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Abstract

Superconducting resonators used to build quantum devices can emulate harmonic oscillators. Their

energies match the energies in semi-conducting Double Quantum Dots (DQDs), that can emulate atoms.

Motivated by energy transport through systems of atoms and oscillators we studied theoretical systems

of double quantum dots and superconducting resonators. A setup with a chain of DQDs and resonators

was derived and transformed into a Transverse Field Ising model and further into a 1D spin-less p-wave

superconductor using a Jordan-Wigner transformation. With a Bogoliubov transformation a classical

solution to a single resonator field is found that minimizes the classical potential. Going to the imaginary

time path integral formalism it was possible to study many resonators and their collective excitations.

A classical solution to the resonator field was found for a single resonator and many DQD’s. In the

imaginary time path integral formalism, a saddle point equation is found for many resonators and DQD’s

and an approximate solution found in the fine tuned regime with weak coupling. It was shown that a

uniform solution solution could always minimize the action. Fluctuations around the uniform resonator

field are then studied and the spectrum and spectral function was found. From the spectrum the group

velocity could be estimated. In conclusion this study leads to an understanding of how coupling a chain

of DQDs to resonators will affect the resonator states. The finding of a dispersion relation gives an

understanding of the dynamics of the collective oscillator modes.
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Chapter 1

Introduction

1.1 Energy transport

The topic of energy transport is one especially interesting in the physics of biology. Davydov proposed a

quantum model to study the contraction of muscle fibres from the release of energy from ATP [1]. From

the model he found that a bosonic excitation accompanied by a local distortion could propagate down

one protein, the myosin filament, leading to a sliding movement along another protein, the actin filament,

which would lead to a contraction of the muscle fibre. The local excitations could propagate as soliton

waves without dispersion. The transport of energy is also relevant in a variety of other biological processes

including muscle contractions, DNA replication, neuro-electric pulse transfer and more [2]. Biology is

thus one subject where quantum transport models are of interest.

Where biology is made up of atoms and vibrations in the eV energy range, quantum devices use

quantum dots and superconducting resonators that can work in the µeV energy range [3]. The quantum

dots behave as artificial atoms and superconducting resonators as harmonic oscillators. The building

blocks of biology and quantum devices are thus similar but work at different energy scales, and we could

hope to find interesting dynamics in these quantum devices too. Theoretical work on energy transport

in quantum systems is an interesting subject that is important to study as it has applications outside

quantum devices too.

This thesis will study systems of Double Quantum Dots (DQDs) and superconducting resonators

coupled together. The DQDs will be electronic two-level systems and the position coordinate of the

superconducting resonators will couple to the DQDs. First we will study the DQD chain and the effect

on the resonator. After that we will study many resonators and how energy might disperse through

the system. We will apply tools from many-body quantum physics and field theory to understand the

collective excitations of the resonators and the states of the DQD system.
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1.2 Davydov’s soliton in a Transverse field Ising model

We now want to motivate the study of transverse field Ising chains coupled to coherent state resonators.

We start from the transverse field Ising chain:

H = −h
∑
i

σzi − J
∑
i

σxi σ
x
i+1, (1.1)

with J and h the longitudinal and transverse fields. In the case of h > J

1.2.1 J small

For J ≪ h we divide the system into a quadratic Hamiltonian and a perturbation:

H0 = −h
∑
i

σzi , (1.2)

with groundstate energy −hN = E0 and groundstate |gs⟩ =
∏
i |↑⟩i = · · · ⊗ |↑⟩i ⊗ |↑⟩i+1 ⊗ . . . . The

system is in the paramagnetic phase. We treat the longitudinal field as a pertubation:

V = −J
∑
i

σxi σ
x
i+1. (1.3)

An excitation to the non-perturbed ground state is a flipped spin where each flipped spin costs 2h energy.

The single flipped spin state will be denoted |i⟩ = · · · ⊗ |↑⟩i−1 |↓⟩i |↑⟩i+1 · · · = |. . . ↑↑↓i↑↑ . . .⟩. We want

to create a low-energy approximation where we concentrate on the subspace of a single spin flip. We

follow Löwdin theory [4] to generate an approximate Hamiltonian where the subspace of a single spin flip

is separated from the rest of the Hilbert space to first order in the perturbation. This will be equivalent

to the perturbation being allowed to move a single spin flip one position. Since J/h≪ 1 we assume that

the set of single spin flips, M = {|i⟩ , i ∈ Z} only interacts weakly with the rest of the Hilbert space of

zero, two or more spin flips as these state are separated by and energy gap of order h. In the following

m,m′ ∈ M and we find:

H0
m,m′ = (Eg + 2h)δm,m′ . (1.4)

We now look for the first order correction in J . The effect of the longitudinal term is to flip two spins

such that:

−J
∑
j

σxj σ
x
j+1 |i⟩ = −J (. . . |. . . ↓↓↓↑↑ . . .⟩+ |. . . ↑↓↑↑↑ . . .⟩+ |. . . ↑↑↑↓↑ . . .⟩+ |. . . ↑↑↓↓↓ . . .⟩+ . . . )

= −J (. . . |. . . ↓↓↓↑↑ . . .⟩+ |i− 1⟩+ |i+ 1⟩+ |. . . ↑↑↓↓↓ . . .⟩+ . . . ) , (1.5)

giving the first order correction:

H1
m,m′ = ⟨m|V |m′⟩

= −J
(
δm,m′−1 + δm,m′+1

)
. (1.6)
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To first order in J we thus have the following Hamiltonian for the system of a single spin:

H =
∑
i

|i⟩
(
Eg + 2h

)
⟨i| − J

∑
i

(
|i− 1⟩ ⟨i|+ |i+ 1⟩ ⟨i|

)
+O

(
(J/h)2

)
. (1.7)

We see that the low-energy model is a simple tight binding model for the single spin flip, that can jump

to the nearest neighboring sites. We also notice that the single spin flip states do not interact with the

zero or two flipped spin states as the longitudinal field only flips pairs of spins.

1.2.2 h small

We also look at the ferromagnetic regime where h≪ J , where we have the unperturbed Hamiltonian:

H0 = −J
∑
i

σxi σ
x
i+1. (1.8)

The longitudinal term will favor spins aligned along x and ground state is two times degenerate. We will

assume the system spontaneously chooses one groundstate denoted by |gs⟩ with energy −(N −1)J = Eg.

The lowest energy excitation is a domain wall denoted by the position as |i⟩ = |· · ·+++−−− . . .⟩

where the − starts at position i. The energy of a domain wall is 2J . |±⟩i is an eigenstate of σxi . The

transverse field can create or move domain walls similar to how the longitudinal field did to the spin flips

before. In the subspace of single domain walls we get:

H0
m,m′ = (Eg + 2J)δm,m′ . (1.9)

Similar to before the effect of the perturbation is:

V |+++−−−⟩ = −h
(
. . . |+−+−−−⟩+ |++−−−−⟩+ |++++−−⟩+ |+++−+−⟩ . . .

)
= −h

(
. . . |+−+−−−⟩+ |i− 1⟩+ |i+ 1⟩+ |+++−+−⟩ . . .

)
. (1.10)

The resulting Hamiltonian to first order in the interaction with E0 = Eg + 2J is then:

H =
∑
i

|i⟩E0 ⟨i| − h
∑
i

(
|i− 1⟩ ⟨i|+ |i+ 1⟩ ⟨i|

)
. (1.11)

Again, we get a tight binding model for the domain wall case to lowest order in h/J .

1.2.3 Coupling harmonic oscillators

We will now couple a harmonic oscillator position coordinate to the quasi-particle density with the

following interaction term:

Hint = g
∑
i

(
ai + a†i

)
|i⟩ ⟨i| . (1.12)

The Hilbert space is then made up of |i⟩ ⊗ |. . . ni, ni+1, . . .⟩ where ni is the oscillator quantum number

at site i. This gives a Hamiltonian on the form:

H =
∑
i

(
E0 + g

(
ai + a†i

))
|i⟩ ⟨i| − t

∑
i

(
|i− 1⟩ ⟨i|+ |i+ 1⟩ ⟨i|

)
+ ωR

∑
i

a†iai, (1.13)

where the hopping term, t, is the transverse field, h, if we work with domain walls, and the longitudinal

field, J , if we work with spin flips.
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1.2.4 Davydov ansatz and equations of motion

Following the approach of Davydov [5][6] we work with the ansatz state:

|Ψ(t)⟩ =
∑
n

cn(t) |n⟩ ⊗ |α⟩ = |ϕ⟩ |α⟩ , (1.14)

where the state |n⟩ is a spin flip or domain wall at site n and |α⟩ = e
∑

n(αnâ
†
n−α

∗
nân) |0⟩ is a bosonic

coherent state with |0⟩ the vacuum state. The coherent state is an eigenstate of the annihilation operator,

ân, with eigenvalue αn. Coherent states are described in appendix B. All time dependence of the ansatz

state is put in the complex factors such that the basis kets |n⟩, that form a complete set, are not time

dependent but they reference the system from some time t0. Using the Ehrenfest theorem we find the

equations of motion for the coherent state:

iℏ∂t ⟨an⟩ = ⟨[an, H]⟩

= ⟨(g |n⟩ ⟨n|+ ωRan)⟩

= g|cn|2 + ωRαn = iℏα̇n, (1.15)

where it was used that ⟨ân⟩ = αn due to the the coherent state. From this we find the equations of motion

for the resonators coordinates by adding or subtracting the complex conjugate. We define xn = αn + α∗
n

and pn = αn − α∗
n, giving that:

iℏẋn = ωRpn, (1.16)

iℏṗn = 2g|cn|2 + ωRxn. (1.17)

As these are now just complex numbers we differentiate once more to get:

− ℏ2

ωR
ẍn = 2g|cn|2 + ωRxn, (1.18)

giving us equations of motion for the coherent oscillators. We then differentiate the ansatz state:

iℏ∂t |Ψ(t)⟩ = iℏ
∑
n

ċn(t) |n⟩ |α⟩+ iℏ
∑
n

cn |n⟩ ∂t
(
e
∑

n(αnâ
†
n−α

∗
nân)

)
|0⟩

= H |Ψ(t)⟩ . (1.19)

Evaluating ∂t

(
e
∑

n(αnâ
†
n−α

∗
nân)

)
is done as follows [7]: We define A(t) =

∑
n

(
αn(t)â

†
n − α∗

n(t)ân
)
, an

operator that does not necessarily commute at different times. We also define B(t) = eA(t), and then

evaluate:

B(t+ δt)−B(t) = eA(t+δt)−A(t)+A(t) − eA(t). (1.20)

Using the Baker–Campbell–Hausdorff formula we split the first term:

eA(t+δt)−A(t)+A(t) = eA(t+δt)−A(t)eA(t)e−
1
2 [A(t+δt)−A(t),A(t)], (1.21)
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as the operators will commute to a number. We find:

[A(t+ δt)−A(t), A(t)] = [A(t+ δt, A(t)]

=
∑
n,m

[
αn(t+ δt)a†n − α∗

n(t+ δt)an, αm(t)â†m − α∗
m(t)âm

]
=
∑
n

(
αn(t+ δt)α∗

n(t)− α∗
n(t+ δt)αn(t)

)
= C ∈ C. (1.22)

We confirm that the commutator vanishes in the limit of δt→ 0. We are then left with:

B(t+ δt)−B(t) =
(
eA(t+δt)−A(t)e−

1
2C − 1

)
eA(t). (1.23)

We expand to lowest order in δt:

eA(t+δt)−A(t) = 1 +A(t+ δt)−A(t) +
1

2
(A(t+ δt)−A(t))

2
+ . . . , (1.24)

and use again to lowest order that A(t+ δt)−A(t) = Ȧ(t)δt giving:

= 1 + Ȧ(t)δt+O
(
δt2
)
. (1.25)

For the next term we expand:

e−
C
2 = 1− C

2
+ . . . , (1.26)

where we use that after a Taylor expansion:

C =
∑
n

(
αn(t+ δt)α∗

n(t)− α∗
n(t+ δt)αn(t)

)
=
∑
n

((
αn(t) + α̇n(t)δt

)
α∗
n(t)−

(
α∗
n(t) + α̇∗

n(t)δt
)
αn(t)

)
+O

(
δt2
)

=
∑
n

(
α̇n(t)α

∗
n(t)− α̇∗

n(t)αn(t)

)
δt+O

(
δt2
)
. (1.27)

Collecting everything to the lowest order in δt we get:

B(t+ δt)−B(t) =

(
Ȧ(t)− 1

2

∑
n

(
α̇n(t)α

∗
n(t)− α̇∗

n(t)αn(t)

))
δteA(t) +O(δt2). (1.28)

We then divide by δt and take the limit of δt→ 0, giving:

∂te
A(t) =

∑
n

(
α̇n(t)â

†
n(t)− α̇∗

n(t)ân − 1

2

[
α̇n(t)α

∗
n(t)− α̇∗

n(t)αn(t)

])
eA(t). (1.29)

This gives the Schrödinger equation on the ansatz state as:

iℏ
∑
n

ċn(t) |n⟩ |α⟩+ iℏ |ϕ⟩
∑
n

(
α̇n(t)â

†
n(t)− α̇∗

n(t)ân − 1

2

[
α̇n(t)α

∗
n(t)− α̇∗

n(t)αn(t)

])
|α⟩ = H |Ψ(t)⟩ .

(1.30)
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We would like to apply the bra ⟨α| ⟨n| to get an equation for the cn(t). On the left hand side we get:

iℏ ⟨α| ⟨n| ∂t |Ψ⟩ = iℏċn + iℏcn
1

2

∑
m

(
α̇m(t)α∗

m(t)− α̇∗
m(t)αm(t)

)
= iℏċn + cnγ(t), (1.31)

where we defined γ(t) = iℏ 1
2

∑
m

(
α̇m(t)α∗

m(t) − α̇∗
m(t)αm(t)

)
. Using that ⟨m|ϕ⟩ = cm, the right hand

side gives:

⟨α| ⟨n|H |Ψ⟩ = ⟨n|
∑
m

((
E0 + g (αm + α∗

m)
)
|m⟩ cm − t

(
|m⟩ cm−1 + |m⟩ cm+1

)
+ ωR|αm|2

∑
j

cj |j⟩
)

=
(
E0 + g (αn + α∗

n)
)
cn − t

(
cn−1 + cn+1

)
+ ωRcn

∑
n

|αn|2

=
(
E0 +W (t) + g (αn + α∗

n)
)
cn − t

(
cn−1 + cn+1

)
, (1.32)

where we defined W (t) = ωR
∑
n |αn|2. Collecting the left and right hand sides we get:

iℏċn + γ(t)cn =
(
E0 +W (t) + g (αn + α∗

n)
)
cn − t

(
cn−1 + cn+1

)
. (1.33)

We define:

cn(t) = eθ(t)ϕn(t), (1.34)

with the global phase θ(t) = 1
iℏ
∫ t
−∞ (E0 +W (t)− γ(t)− 2h) dt, which gives:

iℏϕ̇n = g (αn + α∗
n)ϕn − t

(
ϕn−1 − 2ϕn + ϕn+1

)
. (1.35)

Combined with (1.18) we get the equations of motion:

iℏϕ̇n = gxnϕn − t
(
ϕn−1 − 2ϕn + ϕn+1

)
, (1.36)

− ℏ2

ωR
ẍn = 2g|cn|2 + ωRxn. (1.37)

We now assume that the LHS in (1.18) is zero. This could be due to ẍ = ṗ representing the magnetic

flux change in a superconducting resonator being small compared to the electric potential. This gives the

solution:

xn = − 2g

ωR
|ϕn|2

⇒ iℏϕ̇n = −2g2

ωR
|ϕn|2ϕn − t∂2nϕn, (1.38)

where we used the discrete (δn = 1), ∂2nϕn = h
(
ϕn−1 − 2ϕn + ϕn+1

)
, only really valid in the continuum

limit. We have thus arrived at a non-linear Schrödinger equation for the spin flips or domain walls. We

now define ωRt
2g2 = σ0 and get:

i
ℏ
t
ϕ̇n + σ−1

0 |ϕn|2ϕn + (ϕn−1 − 2ϕn + ϕn+1) = 0. (1.39)
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According to [5] we find an approximate stationary solution when σ0 ≫ 1 and N ≫ 1 as:

|ϕn|2 =
1

8σ0
sech2

(
n− n0
4σ0

)
. (1.40)

The limit of σ0 ≫ 1 ⇒ t
ωR

≫ 2 g
2

ω2
R
. To get to the low energy model we already assumed that t was small

so we must also assume that the interaction term between the harmonic oscillator and spin flip or domain

wall is even smaller in terms of ωR.

1.2.5 Time evolution of the ansatz state

We define the time unit t = ℏ/thopping. Using dft
dt ≈ ft+dt−ft

dt gives:

ϕn,t+dt ≈ ϕn,t + i

(
σ−1
0 |ϕn|2ϕn + (ϕn−1 − 2ϕn + ϕn+1)

)
dt

t
, (1.41)

and defining ℏ = 1, we require thoppingδt ≪ 1. Setting thopping = 1 we require δt ≪ 1. The only

parameter left is σ0 = ωR

2g2 which is large for weak couplings and small for strong couplings. We simulate

the system, where an initial excitation is placed at the first site, meaning ϕn(t = 0) = δn. The boundary

conditions are taken such that:

ϕ0,t+δt = ϕ0,t + i

(
σ−1
0 |ϕ0|2ϕ0 + (ϕ1 − 2ϕ0)

)
δt

thopping
. (1.42)

Figure 1.1: Simulation of finite system of 30 spins in weak and strong coupling regime. Color indicates

the probability of the excitation to be at site n as |ϕn|2.

For strong coupling, σ−1
0 > 1, the excitation is stationary and localized around the initial n0 = 1. For

weak coupling, σ−1
0 < 1, the initial excitation travels along the chain with minimal dispersion. For

couplings in between, the excitation is less strongly located at n0 = 1.

Even this very simple system consisting only of a low-energy tight binding chain coupled to harmonic

oscillators was shown with simple methods to exhibit interesting collective phenomena. We will go on to

study resonators coupled to double quantum dot chains that can be transformed into spin chains.
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Chapter 2

Quantum Ising model from quantum

dots

2.1 Double quantum dot chain

We imagine having a chain of DQDs with a single electron on each DQD that can tunnel between the left

and right site on the DQD, but not between DQDs. The DQDs interact capacitively with each other.

Figure 2.1: Chain of DQDs

Each DQD is represented as a lattice site, with the total number of sites in the lattice being N . The

lattice spacing is a, which is the distance between the DQDs. The length of the DQD chain is then

L = Na. We take a = 1 throughout this thesis. The DQD sites are represented by L and R for left and

right. The detuning between the left and right site in each DQD can be adjusted with an electrostatic

8



potential from a local gate. The Hamiltonian for this chain with periodic boundary conditions (PBC) is:

H0 =

L∑
r=1

(
∆r

2

[
d†r,Ldr,L − d†r,Rdr,R

]
− tr

[
d†r,Ldr,R + d†r,Rdr,L

]
+ 4Ur,r+1d

†
r,Rdr,Rd

†
r+1,Ldr+1,L

)
. (2.1)

The first term in the Hamiltonian represents a detuning in the DQD at site r. The second term represents

the hopping matrix element in a DQD at site r and the last term represents the Coulomb interaction

between DQD at site r and r+1. Due to the PBC we require d1+L,α = d1,α. We want to connect the DQDs

to a resonator mode that is modeled as a harmonic oscillator. The resonator interacts capacitatively with

the DQDs. We imagine either coupling the resonator to one of the sites on the DQD or to the hopping

matrix element as shown in figure (2.2). Resonators and their coupling to quantum dots are described in

appendix C.

Figure 2.2: Resonator-DQD couplings. On the left is a resonator coupled to the left site of a DQD

represented with a term in the Hamiltonian Hdensity
int = g

(
a† + a

)
d†LdL. The right is a coupling to the

tunneling matrix element. This is represented by the term Hhopping
int = g

(
a† + a

) (
d†LdR + d†RdL

)
.

We then imagine coupling a resonator to each tunneling matrix element in the DQD chain. This will add

a resonator Hamiltonian:

Hr =

L∑
r=1

ωra
†
rar, (2.2)

and we will have an interaction term between the resonator modes and the DQD tunneling matrix

elements:

Hhopping
int =

L∑
r=1

gr
(
ar + a†r

) (
d†r,Ldr,R + d†r,Rdr,L

)
. (2.3)

This coupling was chosen as it will later allow us to get to a quadratic model. The full Hamiltonian is

then:

H = H0 +Hr +Hint. (2.4)

The chemical potential is adjusted such that there is only one electron in each DQD. The Hilbert space of

each DQD is now two-dimensional and we can write it in a basis of one electron on the left or right site:
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{|L⟩r , |R⟩r}, with d
†
r,L/R |0⟩ = |L/R⟩r. Since the Hilbert space is now two-dimensional we can represent

operators on the space with Pauli matrices. We define the vectors of the two-dimensional Hilbert space

as eigenstates of the σz-operator such that σzr |L⟩r = |L⟩r and σzr |R⟩r = − |R⟩r. This gives the Pauli

matrices at each site of the DQD chain as:

σzr = d†r,Ldr,L − d†r,Rdr,R,

σxr = d†r,Ldr,R + d†r,Rdr,L,

σyr = −id†r,Ldr,R + id†r,Rdr,L.

Since the DQDs are distinguishable the operators commute at different sites:[
σαr , σ

α′

r′

]
= 0 r ̸= r′. (2.5)

On the same site we can make use of the Pauli matrix relations:

[
σαr , σ

β
r

]
= 2iϵαβγσ

γ
r , (2.6)

where ϵαβγ is the Levi-Civita epsilon. To mimic particle creation and annihilation operators we define

raising and lowering operators and require σ+
r |R⟩r = |L⟩r and σ−

r |L⟩r = |R⟩r:

σ+
r = d†r,Ldr,R, σ−

r = d†r,Rdr,L, (2.7)

and it is seen that:

σ±
r =

σxr ± iσyr
2

. (2.8)

These operators anticommute on the same site, but they commute on different sites:

{σ+
r , σ

−
r′} = 1 , r = r′ (2.9)

[σ+
r , σ

−
r′ ] = 0 , r ̸= r′ (2.10)

That they commute on different sites is seen, as the single fermion operators anticommute on different

sites. To derive the anticommutation on the same site we use that the Hilbert space is two-dimensional

and the following two identities:

[AB,C] = ABC − CAB + (ACB −ACB)

= A{B,C} − {A,C}B, (2.11)

{A,BC} = {BC,A} = ABC +BCA+ (BAC −BAC)

= [A,B]C +B{A,C}. (2.12)
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On the same site where r = r′ the raising and lowering operator will anticommute to one:

{σ+, σ−} = {d†LdR, d
†
RdL}

=
[
d†LdR, d

†
R

]
dL + d†R

{
d†LdR, dL

}
= d†L

{
dR, d

†
R

}
dL −

{
d†L, d

†
R

}
dRdL + d†R

[
dL, d

†
L

]
dR + d†Rd

†
L {dL, dR}

= d†LdL + (1− 2d†LdL)d
†
RdR

= 1. (2.13)

To get to the last line we used that the Hilbert space of each DQD with one electron is spanned by

{|L⟩ , |R⟩}, such that the state of each DQD can be written generally as |Ψ⟩ = α |L⟩ + β |R⟩. It is then

found that: (
d†LdL + d†RdR

)
|Ψ⟩ = |Ψ⟩ ⇒ d†LdL + d†RdR = 1, (2.14)

and

d†LdLd
†
RdR |Ψ⟩ = 0. (2.15)

This shows that the spin raising and lowering operators do not behave as either fermions or bosons.

Before we can rewrite the Hamiltonian fully in terms of spins we use that:

d†r,Ldr,L =
d†r,Ldr,L + d†r,Rdr,R

2
+
d†r,Ldr,L − d†r,Rdr,R

2

=
1 + σzr

2
, (2.16)

where again it was use that d†LdL + d†RdR = 1. Similarly we have
1−σz

r

2 = d†RdR. The detuning and

hopping term is straight forward and for the interaction term we get from (2.16):

d†r,Rdr,Rd
†
r+1,Ldr+1,L =

(
1 + σzr

2

)(
1− σzr+1

2

)
=

1

4

(
1 +

[
σzr+1 − σzr

]
− σzrσ

z
r+1

)
. (2.17)

We can now write our DQD chain Hamiltonian (2.1) in terms of spin operators operating on the two-

dimensional Hilbert space of each DQD:

H0 =

L∑
r=1

{
∆r

2
σzr − trσ

x
r + Ur+1,r

([
σzr+1 − σzr

]
− σzrσ

z
r+1

)}

=

L∑
r=1

{(
∆r

2
+ Ur,r−1 − Ur+1,r

)
σzr − trσ

x
r + Ur+1,rσ

z
rσ

z
r+1

}
, (2.18)

where the constant energy term
∑L
r=1 Ur+1,r is neglected since it only contributes with and overall phase.

The interaction term (2.3) is now:

Hhopping
int =

L∑
r=1

ghr
(
ar + a†r

)
σxr . (2.19)
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The resonator Hamiltonian is unchanged. If we had chosen to couple to the DQD densities we would get

an interaction term on the form:

Hdensity
int =

L∑
r=1

gdr
(
ar + a†r

)
σzr . (2.20)

To get a transverse field Ising (TFI) model where the transverse field is in σz, we rotate our Hamiltonian

by applying a unitary rotation in the Pauli matrices. A general rotation of the Pauli matrices is written

as Rαr (θ) = ei
θ
2σ

α
r , which rotates the spin at site r by and angle θ around the α axis. We use that

Rαr = cos θ21+ isin θ2σ
α
r when calculating the effect of the rotation.

Figure 2.3: Rotating −π
2 around σy

Ryr (
−π
2 ) = e−i

π
2 σ

y
r is a rotation around the Pauli y-axis resulting in:

σxr → σzr , σzr → −σxr . (2.21)

This can be shown by applying the unitary operator U =
∏L
j=1R

y
r (−π

2 ) = e−i
π
4

∑
j σ

y
j =

∏L
j=1

1−iσy
j√

2

to the Hamiltonian H ′ = U†HU . The unitary operator does not depend on time so the Scrödinger

equation is left unchanged as the partial derivative with respect to time will be zero. Only the state will

be transformed as ψ → ψ′ = U†ψ. We end up with a rotated Hamiltonian on the form:

H ′
0 =

L∑
r=1

{
−
(
∆r

2
+ Ur,r−1 − Ur+1,r

)
σxr − trσ

z
r + Ur+1,rσ

x
rσ

x
r+1

}
, (2.22)

H ′hopping
int =

L∑
r=1

ghr (ar + a†r)σ
z
r , (2.23)

H ′density
int = −

L∑
r=1

gdr (ar + a†r)σ
x
r . (2.24)

Longitudinal terms with a single σx will break the Z2 symmetry of the system. The Z2 symmetry is the

symmetry under flipping spins. The parity operator is defined as:

P =

L∏
j=1

(−i)Rzr(π) =
L∏
j=1

σzr . (2.25)
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The parity operator flips the x and y-spins since σzσx,yσz = −σx,y and leaves the z-spins unchanged.

The parity operator is its own inverse P−1 = P since (σzr )
2
= 1. Without the longitudinal field we would

have [H ′
0,P] =

[
Hhopping
int ,P

]
= 0. From quantum mechanics we know that H ′ and P then possess a

common eigenbasis. The parity operator measures whether the number of spins flipped is even or uneven.

A state with even(uneven) parity will have eigenvalue 1(-1). This means that the system will be block

diagonal in parity and have eigenstates that live in either the even or odd parity subspace. We see that

by considering an eigenvector of P |λ⟩ = λ |λ⟩. We have from [H,P] |λ⟩ = 0 ⇒ λH |λ⟩ = PH |λ⟩, that

H |λ⟩ is also an eigenvalue of P with eigenvalue λ. If a vector |λ⟩ and H |λ⟩ both have eigenvalue λ we

then conclude that H must be block diagonal in parity. To get to the usual 1D spin model notation we

define the fields:

hxr =

(
∆r

2
+ Ur,r−1 − Ur+1,r

)
, hzr = tr, Jxr = Ur+1,r, (2.26)

such that our DQD chain Hamiltonian becomes:

H ′
0 = −

L∑
r=1

(
Jxr σ

x
rσ

x
r+1 + hxrσ

x
r + hzrσ

z
r

)
. (2.27)

The DQD Hamiltonian is now a transverse and longitudinal field Ising model. This model is in general

not integrable except for the specific case when the system has no disorder, hz = Jz and hx → 0 [8].

The resonator Hamiltonian is unchanged since the transformation does not effect the resonator operators.

In the case of no longitudinal field, hxr = 0, we get the TFI model, which is an integrable model (not

considering the resonator interaction so far). For hzr = 0 we get a classical 1D Ising model. We solve

the TFI model by applying a Jordan-Wigner transformation, mapping the spins to non-local spinless

fermions[9].

2.2 From transverse field Ising to spinless fermions

2.2.1 Jordan-Wigner transformation

The Jordan-Wigner transformation maps the local spins to non-local fermions. We define the fermion

number operator:

c†rcr =
1− σzr

2
, (2.28)

that is either zero or one. We then define the string operator:

Lr =
r−1∏
j=1

σzj

=

r−1∏
j=1

(
1− 2c†jcj

)
= (−1)

∑r−1
i=1 c

†
jcj , (2.29)
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where it was used that 1 − 2c†c = (−1)c
†c, with −1 if the site is occupied and 1 if not. It is worth

mentioning that L2
r = 1, L†

r = Lr and also that [Lr, σ±
r ] = 0, since the spin-operators commute on

different sites. With this we define the creation operator:

c†r = σ−
r Lr, (2.30)

and the annihilation operator follows from complex conjugation. The spin operators are given as σ−
r =

Lrc†r. This gives the correct fermion statistics as the fermion operators anticommute on different sites:

{
c†r, cs

}
= 0. (2.31)

The number operator is c†rcr =
1−σz

r

2 . Using (2.8) we calculate σxr :

σxr = σ+
r + σ−

r

= Lr(c†r + cr). (2.32)

We now want to find the interaction term, σxrσ
x
r+1, in terms of the fermion operators. We get from (2.32):

σxrσ
x
r+1 = Lr(c†r + cr)Lr+1(c

†
r+1 + cr+1). (2.33)

We have L2
r = 1 and [Lr, cr] = [Lr, c†r] = 0 such that:

σxrσ
x
r+1 = (c†r + cr)LrLr+1(c

†
r+1 + cr+1). (2.34)

Using that [σzr , σ
z
s ] = 0 for r ̸= s and

(
σzj
)2

= 1 such that LrLr+1 = σzr = 1− 2c†rcr we get:

σxrσ
x
r+1 =

(
c†r + cr

) (
1− 2c†rcr

) (
c†r+1 + cr+1

)
=
(
c†r − cr

) (
cr+1 + c†r+1

)
. (2.35)

In the fermion operators we get anomalous terms that do not conserve particle number but conserve

parity. The Jordan-Wigner transformation can be summarized:
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For the Jordan-Wigner transformation we defined the string operator:

Lr =
r−1∏
j=1

σzr . (2.36)

With the string operator we could define the fermion raising and lowering operators:

c†r = σ−
r Lr cr = σ+

r Lr. (2.37)

Which enabled us to transform the spin operators:

σxr = Lr
(
c†r + cr

)
,

σzr = 1− 2c†rcr. (2.38)

With these we could get the spin-spin interaction term in the Hamiltonian on a quadratic form:

σxrσ
x
r+1 =

(
c†r − cr

) (
cr+1 + c†r+1

)
. (2.39)

2.2.2 Mapping spins to fermions

To get the TFI model from (2.27), we require that hxr = 0. We also need to have the resonator coupled

to the tunneling matrix element as described by (2.23). One way to get hxr = 0 is to require the Coulomb

interaction to be uniform, such that Ur+1,r = U ⇒ hxr = ∆r

2 . Then we would also have to require the

detuning to be zero. In the more realistic case the system is not uniform. We could then adjust the

detuning locally at each site, such that it is equal to the capacitance between the neighboring DQDs.

That would give ∆r

2 = Ur+1,r − Ur,r−1 resulting in hxr = 0. There could therefore be a physical way of

achieving a TFI model in a lab with a chain of DQDs.

Figure 2.4: Chain of DQDs with a single resonator coupling uniformly to all DQD hopping elements
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We will work with a uniform DQD chain with a single resonator coupling uniformly to all the DQD

hopping terms. The system is shown in figure 2.4. We take Jxr → J , hzr → h and ghr → g and the

detuning is adjusted such that hxr = 0 to get a uniform TFI model. The physical chain will have PBC

such that σαL+1 = σα1 . This results in a Hamiltonian in terms of spin operators:

HTFI
0 = −J

L∑
r=1

σxrσ
x
r+1 − h

L∑
r=1

σzr ,

Hhop
int = g

(
a+ a†

) L∑
r=1

σzr (2.40)

Hr = ωRa
†a.

Remembering that the spin system is rotated, a spin in σz corresponds to −σx in the physical system

according to (2.21). Inserting (2.38) and (2.39) into this Hamiltonian gives a Hamiltonian that is quadratic

in terms of the fermion operators:

H̃ = ωRa
†
rar −

L∑
r=1

(h− g[ a† + a ])
(
1− 2c†rcr

)
− J

L−1∑
r=1

(
c†r − cr

) (
cr+1 + c†r+1

)
− JσxLσ

x
1 . (2.41)

The last term comes from the PBC for the spins. The other terms give the Hamiltonian for open boundary

conditions:

H̃ = HOBC − JσxLσ
x
1 . (2.42)

To work out the last term in terms of Jordan-Wigner fermions, we consider the boundery conditions. We

have σxLσ
x
L+1 = σxLσ

x
1 , due to the PBC. From the Jordan-Wigner transformation we find:

LL =

L−1∏
j=1

(1− 2c†jcj)

=

 L∏
j=1

(1− 2c†jcj)

 (1− 2c†LcL)

= LL+1(1− 2c†LcL). (2.43)

The string operator LL+1 measures the parity of the number of fermions in the system, as LL+1 =

(−1)
∑L

j=1 c
†
jcj = (−1)N̂ , which is equal to P. This is the same operator as the spin parity and we have

shown that the eigenstates of the Hamiltonian will also be eigenstates of the parity operator. P will have

eigenvalues ±1 depending on the subspace we are in. The boundary terms give:

σxLσ
x
1 = LL(c†L + cL)L1(c

†
1 + c1)

= P(1− 2c†LcL)(c
†
L + cL)(c

†
1 + c1)

= −P
(
c†L − cL

)(
c1 + c†1

)
. (2.44)

The Hamiltonian then becomes:

H̃ = HOBC + P J
(
c†L − cL

)(
c1 + c†1

)
. (2.45)
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The P can be removed by considering the boundary conditions of the fermions:

σ+
L+1 = LL+1cL+1 = PcL+1

= σ+
1 = c1

⇒ cL+1 = Pc1, (2.46)

which when inserted into the Hamiltonian gives:

H̃ = HOBC + JP
(
c†L − cL

)
P
(
cL+1 + c†L+1

)
. (2.47)

Evaluating P
(
c†L − cL

)
P is quick if we just consider that c†L − cL = −iLL

(
iσ−
L − iσ+

L

)
= −iLLσyL. P

commutes with LL which gives:

P
(
c†L − cL

)
P = −iLL

L∏
j=1

σzjσ
y
L

L∏
k=1

σzk

= +iLLσyL

= −
(
c†L − cL

)
, (2.48)

where it was used that the spin-operators commute on different sites and they anticommute on the same

site. We then have the Hamiltonian:

H̃ = HOBC − J
(
c†L − cL

)(
c†L+1 + cL+1

)
= ωRa

†a−
L∑
r=1

(h− g[ a† + a ])
(
1− 2c†rcr

)
− J

L∑
r=1

(
c†r − cr

) (
cr+1 + c†r+1

)
, (2.49)

where the fermion boundary conditions depend on the parity operator P through (2.46). We have shown

that the Hamiltonian without a longitudinal field is symmetric under the total fermion parity P and we

can project it onto an even or odd subspace using the projectors:

Peven/odd =
1± P
2

. (2.50)

Since P2 = 1 we have P 2
even/odd = Peven/odd which shows that Peven/odd is indeed a projector. We can

now project the Hamiltonian living in a 2L dimensional Hilbert space onto an even or odd parity subspace

of dimension 2L−1:

Heven/odd = Peven/oddH̃Peven/odd

=
1± P
2

H̃
1± P
2

=
H̃ + PH̃P − PH̃ − H̃P

4

= H̃Peven/odd, (2.51)

where in the last equation it was used that PH̃P = H̃ since they commute. The can thus be written in

block diagonal form:

H̃ =

Heven 0

0 Hodd

 . (2.52)
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The even and odd subspace Hamiltonian is just (2.49) but where the Hilbert space it operates on is

made up of only even or odd parity states in the Fock space. It is now possible to work out the fermion

boundary conditions. Understanding that the Hamiltonian will operate on either an odd or even parity

subspace we define a test vector, |f⟩, that belongs to one of those subspaces such that P |f⟩ = p |f⟩, with

p = ±1. We commute P through c:

Pcr = (1− 2c†1c1) · · · (1− 2c†LcL)cr

= (1− 2c†1c1) · · · (1− 2c†rcr)cr · · · (1− 2c†LcL)

= (1− 2c†1c1) · · · cr · · · (1− 2c†LcL)

= cr

L∏
j ̸=r

(1− 2c†jcj). (2.53)

The boundary condition from (2.46) is generalized to:

σ+
r+L = σr

⇒ Lr+Lcr+L = Lrcr

⇒ cr+L = Pcr, (2.54)

where it was used that Lr+L =
∏r+L−1
j=1 σzj =

∏L
j=1 σ

z
j

∏r−1+L
k=L+1 σ

z
k, then since σzx+L = σx we get Lr+L =

PLr. Applying |f⟩ on the boundary condition equation gives:

Pcr |f⟩ = cr

L∏
j ̸=r

(1− 2c†jcj) |f⟩ . (2.55)

The site r is either occupied or not. If c†rcr |f⟩ = 0 we have:

Pcr |f⟩ = 0, (2.56)

and the boundary condition is not important. If the site is occupied, then
∏L
j ̸=r(1− 2c†jcj) will measure

the opposite parity of P since one less fermion is present, giving:

Pcr |f⟩ = cr(−1)N̂−1 |f⟩

= −crp |f⟩

⇒ Pcr = −pcr, (2.57)

where it was used that |f⟩ is an eigenvector of P with eigenvalue p = ±1 since it lived in the even or odd

subspace. Therefore we get the boundary conditions:

cr+L = −pcr. (2.58)

If the fermion parity is even with p = 1, then the fermions in that subspace will be required to have

antiperiodic boundary conditions (APBC). If on the other hand we are in the odd parity subspace the

fermions are required to have PBC. This will affect the Fourier transform.
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2.2.3 Fourier transform

With the system being translationally invariant we look to perform a Fourier transformation. We will

assume that we have an even number of DQDs. We define the Fourier transformation:

ck =
1√
N

L∑
r=1

e−ikrcr

⇒ cr =
1√
N

∑
k

eikrck. (2.59)

The wavenumbers, k, of the Fourier transformation depend on the boundary conditions through the

fermion parity of the system as given by (2.44). If the fermion parity is odd with p = −1, we have PBC

cL+r = cr. This gives from (2.59) that eikL = 1 ⇒ kL = 2πn with n an integer. When the number of

sites, N is even, it is convenient to choose k for PBC such that:

p = -1 ⇒ Kodd =
{
k =

2πn

L
, n = 1− N

2
, . . . , 0 . . . ,

N

2

}
. (2.60)

Except for the k = 0, π, all wavenumbers have a negative partner −k. If the fermion parity is even with

p = 1, we have APBC cL+1 = −c1. Following the same approach gives eikL = −1 ⇒ kL = (2n − 1)π

with n an integer. It is convenient to choose k for APBC such that it is symmetric around 0:

p=1 ⇒ Keven =

{
k = ± (2n− 1)π

L
, n = 1, . . . ,

N

2

}
. (2.61)

This is equivalent to choosing n = 1− N
2 , . . . , 0 . . . ,

N
2 but makes summations easier when working with

terms of both k and −k. For even parity all wavenumbers have negative partners. It was assumed that

N is even.

If an uneven number of sites was chosen, then Kodd =
{
k = 2π

L n , n = −N−1
2 . . . , 0, N−1

2

}
, so only

k = 0 is unpaired. For the even case a k has an unpaired partner too. If we choose

n = −N−1
2 . . . , 0, . . . N−1

2 we get Keven =
{
k = 2n−1

L π , n = −N−1
2 . . . , 0, N−1

2

}
which leaves the k = −π

unpaired with a negative partner.

For both APBC and PBC we have the relation 1
N

∑L
r=1 e

i(k−k′)r = δk,k′ . By Fourier transforming

the Hamiltonian (2.49) we arrive at:

H̃ = ωRa
†a+Ng

(
a† + a

)
+
∑
k

{(
2h− 2g

[
a† + a

])
c†kck

− 2Jcos(k)c†kck − iJsin(k)
(
c†kc

†
−k + ckc−k

)}
. (2.62)

To get the isin(k) term we insert (2.59) into (2.49) to get:

L∑
r=1

(
c†rc

†
r+1 + cr+1cr

)
=

1

N

∑
k,k′

L∑
r=1

(
e−ikre−ik

′(r+1)c†kc
†
k′ + eik(r+1)eik

′rckck′
)

=
∑
k,k′

(
δk,−k′e

−ik′c†kc
†
k′ + δk,−k′e

ikckck′
)

=
∑
k

(
eikc†kc

†
−k + eikckc−k

)
.
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The delta function will pick k = 0 and k = π as their own negative partners. This is seen as
∑
r e

−i(0+k′)r

is zero unless k′ is also 0 and similar for
∑
r e

−i(π+k′)r with k′ = π. The wavenumber −π is not an element

in the k-space. Since two fermions are annihilated or created with the same momentum, the k = 0, π

terms will be zero in the sum over anomalous terms. Making use of the operators anticommuting, we can

subtract 0 = 1
2{ck, ck′} = 1

2

{
c†k, c

†
k′

}
, thus getting:

=
∑
k

{
1

2

(
eikc†kc

†
−k − eikc†−kc

†
k

)
+

1

2

(
eikckc−k − eikc−kck

)}
,

and upon changing dummy index on half the terms so k → −k we get:

=
∑
k

{
1

2

(
e−ik − eik

)
c†−kc

†
k +

1

2

(
e−ik − eik

)
c−kck

}

= −i
∑
k

sin(k)
(
c†−kc

†
k + c−kck

)
. (2.63)

Splitting the sum into one for positive and one for negative ks give:

iJ
∑
k

sin(k)c−kck = iJ

(∑
k>0

sin(k)c−kck +
∑
k<0

sin(k)c−kck

)
. (2.64)

Changing the dummy index from k → −k and using the anticommutation relations gives:

= iJ

(∑
k>0

sin(k)c−kck +
∑
k>0

sin(−k)ckc−k

)

= 2iJ
∑
k>0

sin(k)c−kck. (2.65)

We can then write a Hamiltonian for k > 0:

Hk =
[
2h− 2g

[
a† + a

]
− 2Jcos(k)

] (
c†kck + c†−kc−k

)
− 2iJsin(k)

(
ckc−k + c†kc

†
−k

)
. (2.66)

Using the sets defined in (2.60) and (2.61) we define the positive k-values as:

K+
even =

{
k =

2n− 1

L
π, n = 1, . . . ,

N

2

}
K+
odd =

{
k =

2n

L
π, n = 1, . . . ,

N

2
− 1

}
, (2.67)

such that the Hamiltonian (2.62) can be rewritten for even parity as:

H̃even = ωRa
†a+Ng[a+ a†] +

K+
even∑
k

Hk, (2.68)

and for odd parity we include the k = 0, π terms:

H̃odd = ωRa
†a+Ng[a+ a†] +

K+
odd∑
k

Hk +
(
2h− 2g[a† + a]− 2J

)
c†0c0

+
(
2h− 2g[a† + a] + 2J

)
c†πcπ, (2.69)
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where the difference in the sign of 2J due to k being 0 or π in cos k and sin k = 0. To ease notation we

define:

H0,π =
(
2h− 2g[a† + a]− 2J

)
c†0c0 +

(
2h− 2g[a† + a] + 2J

)
c†πcπ. (2.70)

Preparing for a Bogoliubov transformation we rearrange the fermion operators such that Hk can be

written as two by two matrix. We then also define the vector c⃗†k = (c†k, c−k). Rearranging gives:

K+
e/o∑
k

Hk =

K+
e/o∑
k

{[
2h− 2g

[
a† + a

]
− 2J cos(k)

] (
c†kck + c†−kc−k

)
− 2iJ sin(k)

(
c†kc

†
−k − c−kck

)}

=

K+
e/o∑
k

{[
2h− 2g

[
a† + a

]
− 2J cos(k)

] (
c†kck − c−kc

†
−k + 1

)
− 2iJ sin(k)

(
c†kc

†
−k − c−kck

)}
.

(2.71)

Evaluating the term with no fermion operators gives:

K+
e/o∑
k

{
2h− 2g

[
a† + a

]
− 2J cos(k)

}
= 2

K+
e/o∑
k

h− 2

K+
e/o∑
k

g
(
a+ a†

)
− 2J

K+
e/o∑
k

cos(k)

= 2

K+
e/o∑
k

h− 2

K+
e/o∑
k

g
(
a+ a†

)
, (2.72)

where it was used that
∑K+

e/o

k cos(k) → L
2π

∫ π
0
cos(k)dk = 0 or it can be seen since cosine is odd around

π
2 . The sum 2

∑K+
e/o

k h is equal to Nh for the even parity Hamiltonian and h (N − 2) for the odd. We

can subtract Nh from the full Hamiltonian, since that only amounts to a global phase, and then have an

extra −2h on H̃odd. The rearrange Hk is now:

H ′
k =

{[
2h− 2g

[
a† + a

]
− 2Jcos(k)

] (
c†kck − c−kc

†
−k

)
− 2iJsin(k)

(
c†kc

†
−k − c−kck

)}
. (2.73)

The even Hamiltonian (2.68) is then:

H̃even = ωRa
†a+Ng[a+ a†] +

K+
even∑
k

(
H ′
k − 2g

[
a+ a†

])
= ωRa

†a+

K+
even∑
k

H ′
k. (2.74)

For the odd Hamiltonian we get:

H̃odd = ωRa
†a+Ng[a+ a†] +

K+
odd∑
k

(
H ′
k − 2g

[
a+ a†

])
+H0,π − 2h

= ωRa
†a+Ng[a+ a†]− 2

(
N

2
− 1

)
g
[
a+ a†

]
+

K+
odd∑
k

H ′
k +H0,π − 2h

= ωRa
†a+ 2g[a+ a†]− 2h+

K+
odd∑
k

H ′
k +H0,π (2.75)
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We can absorb the loose −2h+ 2g[a+ a†] into H0,π such that:

H ′
0,π = −2J

(
c†0c0 − c†πcπ

)
+
(
2h− 2g

[
a† + a

]) (
c†0c0 + c†πcπ − 1

)
, (2.76)

giving:

H̃odd = ωRa
†a+

K+
odd∑
k

H ′
k +H ′

0,π. (2.77)

H ′
k can then be written in matrix form:

H ′
k =

(
c†k c−k

)2h− 2g
[
a† + a

]
− 2Jcosk −2iJsin(k)

2iJsin(k) −
(
2h− 2g

[
a† + a

]
− 2Jcosk

)
 ck

c†−k

 . (2.78)

We define

αk = 2h− 2g
[
a† + a

]
− 2Jcos(k),

βk = 2Jsin(k), (2.79)

for ease of notation. We define τi as Pauli matrices on the the two-dimensional space of theHk matrix. We

can not get further diagonalizing this matrix as there is no inverse to the boson creation and annihilation

operators. If we integrate out the bosons, the matrix can be diagonalized by rotation in the {τx, τy, τz}

space with a unitary transformation. Using the fermion vectors defined by:

c⃗†k = (c†k, c−k) , c⃗k =

 ck

c†−k

 , (2.80)

we have H ′
k as:

H ′
k = c⃗†k (αkτz + βkτy) c⃗k. (2.81)

2.3 Coupling a coherent resonator to the uniform TFI

Since the term a† + a in βk is not invertible, we can not simply diagonalize the Hamiltonian even if it is

quadratic in the fermion operators.

2.3.1 Integrating out the bosons

To diagonalize the Hamiltonian we assume that the bosonic system, the resonator, is prepared in a pure

coherent state such that ρR = |Φ⟩ ⟨Φ|. The coherent state has average photon number N = ⟨a†a⟩ and is an

eigenstate to the annihilation operator a |Φ⟩ = Φ |Φ⟩. This might not be an unreasonable approximation

since a resonator coupled to a classical feedline will be in a coherent state as shown in Appendix B. Since

Φ is a complex number we have ⟨Φ|
(
a+ a†

)
|Φ⟩ = 2Re [Φ]. We integrate out the bosons:

Heff =
1

Z
Trr

[
ρH̃odd/even

]
= ⟨Φ| H̃odd/even |Φ⟩ . (2.82)
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For H̃even we then get:

Heven,eff = ωR|Φ|2 +
K+

even∑
k

⟨Φ|H ′
k |Φ⟩ , (2.83)

and for H̃odd we get:

Hodd,eff = ωR|Φ|2 +
K+

odd∑
k

⟨Φ|H ′
k |Φ⟩+ ⟨Φ|H ′

0,π |Φ⟩ . (2.84)

The average ⟨Φ|H0,π |Φ⟩ gives:

⟨Φ|H0,π |Φ⟩ = −2J
(
c†0c0 − c†πcπ

)
+ (2h− 4gRe [Φ])

(
c†0c0 + c†πcπ − 1

)
. (2.85)

After integrating out the bosons, the βk in H ′
k that before had bosons operators in it, now only depends

on the complex number Φ as ⟨Φ|βk |Φ⟩ = 2h − 4gRe [Φ] − 2J cos k. The matrix ⟨Φ|H ′
k |Φ⟩ is now

diagonalizable. To do so we introduce the rotation in the Pauli matrices:

Rx(θ) = eiθ
τx
2 = cos

θ

2
1− i sin

θ

2
τx, (2.86)

that rotates a Pauli matrix around the τx axis by θ. The matrix in (2.81) makes an angle tan θk = βk

αk

with the τz axis so we rotate by θk. The rotation is unitary such that Rx(θ)
† = R−1

x (θ). Inserting unities

gives:

⟨Φ|H ′
k |Φ⟩ = c⃗†kR

†
x(θk)Rx(θk)(αkτz − βkτy)R

†
x(θk)Rx(θk)c⃗k, (2.87)

with c̄†k =
(
c†k c−k

)
. The rotated matrix is found as:

Rx(θk)(αkτz − βkτy)R
†
x(θk) =

 cos θk2 −i sin θk
2

−isin θk2 cos θk2

αk −iβk
iβk −αk

cos θk2 i sin θk
2

isin θk2 cos θk2

 =M. (2.88)

Calculating the off-diagonal elements give:

M1,2 = −2αk cos
θk
2

sin
θ

2
+ iβk

(
cos2

θk
2

− sin2
θ

2

)
= −αk sin θ + iβk cos θ,

where it was used that sinx = 2 cos x2 sin x
2 and cos2 x2 −sin2 x2 = 1−2 sin2 x2 = 1−2

(√
1−cos x

2

)2
= cosx.

The sine and cosine can be carried out using sin (arctan(x)) = x√
1+x2

and cos (arctan(x)) = 1√
1+x2

. The

two identities can be proven by drawing a right triangle with angle θ, adjacent side of length 1 and

opposite side with length x. The off-diagonal elements are then found to give:

M1,2 = −iαk
βk

αk√
1 + ( βk

αk
)2

+ iβk
1√

1 + ( βk

αk
)2

= 0.

By repeating the calculation it is found that also M2,1 = −M1,2 = 0. The diagonal elements are found

to be:

M1,1 = αk cos θk + βk sin θk

=
√
α2
k + β2

k

=

√
(2h− 4gRe[Φ]− 2J cos k)

2
+ (2J sin k)

2
.
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This is defined as:

Ek = 2

√
(h− 2gRe[Φ]− J cos k)

2
+ (J sin k)

2
. (2.89)

The other diagonal is found to be M2,2 = −Ek. The rotated matrix is thus diagonal:

Rx(θk)(αkτz − βkτy)R
†
x(θk) =

Ek 0

0 −Ek

 =M. (2.90)

The energy is seen to be symmetric in k, Ek = E−k. We rotate the fermion vectors:

Rx(θk)c⃗k =

 cos θk2 −i sin θk
2

−i sin θk
2 cos θk2

 ck

c†−k


= γ⃗k =

 γk

γ†−k

 . (2.91)

The new operators still obey Fermi statistics. To show that they are fermions we first need to note that

θ−k = −θk. Using that γk = cos θk2 ck − i sin θk
2 c

†
−k we work out the anticommutation:{

γk, γ
†
k′

}
=

{
cos

θk
2
ck − i sin

θk
2
c†−k, cos

θk′

2
c†k′ + i sin

θ′k
2
c−k′

}
= cos

θk
2

cos
θk′

2
δk,k′ + sin

θk
2

sin
θ′k
2
δk,k′ = δk,k′ .

In the rotated basis the fermion contribution is thus:

⟨Φ|H ′
k |Φ⟩ = γ⃗†k

Ek 0

0 −Ek

 γ⃗k

= Ekγ
†
kγk − Ekγ−kγ

†
−k

= Ekγ
†
kγk + E−kγ

†
−kγ−k −

Ek
2

− E−k

2

= Ek

(
γ†kγk −

1

2

)
+ E−k

(
γ†−kγ−k −

1

2

)
,

where the anticommutation was used and Ek = E−k ⇒ E−k = Ek

2 + E−k

2 .
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Figure 2.5: The energy spectrum Ek and −Ek as function of k in the case of g = 0. If g ̸= 0 the h would

be shifted.

The term H0,π (2.70) from the odd parity Hamiltonian should also be written in the new basis. We

had θk = arctan βk

αk
. For both k = 0 and k = π we have βk=0,π = J sin(0, π) = 0. For αk we have

αk=0,π = h− 2gRe[Φ]± J . Except for the case of h− 2gRe[Φ]± J = 0 we have θ0,π = 0 such that:

γk=0 = ck=0 γk=π = ck=π. (2.92)
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If however we are in the fine tuned case where h − 2gRe[Φ] ± J = 0 we need to be more careful. In the

case where h− 2gRe[Φ] = J we have for the term βk

αk
:

lim
k→0

Jsink

h− 2gRe[Φ]− Jcosk
= lim
k→0

sink

1− cosk

= lim
k→0

cosk

sink
→ ∞, (2.93)

by using L’Hospitals rule. Similarly if h − 2gRe[Φ] = −J we get the same for k → π. We have that

arctan(0) = 0, and arctan(∞) = π
2 . Following this recipe we find that h− 2gReΦ = J results in:

γ0 =
c0 − ic†0√

2
, γπ = cπ, (2.94)

and we get that γ†0 = iγ0. In the case of h− 2gReΦ = −J :

γ0 = c0, γπ =
cπ + ic†π√

2
, (2.95)

where we have γ†π = −iγπ.

2.3.2 Ground state

We can now find the even parity eigenstates from the APBC Hamiltonian (2.74) using the diagonal matrix

(2.92). The ground state will be the rotated fermion vacuum. In the rotated fermion basis we have:

Heven,eff = ωR|Φ|2 +
K+

even∑
k

{
Ek

(
γ†kγk −

1

2

)
+ E−k

(
γ†−kγ−k −

1

2

)}

= ωR|Φ|2 +
K+

even∑
k

Ek

(
γ†kγk + γ†−kγ−k − 1

)
= ωR|Φ|2 +

Keven∑
k

Ek

(
γ†kγk −

1

2

)
, (2.96)

where we now sum over all of the N k-values in Keven. We see that the ground state is the state with

no rotated fermions, the Bogoliubov vacuum, as the particle energy is strictly positive. The ground state

by annihilating all rotated fermions from initial fermion vacuum. We get a BCS-like ground state on the

form:

|∅γ⟩ =
K+

even∏
k>0

1

Ak
γ−kγk |0⟩ , (2.97)

where Ak normalizes the state. We find the ground state in terms of the Jordan-Wigner fermions:

|∅γ⟩ =
∏
k>0

1

Ak

(
cos

θk
2
c−k + i sin

θk
2
c†k

)(
cos

θk
2
ck − i sin

θk
2
c†−k

)
|0⟩

=
∏
k>0

1

Ak

(
−i cos θk

2
sin

θk
2

+ sin2
θk
2
c†kc

†
−k

)
|0⟩

=
∏
k>0

1

Ak

(
− i

2
sin θk +

1− cos θk
2

c†kc
†
−k

)
|0⟩ , (2.98)

26



where trigonometric identities where used for the sin θk cos θk and sin2 θk terms. We also used that

cl |0⟩ = 0 and θk = −θ−k. To normalize the state we calculate:

⟨0|
(
icos

θk
2
sin

θk
2

+ sin2
θk
2
c−kck

)
1

|Ak|2

(
−icosθk

2
sin

θk
2

+ sin2
θk
2
c†kc

†
−k

)
|0⟩

=
1

|Ak|2

(
cos

θk
2
sin

θk
2

)2

+
1

|Ak|2
sin4

θk
2

=
1

|Ak|2

(
cos2

θk
2

+ sin2
θk
2

)
sin2

θk
2

=
|isin θk2 |2

|Ak|2
, (2.99)

giving A = −isin θk2 . The resulting normalized ground state is found to be:

|∅evenγ ⟩ =
K+

even∏
k>0

(
cos

θk
2

+ isin
θk
2
c†kc

†
−k

)
|0⟩ . (2.100)

Since we sum over k > 0 due to the ABC there are no divergence in the cot θk2 since θk will never be

zero. It can be seen that the state (2.100) is even in fermion parity since it consists of pairs of fermion

operators with opposite momentum and the fermion parity is thus conserved. The corresponding energy

of the state is read directly from (2.96) as:

EEven0 = ωR|Φ|2 −
1

2

Keven∑
k

Ek, (2.101)

remembering that the sum is over all N values of k in Keven. For odd parity an extra fermion is needed.

We can construct a BCS ground state for
∑K+

odd

k Hk similar to the even parity case but that would also

contain an even number of fermions. Luckily H0,π can contribute the needed fermion. We look for a

single fermion from H0,π.

For J, (h − 2gRe[Φ]) > 0 the lowest energy excitation will be Ek=0, and we add c†k=0 to the ground

state. If J < 0 and h − 2gRe[Φ] > 0, then the lowest energy excitation comes Ek=π. From now on we

will work with J, h > 0 such that the single fermion in the odd parity state comes from k = 0. From the

odd parity Hamiltonian:

Hodd,eff = ωR|Φ|2 +
K+

odd∑
k

Ek

(
γ†kγk + γ†−kγ−k − 1

)
+ ⟨Φ|H0,π |Φ⟩ , (2.102)

the odd parity ground state is constructed:

c†0 |∅oddγ ⟩ = c†0

K+
odd∏

π>k>0

(
cos

θk
2

+ isin
θk
2
c†kc

†
−k

)
|0⟩ . (2.103)

The energy is found from (2.84) and (2.85):

Eodd0 = ωR|Φ|2 −
Kodd\{0,π}∑

k

Ek − 2J

= ωR|Φ|2 − 2

K+
odd∑
k

Ek − 2J, (2.104)
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where it was used that
∑Kodd\{0,π}
k Ek = 2

∑K+
odd

k Ek since Ek = E−k. The set Kodd without the k = 0, π

contains N − 2 elements, two fewer than Keven. The energy difference between the even and odd sector

ground states is found to be::

δE0 = Eodd0 − Eeven0 = −2

K+
odd∑
k

Ek − 2J + 2

K+
even∑
k

Ek. (2.105)

Figure 2.6: δE0 as a function of L plotted for different values of J and h with g = 0. It is numerically

seen that the difference in ground state energy between the even/odd sector is exponentially decreasing

for J ̸= h but decreases as a power law for J = h.

We test out two limiting cases of the energy difference. In the paramagnetic case of only a transverse

field h, we expect the energy difference to be 2h, since we lose −h from the aligned spin and have to pay

h to flip it the other way. With J = 0 we have Ek = 2h giving:

δE0 = −(N − 2)2h+ 2Nh

= 2h. (2.106)

In the ferromagnetic case with h = 0, we have Ek = 2J and we get δE0 = 0, recovering the degenerate

ground state.

2.3.3 Treating the resonator as a classical oscillator

Understanding the fermion ground state and energy, we can study the effect of the Jordan-Wigner fermions

on the resonator state. We treat the resonator classically. For a harmonic oscillator we have
〈
a† + a

〉
=

√
2xℓ =

√
2X with ℓ =

√
ℏ
mω the natural length of the oscillator and x the classical oscillator length. We

also have ImΦ = ⟨a−a†⟩
2i = P

2i

√
2

ℏmωR
= P√

2ℏmωR
. Using the Hamiltonian for the even subspace (2.96) we

have in terms of the classical position and momentum coordinates:

Heff,even = ℏωR
X2

2
+
P 2

2m
+ 2

Keven∑
k

Ek(X)

(
γ†kγk −

1

2

)
. (2.107)
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The fermion energy supplies a non-quadratic term to the classical resonator potential. The energy written

in the unitless h/J = Y and X is:

Ek(X) = 2J

√√√√sin2k +

(
Y −

√
2gX

J
− cosk

)2

. (2.108)

The classical potential is:

V (X) = ℏωR
X2

2
+ 2J

Keven∑
k

√√√√sin2k +

(
Y −

√
2gX

J
− cosk

)2(
γ†kγk −

1

2

)
. (2.109)

We see that each fermion will increase the non-quadratic term in the potential. For the odd subspace

we would sum over Kodd and add the −2J from the single extra fermion. To plot the potential we

estimate some of the parameters. In appendix A the experimental parameter range is explored and it is

not unreasonable to assume that we could have:

ωR ≈ J ≈ h ≈ 10g. (2.110)
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Figure 2.7: Surface plot of the classical spring potential where the units are in terms of ωR with the

fermions in the ground state

The energy integral is differentiable in all points. By differentiating the potential energy with respect

to X we find the displacement that minimizes the potential energy from the fermion ground state. The

potential is:

V (X) = ℏωR
X2

2
− 2

Keven∑
k

√
(J sin k)2 +

(
h−

√
2gX − J cos k

)2
, (2.111)

and differentiating with respect to the resonator coordinate, X we find:

∂V

∂X
= ℏωRX + 2

√
2g

Keven∑
k

h−
√
2gX − J cos k√(

h−
√
2gX − J cos k

)2
+ (J sin k)

2
. (2.112)
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Solving for the extremum gives:

∂V

∂X

∣∣∣∣
X=X0

= 0

⇒ X0 = −2
√
2
g

ωR

Keven∑
k

h−
√
2gX0 − J cos k√(

h−
√
2gX0 − J cos k

)2
+ (J sin k)

2
. (2.113)

The result is an equation for the resonator position that minimizes the potential coming from coupling

the resonator to the DQD-chain. This equation will require solving an elliptical integral so it must be

done either numerically, with some approximations or in some limit. We found that the resonator will

react to the state of the DQD-chain and we can understand the coupling between the resonator and chain

from the resonators perspective.

We have solved the case of a TFI-model coupled to a single resonator in a coherent state. We found an

equation for the position coordinate of the resonator that minimized the classical potential from the DQD

chain. Getting to this result required the assumption that the resonator was in a coherent state. This

motivates us to further understand the quantum resonator’s response from coupling to a DQD system.

In the next chapter we will study the case of many resonators coupled to many DQDs.
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Chapter 3

Collective excitations of resonators

coupled to a double quantum dot

chain

3.1 The saddle point equation

Figure 3.1: Physical system

We will study a periodic DQD chain with a resonator coupled locally to each DQD. We start from the

transverse field Ising model in (2.49) that we got from a Jordan-Wigner transformation. The system is

described by a Hamiltonian for the resonators:

HR = ωR

L∑
r=1

a†rar, (3.1)
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and for the DQD chain we have:

H0 =

L∑
r=1

[
−h
(
1− 2c†rcr

)
− J

(
c†rcr+1 + c†r+1cr

)
− J

(
c†rc

†
r+1 + cr+1cr

)]
. (3.2)

We will neglect the constant term coming from −h. The interaction between the two is described by:

Hint =
g

2

L∑
r=1

(
a†r + ar

) (
1− 2c†rcr

)
, (3.3)

We study collective excitations from the imaginary time path integral with the action given by S =∫ β
0
dτ
[
ϕ̄∂τϕ+H(ϕ̄, ϕ)− µN(ϕ̄, ϕ)

]
[10]:

Z =

∫
D
[
ψ̄, ψ

] ∫
D
[
ϕ̄, ϕ

]
e−SR[ψ̄,ψ]−S0[ϕ̄,ϕ]−Sint[ψ̄,ψ,ϕ̄,ϕ]. (3.4)

We have the action for the resonator:

SR =

L∑
r=1

∫ β

0

dτϕ̄r(τ) (∂τ + ℏωR)ϕr(τ) + g

L∑
r=1

∫ β

0

dτ
ϕ̄r(τ) + ϕr(τ)

2
, (3.5)

the DQD chain:

S0 =

L∑
r=1

∫ β

0

dτ
{
ψ̄r(τ) (∂τ + 2h)ψr(τ)− J

[
ψ̄r(τ)ψr+1(τ) + ψ̄r+1(τ)ψr(τ)

]
−J

[
ψ̄r(τ)ψ̄r+1(τ) + ψr+1(τ)ψr(τ)

]}
, (3.6)

and the interaction term:

Sint = −g
L∑
r=1

∫ β

0

dτ
[
ϕ̄r(τ) + ϕr(τ)

]
ψ̄r(τ)ψr(τ). (3.7)

The ψ’s are Grassmann fields and ϕ’s are complex fields. The chemical potentials have been absorbed

into ωR and 2h. The functional integral measure is defined as limN→∞
∏N
n d(ψ̄

n, ψn), where d(ψ̄n, ψn) =∏
ν dψ̄νdϕν for Grassmann numbers (for complex numbers divide by π in the product) and the ν is the

quantum numbers which is r in our case, and N comes from the parameterization of the temperature.

We have absorbed the term linear in the resonator fields into the resonator action. The transverse field,

h acts as a chemical potential for the fermions.

Motivated by the effect of the DQD chain on a single classical resonator, our goal will be to integrate

out the Grassmann fields to find an effective theory for the resonators. We begin by transforming from

imaginary time and real space to Matsubara and Fourier space. We use the Matsubara frequencies

ωm = 2πm
β for bosons and ωn = (2n+1)π

β for fermions, with n ∈ Z:

χ(τ) =
1√
β

∑
n

χne
−iωnτ , χ̄(τ) =

1√
β

∑
n

χ̄ne
iωnτ , (3.8)

where χ could be a fermion or boson field and one would have to adjust the frequency used accordingly.

Throughout the thesis, iωn with an n will refer to a fermionic Matsubara frequency and iωm with an m

will refer to a bosonic one. For the Fourier transformation we use:

χr =
1√
N

∑
k

χke
ikr, (3.9)
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where the sum is taken from some set of wave numbers. With this convention both the χk and χr fields

will be unitless. The fields χn will have units of
√
β. The momentum is p = ℏk from the momentum

operator p̂ = −iℏ∂r.

We have to consider the boundary conditions. We chose a chain with an even number of sites. We

know that the Hilbert space is block diagonal in parity, so the spinless fermion states will be in either of the

sub-spaces and they do not interact if nothing breaks the symmetry. We choose anti-periodic boundary

conditions for the fermions in real space and only work with odd parity Jordan-Wigner fermions. This

gives a k-space for the fermions defined as:

Keven =

{
k = ±2n− 1

L
π , n = 1, ...,

N

2

}
. (3.10)

The wave numbers are symmetric around 0 and k = 0 is not in the set. The fermion wave numbers

will be denoted with a k and the boson wavenumbers, that come with periodic boundary conditions, are

denoted with a q. The transformed action for the resonator is:

SR =
g
√
βN

2

(
ϕ∗0,0 + ϕ0,0

)
+
∑
q

∑
iωm

ϕ̄q,ωm
(−iωm + ωR)ϕq,iωm

. (3.11)

That last term comes from
∑
r

∫
dτe−iqr+iωmτ = βNδqδiωm . For the fermion chain we get:

S0 =
∑
k

∑
iωn

{
ψ̄k,iωn

(−iωn + 2h− 2J cos k)ψk,iωn
+ iJ sin k

(
ψ̄−k,−iωn

ψ̄k,iωn
+ ψ−k,−iωn

ψk,iωn

)}
.

(3.12)

To see where the isink term comes from we use that for Grassman fields ψψ′ = ψψ′+ψψ′

2 = ψψ′−ψ′ψ
2

giving: ∑
k

ψkψ−ke
ik =

1

2

∑
k

(ψkψ−k − ψ−kψk) e
ik (3.13)

=
1

2

∑
k

ψkψ−k
(
eik − e−ik

)
(3.14)

= i
∑
k

sinkψkψ−k, (3.15)

and similar for the ψ̄k term. The interaction term turns out to be:

Sint = − g√
βN

∑
k,k′

∑
iωn,iωn′

[
ϕk−k′,iωn−iωn′ + ϕ∗k′−k,iωn′−iωn

]
ψ̄k,iωn

ψk′,iωn′ , (3.16)

and the interaction is seen to conserve energy and momentum. To make notation easier we will define

the vector k = (k, iωn) and then remember that a sum
∑
k =

∑
k

∑
iωn

. Preparing for a Bogoliubov

transformation we rewrite the action:

S0 =
∑
k

{
1

2
ψ̄k (−iωn + 2h− 2J cos k)ψk

− 1

2
ψk (−iωn + 2h− 2J cos k) ψ̄k + iJ sin k

(
ψ−kψk − ψ̄kψ̄−k

)}
, (3.17)
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an upon letting k → −k meaning k, iωn → −k,−iωn, we get:

=
∑
k

{
1

2
ψ̄k (−iωn + 2h− 2J cos k)ψk

− 1

2
ψ−k (iωn + 2h− 2J cos k) ψ̄−k + iJ sin k

(
ψ−kψk − ψ̄kψ̄−k

)}
, (3.18)

which is written on matrix form as:

S0 =
∑
k

(
ψ̄k, ψ−k

) 1
2 (−iωn + 2h− 2J cos k) −iJ sin k

iJ sin k − 1
2 (iωn + 2h− 2J cos k)

 ψk

ψ̄−k

 (3.19)

=
∑
k,k′

Ψ†
kG

−1
0,kδk,k′Ψk′ , (3.20)

where we defined the spinors:

Ψ†
k =

(
ψ̄k, ψ−k

)
Ψk =

 ψk

ψ̄−k

 , (3.21)

and the operator G−1
0,kδk,k′ that is diagonal in k and iωn-space but not in spinor space. The interaction is

also put on matrix form:

Sint = − g

2
√
βN

∑
k,k′

[
ϕk−k′ + ϕ∗k′−k

] (
ψ̄kψk′ − ψk′ ψ̄k

)
= − g

2
√
βN

∑
k,k′

([
ϕk−k′ + ϕ∗k′−k

]
ψ̄kψk′ −

[
ϕk′−k + ϕ∗k−k′

]
ψ−k′ ψ̄−k

)
= − g

2
√
βN

∑
k,k′

([
ϕk−k′ + ϕ∗k′−k

]
ψ̄kψk′ −

[
ϕk−k′ + ϕ∗k′−k

]
ψ−kψ̄−k′

)

=
∑
k,k′

(
ψ̄k, ψ−k

)− g
2
√
βN

[
ϕk−k′ + ϕ∗k′−k

]
0

0 + g
2
√
βN

[
ϕk−k′ + ϕ∗k′−k

]
 ψk′

ψ̄−k′

 (3.22)

=
∑
k,k′

Ψ†
kΓk−k′Ψk′ , (3.23)

where in the second line we took k, k′ → −k,−k′ and third line we did k → k′, k′ → k, and we then

defined the matrix Γk−k′ that is not diagonal in k,iωn. Explicitly we have the matrix:

Γk−k′ = − g

2
√
βN

[
ϕk−k′ + ϕ∗k′−k

]
σz, (3.24)

where the σz operates on the spinor space. The action is quadratic in the Grassmann fields and the

gassian integral can be performed:∫
D
[
ψ̄, ψ

]
e−S0−Sint =

∫
D
[
ψ̄, ψ

]
e−

∑
k,k Ψ†

k(G
−1
0,kδk,k′+Γk−k′)Ψk′ (3.25)

=

∫
D
[
ψ̄, ψ

]
e−Ψ†Ĝ−1Ψ (3.26)

= Det
(
Ĝ−1
F

)
, (3.27)
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where Ĝ−1
F lives in k, iωn and spinor space, so the determinant is taken over all three spaces. Written in

k,iωn-space the inverse Green’s function is:

Ĝ−1
F,kk′,iωniωn′ = G−1

0,kδk,k′δn,n′ + Γk−k′ , (3.28)

which is a two by two matrix in spinor space. We denote the spinor space by the indices σ where eg:

Ĝ−1
F,kk′,iωniωn′ ,12 = iJ sin kδk,k′δn,n′ , (3.29)

Ĝ−1
F,kk′,iωniωn′ ,11 =

1

2
(−iωn + 2h− J cos k) δk,k′δn,n′ − g

2
√
βN

[
ϕk−k′,iωn−iωn′ + ϕ∗k′−k,iωn′−iωn

]
. (3.30)

The determinant is re-exponentiated: 1

Det
(
Ĝ−1
F

)
= eln(DetĜ−1

F ) (3.31)

= etr(ln Ĝ−1
F ), (3.32)

giving the partition function:

Z =

∫
D [ϕ∗, ϕ] e−SR+tr(ln Ĝ−1

F ) (3.33)

=

∫
D [ϕ∗, ϕ] e−g

√
βN
2 (ϕ∗

0+ϕ0)−
∑

q ϕ
∗
q(−iωm+ωR)ϕq+tr(ln Ĝ−1

F ), (3.34)

with the bosonic action from integrating out the fermions:

Seff [ϕ
∗, ϕ] =

g
√
βN

2
(ϕ∗0 + ϕ0) +

∑
q

ϕ∗q (−iωm + ωR)ϕq − tr
(
ln Ĝ−1

F

)
. (3.35)

We seek a stationary phase saddle point solutions to the action in terms of the boson fields ϕ. We require:

δSeff [ϕ
∗, ϕ]

δϕq
= 0. (3.36)

Differentiating the trace gives[10]:

δ

δϕq
tr
(
ln Ĝ−1

F

)
= tr

[
ĜF
(

δ

δϕq
Ĝ−1
F

)]
. (3.37)

We use that an element
[
ĜF
(

δ
δϕq

Ĝ−1
F

)]
kk′,σ1σ2

=
∑
k′′
∑
σ3

GF,kk′′,σ1σ3

(
δ
δϕq

Ĝ−1
F,k′′k′,σ3σ2

)
, and remember

that k = (k, iωn). With this in mind the trace is found as:

= tr

[
ĜF
(

δ

δϕq
Ĝ−1
F

)]
=
∑
k,k′

∑
σ1,σ2

GF,kk′,σ1σ2

(
δ

δϕq
Ĝ−1
F,k′k,σ2σ1

)
. (3.38)

The goal is now to evaluate the functional differential. The matrix element to be differentiated is:

Ĝ−1
F,k′k,σ2σ1

=
[
G−1
0,kδk′,k + Γk′−k

]
σ1,σ2

. (3.39)

1ln(Det A) = ln
∏

n λn =
∑

n lnλn = tr lnA
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There is no dependence on the bosonic ϕq in G−1
0 so that term will be zero when differentiating. Γ is

diagonal in spinor space so the differentiation yields:

δ

δϕq
Ĝ−1
F,k′k,σ2σ1

=
δ

δϕq
Γk′−k,σ1σ2 (3.40)

=
δ

δϕq

−g
2
√
βN

[
ϕk′−k + ϕ∗k−k′

]
σzσ1σ2

, (3.41)

which gives us that:

δ

δϕq
Ĝ−1
F,k′k,σ2σ1

= − g

2
√
βN

δq,k′−kσ
z
σ1σ2

. (3.42)

As a small check we see that q contains a bosonic frequency and that k′−k will also be bosonic. Plugging

in to (3.38) and carrying out the trace we find:

δ

δϕq
tr
(
ln Ĝ−1

F

)
=
∑
k,k′

∑
σ1,σ2

GF,kk′,σ1σ2

−g
2
√
βN

δq,k′−kσ
z
σ1σ2

(3.43)

= − g

2
√
βN

∑
k

[GF,11(k, q + k)− GF,22(k, q + k)] . (3.44)

The 11 and 22 represents respectively the ψ̄kψ−k and ψkψ̄−k products in the action. Combining everything

in the saddle point equation (3.36), gives:

δSeff [ϕ
∗, ϕ]

δϕq
= 0

⇒ ϕ∗q (−iωm + ωR) +
g
√
βN

2
δq = − g

2
√
βN

∑
k

[GF,11(k, q + k)− GF,22(k, q + k)] , (3.45)

where for the second term on the LHS it was used that δϕ0

δϕq
= δq.

Saddle point guess: ϕq = 0

We guess a solution where the field is uniformly zero such that ϕq = 0∀ q. We check if the guess satisfies

the saddle point equation. Since ϕ∗q = (ϕq)
∗ = 0 we only need to show that:

g

2
√
βN

∑
k

[GF,11(k, q + k)− GF,22(k, q + k)]ϕq=0 = −g
√
βN

2
δq, (3.46)

for all q. For checking the units it is used that N is just a number with no units such that the units do

match up. As another check we see that before dividing with g on both sides we could take the limit of

no interaction, g → 0 and see that the saddle point equation is then satisfied for ϕq = 0∀ q as both sides

are equal zero. This is expected since for g = 0 we have free bosons where the lowest energy configuration

is uniformly zero. Since ϕq = ϕ∗q = 0 we have G−1
int = 0, giving:

G−1
F |ϕq=0 = G−1

0 . (3.47)
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G−1
0 is diagonal in k, implying that G0,kk′ also is diagonal in k. Therefore:

G−1
0 = δkG−1

0 (k). (3.48)

Since G−1
0,k is a two by two matrix as seen in (3.20), we find the inverse. The determinant of G−1

0,k in spinor

space is found as:

DetG−1
0 (k) = Det

 1
2 (−iωn + 2h− 2J cos k) −iJ sin k

iJ sin k − 1
2 (iωn + 2h− 2J cos k)

 (3.49)

= −1

2
(−iωn + 2h− 2J cos k)

1

2
(iωn + 2h− 2J cos k) + (iJ sin k)

2
(3.50)

= −1

4

[
(2h− 2J cos k)

2 − (iωn)
2
]
− 1

4
(2J sin k)

2
(3.51)

= −1

4

[
(2h− 2J cos k)

2
+ (2J sin k)

2 − (iωn)
2
]

(3.52)

=
(iωn)

2 − ϵ2k
4

, (3.53)

where ϵk =

√
(2J sin k)

2
+ (2h− 2J cos k)

2
is the energy of the Jordan-Wigner fermion as expected. The

inverse of the matrix is thus:

G0,k =
4

(iωn)2 − ϵ2k

− 1
2 (iωn + 2h− 2J cos k) +iJ sin k

−iJ sin k 1
2 (−iωn + 2h− 2J cos k)

 . (3.54)

Collecting everything gives:

GF (k, k′)|ϕq=0 =
4

(iωn)2 − ϵ2k

− 1
2 (iωn + 2h− 2J cos k) +iJ sin k

−iJ sin k 1
2 (−iωn + 2h− 2J cos k)

 δk,k′ . (3.55)

Inserting the result into the saddle point equation (3.46) gives:

−g
√
βN

2
δq =

g

2
√
βN

∑
k

[GF,11(k, q + k)− GF,22(k, q + k)]

=
g

2
√
βN

∑
k

4

(iωn)2 − ϵ2k

[
−1

2
(iωn + 2h− 2J cos k)− 1

2
(−iωn + 2h− 2J cos k)

]
δk,q+k

=
g

2
√
βN

∑
k

4

ϵ2k − (iωn)2
(2h− 2J cos k) δq, (3.56)

from using the diagonal elements, 11 and 22 in GF |ϕq=0. The Dirac delta gives zero for all q ̸= 0 so for all

ϕq ̸=0 = 0 the action is minimized, as both sides are equal zero. We conclude that ϕq = 0 q ̸= 0 satisfies

the saddle point equation. However, q = 0 is included in the resonator q-space since the resonators have

periodic boundary conditions in real space. For q = 0 and g ̸= 0 (since we divide by g) we get:

−N
T

=
∑
k

4

−(iωn)2 + ϵ2k
(2h− 2J cos k) , (3.57)
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with k being the fermionic two-vector for the resonator wavenumber and Matsubara frequency. In the

special case that h = 0 we can carry out the sum on RHS:

4
∑
iωn

∑
k

2h− 2J cos k

−(iωn)2 + (2J sin k)2 + (2h− 2J cos k)
2

∣∣∣∣∣
h=0

=− 4
∑
iωn

∑
k

2J cos k

−(iωn)2 + 4J2(sin2 k + cos2 k)

=4
∑
iωn

2J

(iωn)2 − 4J2

∑
k

cos k = 0, (3.58)

and it is seen that even for no transverse field the uniformly zero boson field is no solution to the

saddle point equation. In the case of non-zero, h, we carry out the Matsubara sum, using that the

poles of f(z) = (z2 − ϵ2)−1 are in z = ±ϵ and that the Fermi function 1
eβz+1

= nF (z) has poles in

z = iωn = i 2n+1
β π. Following [11] the following integral over the entire complex plane is written down:

I =

∮
C∞

dz

2πi
f(z)nF (z)e

τz. (3.59)

The eτz factor is for convergence and β > τ > 0. For the integral taken over the entire complex plane it

is found that:

nF (z)e
τz =

eτz

eβz + 1
∝

e(τ−β)Re[z] Re[z] > 0

eτRe[z] Re[z] < 0
→ 0 Re[z] → ∞, (3.60)

giving that the integral contour goes to zero along the edge. This gives from the residue theorem that

the integral is zero such that:

I = 0

=
∑

Res [f(z)nF (z)e
τz]

=
∑
iωn

Res
z=iωn

[nF (z)] f(iωn)e
iτωn +

∑
zj=±ϵ

Res
z=zj

[f(z)]nF (zj)e
τz. (3.61)

The poles of f(z) are simple so they are found to be Res
z=±ϵ

f(z) = 1
±2ϵ . For nF (z) the residue gives:

Res
z=iωn

nF (z) = − 1

β
. (3.62)

This is shown from the residue for a simple pole: limz→iωn

z−iωn

eβz+1
= limδ→0

δ
eiβωneβδ+1

, where it is used

that eiβωn = 1 to get = limδ→0
δ

−βδ+O(δ2) =
1

−β . It results in the formula:∑
iωn

f(iωn) = β
∑
j

Res
z=zj

[
f(zj)

]
nF (zj). (3.63)

The Matsubara sum then evaluated as:

0 =
1

−β
∑
iωn

1

−(iωn)2 + ϵ2
eiτωn +

1

2ϵ
nF (ϵ)e

ϵτ − 1

2ϵ
nF (−ϵ)e−ϵτ . (3.64)
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The limit of τ → 0 is then taken since the integral has converged, giving:∑
iωn

1

iω2
n + ϵ2

=
β

2ϵ
nF (ϵ)−

β

2ϵ
nF (−ϵ)

=
β

2ϵ

(
nF (ϵ)− nF (−ϵ)

)
=
β

ϵ

(
nF (ϵ)−

1

2

)
. (3.65)

This can be reduced:

1

eβz + 1
− 1

2
=

1

2

1− eβz

1 + eβz

= −1

2
tanh

βz

2
.

The Matsubara sum is therefore evaluated to:∑
iωn

1

(iωn)2 − ϵ2
= − β

2ϵ
tanh

(
βϵ

2

)
. (3.66)

Inserting into (3.57) gives the saddle point equation:

4
∑
k

(2h− 2J cos k)
∑
iωn

1

−(iωn)2 + ϵ2k

=
2

T

∑
k

2h− 2J cos k

ϵk
tanh

(
βϵk
2

)
= −N

T
. (3.67)

This requires carrying out the integral over fermion k-space. It can be solved in the special case of having

only two coupled DQDs in which case N = 2 and k = ±π
2 according to (3.10). Since sin±π

2 = ±1 and

cos±π
2 = 0 we have ϵ

(
±π

2

)
= 2

√
J2 + h2 and evaluate the sum:

2

T

[
2h− 2J cos

(
−π

2

)
ϵ
(
−π

2

) tanh
ϵ
(
−π

2

)
2T

+
2h− 2J cos π2

ϵ
(
+π

2

) tanh
ϵ
(
+π

2

)
2T

]

=
4

T

(
h√

J2 + h2
tanh

√
J2 + h2

2T

)
. (3.68)

For N = 2 and ϕ0 = 0 we thus have the saddle point equation for q = 0:

4

T

(
h√

J2 + h2
tanh

√
J2 + h2

2T

)
= − 2

T

⇒ 2h√
J2 + h2

tanh

√
J2 + h2

2T
= −1. (3.69)

We study this in the limit of T → 0. Then tanh
√
J2+h2

2T → 1 and we get:

h

J
= ±

√
1

3
. (3.70)

For the special case of N = 2 and T → 0 and h/J =
√
1/3, then ϕ = 0 is a solution to the saddle point

equation. It is also seen that for g ̸= 0 but h = 0, then ϕq = 0 can not be a solution. Turning off the

transverse field will not make ϕq = 0 a solution.
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Since the ϕ0 that corresponds to q, iωm = 0, so uniform in space, did not generally satisfy the saddle

point equation we will need a uniform field to satisfy the saddle point equation. We have already showed

that ϕq = 0 for q ̸= 0 satisfies the saddle point equation, therefore we guess a new solution where only

the uniform field is finite. This is also motivated by the transverse field being uniform, and we could

expect a uniform boson field as a reaction to a uniform transverse field.

Saddle point guess: ϕk−k′ = ϕ0δk,k′

The new guess at a solution based on the previous findings is:

ϕk−k′ = ϕ0δk,k′ . (3.71)

We remember that the delta function is for the fermionic both wavenumber and Matsubara frequence. We

check if this guess satisfies the saddle point equation (3.45). We insert into (3.39) to find GF |ϕq=ϕ0δq to find

the Green’s function evaluated at the new guess at a solution. It was already shown that ϕq = 0 , q ̸= 0

satisfies the saddle point equation so we only check for q = 0:

Γ(k, k′)|ϕq=ϕ0δq = − g

2
√
βN

[
ϕk−k′ + ϕ∗k′−k

]
σz|ϕq=ϕ0δq

= − g

2
√
βN

[ϕ0 + ϕ∗0]σ
zδk,k′ . (3.72)

Γ is now diagonal in k-space. Since G−1
0 is also diagonal in k the full GF will also be diagonal in k-space

and we therefore only have to invert the spinor-space matrix. Inserting into the saddle point equation

(3.45) for the bosonic q = 0 and using that G−1
F (k, k′) = G−1

F (k)δk,k′ we get:

ϕ∗0(−iω0 + ωR) +
g
√
βN

2
= − g

2
√
βN

∑
k

[GF,11(k, q + k)− GF,22(k, q + k)] |q=0 (3.73)

= − g

2
√
βN

∑
k

[GF,11(k)− GF,22(k)] . (3.74)

The units still match up since [ϕq] =
√

1
Energy since [N ] = 1, and all terms have unit

√
Energy. Since

G−1
F was diagonal in k-space we invert it to find GF :

GF (k)|ϕq=ϕ0δq =
[
G−1
0 (k) + Γ(k, k)

]−1

=

 1
2 (−iωn + 2h− 2J cos k)− g

2
√
βN

[ϕ0 + ϕ∗0] −iJ sin k

iJ sin k − 1
2 (iωn + 2h− 2J cos k) + g

2
√
βN

[ϕ0 + ϕ∗0]

−1

=
1

D(k)

− 1
2 (iωn + 2h− 2J cos k) + g

2
√
βN

[ϕ0 + ϕ∗0] iJ sin k

−iJ sin k 1
2 (−iωn + 2h− 2J cos k)− g

2
√
βN

[ϕ0 + ϕ∗0]

 ,

(3.75)
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where D(k) is the determinant of the matrix. The matrix elements in the saddle point equation are then:

GF,11(k)− GF,22(k) =
1

D(k)

[
−1

2
(iωn + 2h− 2J cos k) +

g

2
√
βN

[ϕ0 + ϕ∗0]

−
(
1

2
(−iωn + 2h− 2J cos k)− g

2
√
βN

[ϕ0 + ϕ∗0]

)]

=−
2h− 2J cos k − g

2
√
βN

[ϕ0 + ϕ∗0]

D(k)
. (3.76)

The determinant is given by:

Dk =

[
1

2
(−iωn + 2h− 2J cos k)− g

2
√
βN

[ϕ0 + ϕ∗0]

]
×
[
−1

2
(iωn + 2h− 2J cos k) +

g

2
√
βN

[ϕ0 + ϕ∗0]

]
+ (iJ sin k)2

=
(iωn)

2

4
− 1

4

[
2h− g

2
√
βN

[ϕ0 + ϕ∗0]− 2J cos k

]2
− 1

4
(2J sin k)2

=
(iωn)

2 − ξ2k
4

, (3.77)

with:

ξ2q =

[
2h− g

2
√
βN

[ϕ0 + ϕ∗0]− 2J cos k

]2
+ (2J sin k)2, (3.78)

which is recognized as the Jordan-Wigner fermion energy with a shifted transverse field. Since the poles

of DR gives us the spectrum of the TFI chain we define ξk > 0 (we could equally as well have chosen < 0)

since this will not change the spectrum, which will still have a positive and negative solution. Getting

back to the saddle point equation (3.74) we have:

ϕ∗0(−iω0 + ωR) +
g
√
βN

2
=

g

2
√
βN

∑
k

2h− 2J cos k − g
2
√
βN

[ϕ0 + ϕ∗0]

D(k)
(3.79)

=
2g√
βN

∑
k,iωn

2h− 2J cos k − g
2
√
βN

[ϕ0 + ϕ∗0]

(iωn)2 − ξ2k
. (3.80)

Using (3.66) we carry out the Matsubara sum and get the equation:

ϕ∗0(−iω0 + ωR) +
g
√
βN

2
= −g

√
β

N

∑
k

2h− 2J cos k − g
2
√
βN

[ϕ0 + ϕ∗0]

ξk
tanh

(
βξk
2

)
. (3.81)

For the bosonic Matsubara frequencies we have ω0 = 0 which leaves:

ϕ∗0 = − g

ωR

√
β

N

∑
k

2h− 2J cos k − g
2
√
βN

[ϕ0 + ϕ∗0]

ξk
tanh

(
βξk
2

)
− g

√
βN

2ωR
. (3.82)

The RHS is real, and we conclude that ϕ0 ∈ R giving:

ϕ0 = − g

ωR

√
β

N

∑
k

2h− 2J cos k − g√
βN

ϕ0

ξk
tanh

(
βξk
2

)
− g

√
βN

2ωR
. (3.83)

It is seen that for ϕ0 very large the term inside the sum on the RHS goes to a constant:

lim
ϕ0→±∞

2h− 2J cos k + g√
βN

ϕ0√(
2h+ g√

βN
ϕ0 − 2J cos k

)2
+ (2J sin k)2

= ∓1, (3.84)
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and the tanh tends to 1. Therefore for ϕ0 → ±∞ the right hand side goes to:

lim
ϕ0→±∞

RHS = ± g

ℏωR

√
β

N

∑
k

−g
√
βN

2ωR

= ±g
√
βN

ωR
− g

√
βN

2ωR
. (3.85)

We therefore know that there will always be a solution to ϕ0, since at some ϕ0 the left and right side will

cross. The LHS goes from −∞ to ∞ while RHS goes from − 3g
2ωR

√
βN to g

2ωR

√
βN . A graphical solution

to the saddle point equation is shown in 3.83. The saddle point equation (3.83) is written in Matsubara fre-

quency and k-space. In real space and imaginary time we have: ϕ(r, τ) = 1√
βN

∑
q,iωm

ϕ0δqδme
iqr−iωmτ ⇒

ϕRS0 = ϕ0√
βN

. A uniform resonator field is equivalent to the single resonator coupling to all DQD examined

in the first part. Examining the saddle point equation in real space and imaginary time gives:

ϕRS0 = − g

ωR

1

N

∑
k

2h− 2J cos k − gϕRS0√
(2h− 2J cos k − gϕRS0 )2 + (2J sin k)2

tanh

(
ξk
2T

)
− g

2ωR
. (3.86)

Going to zero temperature where tanh
(
ξk
2T

)
→ 1 recovers the saddle point equation from the classical

description of the single resonator in (2.113) up to the constant term that comes from describing the

fermions with Grassman numbers.
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Figure 3.2: Saddle point equation with all parameters being in terms of ωR except for L. The LHS looks

vertical due to the range of the x-axis.

In the case that T → 0 and in the weak coupling limit the saddle point equation can be solved in the

fine tuned case of h = J With T → 0 it follows that tanh ξk
2T → 1. The saddle point equation (3.86) to

lowest order in g expanded around g = 0 is then:

ϕRS0 = − g

ωR

1

N

∑
k

2h− 2J cos k√
(2h− 2J cos k)2 + (2J sin k)2

tanh

(
ξk
2T

)
− g

2ωR
+O(g2). (3.87)

This is still a problem to solve since the integrand is elliptical. We therefore consider the fine-tuned limit
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of h = J giving:

lim
T→0

ϕRS0
h=J
= − g

ωR

1

N

∑
k

2J(1− cos k)

2J
√
2
√
1− cos k

− g

2ωR

= − g

ωR

1√
2N

∑
k

√
1− cos k − g

2ωR
. (3.88)

To evaluate the sum we assume it is smooth enough to take the limit of an integral where:∑
k

√
1− cos k → L

2π

∫ π

−π
dk

√
1− cos k =

N

2π

√
2 · 4. (3.89)

We then have:

ϕRS0 = − g

ωR

(
2

π
+

1

2

)
. (3.90)

In the Matsubara frequency and k-space the saddle point solutions is:

ϕ0 = − g

ωR

(
2

π
+

1

2

)√
βN. (3.91)

The solution is marked in fig 3.2 as ϕsol, showing that it agrees well for small g. With a solution to

the saddle point equation we can estimate the shift of h. It is seen from (3.86) that the shift in h, at

fine tuned h = J , will be δh = − g
2ϕ

RS
0 ≈ g g

2ωR
. We can also estimate the change in the voltage of the

resonator using[12]:

V̂ =

√
ℏωR
C

(
â+ â†

)
⇒ δ⟨V ⟩ = −2

√
ℏωR
C

g

ωR
, (3.92)

with C the capacitance of the superconducting resonator. We can thus calculate the expected shift in

the voltage from the saddle point solution.

To recap, we found a saddle point equation for the imaginary time field integral and showed that the

equation is similar to the classical equation (2.113). We have also shown that a solutions exists where a

constant uniform field will minimize the effective action and we have solved for this constant field in the

fine tuned case of T → 0 and J = h to lowest order in the coupling constant. In the next section we will

expand the action around this saddle point solution and explore fluctuations in the resonator field.

3.2 Resonator field variations

Knowing that we have a minimum for the action at some uniform field (which we might only be able

to find numerically) we can expand around this field, ϕ0, to explore the action of non-uniform field

fluctuations. To do so we start by defining the field over the two momentum q:

ϕq = ϕ0δq + δϕq, (3.93)
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which is the real field that satisfies the saddle point equation and a non-uniform field. Inserting into the

action (3.35) gives:

S = g
√
βN
(
ϕ0 +

δϕ0 + δϕ∗0
2

)
+
∑
q

(ϕ0δq + δϕq)
∗
(−iωm + ωR) (ϕ0δq + δϕq)

− tr ln

(
G−1
0 − g

2
√
βN

(
[ϕ0 + δϕ]

∗
+ [ϕ0 + δϕ]

)
σz
)
. (3.94)

Collecting terms that depend on δϕq gives:

= g
√
βNϕ0 + 2ωRϕ

2
0 + g

√
βN

δϕ0 + δϕ∗0
2

+ ωRϕ0
(
δϕ0 + δϕ∗0

)
+
∑
q

δϕ∗q (−iωm + ωR) δϕq − tr ln
((

G−1
0 + Γ0

) (
1 +

[
G−1
0 + Γ0

]−1
δΓ
))

= g
√
βNϕ0 + 2ωRϕ

2
0 − tr ln

(
G−1
0 + Γ0

)
+

(
g
√
βN

2
+ ωRϕ0

)(
δϕ0 + δϕ∗0

)
+
∑
q

δϕ∗q (−iωm + ωR) δϕq − tr ln
(
1 +

[
G−1
0 + Γ0

]−1
δΓ
)
, (3.95)

and the first three terms are defined as S0 and the rest is the action for the fluctuations in the resonator

field, S[δϕ]. It was used that ϕ0 + δϕ is a vector in q, iωm-space where [ϕ0 + δϕ]q = ϕ0δq + δϕq. It is also

used that Γ0 is defined as Γ from (3.24) evaluated in ϕ0δk−k′ such that from inserting into (3.24) we get:(
G−1
0 + Γ0

)
(k, k′) = G−1

0 (k)δk,k′ −
gϕ0√
βN

δk,k′σ
z, (3.96)

and likewise for δΓ we use Γ evaluated in δϕk−k′ :

δΓ(k, k′) = δΓ(k − k′) = − g

2
√
βN

[
δϕk−k′ + δϕ∗k′−k

]
σz, (3.97)

which comes from the perturbation of the field. We thus have the action from the uniform field:

S0 = 2ϕ0ωR + g
√
βNϕ0 − tr ln

(
G−1
0 + Γ0

)
, (3.98)

and the action that depends on the fluctuations in ϕ:

S[δϕ] =
∑
q

δϕ∗q (−iωm + ωm) δϕq − tr ln
(
1 +

[
G−1
0 + Γ0

]−1
δΓ
)
+

(
g
√
βN

2
+ ωRϕ0

)(
δϕ0 + δϕ∗0

)
=
∑
q

δϕ∗q (−iωm + ωR) δϕq − tr ln
(
1 + G0

F δΓ
)
+

(
g
√
βN

2
+ ωRϕ0

)(
δϕ0 + δϕ∗0

)
, (3.99)

with the matrix Γ0 = − gϕ0√
βN

δqσ
z. From transforming the field ϕ → ϕ0 + δϕ, the integral measure is

transformed as D[ϕ] → D[δϕ] since the Jacobian of adding a constant (the saddle point solution) is zero.

The partition function is then:

Z =

∫
D[ϕ]e−S[ϕ] →

∫
D[δϕ]e−S0−S[δϕ]

= Z0

∫
D[δϕ]e−S[δϕ]. (3.100)
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We have expanded around a uniform field - we have not made any approximations yet. To get further in

the analysis we assume the fluctuations around the uniform field to be small. The goal is now to expand

the action to the lowest order in the field fluctuations. The logarithm can be expanded around δϕq = 0

due to the trade. The expansion gives tr ln(1 + ÂB̂) = −
∑∞
n=1

1
n tr(ÂB̂)n[10] such that:

S[δϕ] =
∑
q

δϕ∗q (−iωm + ωR) δϕq +

(
g
√
βN

2
+ ωRϕ0

)(
δϕ0 + δϕ∗0

)
+

∞∑
n=1

1

n
tr(G0

F δΓ)
n. (3.101)

Evaluated in the uniform field, the Green’s function G0
F is diagonal in k, iωn-space:[

G0
F (k, k

′)
]−1

=
[
G−1
0 (k, k′) + Γ0(k, k

′)
]

=

[
G−1
0 (k)− gϕ0√

βN
σz
]
δk,k

=
[
G0
F (k)

]−1
δk,k′ , (3.102)

where as usual G0(k) is an operator in spinor-space. As the matrix is diagonal in k-space and we invert

it in spinor-space. Inserting the matrix forms of G−1
0 (k) from (3.20) and Γ0(k) gives:

G0
F (k, k

′) = δk,k′

gp(k)− gϕ0√
βN

−iJ sin k

iJ sin k gh(k) +
gϕ0√
βN

−1

=
δk,k′

Dk

gh(k) + gϕ0√
βN

iJ sin k

−iJ sin k gp(k)− gϕ0√
βN

 , (3.103)

where:

Dk =

[(
gp(k)−

gϕ0√
βN

)(
gh(k) +

gϕ0√
βN

)]
− J2 sin2 k, (3.104)

and gp(k) =
1
2 (−iωn + 2h− 2J cos k) and gh(k) = − 1

2 (iωn + 2h− 2J cos k). The uniform field shifts the

transverse field h, so we define the new field h′ = h − gϕ0√
βN

and the shifted particle and hole functions

g′p = gp(h
′) and g′h = gh(h

′) that are functions of the shifted field. This simplifies the expressions as:

G0
F (k, k

′) =
δk,k′

Dk

 g′h(k) iJ sin k

−iJ sin k g′p(k)

 , (3.105)

with

Dk = g′p(k)g
′
h(k)− J2 sin2 k

= −1

4
(−iωn + 2h′ − 2J cos k) (iωn + 2h′ − 2J cos k)− 1

4
(2J sin k)

2

= − (iωn)
2 − ξ2k
4

, (3.106)

with ξk the same as (3.78), but with the shifted field h′. We are now ready to find the first order in the

expansion in δϕq, so we calculate:

tr G0
F δΓ =

∑
k,k′

trσG0
F (k, k

′)δΓ(k′, k)

= −trσ
∑
k,k′

δk,k′

(iωn)2 − ξ2k

 g′h(k) iJ sin k

−iJ sin k g′p(k)

 −g
2
√
βN

Xk−k′σ
z, (3.107)
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where we defined the field:

Xq = δϕq + δϕ∗−q. (3.108)

Notice that X∗
q = X−q. Evaluating the Dirac delta gives:

= trσ
∑
k

1

(iωn)2 − ξ2k

 g′h(k) iJ sin k

−iJ sin k g′p(k)

 g

2
√
βN

X0σ
z

= −X0
g

2
√
βN

∑
k,iωn

2h′ − 2J cos k

(iωn)2 − ξ2k
. (3.109)

This is recognized as the saddle point equation from (3.79) giving that:

tr G0
F δΓ = −X0

(
ϕ0ωR +

g
√
βN

2

)
. (3.110)

Inserting back into the action (3.101), the linear terms cancel as expected, since we are expanding around

a minimum. We go on and look for a second order contribution to the action. For that we need to

evaluate the following trace:

1

2
tr
(
G0
F δΓG0

F δΓ
)
. (3.111)

We carry out the trace:

1

2
trσ
∑
k

[
G0
F δΓG0

F δΓ
]
k,k

=
1

2
trσ
∑
k

∑
k1,k2,k3

G0
F (k, k1)δΓ(k1, k2)G0

F (k2, k3)δΓ(k3, k)

=
1

2
trσ
∑
k

∑
k1,k2,k3

G0
F (k)δk,k1

−g
2
√
βN

Xk1−k2σ
zG0
F (k2)δk2,k3

−g
2
√
βN

Xk3−kσ
z

=
g2

8βN

∑
k,k′

trσG0
F (k)Xk−k′σ

zG0
F (k

′)Xk′−kσ
z. (3.112)

Using that Xk−k′Xk′−k = |Xk−k′ |2 gives:

=
g2

8βN

∑
k,k′

|Xk−k′ |2trσG0
F (k)σ

zG0
F (k

′)σz

=
g2

8βN

∑
k,k′

|Xk−k′ |2trσ
1

Dk

 g′h(k) iJ sin k

−iJ sin k g′p(k)

σz
1

D′
k

 g′h(k
′) iJ sin k′

−iJ sin k′ g′p(k
′)

σz

=
g2

8βN

∑
k,k′

|Xk−k′ |2trσ
1

Dk

 g′h(k) −iJ sin k

−iJ sin k −g′p(k)

 1

D′
k

 g′h(k
′) −iJ sin k′

−iJ sin k′ −g′p(k′)

 . (3.113)

Evaluating the trace over spinor space gives:

=
g2

8βN

∑
k,k′

|Xk−k′ |2 1

DkD′
k

{[
g′h(k)g

′
h(k

′)− J2 sin k sin k′]+ [
−J2 sin k sin k′ +

(
−g′p(k)

) (
−g′p(k

′)
)]}

=
g2

8βN

∑
k,k′

|Xk−k′ |2 1

DkD′
k

[
g′p(k)g

′
p(k

′) + g′h(k)g
′
h(k

′)− 2J2 sin k sin k′] , (3.114)
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and by carrying out g′p(k)g
′
p(k

′) + g′h(k)g
′
h(k

′) we get:

=
g2

8βN

∑
k,k′

|Xk−k′ |2
1

DkD′
k

[
(iωn)(iωn′)

2
+

1

2
(2h′ − 2J cos k)(2h′ − 2J cos k′)− 1

2
2J sin k 2J sin k′

]

=
g2

16βN

∑
k,k′

|Xk−k′ |2
1

DkD′
k

[(iωn)(iωn′) + (2h′ − 2J cos k)(2h′ − 2J cos k′)− 2J sin k 2J sin k′] .

(3.115)

We define the bosonic two-momentum k − k′ = q and sum over k and q. Since k and k′ are fermionic

Matsubara frequencies, q will be a bosonic frequency as needed. Again we need to remember that the

sum is over the frequencies too, so shifting k′ = k − q also shifts iωn′ = iωn − iωm:

=
g2

16βN

∑
k,q

|Xq|2
1

DkDk−q

[
iωn (iωn − iωm) + (2h′ − 2J cos k)(2h′ − 2J cos(k − q))

− 2J sin k 2J sin(k − q)

]
. (3.116)

The denominator will be denoted as:

Λk,q = iωn (iωn − iωm) + (2h′ − 2J cos k)(2h′ − 2J cos(k − q))− 2J sin k 2J sin(k − q)

= iωn (iωn − iωm) + f(k, q), (3.117)

with f(k, q) defined as:

f(k, q) = (2h′ − 2J cos k)(2h′ − 2J cos(k − q))− 2J sin k 2J sin(k − q). (3.118)

We look at the physics of this additional term in the action. We had from (3.92) that the voltages at

the resonators were proportional to the position coordinate through Vr =
√

ℏωR

C Xr for the single photon

mode ωR in each resonator. We define the polarization bubble:

Πq =
g2

16βN

∑
k

Λk,q
DkDk−q

. (3.119)

The the second order correction is then given as:

g2

16βN

∑
q

X∗
q

{∑
k

Λk,q
DkDk−q

}
Xq =

∑
q

X∗
qΠqXq, (3.120)

which after a Fourier transformation becomes:

1

N
√
N

∑
r,s,x

eiqrδXre
isqΠse

−ixqδXx =
C

ℏωR
1√
N

∑
r,x

δVrΠx−rδVx. (3.121)

We have thus found that to second order in g, the voltages of the resonators interact non-locally through

Πq. The term Πq consists of two Jordan-Wigner fermion propagators with a shifted transverse field.

Inserting into the expansion of the effective action for the density variations we get to second order in

the perturbation:

S[δϕ] =
∑
q

δϕ∗q (−iωm + ωR) δϕq +
g2

16βN

∑
k,q

|(δϕq + δϕ∗−q)|2
Λk,q

DkDk−q
+O

(
δϕ3
)

=
∑
q

{
δϕ∗q (−iωm + ωR) δϕq +X∗

qΠqXq

}
+O

(
δϕ3
)
. (3.122)
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To put the action on matrix form we define the vector:

Φ†
q = ( δϕ∗q , δϕ−q ). (3.123)

We also define:

h0q = −iωm + ωR, (3.124)

to ease notation. We will use the inversion symmetries of Πq(iωm) that are shown in the section 3.3:

Πq(iωm) = Π−q(iωm) Πq(iωm) = Π−q(−iωm) Πq(iωm)∗ = Πq(−iωm) = Πq(iωm). (3.125)

The action is rewritten as (since the ϕ0 was absorbed into h, the delta is dropped δϕq = ϕq):

S[ϕ] =
∑
q

{
ϕ∗qhqϕq +

(
ϕq + ϕ∗−q

)
Πq(iωm)

(
ϕ∗q + ϕ−q

)}
=
∑
q>0

{
ϕ∗qhqϕq + ϕ∗−qh−qϕ−q + ϕ∗qΠqϕq + ϕ∗−qΠ−qϕ−q

+ ϕqΠqϕ−q + ϕ−qΠ−qϕq + ϕ∗−qΠqϕ
∗
q + ϕ∗qΠ−qϕ

∗
−q + ϕ∗−qΠqϕ−q + ϕ∗qΠ−qϕq

}
=
∑
q>0

{
ϕ∗qhqϕq + ϕ∗−qh−qϕ−q + 2ϕ∗qΠqϕq + 2ϕqΠqϕ−q + 2ϕ∗−qΠqϕ

∗
q + 2ϕ∗−qΠqϕ−q

}
, (3.126)

allowing us to write the action on matrix form:

S[Φ] =
∑
q>0

(
δϕ∗q δϕ−q

)h0q + 2Πq 2Πq

2Πq h0−q + 2Πq

 δϕq

δϕ∗−q


=
∑
q>0

Φ†
q

(
(GQ)−1

)
q
Φq. (3.127)

The matrix GQq is not normal, meaning A†A ̸= AA†, and it can therefore not be diagonalized by a unitary

transformation. With the action on matrix form, we find the integral measure from changing variable

from the complex number δϕ to the complex vector Φ. Before the change the integral measure is:

D[ϕ†, ϕ] = lim
N→∞

N∏
m

 kF∏
q=−kF

dϕ∗q,mdϕq,m

 , (3.128)

where dϕ∗dϕ = dIm[ϕ] dRe[ϕ] for integration over the complex plane. For each Matsubara n there is an

integration over the coherent state with momenta q ∈ [−kF , kF ]. An integral measure for integrating a

complex vector over the complex plane is written as d(v†, v) =
∏
i v

∗
i vi. The Φq integral measure is thus:

d(Φ†
q,Φq) = dδϕ∗qdδϕqdδϕ

∗
−qdδϕ−q. (3.129)
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Since the complex numbers all commute and going from ϕ → δϕ only adds a number ϕ0 with unit

Jacobian, the path integral measure from (3.128) becomes:

D[ϕ†, ϕ] = lim
N→∞

N∏
m

(
kF∏
q>0

dϕ∗q,mdϕq,mdϕ
∗
−q,−mdϕ−q,−m

)

= lim
N→∞

N∏
m

(
kF∏
q>0

d(Φ†
q,m,Φq,m)

)

= D [Φ] . (3.130)

Since the action is quadratic, the Green’s function for the fluctuations can be evaluated with Wick’s

theorem. We define the fluctuation Green’s function:

Gδ(q, iωm) = −⟨δϕqδϕ∗q⟩. (3.131)

Using Wick’s theorem this is found as:

⟨δϕ∗qδϕq⟩ = GQq,++, (3.132)

where the + indicate the positive momentum of the spinor. The 2 × 2 matrix GQq is found by inverting

(3.127):

GQq =
1

(h0q + 2Πq)(h0−q + 2Πq)− 4Π2
q

h0−q + 2Πq −2Πq

−2Πq h0q + 2Πq


= − 1

(iωm)2 − ω2
R − 4ωRΠq

iωm + ωR + 2Πq −2Πq

−2Πq −iωm + ωR + 2Πq

 . (3.133)

The fluctuation Green’s function is read off from the matrix elements:

Gδ(q, iωm) = −GQq,++ =
h0−q + 2Πq

(iωm)2 − ω2
R − 4ωRΠq

=
iωm + ωR + 2Πq

(iωm)2 − ω2
R

(
1 + 4

ωR
Πq

)
=

iωm + ωR + 2Πq(
iωm − ωR

√
1 + 4

ωR
Πq

)(
iωm + ωR

√
1 + 4

ωR
Πq

) (3.134)

⟨δϕ∗−qδϕ−q⟩ is the same whether we invert the q in (3.134) or read off the matrix element GQq,−−, using

that Πq = Π−q.

Since Πq(iωm) is real, the imaginary time Green’s function Gδ(iωm) is analytic in the set of all

Matsubara frequencies, {iωm|m ∈ Z}. We can analytically continue to the function Gδ(z) where z is

in the upper half of the complex plane such that Gδ(z) = Gδ(iωm) for z ∈ {iωm|m ∈ Z+}. With the

Lehmann representation is can be shown that the continuation z → ω + iη gives the retarded Green’s

function for η > 0. The spectrum of the resonator field is found from the poles of the retarded Green’s

function, as shown in appendix D.
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It is also possible to find the the Green’s function for the resonator position coordinate. The position

coordinate operator was defined as Xq = ϕq + ϕ∗−q where ϕq = δϕq. It is defined similar to the normal

phonon operator. The position coordinate average is found as:

⟨XqX
∗
q ⟩ = ⟨XqX−q⟩

=
〈(
ϕq + ϕ∗−q

) (
ϕ∗q + ϕ−q

)〉
= ⟨ϕ∗qϕq⟩+ ⟨ϕ−qϕq⟩+ ⟨ϕ∗qϕ∗−q⟩+ ⟨ϕ−qϕ∗−q⟩, (3.135)

which is read off as one of each matrix element from (3.133). The position coordinate Green’s function

becomes:

D(q) = −⟨XqX
∗
q ⟩

=
2ωR

(iωm)2 − ω2
R

(
1 + 4

ωR
Πq

) , (3.136)

and in the case of g → 0 where we the resonators are non-interacting, we find:

lim
g→0

D(q) =
2ωR

(iωm)2 − ω2
R

, (3.137)

which is the same as the free optical phonon Green’s function with energy ωR.

3.3 The polarization function

In this section we evaluate the Matsubara sum in the polarization function (3.119). The denominator

was written as (3.117) and had a term depending on the Matsubara frequency and one depending on the

wavenumber:

Λk,q = iωn (iωn − iωm) + f(k, q). (3.138)

The denominator was:

DkDk−q =
(iωn)

2 − ξ2k
4

(iωn − iωm)
2 − ξ2k−q

4
. (3.139)

From (3.119) we defined Πq =
g2

16βN

∑
k

Λk,q

DkDk−q
giving:

Πq(iωm) =
g2

βN

∑
k,iωn

iωn (iωn − iωm) + f(k, q)(
(iωn)2 − ξ2k

)(
(iωn − iωm)

2 − ξ2k−q
) (3.140)

From changing the dummy indices of the sum (k, iωn) to (−k,−iωn) and then using that ξ−k+q = ξk−q

and f(−k,−q) = f(k, q), it is seen that Π−q(−iωm) = Πq(iωm) showing that the polarization function

is symmetric in the two-vector q → −q. It also has to obey the symmetry in only the momentum

Π−q(iωm) = Πq(iωm) as can be seen from changing the dummy index k → −k and using f(−k,−q) =

f(k, q). The integrand is rewritten as a function of a complex number:

f(k, q) + z (z − iωm)

(ξk + z) (ξk − z) (ξk−q + z − iωm) (ξk−q − z + iωm)
= g(z), (3.141)
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that has four simple poles in zp = ±ξk , iωm ± ξk−q. Following the same procedure as in (3.59) we use:

1

β

∑
iωn

f(iωn)e
iωnτ =

∑
zp

Res
z=zp

[f(z)]nF (zp)e
τzp . (3.142)

The residues are then evaluated one at a time:

1○

Res
z=ξk

[g(z)] = lim
z→ξk

f(k, q) + z(z − iωm)

(ξk + z)(ξk − z)
(
ξ2k−q − (z − iωm)2

) (z − ξk)

= − f(k, q) + ξk (ξk − iωm)

2ξk

(
ξ2k−q − (ξk − iωm)2

) . (3.143)

2○

Res
z=−ξk

[g(z)] = lim
z→−ξk

f(k, q) + z(z − iωm)

(ξk + z)(ξk − z)
(
ξ2k−q − (z − iωm)2

) (z + ξk)

=
f(k, q) + ξk (ξk + iωm)

2ξk

(
ξ2k−q − (ξk + iωm)2

) . (3.144)

3○

Res
z=iωm+ξk−q

[g(z)] = lim
z→iωm+ξk−q

f(k, q) + z (z − iωm)

(ξ2k − z2) [ξk−q + (z − iωm)] [ξk−q − (z − iωm)]
(z − (iωm + ξk−q))

= −f(k, q) + ξk−q (ξk−q + iωm)

2ξk−q (ξ2k − (ξk−q + iωm)2)
. (3.145)

4○

Res
z=iωm−ξk−q

[g(z)] = lim
z→iωm−ξk−q

f(k, q) + z (z − iωm)

(ξ2k − z2) [ξk−q + (z − iωm)] [ξk−q − (z − iωm)]
(z − (iωm − ξk−q))

=
f(k, q) + ξk−q (ξk−q − iωm)

2ξk−q (ξ2k − (ξk−q − iωm)2)
. (3.146)

Inserting the residues into (3.63) gives the polarization function:

Πq(iωm) =
g2

2N

∑
k

{
− f(k, q) + ξk (ξk − iωm)

ξ2k−q − (ξk − iωm)2
nF (ξk)

ξk

+
f(k, q) + ξk (ξk + iωm)

ξ2k−q − (ξk + iωm)2
nF (−ξk)

ξk

− f(k, q) + ξk−q (ξk−q + iωm)

ξ2k − (ξk−q + iωm)2
nF (ξk−q)

ξk−q

+
f(k, q) + ξk−q (ξk−q − iωm)

ξ2k − (ξk−q − iωm)2
nF (−ξk−q)

ξk−q

}
. (3.147)

The expression is reduced by first shifting the third and fourth term by k → q − k and then using

f(q − k, q) = f(k, q):

Πq(iωm) =
g2

2N

∑
k

tanh
ξk
2T

(
f(k, q) + ξk(ξk − iωm)

ξ2k−q − (ξk − iωm)2
+
f(k, q) + ξk(ξk + iωm)

ξ2k−q − (ξk + iωm)2

)
. (3.148)
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We verify that the symmetries observed earlier still hold true. The symmetry Π−q(iωn) = Πq(iωm) holds

as we can change the dummy index k → −k and use that f(−k,−q) = f(k, q) and ξ(−k) = ξ(k). The

two momentum inversion symmetry is also still obeyed. To see that, we shift the dummy index k → k−q

and use that f(k − q,−q) = f(k, q), then ξk → ξk−q and ξk+q → ξk, and from there it is verified that

Πq(iωm) = Π−q(−iωm). In this form Πq(−iωm) = Πq(iωm) is easily seen. As only the Matsubara

frequencies are imaginary it gives that Πq(iωm)∗ = Πq(−iωm) = Πq(iωm).

Plotting the polarization

To better understand the behavior of Πq we plot Πq(iωm → ω+ iη) for different parameter regimes. With

the analytic continuation a finite η is needed to keep the poles of the polarization function from the real

axis and in the lower half of the complex plane.

Figure 3.3: Plot of the real part of the polarization function, Π′
q(ω).
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Figure 3.4: Plot comparing the real part of the polarization function, Π′
q(ω), in the ferromagnetic and

paramagnetic regimes. All energies are in terms of ωR

We learn from figure 3.4 that the real part of the polarization function is larger by almost a factor of

two in the ferromagnetic regime when J > h compared to the paramagnetic regime of h > J . The J

originally came from the capacitance that made the DQDs interact, so there is more interaction in the

ferromagnetic regime. The polarization function is smallest in the minimum energy of two Jordan-Wigner

fermions. This can be seen in the second plot where the minimum energy of two fermions, with difference

in wavenumber q = 0, is 4|h− J | which is 0.8ωR for h
ωR

= 1 and J
ωR

= 0.8.
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Figure 3.5: Plot of the imaginary part of the polarization function Π′′
q (ω). Energies are in terms of ωR.

Figure 3.6: Plot comparing the imaginary part of the polarization function, Π′′
q (ω), in the ferromagnetic

and paramagnetic regimes. Energies are in terms of ωR

It can be seen that the imaginary part is vanishing until the frequency becomes comparable to the energy

two Jordan-Wigner fermions. In figure 3.6 it is seen that also the imaginary part is larger by around a

factor of two in the ferromagnetic regime J > h .
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Figure 3.7: Plot of Π′′
q (ω) in terms of ωR

The limit of Πq|J=0

In (3.78) we defined ξk = +
√

(2h− 2J cos k)2 + (J sin k)2. We can calculate Πq(iωn) in the limit of no

interaction between DQDs, J = 0, where the system becomes N independent resonators. From (3.78) it

is seen that ξk|J=0 = 2h. From (3.117) it is found that f(k, q)|J=0 = (2h)2. Inserting into (3.147) gives:

Πq(iωm)|J=0 =4g2

{
−4h2 + 2h (2h− iωm)

4h−(2h− iωm)2
nF (2h)

2h
+

4h2 + 2h (2h+ iωm)

4h2 − (2h+ iωm)2
nF (−2h)

2h

− 4h2 + 2h (2h+ iωm)

4h2 − (2h+ iωm)2
nF (2h)

2h
+

4h2 + 2h (2h− iωm)

4h2 − (2h− iωm)2
nF (−2h)

2h

}

= 4g2
(
nF (−2h)− nF (2h)

)( 4h− iωm
4h2 − (2h− iωm)2

+
4h+ iωm

4h2 − (2h+ iωm)2

)
= 4g2

(
1− 2nF (2h)

)( 4h− iωm
(4h− iωm)(iωm)

− 4h+ iωm
(4h+ iωm)(iωm)

)
= 0 (3.149)

The Green’s function (3.133) gives in this limit with Πq = 0:

GQ(q, iωm) =
1

ω2
R − (iωm)2

ωR + iωm 0

0 ωR − iωm


=

 1
ωR−iωm

0

0 1
ωR−(−iωm

).

 (3.150)
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In terms of the resonator fields we get then even simpler form from Wick’s theorem:

−⟨ϕq(iωm)ϕ∗q(iωm)⟩ = 1

iωm − ωR

→ 1

ω − ωR + iη
. (3.151)

Without DQD interaction, and thus no longitudinal field, the system goes back to free optical photons

with optical photon dispersion relations with frequency ωR. The poles are in the negative half of the

complex plane as they should be for a retarded Green’s function.

3.4 Results

The spectrum of the resonator field is found from the poles of single particle retarded Green’s function.

The spectral function can be found from the imaginary part of the Green’s function. To find the retarded

Green’s function we analytically continue iωm → ω + iη. The continuation gives Πq → ΠR(q, ω) =

Π′ + iΠ′′, and the single particle retarded Green’s function for the resonator field (3.134) is found from:

GRδ (q, ω + iη) =
ω + iη + ωR + 2ΠR(q, ω + iη)(

ω + iη − ωR

√
1 + 4

ωR
ΠR(q, ω + iη)

)(
ω + iη + ωR

√
1 + 4

ωR
ΠR(q, ω + iη)

) . (3.152)

The positive η is needed to keep the poles from the real axis and avoid divergences that would occur due

to the infinitely narrow fermion density of states when evaluating the Green’s function numerically.

3.4.1 Weak coupling dispersion relations

Since ΠR ∝ g2 we assume that g is a small parameter and that ΠRq is sufficiently well behaved, such that

the denominator can be expanded in g. Expanding the square root gives:

ωR

√
1 +

4

ωR
(Π′ + iΠ′′) = ωR

(
1 +

1

2

4

ωR
(Π′ + iΠ′′)

)
+O(g4)

= ωR +Σq(ω) + iΓq(ω), (3.153)

where we identified the self energy Σq(ω) = 2Π′ and the inverse life time Γq(ω) = 2Π′′. For weak coupling

the retarded Green’s function is:

GRδ (q, ω) = −
ω + ωR +Σq(ω) + i

(
Γq(ω) + η

)
[ωR +Σq(ω)− ω + i(Γq(ω)− η)] [ωR +Σq(ω) + ω + i(Γq(ω) + η)]

. (3.154)

The energy of the resonator modes are shifted by the self energy:

±ω(q) = ωR +Σ(q, ω), (3.155)

while possibly also resulting in a particle life time Γ−1(q, ω). The spectrum is found by numerically

solving for the ω(q) that satisfies (3.155). The Newton-Raphson method was used as the root finder, and

the dispersion relations are shown for different parameter regimes in figures 3.8 and 3.9.
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Figure 3.8: Dispersion relation and the corresponding 2Π′′(ωq)
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Figure 3.9: Dispersion relation and the corresponding 2Π′′(ωq)

We look to estimate the wavenumber, q, at which the modes start acquiring an imaginary part. As the

resonator modes interact with the fermions through the polarization function, which is largest close to

the poles of the two fermion propagators, we look to solve:

ξ2k−q = (ξk ± ω)
2
. (3.156)

Setting k = 0 and solving gives:

ξ2q = (ξ0 ± ω)
2

cos q = 1− ω

8hJ
± |h− J |ω

4hJ
. (3.157)

For the parameter regime of 1 = h = J ≈ ω it gives cos q = 7/8 ⇒ q ≈ π/6, which matches the numerical

result. At h = J = 1/2 the wavenumber is found as cos q = 1/2 ⇒ q ≈ π/3.

From the dispersion relation we find the group velocity. The group velocity is found from vg(q) = ∂qωq

and numerically it is approximated by vg ≈ ωi+1−ωi

qi+1−qi .
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Figure 3.10: Group velocity

The group velocity is seen to be largest near the quantum critical point of h = J . By using realistic

parameters from appendix A we can estimate the resonator wave group velocity. The units of the

dispersion relation were in terms of ωR and the wavenumber, q, is in terms of the distance between

DQDs, a, which was set to one. The group velocity is thus in units of a× ωR. Taking h ≈ J and q just

large enough that the modes are barely damped, the group velocity is in the order of 10−3a× ωR. From

[13] we take a ≈ 100nm and from appendix A we take fR ≈ 6GHz ⇒ ωR ≈ 40GHz. This results in a

group velocity vg ≈ 4m/s with the interaction strength g = ωR/10.

We have thus found the dispersion relation for the collective resonator waves to second order in g.

From the dispersion relation we found the group velocity of the resonator waves in the system. The group

velocity was estimated with our chosen parameters. From the imaginary part of the polarization function

it was found that interaction between the Jordan-Wigner fermions and the resonators cause a decay of

long-wavelength resonator modes.

3.4.2 Spectral function

The spectral function is defined as:

Aδ(q, ω) = −2ImGRδ (q, ω). (3.158)

From this one can find the density of states as:

⟨ϕ∗qϕq⟩ =
∫ ∞

−∞

dω

2π
Aδ(q, ω)nF (ω). (3.159)
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The spectral can therefore be thought of as the energy resolution of a resonator with wavenumber q. It

gives an indication of how well the excitation created by adding a resonator mode with wavenumber q

can be described by a free, non-interacting particle.

Figure 3.11: Spectral function for the resonator
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Figure 3.12: Spectral function for the resonator states

It is seen from the spectral function that the resonator states are not delta functions anymore but acquire

a finite lifetime. The broadening of the spectral function is most pronounced in the fine tuned regime for

long wavelengths.

In the case of no interaction we expect the spectral function to become a delta function and it is found

that:

A|g=0 = −2Im
ω + ωR + iη

(ω + iη)2 − ω2
R

=
1

2

(ω + ωR)
2 + η2

ω2

η(
ω2−ω2

R−η2
2ω

)2
+ η2

, (3.160)

and by now letting η → 0 and evaluating the delta function we get:

A|g=0(ω) = 2πδ(ω − ωR), (3.161)

as expected, where we are left with the non-interacting optical photons.
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Chapter 4

Conclusion and outlook

4.1 Summary

We will now summarize and conclude on the results obtained in the thesis. Motivated by dynamics in

resonators coupled to spin chains we started from a chain of double quantum dots. We coupled a single

resonator to the hopping elements in the DQDs. The physical DQD chain was transformed into the

spin system. We could then transform the spin model into a model quadratic in spinless Jordan-Wigner

fermions. To solve the system we integrated out the bosons by assuming that they were in a coherent

state. Then we performed a Bogoliubov transformation. We found that the classical resonator would

shift the transverse field and we also saw that the fermions would shift the resonator state. We found a

saddle point equation for the classical minimum of the resonator potential for the fermion groundstate.

Going to the imaginary time path integral formalism we did not have to make assumptions about the

resonator states. We could also couple many resonators to the DQD chain. With the path integral we

integrated out the fermions and found an effective action for the coherent resonator states. We found

that a uniform field would always exist as a solution to the resulting saddle point equation and we solved

it in the fine tuned limit for weak interaction. The field that solves the saddle point equation gave a shift

in resonator voltage.

To understand the dynamics of the resonator chain we expanded around the uniform field. We found

an effective action for the resonator field fluctuations and expanded to lowest order in the coupling.

We studied the resulting polarization function for the resonator position coordinates. From the Green’s

function we found the dispersion relation and dampening of the fluctuation, that came from the interaction

with the Jordan-Wigner fermions. From the dispersion relations we found the group velocity of the

resonator field fluctuations.
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4.2 Perspectives

A natural extension of the work done in the second part of the thesis is to work on higher order interaction

terms in the density wave action. With higher order terms we could hope to find more interesting dynamics

from the nonlinear terms in the equations of motion.

Originally the coupling of the resonator(s) to the DQD hopping term was chosen such that the Jordan-

Wigner transformation could diagonalize the fermion system. That required the DQD detuning to be

zero. It could be interesting to couple to the DQD detuning according to (2.20) instead of the hopping.

We could not use a Jordan-Wigner transformation, but we could possibly apply a Holstein-Primakoff

transformation, transforming the spins into bosons. We would then have a system of two different types

of bosons interacting, closer to the original model used by Davydov.

It would also have been interesting to study the dynamics from the point of view of the spins that

were obtained from the DQDs. To do so we should integrate out the bosons instead of the fermions.

Integrating out the bosons would lead to a non-quadratic model as shown in appendix E.

65



Bibliography

[1] A. Davydov, “The theory of contraction of proteins under their excitation”, Journal of Theoretical

Biology, vol. 38, no. 3, pp. 559–569, 1973, issn: 0022-5193. doi: https://doi.org/10.1016/0022-

5193(73)90256-7. [Online]. Available: https://www.sciencedirect.com/science/article/

pii/0022519373902567.

[2] T. N. De Silva and P. Bolt, Bio-energy transport as a phonon dressed vibrational exciton in protein

molecules, 2019. doi: 10.48550/ARXIV.1903.11581. [Online]. Available: https://arxiv.org/

abs/1903.11581.

[3] T. Bonsen, P. Harvey-Collard, M. Russ, et al., Probing the jaynes-cummings ladder with spin circuit

quantum electrodynamics, 2022. doi: 10.48550/ARXIV.2203.05668. [Online]. Available: https:

//arxiv.org/abs/2203.05668.
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Appendix A

Experimental parameters

ℏωr

In the work of [3] the bare resonator frequency fR = ωR/2π is given as ∼ 6.9GHz. In the work on

spin-photon coupling of [14] it is given that fR ∼ 6GHz. The bare resonator frequecy in energy is found

as ℏ × 6GHz ∼ 0.025meV when using that ℏ × 1GHz ∼ 6.6 · 10−4meV. Another experiment studying

vacuum Rabi splitting in a DQD coupled to a co-planar resonator has fR ∼ 8.3GHz which amounts to

∼ 0.034meV [15].

th = h

The hopping term, 2th/h, is given for the double dots in [14] to lie in the interval of 7.8 − 14.6GHz. In

[3] the hopping strength is given as 2th/h = 12.0GHz. This gives the hopping th to be in the interval

of 0.015 − 0.03meV. In the experiment from Tokyo, th/2π ∼ 1.5GHz or only 6 · 10−6meV. th could

experimentally be tuned around th
ℏωR

∼ 1

g

An estimate on a modern strong charge-photon coupling is 200MHz. This is usually coupling to the

detuning and not the tunneling. This is ∼ 8 ·10−4meV or in terms of the resonator frequency g
ℏωR

∼ 1/30.

In terms of these quantities the coupling could be said to be in the weak coupling regime. We have to

estimate the constant shift in h from the resonators to estimate h′ that is used in most of the thesis, but

the correction is on the order of g2.

U = 4J

The Coulomb potential between adjacent quantum dots is proportional to the longitudinal field, J , of the

TFI. In the work of [16] the Coulomb potential, U/h, is estimated as up to 30GHz which would result in

J ∼ 7.5GHz, again giving J ∼ h ∼ ℏωR making the fine tuned regime not unreasonable. In the works of

[13] they state that inter-DQD capacitive couplings in GaAs DQD lie in the range of 25− 125 µeV which

would give J in the range of 12− 31 µeV much the same range as th = h.
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Parameter symbol value [µeV]

Bare resonator freq ℏωR 25− 35

DQD-Resonator coupling g ∼ 0.8

DQD tunnel coupling h 6− 30

Inter-DQD potential U 25− 125
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Appendix B

Coherent states

B.1 Coherent states from displacement operator

The displacement operator is defined as:

D̂ (α) = eαâ
†−α∗â. (B.1)

With commutation relations [a, a†] = 1 it can be used from the Baker–Campbell–Hausdorff formula that:

eÂ+B̂ = eÂeB̂e−
1
2 [Â,B̂], (B.2)

such that:

D̂(α) = e−
|α|2
2 eαâ

†
eα

∗â. (B.3)

Applying the displacement operator onto a vacuum state gives:

D̂(α) |0⟩ = e−
|α|2
2 eαâ

†
|0⟩ (B.4)

= e−
|α|2
2

∞∑
n=0

αn√
n!

|n⟩ , (B.5)

which is a normalized coherent state with eigenvalue α. We see that the coherent states are vacuum

states displaced by α.

To see why we call it a displacement operator we define α =
√

mω
2ℏ x ∈ R. For a harmonic oscillator

â− â† = i
√

2
ℏmω p̂, which gives:

D̂(α) = e−ixp̂ = T̂ (x), (B.6)

and we recover the real space translation operator.

B.1.1 Displacement identity

Defining the two operators A = αa† − a∗a and B = βa† − β∗a we have:

D(α)D(β) = eAeB . (B.7)
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Since we have [A,B] = −2Im(αβ∗) ∈ C we use the Zessenhaus expansion to get:

D(α)D(β) = eA+Be−
1
2 [A,B]

= eIm(αβ∗)e(α+β)a−(α+β)∗a† ,

such that:

D(α)D(β) = eIm(αβ∗)D(α+ β). (B.8)

Up to a phase two displacements, D(α) and D(β), are thus equal to the displacement D(α+ β).

B.2 Generating coherent states from coupling classical and quan-

tum

A coherent state can be generated by a classical current [17]. A classical current density is given by:

j⃗(r, t) (B.9)

An electromagnetic field is given by the vector potential A(r, t). A single quantized mode of the field is

given in the interaction picture by:

A(r, t) = ê

√
ℏ

2ωϵ0V

[
âeikr−iωt + â†e−ikr+iωt

]
. (B.10)

Classical electromagnetic theory gives the interaction potential as:

V (t) =

∫
j(r, t)A(r, t)dr.1 (B.11)

Inserting the quantized field mode gives:

V (t) =

√
ℏ

2ωϵ0V

(
âê ·

∫
j(r, t)eikrdre−iωt + â†ê ·

∫
j(r, t)e−ikrdreiωt

)
(B.12)

=

√
ℏ

2ωϵ0V

(
âê · j(k, t)e−iωt + â†ê · j∗(k, t)eiωt

)
, (B.13)

using the Fourier transform
∫
f(r)eikrdr = f(k). 2 Staying in the interaction picture we have a time

evolution operator that depends on time. For small time steps we get:

Û(t+ δt, t) ≈ e−i
V (t)δt

ℏ

= e
− i

ℏ

√
ℏ

2ωϵ0V (âê·j(k,t)e
−iωt+â†ê·j∗(k,t)eiωt)δt

= eu(t)â
†−(u∗(t)â)δt

= D̂ (u(t)δt) , (B.14)

1This is only true for static fields [18]
2Since the volume, V is only for the field we do not want to integrate over that volume but all of space and do not use

V for the Fourier transform.
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where we defined:

u(t) = − i

ℏ

√
ℏ

2ωϵ0V
ê · j∗(k, t)eiωt, (B.15)

and used the definition (B.1). We apply these small time evolutions in a time ordered product to get the

time evolution over a finite time interval:

U(T, 0) = lim
δt→0

T̂
T
δt∏
l=0

D(u(tl)δt), (B.16)

where the time tl = lδt. We use (B.8) to get the time ordered product of time evolutions:

U(T, 0) = lim
δt→0

eiΦD(

T/δt∑
l=0

u(tl)δt)

= eiΦD(α(T )), (B.17)

where the phase Φ ∈ C is the overall phase accumulated from adding the displacement according to (B.8).

The α is:

α(T ) = lim
δt→0

T/δt∑
l=0

u(tl)δt

→
∫ T

0

u(t)dt, (B.18)

where the upper limit is T since the final time step tT/δt =
T
δtδt = T . If we let the state evolve from the

infinite past to the infinite future, we get:

α(∞,−∞) →
∫ ∞

−∞
u(t)dt

= − i

ℏ

√
ℏ

2ωϵ0V
ê ·
∫ ∞

−∞
j∗(k, t)eiω

′tdt

= − i

ℏ

√
ℏ

2ωϵ0V
ê · j∗(k, ω) = α(k, ω). (B.19)

Since it is now expanded in the plane wave basis
∫
f(r, t)eikr−iωtdtdr = f(k, ω) we get the j∗(k, ω) in the

equation. We see that the time evolution operator is a displacement operator in the quantity α(T ) that

depends on the current with an overall phase.

If we had an electromagnetic field (eg a superconducting resonator) in the vacuum state, we could

then turn on the classical current (eg a feedline) and evolve the vacuum state with the time-evolution

operator. From (B.5) that results in the coherent state:

|ψ(T )⟩ = U(T ) |0⟩

= e−
|α(T )|2

2

∞∑
n=0

αn(T )√
n!

|n⟩ . (B.20)

Where we ignored the overall phase acquired from the displacement operators. We see that having an

electromagnetic field coupled to a classical current results in a time evolution operator that evolves the

vacuum state of the electromagnetic field into a coherent state.
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We also see that for the case of (B.19) (but also in general) we have that n̄ = |α|2 ∝ |j(ω)|2
ω . We see

that the average photon number in the eletromagnetic field is proportional to the square of the classical

current density.
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Appendix C

Resonators and quantum dot

C.1 Classical circuits

How do we describe circuits when they are miniaturized and the signal wavelengths are on the order of

the system size?

C.1.1 Lumped elements model

When calculating currents, voltages ect in circuits one usually starts from a ”lumped element” model as

described in fig C.1.

Figure C.1: A simple ”lumped element” model showing a voltage source and a resistor.

In the lumped circuit model one imagines the wires as having no resistance and that the resistance in

the circuit loop is concentrated in the resonator ”lump”. This is of course a simplification where the

spatially distributed circuit parameters (resistance, capacitance, ..) are described in a ”topology” of ”a

topology consisting of discrete entities that approximate the behavior of the distributed system under

certain assumptions” (Wikipedia). All mentions about distance and position in this circuit are ignored.

75



The lumped element model is valid when Lc ≪ λ where Lc is the circuits characteristic wavelength and

λ is the operating wavelength, eg for a uniform current of λ → ∞. When the spatial variations in the

signal can not be ignore, the lumped elements model breaks down and we have to go to the ”distributed

elements” model.

C.1.2 Distributed elements model

To consider spatial variations we take as an example the conventional co-axial cable consisting of a center

conductor and a ground conductor separated by a dielectric as described in figure C.2.

Figure C.2: Schematic representation of co-axial cable

In this system we have an electric and magnetic field between the center conductor and ground plane

from the current. This is modeled as a capacitance between the two (there is an electric field in a

capacitor but no current) and a conductance in the center conductor (giving a magnetic field). There is

also a resistance in the system that we imagine as a resistance in the center conductor. There are certain

boundary conditions we have to think about at the ends. To simplify this example we imagine the co-axial

cable being made perfectly such that capacitance, resistance and inductance are evenly distributed in the

system. An example of a distributed model of such a system is a lossy transmission line described by a

telegrapher’s type equation as seen in figure C.3.

Figure C.3: Local element of a lossy transmission line.

Here we model the transmission line as N connected local lumped element models where the resistance

is Rdx, dx = L/N such that the total resistance is R × L. The same for the rest of the components.

But taking the limit of N → ∞ with L constant we get to an integral from Kirchoff’s equations that we

can solve for the signal and thus have an equation that includes spatial variations. The solution then
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naturally depends on the boundary conditions, whether for example the center conductor is capacitatively

coupled or grounded in the ends.

C.2 Strip line or λ/2 resonators

In circuit QED, microwave resonators are superconducting 2D strips with a microwave field confined in

the plane. The boundary conditions set on this plane lead to the discretization of the electromagnetic

into distinct harmonic modes where each mode can be thought of as an independent harmonic oscillator.

In the 2D superconducting strip resonator the modes are actual charge waves from the dissipation-less

plasma waves [19].

Figure C.4: Strip line resonator. A center conductor of length d and width w that is capacitively coupled

to and input and output port for signals. The center conductor is separated from a ground by a distance

s such that the resonator can be compared to a classical ”squashed” coaxial cable. Figure (b) shows

the electric and magnetic fields that are modelled as the capacitances and inductances in the distributed

component model.

In figure C.4 we see that the resonator can be thought of as a ”squashed” conventional co-axial cable where,

just like in the co-axial cable, the E and B-fields are confined to a region between the center conductor and

ground plane. The dimensions of the center conductor, dielectric substrate (that everything is deposited

on), and gaps are chosen such that the field(s) are concentrated between the center conductor and ground

plane.

We consider a resonator of length d = 1cm with a signal in the microwave regime. This means that

we have λ ≈ d and we need to consider spatial variations of the electric and magnetic field, as illustrated

in figure C.4. To do so we consider the following classical distributed element model:
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Figure C.5: Distributed element model of superconducting strip line resonator

In the model there is no resistances since we imagine having a superconducting center conductor (thus the

charges are cooper pairs with charge 2e). To solve a system like this we want to write down a Hamiltonian

in terms of some conjugate variables. We follow the approach of [19]. The energy of a capacitor is:

EC =
Q2

2C
, (C.1)

where Q is the charge on the capacitor and C is the capacitance. The energy of the inductor (thought of

as circular loop) is given by EI =
I2

2L . Using the relationship between the magnetic flux and current in a

loop we have that Φ = IL, using this we get the energy of the conductor in terms of the magnetic flux

Φ as:

EI =
Φ2

2L
, (C.2)

where L is the inductance [20]. We then enforce charge conservation at each node such that Qn(t) =∫ t
−∞ In(t

′)dt′, with In the current through node n. From Faraday’s law we get the relationship between

voltage and flux as Φn(t) =
∫ t
−∞ Vn(t

′)dt′, with Vn the voltage to ground at node n, where it is assumed

that the charge and flux is zero at the infinite past. We can then rewrite:

∂tQn(t) = C∂2tΦn(t)

⇒ Qn(t) = C∂tΦn(t). (C.3)

We now imagine the energy of the capacitor as the kinetic energy since it depends on the time derivative

of the flux (We could have also defined it in terms of the charge variable). We can now write down the

Lagrangian:

L[Φ, Φ̇] =

N∑
n=0

{
C0

2
Φ̇2
n − (Φn+1 − Φn)

2

2L0

}
, (C.4)

where Φn+1 −Φn is the flux difference between node n+ 1 and n which is then the flux in the inductor.

We can then find the conjugate momentum to the flux coordinate as:

πn =
δL

δΦ̇n

= C0Φ̇n = Qn(t), (C.5)

where we found that the charge and flux at each node are conjugate variables. This gives a very physical

picture since the inductor converts charge to flux so they are intuitively conjugate variables. We can now
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write down the classical Hamiltonian for the distributed elements circuit in figure C.5 in terms of the

conjugate variables Φn and πn = Qn at each node:

H =

N−1∑
n=0

πnΦ̇n − L

=

N−1∑
n=0

{
Q2
n

2C0
+

(Φn+1 − Φn)
2

2L0

}
. (C.6)

We now want to get a continuous model, so we let the voltage and charge at each node be fields over x

such that Qn = Q(xn)δx and Φn = Φ(xn), where Q(x) is the charge density q′(x) at position x. We then

also need to take C0 = cδx and L0 = lδx, where l and c are now inductance and capacitance per unit

length (L/d and C/d, since we assumed uniform system) such that integrating from 0 to d gives the total

capacitance and inductance. Lastly we also get π(xn) = Q(xn) = cΦ̇(xn). We can then expand the flux

field in a Taylor expansion:

Φ(xn+1) = Φ(xn + δx) = Φ(xn) + ∂xΦ(xn)δx+O(δx2). (C.7)

Inserting into the Hamiltonian and remembering we are taking a limit of N → ∞ we have:

H =

N−1∑
n=0

{
Q2(xn)

2c
+

[∂xΦ(xn)]
2

2l

}
δx

→
∫ d

0

{
Q2(x)

2c
+

[∂xΦ(x)]
2

2l

}
dx. (C.8)

By using Hamilton’s equations:

∂π(x)

∂t
= − ∂H

∂Φ(x)
, (C.9)

along with integration by parts:∫ d

0

[∂xΦ(x)]
2
dx =

[
Φ(x)∂2xΦ(x)

]d
0
−
∫ d

0

Φ(x)∂2xΦ(x)dx, (C.10)

we get the equations of motion for the flux:

∂π(x)

∂t
= c∂2tΦ(x, t)

=
1

2l
∂2xΦ(x, t),

which gives the equation for the field:

v2∂2xΦ(x, t)− ∂2tΦ(x, t) = 0, (C.11)

where v =
√

1
2cl . We assume separable solutions such that:

Φ(x, t) =
∑
i

ui(x)Φi(t), (C.12)
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we get that ∂2tΦi(t) = −ω2
mΦi(t) and v

2∂2xui(x) = −ω2
mui(x). We then solve the spatial part with:

ui(x) = Ai cos(kix+ θi). (C.13)

The boundary conditions were such that the resonator is capacitively coupled in both ends giving that

the current I(x = 0, d) = 0. The charge at node n was described by Qn =
∫ t
−∞ I(t′)dt′ and we then got

the continuous charge density Q(x) = ∂xq(x) giving us the charge conservation again like:

Q(x, t) =

∫ t

−∞

∂I(x, t)

∂x
dt′, (C.14)

such that I ′(x, t) = Q̇(x, t) = c∂2tΦ(x, t). From the equation of motion we then get the following equation

for the current:

∂xI(x, t) =c∂
2
tΦ(x, t)

=cv2∂2xΦ(x, t)

⇒ I(x, t) =
1

2l
∂xΦ(x, t). (C.15)

Inserting the boundary points we get:

I(x = 0, d) =
1

2l
∂Φ(x)|x=0,d = 0, (C.16)

giving us for all eigenmodes of the system that:

sin(knx+ θ)|x=0,d = 0

⇒ kn =
π

d
n. (C.17)

From requiring normalized spatial modes we get:

1

d

∫ d

0

An cos(knx)Am cos(kmx)dx = δnm

⇒ An =
√
1/2 (C.18)

From the equation v2∂2xun(x) = −ω2
nun(x) we get that ωn = vkn. We can then write the solution to the

classical system as:

Φ(x, t) =
∑
n

un(x)Φn(t)

=
1√
2

∑
n

cos(knx) cos(vknt). (C.19)

By using that Q and Φ are conjugate variables we see that:

Q(x, t) = cΦ̇(x, t)

= −
∑
n

1√
2
cos(knx)ωn sin(ωnt)

=
∑
n

un(x)Qn(t) (C.20)
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At this point we are in position to answer the question of how the voltage and current looks. From

Faraday’s law we had that ∂tΦ(x, t) = V (x, t) such that:

V (x, t) = − 1√
2

∑
n

ωn cos(knx) sin(vknt)

=
1

c
Q(x, t), (C.21)

which intuitively we think of the charge density Q times d, coming from c = C/d, such that it actually

just says that voltage is the charge divided by the capacitance. For the current we had from (C.15):

I(x, t) = − 1

2l

1√
2

∑
n

kn sin(knx) cos(vknt), (C.22)

and we see that for all modes we have that when the current is maximum in time or position, the voltage

will be lowest and vice versa. Generally the voltage will be largest at each end of the resonator where

cos knx|x=0,d = 1. If we insert the solution back in to the Hamiltonian and use that the spatial functions

are orthogonal, and Q = c∂tΦ ⇒ Qn = cΦ̇n from multiplying each side with un(x) and integrating we

get:

H =
∑
n

{
dQ2

n

2c
+
d k2nΦ

2
n

2l

}
=
∑
n

{
(dQn)

2

2C
+
dω2

n2clΦ
2
n

2l

}
=
∑
n

{
q2n
2C

+
1

2
(
√
2ωn)

2CΦ2
n

}
, (C.23)

where the charge density eigenmode, Qn has been redefined to the charge eigenmode dQn = qn, the

length of the resonator times the charge density mode. Promoting qn and Φn to non-commuting quantum

operators we define the raising and lowering operator an and a†n (that should depend on time):

q̂n =

√
ℏ
2
ωnC

(
a†n + an

)
, Φ̂n = i

√
ℏ
2

1

2ωnC

(
a†n − an

)
, (C.24)

where [an, a
†
m] = δn,m. That gives the Harmonic oscillator with:

H =
∑
n

ℏωn
(
a†nan +

1

2

)
. (C.25)

We could have just as easily chosen:

Φ̂n =

√
ℏ
2

1

2ωnC

(
a†n + an

)
, q̂n = i

√
ℏ
2
ωnC

(
a†n − an

)
, (C.26)

and this changes whether the voltage operator is given by a† + a or a† − a since V̂n(x) = un(x)q̂n/C.

C.3 Quantum dots and resonators

In semiconductors, quantum dots can be made by depleting a 2DEG such that the electrons get localized

to a confined space. From figure C.6 we imagine closing of the barrier defined by gate 1 and 3 to have an
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”isolated” DQD. By adjusting how negative gate 2 is we adjust the depletion of the space between the

two dots and thus we can adjust the interdot hopping.

Figure C.6: SEM micrograph of a double dot defined by metallic gates (light gray areas). Metal gates

are deposited on top of a GaAs/AlGaAs heterostructure with a 2DEG 100 nm below the surface (van

der Vaart et al., 1995). Applying a negative voltage to all gates depletes the 2DEG underneath them

and forms two quantum dots. Current can flow from the large electron reservoir on the left via the three

tunnel barriers induced by the gate pairs 1-F, 2-F, and 3-F to the reservoir on the right. The transmission

of each tunnel barrier can be controlled individually by the voltage on gates 1, 2, or 3. [21]

Other examples of devices:

Many dot array where many barriers adjust tunneling between the dots [22].

Plunger gates and barrier gates [23].

C.3.1 Coupling a resonator to a double quantum dot

When coupling a resonator to a double quantum double dot we do it by using the voltage in the resonator

to adjust the electro-chemical potenatial on the electro-statically defined dot through gates. In figure C.7

the strip line resonator is coupled in the end (where the voltage of the lowest energy eigenmode is the

largest, (C.21)) to plunger gates that adjust the detuning of the double quantum dot.
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Figure C.7: SEM image of a driven resonator coupled capacitively to a double quantum dot. The strip

line resonator is capacitively coupled in the ends to a classical feed line as shown in figure b where the

ground plane is also seen. The coupling to the quantum double dot is from capacitively adjusting the

electro-chemical potential. [3]

A way to define the double quantum dots is with the help of a barrier gate that adjust the electro-

statically defined barrier between the dots. This is seen in [24] where the barrier gate is used to adjust

th, the hopping constant, between 8 to 15 GHz. The setup is show in figure C.8. In panel B in the top a

classical feedline is used to drive a hanger style resonator that is connected to the gates colored blue and

red in panel C. Along with that the plunger gates RP and LP are used to adjust the chemical potentials

in the dots and create a detuning.
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Figure C.8: Setup of hanger style resonator coupled to detuning of DQD

C.3.2 Coupling to the barrier

The proposition to couple the hopping is based on the idea that instead of coupling the gates capacitively

to the resonator, such that they adjust the chemical potentials, the gate(s) are placed on top of barrier

between the dots. The plunger gates are still used to adjust the dot chemical potentials, and the barrier

gate and the resonator adjust the barrier between the dots and thus couple to the hopping constant.

Coupling a resonator to the tunnel barrier has been proposed similarly in [25] where the resonator

couples such that it adjusts the barrier. This is illustrated in figure C.9.

Figure C.9: A qubit formed in a double quantum dot, each dot containing one electron, is placed at a

maximum of the electric field inside a superconducting transmission line resonator. The resonator electric

field couples to the interdot tunnel gate T, which modifies the tunnel barrier height. [25]
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Appendix D

Green’s functions

This section gives and overview of the use of Green’s functions in many-body quantum physics[11].

Initially we work with the second quantization operator formalism where state vectors live in a Fock-

space. The operators commute or anti-commute depending on their statistics. The retarded Green’s

function for a many-body system is defined as:

GR(r, t; r, t′) = −iθ(t− t′) ⟨[Ψ̂(x, t), Ψ̂†(x′, t′]⟩ , (D.1)

where the average is the thermal average and the commutator depends on the statistics. We can insert

a complete set in a general a-basis and get:

GR(a, t; b, t′) = −iθ(t− t′) ⟨
[
ĉa(t), ĉ

†
b(t

′)
]
⟩ . (D.2)

When the Hamiltonian is quadratic, the eigenbasis can be used to show that (D.2) is equal to −iθ(t −

t′) ⟨n| e−iH(t−t′) |n′⟩, and we therefore regard it as a propagator. We also define the lesser and greater

Green’s functions:

G>(x, t;x′, t′) = −i ⟨Ψ̂(x, t)Ψ̂†(x′, t′)⟩ , (D.3)

G<(x, t;x′, t′) = −i ⟨Ψ̂†(x, t)Ψ̂(x′, t′)⟩ . (D.4)

The lesser and greater Green’s functions have an interpretation of inserting either a hole or a particle

at some position and time and then removing them again at another time and position to see how the

system changed.

D.1 Single particle Green’s functions

Why are these single particle Green’s functions interesting? One reason is that they are used in linear

response theory to understand how a system reacts to a perturbation. Another reason is that they reveal

properties about the spectrum or the density of states of the system. A way to study the properties of
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Green’s functions is with the Lehmann representation, where a complete set of eigenvectors are inserted

and the thermal average is taken over the eigenvectors too. In a general basis we would have for a time-

independent Hamiltonian, that the retarded Green’s function between the same state at different times

is given in the frequency domain by:

GR(a, ω) =
1

Z

∑
n,m

⟨n| ca |m⟩ ⟨m| c†a |n⟩
ω + iη + En − Em

(
e−βEn + e−βEm

)
, (D.5)

and we see that in the case of η → 0, the poles of the retarded Green’s function reveal the spectrum of

the system. This is seen since ω = Em −En will result in a pole. Here n,m correspond to eigenstates of

the full Hamiltonian.

Another interesting quantity is the spectral function which reveals the density of states of the system.

It is defined as:

A(a, ω) = −2ImGR(a, ω), (D.6)

and it can be shown that:

⟨c†aca⟩ =
∫ ∞

−∞

dω

2π
A(a, ω)nF (ω), (D.7)

meaning that the spectral function reveals how well the excitation |a⟩ corresponds to a free non-interacting

state of the system. If |a⟩ corresponds to an eigenmode of the system then A(a, ω) would just project

down onto nF (Ea) such that A(a, ω) = 2πδ(ω − Ea), with Ea and eigenenergy.

D.2 Imaginary time Green’s functions

Introducing the Matsubara imaginary time is a powerful way of calculating correlation functions. With

the imaginary time τ we have for time independent Hamiltonians that â(τ) = eĤτ âe−Ĥτ . The imaginary

time correlation function is defined as:

CAB(τ, τ ′) = −⟨Tτ Â(τ)B̂(τ ′)⟩, (D.8)

and it can be shown from the cyclic property of the trace that CAB(τ, τ ′) = CAB(τ − τ ′). Tτ is the

imaginary time ordering operator which orders the operators in imaginary time. One of the reasons why

it is so powerful is that it allows perturbation theory and the retarded correlation function can be found

with an analytic continuation. A Fourier transformation shows that CRAB(ω) = CAB(iωn → ω+ iη) where

η is a positive number. The single particle Green’s functions that we are interested in are then defined

as:

G(a, τ ; b, τ ′) = −⟨Tτ ĉa(τ)ĉ†b(τ)⟩, (D.9)

and again GR(ab, ω) = G(ab, iωn → ω + iη).
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D.3 Green’s functions from path integrals

Moving away from the operator formalism and to the coherent state path integral formalism[10] we can

describe the partition function, Z of the system with the functional path integral:

Z =

∫
D[ψ]e−S[ψ], (D.10)

where ψ is a quantum field that depends on some quantum number and the imaginary time τ , or when

Fourier transformed, the Matsubara frequency iωn. The action has the form of:

S[ψ̄, ψ] =

∫ β

0

dτ
[
ψ̄
(
∂τ − µ

)
ψ +H(ψ̄, ψ)

]
, (D.11)

where ψ can depend on τ and some other quantum number. Naturally the partition function is of interest

in statistical mechanics since it reveals the thermodynamic properties of the system. We can calculate

the free energy F = −kBT lnZ which is easily found for a quadratic action, S.

The path integral can also reveal microscopic properties of the system. If the action can be written

on quadratic form with complex vectors ϕ⃗:

S = ϕ⃗†G−1ϕ⃗, (D.12)

then it becomes easy to find expectation values with the use of Wick’s theorem, which states that:

⟨ϕ∗nϕm⟩ = Gn,m, (D.13)

where ϕn is a quantum field. These averages are useful for calculating response functions or Green’s

functions.
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Appendix E

Integrating out the resonators

Starting from the action for the bosons and their interaction with the fermions (3.16) and (3.11):

S =
g
√
βN

2
(ϕ∗0 + ϕ0) +

∑
q

ϕ∗q (−iωm + ωR)ϕq −
g√
βN

∑
k,k′

[
ϕk−k′ + ϕ∗k′−k

]
ψ̄kψk′ , (E.1)

where the k’s again represent fermionic two vectors with the wavenumber and Matsubara frequency. We

rewrite the interaction by shifting k = q + k′ and summing over the bosonic q:

Sint = − g√
βN

∑
k,q

[
ϕq + ϕ∗−q

]
ψ̄q+kψk. (E.2)

We define the bosonic density operator from the fermion fields:

ρ̄q =
∑
k

ψ̄q+kψk. (E.3)

We will use that:

ρq =
∑
k

ψ̄kψq+k

(k = k′ − q) =
∑
k′

ψ̄k′−qψk′

= ρ̄−q. (E.4)

The action can be rewritten in terms of the density fields:

Sint = − g√
βN

∑
q

ρ̄qϕq −
g√
βN

∑
q

ϕ∗−qρ̄q

= − g√
βN

∑
q

ρ̄qϕq −
g√
βN

∑
q

ϕ∗q ρ̄−q

= − g√
βN

∑
q

ρ̄qϕq −
g√
βN

∑
q

ϕ∗qρq. (E.5)

Since the q-space is discrete we represent the fields as vectors and write the action in terms of vector

products:

S = ϕ⃗†G−1
0 ϕ⃗+

g√
βN

(
βL

δq
2

− ρ

)†

· ϕ⃗+
g√
βN

ϕ⃗† ·
(
βN

δq
2

− ρ

)
. (E.6)
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The path integral is Gaussian and can be evaluated[10]:

Z =

∫
D
[
ϕ⃗†, ϕ⃗

]
exp (S)

=
(
detG−1

0

)−1
e

g2

βN

(
βN

δq
2 −ρ†

)
G0

(
βN

δq
2 −ρ

)

=
(
detG−1

0

)−1
e

g2

βN

(
βN

δq
2 −ρ†

)
G0

(
βN

δq
2 −ρ

)
. (E.7)

We multiply out the exponent:

g2

βN

(
ρ† − βN

δq
2

)
G0

(
ρ− βN

δq
2

)
=
g2

βN

∑
q,q′

[
ρ̄qG0(q, q

′)ρq′ − βNρ̄qG0(q, q
′)
δq′

2
− βN

δq
2
G0(q, q

′)ρq + β2N2 δq
2
G0(q, q

′)
δq′

2

]
. (E.8)

We use that the free Green’s function is diagonal in q-space G0(q, q
′) =

δq,q′

−iωm+ωR
such that the first term

becomes: ∑
q,q′

ρ̄qδq,q′ρq′

−iωm + ωR
=
∑
k,k′

∑
q

ψ̄k+qψk
1

−iωm + ωR
ψ̄k′ψk′+q

=
∑
k,k′

∑
q

ψ̄k+qψ̄k′−q
1

−iωm + ωR
ψk′ψk. (E.9)

We make the action symmetric in q:

=
1

2

∑
k,k′

∑
q

ψ̄k+qψ̄k′−q
1

−iωm + ωR
ψk′ψk +

1

2

∑
k,k′

∑
q

ψ̄k′+qψ̄k−q
1

−iωm − ωR
ψkψk′

=
1

2

∑
k,k′

∑
q

ψ̄k+qψ̄k′−q

(
1

iωm − ωR
− 1

iωm + ωR

)
ψk′ψk

=
∑
k,k′

∑
q

ψ̄k+qψ̄k′−q
ωR

(iωm)2 − ω2
R

ψk′ψk. (E.10)

The second and third term becomes:

− βN

2

∑
q,q′

[
ρ̄qδq,q′δq′

−iωm + ωR
+

δqδq,q′ρq′

−iωm + ωR

]

=− βN

2

[
ρ̄0
ωR

+
ρ0
ωR

]
=− βN

ωR

∑
k

ψ̄kψk, (E.11)

where we used that ρ̄0 = ρ0 =
∑
k ψ̄kψk. The last term becomes a constant:

β2N2 δq
2
G0(q, q

′)
δq′

2
=
β2N2

4ωR
, (E.12)

which is just a constant we can ignore when looking at the fermions. We then have that:

Z =

∫
D
[
ϕ⃗†, ϕ⃗

]
exp (S)

=
(
detG−1

0

)−1
e

β2L2

4ωR e
g2

βL

∑
k

[
− βL

ωR
ψ̄kψk+

∑
q,k′ ψ̄k+qψ̄k′−q

ωR
(iωm)2−ω2

R

ψk′ψk

]
(E.13)
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Adding the free fermionic action for the Jordan-Wigner fermions (3.58), results in the effective action for

the fermions:

Seff =
∑
k

{
ψ̄k

(
−iωn + 2h+

g2

ωR
− 2J cos k

)
ψk + iJ sin k

(
ψ̄−kψ̄k + ψ−kψk

)
− g2

βL

∑
q,k′

ψ̄k+qψ̄k′−q
ωR

(iωm)2 − ω2
R

ψk′ψk

}
. (E.14)

The effect of the bosons in equillibrium is to shift the transverse field by g2

2ω , similar to what was found

in (3.90), and introducing a quartic interaction term. The sign of the interaction vertex depends on the

sign of the denominator (iωm)2 − ω2
R. The interaction can thus change between being attractive and

repulsive.
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Appendix F

Analytic continuation of Πq(iωm)

We now want to do an analytical continuation of the imaginary time Green’s function, Πq(iωq), to find

the retarded Green’s function. Since we want the retarded Green’s function which shares poles with the

Matsubara Green’s function in the upper half of the complex plane, we continue such that iωq → ω+ iη.

We will calculate the real and imaginary part of this function. To do this we notice that all the Fermi-

functions are real, just like f(k, q).

We therefore want to explore the real and imaginary parts of terms on form (suppressing the sub-

scripts):

f/ϵ+ ϵ± ω ± iη

ξ2 − (ϵ± ω ± iη)2
, (F.1)

since all the denominators are on this form after the analytical continuation. To break it up into real and

imaginary parts, we want to calculate:

g(±ω ± iη) =
f/ϵ+ ϵ± ω ± iη

ξ2 − (ϵ± ω ± iη)2
ξ2 − (ϵ± ω ∓ iη)2

ξ2 − (ϵ± ω ∓ iη)2
, (F.2)

First we find the nominator:

(f/ϵ+ ϵ± ω ± iη)
(
ξ2 − (ϵ± ω)2 + η2 ± 2iη(ϵ± ω)

)
= (f/ϵ+ ϵ± ω)

(
ξ2 − (ϵ± ω)2 + η2

)
− 2η2(ϵ± ω)± iη

(
ξ2 + (ϵ± ω)2 + 2f/ϵ(ϵ± ω) + η2

)
. (F.3)

Next the denominator:(
ξ2 − (ϵ± ω ± iη)2

) (
ξ2 − (ϵ± ω ± iη)2

)
=

(
ξ2 − (ϵ± ω)2 + η2

)2
+ 4(ϵ ± ω)2η2. (F.4)

From this we then find the real part as:

Re[g(±ω ± iη)] =
(f/ϵ+ ϵ± ω)

(
ξ2 − (ϵ± ω)2 + η2

)
− 2η2(ϵ± ω)

(ξ2 − (ϵ± ω)2 + η2)
2
+ 4(ϵ± ω)2η2

. (F.5)

We now want to take the limit η → 0 since we can choose η as close to zero as we want as long as ω+ iη

is in the upper half of the complex plane.

lim
η→0

Re[g(ω + iη)] =
f/ϵ+ ϵ± ω

ξ2 − (ϵ± ω)2
. (F.6)
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Now for the imaginary part we find that:

Im[g(±ω ± iη)] = ±η ξ2 + (ϵ± ω)2 + 2f/ϵ(ϵ± ω) + η2

(ξ2 − (ϵ± ω)2 + η2)
2
+ 4(ϵ± ω)2η2

. (F.7)

Again taking the limit we can neglect the last term in the nominator and get:

= ±
(
ξ2 + (ϵ± ω)2 + 2f/ϵ(ϵ± ω)

) η

(ξ2 − (ϵ± ω)2)
2
+ 4(ϵ± ω)2η2

= ±ξ
2 + (ϵ± ω)2 + 2f/ϵ(ϵ± ω)

4(ϵ± ω)2
η(

ξ2−(ϵ±ω)2
2(ϵ±ω)

)2
+ η2

. (F.8)

The imaginary part now resembles a Lorentzian and we use that limη→0
η

x2+η2 = πδ(x), such that:

= ±π ξ
2 + (ϵ± ω)2 + 2f/ϵ(ϵ± ω)

4(ϵ± ω)2
δ

(
ξ2 − (ϵ± ω)2

2(ϵ± ω)

)
, (F.9)

then using the delta function in composition with a function 1, δ(g(x)) =
∑
k
δ(x−αk)
|f ′(αk| , where αk is a root

to the smooth function g(x) in the domain that g(x) is defined on. The roots in our case are ϵ±ω = ±ξ.

Differentiating the argument of the delta function, under the assumption that q in ξ or ϵ does not depend

on ω, we get: ∣∣∣∣∂ω ξ2 − (ϵ± ω)2

2(ϵ± ω)

∣∣∣∣
ϵ±ω=±ξ

=

∣∣∣∣∓ξ2 − (ϵ∓ ω)2

2(ϵ∓ ω)2
∓ 1

∣∣∣∣
ϵ±ω=±ξ

= 1, (F.10)

and we get:

Im[g(±ω ± iη)] → ±π
2

[(
1− f

ϵξ

)
δ(ω ± ϵ+ ξ) +

(
1 +

f

ϵξ

)
δ(ω ± ϵ− ξ)

]
. (F.11)

With this in mind we can immediately write down the real part of Πq by simply taking iωq → ω:

ReΠq(ω) =
4g2

L

∑
k

{
− f(k, q) + ξk (ξk − ω)

ξ2k−q − (ξk − ω)2
nF (ξk)

ξk

+
f(k, q) + ξk (ξk + ω)

ξ2k−q − (ξk + ω)2
nF (−ξk)

ξk

− f(k, q) + ξk−q (ξk−q + ω)

ξ2k − (ξk−q + ω)2
nF (ξk−q)

ξk−q

+
f(k, q) + ξk−q (ξk−q − ω)

ξ2k − (ξk−q − ω)2
nF (−ξk−q)

ξk−q

}
. (F.12)

We can reduce this by first shifting the the third and fourth term by k → q − k and using f(q − k, q) =

f(k, q):

ReΠq(ω) =
4g2

L

∑
k

(
tanh

ξk
2T

)( f(k,q)
ξk

+ ξk − ω

ξ2k−q − (ξk − ω)
2 +

f(k,q)
ξk

+ ξk + ω

ξ2k−q − (ξk + ω)
2

)
. (F.13)

1https://en.wikipedia.org/wiki/Dirac delta function#Composition with a function
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The poles lie in {ξk + ξk−q,−ξk − ξk−q, ξk − ξk−q, ξk + ξk−q}. The imaginary part we find as:

ImΠq(ω) =
2πg2

L

∑
k

{
δ(ω − ξk + ξk−q)

(
nF (ξk)

(
1− f(k, q)

ξkξk−q

)
− nF (ξk−q)

(
1 +

f(k, q)

ξkξk−q

))
+δ(ω − ξk − ξk−q) (nF (ξk)− nF (−ξk−q))

(
1 +

f(k, q)

ξkξk−q

)
+δ(ω + ξk + ξk−q) (nF (−ξk)− nF (ξk−q))

(
1− f(k, q)

ξkξk−q

)
+δ(ω + ξk − ξk−q)

(
nF (−ξk)

(
1 +

f(k, q)

ξkξk−q

)
− nF (−ξk−q)

(
1− f(k, q)

ξkξk−q

))}
. (F.14)

In the last line we can let the dummy index k → −k + q and use that f(−k + q, q) = f(k, q) such that

we get:

ImΠq(ω) =
2πg2

L

∑
k

{
δ(ω − ξk + ξk−q)

(
tanh

ξk−q
2T

(
1 +

f(k, q)

ξkξk−q

)
− tanh

ξk
2T

(
1− f(k, q)

ξkξk−q

))
+δ(ω − ξk − ξk−q) (nF (ξk)− nF (−ξk−q))

(
1 +

f(k, q)

ξkξk−q

)
+δ(ω + ξk + ξk−q) (nF (−ξk)− nF (ξk−q))

(
1− f(k, q)

ξkξk−q

)}
, (F.15)

where it was used that nF (−x)− nF (x) = tanh x
2T . We can look at the imaginary part in a few regimes.

For T → ∞ when nF → 1
2 and tanh x

T → 0 we have the imaginary part goes to zero. For ω > 0 and

T → 0 we see that only the first and second term should contribute since ξk > 0.

We look at
(
f(k,q)
ξkξk−q

− 1
)
. We can show that

∣∣∣ f(k,q)ξkξk−q

∣∣∣ ≤ 1. To do so we start by defining αk =

(2h− 2J cos k) and βk = 2J sin k to make notation easier. That gives that ξk =
√
α2
k + β2

k and f(k, q) =

αkαk−q − βkβk − q. Then we have:(
f(k, q)

ξkξk−q

)2

=
(αkαk−q)

2 + (βkβk−q)
2 − 2(αkαk−q)(βkβk−q)

(αkαk−q)2 + (βkβk−q)2 + (αkβk−q)2 + (βkαk−q)2

⇒
(
f(k, q)

ξkξk−q

)2

− 1 = − (αkβk−q)
2 + (βkαk−q)

2 + 2(αkβk−q)(βkαk−q)

(α2
k + β2

k)(α
2
k−q + β2

k−q)

= − (αkβk−q + βkαk−q)
2

(α2
k + β2

k)(α
2
k−q + β2

k−q)
≤ 0

⇒
∣∣∣∣f(k, q)ξkξk−q

∣∣∣∣ ≤ 1, (F.16)

where in the second equality we used that both nominator and denominator are squared. We thus know

that (1± f
ξkξk−q

) ≥ 0.

Resolving the delta functions analytically is not possible in general due to the elliptical functions.

The roots to an argument like ω+ ξk + ξk−q will be denoted k++
0 (ω) owing to the two plus signs and the

resulting root being a function of the frequency. Assuming that we can find all the roots numerically or
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with some approximation or limit, we can resolve the delta functions:

δ(ω + ξk ± ξk−q) =
∑
k+±
0

δ(k − k+±
0 )

|∂k(ξk ± ξk−q)|k=k+±
0

=
1

hJ

∑
k+±
0

δ(k − k+±
0 )∣∣∣∣ sin k+±

0

ξ
k
+±
0

± sin(k+±
0 −q)

ξ
k
+±
0 −q

∣∣∣∣ . (F.17)

Following this recipe we go to continuum limit and rewrite (F.15) as:

ImΠq(ω) =
g2

hJ

{∑
k−+
0

tanh
ξ
k
−+
0 −q

2T

(
1 +

f(k−+
0 ,q)

ξ
k
−+
0

ξ
k
−+
0 −q

)
− tanh

ξ
k
−+
0

2T

(
1− f(k−+

0 ,q)
ξ
k
−+
0

ξ
k
−+
0 −q

)
∣∣∣∣ sin k−+

0

ξ
k
−+
0

− sin(k−+
0 −q)

ξ
k
−+
0 −q

∣∣∣∣
+
∑
k−−
0

nF (ξk−−
0

)− nF (−ξk−−
0 −q)∣∣∣∣ sin k−−

0

ξ
k
−−
0

+
sin(k−−

0 −q)
ξ
k
−−
0 −q

∣∣∣∣
(
1 +

f(k−−
0 , q)

ξk−−
0
ξk−−

0 −q

)

+
∑
k++
0

nF (−ξk++
0

)− nF (ξk++
0 −q)∣∣∣∣ sin k++

0

ξ
k
++
0

+
sin(k++

0 −q)
ξ
k
++
0 −q

∣∣∣∣
(
1− f(k++

0 , q)

ξk++
0
ξk++

0 −q

)}
. (F.18)

And the problem is boiled down to finding the roots of the arguments of the delta functions.

Spectral function

We start by finding the imaginary part of the retarded Green’s function (3.134). Before we can do that

we split up ΠR(q, ω) into the real and imaginary part ΠR(q, ω) = Π′ + iΠ′′ where the q, ω is implied:

2iIm

[
ω + ωR + 2Π′ + i (η + 2Π′′)

ω2
R + 4ωRΠ′ + i4ωRΠ′′ − (ω + iη)2

]
=

ω + ωR + 2Π′ + i (η + 2Π′′)

ω2
R + 4ωRΠ′ + i4ωRΠ′′ − (ω + iη)2

− ω + ωR + 2Π′ − i (η + 2Π′′)

ω2
R + 4ωRΠ′ − i4ωRΠ′′ − (ω − iη)2

=
1○ − 2○

3○
, (F.19)

where we now find 1○, 2○, 3○. We will expand (ω + iη)2 = ω2 − 2iωη implying that η ≪ 1:

3○ =
([
ω2
R + 4ωRΠ

′ − ω2
]
+ i [4ωRΠ

′′ − 2ωη]
) ([

ω2
R + 4ωRΠ

′ − ω2
]
− i [4ωRΠ

′′ − 2ωη]
)

=
(
ω2
R + 4ωRΠ

′ − ω2
)2

+ (4ωRΠ
′′ − 2ωη)

2
. (F.20)

Then for the nominators:

1○ = ([ω + ωR + 2Π′] + i [η + 2Π′′])
([
ω2
R + 4ωRΠ

′ − ω2
]
− i [4ωRΠ

′′ − 2ωη]
)

= (ω + ωR + 2Π′)
(
ω2
R + 4ωRΠ

′ − ω2
)
+ (η + 2Π′′) (4ωRΠ

′′ − 2ωη)

+ i
(
[η + 2Π′′]

[
ω2
R + 4ωRΠ

′ − ω2
]
− [ω + ωR + 2Π′] [4ωRΠ

′′ − 2ωη]
)
, (F.21)
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and likewise:

2○ = ([ω + ωR + 2Π′]− i [η + 2Π′′])
([
ω2
R + 4ωRΠ

′ − ω2
]
+ i [4ωRΠ

′′ − 2ωη]
)

= (ω + ωR + 2Π′)
(
ω2
R + 4ωRΠ

′ − ω2
)
+ (η + 2Π′′) (4ωRΠ

′′ − 2ωη)

− i
(
[η + 2Π′′]

[
ω2
R + 4ωRΠ

′ − ω2
]
− [ω + ωR + 2Π′] [4ωRΠ

′′ − 2ωη]
)
, (F.22)

and we find:

2iImGRδ (q, ω) = −2i
[η + 2Π′′]

[
ω2
R + 4ωRΠ

′ − ω2
]
− [ω + ωR + 2Π′] [4ωRΠ

′′ − 2ωη]

(ω2
R + 4ωRΠ′ − ω2)

2
+ (4ωRΠ′′ − 2ωη)

2
, (F.23)

and we now get the result:

Aδ(q, ω) = −2ImGRδ (q, ω)

= 2
[η + 2Π′′]

[
ω2
R + 4ωRΠ

′ − ω2
]
− [ω + ωR + 2Π′] [4ωRΠ

′′ − 2ωη]

(ω2
R + 4ωRΠ′ − ω2)

2
+ (4ωRΠ′′ − 2ωη)

2

= 2
(ω + ωR)

2
η + 4(ω + ωR)Π

′η − 2(ω + ωR)
2Π′′

(ω2
R + 4ωRΠ′ − ω2)

2
+ (4ωRΠ′′ − 2ωη)

2
. (F.24)
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