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Abstract

Quantum computers has long promised to revolutionise the way we view information.
However, the superconducting qubits commonly touted by the big technology companies
have always suffered from debilitating errors. To remedy this, many have turned to reduc-
ing the sources of errors, but few have considered reducing the qubit’s sensitivity instead.
This complementary approach was recently attributed with helping the fluxonium achieve
its sudden leap forward in coherence times. However, the question then arises if we can
achieve the same insensitivity or protection in other qubits.

In this thesis, we investigate the n̂-parity protected qubit, which uses a π-periodic
Josephson element to achieve similar protection against n̂ relaxation, while distinctively
remaining in the integer number of Cooper pairs regime. We introduce how this π-periodic
Josephson element can be achieved in SNS junctions, and document the ongoing process
of realising such a protected qubit in a scalable 2DEG platform.
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1 Introduction

1.1 Motivation
Quantum computing is a new paradigm of information processing where data is encoded
and manipulated as quantum bits (qubits) instead of classical ones. This migration to the
quantum world, throws open the doors for discovery of fundamentally new information
processing techniques that exploit uniquely quantum phenomena. For example, machine
learning applications could be trained by variationally entangling quantum circuits, in-
stead of tuning classical variables [1]. Or, complex systems with underlying quantum
interactions could be more naturally and efficiently simulated on similarly quantum com-
puters over classical ones [2]. However, further progress in executing ever more sophis-
ticated quantum algorithms is currently still greatly hampered by the inadequacies of
modern quantum hardware.

One of these inadequacies is the spontaneous relaxation of qubits, which remains one
of the major problems of superconducting qubits today. These relaxation errors occur
because of decay channels in the environment which couple the qubit’s |0⟩ and |1⟩ states,
encouraging it to relax into the lower energy state and destroying the encoded information
in the process. The reason this plagues superconducting qubits in particular, is the double
whammy of (i) their strong coupling to (ii) a multitude of very dense decay channels, à la
Fermi’s golden rule [3]. Great strides have been made in reducing the density of some of
these decay channels: via Bogoliubov quasiparticle traps, Purcell filters, three-dimensional
cavities, and so on [4–6]. However, there is also the complementary approach of reducing
the qubit’s coupling to these decay channels, which has not seen as much experimental
progress and attention – until recently.

This decoupling to the decay channels is primarily achieved by designing so-called pro-
tected qubits, which have states with reduced overlap relative to a specific decay channel’s
operator ⟨0|Ô|1⟩. Current experimental efforts are mainly focused on minimising these
overlaps with respect to the natural n̂, φ̂ operators; translating to protection against decay
channels such as relaxation into charge defects in the qubit’s environment. The practical
value of this n̂, φ̂ protection can perhaps most prominently been seen in the recent mil-
lisecond coherence fluxonium paper, where such a protection was attributed with helping
achieve the ten-fold leap in coherence time over the previous long-standing record [7, 8].
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1.2 Background
However, the fluxonium is not the only qubit which can achieve this n̂, φ̂ protection. It is
also possible to create a similarly protected qubit which preserves the integer discreteness
of n̂ and 2π periodicity of φ̂ from the microscopic picture of superconductivity. This qubit
takes the general form of a capacitively-shunted π-periodic Josephson-like element, which
would host non-overlapping states that differ in the parity of n̂, as sketched in figure 1.1.

JC

b)a)

Figure 1.1: a) Circuit diagram and b) n̂ wavefunction of a n̂-parity qubit

The first attempt at such a n̂-parity qubit was based on the Josephson rhombus; first
dreamt up in the context of lattice codes, and later applied to the simpler qubit [9–11].
These rhombuses require four strictly identical Josephson junctions, since it is this sym-
metry that provides the desired cos(2φ) energy dependence under frustration. However,
perfectly identical junctions are hard to fabricate, and this first attempt still had residual
2π-periodic components which would have limited its n̂ protection [11].

An alternative approach is to use superconductor-semiconductor junctions, which have
two separate benefits. Firstly, such junctions would be tunable via electrostatic gates,
which would help in balancing them without interfering with flux-biasing of the rhombus
itself. Secondly, these junctions also have non-sinusoidal energy dependence, with higher
harmonics that can be directly interfered to yield a π-periodic element using only two
junctions.

Such a superconductor-semiconductor n̂-parity qubit was previously attempted in our
lab [12]. However, it could not be operated in the perfectly π-periodic regime either, for
the distinct reason that the qubit could not be tracked that deep into the protected regime.
Additionally, these junctions were made using VLS (vapour-liquid-solid) nanowires, which
had to be manually picked and placed on the chip, and thus wasn’t readily scalable to
multiple qubits should the desire arise in the future.
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1.3 Outline of Thesis
In this thesis, we set out to build upon the aforementioned superconductor-semiconductor
n̂-parity qubit – by first migrating it to the more scalable 2DEG (2D electron gas) plat-
form used by other devices in our lab. This migration is currently still ongoing, but we will
describe the envisaged 2DEG n̂-parity qubit and give a summary of the progress thus far.
Additionally, we will also provide a longer-form and more explicit introduction to SNS
junctions. Using a harmonic interpretation of the its Josephson energy, we can directly
compare the transmon, gatemon and n̂-parity qubit via the respective SIS junction, SNS
junction, and π-periodic SNS SQUID.

The remainder of this thesis will be organised as follows. We will start in chapter 2
with a crash course on conventional superconducting qubits; building up to the archetyp-
ical transmon which we will show is not n̂ protected. Subsequently in chapter 3, we will
discuss the SNS junction and show how the harmonic interpretation allows us to under-
stand and compare the various integer n qubit variants. In chapter 4, we will introduce
the 2DEG material platform used and provide an overview of the fabrication process.
Chapter 5 will present measurements done on a single-junction gatemon, which gives us
a first look at the SNS junctions which would eventually go into the n̂-parity qubit. Fi-
nally, in chapter 6 we will show how the 2DEG n̂-parity qubit is expected to look like,
and summarise our progress thus far.
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2 Basics of Superconducting Circuits

2.1 Canonical Quantisation of Electrical Circuits
The energy stored in any non-dissipative electrical lumped element is

H =

∫
IV dt (2.1)

where I and V are the current and voltage across the element, and t is time. Thus,
it follows that in the formulation of Hamiltonian mechanics, the generalised positions
and conjugate momentums of such a conservative electrical circuit would be the negative
charge −Q and node flux Φ respectively, defined at each node in the circuit as

−Q = −
∫
I dt (2.2)

Φ =

∫
V dt (2.3)

The above can be proven by checking its consistency with Hamilton’s equations,

∂H

∂(−Q)
= −∂H/∂t

∂Q/∂t
= −IV

I
= −dΦ

dt
(2.4)

∂H

∂Φ
=
∂H/∂t

∂Φ/∂t
=
IV

V
=
dQ

dt
(2.5)

Consequently, in moving to quantum mechanics, conservative electrical circuits can be
canonically quantised by promoting Q and Φ to canonically conjugate quantum operators,
with a commutator of

[−Q̂, Φ̂] = i~ (2.6)

2.2 SIS Junctions
When a material becomes superconducting, its electrons pair up into Cooper pairs which
then condense into a single macroscopic quantum state described by a Ginzburg-Landau
wavefunction of [13]

ψ =
√
neiϕ (2.7)
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where n is the number of Cooper pairs, and ϕ is the superconducting phase. This
distinctive behaviour allows for new electrical elements to be realised; most common of
which is the SIS Josephson junction [14]. Such a junction consists of two superconduct-
ing leads S separated by a thin insulating barrier I. For example, many superconducting
qubits use Al/AlOx in the geometry sketched in figure 2.1 to form a SIS junction.

ΨL ΨR

Coupling K

AlOx
Al

Figure 2.1: Cross-section of a Al/AlOx Josephson tunnelling junction

The weak insulating barrier allows for some coupling between the wavefunctions of
each superconductor. This can be modelled as a coupling element K in the Hamiltonian
of the junction, which results in the following Schrödinger equation [15]

i~
∂

∂t

(
ψL

ψR

)
=

(
0 K

K −2eV

)(
ψL

ψR

)
(2.8)

where ψL/R =
√
nL/Re

iϕL/R is the Ginzburg-Landau wavefunction of the left/right
superconductor, K is the coupling element, and V is potential difference across the junc-
tion. Solving equation 2.8 and separating the real and imaginary components yields the
Josephson equations

∂φ

∂t
:=

∂

∂t
(ϕR − ϕL) =

2eV

~
(2.9)

I = −2e
∂nL

∂t
= −2e

√
nLnR

2K

~
sin(φ) := Ic sin(φ) (2.10)

where φ is the superconducting phase difference, I the current, and Ic the critical
current of the junction. The energy stored in the junction can then be calculated to be

U =

∫
Ic sin(φ)

~
2e

∂φ

∂t
dt = −~Ic

2e
cos(φ) (2.11)

The last thing to note here is that n = Q/(−2e), and φ = 2eΦ/~ from equation 2.3
and 2.9. Thus, they can also be promoted to canonically conjugate quantum operators
following section 2.1, up to a constant factor. Additionally, n̂ and φ̂ turns out to be
less cumbersome for all our subsequent analysis. Thus, we will switch over exclusively to
them, with their commutator modified from equation 2.6 to be

[n̂, φ̂] = i (2.12)
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2.3 Capacitively Shunted SIS Junction
To create a superconducting qubit, we can shunt a Josephson junction J with a capaci-
tance C, as depicted in figure 2.2. This capacitance arises naturally between the electrical
planes of each of the two superconducting leads. However, there are typically also envi-
ronmental charges which can also couple differentially to each of these planes, which we
model as a offset voltage source Vg and capacitance Cg.

JC

Cg

Vg

Figure 2.2: Circuit diagram of a capacitively shunted Josephson junction
(The dotted lines denote stray charges in the environment unintentionally coupling to the circuit)

For an SIS junction, the Hamiltonian of such a circuit can be written down as [3]

Ĥ =
(2e)2

2C

(
n̂− CgVg

2e

)2

− ~Ic
2e

cos(φ̂)

:= 4EC(n̂− ng)
2 − EJ cos(φ̂)

(2.13)

where EC = e2/2C is the charging energy of the capacitor, EJ = ~Ic/2e is the Joseph-
son energy of the junction, and ng = CgVg/2e is the offset charge due to the environment.
To find the eigenstates, we can rewrite Ĥ exclusively in terms of n̂ or φ̂ to get

Ĥ = 4EC

(
i
∂

∂φ
− ng

)2

− EJ cos(φ̂)

= 4EC (n̂− ng)
2 − EJ

2
(|n+ 1⟩ ⟨n|+ |n⟩ ⟨n+ 1|)

(2.14)

where ⟨n|n̂|n⟩ = n. The φ̂ version is related to Matthieu’s differential equation, and
thus has known eigenenergies and eigenfunctions [3]. The n̂ version operates in a discrete
basis since n ∈ Z0, and thus has a representative matrix that can be truncated and nu-
merically diagonalised. We do the latter for a range of different parameters and plot the
results in figure 2.3.
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Figure 2.3: (a) Charge dispersion, and wavefunctions at (b) ng = 0 (c) ng = 0.25 of a capacitively-shunted SIS junction for EJ/EC = (i) 0.5, (ii)
5, (iii) 50

7



From figure 2.3a, we can observe that the circuit has unequally-spaced energy levels,
and thus can be used as qubits. Additionally, as EJ/EC increases, these energy levels
becomes less sensitive to variations in ng, but they also become more equally-spaced.
The former is beneficial for quantum computation, since a stable qubit energy prevents
dephasing errors. The latter is detrimental, since it results in more leakage errors and/or
longer gate times. However, there have been theoretical and experimental evidence sug-
gesting that the benefits outweigh the cost [3, 16]. As a result, this large EJ/EC regime
has become widely adopted, with such qubits named transmons.

Each of these energy levels also have their associated wavefunctions plotted in fig-
ure 2.3b and 2.3c, where they can be observed to alternate between having odd and
even envelopes about n = ng. This behaviour means that twice-adjacent energy levels
will always have zero ⟨ψi|n̂|ψi+2⟩ overlap at half-integer ng due to their similar oddness
or evenness. At non-half-integer ng, the overlap of twice-adjacent levels becomes less
straightforward to determine, since the n discretisation does not occur symmetrically and
the resulting wavefunctions are not perfectly odd/even, as can be seen on careful inspec-
tion of figure 2.3c(ii) and 2.3c(iii). However, once-adjacent energy levels – on which qubits
are typically defined – have non-zero ⟨ψi|n̂|ψi+1⟩ overlap at all ng due to their opposing
oddness/evenness. This leads to non-zero ⟨0|n̂|1⟩ overlap in the qubit which would en-
courage energy relaxation via channels coupled through n̂ according to Fermi’s golden
rule, and such qubits are effectively unprotected against n̂ relaxation.

2.4 Transmons
As mentioned before, transmons with EJ/EC & 50 have not only proven to be of practical
benefit, but also allows us to make analytic approximations of its energy levels. This is
because a dominating EJ term would localise the wavefunctions near φ = 0 mod 2π.
Thus, we can Taylor expand equation 2.13 around φ = 0 mod 2π to obtain

Ĥ ≈ 4EC(n̂− ng)
2 +

EJ

2
φ̂2 − EJ

24
φ̂4 +O(φ̂6)− EJ (2.15)

Ignoring the quartic φ4 and higher-order terms, we can identify the Hamiltonian to be
similar to a quantum harmonic oscillator. This motivates us to apply second quantisation
to the circuit, using annihilation/creation operators of the form

â = 4

√
2EC

EJ

(n̂− ng) + i 4

√
EJ

32EC

φ̂ (2.16)

The resulting second-quantised version of equation 2.15 will then be

Ĥ ≈
√
8ECEJ

(
â†â+

1

2

)
− EC

12
(â† − â)4 − EJ (2.17)
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This form highlights that adjacent energy levels are almost equally spaced, except for
the 3rd (and higher) terms. Specifically, including this 3rd term results in

⟨k|Ĥ|k⟩ ≈
√

8ECEJ

(
k +

1

2

)
− EC

4
(2k2 + 2k + 1)− EJ (2.18)

⟨H⟩k+1 − ⟨H⟩k ≈
√

8ECEJ − EC(k + 1) (2.19)

where |k⟩ is the k-th excited state, and ⟨k|Ĥ|k⟩ = ⟨H⟩k is its energy. Thus, the first
|0⟩ → |1⟩ transition will have a energy of

√
8ECEJ − EC , and the second |1⟩ → |2⟩ will

an energy lower by EC . This difference between the first and second transition is named
the anharmonicity α, and for the Transmon it takes the approximate value of α ≈ −EC .

9



3 Superconductor-Semiconductor Qubits

3.1 SNS Junction
A close relative of the SIS junction is the SNS junction, which replaces the insulating
barrier I with one made from a normal metal N. This allows for Andreev reflection to
occur at each N-S interface, where an electron incident from the normal region drags
another suitable electron with it to form a Cooper pair in the superconductor, leaving a
retroreflected hole in the normal metal as illustrated in figure 3.1 [17].

x

y

N S

a

EF

E

N S

Δ

b

Normal
Metal (N)
Supercon-
ductor (S)

Electron
Hole

Legend

Figure 3.1: Illustration of Andreev reflection in a) spatial coordinates b) energy levels

This allows SNS junctions to host bound states, corresponding to the infinite loop
where an electron in the normal metal is reflected as a hole from one N-S interface, and
then reflected back to the original electron again at the other interface. These Andreev
bound states also carries supercurrents, since the aforementioned process entails Cooper
pairs being created in one superconducting lead and annihilated in the other.

SS N

Scattering

Andreev
Reflection

Andreev
Reflection

Figure 3.2: SNS junction model, with ideal S-N interfaces separate from the bulk metal
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There are several ways to quantitatively model these SNS junctions and their Andreev
bound states. However, past work on similar junctions in our lab suggests that ours can
be modelled as described in [18], with effectively ideal S-N interfaces separate from the
bulk normal metal where scattering might still occur, as sketched in figure 3.2.

These perfect S-N interfaces are assumed to have (i) no mismatch in Fermi velocities
(ii) a step-like change in the pairing potentials (iii) no interfacial potential barriers [19,
20]. Matching the wavefunctions supported by the Bogoliubov-de Gennes equation in
each region then predicts that Andreev reflection will always occur for electrons and holes
under the superconducting gap, with a net phase shift of [19–21]

|ei⟩ → e−i arccos(E/∆)e−iϕ |hr⟩

|hi⟩ → e−i arccos(E/∆)eiϕ |er⟩
(3.1)

where |ei⟩ , |hi⟩ are the incident electron or hole, E its energy, ∆ the superconducting
gap, ϕ the superconducting phase, and |er⟩ , |hr⟩ the retro-reflected electron or hole. The
Andreev bound states can then be found by noting that they should be invariant under
the combined Andreev reflection and scattering in the bulk metal. For one-dimensional
junctions shorter than the superconducting coherence length (L < ξ), these bound states
are calculated to have energies of [18, 21]

E = ±∆
√

1− T sin2(φ/2) (3.2)

where ∆ is the superconducting gap, T is the transmission coefficient through the bulk
normal metal, and φ is the superconducting phase difference between the two leads. In
actual SNS junctions, we expect to see several such one-dimensional channels, each with
their own transmission coefficient and Andreev bound states. Their energies have also
been empirically observed to vary when gated with a nearby electrostatic gate [22].

In the context of qubits, these SNS junctions would usually be operated at low tem-
peratures and voltages. Thus, we expect that only bound states with negative energies
will be filled. This would translate to a total energy stored in the junction of

UJ(φ) = −∆
∑
i

√
1− Ti sin

2(φ/2) (3.3)

where i is the index of each one-dimensional conduction channel, and Ti its transmis-
sion coefficient. The superconducting leads are assumed to be homogeneous, and thus the
superconducting gap ∆ and phase difference φ should to be the same across all channels.
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3.2 SNS Josephson Energy
This SNS Josephson energy (equation 3.3) underlies our ability to create the n̂-parity
qubit. It is similar to the SIS junction in that both are 2π-periodic in φ. However, the
SIS’s energy has a purely sinusoidal relation with φ, while the SNS junction can have a
much more complex energy dependence as shown in figure 3.3a(i).

Figure 3.3: SNS junction energy in terms of (a) φ, and (b) harmonics of cos(kφ)

To gain further insight into this difference between SIS and SNS junctions, it is useful
to decompose the energies into their harmonic components. SIS junctions are purely
sinusoidal and thus only has its 1st harmonic. Conversely, SNS junctions can possesses
significant higher harmonic components, as encapsulated in

UJ(φ) = −
∑
k

Ak cos(kφ) (3.4)

where k denotes the k-th harmonic, Ak is its amplitude, and the use of cosine justified
by the evenness of UJ . Since there is only one fundamental frequency, we can cleanly iso-
late each harmonic and extract its amplitude by beating it with an similar tone, following

12



Ak =


1

2π

∫ π

−π

EJ(φ) cos(kφ) dφ for k = 0

1

π

∫ π

−π

EJ(φ) cos(kφ) dφ for k > 0

(3.5)

The physical implications of these higher harmonics will become apparent when dis-
cussing qubits in the next section. For now, we can numerically extract these harmonic
terms, and compare them across a range of different conduction channels as plotted in
figure 3.3b.

For the single channel case in figure 3.3b(i), we can see that high transmission chan-
nels have significant higher harmonics, which result in junctions very distinct from the
SIS ones. This distinction fades away at middling transmissions, as the higher harmon-
ics vanishes more quickly, causing the 1st harmonic to eventually dominate. However,
dropping to even lower transmissions causes the 1st harmonic to also die out, effectively
preventing any supercurrent flow across the junction.

In the case of multiple conduction channels, figure 3.3b(ii) reveals that the harmonics
of each conduction channel simply sums up. Each conduction channel just adds its own
timbre to the choir that is the junction. Thus, adding more lower transmission channels
do not diminish the higher harmonics in an absolute sense. However, adding middling
transmission channels does disproportionately add to the 1st harmonic, which might end
up masking the effect of the higher harmonics in situations like the gatemon. On the other
hand, near-zero transmission channels simply adds an offset to the energy of the junction,
and are otherwise inconsequential to the behaviour of the junction and any qubit it forms.

3.3 Gatemons
To illustrate the physical implications of the aforementioned higher harmonics, and to
inform our later interpretation of the our gatemon measurements, we can look at the
capacitively-shunted SNS junction. Analogously to section 2.3, such a circuit will have a
Hamiltonian of

Ĥ = 4EC(n̂− ng)
2 −∆

∑
i

√
1− Ti sin

2(φ/2)

= 4EC(n̂− ng)
2 −

∑
k

Ak cos(kφ)

= 4EC(n̂− ng)
2 −

∑
k

Ak

2
(|n+ k⟩ ⟨n|+ |n⟩ ⟨n+ k|)

(3.6)

where EC = e2/2C is the charging energy of the capacitor, ng the offset charge due
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to the environment, ∆ the superconducting gap, Ti the transmission coefficient of each
conduction channel, and Ak the harmonic coefficients as discussed in section 3.2. Here, it
becomes explicit that the higher harmonics of the SNS junction causes it to also couple
states that differ by more than one Cooper pair. For the specific case of the capacitively-
shunted SNS junction, we would expect this extra coupling to affect the scaling of the
charge dispersion and anharmonicity of the qubit.

To quantify the latter, we can restrict ourselves to the so-called gatemon regime of φ ≈
0 mod 2π, analogous to the transmon regime. Taylor expansion of the SNS Josephson
energy in equation 3.3 in this regime would then yield

Ĥ = 4EC(n̂− ng)
2 −∆

∑
i

[
1 +

Ti
4

φ̂2

2
+

(
Ti
4
− 3T 2

i

16

)
φ4

24
+O(φ̂6)

]

≈ 4EC(n̂− ng)
2 −

(
∆

4

∑
i

Ti

)
φ̂2

2
+

(
1− 3

∑
i T

2
i

4
∑
Ti

)(
∆

4

∑
i

Ti

)
φ4

24
−∆

∑
i

1

(3.7)

This is similar to the transmon version in equation 2.15, except for the substitution of
EJ → ∆

4

∑
i Ti and an extra coefficient in the quartic φ4 term. Thus, in the same vein as

equation 2.17, the gatemon would have an approximate second quantised Hamiltonian of

Ĥ ≈
√

2EC∆
∑
i

Ti

(
â†â+

1

2

)
−
(
1− 3

∑
i T

2
i

4
∑
Ti

)
EC

2
(â† − â)4 −∆

∑
i

1 (3.8)

where â, â† are creation/annihilation operators of the gatemon. Analogously to equa-
tion 2.19, This Hamiltonian will yield transition frequencies and associated anharmonicity
of the gatemon of

⟨H⟩k+1 − ⟨H⟩k ≈
√

2EC∆
∑
i

Ti −
(
1− 3

∑
i T

2
i

4
∑
Ti

)
EC(k + 1) (3.9)

where ⟨H⟩k = ⟨k|H|k⟩ is the energy of the k-th state of the gatemon. Thus, it can be
seen that a SNS junction with mostly high transmission channels would have α = −EC/4.
while one with mostly low transmission channels would have α = −EC .

3.4 n̂-Parity Protected Qubits
We are now ready to introduce the n̂-parity protected qubit, which is just a SQUID loop
of two identical SNS junctions, biased at half-flux-quantum and shunted by a capacitor,
as sketched in figure 3.4.
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Figure 3.4: Circuit diagram of a n̂-parity qubit, using identical SNS junctions

At first glance, it just looks like a symmetric flux-tunable transmon. However, the
crucial difference is in the SNS junctions used and their higher harmonics. The biasing at
half-flux quantum causes all the odd harmonics to destructively interfere in the SQUID,
leaving just the even harmonics according to

UJ(φ) + UJ(φ+ π) =


∑
k∈odd

[Ak cos(kφ) + Ak cos(kφ+ π)]

+
∑

k∈even
[Ak cos(kφ) + Ak cos(kφ+ 2π)]


=
∑

k∈even
2Ak cos(kφ)

(3.10)

where UJ is the energy of a single SNS junction, and Ak is its harmonic coefficients as
discussed in section 3.2. The Josephson energy of such a symmetric, half-integer-biased
SNS SQUID loop is plotted for a range of different conduction channels in figure 3.5.

From figure 3.5, it can be seen that regardless of whether the the conduction chan-
nels are few or numerous, with high or low transmission coefficients; the odd harmonics
will always destructively interfere as long as they are of similar in each of the two SNS
junctions. High transmission channels only serve to increase the absolute value of these
even harmonic coefficients, which might be useful in attaining the offset-charge-insensitive
regime of large A2/EC like the transmon; but it would not affect the n̂ protection.

To illustrate how these even harmonics result in n̂ protection, we can write down the
full Hamiltonian of the n̂-parity qubit circuit sketched in figure 3.4 as

Ĥ = 4EC(n̂− ng)
2 −

∑
k

2A2k cos(2kφ)

= 4EC(n̂− ng)
2 −

∑
k

A2k(|n+ 2k⟩ ⟨n|+ |n⟩ ⟨n+ 2k|)
(3.11)

where EC = e2/2C is the charging energy of the capacitor, ng the offset charge due to
the environment, A2k the even harmonic coefficients, and ⟨n|n̂|n⟩ = n.
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Figure 3.5: n̂-parity qubit Josephson energy in terms of (a) φ, and (b) harmonics of cos(kφ)

This explicitly shows that the SNS SQUID loop only couples states that differ by an
even number of Cooper pairs. As a result, the odd and even n components are internally
coupled, but not coupled with each other. Thus, the Hamiltonian will always support
two otherwise identical wavefunctions that live in each of the independent odd/even n

subspace, with zero ⟨0|n̂|1⟩ overlap between them.

To make this n̂-parity separation even more explicit, we can numerically solve for the
eigenfunctions of equation 3.11. This can be done via a similar method to figure 2.3: by
truncating the n-basis along with any accompanying |n+ 2k⟩ ⟨n| coupling terms, and then
numerical;y diagonalising the matrix. The resulting energy levels and associated wave-
functions – for a junction with a single transparent channel – are plotted in figure 3.6,
where the two degenerate wavefunctions with only even/odd n components can be seen.

Additionally, it is noted that in the offset-charge-sensitive regime plotted in figure 3.6a(ii),
the energy levels of the two branches are not degenerate. This would allow for easier
cQED measurements, eliminating the readout and driving problem experienced in the
first generation of the SNS n̂-parity qubit.
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Figure 3.6: (a) Charge dispersion, and wavefunctions at (b) ng = 0 (c) ng = 0.25 of a n̂-parity qubit made out of SNS junctions with a single
transparent channel for ∆/EC = (i) 1, (ii) 10, (iii) 100
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4 Nanofabrication

4.1 2DEG Heterostructure
As mentioned in the introduction, we set out to develop the n̂-parity qubit by first mi-
grating it to a more scalable 2DEG (2D electron gas) platform. The specific platform we
used was grown by the Manfra group at Purdue University, and it consists of an InAs
quantum well (yellow), cladded by InGaAs barriers (green), as shown in figure 4.1. This
cladded quantum well is grown on an InP wafer (lavender) via a well-optimised buffer het-
erostructure. Additionally, epitaxial aluminium (grey) was also grown as the last layer,
to allows us to use it to form the clean S-N interface required for our junctions.

Figure 4.1: Schematic of the 2DEG heterostructure used
(Credits to the Manfra group at Purdue University)

It is also noted that this platform is an enhanced, higher mobility version of the one
used in the first 2DEG gatemon reported in [23].
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4.2 Fabrication Process
The aforementioned 2DEG heterostructure then had to be integrated with several other
electrical elements to form the qubit; elements such as the junction, the capacitor, the
gate lines, and so on. In our case, we have continually been developing a fabrication
process that can be broken down into six major steps as enumerated below. Figure 4.2
also shows micrographs taken at the end of each of these major step, to provide some
visual context.

Figure 4.2: Overview of the fabrication process; optical micrographs taken after each major
step in the fabrication a gatemon

1) Mesa Etch: The first step after scribing out a chip from the wafer, is to etch most
of the 2DEG away. This is because although the 2DEG is crucial for realising our
SNS junctions, it is also extremely lossy at the microwave frequencies which the
qubit will be operating in. Thus, most of the 2DEG has to be removed to minimise
any dissipation of the qubit into the substrate. We leave only a few small mesas of
2DEG which will later be used to define the junction, as pictured in figure 4.2.1.

2) Large Structures: After etching most of the chip down to the InP substrate,
we can start populating it with the larger electrical elements such as the ground
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plane, capacitors, and control lines. These elements are all realised by selectively
depositing Al in specific geometries. We arbitrarily chose to do this via a lift-off
process, and although it is generally reliable, some of the more complex shapes like
the coplanar waveguide resonators might require some patience to coax off.

3) Junction Etch: Having defined most of the other elements, we turn to focus on
the Josephson junction. We define our junction by etching away a stripe of epitaxial
Al across the mesa as shown in figure 4.2.3. This creates the two superconducting
leads, which have an epitaxial interface with the 2DEG cladding and by extension
the 2DEG itself. This is what forms the SNS junction discussed in section 3.1.
However, it is noted that the junctions we use are relatively fine at ∼300 nm, and
this method does result in noticeable variance in junction length on that fine a scale.

4) Gate Dielectric: After the junction has been defined, we work towards covering it
with an electrostatic gate. This gate would allow some tuning of the Andreev bound
states, as briefly discussed in section 3.1. But before the gate can be deposited, a
dielectric has to be inserted to electrically isolate the gate from the superconducting
leads of the junction. In our case, we opted to use small HfO2 strips grown using
atomic layer deposition, since it was a widely used process in our lab.

5) Gates: The electrostatic gate itself follow next. We initially used a 300 nm thick
gate since we were trying to climb the similarly tall mesa with it. The initial
motivation for this was to continuously extend the gate a distance away from the
junction. This would then allow us to subsequently mill and make electrical contact
with the gate far away from the junction, where any resulting defects would have
minimal repercussions on the qubit. However, after little luck with that strategy,
we have since started to move towards 50 nm thin gates and doing the climbing
together with the milling in the next step instead.

6) Milling: The last step is to connect all the newly created components together.
This electrical connection is ensured by using Ar ion milling to remove any insulating
surface oxides, before new Al is deposited over the freshly milled surface to create
a galvanic connection. Additionally, this step also has the task of climbing either
the mesa or the gate and thus is very thick at 400 nm. Visual inspection of these
climbs doesn’t reveal any clear signs of discontinuity, as shown in figure 4.3.

The last version of the recipe used is provided in the appendix. It is the same recipe
used to produce the working gatemon discussed in chapter 5, and is product passes visual
inspection, as shown in figure 4.3. However, it has only been used once and even then
there were some minor yield issues with it. Thus, some refinement of the recipe might
still be required.
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Figure 4.3: SEM micrograph a (a) thick straight (b) thin straight, and (c) C-shaped
electrostatic gate climbing up the 2DEG mesas
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5 2DEG Gatemon

5.1 Device & Fridge Setup
We tried making a gatemon device to test our fabrication method; to ensure that it could
still produce a 2DEG gatemon similar to what was already accomplished in [23]. This
took a few tries as we tweaked the fabrication process for some sporadic issues, but we
eventually got a nicely fabricated chip as shown in figure 5.1.

Figure 5.1: (a) Optical micrograph of the chip, with the measured gatemon circled in red,
and (b) SEM micrograph of the junction of the same gatemon

This chip had multiple gatemons with a variety of gate designs. However, we ended
up focusing mostly on the one gatemon circled in red in figure 5.1a, which corresponded
to a simple, straight gate as shown in figure 5.1b. This chip was glued and bonded to
the printed circuit board shown in the middle of figure 5.2, which was in turn sandwiched
inside the copper sample box shown in the same figure, using Indium seals.

The sample box was then mounted in a cylindrical puck shown in figure 5.3a and 5.3b,
which was then finally loaded in the dilution refrigerator shown in figure 5.3c; within the
stainless steel cylinder in the middle of the picture. The loaded fridge was then left to
thermalise to a base temperature of ∼50mK over a few weeks as the sample was being
measured.
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Figure 5.2: Components comprising the sample box

Figure 5.3: (a) Sample box mounted in puck (without any wires), (b) top connectors of the
puck, and (c) dilution refrigerator in which he gatemon was loaded

5.2 Two-Tone Spectroscopy
After the gatemon was loaded, two-tone spectroscopy was done on it using the setup
sketched in figure 5.4. We used a RF source to supply the constant resonator drive
tone; freeing up the VNA to monitor this resonator tone while sweeping the qubit drive
frequency. When the VNA hits the right qubit drive frequency, the qubit will be excited
and thus exert a different push on the resonator frequency. The resonator drive tone will
then experience an sudden shift in transmittance due to the changing resonator frequency;
a shift which would then be quickly picked up by the VNA and correlated with the qubit
drive frequency that caused it, effectively identifying the qubit energy.

23



Figure 5.4: Two-tone spectroscopy setup around the fridge; where an RF source drives the
resonator, and the VNA monitors this resonator drive while varying the qubit drive frequency.

This two-tone spectroscopy was first applied to track the gatemon frequency as the
gate voltage was varied. The raw S21 transmittance measurements are plotted in fig-
ure 5.5a. The gatemon’s spectroscopic signal can be seen here, but the background trans-
mittance also varies quite a bit as the gate voltage is swept. Thus, we have also applied
some background subtraction and smoothing across the different sweeps and across the
gate voltages. This results in a much cleaner spectroscopic signal as plotted in figure 5.5b.
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From these data, we can observe that the spectroscopic signal does generally move to
lower frequencies as gate voltage decreases. This is as expected, since the 2DEG is moving
closer to pinch-off and closer to essentially closed conduction channels. However, we also
observe some non-monotonicity, with the qubit frequency tending to simply wobble back
and forth across smaller voltage ranges. This is similar to what was seen in the previous
2DEG gatemon, although it is not known if there is underlying mechanism or if the many
conduction channels are simply chaotically moving around [23].

Figure 5.5: Two tone spectroscopy signals in terms of (a) raw S21 measurements, and (b) a
background smoothened signal, as gate voltage is varied

We subsequently parked the gate voltage near the sweet spot at −223mV as identified
in figure 5.5, before turning to track the spectroscopic signals’ linewidth as qubit drive
power is increased, as plotted in figure 5.6.

Figure 5.6: Two tone spectroscopy signal in terms of raw S21 measurement as qubit drive
power is varied
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It can be seen that the spectroscopic signal continue to exhibit qubit-like behaviour
here. Firstly, as drive power increases to intermediate frequencies, additional spec-
troscopic signals start appearing. This is commonly seen with transmons, where they
correspond to excitations to higher levels, possibly through multi-photon processes (i.e.
E02/2, E12). It is also somewhat encouraging to see that the longest surviving state has
the highest energy, suggesting that the qubit has negative anharmonicity as would be
expected in the gatemon/tranmson regime.

As drive power increases even further, we observe that these spectroscopic signals ex-
hibit power broadening. This is typically associated with anharmonic energy levels, since
the power broadening results from a saturation of the excited state population in most
cases. Additionally, we note that additional modes can also start appearing at these high
drive powers such as at −10 dBm. However, these are likely just weakly-coupled stray
environmental modes, which do not entail much.

Lastly, to more precisely estimate the anharmonicity of the qubit, we can measure the
spectroscopic signal as the resonator readout power is lowered, as plotted in figure 5.7.

Figure 5.7: Two tone spectroscopy signals in terms of (a) raw S21 measurements, and (b) a
background smoothened signal, as resonator readout power is varied

From this measurement, it is clear that the gatemon experiences significant AC Stark
shift, as would be expected from the dispersive Jaynes-Cummings Hamiltonian. However,
we are interested in the spectroscopic signal frequencies as the Stark shift becomes neg-
ligible. At these low powers, we observe that the three spectroscopic lines are roughly
100MHz apart. If we then identify these to be E01, E02/2 = E01 + α/2, E12 = E01 + α,
then we get an anharmonicity α of −200MHz.
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Comparing this anharmonicity to the expected charging energy of ∼230MHz, we get
following equation 3.9

1− 3
∑

i T
2
i

4
∑
Ti

≈ − α

EC

≈ 0.9 (5.1)

which suggests that the SNS junction in this gatemon has mostly lower transmission
channels. However, we do not know what this entails for n̂-parity qubit. As mentioned
in section 3.4, these numerous lower transmission channels and their dominating 1st har-
monic components might still destructively interfere and disappear in the n̂-parity qubit.
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6 2DEG n̂-Parity Qubits

6.1 Current Progress
The move from the gatemon to the n̂-parity qubit is conceptually simple: (1) make two
identical junctions (2) from a loop with them (3) and add a flux-biasing line. This is
exactly what we did, as can be seen in figure 6.1.

Figure 6.1: SEM micrographs of past, failed attempts at the n̂-parity qubit

Unfortunately, none of the n̂-parity qubits fabricated do far have given any cQED
response; be it when flux-biasing, gate-biasing, or when pinching one of the junctions off
to form a gatemon. We have iterated multiple times with improved design and fabrication
process, but the devices have still not worked. This is what motivated us to take a step
back and attempt a simpler 2DEG gatemon. Now that the gatemon seems to work,
hopefully analysing it further will reveal what fixed it.
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7 Conclusion

7.1 Summary
In this thesis, we first laid out the theoretical foundations for understanding qubits made
from SNS junctions, and contrasted it with the conventional SIS ones. We then analysed
the transmon, gatemon, and n̂-parity qubit in a unified way using the integer n̂ basis;
allowing us to highlight how each qubit variant exactly differs from the other. With this
knowledge in hand, we then proceeded to discuss the experimental aspect of realising
these qubits. We described how a scalable 2DEG platform could be used to create SNS
qubits, and used the methods in several attempts to create gatemons and n̂-parity qubits.
The gatemon was successful, and we did manage to see qubit-like spectroscopic signals
whose behaviour gave some insights to our how our SNS junctions behave. The n̂-parity
qubits unfortunately have not seen much success yet. However, the recent success in the
gatemon suggests that our material and fabrication methods are sound, and it might be
useful to contrast the gatemon and n̂-parity qubit design to see if there are any aspects
that have been overlooked.

7.2 Outlook
The immediate problem that has to be overcome is clear: to continue figuring out how
to make aspirant n̂-parity qubits that at least gives some cQED response. Past that,
it would be interesting to explore the overlooked offset-charge-sensitive regime of the n̂-
parity qubit, since the n̂ protection would still be there, and the offset charge dispersion
would make the states non-degenerate for simple cQED even in the protected regime.
Additionally, it might also be worth questioning if the 3rd, 5th, and higher collective
harmonics of the Andreev bound states could become significant, since having a single
gate to balance the amplitudes of multiple higher harmonics could be a challenge.
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Appendix: Detailed Fabrication Steps

Step Description Parameters

1.00 Alignment Marks

1.01 Clean Ace 5min, IPA 30s

1.02 Bake 185°C, 2min

1.03 Spin A4, 4000rpm, 45s

1.04 Bake 185°C, 2min

1.05 Expose 680µC/cm2, 3nA, 125kV

DXF: 1 Alignment layer, Heal

PEC: 200nm PMMA on InP, 100% Contrast

1.06 Develop MIBK:IPA 60s, IPA 10s

1.07 Ash 1 min

1.08 Evaporate Ti, 10nm, 1Å/s, 0° tilt

1.09 Evaporate Au, 50nm, 2Å/s, 0° tilt

1.10 Lift‐off Ace, RTP, 1h

1.11 Clean IPA, 30s

2.00 Mesa Etch

2.01 Bake 185°C, 2min

2.02 Spin A4, 4000rpm, 45 s

2.03 Bake 185°C, 2min

2.04 Expose 500µC/cm2, 500pA, 100kV

DXF: 2 Mesa Fine Biased 10um ‐ 2 Mesa Fine, Inverted

PEC: 200nm PMMA on InP, 100% Contrast

2.05 Expose 500µC/cm2, 40nA, 100kV, 300nm beam w/ 30nm pixel size

DXF: 2 Mesa Fine Biased 10um + 2 Mesa Coarse, Inverted

PEC: 200nm PMMA on InP, 0% Contrast

2.06 Develop MIBK:IPA 30s, IPA 10s

2.07 Ash 1 min

2.08 Bake 115°C, 2min

2.09 Etch Al Transene D 50°C 14s, 

MQ 50°C 20s, MQ RTP 40 s

2.10 Etch III‐V III‐V etch 10min (MQ:C6H8O7:H3PO4:H2O2 = 220:55:3:3) 

MQ 30s, MQ 30s again

2.11 Strip Dio 10min, Ace 5min, IPA 30s

3.00 Control Layer

3.01 Bake 185°C, 2min

3.02 Spin AR 300 80 NEW, 4000 rpm, 45s

3.03 Bake 185°C, 2min

3.04 Strip Dio 2min, Ace 1min, IPA 30s

3.05 Bake 185°C, 2min

3.06 Spin EL9, 4000rpm, 45s

3.07 Bake 185°C, 2min

3.08 Spin CSAR13, 4000rpm, 45s

3.09 Bake 185°C, 2min

3.1 Expose 350µC/cm2, 100 nA, 125kV

DXF: 3 Control Coarse, Control Medium, Control Fine

PEC: 500nm CSAR on InP, 100% contrast

3.11 Develop O‐xy 30s, MIBK 1:3 30s, IPA 20s
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Appendix: Detailed Fabrication Steps

3.12 Ash 1 min

3.13 Evaporate Al, 100nm, 1Å/s, 0° tilt

3.14 Lift‐off Dio, RTP, Overnight

3.15 Ash 4 min

4.00 Junction Etch

4.01 Bake 185°C, 2min

4.02 Spin A4, 4000rpm, 45s

4.03 Bake 185°C, 2min

4.04 Expose 680µC/cm2, 500pA, 125kV

DXF: 4 Junction Etch

PEC: 200nm PMMA on InP, 100% Contrast

4.05 Develop MIBK:IPA 30s, IPA 10s

4.06 Ash 1 min

4.07 Bake 115°C, 2min

4.08 Etch Al Transene D 50°C 13s, 

MQ 50°C 20s, MQ RTP 40 s

4.09 Strip Dio 10min, Ace 5min, IPA 30s

4.10 SEM 5 kV

4.10 Strip Dio 5min, IPA 30s

5.00 Top Gate ALD

5.01 Bake 185°C, 2min

5.02 Spin A4, 4000rpm, 45s

5.03 Bake 185°C, 2min

5.04 Expose 680µC/cm2, 500pA,

DXF: 5 Topgate ALD

PEC: 200nm PMMA on InP, 100% Contrast

5.05 Develop MIBK:IPA 30s, IPA 10s

5.06 Ash 1 min

5.07 ALD HfO2, 150 cycles, 110°C, 10h pre‐bake (total 25h)

5.09 Lift‐off Ace, 50°C, 2 hrs

6.00 Top Gate

6.01 Bake 185°C, 2min

6.06 Spin A4, 4000rpm, 45s

6.07 Bake 185°C, 2min

6.08 Expose 680µC/cm2, 100pA,

DXF: 6 Topgate

PEC: 200nm PMMA on InP, 100% Contrast

6.09 Develop MIBK:IPA 60s, IPA 10s

6.10 Ash 1 min

6.11 Evaporate Ti, 5nm, 1Å/s, 0° tilt

6.12 Evaporate Al, 50nm, 1Å/s, 0° tilt

6.13 Lift‐off Ace, RTP, Overnight

6.14 Clean IPA, 30s

7.00 Contacts

7.01 Bake 185°C, 2min

7.02 Spin EL9, 4000rpm, 45s

7.03 Bake 185°C, 2min
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7.04 Spin EL9, 4000rpm, 45s

7.05 Bake 185°C, 2min

7.06 Spin A4, 4000rpm, 45s

7.07 Bake 185°C, 2min

7.08 Expose 680µC/cm2, 3nA, 500pA

DXF: 7 Contacts

PEC: 200nm PMMA on InP, 100% Contrast

7.09 Develop MIBK:IPA 60s, IPA 10s

7.10 Ash 1 min

7.11 Kaufman mill Ar, 15 sccm, 0.4mTorr, 0° tilt, Beam 300V

Emission 46mA, Acceleration 120V, Discharge 40V 

Discharge 5 min, Warmup 2 min, Mill 4.5 min, Rest 2 min

7.12 Evaporate Al, 350nm, 1Å/s, Rotation

50nm @ 20°, 300nm @ 0°, 50nm @ 20°

7.13 Lift‐off Ace, RTP, overnight

7.14 Strip Dio 10min, Ace 5min

7.14 Clean IPA, 30s

8.00 Bonding

8.01 Ash Chip 1min

8.02 Sonicate PCB 80kHZ, 100% power, 5min

8.03 Glue A8, 2µL, Transmon Board

8.04 Bake 115°C, 3min

8.05 Bond InPtoEpiAl program
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