and
the flow will be anisotropic in the azimuthal direction. This anisotropy is experimentally
observed as shown in figure (4.2), showing the correlation between any two particles. The
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Figure 4.1: Noncentral collision giving rise to the elliptic flow due to an anisotropic pressure
gradient in the azimuthal plane.

correlation is derived as

R ≡ 〈NaNb〉 − 〈Na〉〈Nb〉
〈Na〉〈Nb〉

(4.1)

Where Na and Nb denotes the number of particles of type a and b inside a given segment
defined by its position and size in pseudorapidity and azimuthal angle [21]. The brackets
denote the average over several events. The ∆φ = φa − φb and ∆η = ηa − ηb along the
y-axis is the seperation between each segment corresponding to Na and Nb. As it appears

Figure 4.2: ∆φ and ∆η distribution of a two particle correlation derived from equation (4.1).
The nearside peak is due to jet correlations, the two ridges signify an elliptic flow

from the figure, there is a ridge around ∆φ ≈ 0 and at ∆φ ≈ π. The ridge around
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∆φ ≈ 0 signifies that particles that propagates in very different directions with respect to
the beam axis preserves a common direction of motion in the transverse plane, whereas
the ridge around ∆φ ≈ π signifies that this motion is symmetric in the transverse plane.
This is a result of the anisotropy shown in figure (4.1). The pressure inside the fireball is
the same in all directions. But since the pressure is spread over a larger distance along
the major axis as compared to the minor axis, the result is an effectively higher pressure
gradient along the minor axis. The result is an excess of particles along the minor axis.
This kind of flow is known as Elliptic flow, and is described mathematically as

dN

dφ
∝ 1 + 2v2 cos 2φ (4.2)

[21], where v2 is a measurement of the magnitude of the elliptic flow. Although the
equation do only contain a dependency on φ, the elliptic flow may still be dependent on
η [50].

4.1.1 Fourier expansion of the collective flow

The anisotropic flow only gives rise to an anisotropy in the azimuthal plane, consequently
flow is only described by the variable φ as a function of particles in the azimuthal plane.
Let f(φ) be the function that describes the particle distribution in the azimuthal plane.
The particle distribution is defined in the finite interval between 0 and 2π so that f(φ)
can be Fourier expanded by equation (3.2) to give

f(φ) =
a0

2
+
∞∑
n=1

an cos(nφ) (4.3)

[28], where an is given by equation (3.3). Equation (4.3) do only apply for the case where
the colliding nuclei are identical. The sine term is eliminated because the probabilities of
particle emission in the φ and −φ direction are equal.

Equation (4.3) has two important features, the first is: that if n = 2 it is quite similar
to equation (4.2). When n = 2, then f(φ) will have two periods as illustrated in figure
(4.3), which is similar to the case of elliptic flow. The second order term of equation

f(φ)

φ

Figure 4.3: v2 cos(2φ)

(4.2) is not exactly the same as (4.3) because (4.2) is written in the conventional form
of describing the flow whereas equation (4.3) is the conventional form of the Fourier
expansion. In flow analysis the most general form of writing the particle distribution in
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the azimuthal plane is given by

f(φ) = 1 + 2
∞∑
n=1

vn cos[n(φ− ψn)] (4.4)

[20]. Equation (4.4) equals equation (4.3) when vn is chosen properly. The ψn term
present in equation (4.4) is the angular orientation of the reaction plane.

The second feature of equation (4.3) is that there is an infinite amount of terms in the
Fourier expansion. However the reason for the anisotropy is the almond shaped fireball
as described above, and it seems natural that the term n = 2 would be the only term
present in the expansion. The other terms arises due to the fact that the nucleons inside
the nucleus are not evenly distributed. Consequently the overlapping region of the nuclei
is not strictly ellipsoidal which will lead to other terms of fluctuations in the particle
distribution. Figure (4.4) shows how the uneven nucleon distribution inside two colliding
nuclei leads to an overlap region that may be approximated with an elliptical or triangular
shape, and one may continue with higher orders. When considering the event as shown
in figure (4.4) as opposed to the clear cut situation in figure (4.1), the reaction plane is
referred to as symmetry plane. It is not necessary that the angle of the symmetry plane
is the same for various orders. Furthermore due to the periodicity of the flow orders, it
only makes sense to describe the symmetry plane in the range 0 ≤ ψn ≤ 2π/n. Until now
the highest measured flow order has been n = 8 and is significant up to order the n = 6
[32].

(a) (b)

Figure 4.4: Illustration of how the uneven nucleon distribution inside the nuclei in a collision
may be considered as elliptic or triangular flow. The arrow indicate the orientation of the
symmetry plane.

4.1.2 Motivation for studying elliptic and higher order flow

It was briefly mentioned in chapter 1 that after thermalization the system might be
described through a perfect fluid hydrodynamical model. The observation of higher order
flow harmonics [33] makes the assertion that the QGP can be considered as a perfect
fluid very likely since it does not absorb the fluctuations from the higher harmonics.
The hydrodynamical model is better suited for central than peripheral collisions. The

34



CHAPTER 4. ANISOTROPIC FLOW

hydrodynamical description is dependent on an equation of state, and the initial conditions
of the collision. The initial conditions include the time t0 at which the system thermalizes,
the baryon density and the viscosity of the produced fluid.

In most collisions the elliptic flow is the largest coefficient. Therefore it is advantageous
to study this part of the flow. The reason is that elliptic flow is strongly dependent on the
geometry of the collision and less dependent on other parameters of the hydrodynamic
model. This makes it possible to compare results from elliptic flow to the hydrodynamic
model and gain information about the unknown parameters. In particular elliptic flow
can be used as an indicator for the degree of thermalization [34] by studying the viscosity
of the system. A higher viscosity would quickly reduce the magnitude of the flow. Figure
(4.5) shows how the eccentricity of various flow orders varies with centrality, where the
eccentricity ε is a term describing the deviations from a spherical shape. The eccentricity
is given by

ε1e
iψ1 ≡

∫
r3ei(φ−ψ1e(r, φ)rdrdφ∫

r3e(r, φ)rdrdφ
and εne

inψn ≡ −
∫
rnein(φ−ψn)e(r, φ)rdrdφ∫

rne(r, φ)rdrdφ
, n > 1

(4.5)
where e(r, φ) is the initial energy density distribution in the azimuthal plane. Here the

Figure 4.5: The flow dependence on eccentricity. Eccentricity as defined in equation (4.5)
is calculated under different initial conditions represented by different signatures of the curve.
Eccentricity depends on both the centrality and the initial conditions [35].

actual viscosity is not calculated, but an average over time of the evolution of the fireball
is calculated. The fact that the viscosity is not constant is a consequence of the viscosity
being affected by the temperature of the system. As the fireball expands the system is
cooled and viscosity is increased.

The hadronic state occurring after the QGP may significantly distort the determi-
nation of the viscosity as the actual measurement of the flow only takes place after the
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phase transition. However an increased CM energy increases the lifetime of the QGP and
hence reduces the uncertainty on the measurement. By observing the energy dependence
of elliptic flow, the contributions from the hadronic and the QGP phases can be varied
and the temperature dependence of viscosity can be investigated.

In principle the flow order n could range infinitely but the shear viscosity dampens
the differences in expansion velocities and thus dampens the flow coefficients. But higher
flow order coefficients are attenuated more than low flow orders. Thus higher order flow
calculations may also be an important tool in determining the viscosity of the QGP. Figure
(4.6) shows the flow coefficients variation with centrality. The elliptic flow vary rapidly
with centrality whereas v3 and v4 has a rather weak centrality dependence.

Figure 4.6: Centrality dependence on higher order flow calculated with a two particle corre-
lation (red dots, filled blue squares and pink stars) for the v2 to v4 flow, and a four particle
correlation (empty blue squares) for the v3 flow. The x axis run between 0 and 80%

4.1.2.1 Importance of the reaction plane

For the flow coefficients v2 and v3 there is to a good approximation a proportionality
to the eccentricity ε2 and ε3. But when encountering higher orders the hydrodynamic
model predicts that as the fireball evolve there will be a mixing between the various flow
order harmonics thus making v4 dependent on v2 and v5 dependent on v3. This results
in a change in the reaction plane of flow which is not the same as the reaction plane
for eccentricity. In other words ψn does not have the same value in equation (4.5) as
in equation (4.4). A study of the correlation between the reaction planes may help to
determine both the initial conditions of the collision and the shear viscosity [36].

4.2 Methods of flow analysis

There are several ways of calculating the flow coefficients. The original way has been
the event plane method, where the reaction plane is needed in order to calculate the
flow coefficients. But more recent methods known as the cumulant methods considers
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the position of the individual nucleons inside the nuclei. The reaction plane method
considers the position of particles with respect to the reaction plane which is determined
by considering the position of the two colliding nuclei, whereas the cumulant method
considers the flow with respect to a participant plane which is determined from the shape
of the system of the individual colliding particles form as illustrated in figure (4.7). A

Figure 4.7: Participant plane derived from the position of the individual nucleons. The image
shows that the participant plane is slightly rotated with respect to the reaction plane. Generally
the participant plane fluctuates around the reaction plane.

description of the three most frequently used methods will be given below. The fact that
the flow is not estimated from one method but several can lead to confusion since they
do not yield the same result and thus are not directly comparable. The confusion is even
further increased with the fact that there are different kinds of flow:

Differential flow: Generally there is a dependence of the flow coefficients on the trans-
verse momentum and rapidity. In this case flow is only calculated with specific class
of selected particles satisfying a set of predefined conditions. E.g. one flow coeffi-
cient could be calculated only for particles with 1.9 < pT < 2.1, and other similar
pT windows would be used in order to obtain flow coefficients for the entire range
of pT .

Integrated flow: Integrated flow is obtained through explicit integration of differential
flow with respect to pT or y. Integrated flow is often visualized with a dependence
on centrality.

Reference flow: The reference flow is used in the calculation of cumulants (subsection
4.2.4), where it functions as a reference for the differential flow. It is needed due
to limited statistics in each narrow pT window where differential flow is calculated
which prevents calculation of differential flow only by taking particles from that
narrow window.
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4.2.1 Determination of the event plane

In order to determine the flow coefficients in the reaction plane method, the orientation
of the reaction plane is needed. However due to a limited particle production the true
reaction plane cannot be found experimentally. Hence in the following there will be a
distinction between the “reaction plane” (ψRPn ) and the “event plane” (ψEPn ), where the
reaction plane denotes the true reaction plane and the event plane means the experimen-
tally estimated reaction plane. If it is clear from the context whether it is the reaction
plane or the event plane which is under consideration, the superscript will be omitted.

The reaction plane can be calculated from the event flow vector ~Qn = (Qx,n, Qy,n)
defined by

Qx,n = | ~Qn| cos(nψEPn ) ≡
M∑
i

ωi cos(nφi)

Qy,n = | ~Qn| sin(nψEPn ) ≡
M∑
i

ωi sin(nφi)

(4.6)

which leads to

ψEPn =
1

n
arctan

(∑
i ωi sin(nφi∑
i ωi cos(nφi

)
(4.7)

[37], where the sum runs over all detected particles M , and ωi are weights. In the follow-

ing the slight simplification is made that | ~Qn| = Q. In a symmetric collision reflection
symmetry demands the same particle distribution in the forward hemisphere as in the
backward hemisphere when shifting the azimuthal angle of all particles with π. Conse-
quently the weights of all odd harmonics will have a reversal in sign for all particles in
the backward hemisphere. The magnitude of ωi can vary depending on which effect of
the flow is under consideration and which effects (e.g. detector acceptance) needs to be
eliminated.

4.2.2 The reaction plane method

Using the event plane as an estimation of the differential flow harmonics can be obtained.
The definition of the differential flow harmonics involves the reaction plane

vn ≡ 〈cos[n(φ− ψRPn )]〉 (4.8)

[38], where the brackets denotes the average over particles and events. Since the reaction
plane ψRPn is not known, the event plane will have to be used instead leading to an
observed flow coefficient vObsn which can be corrected in order to give an estimation of the
true flow coefficient. vObsn is given by

vObsn = 〈cos[n(φ− ψEPn )]〉 (4.9)

and the estimation for the true flow coefficient will be given by

vtrue
n =

1

R
vObsn (4.10)
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[38], where R is the event plane resolution. If the procedure is applied in a narrow window
the differential flow is obtained. The event plane resolution is derived from various sub-
events, where a sub-event means a subgroup of particles in an event e.g. all particles in
a certain rapidity range. For each of the sub-events an event plane is determined and the
event plane resolution is given by

R = 〈cos[n(ψEPn,a − ψRPn )]〉 =

√
〈cos[n(ψEPn,a − ψEPn,b )]〉〈cos[n(ψEPn,a − ψEPn,c )]〉

〈cos[n(ψEPn,b − ψEPn,c )]〉
(4.11)

[37], where the subscripts a, b, c are included because the event planes are calculated for
various sub-events. The brackets denote average over events. Thus in order to calculate
the event plane resolution three sub-events is required. This can be reduced to two
if further information is known about the sub-events e.g. the sub-events are of equal
multiplicity. Figure (4.8) shows the event plane resolution as a function of centrality for
the second order flow harmonic.

Figure 4.8: The event plane resolution for the second flow harmonic as a function of centrality
[39].

When using the event plane method, it is important to remove autocorrelations. This
is done by assuming that the contribution from momentum conservation is small. When
a particle has been used in the calculation of an event plane the autocorrelation effect
in its distribution with respect to this plane is removed by recalculating the event plane
without the particle.

4.2.3 Non-flow

One of the weaknesses about the event plane method is that there may be several possible
sources of azimuthal correlation which are unrelated to the reaction plane and the initial
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geometry of the system. These correlations are known as non-flow effects. The origin
of the non-flow effects includes resonance decays, dijets, coulomb effect or momentum
conservation along with others. Very often the contribution from non-flow effects scales as
1/M where M is the multiplicity of particles used to determine the event plane. However
this can not be taken as a general rule, for instance the contributions due to momentum
conservation increases with the fraction of particles detected when using the event plane
method.

Generally non-flow effects are too large to be negligible and must be suppressed. Al-
though there are tools developed for the suppression of non-flow effects in the event plane
method [42], it cannot be done in a systematic manner. This has motivated develop-
ments of other methods where contribution from non-flow effects is vanishing. Generally
non-flow effects only involve correlations between more than three particles, so the idea
is to study flow by studying genuine multi-particle correlations. This can be done in two
ways. Either by the cumulant method or by the Lee-Yang zeroes method, both of which
considers correlations between the produced particles.

4.2.4 The cumulant method

The cumulant method takes its offspring in the idea that if there exist a correlation
between the produced particles and the orientation of the reaction plane, then there
must exist a correlation amongst the produced particles themselves. Using this method
the anisotropic flow develops relative to the participant plane as shown in figure (4.7)
instead of the reaction plane. The method has two steps: the first is to calculate the
reference flow and then the reference flow is used in the second step, which is to determine
the differential flow harmonics defined in equation (4.8). A weighted average of the pT
dependent differential flow can be calculated to obtain the integrated flow.

4.2.4.1 Reference flow

In order to determine the differential flow, the reference flow must be determined. The
reference flow is determined using correlations between all detected particles. From these
correlations the n’th order cumulant which is closely related to the reference flow, can
determined. Although in principle any number of particles could be used in the cumulant
determination, it is customary only to use two or four particle cumulants in the study of
elliptic flow. Higher order cumulants could be used, but with little advantage since they
do not suppress systematic uncertainties better than four-particle cumulants. However
second order cumulants are affected by non-flow effects. As the non-flow effects on fourth
order cumulants are vanishing, a comparison between second- and fourth order cumulants
may be advantageous.

The single event averaged two particle azimuthal correlation is defined as

〈2〉 ≡ 〈ein(φ1−φ2)〉 =
(M − 2)!

2!

M∑′

i,j=1

ein(φi−φj) (4.12)
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and similarly the four particle correlation is defined as

〈4〉 ≡ 〈ein(φ1+φ2−φ3−φ4)〉 =
(M − 4)!

4!

M∑′

i,j,k,l=1

ein(φi+φj−φk−φl) (4.13)

where M is the number of particles. The prime in the sum means that indices in the
sum must be taken different. These functions can easily be generalized to six- and eight
particle correlations. Equation (4.12) can be averaged over all events to obtain

〈〈2〉〉 ≡ 〈〈ein(φ1−φ2)〉〉 ≡

N∑
i

(W〈2〉)i〈2〉i
N∑
i

(W〈2〉)i

(4.14)

and

〈〈4〉〉 ≡ 〈〈ein(φ1+φ2−φ3−φ4)〉〉 ≡

N∑
i

(W〈4〉)i〈4〉i
N∑
i

(W〈4〉)i

(4.15)

where the W〈m〉 are event weights inferred to minimize the effect of multiplicity variation
and N is the number of events. The procedure is the same for higher order correlations.
If the multiplicity is not the same in all events the event weights may advantageously be
chosen as

W〈m〉 =
M !

(M −m)!
(4.16)

in order minimize the statistical spread. If the detector has uniform acceptance, equation
(4.14) describes the second order cumulant cn{2} such that

cn{2} = 〈〈2〉〉 (4.17)

and the fourth order cumulant can be written as

cn{4} = 〈〈4〉〉 − 2〈〈2〉〉2 (4.18)

Equation (4.17) and (4.18) eventually leads to the determination of the reference flow
given by

vn{2} =
√
cn{2} (4.19)

and
vn{4} = 4

√
−cn{4} (4.20)

The last two equations are the conventional way of determining the reference flow as
described in [41], however the calculations do need a lot of computational power especially
for the higher order cumulants due to the summations. Furthermore the method do not
take into account that the acceptance of the detector may not be uniform.

The generalized form of the second order cumulant which do also contain corrections
for non-uniform acceptance in the detector is given by

cn{2} = 〈〈2〉〉 − 〈〈cos(nφ)〉〉2 − 〈〈sin(nφ)〉〉2 (4.21)
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The generalized fourth order cumulants is given in appendix A.
In order to reduce the calculations of (4.19) and (4.20) it has been suggested to express

the correlations in terms of the flow vector defined in equation (4.6). For the sake of
simplicity it can be written in complex numbers as

Qn ≡
M∑
i=1

ωie
inφi (4.22)

A reasonable choice of weight would ω = pT . In the following calculations Qn will be
treated with ωi being unity.

The square of the vector can be rewritten as

|Qn|2 = QnQ
∗
n =

M∑
i,j=1

ein(φi−φj) = M +

M∑′

i,j=1

ein(φi−φj) (4.23)

from which 〈2〉 can be expressed as

〈2〉 =
|Qn|2 −M
M(M − 1)

(4.24)

The single event averaged four particle correlation is given in terms of

|Qn|4 = QnQnQ
∗
nQ
∗
n =

∑
i,j,k,l=1

ein(φi+φj−φk−φl) (4.25)

It is a little more cumbersome because it includes four distinct cases for the indices i, j, k, l.
One where all indices are different from each other, one where two are equal, one where
three are equal and one where they are all equal. This finally leads to an expression for
〈4〉 given by

〈4〉 =
|Qn|4 + |Q2n|2 − 2 · Re [|Qn2Q

∗
nQ
∗
n|]

M(M − 1)(M − 2)(M − 3)
− 2

2(M − 2) · |Qn|2 −M(M − 3)

M(M − 1)(M − 2)(M − 3)
(4.26)

Equation (4.24) and (4.26) may be inserted into (4.14) and (4.15) in order to obtain the
reference flow. This is a less computationally demanding method. But equation (4.26)
also shows the interference between different order harmonics, and thus is a crucial tool
in disentangling these interferences.

4.2.4.2 Differential flow

The reference flow can be used to determine the differential flow. This means that the
determination of differential flow is a two step operation, firstly the reference flow is de-
termined and secondly the differential flow will be estimated with respect to the reference
flow. Particles used in the calculations for the reference flow are labelled Reference Flow
Particles (RFP) and particle used in the calculations of the differential flow taken from
some phase window are labelled as Particles Of Interest (POI). Particles labelled as RFP
and POI may not always be distinct. The azimuthal angel of RFP is denoted by φ, where
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as the azimuthal angle of POI is denoted by Φ. With this notation the reduced single
event average two- and four-particle correlations can be defined as

〈〈2′〉〉 ≡ 〈ein(Φ1−φ2)〉 ≡ 1

mpM −mq

mp∑
i=1

M∑′

j=1

ein(Φi−φj) (4.27)

〈〈4′〉〉 ≡ 〈ein(Φ1+φ2−φ3−φ4)〉 (4.28)

≡ 1

(mpM − 3mq)(M − 1)(M − 2)

mp∑
i=1

M∑′

j,k,l=1

ein(Φi+φj−φk−φl) (4.29)

where mq is the number of particle labelled both as RFP and POI and mp is the number
of particle labelled as POI. The prime in the sum have a slightly different meaning as
compared to equation (4.12) and (4.13), the sum is over distinct particles meaning that
even a particle labelled both as RFP and POI can not appear twice in one term of the
sums. The event averaged reduced two and four particle correlations can be defined as

〈〈2′〉〉 ≡

N∑
i=n

(w〈2′〉)i〈2′〉

N∑
i=1

(w〈2′〉)i

(4.30)

〈〈4′〉〉 ≡

N∑
i=1

(w〈4′〉)i〈4′〉i
N∑
i=1

(w〈4′〉)i

(4.31)

Where the weights wi, inferred for the case of multiplicity fluctuations, may be advanta-
geously chosen as

w〈2′〉 = mpM −mq (4.32)

w〈4′〉 = (mpM − 3mq)(M − 1)(M − 2) (4.33)

which to takes into account the number of different particle combinations used to evaluate
all correlations used to evaluate all correlations.

Like with the reference flow, the number of mathematical operations can be reduced
by the use of the Q vector defined in equation (4.22) (with the weights omitted), but
two additional vectors have to be introduced to take into account the distinction between
particles labelled only as POI, and particles labelled both as POI and RFP. Thus the
vector pn is defined as

pn ≡
mp∑
i=1

einΦi (4.34)

and the vector qn is defined as

qn ≡
mq∑
i=1

einΦi (4.35)
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in analogue to the reference flow 〈2′〉 is given by

〈2′〉 =
pnQ

∗
n −mq

mpM −mq

(4.36)

which may be inserted into equation (4.30) to obtain 〈〈2′〉〉. And the reduced four-particle
correlations may be written as

〈4′〉 =
pnQnQ

∗
nQ
∗
n − q2nQ

∗
nQ
∗
n − pnQnQ

∗
2n − 2MpnQ

∗
n − 2mq|Qn|2

(mpM − 3mq)(M − 1)(m− 2)

+
7qnQ

∗
n −Qnq

∗
n + q2nQ

∗
2n + 2pnQ

∗
n + 2mqM − 6mq

(mpM − 3mq)(M − 1)(m− 2)

(4.37)

With uniform detector acceptance the differential flow cumulants are given as

dn{2} = 〈〈2′〉〉 (4.38)

and
dn{4} = 〈〈4′〉〉 − 2 · 〈〈2′〉〉〈〈2〉〉 (4.39)

Estimates of the differential flow are then given by

v′n{2} =
dn{2}√
cn{2}

(4.40)

and

v′n{4} = − dn{4}
4
√
−cn{4}3

(4.41)

Whereas the generalized second order differential cumulants are given by

dn{2} = 〈〈2′〉〉 − 〈〈cos(nΦ1)〉〉〈〈cos(nφ2)〉〉 − 〈〈sin(nΦ1)〉〉〈〈sin(nφ2)〉〉 (4.42)

The generalized fourth order cumulants can be found in appendix (A). The number of
mathematical operations in the generalized forms of both the reference flow and the
differential flow may be reduced by the use of the Q, q and p vectors. This is described in
the appendix of [40].

The estimated differential flow in a Pb-Pb collision with center of energy
√
sNN = 2.76

TeV plotted against the transverse momentum is shown in figure (4.9) for different cen-
tralities. The fourth order cumulant is generally lower than the second order cumulant,
because the cumulants have different sensitivity to event-by-event fluctuations and be-
cause the fourth order cumulant is nearly unaffected by the non-flow effects.

4.2.4.3 Integrated flow

Integrated flow is defined as a weighted average with the invariant distribution used as a
weight

vn ≡

∫ ∞
0

vn(pT )
dN

dpT
dpT∫ ∞

0

dN

dpT
dpT

(4.43)

By the use of integrated flow, flow can be estimated with respect to centrality. Figure
(4.10) shows the flow of figure (4.9) integrated with respect to pT with the limits 0.2 <
pT < 5.0 GeV/c plotted against the centrality.
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Figure 4.9: Differential flow in Pb-Pb collisions with center of mass energy
√
sNN = 2.76 TeV
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plotted against the centrality.

45



4.2. METHODS OF FLOW ANALYSIS

4.2.5 Lee-Yang zeroes method

The Lee-Yang Zeroes (LYZ) method is named after the authors (T. D. Lee and C. N.
Yang) [43] of the theory of phase transition to which it might be resembled. Contrary to
the cumulant method which do only study a finite order of correlations typically ranging
between two and eight, the approach in the LYZ method is to study a large (in principle
infinite) order of cumulants. In spite of the advantages of the cumulant- and LYZ method
(suppression of non-flow effects), the most dominating method is still the event-plane
method partly because it is more intuitive and partly because it is more handy. However
as shown in subsection (4.2.4) the introduction of the flow vector to the calculations has
also made the cumulant method handy. The LYZ method described below is the method
introduced in [44], but the mathematical formality has been altered to resemble that of
the event plane method [45] and thus is more intuitive. The estimation of the differential
flow is a two step procedure, where first the reference flow is calculated and used in the
second step which is the estimation of the differential flow. The estimate of the differential
flow harmonic v′n is defined as

v′n{LY Z} ≡ 〈WR cos[n(Φ− ψEPn )]〉 (4.44)

[38], where Φ corresponds to the azimuthal angle of the particles of interest used for
calculating the differential flow. The event plane ψEPn is the same as in the event plane
method, although it is implemented differently [45]. Equation (4.44) is in close analogy
with equation (4.9) and (4.10), wherefore the LYZ method in this notation is considered
as an improved event plane method.

4.2.5.1 Integrated flow

The integrated flow is defined as

Vn ≡ 〈Q cos[n(ψEPn − ψRPn )]〉 (4.45)

where Q = | ~Q| is the flow vector as defined in (4.6). The weights may depend on rapidity
and transverse momentum. The integrated flow is denoted by a capital V because the
weights may not be dimensionless and in that case nor is the flow.

An estimation of the integrated flow is obtained by the projection of the flow vector
onto a fixed arbitrary direction making an angle nθ with respect to the x-axis. The
projection is defined as

Qθ ≡ Qx cosn(θ) +Qy sin(nθ) = Q cos[n(ψEPn − θ)] (4.46)

This can be inserted into a generating function:

Gθ(r) ≡ 〈eirQθ〉 ≡
1

N

N∑
j=1

eir(Qθ)j (4.47)

In the ideal case multiplicity is so high that event by event variations may be neglected
and hence ψEPn ≈ ψRPn which imply that Vn ≈ Q. Equation (4.47) may be solved to obtain

Gθ(r) = J0(rVn) (4.48)
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where J0(x) denotes the Bessel function of the first kind of order zero. Gθ(r) is a function
oscillating around zero. Although it is affected by variations in multiplicity, the location of
the zeroes remains the same, which makes it advantageous to solve the function Gθ(r) = 0.
And hence Vn can be found to be

Vn =
j01

rθ
(4.49)

where rθ is the position of first zero of Gθ(r) and j01 ≈ 2.40483 is the position of the first
zero of J0(x). A plot of |Gθ(r)| for θ = 0 in the ideal case where there is no variation in
multiplicity is shown in figure (4.11).

Figure 4.11: |Gθ(r)| for θ = 0 calculated for 20000 simulated events with
√
sNN = 130GeV

and each event yielding 300 particles. The solid line represent the expected value.

4.2.5.2 Differential flow

The differential flow can now be estimated. The final result is given in two forms, where
one is derived from the other.

v′n{LY Z} = Vn
〈cos[n(Φ− ψEPn )]J1(rθQ)〉

〈QJ1(rθQ)〉
(4.50)

with J1(x) = −dJ0(x)
dx

. The average in the numerator is over all selected particles in all
events and the average in the denominator is over all events. This result is given under
the assumption that rθ is independent of θ which is generally not true since it requires a
perfect symmetric acceptance of the detector. The other form is that of equation (4.44)
where it is now possible to find the weight from equation (4.50) as

WR =
1

C
J1(rθQ) (4.51)

With C being a normalization constant given by

C =
1

Vn
〈QJ1(rθQ)〉 = e

− j201
4χ2 J1(j01) (4.52)
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Here χ is the resolution parameter given by

χ =
Vn√

〈Q2
x +Q2

y〉 − 〈Qx〉2 − 〈Qy〉2 − V 2
n

(4.53)

There is still a dependence on the integrated flow through rθ in the weight, and hence Vn
has to be calculated in order to calculate the weight.

The magnitude of χ is a measurement of the statistical errors. The main limitation
of the LYZ arises from statistical errors and hence χ is a strong indicator of whether this
method should be applied or not. Comparing the LYZ method to the cumulant method
of fourth order, the LYZ method is easier to implement and generally suppresses non-flow
effects better than the four-particle cumulant method. However statistical errors increases
with decreasing χ and the method is not recommended if χ < 0.5. On the other hand if
χ > 1, the statistical errors are even smaller than the cumulant method of fourth order.
A rough estimate of χ is that it is given by χ ≈ vn

√
M . In figure (4.9) and (4.10) the

estimated flow from the LYZ method is shown.
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Chapter 5

Morphology of High multiplicity
Events in Heavy Ion Collisions

As described in the chapter 4 the determination of the flow harmonics can only be deter-
mined as an average over many events due to a limitation of the multiplicity. However the
high multiplicities obtained in LHC and the improved resolution of the ALICE detector
suggests that it might be possible to determine the flow harmonics in an event-by-event
analysis. In this chapter it will be demonstrated that the techniques used for the study of
cosmic microwave background radiation can be implemented in the study of relativistic
heavy ion collisions. Since the techniques are developed for the study of one single event
(the Big Bang), it is a natural thought that if the conditions in a heavy ion collision
resembles those of the cosmic microwave background, the techniques might lead to an
event-by-event analysis. The analogy between the cosmic microwave background and the
heavy ion collisions is straightforward, since cosmic microwave background is believed to
be remnants of the Big Bang and heavy ion collisions resembles the early conditions of the
Big Bang. Indeed heavy ion collisions are used for the determination of the early stages
of the Big Bang. The goal of the analysis is to study global structures of the collisions,
which eventually will lead to an event-by-event determination of the flow harmonics and
the corresponding reaction plane. However the analysis is still in progress and no final
conclusion can yet be drawn.

5.1 Motivation

It is not an uncommon thought to consider a high energy heavy ion collision as a little
Big Bang. The motivation is that the conditions in the little bangs, where a hot and
dense fireball is created followed by a freeze out, is much a akin to how the formation
of the early universe around the first microseconds is believed to have happened. The
commonalities are conspicuous. In both cases, the physical system is viewed at an initial
time as exhibiting a phase space distribution with a high degree of symmetry overlaid
with distributions of localized fluctuations [15]. The behaviour of the fluctuations are in
both cases considered to be fluid like. In the case of the big bang the distribution arises
from the Cosmic Microwave Background (CMB) radiation, which is an almost uniform
(hence the high degree of symmetry) radiation of blackbody energy from all the sky.
This radiation is believed to be the remnants of the very early universe. The CMB do
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however exhibit very small variations in the radiation. The root of the mean squared of
the variations is 18µK [16], which are the localized fluctuations. As for the heavy ion
collisions the measured phase space distribution arises from the produced particles in the
collision.

The system in both cases is considered to be rapidly expanding. Different particle
species, at different times, separate themselves from the common fluid dynamic system.
This property is an important tool for identifying the collective dynamics of the fluid. For
the Big Bang physics the time of the decoupling of photons can be recalculated, and also
it is possible to determine the abundances of primeordial light nuclei. As for the heavy
ion physics the temperature for kinetic and hadronic freeze out can be determined, as well
as determine the relative abundances of hadronic excited states. As a final example of
the commonalities that the study of the fluctuations in CMB has led to a constrainment
of the material properties of the universe. Namely that it consists of visible matter, dark
matter and dark energy. Similarly it has been experimentally verified that the material
properties of the plasma produced in a heavy ion collision, are very close to those of a
perfect fluid [17].

However there are also differences, for example the difference in scale and the difference
in fundamental forces governing the process. These differences may for a first approach
be neglected. Of more importance is the fact that the Big Bang is one event whereas the
heavy ion collisions are in principle an infinitely large amount of events.

5.2 CMB analysis

There are three ways of attacking the problem of implementing the CMB-methods in the
analysis of RHIC’s. This is schematically illustrated in figure (5.1). The three blocks on
the top represents three ways of producing an event. Both JJG-Generator and HIJING
are generators of simulated events, whereas ALICE-Data refers to data obtained from
real collisions in the ALICE-Detector. JJG-Generator is a very simple event generator.
HIJING (Heavy Ion Jet INteraction Generator) is the more complicated event generator
which reproduces a number of the main features of heavy ion physics in the energy range
of RHIC and LHC. However event-production using HIJING takes way longer time than
the JJG-Generator. In this chapter the analysis shown is performed on data from HIJING
unless otherwise noted, in the following chapters the analysis is performed on data from
JJG-Generator. As it appears from the figure the advantage of using simulated events
is that the symmetry plane and the amplitude of the flow harmonic is already known.
Currently only a very limited amount of the analysis regarding the implementation of
CMB-methods has been performed on real data.

The next step is to analyse the data either by GLESP (Gauss Legendre Sky Pixeliza-
tion) a program package developed for CMB analysis. Or by the use of a modified and
simplified version of GLESP. The modified version is written in the C++ programming
language in order to be compatible with ROOT, which is a CERN program developed for
the study of hadron collisions. This will be elaborated in chapter (6.1).

The last possibility which is analysis with AliROOT is not yet possible. AliROOT
is a program build on ROOT. It is a collection of software libraries which takes analysis
obtained from ALICE and the ALICE detector effects into account. To make the analysis
in AliROOT would require GLESP to be implemented in AliROOT, which has not yet
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been done.
All methods of analysis should lead to the final goal of achieving an event-by-event

determination of the reaction plane and the amplitude of flow harmonics.

HIJING
vn, ψn

ALICE-Data
vn =?, ψn =?

JJG-Generator
vn, ψn

GLESP

vn and ψn at event-by-event level

ROOT-GLESP AliROOT-GLESP

Digitize
detector effects

Figure 5.1: Systematic representation of how CMB-methods can be implemented in the RHIC
analysis. “JJG-Generator” refers to a simplified event generator originally written by Jens
Jørgen G̊ardhøje.

5.2.1 The CMB-method

In cosmology, the CMB anisotropy is analysed by means of two-dimensional maps that
essentially cover the full sky. A Mollweide projection is typically used for the mapping as
shown in figure (5.2) where temperature fluctuations from the mean is visualized over the
entire sky. The azimuthal angle runs along the equator and the polar angle runs vertically
between the poles.

One way to make this visualization is by using the GLESP (Gauss LEgendre Sky Pix-
elization) program package. GLESP is a program package written in the C programming
language (a FORTRAN version is also available), developed for the purpose to visualise
and analyse a signal. The procedure in the analysis is to decompose the signal into spher-
ical harmonics as defined in equation (3.9). From the al,m-values obtained by equation
(3.14) the powerspectrum

C(l) =
1

2l + 1

l∑
m=−l

|al,m|2 (5.1)

is evaluated as on indicator of the magnitude of symmetries with l multipoles.

5.2.2 Mollweide projection of heavy ion events

The Mollweide projection is dependent on the variables θ and φ. Such a signal can be
obtained from a heavy ion collision. f(θ, φ) will be considered as the particle multiplicity
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Figure 5.2: The temperature fluctuations from the CMB visualized in a Mollweide projection.
In this representation the azimuthal angle φ ranging between 0 and 2π runs along the equator
and the polar angle θ ranging between 0 and π runs from north to south.

inside a given window positioned at (θ, φ). Particle production in heavy ion collisions in
the case of collisions between identical nuclei, is known to exhibit a forward-backward
symmetry. This is shown in figure (5.3), where the particle distribution from a Pb-Pb
HIJING event is plotted both as a function of η which is the traditional way of plotting
particle distributions, and as a function of θ. It is clear that there must be a general
θ-dependence on the particle production. In the case of figure (5.3b), this dependence
is symmetric around π

2
, but one can easily imagine how the particle distributions from

collisions with non-identical nuclei will break the symmetry, but maintain a θ dependency.
The first step in the analysis is to remove this θ-dependence, so that underlying fluctu-
ations and azimuthal asymmetries may become more visible. It turns out to be quite
simple. The signal f(θ, φ) can be plotted in terms of the spherical harmonics by the use
of equation (3.13). This is shown in figure (5.4) for a HIJING event producing 17000
particles. However as discussed in section 3.2, there is no φ-dependence on the m = 0
mode and thus the m = 0 removes the signal with no φ-dependence. This is illustrated in
figure (5.5) for the same event as in figure (5.4). It is seen that the polar caps have been
removed and thus the θ-dependent forward-backward symmetry. Obviously this method
is not bullet proof since the θ dependency shown in figure (5.3) might also have a de-
pendency on φ. However a look at the powerspectrum shown in figure (5.6) convinces
that the θ-dependence has indeed been removed. For a perfectly symmetric collision there
would have been no odd modes of the powerspectrum, but although small there are odd
modes in figure (5.6). The removal of the m = 0 mode do only very vaguely affect the
odd modes, whereas the even modes become in scale with the odd modes. And thus it is
concluded that the θ-dependent symmetry is successfully removed by removing the m = 0
part of the signal expressed in terms of spherical harmonics.
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(a) (b)

Figure 5.3: Semi peripheral Pb-Pb collision at
√
sNN = 2.76 TeV. with a multiplicity of 12316

particles simulated by HIJING

Figure 5.4: HIJING Pb-Pb event with no anisotropic flow producing 17000 particles, visualised
in a Mollweide projection where the signal is given in terms of spherical harmonics from equation
(3.13). The pixelization is 201×402, and the color coding shows relative deviations from the
mean.

5.2.3 Event-by-event Flow analysis

In order to obtain an estimation for the amplitude of the flow harmonics of order n, the
signal will be denoted in a slightly different way as

S(θ, φ) = f(θ, φ)

[
1 + 2

∑
n

vn cos[n(φ− ψn)]

]
(5.2)
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Figure 5.5: Same event as in figure (5.4) but with all m = 0 modes removed.

where ψn is the symmetry plane and f(θ, φ) now denotes the signal without flow and
hence is defined as

f(θ, φ) ≡ dN2

dθdφ

∣∣∣∣
vn=0

(5.3)

The weight coefficients of the spherical harmonics associated with f(θ, φ) are labelled as
al,m, whereas the weight coefficients of the spherical harmonics associated with S(θ, φ)
are labelled as bl,m Equation (5.2) can be rewritten as

S(θ, φ) = f(θ, φ) +
∑
n

vn
[
einψns+(θ, φ) + e−inψns−(θ, φ)

]
(5.4)

where
s± = f(θ, φ)e∓inφ (5.5)

In this notation S(θ, φ) can be decomposed into spherical harmonics as

bl,m ≈ al,m +
∑
n

vn(cl,m+ne
−inψn + cl,m−ne

inψn) (5.6)

where
cl,m±n = al,mg(l,m± n) (5.7)

and

g(l,m± n) = 2π

√
(2l + 1)

4π

(l − (m± n))!

(l + (m± n))!

√
(2l + 1)

4π

(l −m)!

(l +m)!

×
∫ 1

−1

Pm±n
l (cos θ)Pm

l (cos θ)d cos θ

(5.8)

is a normalization factor. This type of equation is encountered in the CMB data analysis
[46] for cases where the statistical isotropy of the signal is broken by regular modulations.
The details of the derivations of equation (5.6) is given in [15].

54



CHAPTER 5. MORPHOLOGY OF HIGH MULTIPLICITY EVENTS IN HEAVY
ION COLLISIONS

Figure 5.6: Powerspectrum of the HIJING event in figure (5.4). The black line is the total
powerspectrum. The blue dots are the m = 0 modes only and the red line is the powerspectrum
without the m = 0 mode.

5.2.3.1 vn-modulation with n =even

In order to estimate the flow harmonics of even orders, equation (5.6) can be simplified
by making a few approximations. This allows for an estimation of both the symmetry
plane and the flow amplitude. In the case m = 0, equation (5.6) yields

bl,0 ≈ al,0 +
∑
n

vn(cl,ne
−inψn + cl,−ne

inψn) (5.9)

Since the first term is expected to be the dominating one, which is evident from figure
(5.6), the approximation can be made that bl,0 ≈ al,0. The next step is to determine the
coefficient bn,n.

bn,n = an,n +
n∑

n′=1

(vn′bn,n+n′e−in
′ψn′ + bn,n−n′ein

′ψn′))

= an,n + v1cn,n+1e
−iψ1 + v1cn,n−1e

iψ1 + · · ·+ vncn,2ne
−inψn + vncn,0e

inψn

= an,n + v1cn,n−1e
iψ1 + · · ·+ vncn,0e

inψn

≈ an,n + vnan,0g(n)einψn

≈ an,n + vnbn,0g(n)einψn (5.10)

Where it has been used twice that |al,0| << |cl,n|. The step between second and third
line is taken because all values of cl,m with l < |m| vanish. In the fourth line the quantity
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g(n) has been inferred, it is defined as

g(n) = 2π

√
(2n+ 1)

4π

√
(2n+ 1)

4π

1

(2n)!

×
∫ 1

−1

P 0
n(cos θ)P n

n (cos θ)d cos θ

(5.11)

Exploiting one of the identities of complex numbers, bn,n can be written in terms of its
magnitude as

bn,n = |bn,n|eiφn,n (5.12)

where φn,n is the argument of bn,n. Making use of equation (5.12) and by assuming the
vn is sufficiently large, such that |an,n| << |vng(n)||bn,0|. It is finally possible to obtain an
estimate of vn and the symmetry plane.

|vn| ≈
|bn,n|

|g(n)||bn,0|
(5.13)

and
nψ = φn,n (5.14)

φn,n is obtained by

φn,n =
Im[bn,n]

Re[bn,n]
(5.15)

5.2.3.2 vn-modulation with n =odd

In the case of the odd harmonics, the approach has to be altered slightly since there is
no dominance of m = 0 for odd l in the powerspectrum. The problem is circumvented by
consideration of the first harmonics. In this case it is advantageous to work with b2,1.

b2,1 = a2,1 +
∑
n

vn(c2,1+n)e−inψn + c2,1−ne
inψn (5.16)

Making the same approximations as in the even case b2,1 can be expressed as

b2,1 ≈ v1b2,0g(1)eiψ1 (5.17)

In analogy with the even case the flow harmonic of first order is then given by

|v1| ≈
|b2,1|

|g(1)||b2,0|
(5.18)

With the symmetry plane
ψ1 = φ2,1 (5.19)

From these calculations it is obvious that an estimation of any odd order flow harmonics
can be obtained by

|vn| ≈
|bn+1,n|

|g(n+ 1)||bn+1,0|
(5.20)

And the symmetry plane
nψn = φn+1,n (5.21)
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5.2.3.3 Analysis on elliptic flow

These equations have been tested in [15] for elliptic flow. For the analysis of symmetry
plane a set of 202 HIJING events with v2 = 0.07 were produced, and φ2,2 was plotted
against ψRP2 . The results which are in almost perfect agreement with equation (5.14)
are shown in figure (5.7a). The histogram in the right corner shows the distribution of

ψRP2 − φ2,2
2

.
For the estimation of the flow harmonics the JJG-Generator, which will be described

in chapter 7, was used. The reason for the choice of the JJG-Generator was that each
estimation was calculated as the mean of 105 events. The result is shown in figure (5.7b),
with the error bars being one standard deviation. The slope on the curve is 1.11.

(a) (b)

Figure 5.7: The results from analysis with GLESP confirming equation (5.13) and (5.14).
(5.7a) shows the determination of the symmetry plane from 202 HIJING events with v2 = 0.07
and the figure in the right corner is a histogram of the distribution ψRP2 − φ2,2. (5.7b) shows
the estimation of v2. Each point represents the mean of 105 events. The error bars indicate one
standard deviation.
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Chapter 6

Implementation of GLESP into the
ROOT framework

The method presented in chapter 5 was based on analysis with the GLESP package
performed on events from HIJING. But until now only a very limited analysis has been
performed and only on events containing elliptic flow only [15]. Unfortunately, if the
method is to become a tool in the data analysis at LHC, the GLESP package is not suitable
since it would require too much adaptation from outsiders. The CERN community uses
the object-oriented program ROOT for data analysis. This chapter will be concerned
with the task of rewriting the fractions of GLESP which is needed for the flow analysis
into a version compatible with ROOT.

6.1 From GLESP to ROOT

ROOT is a program based on the programming language C++, but with a lot of additional
features. One feature which will be exploited the most in this thesis is the ability to draw
histograms and graphs. Although ROOT can be operated directly, the common way is to
write subprograms which will be interpreted by ROOT. Thus the task of making GLESP
compatible with ROOT, is the task of writing a program that can be interpreted by
ROOT, which generates the same information as GLESP. The task is simplified by the
fact that GLESP is written in C. C++ is based on C and is almost completely compatible
with C.

6.1.1 The GLESP package

GLESP is a pixelization scheme developed for the CMB maps. The pixelization of the map
is based on the Gauss-Legendre quadrature. This mapping allows for precise and efficient
calculation of the al,m coefficients in equation (3.14) [47]. In the following when referring
to GLESP is not meant the pixelization scheme but the program package developed for
this method of sky pixelization and calculation of al,m coefficients.

GLESP contains 11 different operations each of which have a number of variations.
Only five of these are of interest for the flow analysis, and only two of these have been
rewritten into a form compatible with ROOT. The five operations are:
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mappat: The purpose of mappat is to create a map as a representation for a given signal.
The number of pixels can be varied as well as the way arranging the pixels. mappat
produces an output file containing information about the signal and the pixelization
of the map, however the map is not visualised with mappat.

f2fig: The purpose of f2fig is to visualize the information contained in the output file
from mappat.

cl2map: The purpose of cl2map is to calculate the al,m values from the information
contained in the output file of mappat. cl2alm produces two output files, one con-
taining the powerspectrum evaluated from the al,m values, and the other containing
information which can be translated to the al,m values.

alm2dl: alm2dl creates an output file listing the al,m values calculated in cl2map.

mapcut: mapcut can make cuts in the output file from mappat and thus limit the range
of θ and φ. If the mapcut command is used f2fig and cl2map takes the output file
from mapcut as input file.

These operations are all included in the ROOT version of GLESP in the following referred
to as GiRo (Glesp In ROot). However only mappat and cl2map are directly rewritten
from the source files, whereas it was somewhat simpler to implement the other operations
by exploiting some of the features in ROOT.

6.1.2 Rewriting of mappat

The mappat operation is initiated in a bash shell with the command

./mappat hits.txt -A -nx 201 -np 402 -o map.fts

where “hits.txt” is the input file, it takes the form as shown in figure (6.1) where each line
represent a particle and the first three columns is the position in η, θ and φ respectively.

Figure 6.1: Sample of an input file for the mappat command. Each line represent the position
of a particle, where the first column is the position in η, the second column is the position in θ
and the third column is the position in φ. The last three columns are unimportant
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The flag “A” specifies the type of pixelization (how the pixels are arranged) for the
map. In GiRo the flag is taken to be “A” for the pixelization type and it will be labelled
as “A-pixelization”. However this may not be the best choice of pixelization type, as will
become clear in the analysis part of the thesis, because the normalization factor g(n) in
equation (5.13) and (5.20) does not normalize the estimated flow correctly. This problem
may however be solved by choosing a different kind of pixelization.

The flags “nx” and “np” specifies the amount of pixels in the θ and φ direction
respectively and “o” specifies the name of the output file.

6.1.2.1 Pixelization

In the φ-direction each pixel is of equal size. But in the θ-direction the pixel size is
calculated by use of the Gauss-Legendre quadrature integral approximation, which as the
name imply is an approximation to an integral of a function.∫ 1

−1

f(x)dx =
∞∑
i=1

wif(xi) ≈
n∑
i=1

wif(xi) (6.1)

where the wi are weights. It turns out that the values xi at which the function f(x) is
evaluated are simply the roots of the Legendre Polynomial of n’th order given by

Pn(x) =
1

2nn!

dn

dx2
((x2 − 1)n) (6.2)

And the weights can be calculated as

wi = − 2

(1− x2
i )[P

′
n(xi)]2

(6.3)

The values of xi and wi are symmetric around zero. xi = cos θi are used as the center of
the i’th pixel in the θ direction, and the pixel will be associated with the weight wi. The
Legendre Polynomials for n = 1, . . . , 5 are shown in figure (6.2). For the evaluation of xi
and wi GLESP follows a routine which is referred to as “gauleg” [48]. The C++ code of
the routine can be seen in appendix B. Figure (6.3) and (6.4) shows the pixel position
and the weights with n = 62 evaluated by the gauleg routine.

Particles from an event can be distributed according to their position in θ and φ on a
map with the above described pixelization. In GiRo a two dimensional histogram will be
used for this purpose (GLESP uses a one dimensional array of lenght Nθ × Nφ). Using
a 2D histogram makes it straightforward to visualise the signal, simply by drawing the
histogram. In the following when histograms in ROOT are mentioned each pixel will be
referred to as a bin, and the pixelization will be referred to as the binning. The C++
code for the creation of a histogram with the gauleg binning is given in appendix B. The
maps showing the particle distribution from a simulated event as produced from GLESP
and Giro respectively are shown in figure (6.5).

6.1.3 Evaluation of spherical harmornics coefficients

The initial step in the evaluation of the al,m coefficients is to calculate the Fourier expan-
sion of the signal in φ for each θ-bin (thus making Nθ Fourier expansions for arrays of size
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Figure 6.2: The first five orders of the Legendre Polynomials. The intersections with the x-axis
is symmetric around zero but wider separated close to zero than at the end points.

Figure 6.3: The values of xi calculated for n = 62. The slope increases around zero indicating
a larger seperation of the bins in the central region of the histograms for which the values of xi
are used.

Nφ). GLESP makes use of a FFT provided by a C subroutine known as the Fastest Fourier
Transform In the West (FFTW). By inserting the Fourier coefficients at the position of
f(θ, φ) in equation (3.14), the dependence on φ is eliminated. At this point GLESP can
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Figure 6.4: The values of wi calculated for n = 62.

exploit the fact that the pixelization is based on the Gauss-Legendre quadrature for a fast
evaluation of the spherical harmonics coefficients [47].

6.1.3.1 The GiRo code

Starting from the input file in figure (6.1), GLESP needs two operations in order to
calculate the al,m coefficients (mappat and cl2map). In ROOT the mapping and the
evaluation of the al,m-coefficients is gathered into one operation, such that the mapping
cannot be done without calculating the al,m coefficients1. This has some advantages and
disadvantage. The advantage is the obvious one, that only one command is needed in
order to execute two (GLESP) operations. The disadvantages are twofold:

1. As mentioned above the pixelization may not be the best suited pixelization, and
hence it would be advantageous if GiRo was written in a way where it was easy to
implement and switch among different kinds of pixelizations.

2. Some calculations may only require either the mapping or al,m coefficients. Espe-
cially the case, where only al,m coefficients are needed from an already existing map,
is laborious. In this case the data will have to be retrieved from the map and written
into a text file of the form in figure (6.1) in order to recalculate the map and obtain
the al,m coefficients.

ROOT also make use of FFTW in order perform the Fourier transform of the map, and
hence this step is exactly the same as in GLESP. In GiRo is implemented the possibility

1This is not entirely true, because GiRo is a product of several functions. One can write a program
which utilizes only some of these functions in order to e.g. only do the mapping.
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(a) GLESP

(b) GiRo

Figure 6.5: Map of a simulated collision with 30000 particles and the pixelization/binning
62× 122

to reduce the range of θ upon which the Fourier transform is performed. This makes the
cutmap operation in GLESP superfluous.
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In the final evaluation of the al,m coefficients through equation (3.14) ROOT has
its own command for the calculation of Y m

l (θ, φ). This makes the coding very simple.
Unfortunately it does not exploit the Gauss-Legendre quadrature binning of the map.
Never the less this command has been used, and indeed GiRo is much slower than GLESP.
The GiRo commands for the evaluations of the Fourier transform and al,m coefficients are
shown in appendix B.

6.1.4 End product of GiRo

All results obtained by GiRo are stored in histograms and saved in a single root-file. After
compiling the GiRo program, the information stored in the root-file is:

1. The positions of each bin in the cos θ-direction and the corresponding weights as
shown in figure (6.3) and (6.4).

2. A 2D histogram containing the particle distribution of an event as shown in figure
(6.5b).

3. The coefficients of the Fourier expansion in φ separated into a real and an imaginary
part, this is shown in figure (6.6).

4. The al,m-coefficients separated into a real and an an imaginary part, this is shown
in figure (6.7).

5. A powerspectrum calculated on the basis of the al,m coefficients, this is shown in
figure (6.8).

The ability to make cuts on the maps is not as extensive in GiRo as in GLESP. GiRo
has the ability to select a region in θ which is not to be removed. GLESP can make cuts
both in θ and φ and decide, whether the selected region is to be removed and the rest of
the map is to be kept or conversely, if the selected region is to be kept and the rest of the
map is to be removed. This means that unlike GLESP, GiRo only allows for an analysis
on a continuous interval. One additional limitation is that GiRo only performs the cut in
the subsequent calculations (at the Fourier transformation) and not on the map itself.

Two differences between GLESP and GiRo ought to be mentioned. The choice of
storing all data in histograms by the use of root files is different from GLESP which
does only provide information in ascii-files (text-strings). In the ROOT framework it is
convenient to work with histograms since ROOT provides a lot of useful options for the
histogram. The second difference is that GiRo stores the Fourier coefficients.

The output from GiRo is in almost perfect agreement with GLESP. The fractional
deviations between GLESP and GiRo are in the order of 10−9. This is illustrated in the
figures (6.9)-(6.12).
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(a) Real

(b) Imaginary

Figure 6.6: The real and imaginary parts of the Fourier coefficients calculated by GiRo with
a 201× 402 binning, plotted in 2D histograms.
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(a) Real

(b) Imaginary

Figure 6.7: The real and imaginary parts of the coefficients of the spherical harmonics calcu-
lated by GiRo with a 201× 402 binning, plotted in 2D histograms.
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Figure 6.8: Powerspectrum with l = 100 calculated on the basis of the al,m coefficients in
figure (3.3)

Figure 6.9: Relative deviations in Re[al,m] between GLESP and GiRo. Calculated as GLESP
GiRo −1.
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Figure 6.10: Relative deviations in Im[al,m] between GLESP and GiRo. Calculated as GLESP
GiRo −

1.

Figure 6.11: Relative deviations in powerspectrum between GLESP and GiRo. Calculated as
GLESP
GiRo − 1.
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(a) Map from GLESP

(b) Powerspectrum

Figure 6.12: Relative deviations in powerspectrum between GLESP and GiRo where a cut has
been performed. Calculated as GLESP

GiRo − 1. Panel 6.12a shows the map after the cut operations
have been performed (this map can not be produced in GiRo). Panel 6.12b) shows the relative
deviations in the powerspectrum. The binning is 21× 42. The reason for this low resolution is
that when using the cutmap operation with θ as lower limit and π − θ as upper limit, the map
produced in GLESP was not symmetric around equator. Hence in order to have the same limits
in GiRo and GLESP, the input limits in GLESP were guessed by looking at the map.
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Chapter 7

The event generator

The HIJING event generator is too slow for the analysis performed in this thesis and a
simpler but faster event generator was written adapted for the task of simulating fast
events with a θ-dependence in the particle distribution. This chapter is concerned with
the construction of the generator.

7.1 The JJG-Generator

The JJG-Generator takes its name from the author of the original program Jens Jørgen
Gaardhøje. It is a program which generates a given number of particles where each particle
is defined by its coordinates (θ, φ). The particles are saved in an output file of the form
of figure (6.1). The only information yielded by the event generator about the individual
particles, is their position (θ, φ). However it is possible to impose some global features on
the event. The features are dijets, bubbles and flow up to eighth order. The ability to
impose jets and bubbles are remnants of the early analysis, when it was still not known
what direction the analysis with CMB-methods would take, and obviously they are not
needed in this analysis.

7.1.1 Particle distribution

The particles are generated by the use of a random number generator. Two random
numbers are needed for each particle namely a value of θ generated in the range θ ∈ [0; π]
and a value of φ generated in the range φ ∈ [0; 2π]. Both θ and φ are generated with
a random number generator with the seed set to be zero, meaning that the generator
is time dependent, and as long as the time interval between two events is larger than
100 ns. the events are not identical. In φ the particles are uniformly distributed in the
range. The particles generated in θ are initially not generated as a distribution in θ, but
as a distribution in η. In order to take the forward-backward symmetry into account the
distribution is generated as a Gaussian distribution with a width of 2.4 and a mean at 0.
Although not identical this is a signal comparable to that shown in figure (5.3a). From η
a value of θ is calculated through equation (1.3). The particle distribution in θ and η from
the JJG-Generator are shown in figure (7.1), and distribution taking both the position in
θ and φ into account is shown in figure (7.2).
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(a) Distribution in η (b) Distribution in θ

Figure 7.1: The particle distribution in η and θ from the JJG-Generator, with 30000 particles
and a bin width of 0.2 and π

100 respectively.

Figure 7.2: The particle distribution with respect to θ and φ from the JJG-Generator, with
30000 particles and a bin width of π

100 and 2π
100 respectively.

7.1.2 Flow and cuts

The JJG-Generator has in its present form the ability to impose flow of up to eighth
order, where both the magnitude of the flow harmonics vn and the reaction plane ψn can
be varied. The flow is imposed by the use of the sum in equation (4.4) and hence f(φ) is
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given by.

f(φ) =
8∑

n=1

cos[n(φ− ψn)] (7.1)

This way of imposing the flow, maintain the anisotropic properties, but with a different
normalization than that of equation (4.4). It is dictated by the fact that there is almost
a 1:1 correspondence between the input flow and the estimated flow in the analysis when
using the A-pixelization. However it may lead to confusion since the results in chapter 5
are obtained by following equation (4.4), and hence estimations of vn from JJG-Generator
events must be scaled with a factor of two in order to be comparable to chapter 5. A
warning is issued at this point, that in all of subsequent analysis, flow from the JJG-
Generator is imposed by (7.1), and the flow estimations has not been scaled by the factor
of two. The φ distribution with imposed flow for various orders is visualized in figure
(7.3). Figure (7.3c) has a change in the reaction plane and figure (7.3e) has two order of
flow of uneven magnitude.

The event multiplicity, the value of each individual vn and the value of each individual
ψn are all input parameters, which can be varied without opening the source file of the
JJG-Generator. This makes it easy to make a systematic analysis of the effects of these
parameters.

It is also possible to make cuts in the η-distribution just as in GiRo, simply by omitting
particle production in a certain range. Since most of the subdetector systems in ALICE
cover the entire range in φ, it has currently not been necessary to implement a cut on φ,
although it can easily be done.
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(a) v2 = 0.1 (b) v8 = 0.1

(c) v2 = 0.1, ψ2 = π
2 (d) v2 = v3 = 0.1

(e) v2 = 0.1, v3 = 0.05 (f) v2 = v3 = v4 = 0.1

Figure 7.3: φ-distribution from events with various flow harmonics from JJG-Gen, the reaction
plane is zero if not otherwise noted.
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Chapter 8

Analysis of simulated events with a
single flow harmonic

Previous chapters have been concerned partly with the theoretical basis and partly with
a description of the analysis tools. This and the following chapter are concerned with
the analysis of simulated events. The goal is to test and confirm as many aspects as
possible of equation (5.13), (5.14), (5.20) and (5.21). In this chapter only simplified
events with only one flow harmonic will be considered. The chapter is divided into three
sections, describing the analysis of elliptic flow, the analysis of even flow harmonics and
the analysis of odd flow harmonics. Once again the warning from chapter 7 must be
sounded, that the analysis is performed on events where flow is imposed by the use of
equation (7.1) and not equation (4.4), thus making the flow coefficients vn only half the
magnitude of the conventional flow coefficients.

8.1 Settings

The principle in the analysis is generally independent of what aspects of equation (5.13)
or (5.20) are to be analysed. A series of 1000 events with equal input parameters will
be produced as a statistical background. And/or a series of 50 events will be produced
where the input parameters may be altered. Unless otherwise stated all calculations are
based on events with a multiplicity of 30000 particles. All analysis has been performed
by use of the A-pixelization. By coincidence the approximation v2 ≈ |b2,2|

|b2,0| is almost valid

when using the A-pixelization. It was only discovered late, in the process that the factor
g(n) had to be applied, and even later it was discovered that the application of this factor
needed another pixelization. Consequently the analysis is dominantly performed without
the use of g(n) factor and most results will thus be presented without the application
of this factor. For this reason the validity of the results obtained in [15] summarized in
subsection 5.2.3.3 can not be confirmed in this thesis.

8.2 Analysis of elliptic flow

An obvious place to start the analysis would be by considering events containing only
elliptic flow. Partly because it is the dominant flow harmonic in real events and partly
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8.2. ANALYSIS OF ELLIPTIC FLOW

because it is not influenced by other flow harmonics and hence the approximation in (5.13)
may be closer to an actual equal sign than for higher order harmonics. The first approach
is to generate a series of 50 events each with a specific amplitude of v2 and check whether
the estimated flow will yield the same result. Two event types are chosen for the first
analysis, one type with v2 = 0.1 and one type with v2 = 0.5. The result is shown in figure
(8.1).

(a) v2 = 0.1, g(2) = 1 (b) v2 = 0.1

(c) v2 = 0.5, g(2) = 1 (d) v2 = 0.5

Figure 8.1: Plots of estimated flow with v2 = 0.1 and v2 = 0.5. Each red dot represents the
estimate from one event, and the blue line is the best linear fit. The flow is estimated by the use
of equation (5.13), but on the figures in the left panel the g(2) factor has been omitted, which is
indicated by the notation g(2) = 1. The binning is 201× 402, and the calculations is based on a
collision with 30000 particles. The title on the files indicate which flow harmonics are imposed,
where 1 indicate that flow has been imposed and 0 indicates that it has not.

As it appears from the figures the estimator |b2,2||2,0| is flow dependent, which can be

seen by realizing that the flow estimators |b2,2||b2,0| are distributed around ∼ 0.13 ± 0.02 and

∼ 0.58 ± 0.04, for events with v2 = 0.1 and v2 = 0.5 respectively. However it is also
evident that the results are not in perfect agreement with equation (5.13), especially not
when taking into account the g(n) factor.

The choice of binning was dictated by the choice in [15] to be 201× 402. However this
might not be the best choice since this leaves in the order of 80000 bins for only 30000
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particles. A better choice might be 21× 42 bins. The binning can in principle be chosen
freely, however two things may influence the choice.

1. The highest even ordered flow harmonic n which can be estimated equals the highest
number of multipoles l. The multipoles depend on the binning with an upper bound
at 2lmax + 1 = ·Nθ and Nθ = 2Nφ.

2. High resolution (binning) relative to multiplicity, says little about collective be-
haviour.

The 21× 42 is a good choice displaying the collective behaviour of the particle motions,
and flow harmonics up to an order n = 10 can be calculated. Since the highest flow order
is 8 in these events, an even better choice might have been 17 × 34 which improves the
statistics. However in order to be consistent with the subsequent analysis the 21 × 42
binning is preferred. A comparison between maps with the 21×42 binning and 201×402
binning can be seen in figure (8.2).

As it appears from figure (8.2a), the bin content is fluctuating between one and three
for most of the map. The relative fluctuations is very high as compared to figure (8.2b),
and may to a much higher degree be ascribed to statistical fluctuations. Hence the
low resulotion map is better suited for the analysis. Estimations of the flow using this
binning are shown in figure (8.3). And figure (8.4) shows a 1D histogram displaying the
distribution of estimated flow on 1000 events with v2 = 0.1. There are two mean values
in the legend (white box in the upper right corner) of the figures. The first mean value,
is the mean of the estimated flow. The second mean value, is the mean of the Gaussian
fit. The value associated with “Sigma” (σ) is the value of one standard deviation.

A quick look at the figures reveals that by choosing a low resolution, the deviations
from the mean is actually reduced, and in the case of the event with v2 = 0.5, the mean
of the estimated flow value is very close to the true flow. Another important fact when
going to a low resolution map, is that vn is less overestimated.

The proportionality factor between the flow and the mean of the estimated flow in
figure (8.4a) is remarkably close to the slope of the curve on figure (5.7b). This is a
peculiar coincidence since the estimated flow in figure (8.4a) is calculated without the
g(2) factor, whereas the g(2) factor has been included in the calculation in figure (5.7b).

The next task in the analysis is to check whether it is possible to recreate figure
(5.7b). The result is shown in figure (8.5), where the real flow is plotted against the
estimated. At the very low values of v2 the flow is not properly estimated e.g. v2 = 0.01
is estimated to nearly 0.04, however as soon as leaving this limit there seems to be a
beautiful correspondence between the true and the estimated flow. The blue line on the
figure represents the best linear fit, where “p0” in the legend is the point of intersection
with the 2.-axis and “p1” is the slope of the curve.

8.2.1 Determination of the symmetry plane

The last task of the first approach in the analysis of elliptic flow, is to check whether
it is possible to recalculate the reaction plane. In the case of the 50 events shown in
figure (8.5), the reaction plane for all events is π

9
(20◦) (The reason for not just taking the

default zero is to avoid fluctuations in the symmetry plane leading to an symmetry plane
determination at ∼ π.) The symmetry plane determination is shown in figure (8.6). It
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8.2. ANALYSIS OF ELLIPTIC FLOW

(a) 201× 402

(b) 21× 42

Figure 8.2: Two maps of an event with 30000 particles and no flow imposed. The binning is
201× 402 and 21× 42 respectively.
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(a) v2 = 0.1, g(2) = 1 (b) v2 = 0.5

(c) v2 = 0.1, g(2) = 1 (d) v2 = 0.5

Figure 8.3: Low resolution flow estimation. The events are the same as in figure (8.1), but the
binning is 21× 42

appears from the figure that at high values of v2, the symmetry plane is quite precisely
determined, whereas for lower values of v2, uncertainty increases. Obviously in the case of
v2 = 0 the symmetry plane cannot be determined. The Gaussian mean of the symmetry
plane for 1000 events with v2 = 0.1 and ψ2 = π

9
is very close to that of ψ2 as can be seen

in figure (8.7).
Figure (8.8) shows the symmetry plane for 50 events with v2 = 0.1. Starting at zero

for each new event, the orientation of reaction plane is rotated by π
90

. The intersection
of the fitted line with the 2.-axis is almost perfectly zero (had the line been extended to
intersect the 2.-axis), and the slope of the curve is within one standard deviation with
respect to 1.
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(a) 21× 42 (b) 201× 402

Figure 8.4: Histograms of flow estimation on 1000 events with v2 = 0.1 for low and high
resolution binning respectively, the red curve represents a Gaussian fit. The legend in the upper
right corner has two mean values, the first is the true mean of the estimated flow. The second
is the mean of the Gaussian fit, where “Sigma” represents the value of one standard deviation.
The standard deviation is increased for the high resolution map, and furthermore there is a shift
to the right.

Figure 8.5: Graph of the elliptic flow estimation g(n) factor omitted, on a series of 50 events
with 30000 particles. Starting at zero for each new event the flow amplitude was increased by
0.01. Each red dot represents one event, and the blue line represents the best linear fit. “p0” in
the legend is the point of intersection with the 2.-axis and “p1” is the slope of the curve. The
proportionality factor (p1) is just within the limit of one standard deviation from the mean in
figure (8.4a).
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Figure 8.6: Symmetry plane determination for the 50 events shown in figure (8.5), the reaction
plane is π

9 represented by the blue line.

Figure 8.7: Symmetry plane determination for 1000 events each with v2 = 0.1 and ψ2 = π
9 .

The read curve represents a Gaussian fit.
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Figure 8.8: 50 events with v2 = 0.1 and the reaction plane rotated by π
90 for each new event.

Each red dot represents one event and the blue line represents the be linear fit. The fit has been
cut off at the start point in order to avoid confusion between determination as zero or π.
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8.3 Higher even order flow estimation

The preceding section found that there was a relation between the flow harmonic v2 and
equation (5.13) although the g(n) factor had to be removed. However when the g(n)
factor was removed, there was an almost perfect agreement between the results obtained
in GiRo and those obtained in [15]. The next step would be to check whether this is
just a coincidence or equation (5.13) can also be applied to higher order flow harmonics.
In the following calculations the g(n) factor will be omitted. Figure (8.9) shows the

Figure 8.9: The distribution of estimated flow for 1000 events with for v4 = 0.1. The g(4)
factor has been omitted. The red curve represents a Gaussian fit.

distribution of estimated flow for 1000 events with v4 = 0.1. When comparing figure (8.9)
with (8.4a), it is seen that the tendency for overestimation is increased a little in v4, and
that the value of one standard deviation has also increased. This is reflected in figure
(8.10), where the estimated flow is plotted against the v4. The slope of the curve is that
of the proportionality factor between v4 and estimated mean of v4 in figure (8.9). The
fluctuations from the linear fit are larger than those in figure (8.5). From figure (8.11)
and (8.12) it is seen that the tendency of the flattening of the Gaussian curve and the
overestimation of the flow harmonics is intensified when going to higher orders.

Hence it appears that although equation (5.13) is not entirely correct in case of the A-
pixelization, the method still seems to be valid when leaving out the g(n) factor. However
the estimated value of the flow harmonics is generally too high, a tendency which is
intensified when going to higher orders, where also the uncertainty of the estimation
increases.

It is remarkable that quite the opposite seems to be the case in the symmetry plane
determination, where the uncertainty actually decreases when going to higher orders of
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Figure 8.10: The estimated value of v4 plotted against v4 for 50 events containing only v4.
Each red dot represents one event and the blue line is the best linear fit.

vn. This is illustrated in figure (8.13) to (8.14). By making a comparison between figure
(8.14b) and (8.6) it is seen that the symmetry planes are distributed tighter around the
reaction plane in figure (8.14b) (Note the different scales). However it must be taken into
account that the range upon which ψn is defined, decreases for larger values of n, hence
the uncertainty on ψn relative to the range upon which ψn is defined, still increases with
n.
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(a) v6 = 0.1

(b) Increasing v6

Figure 8.11: Estimation of v6. The figure on panel 8.11a shows the distribution of 1000 events
with the red curve being a Gaussian fit. The figure on panel 8.11b shows the estimated flow
plotted against the true flow, where each red dot represents one event and the blue line represents
the best linear fit.
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(a) v8 = 0.1 (b)

Figure 8.12: Estimation of v8. The figure on the left panel shows the distribution of 1000 events
with the red curve being a Gaussian fit. The figure on the right panel shows the estimated flow
plotted against the true flow, where each red dot represents one event and the blue line represents
the best linear fit.

(a) v4 = 0.1 (b) v6 = 0.1

Figure 8.13: Symmetry plane dertermination of ψ4 and ψ6, where the left panel displays the
distribution from 1000 events.
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(a) v8 = 0.1

(b) increasing v8

Figure 8.14: Symmetry plane dertermination of ψ8, where panel 8.14a displays the distribution
from 1000 events and panel 8.14b shows the symmetry plane as a function of increasing v8.
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8.4 Odd order flow estimation

In the case of odd flow harmonics, based on the experience from the case of even flow
harmonics, the g(n) factor will immediately be omitted from equation (5.20). Apart
from that, the same initial approach is taken, and 50 events are produced each with
v3 = 0.1. However equation (5.20) is not in any sense able to give a proper estimation of
the input value of v3 as can be seen in figure (8.15). The reason for this becomes clear

Figure 8.15: Flow estimation on 50 events with v3 = 0.1.

by considering the spherical harmonic Y 3
4 (θ, φ). This harmonic is antisymmetric in θ as

can be seen in figure (8.16). Hence the signal must be calculated as an average over the
northern hemisphere and the southern hemisphere. This triples the calculations (one for
the entire map, one for the northern hemisphere and one for the southern hemisphere) if
it is desired to estimate both the even and odd order harmonics, however the calculations
are trivial.

In the case of odd harmonics equation (3.14) will be evaluated as

al,m =

∫ 1

0

∫ 2π

0
[Y m
l (θ, φ)]∗f(θ, φ)dφd cos(θ) +

∫ 0

−1

∫ 2π

0
[Y m
l (θ, φ)]∗f(θ, φ)dφd cos(θ)

2
(8.1)

which can be done by using the cut operation described in section 6.1.3.1. When cal-
culating the al,m coefficients by equation (8.1), a plot like that in figure (5.7b) can also
be obtained for the odd harmonics. This is illustrated for v3 in figure (8.17). It appears
from figure (8.17) that not only is the linear dependence of v3 on the al,m coefficients
maintained, but the slope of the curve is also in accordance with the pattern seen from
the even ordered harmonics.
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Figure 8.16: Re[Y 3
4 (θ, φ)]

Figure 8.17: v3 estimation by average over northern and southern hemisphere: Estimated flow
plotted against true flow.
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A Gaussian fit to the distribution of 1000 events is seen in figure (8.18), interestingly
the mean is actually closer to 1 than for any of the even order harmonics. The standard
deviation for v3 is a little larger than v2, but smaller than for v4. To check that this is not
a coincidence the distribution of estimated flow for 1000 events with v7 = 0.1 is shown
in figure (8.19), where it is clear from the figure that both the mean and the standard
deviation are very close to that of v4

Figure 8.18: Distribution of estimated flow from 1000 events with v3 = 0.1

However an interesting thing happens when considering the 5th harmonic shown in
figure (8.20). It appears that both the mean and the standard are twice as large as
expected. This fact is not explained. In the subsequent analysis it will not be mentioned,
but it appears through the entire analysis.

8.4.1 Conlusional remarks

As a conclusion for this chapter, the analysis so far has revealed that it is possible to use
the spherical harmonics to give an estimation of the flow harmonics vn. When omitting
the g(n) factor all estimated values of vn is fairly close to the true value of vn. However
both in the case of even and odd harmonics the uncertainty increases when going to
higher harmonics. When leaving out the 5th harmonic, the value of vn is generally better
estimated for odd harmonics than for even.

The choice of binning is important in the analysis, a higher resolution allows for
estimation of higher order flow harmonics, but if the particle multiplicity do not match
the high resolution there will be an increase in uncertainty. In the analysis performed
above the binning was chosen to be 21×42, although even better results would be obtained
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Figure 8.19: Distribution of estimated flow from 1000 events with v7 = 0.1

Figure 8.20: Distribution of estimated flow from 1000 event with v5 = 0.1
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if the choice had been 17 × 34, since this allows for analysis of all eight flow orders and
increases the statistic in each bin.
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Chapter 9

Analysis of multiflow events

Chapter 8 was concerned with the analysis of only a single flow harmonic in each event.
The analysis provided knowledge about the basic properties of equation (5.13), (5.14),
(5.20) and (5.21). However the analysis is based on a simplified case since an event is
generally expected to contain several flow harmonics although with varying amplitude.
In this chapter the analysis is focused on multiflow events. The analysis considers two
scenarios: one where the orientation of reaction planes for all harmonics are equal, and
one with unequal reaction plane orientation.

9.1 Analysis with equal reaction planes

The analysis with multiflow and equal reaction planes is still a simplified case, since this
scenario is definitely not expected in a real collision. However this case exhibits some
nice features, which are worth noting. In all events analysed in this section, the particle
multiplicity will be 30000 and the orientation of the reaction plane is π

9
. Figure (9.1)

shows the distribution of 1000 events with imposed flow vn = 0.1 for all orders up to 8.
It appears that the estimate of the individual flow harmonics is almost unaffected by the
other harmonics. Especially the estimate of the elliptic flow is almost identical in the
multiflow case to the single flow case. A comparison between figure (9.1f) and (8.12a)
shows that the standard deviation is actually decreased a little in the multiflow case where
also the overestimation is reduced.

The determination of the symmetry planes is compareable to the case of single flow
events, which is illustrated in figure (9.2). As in the previous chapter, it appears that
when going to higher orders the uncertainty on the determination is diminished.
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(a) v2 = 0.1 (b) v3 = 0.1

(c) v4 = 0.1 (d) v6 = 0.1

(e) v7 = 0.1 (f) v8 = 0.1

Figure 9.1: The distribution of estimated flow from 1000 events with v1 = v2 = · · · = v8 = 0.1
and ψ1 = ψ2 = · · · = ψ8 = π

9 .
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(a) ψ2 = π
9 (b) ψ3 = π

9

(c) ψ4 = π
9 (d) ψ6 = π

9

(e) ψ7 = π
9 (f) ψ8 = π

9

Figure 9.2: The distribution of symmetry planes for 1000 events with v1 = v2 = · · · = v8 = 0.1
and ψ1 = ψ2 = · · · = ψ8 = π

9 .
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9.2 Analysis with unequal reaction planes

It still remains to check whether the results up when the reaction planes are not the same
for all harmonics. Again 1000 events with all flow harmonics (n = 1− 8) at vn = 0.1 are
considered, but in this case the reaction planes are defined by

ψn =
π

9
+
nπ

18
(9.1)

It appears from the result shown in figure (9.3) that the flow estimation from these events
is nearly unaffected by the change.

(a) v2 = 0.1 (b) v3 = 0.1

(c) v7 = 0.1 (d) v8 = 0.1

Figure 9.3: The distribution of estimated flow for 1000 events with v1 = v2 = v3 = v4 = v5 =
v6 = v7 = v8 = 0.1 and ψn = nπ

18 .

A reproduction of figure (5.7b) may now be attempted. Since flow harmonics do not
generally have the same amplitude and the second order harmonics is the strongest, the
flow amplitudes are imposed relative to each other and are related by the equation:

vn =

{
vn = 0.5v0, n = 1

vn = (1.2− n0.1)v0, n ≥ 2
(9.2)
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where v0 is the variable determining vn. Following equation (9.2), a series of 50 events
is produced with all flow harmonics imposed. v0 starts at zero and is increased by 0.01
for each event. In the case of low order harmonics the results are actually in very good
agreement with previous result from simpler cases. The case of elliptic flow is shown in
figure (9.4). When going to higher order harmonics the uncertainty on the results increases

Figure 9.4: Estimation of v2 with all flow harmonics present and related by equation (9.2) and
the reaction planes given by equation (9.1).

dramatically as can be seen in figure (9.5). This should however not be a surprise since
when increasing the amplitude well above 0.1 the signal is heavily influenced by lower
order harmonics.

The symmetry plane determination is well behaved in the case of low order harmonics.
But when going to higher order harmonics results become unreliable. The symmetry
plane determination of odd harmonics has an additional source of error. The reason
is that values approximating the limits of the range upon which ψn is defined, may be
determined either near the lower limit or near the upper limit. This concept is illustrated
in figure (9.6). Since the symmetry planes of the odd harmonics is determined as an
average between the southern and northern hemisphere, the chance of the splitting is
doubled. This is illustrated in figure (9.7) for the fifth harmonic.

However the situation with all harmonics achieving values obtained by inserting v0 =
0.5 into equation (9.2), is very unlikely. In figure (9.9) and (9.8) the analysis has been
performed by use of equation (9.2). As in the previous analysis a series of 50 events are
considered. All flow harmonics but one are kept at a constant value given by v0 = 0.2.
The remaining flow harmonic is increased by letting v0 increase by 0.01 for each event.
Figure (9.9) shows the analysis performed on the flow harmonic, where the estimated flow
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Figure 9.5: Estimation of v7 with all flow harmonics present and related by equation (9.2) and
the reaction planes given by equation (9.1).

of the one harmonic which is not kept constant is plotted against the true flow of that
harmonic.

9.2.1 Remarks on the flow analysis

The results so far in the single and multi flow analysis clearly shows a linear dependence of
the estimated flow on vn. Apart from the 5th flow harmonic, the equations vn = |bn,n|

|bn,0| and

vn = |bn+1,n|
bn+1,0

for even and odd ordered harmonics respectively, seems to be good approxi-

mations when taking into account corrections for higher orders. However it appears from
the figures that the slope of the curves is exactly the same as the proportionality factor
of the 1000 event distributions of estimated flow. E.g. comparing figures with increasing
elliptic flow (figure (8.5),(9.4) and (9.8b)) to 1000 event distribution of estimated elliptic
flow (figure (8.4a), (9.2a) and (9.3a)) it is seen that the slope of the curves is generally just
below 1, whereas the proportionality factor of the 1000 event distributions is around 1.1.
This may be due to small variations in the linearity for various sizes of v2. Hence in order
to get a more comprehensive understanding of the flow estimation, statistics have to be
achieved for more values of vn instead of just for vn = 0.1. This has not been performed
in this thesis.
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Figure 9.6: Symmetry plane determination of ψ6 = π
3 . Since ψ6 is only defined in the range

ψ6 ∈ [0; π3 ] the symmetry plane approximates either the upper or the lower limit.

Figure 9.7: Symmetry plane determination of ψ5. The symmetry plane is determined in three
different bands
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(a) v1 (b) v2

(c) v3 (d) v4

(e) v5 (f) v6

Figure 9.8: Analysis of a series of 50 events with all flow harmonics but one kept at a constant
level given by v0 = 0.2 in equation (9.2). Each panel represents the flow estimation of the
harmonic which is not kept constant and plotted against the true flow of that harmonic.
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(a) ψ1 = π
6 (b) ψ2 = 2π

9

(c) ψ3 = 5π
18 (d) ψ4 = π

3

(e) ψ5 = 7π
18 (f) ψ6 = 4π

9 = π
9

Figure 9.9: Analysis of a series of 50 events with all flow harmonics but one kept at a constant
level given by v0 = 0.2 in equation (9.2). Each panel represents the symmetry plane determi-
nation of the harmonic which is not kept constant and plotted against the true flow of that
harmonic.
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Chapter 10

Multiplicity- and mapsize
dependence

In the previous chapters it was demonstrated that the flow harmonics do indeed contribute
to the estimation of the values of vn and symmetry plane and that even with a multiple
of harmonics present in an event, the flow harmonics may still be estimated with a high
degree of precision. However very little has been said about how the size of the map,
upon which the analysis is performed, and the particle multiplicity affects the analysis.
An understanding of these parameters is necessary in order to understand the analysis on
real data. In chapter 11 analysis will be performed on real data from the TPC subdetector
system. Since the TPC only covers the range at cos θ < ±

√
2

2
and the particle multiplicities

are in the order of 2-300, the interpretation of these results must obviously be seen in the
light of simulated events behaviour under these conditions.

This chapter is focused on a description of the behaviour of the estimated flow when
particle multiplicity is reduced and the map is narrowed in θ.

10.1 Analysis with maps narrowing in θ

The procedure in this analysis is very simple. Just as in previous analysis a series of 50
events is analysed. However in this case the analysis is performed using different mapsizes
for each series of events. In order to make the simulations as realistic as possible, the
analysis is performed using the method described in the previous chapter, with all but one
harmonics kept at a constant level related to each other by v0 = 0.1 from equation (9.2).
The results are shown in figure (10.1). The figure clearly shows the same dependency on
the spherical harmonics as has been demonstrated throughout the entire analysis. And in
all cases (maybe with the exception of figure (10.1e) all estimated flow values are tightly
distributed around the blue line representing the best linear fit. However the slope of the
curve varies, and there is no pattern, or at least not a simple one, between the variations
in θ range and the slope. It might be suspected that just like in the case with full θ range,
the different flow orders are in some sense comparable. However this does not seem to be
the case. This is illustrated in figure (10.2). Both figure (10.2a) and (10.2b) displays a
slope which do not seem to be related either to each other or to that of the elliptic flow.
In the case of figure (10.2a) it furthermore appears that the uncertainty has increased
when comparing it to (9.8c), since the estimated values are not as tightly packed around
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(a) cos θ < ±0.49 (b) cos θ < ±0.61

(c) cos θ < ±0.72 (d) cos θ < ±0.81

(e) cos θ < ±0.94 (f) cos θ < ±1

Figure 10.1: Analysis performed with varying map size. Each panel represent a series of 50
events where all harmonics but one is kept constant in all the events and related by v0 = 0.1.

the linear fit in figure (10.2a) as in figure (9.8c). Table (10.1) displays the slopes for all
harmonics up to eighth order when varying the range in θ. The values are both calculated
with and without the g(n) factor. As it appears from the table, no simple pattern can be
found between the slopes and the range in θ.

The g(n) factor is claimed to correct for this variation in slope with different sizes of
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n
cos θ ±1 ±0.94 ±0.81 ±0.72 ±0.61 ±.49 ±0.36 ±0.22

1
1.361 % 1.173 0.7186 0.4516 0.2982 0.1678 0.075
13.34 % 29.75 7.800 3.801 2.680 2.200 2.269

2
0.9884 6.005 1.693 1.104 0.8382 0.7414 0.6606 0.6025
2.421 14.41 3.564 2.128 1.529 1.385 1.441 1.934

3
1.218 5.957 2.345 6.381 2.659 0.8128 34.78 0.1348
6.494 31.21 12.14 41.80 38.65 37.53 5.424 3.067

4
1.276 2.598 1.590 2.902 12.65 1.704 1.001 0.7394
10.68 21.86 13.36 20.19 59.92 5.530 2.707 2.340

5
2.217 1.422 5.587 4.332 3.529 6.517 0.6858 0.1872
15.54 9.982 36.03 24.01 19.61 63.05 121.3 4.513

6
1.426 1.764 % 2.242 2.010 8.379 1.880 0.8737
43.33 53.56 % 140.1 116.5 96.77 8.484 3.086

7
1.237 4.202 1.586 2.323 % 4.617 1.938 0.2861
12.72 43.22 16.68 22.70 % 28.91 30.03 10.38

8
1.542 2.160 2.199 4.002 3.280 2.229 % 1.213
174.9 245.0 225.6 667.4 183.4 79.65 % 5.343

Table 10.1: Table of the slopes for various ranges in θ of. The “%”, indicates that the relation
with the coefficients of the spherical harmonics was not present in the given range. The table is
arranged so that the slope is displayed, when evaluated with and without the g(n) normalization
factor, where the upper value inside a row of n is without the g(n) factor and the lower value is
with the g(n) factor included in the calculations.

map. If that is true it requires a different pixelization than the one used in this thesis.
Analysis of real events in the current pixelization will have to first calculate the slope of
the curve for a given map size by the use of simulated events. When the slope is calculated,
flow estimations from real events can be corrected. The symmetry plane determination
is not affected by this tendency.

(a) v3, cos θ < ±0.72 (b) v4, cos θ < ±0.72

Figure 10.2: Series of 50 events with all harmonics but one are related by v0 = 0.1 and kept
constant. The mapsize is cos θ < ±0.72.
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10.2 Multiplicity dependence

The second parameter to be considered is the multiplicity dependence. The analysis aims
for an understanding of real data from the TPC and hence it is only performed on events
with cos θ < ±0.72 (the reason for not choosing cos θ < ±

√
2

2
is simply that with the 21×42

binning the bins at ±
√

2
2

extends to 0.72). The analysis is performed by considering the
distribution of the estimated flow from 2000 events with v2 = 0.1 and ψ2 = π

2
(π

2
is chosen

so that the orientations of the symmetry planes is not split between the upper and lower
limits of the range of the symmetry plane, when the standard deviation is increased as
shown in figure (9.6).). The results from the analysis are shown in figure (10.3) and (10.4)
for flow estimation and symmetry plane determination respectively. In the case of flow
estimation the standard deviation increases with decreasing multiplicities as expected. It
is not surprising that the standard deviation is increased when the map is reduced in
range to cos θ < ±0.72 as compared to the entire range, since this is a loss of information.
However it is interesting to observe that as multiplicity is decreased the mean of the
estimated flow is more over-estimated with low multiplicities.

In the case of the symmetry plane determination, uncertainty is also increased with de-
creasing multiplicities. However the mean of the symmetry planes remains approximately
at the value of the reaction plane.

The estimated values of v1, v3 and v4 and ψ1, ψ3 and ψ4 with multiplicity 1000 is shown
in figure (10.5). It appears that when going to higher orders, the distribution of estimated
flow obtain a tail. Both the tail of the third and the fourth harmonic extends outside the
drawn histogram, in particular the third harmonic has a very long tail.

One last thing needs to be considered before going to the analysis of real data. That
is the symmetry plane distribution for odd harmonics which can be seen in figure (10.6).
The results are important because the real data has an odd behaviour in the case of
odd symmetry plane determination. From figure (10.6) it is seen that in case of v1 and
M = 1000, the symmetry plane cannot be determined, whereas in the case of triangular
flow the symmetry plane is determined with a rather high uncertainty.
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(a) M = 100000 (b) M = 30000

(c) M = 10000 (d) M = 3000

(e) M = 1000 (f) M = 300

Figure 10.3: Estimated flow on 2000 events with multiplicities M ranging between 300 and
100000, v2 = 0.1 and ψ2 = π

2 . The analysis is performed in the range between cos θ < ±0.72.
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(a) M = 100000 (b) M = 30000

(c) M = 10000 (d) M = 3000

(e) M = 1000 (f) M = 300

Figure 10.4: Symmetry plane determination on 2000 events with multiplicities ranging between
300 and 100000, v2 = 0.1 and ψ2 = π

2 . The analysis is performed in the range between cos θ <
±0.72.
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(a) v1 = 0.1 M = 1000 (b) v1 = 0.1 M = 30000

(c) v3 = 0.1 M = 1000 (d) v3 = 0.1 M = 30000

(e) v4 = 0.1 M = 1000 (f) v4 = 0.1 M = 30000

Figure 10.5: Estimated flow on 2000 events with multiplicities at 1000 and 30000, for v1 =
0.05, v3 = 0.09 and v4 = 0.08. The analysis is performed in the range between cos θ < ±0.72.
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(a) v1 = 0.1 M = 1000 (b) v1 = 0.1 M = 30000

(c) v3 = 0.1 M = 1000 (d) v3 = 0.1 M = 30000

Figure 10.6: Determination of ψ1 and ψ3 from 2000 events in two scenarios with multiplicities
M = 1000 and M = 30000, In both case v1 = v3 = 0.1 and ψ1 = ψ3 = π

2 . The analysis is
performed in the range between cos θ < ±0.72.
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Chapter 11

Analysis on real events

Eventually the method can be applied to the analysis of real data. This is done be using
data from the TPC subdetector system in ALICE. This is the very first approach of
analysing real data and hopefully a more extensive analysis will be performed regarding
this matter. Not much can be concluded from the analysis so far beyond that the method
is not falsified. It appears at the moment that this is mainly due to the limitations
of the TPC and in particular due to the limitations in multiplicity. Furthermore it is
difficult to know how to interpret the results and which part to keep and which to discard.
However the results looks promising. Especially the analysis of elliptic flow appears to
have prospects and indeed encourages for further analysis.

11.1 TPC analysis

The analysis is performed on data from 1992 events in the TPC subdetector system.
The 1992 events are the same as those analysed in figure (4.10) with a centrality of 40 -
50%. Hence if the analysis is good the elliptic flow should be estimated somewhere in the
range between v2 = 0.8 and v2 = 1. The multiplicity of the events is generally around
M = 2 − 300. However the situation is more comparable to that of fig (10.3e) than to
that of figure (10.3f) because the multiplicity in these figures are the multiplicity of the
entire event. Whereas the multiplicity of the TPC events is only the multiplicity in the
TPC range. Another thing that might cause confusion is the value of vn because the
input value of vn in the JJG-generator is based on equation (7.1). The estimated flow in
figure (4.10) is based on equation (4.4) making the estimated value of vn in the preceding
analysis only half of what is expected if equation (4.4) was used. The binning used for
the analysis is the same as throughout the entire analysis 21 × 42. Since the map has
been reduced in θ and fewer bins are analysed, it is only possible to give an estimation
of the flow up to the 4th harmonic. The results obtained in the elliptic flow estimation is
seen in figure (11.1).

As it appears from the figure the estimated flow is distributed with a mean at roughly
0.2. The fact that the values of the estimated flow are distributed near around the mean,
is promising, since events with same centrality are expected to have the same value of v2.
When comparing figure (11.1) to figure (10.1c) (shown in the left corner of figure (11.1))
and remembering the factor of two, the estimated flow from TPC may be corrected by

111



11.1. TPC ANALYSIS

Figure 11.1: Distribution of estimated elliptic flow from 1992 events. The figure in the left
corner is the estimated elliptic flow plotted against v2 from simulated events (same as figure
(10.1c)).

the use of the slope to give

vTPC, slope correction
2 =

0.2088

2 · 1.099
= 0.09500 (11.1)

This value is a little too high due to the tendency to overestimation at low multiplicities.
Taking the results of figure (10.3e) into account a guess for the mean of the elliptic flow
in the TPC events would be

vTPC, multiplicity correction
2 =

0.09500
0.1676
0.1256

= 0.07119 (11.2)

where 0.1256 is the mean in figure (10.3b). The result is a little lower than that obtained
with LYZ. However the correction is made on the basis of a 1000 multiplicity events is an
approximation, and maybe it would be more suited to make the correction on the basis
of 1500 multiplicity events, which would reduce the correction for overestimation.

The distribution of the symmetry planes shown in figure (11.2) is what was hoped for,
namely a more or less even distribution in the entire range.

The distribution of estimated triangular flow from TPC is shown in figure (11.3).
These results appears to be in agreement with what might be expected when making a
comparison to figure (10.5c). The distribution exhibit the same contours with the long
tail. Although it is not visible when looking at figure (10.5c), the tail is longer on the
simulated events than on the TPC events.
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Figure 11.2: Distribution of symmetry planes from the TPC data.

(a) (b)

Figure 11.3: Panel 11.3a: Distribution of estimated triangular flow from 1992 events. Panel
11.3b: The estimated triangular flow plotted against v3 from simulated events with cos θ < ±0.72
and M = 30000.

Figure (11.3b), where the estimated triangular flow of events with multiplicity M =
30000 and cos θ < ±0.72 is plotted against v3, can be used to make the slope correction
for the estimated flow distribution in figure (11.3a). Using the slope of the fit in figure
(11.3b), the mean of the estimated flow in figure (11.3a) is corrected to be

vTPC, slope correction
3 =

1.305

2 · 7.055
= 0.09248 (11.3)
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11.1. TPC ANALYSIS

Much uncertainty is connected to the correction for the overestimated value of v3 with
decreased multiplicity. Partly due to the problem mentioned about the elliptic flow, that
the M = 1000 events may not be those which best resembles the TPC data. And partly
because figure (10.5c) do not contain estimations from all events since the tale is very
long. In addition figure (10.5c) is poorly approximated by the Guassian fit, and hence
instead of using the Gaussian mean for the correction the assumed peak of figure (10.5c)
must be used. Despite these considerable distortions a rough estimate of the Gaussian
mean of the triangular flow from the 1992 TPC events is given by

vTPC, multiplicity correction
3 =

0.09248
0.07

0.5964

= 0.08 (11.4)

This value can almost certainly be regarded as too high since it exceeds the value of the
elliptic flow in equation (11.2).

The results for the estimated flow of v1 and v4 are shown in figure, after making
the corrections the estimated mean of the flow is vTPC, multiplicity correction

1 = 0.00418 and
vTPC, multiplicity correction

4 = 0.611.

(a) v1 (b) v4

Figure 11.4: The estimated flow distribution for v1 and v4. After making the corrections the
estimated mean of the flow is vTPC, multiplicity correction

1 = 0.00418 and vTPC, multiplicity correction
4 =

0.611.

11.1.1 Analysis of odd ordered symmetry planes

A very interesting and unexplained part of the analysis of the symmetry planes for the
odd ordered harmonics is shown in figure (11.5). It can hardly be a coincidence that the
symmetry planes are symmetrically distributed around the center of range upon which
they are defined. A distribution like that of figure (11.2) was more to be expected.
Especially the case of ψ1 is interesting since figure (10.6a) showed that it is not even
possible to determine the symmetry plane in this case. This definitely points in the
direction of an error in the calculations, but no bugs have been found so far.
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(a) ψ1 (b) ψ3

Figure 11.5: The distribution of events planes from the TPC data for ψ1 and ψ3.

11.2 Accumulated TPC events

The last and a promising analysis of the TPC data is performed by adding all events with
the degree of rotation of the symmetry planes for elliptic flow in common. Thus all events
with ψ2 ∈ [ π

18
; π

9
] are being analysed as one event and so forth for all intervals of π

18
in the

defined range. One of the maps of the particle distribution from such added events are
shown in figure (11.6). It is very interesting that the two ridges on the map, is exactly the
shape expected in an event with elliptic flow. Hence it appears that the symmetry plane
is properly determined. The estimated value of the elliptic flow for the map shown on the
figure (11.6) is 0.1191. In this case there has been no correction made for the multiplicity,
since the accumulated map contains 20246 particles.

11.3 Remarks on the TPC analysis

In the analysis of TPC data, the method described in this thesis has definitely not been
falsified. However it is also hard to conclude that the method is working on the basis of
the displayed results. Generally the shape of the distributions for all four flow harmonics
seem to be in accordance with those of figure (10.3) and (10.5), but the estimated flow
values even after the corrections are uncertain especially those of v3 and v4, since the
values were too high when comparing to v2. The estimated mean of the elliptic flow was
a little lower than expected. However figure (11.6) clearly shows that the determination
of the symmetry plane works well for the elliptic flow, and in this case v2 is a little
overestimated. Hence it is very likely that the error lies in the corrections, and that the
method is not properly calibrated.

The symmetry plane determination of the odd harmonics gave strange results, which
may be caused by an error in the calculations, since ψ1 cannot be determined in simulated
events with low multiplicity. However no bugs have been found so far and it is hard to
see where it should be found since the calculations of ψodd

n utilizes the same routine as the
calculations of ψeven

n , and hence their might be an other yet undiscovered explanation.
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Figure 11.6: All events from TPC with ψ2 ∈ [π2 ; 4π
9 ] accumulated into one map.
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Chapter 12

Conclusion

The focus in this thesis has been upon the investigation of a new approach to the analysis
of anisotropic flow from relativistic heavy ion collisions in ALICE. By applying methods
used in the study of CMB the goal has been to obtain a method that will allow for an
event-by-event estimation of the flow harmonics and symmetry planes.

A general introduction to the field of relativistic heavy ion collision has been presented
in this thesis, followed by a brief description of the ALICE detector, an introduction to
the flow phenomenon and the conventional ways of doing flow analysis.

The approach to the new method was based on results presented in [15], where analysis
with GLESP demonstrated a relation between the coefficients of spherical harmonics and
the elliptic flow. The thesis has been concerned with writing a program that could do
the same analysis as GLESP in ROOT, and reproduce the results presented in [15] and
to extend the analysis to include higher order flow harmonics.

The ROOT version of GLESP which was designated GiRo was in some sense suc-
cessfully written and it was demonstrated that al,m coefficients and the powerspectrum
calculated with GiRo has a relative deviation from GLESP of the order of 10−9. However
GiRo has two considerable flaws. Firstly the binning of the histogram produced by GiRo,
although part of the GLESP package, is not the same as the pixelization used for the
results presented in [15]. The consequence is that the normalization factor g(n) does not
yield the correct normalization. Secondly GLESP is much faster in the evaluation of the
al,m coefficients. Because it exploits the Gauss-Legendre quadrature in the pixelization.
Although the binning in GiRo is also based on the Gauss-Legendre quadrature, it is not
exploited in the evaluation of the al,m coefficients.

The analysis was performed with a very simple event generator, which produced par-
ticles defined by their position in θ or η and φ. The distribution in η was produced with a
random number generator making a Gaussian distribution in order to imitate the forward-
backward symmetry in a real collision. The distribution in φ was likewise produced with a
random number generator, but with particles evenly distributed over the entire range. For
the φ distribution there was an option of imposing an anisotropic flow for flow harmonics
up to the eighth order, where both the magnitude of vn and the reaction plane ψn could
be varied. The flow was imposed by omitting a factor of two from the most common
way of describing flow. In this way the features of the flow were maintained, but with a
different normalization. The motivation for this change was that the estimated flow in
the analysis of an entire event with full range in η would not have to be normalized.
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The results from [15] could not be reproduced due to the wrong pixelization which
lead to a different normalization. However the same relation was found when ignoring
normalization problem. The analysis was extended to include other flow harmonics. In the
case of events containing only one flow harmonic, it generally appeared that the method
was apple to give a good estimation of all flow harmonics up to eighth order. But the
uncertainty of the estimation was increased with the order of the flow harmonic.

Throughout the analysis, the elliptic appeared to be nearly unaffected by other flow
harmonics, even when increasing all flow harmonics to large and unrealistic values, but
then again the elliptic flow was always the strongest. When increasing all harmonics at
the same time, higher order harmonics were severely affected. But when the magnitude of
the flow harmonics was kept at a reasonable level, it was possible to give a good estimate
of all harmonics.

A little less attention was devoted to the determination of the symmetry plane. But
generally the analysis revealed the same features as for the flow analysis with one excep-
tion: The symmetry plane was better determined when going to higher orders of the flow
harmonics.

Almost all analysis was based on events with 30000 particles distributed on a map
with a 21×42 binning covering the full range in η. However the bit of analysis devoted to
choice of binning, suggested that as few bins as possible gives most precise estimations.
The analysis focused an the dependency on range in η revealed that the flow estimation
was affected by the change in two aspects. Firstly the uncertainty on the estimations
was changed, but there was no direct pattern between the η-range and the size of the
uncertainty. Secondly the normalization was changed, where again no pattern was seen
between the η-range and normalization factor. In the case of multiplicity dependence,
the analysis revealed a strong dependency on multiplicity where generally results were
impaired with decreasing multiplicity. When considering flow harmonics of order higher
than two, it is questionable whether the method of analysis is useful at multiplicities lower
than 1000.

In the final part of the thesis analysis of events from the TPC in ALICE were consid-
ered. The multiplicity from these events were of the order of 2-300 particles distributed
in a range |η| < 0.9. There were several problems in this analysis. Firstly the low mul-
tiplicity in the events which was predicted to give results with very high uncertainty for
higher order flow harmonics. Secondly the only known flow harmonic was the mean of
the elliptic flow and lastly the analysis may not have been correctly calibrated against the
simulated events. The results from the higher order harmonics look very suspicious when
comparing with the result for the estimated elliptic flow, since the third flow harmonic
was estimated a little higher than the elliptic flow and the fourth flow harmonic a little
lower.

The elliptic flow of the TPC events was estimated in two ways: The first was to
consider the mean of all events, and calibrate that value against simulated events, and
the second was to merge all events with the same symmetry plane into one event from
which the elliptic flow was estimated. The first method gave a value which was a little
lower than the lowest value achieved by cumulants, and the second method gave a value
which was a little higher than the highest value achieved by cumulants. However when
visualizing the particle distribution from the second method, the distribution took the
shape which would be expected from an event containing elliptic flow with two ridges
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separated by an amount π. Thus strongly indicating that the symmetry plane is correctly
determined.

In conclusion it appears from simplified simulated events that the use of spherical har-
monics gives an event-by-event determination of the anisotropic flow and corresponding
symmetry planes. However it would be a great advantage to have the correct normal-
ization, which requires a different type of pixelization than the one used in this analysis.
The first step has been taken into the analysis of real events, but multiplicity has been
too low for the verification of the method.
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Appendix A

Cumulants with non-uniform
detector acceptance

If the detector has a non-uniform acceptance the fourth order cumulant is written as

cn{4} = 〈〈4〉〉 − 2〈〈2〉〉2

− 4〈〈cos(nφ1)〉〉〈〈cos[n(φ1 − φ2 − φ3)]〉〉
+ 4〈〈sin(nφ1)〉〉〈〈sin[n(φ1 − φ2 − φ3)]〉〉
− 〈〈cos(nφ1 + φ2)〉〉2 − 〈〈sin(nφ1 + φ2)〉〉2

+ 4〈〈cos(nφ1 + φ2)〉〉
(
〈〈cos(nφ1)〉〉2 − 〈〈sin(nφ1)〉〉2

)
+ 8〈〈sin[n(φ1 + φ2)]〉〉〈〈sin(nφ1)〉〉〈〈cos(nφ1)〉〉
+ 8〈〈cos[n(φ1 − φ2)]〉〉

(
〈〈cos(nφ1)〉〉2 + 〈〈sin(nφ1)〉〉2

)
− 6

(
〈〈cos(nφ1)〉〉2 + 〈〈sin(nφ1)〉〉2

)2

(A.1)

The Generalized fourth order differential cumulant is written as

dn{4} = 〈〈4′〉〉 − 2〈〈2′〉〉〈〈2〉〉
− 〈〈cos(nΦ1〉〉〈〈cos[n(φ1 − φ2 − φ3)]〉〉+ 〈〈sin(nΦ1)〉〉〈〈sin[n(φ1 − φ2 − φ3)]〉〉
− 〈〈cos(nφ1〉〉〈〈cos[n(Φ1 − φ2 − φ3)]〉〉+ 〈〈sin(nφ1)〉〉〈〈sin[n(Φ1 − φ2 − φ3)]〉〉
− 2〈〈cos(nφ1〉〉〈〈cos[n(Φ1 + φ2 − φ3)]〉〉 − 2〈〈sin(nφ1)〉〉〈〈sin[n(Φ1 + φ2 − φ3)]〉〉
− 〈〈cos[n(Φ1 + φ2)]〉〉〈〈cos[n(φ1 + φ2]〉〉+ 〈〈sin[n(Φ1 + φ2)]〉〉〈〈sin[n(φ1 + φ2)]〉〉
+ 2〈〈cos[n(φ1 + φ2)]〉〉 · (〈〈cos(nΦ1)〉〉〈〈cos(nφ1)〉〉 − 〈〈sin(nΦ1)〉〉〈〈sin(nφ1)〉〉)
+ 2〈〈sin[n(φ1 + φ2)]〉〉 · (〈〈cos(nΦ1)〉〉〈〈sin(nφ1)〉〉+ 〈〈cos(nΦ1)〉〉〈〈sin(nφ1)〉〉)
+ 4〈〈cos[n(φ1 − φ2)]〉〉 · (〈〈cos(nΦ1)〉〉〈〈cos(nφ1)〉〉+ 〈〈sin(nΦ1)〉〉〈〈sin(nφ1)〉〉)
+ 2〈〈cos[n(Φ1 + φ2)]〉〉 ·

(
〈〈cos(nφ1)〉〉2 − 〈〈sin(nφ1)〉〉2

)
+ 4〈〈sin[n(Φ1 + φ2)]〉〉〈〈cos(nφ1)〉〉〈〈sin(nφ1)〉〉
+ 4〈〈cos[n(Φ1 − φ2)]〉〉

(
〈〈cos(nφ1)〉〉2 + 〈〈sin(nφ1)〉〉2

)
− 6

(
〈〈cos(nφ1)〉〉2 − 〈〈sin(nφ1)〉〉2

)
× (〈〈cos(nΦ1)〉〉〈〈cos(nφ1)〉〉 − 〈〈sin(nΦ1)〉〉〈〈sin(nφ1)〉〉)
− 12〈〈cos(nφ1)〉〉〈〈sin(nφ1)〉〉 (〈〈sin(nΦ1)〉〉〈〈cos(nφ1)〉〉+ 〈〈cos(nΦ1)〉〉〈〈sin(nφ1)〉〉)

(A.2)
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The second order cumulant from equation (4.21) in chapter 4 may be expressed by use of
the Q-vector as:

〈〈cos(nφ1)〉〉 =

∑N
i=1(Re[Qn])i∑N

i=1Mi

(A.3)

〈〈sin(nφi)〉〉 =

∑N
i=1(Im[Qn])i∑N

i=1Mi

(A.4)

The terms in equation (A.1) may as well be expressed by use of the Q-vector as:

〈〈cos[n(φ1 + φ2)]〉〉 =

∑N
i=1(Re[QnQn −Q2n])i∑N

i=1Mi(Mi − 1)
(A.5)

〈〈sin[n(φ1 + φ2)]〉〉 =

∑N
i=1(Im[QnQn −Q2n])i∑N

i=1Mi(Mi − 1)
(A.6)

〈〈cos[n(φ1 − φ2 − φ3)]〉〉 =

∑N
i=1(Re[QnQ

∗
nQ
∗
n −QnQ

∗
2n]− 2(M − 1)Re[Q∗n])i∑N

i=1Mi(Mi − 1)(Mi − 2)
(A.7)

〈〈sin[n(φ1 − φ2 − φ3)]〉〉 =

∑N
i=1(Im[QnQ

∗
nQ
∗
n −QnQ

∗
2n]− 2(M − 1)Im[Q∗n])i∑N

i=1Mi(Mi − 1)(Mi − 2)
(A.8)

The terms of the generalized second order differential cumulant in equation (4.42) which
not already been expressed in terms of the Q-vector are:

〈〈cos(nΦ1)〉〉 =

∑N
i=1(Re[pn])i∑N
i=1(mp)i

(A.9)

〈〈sin(nΦ1)〉〉 =

∑N
i=1(Im[pn])i∑N
i=1(mp)i

(A.10)

The terms of equation (A.2) which remains to be expressed in terms of the Q-vector are:

〈〈cos[n(Φ1 + φ2)]〉〉 =

∑N
i=1(Re[pnQn − q2n])i∑N
i=1(mpM −mq)i

(A.11)

〈〈sin[n(Φ1 + φ2)]〉〉 =

∑N
i=1(Im[pnQn − q2n])i∑N
i=1(mpM −mq)i

(A.12)

〈〈cos[n(Φ1 + φ2 − φ3)]〉〉 =

∑N
i=1(Re[pn(|Qn|2 −M ])− Re[q2nQ

∗
n +mqQn − 2qn])i∑N

i=1[(mpM − 2mq)(M − 1)]i
(A.13)

〈〈sin[n(Φ1 + φ2 − φ3)]〉〉 =

∑N
i=1(Im[pn(|Qn|2 −M ])− Im[q2nQ

∗
n +mqQn − 2qn])i∑N

i=1[(mpM − 2mq)(M − 1)]i
(A.14)

〈〈cos[n(Φ1 − φ2 − φ3)]〉〉 =

∑N
i=1(Re[pn(Q∗nQ

∗
n − pnQ∗2n])− Re[2mqQ

∗
n − 2q∗n])i∑N

i=1[(mpM − 2mq)(M − 1)]i
(A.15)

〈〈sin[n(Φ1 − φ2 − φ3)]〉〉 =

∑N
i=1(Im[pn(Q∗nQ

∗
n − pnQ∗2n])− Im[2mqQ

∗
n − 2q∗n])i∑N

i=1[(mpM − 2mq)(M − 1)]i
(A.16)
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Appendix B

GiRo coding

This appendix contains some of the routines implemented in GiRo

B.1 Gauss-Legendre quadrature

For the calculations of the Gauss-Legendre quadrature integral approximation, the wi and
xi in equation (6.1) can be evaluated by following the algorithm:

static void GauLeg(Int_t x1,

Int_t x2,

UShort_t n,

Double_t *x,

Double_t *weights,

Double_t eps = 1e-15)

{

Int_t m = (n+1)/2;

Double_t xm, xl, z, z1;

Double_t p1, p2, p3, pp;

xm = 0.5 * (x2 + x1);

xl = 0.5 * (x2 - x1);

for (UShort_t i = 0; i < m; i++) {

z = TMath::Cos(TMath::Pi() * ((i + 1) - .25) / (n + .5));

do {

p1 = 1.0;

p2 = 0.0;

for(UShort_t j = 0; j < n; j++) {

p3 = p2;

p2 = p1;

p1 = ((2*j+1)*z*p2-j*p3)/(j+1);

}

pp = n*(z*p1-p2)/(z*z-1.0);

z1 = z;
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B.2. DRAWING OF THE HISTOGRAM

z = z1-p1/pp;

} while (TMath::Abs(z-z1) > eps);

x[i] = xm - xl * z;

x[n-1-i] = xm + xl * z;

weights[i] = 2.0*xl / ((1. - z*z) * pp*pp);

}

}

where x1 and x2 are upper and lower bound of the integral, and n is the desired number
of pixels.

B.2 Drawing of the histogram

The coding and drawing for a 2-d histogram with the binning presented B.1 in in the
θ-direction are

TH2D* fMap = new TH2D("map", "#phi vs cos(#theta)",

nbins,xbins.fArray,phiBins,0,2*TMath::Pi());

fMap->Draw("lego2");

where xbins.fArraw is the array containing each value of xi

B.3 Evaluation of al,m coefficients

The Fourier transform was performed by the routine

for (Int_t i = min; i < max; i++) {

TArrayD input(np);

//Retriewing the bincontent for each phi

for(Int_t j = 0; j < np; j++){

input[j] = fMap->GetWeightedMap()->GetBinContent(i + 1,j + 1);

}

//making the FFT for the slice containg each phi of the i’th x.

TVirtualFFT *fftwr2hc = TVirtualFFT::FFT(1 ,&np,"R2HC ES");

fftwr2hc->SetPoints(input.fArray);

fftwr2hc->Transform();

}

where np is the number of bins in φ and fMap is the histogram from B.2. From the
Fourier coefficients the al,m coefficients were calculated by the routine

for(Int_t l = 0; l <= lmax; l++){

for(Int_t m = 0; m <= l; m++){

//Loop to take the integral over the contents of each bin.

for(Int_t i = min; i <= max; i++){
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APPENDIX B. GIRO CODING

Double_t Sph = ROOT::Math::sph_legendre(l,m,

TMath::ACos(fMap->GetBins()->GetBinContent(i)));

}

}

}

Where fRe and fIm are histograms containing the real and imaginary parts of the Fourier
coefficients. min and max are the bins at the position of the lower and upper bounds of
the outer integral in equation (3.14).
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