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ABSTRACT

The IceCube Neutrino Observatory is a physics experiment located
at Antarctica. The experiment is capable of detecting neutrinos using
light-detecting digital optical modules (DOMs) sitting in an array deep
below the surface in the South Pole ice sheet. This thesis presents a
versatile Deep Learning-based approach to low-energy neutrino recon-
struction and -identification at the IceCube Experiment. The algorithms
developed in this work attempt to alleviate some of the weaknesses of
the current methods: The currently used state-of-the-art reconstruction
algorithm, Retro Reconstruction, is a table-based maximum likelihood
estimator able to reconstruct neutrinos at a rate of 𝒪(10−2) reconstruc-
tions per second.

By employing recurrent neural networks (RNNs), the information
available at a lower level in the form of Digital Optical Module read-
outs is fed directly to the reconstruction model, removing the need
for high-level feature generation and parametrization of a likelihood-
function. The developed models have been gathered in an ensemble
of models capable of reconstructing neutrino energies, directions and
interaction vertices atleast 10 % better across most of the 1 − 1000 GeV
range. In addition to the increased performance, the reconstruction
speed is increased tremendously: The developed RNNs are capable
of reconstrucing 5000+ events per second on an old consumer-grade
GPU.

The developed architecture is general and is therefore capable of
solving other tasks than regression. By applying the model to the
task of classifying cascade- and track-like events, a classifier has been
developed showing promising results: Across the GeV energy range,
areas of 59.2 % - 97.7% under the receiver operator characteristic curves
(ROC AUCs) are achieved.
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INTRODUCT ION

The IceCube Neutrino Observatory is the largest neutrino experiment
ever created. Encompassing a cubic kilometer of ice, the experiment
battles the elusive nature of neutrinos by using volume making the
experiment detect roughly 100.000 neutrinos per year.

When charged particle traverse the ice at superluminal speeds, they
emit Cerenkov radiation. This radiation is detected by the 5160 digital
optical modules (DOMs) placed on strings in a hexagonal array deep
within the South Pole ice.

Converting the individual DOMdetections to meaningful physics is a
daunting task. Not only are the DOMs incredibly noisy, but the vast ma-
jority of events are backgroundmuons, making the need for robust, high
performing reconstruction algorithms necessary. The current, state-
of-the-art algorithm is a table-based maximum likelihood-approach
capable of reconstructing neutrinos at a rate of 𝒪(10−2) requiring vast
amounts of memory.

The goal of this work is therefore simple: Use a deep learning ap-
proach, specifically recurrent neural network building blocks (the Long
Short-Term Memory architecture and the Gated Recurrent Unit archi-
tecture), and more modern Attention-based architectures, to explore
whether machine learning algorithms can be developed that are faster
and better than the current method.

This work is therefore neither a high-energy particle physics project
nor a theoretical machine learning project, but something in between;
namely, an application of machine learning to a particle physics exper-
iment - and hopefully readers from both fields will be able to learn
something new.

This thesis is structured as follows: In Chapter 1, an introduction to
particle physics phenomenology is given. Hereafter neutrinos and how
they are detected in the IceCube Neutrino Observatory is introduced
in Chapter 2. In Chapter 3 we switch gears and expand on the machine
learning concepts used in this work. Then the used data is described in
Chapter 4 alongwith howdatawas selected andprepared formodelling.
In Chapter 5, the process of developing a core deep learning model
is described, before finally evaluating and fine-tuning the developed
models in Chapter 6. In the short Chapter 7, the entire work is evaluated
and suggestions for future work is given.
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1
NEUTR INOS & THE STANDARD MODEL

The Standard Model of particle physics is the current best description
of the particles that make up the world as we know it. In this chapter,
a brief history of the neutrino will be given before introducing the
Standard Model (SM) and the fascinating properties of neutrinos.

1.1 the discovery of the neutrino

The history of the neutrino takes its humble beginnings in 1896, where
the French scientist Henri Becquerel discovered radioactivity [1]. Dur-
ing the exploration of this newly discovered phenomenon, a problem
arose which proved difficult to solve: The electron energy-spectrum
of the beta-decay. At the time it was believed that beta-decay was a
process, where one particle decays into two, i.e. a process of the form

𝑝1 → 𝑝2 + 𝑝3, (1)

where 𝑝1, 𝑝2 and 𝑝3 denote the respective particles involved. Such a
process would require the decay-products to have discrete energies to
ensure energy- andmomentum conservation, but this was not observed.
Instead, the energy of the electronwas found to be distributed according
to the continuous spectrum sketched in Figure 1. Interestingly, the

cut-off of the
spectrum can be used
to determine the mass
of 𝜈𝑒.

Figure 1: Illustration of the energy-spectrum of the electron in a 𝛽-decay with
arbitrary units. Figure from [2].

The spectrum is consistent with the emission of a third particle, which
led Pauli to postulate the existence of a neutral particle [3].1

1 Pauli coined the particle neutron(”neutral one”) in Italian - a few years later, the neutron
as we know it was discovered by Chadwick [4]. Hence, the name of the third particle
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1.2 the standard model 2

The particle was confirmed to be the neutrino in 1956 by Reines and
Cowan; a feat for which Reines was awarded the Nobel Prize in 1995 [5,
6].

1.2 the standard model

The neutrino comes in 3 different flavors: the electron neutrino 𝜈𝑒, the
muon neutrino 𝜈𝜇 and the tau neutrino 𝜈𝜏. They join the SM consisting
of 17 fundamental particles shown in Figure 2.

The neutrinos are neutral fermions and along with the quarks (the up,
down, charm, strange, top and bottom) and the charged leptons (the electron,
muon and tau), they complete the family of leptons in the SM.

The fermions are half-integer spin fundamental particles described
by the Dirac equation

(𝑖𝛾𝜇𝜕𝜇 − 𝑚) 𝜓 = 0, (2)

where 𝛾𝜇 are the gamma-matrices and the Einstein summation con-
vention is employed along with natural units (𝑐 = ~ = 1). Furthermore,
each fermion has an antiparticle denoted by adding a bar over the
particle symbol, e.g. 𝑒 with the same mass and opposite charge. Notation such as 𝑒

and 𝑒+ for
antiparticles will be
used interchangeably.

Figure 2: The particles of the Standard Model. Figure from [7].

The forces of the SM stem from local gauge symmetries. The fermions
couple to the electromagnetic and weak forces (depending on their
electric charge and weak hyperspin) through the electroweak (EWK)
interaction with U(1)×SU(2)-symmetry mediated by the photon, the
W-bosons and the Z-boson (denoted 𝛾, 𝑊± and 𝑍 in Figure 2). The

of the 𝛽-decay was changed to neutrino (”little neutral one” in Italian) as proposed by
Fermi.



1.2 the standard model 3

quarks couple to an additional force, the strong nuclear force, through
the strong interaction described by quantum chromodynamics (QCD)
with SU(3)-symmetry mediated by the gluons.

The interactions of the SM particles can be described by Feynman
diagrams. For instance, the annihilation-process

𝑒+ + 𝑒− → 𝛾 + 𝛾 (3)

creating a photon-pair is described by the Feynman diagram shown
in Figure 3. In the Feynman diagram, time runs from left to right,
and antiparticles are denoted with arrows pointing backwards in time.
Each vertex of the diagram is associated with an expression for the
interaction, which is used to calculate decay rates and cross sections.

Figure 3: The Feynman diagram describing an electron-positron annihilation
process.

Except for the neutrinos, the massive particles of the SM acquire their
masses through their interactions with the Higgs field, whose excita-
tionsmanifest as Higgs-particles - the newest confirmedmembers of the
SM [8]. Until recently, the neutrinos were believed to be massless, but
with the discovery of neutrino oscillations, neutrinos were confirmed
to be massive particles. Interestingly, there is currently no agreed upon
mechanism for how the neutrinos acquire their masses.

1.2.1 Neutrino Interactions

As previously mentioned, neutrinos couple to the EWK through the
weak interaction only, since the neutrinos have neutral electric charge.
In 1957, Wu and collaborators observed that the weak interaction is not
invariant with respect to parity-transformations [9]. The interaction is
therefore described by a vector minus axial vector interaction (or V-A)
of the form 𝛾𝜇(1 − 𝛾5), where 𝛾5 = 𝑖𝛾0𝛾1𝛾2𝛾3. Specifically, the weak
interaction vertex is given by

−𝑖𝑔𝑊

√2

1
2𝛾𝜇(1 − 𝛾5), (4)



1.3 neutrino oscillations 4

where 𝑔𝑊 is the weak coupling constant and the operator 1
2𝛾𝜇(1−𝛾5)

is identified as the left chiral projection operator 𝑃𝐿. This means that
only left-handed (LH) neutrinos and right-handed (RH) anti-neutrinos
can undergo weak interactions.

(a) (b)

Figure 4: Interaction vertices of interest in experimental neutrino physics. (a):
Interaction vertex of a t-channel charged current weak interaction,
where 𝛼 denotes lepton flavour. (b): Interaction vertex of a t-channel
neutral current weak interaction, where 𝛼 denotes lepton flavour.

Generally, the neutrinos interact in two different ways: As charged
current (CC) weak interactions and neutral current (NC) weak inter-
actions. The interactions of biggest interest in experimental neutrino
physics are depicted in Figure 4. In Figure 4a, a charged W-boson is
exchanged in a CC process, where a charged lepton is transformed into
a neutrino of the same flavour. The reverse process is also allowed,
where a neutrino transforms into a charged lepton of the same flavour.

In Figure 4b, the NC interaction vertex is depicted. This could for
instance be a neutrino of flavour 𝛼, which interacts with a valence
electron through scattering - a process used by the SNO-experiment in
Canada to differentiate between neutrino flavours [10]. In the IceCube
experiment, it is not possible to distinguish between neutrino flavours,
when they interact via a neutral current; for all neutrino flavours, the
final-state neutrino leaves undetected and the 𝑍-boson deposits its
energy.

Generally, the neutrinos in the IceCube detector are only indirectly
observed through their subsequent interactions such as ionization and
hadronisation of the final-state particles.

1.3 neutrino oscillations

The phenomenon of neutrino oscillations first received scientific interest
in the 1950s. Theoretical models of the neutrino flux from the sun were
not consistent with experimental evidence: The solar neutrino problem.
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The problem will be discussed in the following section before turning
our attention to its solution.

1.3.1 The Solar Neutrino Problem

In 1964, Bahcall and Davis published papers describing their search
for solar neutrinos [11, 12]. Their experiment used a radiochemical
technique for neutrino detection: The sun generates energy through
a fusion process known as the proton-proton cycle. A product of this
process is a neutrino. Such neutrinos interacted with 615 tons of 𝐶2𝐶𝑙4
contained in the Homestake Mine in South Dakota, USA through the
process

𝜈𝑒 + 37
17C𝑙 → 𝑒− + 37

18A𝑟. (5)

Subsequently, the interactions were counted by measuring the num-
ber of radioactive decays of Ar atoms. The experiment observed 0.48 ±
0.04 neutrinos per day, which was in disagreement with the theoretical
prediction of 1.7 neutrinos per day [13].

The aforementioned SNO-experimentwas able to resolve the problem.
The experiment utilized a detector designed to measure all three flavors
of neutrinos, and they reported a total solar neutrino flux consistent
with solar models, hereby eproviding results consistent with neutrino
oscillations [14].

1.3.2 The PMNS-matrix

Amechanism to explainwhy all three flavors of neutrinos were detected
from the sun was given by Pontecorvo in 1957: Neutrino oscillations
[15]. A model for neutrino oscillations was further developed by Maki,
Nakagawa and Sakata in 1962 in which the weak eigenstates of the
neutrinos are linear combinations of mass-states whose propagation
obey the Dirac Hamiltonian given by Eq. (2) [16]. The weak eigenstates
can therefore be related to the mass-states by a 3 × 3 unitary matrix

⎡⎢⎢
⎣

𝜈𝑒
𝜈𝜇
𝜈𝜏

⎤⎥⎥
⎦

=
⎡⎢⎢
⎣

𝑈𝑒1 𝑈𝑒2 𝑈𝑒3
𝑈𝜇1 𝑈𝜇2 𝑈𝜇3
𝑈𝜏1 𝑈𝜏2 𝑈𝜏3

⎤⎥⎥
⎦

⎡⎢⎢
⎣

𝜈1
𝜈2
𝜈3

⎤⎥⎥
⎦

(6)

named the PMNS-matrix. In general, a 3 × 3 complex matrix has 18 free The PMNS-matrix is
also known as the
MNSP-matrix

parameters. The unitarity condition 𝑈†𝑈 = 𝐼 reduces this number to 3
mixing angles and 6 complex phases. 5 of those phases can be absorbed
into the lepton states leaving 4 free parameters [17]. The PMNS-matrix
is therefore often parameterized with the three mixing angles 𝜃𝑖𝑗 and
one complex phase 𝛿𝐶𝑃 with CP-violating effects as
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⎡⎢⎢
⎣

𝑈𝑒1 𝑈𝑒2 𝑈𝑒3
𝑈𝜇1 𝑈𝜇2 𝑈𝜇3
𝑈𝜏1 𝑈𝜏2 𝑈𝜏3

⎤⎥⎥
⎦

=
⎡⎢⎢
⎣

1 0 0
0 𝑐23 𝑠23
0 −𝑠23 𝑐23

⎤⎥⎥
⎦

⎡⎢⎢
⎣

𝑐13 0 𝑠13𝑒−𝑖𝛿𝐶𝑃

0 1 0
−𝑠13𝑒𝑖𝛿𝐶𝑃 0 𝑐13

⎤⎥⎥
⎦

⎡⎢⎢
⎣

𝑐12 𝑠12 0
−𝑠12 𝑐12 0

0 0 1

⎤⎥⎥
⎦

(7)

where 𝑐𝑖𝑗 = cos(𝜃𝑖𝑗) and 𝑠𝑖𝑗 = sin(𝜃𝑖𝑗).
The solutions of Eq. (2) have the form

∣𝜓(𝑡)⟩ = exp(−𝑖𝐸𝑡) ∣𝜓(0)⟩ , (8)

where 𝜓 is the quantum state and E is the energy of the particle. The
evolution of a neutrino state ∣𝜓(𝑡)⟩ can therefore be written as

∣𝜓(𝑡)⟩ =
3

∑
𝑖=1

𝑈𝛼𝑖 ∣𝜈𝑖(𝑡)⟩ , (9)

where 𝛼 denotes flavour and the time evolution is given by Eq. (8). To
obtain oscillation probabilities, the neutrino quantum state given in Eq.
(9) has to be expanded in the weak eigenbasis. Denoting the unitary
matrix in Eq. (6) as 𝑈 and inverting it using the unitarity condition,
the i’th mass-state expansion in the weak eigenbasis is

∣𝜈𝑖⟩ = ∑
𝛼=𝑒,𝜈,𝜏

𝑈∗
𝛼𝑖 ∣𝜈𝛼⟩ . (10)

Inserting Eq. (10) and Eq. (8) in Eq. (9), the oscillation probability
𝑃(𝜈𝛼 → 𝜈𝛽) from a weak state 𝛼 to a weak state 𝛽 can now be calculated
as

𝑃(𝜈𝛼 → 𝜈𝛽) = |⟨𝜈𝛽|𝜈𝛼⟩|2

= ∣∣∣∣
⟨𝜈𝛽∣ ⎛⎜

⎝

3
∑
𝑖=1

𝑈𝛼𝑖 exp(−𝑖𝐸𝑖𝑡) ∑
𝛾=𝑒,𝜈,𝜏

𝑈∗
𝛾𝑖 ∣𝜈𝛾⟩⎞⎟

⎠
∣∣∣∣

2

(11)

= ∣∣∣∣

3
∑
𝑖=1

𝑈𝛼𝑖𝑈∗
𝛽𝑖 exp(−𝑖𝐸𝑖𝑡)

∣∣∣∣

2

=
3

∑
𝑖,𝑗=1

𝑈𝛼𝑖𝑈∗
𝛽𝑖𝑈∗

𝛼𝑗𝑈𝛽𝑗 exp(−𝑖(𝐸𝑖 − 𝐸𝑗)𝑡). (12)

From Eq. (11) it can be seen that if the phases of the exponential
terms are different, oscillations between weak states are possible. To cal-
culate oscillation probabilities of neutrinos with different momenta and
without simplifications, a wavepacket treatment of the neutrino states
is required [18]. In practice, however, assuming the neutrino states
propagate as plane waves with identical momenta yields a satisfactory
description for this work.
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If we let 𝑝𝑖 = 𝑝𝑗 = 𝑝 in Eq. (11) and use the the Einstein energy-
momentum relation

𝐸2 = 𝑝2 + 𝑚2, (13)

the energy differences can be rewritten as

𝐸𝑖 − 𝐸𝑗 = 𝑝
⎛⎜⎜⎜
⎝

√1 +
𝑚2

𝑖
𝑝2 −

√
√√
⎷

1 +
𝑚2

𝑗

𝑝2
⎞⎟⎟⎟
⎠

≈
𝑚2

𝑖 − 𝑚2
𝑗

2𝑝 , (14)

where only the first terms of the Taylor expansions of the square roots
have been kept. If we approximate the neutrino energies and assume
they propagate at the speed of light, we may set 𝑡 = 𝐿 and 𝐸 ≈ 𝑝, where
𝐿 is the distance the wave has propagated. Hence, the exponential
factors in Eq. (11) can be rewritten into

exp(𝑖(𝐸𝑖 − 𝐸𝑗)𝑡) ≈ 1 − 2 sin2 ⎛⎜⎜
⎝

Δ𝑚2
𝑖𝑗𝐿

4𝐸
⎞⎟⎟
⎠

+ 𝑖 sin⎛⎜⎜
⎝

Δ𝑚2
𝑗𝑖𝐿

2𝐸
⎞⎟⎟
⎠

, (15)

where Δ𝑚2
𝑖𝑗 = 𝑚2

𝑖 − 𝑚2
𝑗 . After some algebraic manipulations, the full

oscillation probability therefore becomes

𝑃(𝜈𝛼 → 𝜈𝛽) = 𝛿𝛼𝛽 − 2
3

∑
𝑖,𝑗=1

Re(𝑈𝛼𝑖𝑈∗
𝛽𝑖𝑈∗

𝛼𝑗𝑈𝛽𝑗) sin2 ⎛⎜⎜
⎝

Δ𝑚2
𝑖𝑗𝐿

4𝐸
⎞⎟⎟
⎠

+
3

∑
𝑖,𝑗=1

Im(𝑈𝛼𝑖𝑈∗
𝛽𝑖𝑈∗

𝛼𝑗𝑈𝛽𝑗) sin⎛⎜⎜
⎝

Δ𝑚2
𝑗𝑖𝐿

2𝐸
⎞⎟⎟
⎠

(16)

From Eq. (16) it is seen that the oscillation probability frequencies de-
pend on the squaredmass differences of the neutrinos, their energy and
distance travelled and the amplitudes on the PMNS matrix-elements.
An example of the oscillation probability’s dependence on energy and
cos(𝜃zenith) is shown in Figure 5. In this scenario, a 𝜈𝜇 is created in
the atmosphere, travels through the earth and is detected in the Ice-
Cube detector, where the distance travelled 𝐿 = 2𝑅Earth cos(𝜃zenith) for
cos(𝜃zenith) < 0 . One can quickly

confirm this relation
by inspecting the
isosceles triangle
made by the radius of
the Earth and the
distance travelled of
the neutrino.
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Figure 5: Example of 𝑃(𝜈𝜇 → 𝜈𝜏) for 𝜈𝜇 created in the atmosphere, where
cos(𝜃zenith) is the direction the neutrino came from. The zenith angle
is directly related to the distance travelled. Figure courtesy of Tom
Stuttard using neutrino parameters from [19].

To this point, the oscillation probability derivation has assumed os-
cillations in vacuum. When neutrinos propagate through a medium,
electron neutrinos can interact with the electrons present in themedium,
which directly affects 𝜈𝑒-oscillations and therefore indirectly affect 𝜈𝜇-
and 𝜈𝜏-oscillations, since they oscillate into electron neutrinos. For
neutrinos propagating in matter, this effect (named the MSW-effect)
has to be taken into account [20, 21]. Matter effects are theoretically
detectable with the IceCube detector: In Figure 5, a resonance due to the
MSW-effect is visible around 𝐸 = 8 GeV and cos(𝜃zenith) = −0.8. Since
this work explores neutrino reconstruction, we will not delve further
into the topic of matter effects.

1.3.3 Oscillation Results

Neutrino oscillations can effectively be detected by either

• measuring deviations from the expected amount of neutrinos had
they not oscillated, or

• by detecting neutrinos that are different from the neutrino flavour
produced at the source.

Using these techniques, several of the oscillation parameters have been
measured. The current, best global fits of the oscillation parameters are
shown in Figure 6. The parameters are a combination of results from
oscillation experiments from around the globe.
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sin2 θ12 0.310+0.013
−0.012 0.275→ 0.350 0.310+0.013

−0.012 0.275→ 0.350

θ12/
◦ 33.82+0.78

−0.76 31.61→ 36.27 33.82+0.78
−0.76 31.61→ 36.27

sin2 θ23 0.558+0.020
−0.033 0.427→ 0.609 0.563+0.019

−0.026 0.430→ 0.612

θ23/
◦ 48.3+1.1

−1.9 40.8→ 51.3 48.6+1.1
−1.5 41.0→ 51.5

sin2 θ13 0.02241+0.00066
−0.00065 0.02046→ 0.02440 0.02261+0.00067

−0.00064 0.02066→ 0.02461

θ13/
◦ 8.61+0.13

−0.13 8.22→ 8.99 8.65+0.13
−0.12 8.26→ 9.02

δCP/
◦ 222+38

−28 141→ 370 285+24
−26 205→ 354

∆m2
21

10−5 eV2 7.39+0.21
−0.20 6.79→ 8.01 7.39+0.21

−0.20 6.79→ 8.01

∆m2
3`

10−3 eV2 +2.523+0.032
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−0.030 −2.603→ −2.416
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Normal Ordering (best fit) Inverted Ordering (∆χ2 = 10.4)

bfp ±1σ 3σ range bfp ±1σ 3σ range

sin2 θ12 0.310+0.013
−0.012 0.275→ 0.350 0.310+0.013

−0.012 0.275→ 0.350

θ12/
◦ 33.82+0.78

−0.76 31.61→ 36.27 33.82+0.78
−0.75 31.61→ 36.27

sin2 θ23 0.563+0.018
−0.024 0.433→ 0.609 0.565+0.017

−0.022 0.436→ 0.610

θ23/
◦ 48.6+1.0

−1.4 41.1→ 51.3 48.8+1.0
−1.2 41.4→ 51.3

sin2 θ13 0.02237+0.00066
−0.00065 0.02044→ 0.02435 0.02259+0.00065

−0.00065 0.02064→ 0.02457

θ13/
◦ 8.60+0.13

−0.13 8.22→ 8.98 8.64+0.12
−0.13 8.26→ 9.02

δCP/
◦ 221+39

−28 144→ 357 282+23
−25 205→ 348

∆m2
21

10−5 eV2 7.39+0.21
−0.20 6.79→ 8.01 7.39+0.21

−0.20 6.79→ 8.01

∆m2
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10−3 eV2 +2.528+0.029
−0.031 +2.436→ +2.618 −2.510+0.030

−0.031 −2.601→ −2.419

(a)
NuFIT 4.1 (2019)

|U |w/o SK-atm
3σ =

0.797 → 0.842 0.518 → 0.585 0.143 → 0.156

0.244 → 0.496 0.467 → 0.678 0.646 → 0.772

0.287 → 0.525 0.488 → 0.693 0.618 → 0.749



|U |with SK-atm
3σ =

0.797 → 0.842 0.518 → 0.585 0.143 → 0.156

0.243 → 0.490 0.473 → 0.674 0.651 → 0.772

0.295 → 0.525 0.493 → 0.688 0.618 → 0.744


(b)

Figure 6: The global, current best estimates of the oscillation parameters as of
July 2019[19, 22]. SK is the Super-Kamiokande experiment.

Interestingly, the oscillation probabilities depend on the squared mass
differences, and therefore oscillation experiments are unable to determine
the absolute values of the neutrinomasses. Furthermore, a consequence
of the dependence on differences leads to two, equally possible mass
hierarchies coined the normal hierarchy shown in the left panel of



1.3 neutrino oscillations 10

Figure 6a where 𝑚3 > 𝑚2, and the inverted hierarchy shown in the
right panel of Figure 6a where 𝑚3 < 𝑚2.

1.3.4 Sterile neutrinos

Besides the neutrinos, all fermions of the SM can exist in both RH and
LH states - a fact that is both experimentally confirmed and theoretically
well grounded. Additionally, from EWK experiments it has been con-
firmed that there are exactly 3 active neutrinos coupling to the Z-boson
as shown in Figure 7 [23].

Figure 7: Cross section of the Z-resonance as a function of energy with fits
of two, three and four active neutrinos. It can be seen that the data
is incompatible with the existence of any more or any less active
neutrinos than three. From [24].

There is, however, nothing in the SM that disallows the existence of
neutrinos that does not couple to the EWK interaction. Taking these
considerations into account, it is theoretically well motivated to extend
the neutrino sector to includeRHneutrinos andLHantineutrinos, the so
called sterile neutrinos 𝜈s. Sterile neutrinos only interact gravitationally
and could potentially be dark matter [25].

Neutrino oscillations are straightforwardly extended to include sterile
neutrinos by adding an additional dimension to Eq. (6) such that

⎡
⎢⎢⎢⎢
⎣

𝜈𝑒
𝜈𝜇
𝜈𝜏
𝜈s

⎤
⎥⎥⎥⎥
⎦

=
⎡
⎢⎢⎢⎢
⎣

𝑈𝑒1 𝑈𝑒2 𝑈𝑒3 𝑈𝑒4
𝑈𝜇1 𝑈𝜇2 𝑈𝜇3 𝑈𝜇4
𝑈𝜏1 𝑈𝜏2 𝑈𝜏3 𝑈𝜏4
𝑈𝑠1 𝑈𝑠2 𝑈𝑠3 𝑈𝑠4

⎤
⎥⎥⎥⎥
⎦

⎡⎢⎢⎢⎢
⎣

𝜈1
𝜈2
𝜈3
𝜈4

⎤⎥⎥⎥⎥
⎦

. (17)
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Now oscillation probabilites to and from 𝜈s can be derived in the
same manner as Eq. (16). Currently, the only way of observing sterile
neutrinos is through their oscillations into weakly interacting neutrinos.



2
OBSERV ING NEUTR INOS

Neutrinos are incredibly elusive particles. They can travel through
lightyears of leadwithout interacting, which requires neutrino detectors
to generally be very large to detect a satisfactory amount of neutrinos. In
this chapter the IceCube detector will be introduced before discussing
one source of neutrinos, the atmospheric neutrinos, and how they are
detected.

2.1 the icecube detector.

The IceCube Neutrino Observatory is the largest neutrino detector in
the world utilizing a volume of 1 km3 of ice at the South Pole. The main
array encompasses the largest volume of the detector, and a specialized
array, DeepCore, is placed in the center of the detector.

2.1.1 Detector geometry

The detector is shown in Figure 8: The detector consists of an in-ice
array of 5160 Digital Optical Modules (DOMs) spread across 86 vertical
strings [26] equipped with (among other devices) PhotoMultiplier
Tubes (PMTs). The strings are placed in a hexagonal structure with
a spacing of 125 meters separation, and the vertical distance between
DOMs is 17 meters. All DOMs are situated in the optically clearest ice
between 1450 and 2450 meters below surface with the deepest DOMs
located approximately 400 meters above the South Pole bedrock. The
region between 2000 and 2100 meters does not contain DOMs, as this
region has significantly higher light absorption due to a dustlayer de-
posited 65.000 years ago during the last glacial period [27].

12
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Figure 8: The IceCube Neutrino Observatory detector. The black dots located
on the gray strings are the Digital Optical Modules used for light
detection. In the center of the detector, theDeepCore-array optimized
for low-energy particle detection is shown. Figure from [26].

In the center of the detector, the assymetric DeepCore-array is lo-
cated, where the density of DOMs is higher: The average horizontal
spacing between 13 of the strings is 72meters and for 6 strings 42meters
[28]. The vertical spacing is also decreased to 7 meters. Furthermore,
DeepCore is installed with PMTs with a higher quantum efficiency. All
combined, the DeepCore-array greatly enhances the Icecube-detectors
ability to observe particles with energies in the low GeV-range.

2.1.2 The Digital Optical Module

The DOM is the fundamental unit of IceCube and is shown in Figure
9a. It contains a downward-facing PMT sitting inside a spherical glass
shell, power supplies and the electronics responsible for digitizing and
sending acquired data to the IceCube laboratory at surface level. The
PMTs are sensitive to light with wavelengths between 300 and 650
nm with a peak quantum efficiency of 25 % outside and 34 % inside
DeepCore [29].
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(a) (b)

Figure 9: (a): A Digital Optical Module (DOM). The DOM is the unit respon-
sible for detecting light from events, digitizing the data and sending
it to the surface. Figure from [26]. (b): Average of 10.000 single
photoelectron waveforms recorded using two different transformer
designs. Figure from [29].

Each DOM is equipped with two different kinds of digitizers: A fast
Analog toDigital Converter (fADC) and anAnalog TransientWaveform
Digitizer (ATWD) [30]. The fADC uses a smaller sampling rate for
conversion but also records for a longer time period compared to the
ATWD as summarized in Table 1. When a PMT triggers, it produces
a continuous signal referred to as a waveform; an average of several
single photoelectron waveforms is shown in Figure 9b.

Chip Sampling rate Record time
fADC 40 MHz 6.4 𝜇s
ATWD 300 MHz 0.43 𝜇s

Table 1: Summary of digitizer characteristics.

Upon detection, the waveform is digitized and saved locally for a
small period of time in the DOM. If the instrumentation deems a signal
worthy of further processing, it is sent to the surface, where it is fitted
and saved: The processed waveform, referred to as a pulse, can now be
characterized by its width and integrated charge 𝑄 and is saved along
with its detection time for further analysis.

2.1.3 Event Triggering

The IceCube detector is inherently noisy: Standard PMTs have dark
noise rates1 of up to 500 Hz and high quantum efficiency PMTs as high
as 800 Hz [29]. As a rough estimate, for an event in a timewindow of 10
𝜇s, the noise rate corresponds to pulses from 25 DOMs originating from
dark noise only. It is therefore of utmost importance to have methods

1 An umbella term with contributions from e.g. Poissonian noise and radioactive decays.
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capable of separating noise from pulses stemming from true signal
photons.

IceCube operates with a set of triggers. All DOMs in a given time
window are read out and persistently saved if a trigger occurs. The
SMT8 trigger requires that the Hard Local Coincidence (HLC) condi-
tion is met for 8 or more DOMs within a time window of 5 𝜇s [28]. The
HLC condition requires that two or more neighboring or next-nearest
neighboring DOMs register hits within a time interval of 1 𝜇s. On the
SMT8 trigger, all DOMs that register hits within 10 𝜇s before and after
the trigger time are read out. The DeepCore-detector employs an addi-
tional trigger, the The SMT3 trigger, requiring only 3 DeepCore-DOMs
to pass the HLC-condition within a 2.5 𝜇s window.

2.1.4 Pulse Cleaning

As mentioned in Section 2.1.3, each readout is expected to contain a
significant amount of pulses that do not emerge from a true signal.
Attempting to remove the pulses stemming from noise has both advan-
tages and disadvantages. Since there is no way of knowing for sure
whether a pulse is noise or signal, the most obvious disadvantage is the
risk of removing signal from an event. Furthermore, removing noise is
not guaranteed to make machine learning (ML) algorithms perform
better. On the other hand, if the sequence length of an event can be
made smaller without removing signal, event processing times will
decrease. Hence, it is worth investigating whether event cleaning can
make ML algorithms more performant.

(a) Uncleaned event (b) Cleaned event

Figure 10: Uncleaned and SRT-cleaned simulated 𝜈𝜇 event with an energy of
𝐸 = 848 GeV. Small black dots denote DOMs that did not activate
during the event and coloured denote activated DOMs. The size
of activated DOMs is proportional to the integrated charge of the
pulse, and the colour runs from earlier times in blue to later times
in red. The green dotted line is the true track. Figure courtesy of
Mads Ehrhorn.
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In this work, algorithms will be developed utilizing uncleaned events
and Seeded Radius-Time cleaned (SRT) events. SRT is a combination
of cleaning based on distances in space and time between DOMs and
whether hits satisfy the HLC-condition: The RT-part of the cleaning
only retains pulses that have atleast 1 accompanying hit within a radius
of 𝑅 = 150 m and is within a distance in time of |𝛿𝑡| = 1 𝜇s. To further
remove noise hits, an iterative addition process is exectuted. Starting
out by putting all DOMs satisfying the HLC-condition into a list 𝑙DOMs,
then

• find all hits 𝐻 passing RT-cleaning with respect to 𝑙DOMs.

• Update 𝑙DOMs with 𝐻.

This process is continued until the amount of kept DOMs stops increas-
ing. The effect of SRT-cleaning is displayed in Figure 10 for a 848 GeV
𝜈𝜇-event. SRT cleaning has reduced the sequence length from 89 to 60
corresponding to the estimation of 29 noise pulses. For lower energy
events, the fractional reduction is even larger, drastically reducing the
number of operations required per reconstruction.

2.2 atmospheric neutrinos

In 1912, Victor Hess ascended from the surface of the Earth to just above
5000 metres in hot air balloons to measure the level of radioactivity in
the atmosphere. He found that it increased dramatically with height
above surface level [31]; in 1936 he was awarded the Nobel prize for
the discovery of cosmic rays [32]. Today, cosmic rays and their origin is
extensively studied, and understanding their compositions and quanti-
ties is important with regards to modelling the expected fluxes of the
different neutrinos. Neutrinos generated through the interactions of
the cosmic rays with the atmosphere, so-called atmospheric neutrinos,
are the main source of neutrinos for oscillation analyses in Icecube.

Cosmic rays are stable, charged nuclei originating both from within
and outside our galaxy that hit the Earths atmosphere. Cosmic ray
energies vary wildly from a few to millions of GeV as shown in Figure
11. The different fluxes can be seen to approximately be described by
powerlaws decreasing with energy with the total flux approximately
decreasing like

d𝑁
d𝐸 ∼ 𝐸−2.7 (18)

in the GeV and low TeV ranges. The by far most dominating contribu- For higher energies
(above ’The Knee’),
the exponent gets
smaller.

tors to the ray spectrum are hydrogen- and helium-cores making up
approximately 94 % of all rays [33].
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Figure 11: Cosmic ray flux and composition as a function of energy per nucleus.
In the top right, the fraction of hydrogen- to helium-cores in rays as
a function of particle rigidity (a measure of particle momentum) is
shown. Note that the different fluxes have been scaled. Figure from
[33].

When a highly energetic particle hits the Earth, it is very likely to
interact in the upper part of the atmosphere producing a plethora of
particles. Of particular interest to this work are the charged 𝜋-mesons.
Being the lightest mesons, they are produced in the largest amount,
which in turn produces the largest amount of 𝜈𝜇 and 𝜈𝜇 through the
interaction chains depicted in Figure 12, where for instance (not differ-
entiating between particles and antiparticles)

𝜋 → 𝜇 + 𝜈𝜇, then
𝜇 → 𝜈𝜇 + 𝜈𝑒 + 𝑒, (19)

where the production of 𝜈𝜇 is twice that of 𝜈𝑒. Since the pion is
not heavy enough to create 𝜏-particles and pions very rarely decay to
electrons due to helicity suppresion[34], the production of different
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neutrino flavours from pions are expected to roughly correspond to a
𝜈𝑒 ∶ 𝜈𝜇 ∶ 𝜈𝜏 ratio of 1 ∶ 2 ∶ 0.

Figure 12: Sketch of how a cosmic ray produces interaction chains ultimately
producing electron- and muon neutrinos. Figure from [35].

2.3 particle energy loss

In the Icecube-detector, the neutrinos are not observed directly, but the
products of their interactions are. In general, CC processes of the forms

𝜈𝛼 + 𝑁 → 𝑙−𝛼 + 𝑋 (20)

or

𝜈𝛼 + 𝑁 → 𝑙+𝛼 + 𝑋 (21)

take place in or near the detector, where the interaction products 𝑙±𝛼
and 𝑋 then deposit their energy in the detector leaving smoking gun
evidence of a neutrino.

Consequently, the neutrino direction cannot be determined exactly;
the angular difference ΔΨ between the neutrino and the lepton direc-
tions roughly follow [36]

ΔΨ ≈ 0.7∘ (
𝐸𝜈
TeV)

−0.6
. (22)

Depending on the neutrino energy, the produced lepton loses energy
in the form of photons primarily due to ionization or radiative effects.
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For muons below 100 GeV, the primary source of energy loss is ioniza-
tion for which the mean energy loss rate is well-described by the Bethe
relation [33]

⟨−
𝑑𝐸
𝑑𝑥 ⟩ = 𝐾𝑧2 𝑍

𝐴
1
𝑣2 (

1
2 ln

2𝑚𝑒𝑣2𝛾2𝑊max
𝐼2 − 𝑣2) , (23)

where 𝐾 = 4𝜋𝑁𝐴𝑟2
𝑒 𝑚𝑒, 𝑧 is the charge number of the incident particle, 𝑍,

𝐴 and 𝐼 are the atomic number, molar mass and mean excitation energy
of the absorbing material and 𝑊max is the maximal energy loss in a sin-
gle collision. For energies closer to the TeV-range and beyond, radiative A more thorough

description of the
energy loss is
available in [33].

effects such as Bremsstrahlung take over as the main source of energy
loss. A classical derivation of the radiated effect from Bremsstrahlung
yields [37]

𝑑𝐸
𝑑𝑡 =

2
3𝑒2𝛾6 ( ̇⃗𝑣

2
− ( ⃗𝑣 × ̇⃗𝑣)2) , (24)

which in the relativistic limit (where 𝑡 ≈ 𝑥) becomes directly compara-
ble to Eq. (23). The energy loss per unit distance for a muon travelling
through copper is shown in Figure 13, where the energy region inter-
esting to this work is from 1 GeV and up. The Bethe-regime is visible
in the central part, and the radiative regime in the rightmost part of
the figure. The IceCube detector does not utilize copper but ice as the
absorbing medium, whose stopping power is similar.

Figure 13: Energy loss per unit distance travelled for a muon propagating
through copper with ionization (10 MeV - 100 GeV) and radiative
regimes (>500 GeV). Figure from [33].
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2.4 cerenkov radiation

If charged particles travel through a dielectric medium faster than the
phase velocity of light, they emit Cerenkov Radiation [38]. The phe-
nomenon can be understood by examining how the wavefronts of the
polarization created by the charged particle propagates: A superlumi-
nal, charged particle (indicated by the red arrow in Figure 14) polarizes
a medium at 𝑡 = 0, which propagates as a wave with phase velocity 𝑣.
At a later time 𝑡, when the particle has travelled a distance 𝛽𝑡, where
𝛽 = 𝑣𝑝𝑎𝑟𝑡𝑖𝑐𝑙𝑒/𝑐 is the speed of the particle, another wave is emitted.

Figure 14: Sketch of the relation between wavefronts in Cerenkov radiation: A
charged particle travels at superluminal speed along the red arrow,
polarizing the dielectric medium. Due to geometry, constructive
interference happens in certain directions, producing visible light.
Figure from [39].

From the geometry of the figure, we see that the waves constructively
interfere at an angle 𝜃𝐶, where cos 𝜃𝐶 = 𝑣𝑡

𝛽𝑡 , creating Cerenkov radiation.
The speed of light is related to the index of refraction 𝑛 = 𝑐

𝑣 , and
therefore the angle 𝜃𝐶 of emission of Cerenkov radiation is

cos 𝜃𝐶 =
1

𝑛𝛽. (25)

Due to rotational symmetry, the superluminal particle emits cones of
light. IceCube among other detectors utilize this effect to detect charged
particles by detecting the Cerenkov radiation they emit. Assuming the
charged particles have velocities of 𝛽 ≈ 1 and ice with a refractive index
of 1.33, 𝜃𝐶 = 41.2 degrees. The wavelength of the radiation and the In reality, the

refractive index in
the South Pole ice is
not a constant.

amount of photons emitted per unit tracklength is determined by the
Frank-Tamm formula [33]

𝑑𝑁
𝑑𝑥𝑑𝜆 =

2𝜋𝛼𝑧2

𝜆2 (1 −
1

𝛽2𝑛2(𝜆)
) , (26)
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where 𝛼 is the fine-structure constant and 𝑧 is the charge number. It can
be seen that the amount of radiation decreases with the inverse square
of wavelength, and therefore Cerenkov detectors should be optimized
towards detecting light towards the blue end of the light spectrum. In
the IceCube detector, on the order of 𝒪(105) visible photons are emitted
per GeV of particle energy[26].

2.5 event signatures

Due to the different natures of the lepton flavours, they leave different
signatures in the detector. Since a 𝜏-particle decays very quickly to other
particles, it does not travel very far. With a lifetime 𝜏𝜏 = 0.29 ⋅ 10−12

seconds, low-energy taus have a characteristic travel length of approx-
imately 𝑐𝜏𝜏 = 87 ⋅ 10−6 meters (neglecting relativistic time dilation).
Therefore, to detect a 𝜏-particle, one must detect its decay products.

The electron does not travel very far in the detector either. Using the
relation 𝐸 = 𝛾𝑚0, we can reexpress Eq. (24) in terms of 𝐸/𝑚. Hence,
in the relativistic limit

𝑑𝐸
𝑑𝑥 ∝ 𝑚−6, (27)

and therefore electrons quickly deposit all their energy, which in turn
produce hadronic cascades and electromagnetic showers. Ultimately, it
is the muons that leave the longest tracks in the detector, since they are
stable enough to not decay too fast and heavy enough to not quickly
lose all their energy as Bremsstrahlung.
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Figure 15: Different event signatures: A cascade from a 46.7 TeV 𝜈𝑒 event (a),
a tracklike event from a 71.4 TeV 𝜈𝜇 event (b) and a simulated
PeV-range double bang event (c). Figure from [40].

Hence, in general 3 different signatures are expected. Tracklike events To the author’s
knowledge, a double
bang event has not
yet been detected.

from 𝜈𝜇 CC interactions, cascade events from 𝜈𝜏-, 𝜈𝑒 and NC 𝜈𝜇 (see
Figure 4) interactions and double bang events from 𝜈𝜏 events, all shown
in Figure 15. The double bang events can only occur for very high ener-
gies, where the 𝜏 does not decay immediately. Instead, the 𝜏 deposits
some energy, decays, and the decay product deposits its energy further
down the detector.

Figure 16: Simulated and SRT-cleaned 𝜈𝜏 (a), 𝜈𝜇 (b) and 𝜈𝑒 neutrino event
at 30 GeV, all showing similar structure. Figure courtesy of Mads
Ehrhorn
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All events in Figure 15 are at considerably higher energies than the
events analyzed in this work. These events are all in the GeV range with
most being in the 10-100 GeV range of interest to oscillation analyses.
Such events pose several difficulties with regards to reconstruction,
since much fewer DOMs activate during 𝜈𝜏, 𝜈𝜇 and 𝜈𝑒 events as shown
in Figure 16. All shown events are SRT-cleaned and at neutrino energies
of 30 GeV, and as it can be seen, the differences between the event
signatures are much more subtle (if there at all).

2.6 reconstruction algorithms

For oscillation analyses, the Retro Reconstruction (Retro) is the current
best reconstruction algorithm [41, 42]. It is a Maximum Likelihood
Estimator (MLE) using photon propagation tables during likelihood
maximization. The reconstructed values ℎtrack are determined as

ℎtrack = arg max (𝑝[𝑡, 𝑥, 𝑦, 𝑧, 𝑙, 𝜙, 𝜃, 𝐸| {DOM1, .., DOM𝑁}]) (28)

where (𝑥, 𝑦, 𝑧, 𝑡) is the spacetime interaction vertex, (𝜙, 𝜃) the direction,
𝑙 is the track length and 𝐸 is the cascade energy.

A photon propagation table is created by treating each DOM as if
it emits light. Photons are then transmitted across the detector, and
by counting the number of photons reaching a point ⃗𝑥 in space, the
probability of detecting photons from ⃗𝑥 is estimated by flipping the
role of the emitting and receiving ends. This procedure assumes that
scattering and absorption are symmetric under time reversal.

Retro has both strengths and weaknesses. Each DOM table is pro-
duced using 100 ⋅ 108 photons and each table is approximately 2 GB in
size. With 5160 unique DOMs, 1 TB memory is required for just storing
the table values if no compression techniques are exploited.

In Figure 17 the reconstruction times for Retro are shown; these pose
another disadvantage. Reconstructions can take several minutes to con-
verge. If the quality of reconstructions is on par or better, aML approach
with reconstruction times on the order of 𝒪(104) reconstructions per
second would be a major improvement.
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Figure 17: Reconstruction times for the Retro Reconstruction algorithm (green)
and the PegLeg reconstruction algorithm (latter not used in this
work). Retro reconstruction times can be seen to exceed several
minutes. Figure from [41].



3
DEEP LEARNING

The notorious field of artificial intelligence (AI) has given birth to chess
machines of inhuman strength, self-driving cars [43] and it seems
difficult to fully comprehend its limits.

Among one of the fantastic while less extravagant things AI is ca-
pable of is track reconstruction at the IceCube Neutrino Observatory
using Deep Learning (DL). Technically, DL is a form of representation
learning using several perceptrons to form Artificial Neural Networks
(NNs) able to approximate a plethora of functions. In this chapter, the
previously mentioned concepts among others will be unpacked, includ-
ing DLs poorly understood theoretical grounds and how it practically
is tweaked to produce meaningful results anyways.

3.1 artificial neural networks

NNs come in many forms and shapes. The basic building block of all is
the neuron. Informally, the 𝑖′𝑡ℎ neuron of a network (shown schemati- The neuron or

perceptron of specific
types of networks
may differ, but its
modus operandi
remains the same

cally in Figure 18) takes 𝑁in inputs, calculates a weighted sum 𝑠𝑖 (typ-
ically with a bias) and applies some nonlinear function 𝜎 called an
activation to it. Hence, a neuron is a function 𝑓 ∶ ℝ𝑁in+1 → ℝ which
outputs

𝑧𝑖 = 𝜎 ⎛⎜
⎝

𝑏𝑖 +
𝑁in

∑
𝑛=1

𝑤𝑛𝑥𝑛
⎞⎟
⎠

, (29)

where 𝑥𝑛 are the inputs and 𝑏𝑖, 𝑤𝑛 are learnable parameters. The de-
scribed neuron is the basic building block of fully connected feedforward
layers (FF). To increase the expressive capacity of the layer, several
neurons can be combined to produce 𝑁out outputs. Each neuron is
described by Eq. (29), but the neurons learn different sets of weights
and biases. Hence, a single-layer NN is function 𝑙 ∶ ℝ𝑁

in → ℝ𝑁
out, where

𝑁out is referred to as the width of the layer.

25
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𝑠 = 𝑏 + ∑𝑖 𝑤𝑖𝑥𝑖

𝑧 = 𝜎(𝑠)

𝑥4

𝑥1

𝑥2

𝑥3

Figure 18: Schematic overview of a feedforward network with one hidden layer. Blue circles
denote neurons and transparency of links between neurons denote weight size.

In practice, calculating the output z of a layer reduces to applying a
nonlinear activation to a matrix product: For a layer with 𝑖 neurons in a
NN with 𝑗 inputs collected into a vector x

z = 𝜎 (Wx + b) , (30)

where W ∈ ℝ𝑖×𝑗 and b ∈ ℝ𝕚 are a learnable weights and biases.

3.1.1 Deep Learning

NNs are powerful models capable of representing arbitrary functions
with just a single hidden layer (and under mild assumptions on the
used activation function), a result known as the Universal Approxi-
mation Theorem [44]. Once a single-layer NN is extended to include
multiple layers, we move from shallow to deep networks. A NN of depth
3 as shown Figure 18. Formally, a FFNN of depth 𝑑 is desribed as the
composition of functions

𝑓 (𝑥) = (𝑙𝑑 ∘ ... ∘ 𝑙1)(𝑥), (31)

where each 𝑙𝑖 is a function of the form given in Eq. (30). The ad-
vantage of increasing the amount of layers is that the representational
power of the network increases faster with depth than it does with
width; to represent some functions 𝑓 ∈ ℱ, where ℱ is a set of functions,
a network 𝑀𝑖

𝑑 of depth 𝑑 and width 𝑖 require

𝑁nodes(𝑀𝑖
𝑑) = 𝒪(𝑑 ⋅ 𝑖) (32)

whereas a network 𝑀𝑖
2 with 2 layers and width 𝑖 require

𝑁nodes(𝑀𝑖
2) = 𝒪((𝑖 − 1)𝑑) (33)

to represent the same function 𝑓, where 𝑁nodes counts the number of
nodes in the network [45].
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3.1.2 Recurrent Neural Networks

If the FFNN is generalized to include feedback connections as well, a
new family of Recurrent Neural Networks (RNNs) arise. This approach
has proven to be beneficial for sequential modelling. An RNN layer
is depicted in Figure 19: Each element of a sequence x = {𝑥0, ..., 𝑥𝑡}
is input individually to the layer 𝐴, which applies some function 𝑓
and produces an output ℎ𝑖. Along with 𝑥𝑡, the output of the previous
element ℎ𝑡−1 = 𝑓 (𝑥𝑡−1) is fed to 𝐴, from which the recurrence relation
is evident. Hence, the RNN can be unfolded in time as shown in the right
part Figure 19. As shown, a RNN transforms a sequence x to a new
representation h = {ℎ0, ..., ℎ𝑇}, effectively utilizing a network of depth
𝑡.

Figure 19: Illustrative drawing of a RNN and its unfolding in time. Figure
from [46].

The objective of a RNN is to extract information hidden in a sequence
and encode it in a new sequence (coined seq2seq-modelling). Typically,
the last output ℎ𝑡 is fed to FF-layers, whose objective is to decode the
information. In a classic RNN, the elements of h are calculated as

h𝑖 = tanh (W𝑥x𝑖 + b𝑥 + Wℎh𝑖−1 + bℎ) , (34)

where each element of h has been represented by a vector. Since ℎ𝑡
depends on the previous output ℎ𝑡−1, a RNN must be initialized with
a vector ℎ0 such that the first element of a sequence can be processed.
In practice ℎ0 is typically initialized to be a random vector or a vector
containing all 0’s.

In practice, obtaining satisfactory convergence of RNNs of the form
given by Eq. (34) has proven to be difficult for long sequences[47];
therefore, several variations of the classic RNN neuron has been created.
In this work, Long Short Term Memory networks (LSTMs) [48] and
GatedRecurrentUnit networks (GRUs) [49] are employed. Both LSTMs Several researchers

and practitioners
have contributed to
the modern version of
LSTMs. Attempting
to mention them all
would be futile.
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and GRUs work in the same manner as a classic RNN, but the neurons
are different. Formally, an LSTM layer applies the equations

𝑖𝑡 = 𝜎 (W𝑖𝑥x𝑡 + b𝑖𝑥 + W𝑖ℎh𝑡−1 + b𝑖ℎ) ,
𝑓𝑡 = 𝜎 (W𝑓 𝑥x𝑡 + b𝑓 𝑥 + W𝑓 ℎh𝑡−1 + b𝑓 ℎ) ,

𝑔𝑡 = tanh (W𝑔𝑥x𝑡 + b𝑔𝑥 + W𝑔ℎh𝑡−1 + b𝑔ℎ) , (35)

𝑜𝑡 = 𝜎 (W𝑜𝑥x𝑡 + b𝑜𝑥 + W𝑜ℎh𝑡−1 + b𝑜ℎ) ,
𝑐𝑡 = 𝑓𝑡 ∗ 𝑐𝑡−1 + 𝑖𝑡 ∗ 𝑔𝑡,
ℎ𝑡 = 𝑜𝑡 ∗ tanh(𝑐𝑡),

and the GRU layer applies

𝑟𝑡 = 𝜎 (W𝑟𝑥x𝑡 + b𝑟𝑥 + W𝑟ℎh𝑡−1 + b𝑟ℎ) ,
𝑧𝑡 = 𝜎 (W𝑧𝑥x𝑡 + b𝑧𝑥 + W𝑧ℎh𝑡−1 + b𝑧ℎ) ,
𝑛𝑡 = tanh (W𝑛𝑥x𝑡 + b𝑛𝑥 + 𝑟𝑡 ∗ (W𝑛ℎh𝑡−1 + b𝑔ℎ)) , (36)

ℎ𝑡 = (1 − 𝑧𝑡) ∗ 𝑛𝑡 + 𝑧𝑡 ∗ ℎ𝑡−1,

where all matrices W and biases b are learnable, ∗ denotes elemen-
twise multiplication and 𝜎 = 1

1+exp(−𝑥) is the sigmoid function.The Elementwise
multiplication is also
known as the
Hadamard product.

information flow in LSTM (left) and GRU (right) layers is shown in
Figure 20. Informally, the LSTM layer consists of an internal state 𝑐𝑡
and 3 gates controlling what is remembered and forgotten: An input
gate 𝑓𝑡, a ’commit to memory’-gate 𝑖𝑡 and an output gate 𝑜𝑡, where the
sigmoid functions let important information through (when 𝑥 > 0)
and suppress irrelevant information (when 𝑥 < 0). A GRU layer shows
resemblance to the LSTM layer and has fewer parameters, but in return
it has no internal state.

ℎ𝑡−1

ℎ𝑡−1

𝑥𝑡 𝑥𝑡

ℎ𝑡ℎ𝑡

ℎ𝑡

𝑐𝑡𝑐𝑡−1

(a) (b)

Figure 20: (a): Schematic overview of information flow in a LSTM layer. Fig-
ure from [46]. (b): Schematic overview of information flow in a
GRU layer. Figure from [46].

Many more variations on LSTMs have been tested and created. Stud-
ies have however shown that most variants do equally well [50]. Both
LSTMs and GRUs are used in this work.



3.2 statistical learning theory 29

3.1.3 Attention Networks

A different approach to sequence processing is an attention mechanism.
Instead of having the processing of the element ℎ𝑡 depend on only the
previous elements, an attentionmechanism can be utilizedwhich allows
the network to extract information from every element of the sequence
during the processing of ℎ𝑡. Networks based on such a mechanism
have achieved state-of-the-art results in the field of natural language
processing [51].

Attention works as follows: For each sequence element x𝑖 represented
by a vector, a query vector q𝑖, key vector k𝑖 and value vector v𝑖 each
with 𝑑 elements are calculated as

q𝑖 = A𝑞x𝑖,
k𝑖 = A𝑘x𝑖, (37)
v𝑖 = A𝑣x𝑖,

where A𝑞, A𝑘 and A𝑣 are learnable matrices. A new representation of
the input is then calculated as

h𝑖 =
𝐿

∑
𝑗=1

softmax⎛⎜
⎝

q𝑗 ⋅ k𝑖

√𝑑
⎞⎟
⎠𝑗

v𝑗, (38)

where the softmax function

softmax(𝑥𝑗) =
exp(𝑥𝑗)

∑𝑁
𝑖=1 exp(𝑥𝑖)

(39)

converts the 𝑗 attention scores (argument to the softmax) to a probability This specific kind of
attention is also
called dot-product
attention.

distribution. Since Eq. (38) is nothing but a linear function of the
inputs, the outputs are individually sent through atleast 1 FF layer to
introduce nonlinearity. Attention will be compared to the performance
of and used in conjunction with RNNs during the search for a good
reconstruction model.

3.2 statistical learning theory

An archetypicalMLproblem can be stated as: Given a set 𝑆 = {(𝑥1, 𝑦1), .., (𝑥𝑁, 𝑦𝑁)}
of size 𝑁, where 𝑥𝑖 ∈ 𝒳 is the feature or features of the i’th observation
and 𝑦𝑖 ∈ 𝒴 is the i’th label, find a model (or hypothesis) ℎ capable of
as accurately as possibe produce labels for unseen datapoints given
their features 𝑥. The described problem is a supervised learning problem
as opposed to an unsupervised learning problem, in which a training
set 𝑆 without labels is given, and the objective of the model is to find
patterns in data.
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3.2.1 Supervised Learning

A supervised learning problem can either be a classification problem
or a regression problem. In the former case, the labels 𝑦 are categorical
variables and in the latter they are continuous. In the work presented,
both classification and regression problems will be tackled.

Formally, given a loss function 𝑙, which measures the deviation from
the true label, the objective of the learner is to find the hypothesis ℎ ∶
𝒳 ↦ 𝒴, ℎ ∈ ℋ, where ℋ is the set of all possible hypotheses given
the constraints of the chosen hypothesis class (in this work neural
networks), minimizing the expected loss

𝐿(ℎ) = 𝔼 [𝑙(ℎ(𝑥), 𝑦)] . (40)

Typically only an estimate of 𝐿 can be obtained and the empirical loss

�̂�(ℎ) =
1
𝑁

𝑁
∑
𝑖=0

𝑙(ℎ(𝑥𝑖), 𝑦𝑖) (41)

is minimized instead, where all pairs (𝑥𝑖, 𝑦𝑖) are assumed to be i.i.d.
according to some distribution 𝑝(𝑥, 𝑦). Hence, the optimal hypothesis,
we must find through training, is defined as

ℎ∗ = argmin
ℎ∈ℋ

�̂�(ℎ). (42)

3.2.2 Bounding the Generalization Error

The central requirement of a model is to produce accurate predictions
on unseen data - we want the model to generalize well. Once a model
has been optimized through training on 𝒮, the hypotheses produced are
optimized to reduce the error on that set. The hypotheses are functions
of 𝒮 and there is no guarantee that the error on unseen data will be
anywhere near the training error. In other words, �̂�(ℎ∗

𝒮) is a biased
estimate of 𝐿(ℎ∗), where ℎ∗

𝒮 denotes evaluation of the optimal hypothesis
with respect to the set 𝒮.

In some cases it is however possible to produce a bound on the dif-
ference

𝐺(ℎ) = �̂�(ℎ) − 𝐿(ℎ) (43)

called the generalization error. Specifically, a bound decaying exponen- Some sources defines
the generalization
error simply as 𝐿(ℎ).

tially fast with the amount of data can be derived for many supervised
learning problems using the two-sided Hoeffding’s Inequality [52],
which is given here without proof: If we let 𝑋1, .., 𝑋𝑛 be i.i.d. real
random variables, where 𝑋𝑖 ∈ [𝑎, 𝑏], then for every 𝜖 > 0:

𝑃 ⎛⎜
⎝

∣∣∣∣

𝑛
∑
𝑖=1

𝑋𝑖 − 𝔼 ⎡⎢
⎣

𝑛
∑
𝑖=1

𝑋𝑖⎤⎥
⎦
∣∣∣∣
≥ 𝜖⎞⎟

⎠
≤ 2 exp(−

2
𝑛 (

𝜖
𝑏 − 𝑎)

2
) . (44)
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If we let |ℋ| be the amount of different hypotheses in ℋ (i.e. the
amount of different ways a model is capable of labelling a training set),
then it can be shown using Hoeffding’s inequality that

𝑃
⎛⎜⎜⎜⎜
⎝

∣𝐺(ℎ∗)∣ ≥ (𝑏 − 𝑎)√ log 2|ℋ|
𝛿

2𝑛
⎞⎟⎟⎟⎟
⎠

≤ 𝛿, (45)

which displays the bias-variance tradeoff: Themore complex amodel
is made (expressed by the size of the hypothesis class), the less certain
it is that a model generalizes well.

It turns out thatNNs are immensely difficult to bound. To boundNNs
used for regression, the measure of the complexity of the hypothesis
class (here its size) has to be altered, since its size is uncountably infinite.
Furthermore, the bounds tend to either be so loose that they become
useless or the requirements of ℋ are too restrictive to have any practical
use. In other words, even though NNs are capable of representing
arbitrary functions, it is theoretically poorly understood how these
representations can be learned.

3.3 training networks

Despite the theoretical shortcomings mentioned above, practitioners
are capable of training NNs with marvelous capabilities - inside as well
as outside the laboratory. The models are trained using backpropagation
[53] together with Stochastic Gradient Descent (SGD) or one of its
variants for a number of epochs (one loop over the entire traning) until
the model converges.

3.3.1 Optimizers

In general, there exists no closed-form solution to Eq. (42) for NNs,
and therefore alternative methods must be utilized to optimize DL
models. SGD is an iterative minimization process, where the weights
of a network at each step are updated according to

𝑤𝑡+1 = 𝑤𝑡 − 𝜂∇𝑤�̂�(𝑤𝑡), 𝜂 > 0, (46)

where 𝜂 is the learning rate and �̂� is the empirical loss defined in Eq. Outside of ML, 𝜂 is
also known as the
stepsize.

(5.4). The stochasticity stems from only using a subset of the train-
ing set in estimating the gradient, where the number of datapoints
used is referred to as the batchsize (BS). Prior to training initiation, the
weights of the network are initialized to random values drawn from
some distribution.
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The loss landscapes enountered in DL as a function of theweights can
be highly nonconvex, which makes optimization difficult. Such a land-
scape is shown in Figure 21; by adding noise through small batchsizes,
sharp, local minima can be escaped leading to better generalization, i.e.
the noisy estimates of the gradient are beneficial to the optimization.
[54, 55].

Figure 21: A highly nonconvex loss landscape sampled during optimization
of a NN, where height and color indicates the loss value (blue is
small). The landscape was created by varying 2 of the network’s
weights on a 2-dimensional grid. Figure from [56].

Experiments with 3 different optimization algorithms are performed
in thiswork: SGDwithMomentum (SGDM) [57], NesterovAccelerated
Gradient (NAG) [58] and the Adam optimizer [59]. SGDM includes a
bit 𝛾 > 0 of the gradient at the previous step. Mathematically, Eq. (46)
is altered to

𝑣𝑡 = 𝛾𝑣𝑡−1 + 𝜂∇𝑤�̂�(𝑤𝑡),
𝑤𝑡+1 = 𝑤𝑡 − 𝑣𝑡. (47)

Effectively, the added momentum increases the rate of change along
dimensions, where the gradients at different timesteps tend to point in
the same direction and reduces the rate of change along dimensions,
where the gradients oscillate between negative and positive values at
different timesteps. NAG given by

𝑣𝑡 = 𝛾𝑣𝑡−1 + 𝜂∇𝑤�̂�(𝑤𝑡 − 𝛾𝑣𝑡−1),
𝑤𝑡+1 = 𝑤𝑡 − 𝑣𝑡 (48)

is very similar to SGDM, but with one subtle difference as shown in
Figure 22: the gradient is evaluated at a point looking ahead instead of
at the current position.
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Lookahead gradient

Combined

Combined

Classic gradient

Momentum Momentum

SGD with Momentum NAG

Figure 22: Comparison of Stochastic Gradient Descent with Momentum (left)
and Nesterov Accelerated Gradient (right). Contributions to the
final step are shown in different colours.

Finally, Adam is a more radical modification of the classic SGD. At Adam is an
abbreviation for
’Adaptive moment
estimation’

each step, the weights are updated using

𝑔𝑡 = ∇𝑤�̂�(𝑤𝑡) (49)
𝑚𝑡 = 𝛽1𝑚𝑡−1 + (1 − 𝛽1)𝑔𝑡, (50)
𝑣𝑡 = 𝛽2𝑣𝑡−1 + (1 − 𝛽2)𝑔2

𝑡 , (51)

�̂�𝑡 =
𝑚𝑡

1 − 𝛽𝑡
1

, (52)

̂𝑣𝑡 =
𝑣𝑡

1 − 𝛽𝑡
2

, (53)

𝑤𝑡+1 = 𝑤𝑡 − 𝜂 ⋅
�̂�𝑡

√ ̂𝑣𝑡 + 𝜖
. (54)

Adam approximates the first and secondmoments of the gradient via an
exponential moving average to produce an update rule. The brilliance
of Adam comes from Eq. (54): The learning rate of each individual
weight is adaptive.

SGDM, NAG and Adam all require the specification of hyperparam-
eters with Adam requiring the most. Typical values used for some are
𝛾 = 0.9, 𝛽1 = 0.9, 𝛽2 = 0.999, 𝜖 = 10−8 and 𝜂 requires problem-specific
tuning.

3.3.2 Backpropagation

All described optimizers require the evaluation of the gradient of the
loss function, which can be quite costly; some NNs comprise billions
of weights. But by updating weights one layer at a time, optimization
becomes manageable. By applying the chain rule to Eq. (31), the
derivative w.r.t. the n’th weight in the i’th layer becomes

𝜕�̂�
𝜕𝑤𝑛

=
𝜕�̂�
𝜕𝑙𝑑

⋅
𝜕𝑙𝑑

𝜕𝑙𝑑−1
⋅ ... ⋅

𝜕𝑙𝑖
𝜕𝑤𝑛

, (55)
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where all partial derivatives can be evaluated one layer at a time. By
updating the deepest layers first and saving their gradients temporarily,
the errors can be propagated backwards through the layers with a
minimum of computation and the weights can be updated.

3.3.3 Validation and Test sets

A remedy to the problem of estimating 𝐿(ℎ∗) is to split 𝒮 into a training
set 𝒮train, a validation set 𝒮val and a test set 𝒮test. Several models can then
be trained on 𝒮train and for each model �̂�(ℎ∗

𝒮val
) can be evaluated, where

each model individually produces unbiased estimates of 𝐿(ℎ∗) since
𝒮val is unseen data. The model achieving the lowest error on 𝒮val can
then be chosen as the final model 𝑓best. But since 𝑓best was chosen to
specifically be the best performing model on 𝒮val, the associated �̂�(ℎ∗

𝒮val
)

is again a biased estimate of 𝐿(ℎ∗). Hence, 𝒮test is reserved to produce
a final, unbiased estimate of the model’s performance �̂�(ℎ∗

𝒮test
).

The application of a validation set comes with an additional asset:
Early stopping. Due to the powerful nature of NNs described in Section
3.1.1, they are prone to overfitting. This means that as the complexity
of the model increases during training, it begins to fit the inherent
noise of 𝒮train illustratiely shown in Figure 23a, which in return leads to
poor generalization. By monitoring �̂�(ℎ𝒮val

) during training, the point
at which overfitting begins to emerge can be determined as shown in
Figure 23b (denoted by the black, dotted line) and the training can be
stopped. Early stopping is one form of regularization (a constraint meant
to reduce the risk of overfitting) utilized in this work. Additionally,
early stopping allows the use of deeper and more complex NNs, since
overfitting becomes less of an issue.
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Figure 23: (a): An illustration of an overfitting classification model (green)
and an optimalmodel (black). The greenmodelmanages to capture
the idiosyncrasies of the data leading to poor generalization. Figure
from [60]. (b): Illustration of how the emergence of overfitting
during training. As the complexity of the model increases, the error
on the training set 𝒮train (blue) continues to decrease, while the
error on an unseen validation set 𝒮val (orange) eventually begins
to increase. By stopping the training at the point indicated by the
black, dotted line, overfitting can be avoided.

There is currently no theoretically correct way of splitting 𝒮 into
𝒮train, 𝒮val and 𝒮test. Increasing or decreasing the sizes of each set comes
with advantages and disadvantages. For instance, increasing the size of
𝒮train will expose the model to a better estimate of the true underlying
distribution 𝑝(𝑥, 𝑦) likely increasing the model’s performance, but in
return the estimate of the generalization error will be less precise.

3.3.4 Normalization

Before data is fed to a NN, it is beneficial to standardize it (rescale to
zero mean and unit variance) causing convergence to happen faster
and to a lower loss. Furthermore, rescaling the outputs of the i’th layer
before feeding it to the (i+1)’th layer has proven beneficial as well; a
method known as batch normalization (BN) [61]. Formally, the input
𝑥𝑖+1 to the (i+1)’th layer is calculated as

𝑥𝑖+1 = 𝛾𝑖 ⋅
𝑧𝑖 − ̂𝑧𝑖

√Var(𝑧𝑖) + 𝜖
+ 𝛽𝑖, (56)

where 𝛾𝑖 and 𝛽𝑖 are learnable parameters initialized to 1 and 0 respec-
tively, 𝜖 is a small number to avoid division with 0 and the empirical
mean ̂𝑧𝑖 and variance Var(𝑧𝑖) are over the batch.

Intuitively, the success of BN can be understood by examining the
distribution of a layer’s output during training: As the weights of the
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i’th layer changes, its output changes as well. This causes difficulties
for the (i+1)’th layer, since its input distribution can change rapidly as
training progresses. By standardizing the input data, a layer becomes The change in the

input distribution is
also known as
’internal covariate
shift’.

more robust to such changes.
It is not obvious how to apply BN to RNNs, where inputs are se-

quences. Instead layer normalization (LN) can be applied to every single
entry in the batch [62]: If the input is a sequence of vectors, Eq. (56) is
applied to the i’th entry of each vector, where the mean and variance
are calculated over the vectors in the sequence.

All mentioned forms of rescaling are utilizied in this work.



4
NEUTR INO DATA

Cutting to the bone, there are three questions that an Icecube neutrino
reconstructor is interested in delivering high-quality answers to: What
kind of neutrino was it? Where did it come from? And how energetic
was it? This part of the work presents the development and results
of applying RNNs to simulated neutrino data to answer these ques-
tions. First, the used datasets along with the applied preprocessing
is described. Then the development of the models is set out before
moving on to how well the models are performing .

4.1 simulation of neutrinos

Understanding the generation of data is important, since a NN is never
better than the dataset it has been trained on. For a model to generalize
well, the data it is trained on must resemble the unseen data. The
neutrino events used for training in this work has been created using
extensive Monte Carlo simulations with several components. Roughly
speaking, the simulation consists of

• generation and propagation of neutrinos,

• photon propagation,

• DOM photo response and

• DOM noise simulation.

The generation and propagation of neutrinos (including their inter-
action with the ice) is done using the GENIE simulation framework
[63], which is a state-of-the-art neutrino simulator widely used in the
experimental neutrino community. Photon propagation in the ice is
carried out by Icecube’s CLSim [64] and noise simulation is a combina-
tion of a Poissonian component, which is simulated by sampling from
a Poisson distribution, and a non-Poissonian component simulated by
Icecube’s Vuvuzela module [41]. The downward-facing PMTs in the
DOMs are modelled by introducing an acceptance probability of photons
as a function of photon direction, which decreases with the zenith angle. The more upgoing a

photon is, the more
likely it is to be
detected.

Each step of the simulation process mentioned above might intro-
duce simulation artefacts causing a discrepancy between reality and
simulation. For instance, the simulation of absorption and scattering of
photons in the ice requires the specification of a simplified ice model. In
reality the optical properties of the South Pole ice are highly dependent
on position as indicated by Figure 24: The optical properties vary both
with depth and position in the xy-plane.

37
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The discussion above serves to stress the fact that despite how well a
NNperforms on simulated data, someway of verifying the performance
on real data is desirable.

Figure 24: Optical response as a function of depth for various boreholes in
the Icecube detector. Data from different boreholes has been offset
along the y-axis. Higher values indicates less clear ice (= more
scattering). For all holes, the dustlayer at a depth of approximately
2 km is visible. Figure from [65].

4.2 event selection

The vast majority of particles detected by Icecube are not interesting
for most analyses: The signal-to-noise ratio across the whole detector is
approximately 10−6 [28]. Therefore a dramatic removal of background,
which primarily consists of cosmic muons, is necessary. In this work,
simulated events chosen with the OscNext-scheme has been used [41].
OscNext uses a filtering process with 7 selection levels of which the
important level 2 and level 5 are described in depth below. Level 1 are
simply events activating the SMT3-trigger. Before cuts, Icecube

roughly detects
events at a rate of
2500 Hz.4.2.1 Level 2 - DeepCore filter

At level 2, a major selection coined the DeepCore filter is applied, which
reduces the background cosmic muon rate from 280 Hz to approxi-
mately 17 Hz [28]. It proceeds with the following steps:

• Apply SRT cleaning.

• Calculate mean pulse time 𝑡.

• Remove all pulses further away from 𝑡 than one standard devia-
tion.
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• Calculate spatial ⃗𝑥CoG and temporal 𝑡CoG center of gravity given
by

⃗𝑥CoG =
1
𝑁

𝑁
∑
𝑖=0

⃗𝑥𝑖 (57)

and

𝑡CoG =
1
𝑁

𝑁
∑
𝑖=0

𝑡𝑖 −
| ⃗𝑥𝑖 − ⃗𝑥CoG|

𝑐/𝑛ice
(58)

• If any pulse speed 𝑣pulse of hits in the veto region (defined as DOMs
outside DeepCore) is within the interval

0.25
m
ns ≤ 𝑣pulse ≤ 0.40

m
ns , (59)

where

𝑣pulse =
| ⃗𝑥CoG − ⃗𝑥𝑖|
𝑡CoG − 𝑡𝑖

(60)

discard the event.

The reasoning behind the selection is the fact that if the pulse speed
from outside DeepCore to the center of gravity is approximately 𝑐, it
likely corresponds to a relativistic cosmic muon. Hence a sharp peak
around 𝑣 = 𝑐 can be seen in Figure 25 along with the contributions
from background and signal being cut away at level 2.

Figure 25: Probability of being background (black dashed line) or signal (red
solid line) as a function of signal speed for simulated muons and
muon neutrinos. A sharp peak about 𝑣 = 𝑐 due to relativistic cosmic
muons can be seen. Figure from [28].



4.3 oscnext level 5 data 40

4.2.2 Level 3, 4 and 5

At level 3, various cuts on variables aremade to ensure better agreement
between MC-generated events and real data and Level 4 is a selection
based on Boosted Decision Trees (BDTs). The level 5 selection is de-
signed to remove sneaky muons escaping the detection of the previous
levels: Due to the quasi-hexagonal structure of the detector, there are
corridors where muons can enter DeepCore. The Corridor Cut Module
attempts to exactly remove these events by examining DOMs in known
poorly instrumented directions from the Center of Gravity ⃗𝑥CoG [41].

At level 5, the total neutrino rate is approximately 2 mHz and the
background has been brought to the sub 10 mHz range. Especially un-
derstanding the level 2 selection is important, since some signal events
are inevitably discarded at this level. A DL approach to background
rejection might be able to optimize the amount of signal being kept.
There might be potential for optimizing the level 5 selection using DL
as well, but with diminishing returns; it is at level 2 the largest selection
is made.

4.3 oscnext level 5 data

The dataset (referred to as the OscNext-set) used in this work is part of
the OscNext V1 analysis [41], and it consists of simulated 𝜈𝑒-, 𝜈𝜇- and
𝜈𝜏-events. All events are Deepcore-events and have made it to lvl 5 in
the event selection described in Section 4.2. The energy distributions of
the neutrinos are shown in Figure 26: The dataset contains 11.3 ⋅ 106

neutrino events with energies ranging from 1 GeV to 10 TeV
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Figure 26: Neutrino energy distributions of the OscNext datasetat Lvl5.

The majority of all neutrino events have energies between 10 and 50
GeV with very few neutrinos with energies > 1 TeV. Since most events When it is stated that

a neutrino has an
energy of 𝑥, it means
that in the restframe
of the detector at the
time of interaction,
the neutrinos energy
was 𝑥.

are 𝜈𝜇-events and the 10-50 GeV energy range is the range of biggest
interest with respect to oscillation analysis, the developed models have
been focused on muon-neutrinos below 1 TeV.

The distribution of the directions neutrinos are coming from is shown
in Figure 27, where the directions have been mapped to points on an
unfolded unit sphere. The directions of the events are not uniform on
the unitsphere, but tend to have an upwards direction. The distributions
of the x, y and z-coordinates of the directional unitvectors are shown in
Section A.1.
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Figure 27: Distribution of direction neutrinos are coming from of the OscNext
Lvl5 dataset shown on an unfolded unit sphere.

A single event consists of a sequential and a scalar part. The sequen-
tial part is the actual event, where each entry in the sequence is data
related to a single DOM. A raw sequence entry consists of 6 numbers:

1. DOM_x: The x-coordinate of the DOM.

2. DOM_y: The y-coordinate of the DOM.

3. DOM_z: The z-coordinate of the DOM.

4. DOM_q: The charge extracted from the raw waveform.

5. DOM_t: The time (in ns) w.r.t. the triggertime at which the pulse
was detected.

6. DOM_ATWD: A Boolean. 1 if a ATWD-digitizer recorded the wave-
form or 0 if a fADC-digitizer recorded the waveform.

Accordingly, an event with 𝐿 DOMs and 𝑁 features per DOM (such as
DOM_x) can be represented by a 𝑁 × 𝐿 matrix

A = [v1 … v𝐿] (61)

with the features 𝑣𝑖 of the i’th DOM as columns.
The scalar part consists of the event truths and the Retro scheme’s

reconstruction. Both truth and reconstructions consist of

• interaction vertex (x, y, z and time),

• a direction parametrized by a unit vector and

• the neutrino energy.
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The sequence lengths vary from > 600 to < 20 and are strongly de-
pendent on cleaning. The majority of sequences have lengths between
10 and 25 for SRT-cleaned events and between 25 and 75 for uncleaned
events as shown in Figure 28. On the order of 1 % of events have se-
quences longer than 200. These events are discarded to reduce training
time.

0 50 100 150 200
Event Sequence Length

0k

100k

200k

300k

400k

500k

600k

OscNext lvl5

SRT-cleaned events
Uncleaned events

Overflow 𝒪(1%)

Figure 28: Sequence length distribution for SRT-cleaned (blue) and uncleaned
(orange) events. Last bin is an overflow bin.

For all developed models, the OscNext-set was split into a training
set consisting of 80% of selected data, a validation set consisting of 10%
of selected data and a test set consisting of the remaining 10 % of the
selected data. The size and splitting of the dataset before and after cuts
on event sequence length and energy is summarized in Table 2.

All Data After selection

Train Val. Test Train Val. Test
𝜈𝑒 1.61 M 0.20 M 0.20 M 1.59 M 0.19 M 0.19 M
𝜈𝜇 5.82 M 0.73 M 0.73 M 5.75 M 0.72 M 0.72 M
𝜈𝜏 1.61 M 0.20 M 0.20 M 1.59 M 0.19 M 0.19 M

Table 2: Summary of the OscNext V1 dataset.

4.4 preprocessing

As described in Section 3.3.4, NNs benefit from standardized inputs. In
this work, different normalizations are applied to most input and target
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variables. Three different normalization schemes have been used in this
work: One affine transformation and two nonlinear transformations for
robustness.

Both sequential and scalar variables whose distributions have ade-
quately small tails have been scaled by their interquartile range (IQR) The interquartile

range is defined as
the difference between
the 75’th and 25’th
percentiles.

and centered around their median, i.e. the transformation

𝑦𝑖 =
𝑥𝑖 − median(𝑥)

IQR(𝑥) (62)

has been applied, where the median and IQR have been estimated from
the sample. This transformation has the advantage of beingmore robust
to outliers than a classic standardization. The nonlinear transformations
have been applied to variables with long tails such as the neutrino
energy E, which has been transformed according to

𝐸i, transformed =
log𝐸𝑖 − median(log𝐸)

IQR(log𝐸) . (63)

The reasoning behind applying this transformation to energy specifi-
cally will be discussed later. The last transformation used is

𝑦𝑖 = Φ−1 [𝐹𝑥(𝑥𝑖)] , (64)

where Φ−1 is the inverse of the cumulative distribution function for the
unit normal distribution and 𝐹𝑥 is the empirical distribution function
of the variable 𝑥. Such a transformation is shown in Figure 29, where
the distribution of DOM_charge from 20.000 events before and after
transformation is shown. Note that the distribution of DOM_charge is
discrete due to digitization. In words, Eq. (64) maps the i’th quantile
of the empirical distribution of 𝑥 to the i’th quantile of a unit normal
distribution.
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Figure 29: Distribution of DOM_charge before (left) and after (right) applying the
nonlinear transformation given by Eq. (64). The visibly discrete nature of
the distribution after the transformation is due to digitization.
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Transformation 𝜇, before 𝜎, before 𝜇, after 𝜎, after

DOM_charge ToNormal 9.89e-01 1.04e+00 0.00 1.00
DOM_x Robust 1.86e+01 2.12e+02 0.15 0.61
DOM_y Robust -1.66e+01 2.02e+02 0.05 0.58
DOM_z Robust -1.72e+02 2.84e+02 -0.39 0.81
DOM_time Robust 1.09e+04 2.42e+03 0.24 1.14
DOM_ATWD None 0.32 0.47 - -
True energy LogRobust 8.04e+01 3.64e+02 0.06 0.75
True vertex, x Robust 4.37e+01 8.41e+01 -0.02 0.84
True vertex, y Robust -3.13e+01 7.86e+01 0.07 0.72
True vertex, z Robust -3.74e+02 1.14e+02 -0.01 0.74
True time ToNormal 9.66e+03 2.63e+02 -0.04 0.99
True direction, x None -0.04 0.58 - -
True direction, y None -0.00 0.58 - -
True direction, z None 0.14 0.56 - -

Table 3: Summary of single-event variables and the transformations applied.
Robust refers to Eq. (62), LogRobust refers to Eq. (63) and ToNormal
refers to Eq. (64). The true vertex variables are the coordinates of
the interaction vertex in the detector, true time is the interaction time
and the true direction variables are the coordinates of the unit vector
defining the neutrino direction. The before and after columns refer to
the means and standard deviations before and after transformations
have been applied.

The different transformations applied to the variables and targets of
the OscNext-set along with statistical key numbers are summarized
in Table 3 and figures of the DOM 𝑥−, 𝑦−, 𝑧− and 𝑡− and interaction
vertex 𝑥−, 𝑦−, 𝑧− and 𝑡− distributions are shown in Section A.1.



5
NEURAL NETWORK CONSTRUCT ION

Determining the method of optimal reconstruction is a difficult task.
As mentioned in Section 2.6, the current best method of reconstruction
is a slow, table-based likelihood fit. In this chapter the development of
NNs competitive with respect to both reconstruction time and quality
is described.

5.1 network building blocks

All developed models can at the most general level be decomposed into
an encoder and a decoder: The encoder takes a sequence of vectors as
input and generates a new representation of the sequence. The encoding
can be a multistage process, where the optimal architecture has to be
searched for. The decoder takes the representation generated by the
encoder as input and outputs estimates of the desired target variables,
schematically shown in Figure 30. As a first step in the decoding process,
the decoder takes a sequence of non-fixed length and performs some
form of a many-to-one operation, where the sequence is converted to a
fixed set of features. From the fixed set of features, a prediction is then
generated, e.g. a reconstructed energy, a classification or all 8 target
variables at once. We will now delve into the different building blocks
used for encoding and decoding.

Figure 30: Sketch of the general structure of all developed models: A raw
sequence of non-fixed length is fed to a decoder generating a new
representation of the sequence. An encoder is then used to generate
a prediction from the abstract representation of the sequence.

46
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5.1.1 Bidirectional RNNs

The LSTM and GRU layers described in Section 3.1.2 generate outputs
ℎ𝑡 that are functions of previous inputs - we say that the layers look
backward in time. A bidirectional LSTM (or GRU) [66] consists of 2
parallel layers. The input sequence is fed to the first layer as it is, but the
second layer receives the sequence in reverse order as shown in Figure
31.

Figure 31: Illustration of bidirectional RNNs. The input sequence is fed to two,
different RNN layers, where one of the layers receives the sequence
in reverse, and the outputs are combined (by e.g. concatenation).
Figure from [67].

In this work, the outputs of the layers are concatenated in the feature
dimension. Using this method, the i’th output is generated to contain
information about the past, the present and the future. A bidirectional
layer is thus a function

𝑓 ∶ ℝ𝐿×𝐹 → ℝ𝐿×2𝐹′, (65)

where 𝐿 is the sequence length, 𝐹 is the number of input features and
𝐹′ is the number of neurons (and consequently the number of outputs)
in each LSTM (or GRU).

5.1.2 Residual Connections

Standard FF layers are used throughout this work in both encoders and
decoders, but an extension of it is used as well called residual blocks [68].
A residual connection (or ResBlock) is shown in Figure 32: Instead of
having a subnetwork with input 𝑥 approximate some function 𝑦 = 𝑓 (𝑥),
the subnetwork approximates the residual 𝑓 (𝑥) = 𝑦 − 𝑥 instead (hence
𝑦 = 𝑓 (𝑥) + 𝑥). This corresponds to adding an identity connection
between the input and output of a layer as shown.
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Figure 32: Schematic overview of the ResBlock (upper) and AttentionBlock
(lower) modules utilized in this work.

Deep networks with residual connections are easier to train than
their classic counterparts due to easier flow of information through the
network. Several variants of residual connnections are used in applied The popular ResNets

can be more than a
1000 layers deep.

DL. In this work, the ResBlock shown in Figure 32 is used [69] with BN
and FF layers as described in Section 3.1.

5.1.3 Attention Blocks

In this work the attention mechanism introduced in Section 3.1.3 is ap-
plied in encoding layers with and without RNNs. The specific attention
submodule used is a combination of the SelfAttention mechanism from
[51] and the ResBlock introduced above: For each element of an input
sequence, a linear combination of sequence elements h𝑖 is created using
the attention mechanism given by Eq. (38). Each h𝑖 is then normalized,
nonlinearized and sent through a FF layer two times as shown in the
bottom panel of Figure 32. The ResBlock applies LN instead of BN,
since the latter is not well defined for sequential data as previously
discussed.
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5.1.4 Many-to-One Layers

To decode the output sequence of the encoder, the non-fixed length
sequences aremapped to a fixed-size feature vector using some function
𝑓 of the form

𝑓 ∶ ℝ𝐿×𝐹 → ℝ𝐹. (66)

In this work, three different methods are used: Max pooling (Max-
Pool), average pooling (AvePool) and dropping everything but the last
output (in the case of using an RNN). Given a sequence 𝒮 = {s1, ..., s𝐿}
of vectors s𝑖 = [𝑠𝑖

1, ..., 𝑠𝑖
𝐹], MaxPool creates a new vector

MaxPool(𝒮) = [max {𝑠𝑗
1}

𝐿

𝑗=1
, ..., max {𝑠𝑗

𝐹}
𝐿

𝑗=1
.] (67)

Likewise, AvePool creates the vector

AvePool(𝒮) = [mean {𝑠𝑗
1}

𝐿

𝑗=1
, ..., mean {𝑠𝑗

𝐹}
𝐿

𝑗=1
.] (68)

5.2 hyperparameters

With the model building blocks defined, we now move to a discussion
of how the blocks must be composed, which requires tuning of several
hyperparameters. Since the space of hyperparameters to choose from
is horribly large, only the (arguably) most important hyperparameters
have been investigated in this work. These (besides width, depth and
submodule composition) are now unpacked further.

5.2.1 Learning Rate

The LR 𝜂 is widely agreed to be one of the most important hyperparam-
eters to tune [70].

If the learning rate is too large, the optimizer will overshoot the target
leading to poor generalization or the training error (error on the trainset)
might begin to increase. A too small learning has consequences as well
such as slowing down the training, both in convex and non-convex
optimization. In convex optimization, a too small learning rate is not
as critical as it is in the case of optimizing highly nonconvex NNs (see
Figure 21), where a too small learning rate can lead to getting stuck in
local minima.

In an attempt to avoid these scenarios, LR scans have been employed
[71]. Before the actual training proces is begun, a LR scan consists of
monitoring the loss while the LR is increased for a fixed number of
optimizer updates. Here LR scans have been performed to find upper
and lower bounds on the LR to employ during training. The maximal
LR used during training was then chosen to be close to this maximum,
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since high LRs tend to have a regularizing effect [72]. Such a LR scan
using Adam as the optimizer with BS 256 is shown in the right panel of
Figure 33. In this case, the LR becomes so high that the optimization
becomes unstable close to 𝜂 = 4 ⋅ 10−3, and therefore the maximal LR
was chosen to be comfortably far below this limit.

The stochastic nature of the optimization is clearly seen as high fre-
quency noise of the loss value. It should be noted that finetuning the
LR is not as important when Adam is used due to its adaptive nature.
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Figure 33: A LR scan (right) using a BS of 256 and the LR schedule used in
the subsequent training (left).

Once the upper and lower bounds of the LR have been found, training
can begin. It has been observed that optimizing NNs with Adam can
lead to poor generalization if a warm-up heuristic is not employed
[73]. This effect stems from the way the moments in Eqs. (49 - 54) are
estimated. For instance, the second moment changes on a characteristic
time scale

𝑇 ≈
1

1 − 𝛽2
, (69)

except during the early stages of training, where it can rapidly vary
due to the small amount of data the optimizer has seen. Therefore each
training is initiated with a warm-up period, where the LR is exponen-
tially increased from ∼ 1% of its maximal value. Once the maximal
value has been reached, a LR decay is initiated. It can be shown [74]
that to achieve optimal convergence rate, the LR must decrease like

𝜂 ∼
1
𝑇. (70)



5.2 hyperparameters 51

Hence, the LR schedule employed in all model optimizations is

𝜂(𝑡) =
⎧{
⎨{⎩

𝑎 ⋅ 𝜂max ⋅ 𝛼𝑡 if 0 < 𝑡 < 𝑇warmup
1

1+𝛽(𝑡−𝑇warmup) ⋅ 𝜂max if 𝑇warmup ≤ 𝑡 ≤ 𝑇max,
(71)

where 𝑎 typically was chosen to be 5 % and 𝛼 and 𝛽 were found by solv-
ing the equations 𝜂(𝑇warmup) = 𝜂max and 𝜂(𝑇max) = 𝜂min. 𝑇warmup was
typically set to 2 % of the total number of optimization steps, and 𝑇max
was chosen to correspond to 10-20 epochs of training for all models,
since such values led to the best results. The LRs used during one ex-
periment is shown in the left panel of Figure 33 depicting the described
schedule.

5.2.2 Activation Functions

The specific choice of activation function can have a tremendous effect
on a deep NN’s ability to converge. If sigmoid-like activations are
used, NNs tend tend to suffer from vanishing gradients [75], where the The vanishing

gradients problem
arise, when
max(|∇𝑓 (𝑥)|) < 1
for the used
activation function
𝑓 (𝑥).

gradients go to zero exponentially fast during backpropagation and
consequently are unable to learn. Therefore only activation functions
that are unbounded above have been investigated here. These are
LeakyReLU [76] and Mish [77]. Their respective analytic expressions
are

LeakyReLU(𝑥) = max(0.01 ⋅ 𝑥, 𝑥), (72)
Mish(𝑥) = 𝑥 ⋅ tanh [ln(1 + 𝑒𝑥)] , (73)

and are shown in Eq. (34) (solid lines) along with their derivatives
(dashed lines).
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Figure 34: The ReLU (solid blue) andMish (solid orange) activation functions
along with their derivatives (dotted).

LeakyReLU has stood the test of time and has the advantage of being
fast to evaluate and has a non-zero derivative everywhere (except at 𝑥 =
0). The more sophisticated activation function Mish has the advantage
of being smooth and partly self-normalizing (the output distribution
is closer to a unit Gauss, when the input is standardized), which has
been conjectured to be important when training deep networks.

5.2.3 Dropout

As discussed in Section 3.1.1, wide and deep networks are powerful
models - and are therefore prone to overfitting. Dropout [78] is an
elegant and simple mechanism attempting to prevent just that.

Dropout applied to a layer 𝑙 works as follows: During each iteration
of training, a neuron 𝑓 is removed from the network with probability p -
it is dropped out. If a neuron is not removed, its output is scaled by a
factor 1

1−𝑝 . Formally, a Dropout layer can be described as

Dropout(𝑓 , 𝑝) = 𝑋 ⋅
1

1 − 𝑝 ⋅ 𝑓 , (74)

where 𝑋 ∼ Bernoulli(p) is a Bernoulli random variable. During infer-
ence, Dropout is not applied. Qualitatively this corresponds to using a
different subnetwork at every training step, effectively generating an
ensemble of several networks at inference time. Besides early stopping,
Dropout is the only regularization explicitly applied during model
development.
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5.2.4 Weight Initialization

Before training starts, the weights of the NN have to be initiated. If BN
(or LN) is not applied, the weights of the network must be carefully
initialized to achieve satisfactory convergence [79], and several initial-
ization schemes exist. If, however, normalization layers are employed,
the used weight initialization scheme becomes less important. There-
fore only Kaiming initialization[80] has been used, where the weights 𝑤
of a layer with 𝑛 neurons are drawn from the normal distribution

𝑤 ∼ 𝒩(0,
2
𝑛). (75)

For initial hidden states ℎ0 in RNN layers, the initial hidden states
have been learned.

5.3 loss functions and performance measures

Models performing energy regression (ER), direction regression (DR),
interaction vertex regression (IVR), interaction time regression and
classification has been developed in this work and the diversity of
the different tasks calls for an arsenal of different loss functions and
performance metrics.

5.3.1 Performance Measures

To determine the quality of reconstructions, the primary performance
measures are based on the distributions of errors. For each type of
regression, the error measure might vary, but all error measures are
functions 𝑓 taking a pair of either numbers or vectors (𝑥reco, 𝑥true) as
input and outputs a single number 𝑒 - the error. The width of the distri-
bution of 𝑒 measures the performance of the reconstruction algorithm,
where lower is better (a width of 0 would correspond to perfect re-
constructions). In this work, 2 different kinds of error distributions
are considered: Distributions bounded below by 0 and unbounded
distributions. The unbounded error distributions are not necessarily
Gaussian, and therefore the width 𝑊 is determined as

𝑊(𝑒) =
𝐼𝑄𝑅(𝑒)
1.349 , (76)

where 𝐼𝑄𝑅 is the interquartile range (difference of 75th and 25th per-
centiles), and the constant 1.349 ensures that 𝑊 corresponds to one
standard deviation, if one makes the assumption that the errors are
Gaussian.

The error on the width 𝜎𝑊 can be determined using order statistics[81],
where the q’th order statistic 𝑋(𝑞) of a sample is the value of the sample’s
q’th smallest value. In order for the q’th order statistic to have some
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value 𝑥, there must be 𝑞 − 1 values smaller than 𝑥 and 𝑛 − 𝑞 values
larger than 𝑥. The probability that a value is smaller than 𝑥 is 𝐹(𝑥) and
the probability that a value is larger than 𝑥 is 1 − 𝐹(𝑥), where 𝐹(𝑥) is
approximated by the empirical distribution function. Furthermore, the
probability 𝑃(𝑋(𝑞) = 𝑥) is exactly 𝑓 (𝑥), where 𝑓 is approximated as the
empirical probability density. The probability density function of 𝑋𝑞 is
therefore given by

𝑓𝑋(𝑞)
(𝑥) =

𝑛!
(𝑛 − 𝑞)!(𝑞 − 1)! ⋅ 𝐹(𝑥)𝑞−1 ⋅ [1 − 𝐹(𝑥)]𝑛−𝑞 ⋅ 𝑓 (𝑥), (77)

which approaches a normal distribution as 𝑛 → ∞. Since the k’th
percentile is nothing but 𝑋(𝑛𝑝), where 𝑝 = 𝑘/100, the percentiles are
distributed as[82]

𝑋(𝑛𝑝) ∼ 𝒩 ⎛⎜
⎝

𝑥𝑝,
𝑝(1 − 𝑝)
𝑛𝑓 (𝑥𝑝)2

⎞⎟
⎠

, (78)

where 𝑥𝑝 = 𝐹−1(𝑝). Using the law of error propagation (neglecting
correlations)

𝜎2
𝑓 = ∑

𝑖

𝜕𝑓
𝜕𝑥𝑖

2
𝜎2

𝑥𝑖
, (79)

the estimated standard error on the width 𝜎𝑊 is given by

𝜎𝑊 =
1

1.349
√0.25(1 − 0.25)

𝑛 (
1

𝑓 (𝑒0.25)2 +
1

𝑓 (𝑒0.75)2 ). (80)

For error distributions bounded below by 0 such as the distance be-
tween the predicted and the true interaction vertex, the width of the
distribution is uninteresting. Therefore the performance 𝑈 of such
distributions is reported as the 68th percentile of the error distribution

𝑈(𝑒) = 𝑒0.68, (81)

i.e. the 68 % confidence interval. Likewise, the standard error 𝜎𝑈 on
the upper bound is given by

𝜎𝑈 = √
0.68(1 − 0.68)

𝑛𝑓 (𝑒0.68)2 . (82)

5.3.2 Energy Regression

Before constructing a loss function, one must consider what it means
for a reconstruction to be ’good’ or ’bad’. In the specific case of ER,
being off with, say, 10 GeV has radically different interpretations, if the
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true energy is 1 GeV or 1 PeV. These considerations lead to a relative
error measure such as

RE(𝐸reco, 𝐸true) =
𝐸reco − 𝐸true

𝐸true
(83)

being preferred to an absolute error measure.
Eq. (83) has an undesired consequence: When uncertain, a NN can

reduce the loss by generating reconstructions that are too low. This
effect stems from the fact that Eq. (83) is bounded below - for instance,
a prediction of twice the true energy corresponds to a larger loss than
a prediction of half the true energy (i.e. |RE(2 ⋅ 𝐸true, 𝐸true)| > |RE(1

2 ⋅
𝐸true, 𝐸true)|). Therefore another relative error measure is used instead:
The logarithmic error (LE) given by

LE(𝐸reco, 𝐸true) = log(𝐸reco) − log(𝐸true) = log(
𝐸reco
𝐸true

) . (84)

The LE has the desired properties of being unbounded both from be-
low and above, and it treats predictions of twice the true energy as
being equally as bad as predictions of half the true energy, i.e. (|LE(2 ⋅
𝐸true, 𝐸true)| = |LE(1

2 ⋅ 𝐸true, 𝐸true)|) as shown in Figure 35, where log-
cosh(LE) is compared to logcosh(RE). As can be seen, a NN is punished
more for predicting too low energies, if the LE is used. The advantage
of applying the transformation to the target energy given by Eq. (63)
now becomes evident: Since

(𝐴 ⋅ log𝐸reco + 𝐵) − (𝐴 ⋅ log𝐸true + 𝐵)

= 𝐴 ⋅ log(
𝐸reco
𝐸true

) , (85)

Eq. (63) is designed to directly minimize Eq. (84), since they are equal
up to a multiplication factor, which can be absorbed into the definition
of the LR.
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Figure 35: Comparison of the logarithmic error (blue) to the relative error
(orange).

5.3.3 Direction Regression

The direction of an incoming particle is described by the unit vector
parallel with the particle direction. Models have been developed with
the unit vector solely parametrized using cartesian coordinates (𝑥, 𝑦, 𝑧),
since parametrizations using e.g. spherical coordinates introduce dis-
continuous effects that are more difficult to take into account; it has small changes to

unitvectors with 𝜙
close to 0 may cause
their azimuthal
component to jump
back and forth
between 2𝜙 and 0

been attempted, and it resulted in poor performance. For cartesian
coordinates, however, small variations of the unit vector causes small
variations to its cartesian parametrization.

The developed models for DR have not been forced to predict vectors
of length 1, but merely vectors in ℝ3 (despite the fact that a unit vector
in ℝ3 can be uniquely determined by 2 numbers), solely because of
the fact that such models performed best. Loss functions based on 3
different error metrics have been tested:

1. Angular distance loss functions

AngleDist(rreco, rtrue) = arccos
rreco ⋅ rtrue
|rreco||rtrue|

(86)

reducing the angle Ψ between the reconstructed direction rreco
and the true direction rtrue,
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2. the negative cosine similarity

NegSim(rreco, rtrue) = 1 −
rreco ⋅ rtrue
|rreco||rtrue|

, (87)

where adding a different constant is just as viable. Adding 1
merely ensures that a loss of 0 corresponds to a perfect recon-
struction. The final error measure is

3. the Euclidian distance between rreco and rtrue given by

EuclidDist(rreco, rtrue) = |rreco − rtrue|, (88)

which in cartesian coordinates is equivalent to L1-loss.

As previously mentioned, it is key to make the definition precise of
what a ’good’ reconstruction is. For oscillation analyses, the azimuthal
component of the direction is not of great interest, since the distance
travelled for an atmospheric neutrino solely depends on the zenith
angle (see Figure 5). The azimuthal component is, however, of great
interest, if one searches for e.g. supernovae or sneaky BG-particles
travelling along directions with poor resolution. Therefore 2 different
performance measures are used:

1. The widths of the error distributions (Eq. (76)) of the azimuthal
and zenith angle reconstructions and

2. the upper bound 𝑈 (Eq. (81)) on the distribution of the angular
error (Eq. (86)).

The latter performance measure has the advantage of being agnostic to
the chosen coordinate system - a pleasant feature outside of oscillation
analyses.

5.3.4 Vertex Regression

IVR is not directly important for oscillation analyses, but as mentioned,
it is important with regards to separating BG from signal: Due to the
quasi-hexagonal symmetry of the Icecube detector, there are certain
paths through the detector with little instrumentation. The better the
IV can be determined, the better the BG rejection therefore becomes.

In contrast to ER and DR, it is clearer what a well-reconstructed inter-
action vertex entails. In this work, all loss functions for vertex regression
are based on the difference between the true p𝑡𝑟𝑢𝑒 = (𝑡𝑡𝑟𝑢𝑒, x𝑡𝑟𝑢𝑒) and
reconstructed p𝑟𝑒𝑐𝑜 = (𝑡𝑟𝑒𝑐𝑜, x𝑟𝑒𝑐𝑜) vertices given by

VertexDist(x𝑟𝑒𝑐𝑜, x𝑡𝑟𝑢𝑒) = |p𝑟𝑒𝑐𝑜 − p𝑡𝑟𝑢𝑒| (89)

and

TimeDist(𝑡𝑟𝑒𝑐𝑜, 𝑡𝑡𝑟𝑢𝑒) = 𝑡𝑟𝑒𝑐𝑜 − 𝑡𝑡𝑟𝑢𝑒. (90)
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The spatial components of the interaction vertex are inherently on the
same scale and therefore contribute equally to loss functions. The
temporal component, however, is not guaranteed to be on the same
scale as the spatial components. It might therefore be the case that it is
beneficial to split the vertex regression into independent temporal and
spatial components.

The performance measures used for VR are the widths given by Eq.
(76) of the distributions of each of the 4 components contributing to Eq.
(89) and the upper bound given by Eq. (81) of the distribution of the
Euclidian distance between the spatial components of p𝑟𝑒𝑐𝑜 and p𝑡𝑟𝑢𝑒.

5.3.5 Probabilistic Regression

In addition to point-like predictions, probabilistic regression has also
been investigated, where a distribution is predicted instead of a single
point. In this work, it is assumed that each variable of interest 𝑥 is
normally distributed, i.e.

𝑥 ∼ 𝒩(𝜇, 𝜎2), (91)

where the mean 𝜇 is and variance 𝜎2 is estimated. The NN is then
trained to approximate a likelihood function, and the negative log-
likelihood

𝑙(𝑥, 𝜇, 𝜎2) = − log [𝑃(𝑥|𝜇, 𝜎2)] (92)

is used as loss function, which can be expanded to give

𝑙(𝑥, 𝜇, 𝜎2) = log𝜎 +
1
2 (

𝑥 − 𝜇
𝜎 )

2
+ 𝐶, (93)

where 𝐶 is an irrelevant constant. The constant 𝐶 is
irrelevant, since it
does not contribute to
∇w𝑙 or the placement
of the minimum.

5.3.6 Classification

For all classification models, the only employed loss function is the
cross entropy given by

𝑙(𝑝𝑟𝑒𝑐𝑜, 𝑝𝑡𝑟𝑢𝑒) = −𝔼𝑝𝑡𝑟𝑢𝑒[log 𝑝𝑟𝑒𝑐𝑜], (94)

where 𝑝𝑟𝑒𝑐𝑜 is the predicted probability mass function (pmf), 𝑝𝑡𝑟𝑢𝑒 is the
true pmf and 𝔼𝑝𝑡𝑟𝑢𝑒 denotes expectation with respect to the true pmf.
To force model predictions to be interpretable as probabilities, a final
Softmax activation layer (see Eq. (39)) is added to classification NNs.
Since the true distribution only takes on the values 0 or 1 (a particle is
either type A or not type A), Eq. (94) reduces to

𝑙(𝑝𝑟𝑒𝑐𝑜, 𝑝𝑡𝑟𝑢𝑒) = − log 𝑝𝑟𝑒𝑐𝑜
𝑎 (95)
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for both binary and multiclass classification, where 𝑝𝑟𝑒𝑐𝑜
𝑎 denotes the

probability that an event belongs to class 𝒜. For binary classification,
the area under the curve (AUC) of the receiver operating characteristic
(ROC) is used as performance metric. An illustration of a ROC curve
and its relation to some decision threshold 𝑡 is shown in Figure 36:
The ROC-curve is a plot of the true positive rate (TPR) as a function
of the false positive rate (FPR), where the TPR is the probability of
classifying signal as signal and the FPR is the probability of classifying
background (BG) events as signal given the chosen decision threshold.
Formally, TPR(𝑡) = 1 − 𝐹sig(𝑡) and FPR(𝑡) = 1 − 𝐹BG(𝑡), where 𝐹sig
is the empirical distribution function of signal scores and 𝐹BG is the
empirical distribution function of BG scores.

Figure 36: Illustration of a ROC curve (lower figure) along with its relation to
the chosen decision threshold (vertical line in upper figure). P(TP)
and P(FP) are equivalent to TPR and FPR respectively. Figure from
[83].

The AUC is equal to the probability that a randomly selected signal
event is given a higher score (here 𝑝𝑟𝑒𝑐𝑜) than a randomly selected BG
event, which can be seen by inspecting the definition of the AUC given
by

𝐴𝑈𝐶 = ∫
1

0
TPR(FPR)𝑑FPR. (96)

We now make a change of variables such that the integral is over the
decision threshold; since

FPR(𝑡) = 1 − 𝐹BG(𝑡) ⇒
𝑑FPR

𝑑𝑡 = −𝑓BG(𝑡), (97)
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where 𝑓BG is the empirical pdf of BG scores. Inserting the substitution
we find

𝐴𝑈𝐶 = ∫
−∞

∞
TPR(𝑡)[−𝑓BG(𝑡)]𝑑𝑡 = ∫

∞

−∞
TPR(𝑡)𝑓BG(𝑡)𝑑𝑡 = 𝔼𝑓BG[𝑇𝑃𝑅],

(98)

which is exactly a rescaling of the Mann-Whitney test statistic 𝑈𝑀𝑊 [84,
85], which is related to the AUC by

𝐴𝑈𝐶 =
𝑈𝑀𝑊

𝑁sig ⋅ 𝑁bg
, (99)

where 𝑁sig and 𝑁bg are the number of signal and BG events respectively.
Furthermore, for arbitrary distributions 𝑓sig and 𝑓BG

lim
𝑁sig, 𝑁bg→∞

𝑈𝑀𝑊 ∼ 𝒩(𝜇𝑈𝑀𝑊
, 𝜎2

𝑈𝑀𝑊
) (100)

where 𝜇𝑈𝑀𝑊
is somemean and 𝜎2

𝑈𝑀𝑊
<

𝑁2
sig𝑁2

bg

4min(𝑁sig, 𝑁bg)[86, 87]. There-
fore the standard error on the AUC is approximated by its upper bound By calculating the

AUC using the
Mann-Whitney test
statistic, no
numerical error is
introduced from
approximating an
area using e.g. the
trapezoidal rule.

𝜎𝐴𝑈𝐶 = √
1

4min(𝑁bg, 𝑁sig) . (101)

5.4 weights

Since the distributions of energy, particle type, interaction vertex and
direction (see Section A.1) are not uniform, the dataset is reweighted
for training models. The reweighting is an attempt at avoiding models
being biased towards certain predictions; if e.g. 99 % of targets in a
classification problem were type A, the model could simply predict
everything to be type A and achieve 99 % accuracy without actually
learning the features characteristic to particle A.

For regression models, 4 different sets of weights have been used: A
balancing weightset 𝑤𝑏𝑎𝑙𝑎𝑛𝑐𝑒𝑑, a low-energy focused weightset 𝑤𝑙𝑜𝑤, a
high-energy focused weightset 𝑤ℎ𝑖𝑔ℎ and a resolution-blinding weight-
set 𝑤𝑏𝑙𝑖𝑛𝑑𝑖𝑛𝑔 (what is meant by resolution-blinding is unpacked below).
The aforementioned weights are all shown in Figure 37.
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Figure 37: All energy-dependent weights used for regression. All weights are
scaled such that the average weight is 1.

The balancing weights are calculated as

𝑤𝑏𝑎𝑙𝑎𝑛𝑐𝑒𝑑(𝑥) = 𝐶 ⋅
1

𝑓𝑠𝑝𝑙(𝑥)𝛼 , (102)

where 𝑓𝑠𝑝𝑙 is a quadratic spline approximation to the histogram of the
target of interest 𝑥, 𝛼 is tuned to each specific regression model, but
preferably 𝛼 = 1, and 𝐶 is a normalization constant which ensures that
the average weight is 1. Hence, 𝐶 satisfies

1
𝐶 =

1
𝑁𝑡𝑜𝑡

𝑁𝑏𝑖𝑛𝑠

∑
𝑖=1

𝑤(𝑥𝑖)𝑁𝑖, (103)

where 𝑁𝑡𝑜𝑡 is the dataset size, 𝑥𝑖 is the i’th bincenter and 𝑁𝑖 is the
number of entries in the i’th bin.

The low- and high-energy focused weights have been assigned using
the functions

𝑤𝑙𝑜𝑤(𝑥) =
⎧{
⎨{⎩

𝐶 if 𝑥 < 𝑥𝑙𝑜𝑤

𝐶 ⋅ 1
1+𝛼(𝑥−𝑥𝑙𝑜𝑤) if 𝑥 ≥ 𝑥𝑙𝑜𝑤

(104)

and

𝑤ℎ𝑖𝑔ℎ(𝑥) =
⎧{
⎨{⎩

𝐶 if 𝑥 > 𝑥ℎ𝑖𝑔ℎ

𝐶 ⋅ 1
1+𝛼[𝑥𝑚𝑎𝑥−𝑥] if 𝑥 < 𝑥ℎ𝑖𝑔ℎ

, (105)
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where 𝐶 is calculated using Eq. (103). For ER, 𝑥𝑙𝑜𝑤 = 0.5, 𝑥ℎ𝑖𝑔ℎ = 2.5
and 𝛼 was chosen such that

max(𝑤𝑙𝑜𝑤/ℎ𝑖𝑔ℎ)
min(𝑤𝑙𝑜𝑤/ℎ𝑖𝑔ℎ) = 20. (106)

The motivation behind using different weights for different energy-
ranges is that the predictive power of a featuremight be energy-dependent.
Furthermore, since there is no guarantee that the optimal set of weights
and biases can be learned for a single model covering the entire en-
ergy range, different models might have to be used for different energy
ranges.

The resolution of experiments like Icecube tends to improve when
the energy increases. For a model to be as performant as allowed given
the resolution, we require it to perform better at higher energies by
placing more weight on those events - it is attempted to blind the model
to the detector’s inherent resolution. Here, a proxy for the resolution is
chosen to be the performance of the Retro algorithm measured as the
width 𝜎Retro of the relative energy error distribution calculated using
Eq. (76) and Eq. (83). Hence,

𝑤𝑏𝑙𝑖𝑛𝑑𝑖𝑛𝑔(𝑥) = 𝐶 ⋅
1

𝜎Retro
, (107)

where, again, 𝐶 is calculated using Eq. (103).
With reweighted datasets, the empirical loss given by Eq. (5.4) is

modified to

�̂� =
1
𝑁

𝑁
∑
𝑖=1

𝑤𝑖 ⋅ 𝑙𝑖. (108)

Reweighted distributions using the different weights are shown in Fig-
ure 38. For 𝑤𝑏𝑎𝑙𝑎𝑛𝑐𝑒𝑑, 𝛼 = 0.7 to ensure that no weights are too large (the
largest weight is 10). If larger weights are used, the risk increases of
accidentally making a too large update to the model parameters during
backpropagation, potentially ruining the model’s performance.
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Figure 38: Reweighted neutrino energy distributions for a subset of the entire
dataset. Weight calculations are given by Eqs. (102, 104, 105 107).
The unweighted distribution is shown in purple for comparison.

All used weights have been calculated using the methods described
above.

5.5 hyperparameter optimization

In search of the optimal model, several hyperparameter optimization
algorithms can be applied such as Bayesian optimization[88], random
search and grid search. In this work, a combination of grid search and
educated guessing is used. The combination of

grid search and
guessing is
infamously known as
’Grad Student’s
Descent’.

A full grid search is an exhaustive search over all possible hyper-
parameter configurations, which often is not feasible. Since model
performance is more sensitive to some hyperparameters than others, a
full grid search would likely be a waste of time. The space of hyperpa-
rameters searched is summarized in Table 4.
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Hyperparameter Searchspace

Batchsize 32, 64, 128, 256, 512
Optimizer SGD, Adam, NAG
LR schedule Inverse decay w. warmup
Layer Widths 64, 128, 256, 512, 1028
Decoding ResBlocks 0, 1, 2, 3, 4, 5, 6
Encoding Att. Blocks 0, 1, 2, 3, 4, 5, 6, 7
Encoding RNN layers 0, 1, 2, 3, 4
Encoding RNN type Vanilla, GRU, LSTM, BiGRU, BiLSTM
Nonlinearity LeakyReLU, Mish
Encoding norm. None, LayerNorm
Decoding norm. None, BatchNorm
Regularization None, Dropout(𝑝 ∈ [30%, 50%, 80%])
Regression loss L1, L2, logcosh
Classification loss CrossEntropy
Many-to-One MaxPool, AvePool, KeepLast
Weight init. Kaiming

Table 4: Summary of the hyperparameter searchspace. The regression loss
functions are not complete; regression-specific alterations are intro-
duced later.

All models were created, trained and evaluated using the Pytorch
ML framework [89].

5.5.1 General Core Architecture

Most ressources have been allocated to finding the right depth, the right
widths and right submodule components for a general core architecture.
This strategy is motivated by an a priori notion that such a general
architecture exists, and it is capable of extracting an optimal amount of
information from sequences from which specific regression problems
can be solved. The various architectures investigated can be divided
into 3 meta-types shown in Figure 39:

1. Networks with purely Attention-based encoders (top),

2. Networks with purely RNN-based encoders (middle), and

3. Networks with encoders constructed using blocks of an RNN
layer immediately followed by an Attention layer (bottom).

For simplicity, all experiments with the purpose of finding a core
model were carried out only using the 𝜈𝜇-sample, 𝑤𝑏𝑙𝑖𝑛𝑑𝑖𝑛𝑔 and doing
all regression tasks (full reconstruction) with a single NN using SRT-
cleaned pulses. The search was executed in the following way: Starting
with the simplest, most (if not all) sensible combinations of RNN layers,
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AttentionBlocks and ResBlocks were investigated. Model capacities
were then increased until no further improvement was seen. As the
optimal architecture was believed to be in close proximity, experiments
with different nonlinearities, BSs etc. was done.

Figure 39: Graphical overview of the searchspace of the different architectures
divided into 3 metatypes: Attention-based (top), RNN-based (mid-
dle) and a hybrid (bottom). Each metatype encoder is potentially
preceded by a preprocessing scheme using either AttentionBlocks
(red), standard FF-layers (light blue) or ResBlocks (dark blue) and
followed by a decoder consisting of either FF-layers or ResBlocks.

To compare the performances of the different architectures, an archi-
tecture achieving a smaller minimum average loss is said to perform
better. The disadvantage of this approach is that it is only viable when
the same loss function is used, and therefore the loss function must be
optimized afterwards. The assumption behind this approach is that
if architecture A achieves a lower loss than architecture B using a loss
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function 𝑓, A will also achieve a lower loss than B if another loss function
𝑔 is used. The used loss function was therefore

𝐿 =
1
𝑁

𝑁
∑
𝑖=1

logcosh(LE(𝐸𝑟𝑒𝑐𝑜, 𝐸𝑡𝑟𝑢𝑒)𝑖)

+ logcosh(EuclidDist(rreco, rtrue)𝑖) (109)
+ logcosh(VertexDist(p𝑟𝑒𝑐𝑜, p𝑡𝑟𝑢𝑒)𝑖),
+ logcosh(TimeDist(𝑡𝑟𝑒𝑐𝑜, 𝑡𝑡𝑟𝑢𝑒)𝑖),

where the sum is over a batch of size 𝑁 and the different elements of
the loss function are given by Eq. (84), Eq. (88), Eq. (89) and Eq. (90)
.

Itwas found that RNN-based networkswere vastly superior toAttention-
based and hybrid architectures - in Figure 40, the validation loss during
training of the best performing hybrid and Attention-based networks
are compared to an RNN-based network; it is seen that the latter con-
verges to a lower loss value. Hence, the subsequent section is devoted
to presenting the optimization search for RNN-based networks.

0 M 10 M 20 M 30 M 40 M
Events seen

5.0 ⋅10−2

5.2 ⋅10−2

5.4 ⋅10−2

5.6 ⋅10−2

5.8 ⋅10−2

6.0 ⋅10−2

Lo
ss

Validation loss

Best Hybrid
Best Attention-based
Best RNN-based

Figure 40: Validation loss during training for the best performing full recon-
struction hybrid (blue), Attention-based (orange) and RNN-based
(green) networks on muon neutrinos.

5.5.2 Optimization Results

The most important results of the search are summarized as a parallel
coordinate plot in Figure 41, in which each line represents an exper-
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iment, where red is better than black; displaying the result of every
experiment would clutter the essential takeaway. It is found that

• there are seemingly little (if any) benefit to adding preprocessing
layers,

• widths larger than 256 does not increase model performance, and
widths of 128 are competetive with wider models.

• RNN-based decoders require atleast a depth of 2 for optimal
performance, and there is a minimal (if any) gain in increasing
the depth further,

• Networks with Attention-based and Hybrid decoders are severely
outperformed by networks with RNN-based encoders, Interestingly,

state-of-the-art
Attention-based
networks completely
dominate RNN-based
networks in the
NLP-sector.

• decoders with 2 ResBlocks perform best, and the difference in
performance between networks with 2-6 blocks is minuscule, and

• the by farmost important hyperparameter is encoder depth, where
3-4 stacked RNN-based decoders are most performant.

Preproc. Depth Decode Depth Width Encode Depth Error
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Figure 41: Parallel coordinate representation of RNN-based full reconstruction
network performances. Performance is measured by the average
loss over 100.000 randomly selected events from the validation set,
where smaller (more red) is better.

Having determined a strong core model, the remaining hyperparam-
eter searchspace was explored. The main results are that

• model performance is independent of BS, Dropout and choice of
nonlinearity.
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• Training networks with Adam consistently led to faster and better
convergence compared to both SGD and NAG.

• Bidirectional RNNs outperform standard RNNs, and BiGRUs
and BiLSTMs perform equally well, despite BiGRUs having fewer
parameters. Both types outperform vanilla RNNs.

• Networks can be made deeper and achieve faster convergence
with normalization layers.

In conclusion, the best performing core model is found to be a NN
schematically shown in FIGREF with a RNN-based BiGRU-encoder
of width 128 and depth 3, one preprocessing ResBlock and a decoder
consisting of one ResBlock and a linear layer. A full Pytorch-style
summary of the best model is shown in Section A.2.

Figure 42: Sketch of the architecture of the best performing core model. The
model consists of 1 preprocessing ResBlock, 3 stacked BiGRU-
modules, 2 decoding ResBlocks and 1 FF layer without a nonlinear-
ity.

In the next chapter, the performance of the best model is evaluated
using the metrics introduced in Section 5.3. On the basis of the hyperpa-
rameter search, all models introduced from now on have been trained
using

1. Adam,

2. BS of 256,

3. the learning rate schedule described in Section 5.2,

4. no regularization besides EarlyStopping.

Furthermore, attempts at improving the model is made by adding
engineered features, using uncleaned events and gathering several NNs
in an ensemble of models.



6
RECONSTRUCT ION PERFORMANCE

Having found the best core model among several candidates, this chap-
ter is devoted to evaluate and enhance its performance. It is attempted
to improve performance through the use of different weights, by mod-
ifying the used loss function, adding additional input variables and
altering the regression tasks. To begin this chapter, the core model’s
performance on 𝜈𝜇-reconstructions is analyzed.

6.1 muon neutrino reconstructions

Muon neutrinos are the only neutrinos capable of producing track-like
events, which makes them the easiest to detect. Furthermore, the large
oscillation probabilities between 𝜈𝜏 and 𝜈𝜇 (see Figure 5), make them
especially important. For these reasons (among others) the main focus
in this work has been on muon neutrinos.

6.1.1 Reconstructions of Cleaned and Uncleaned Events

The model described in the end of the last chapter was found using SRT-
cleaned events. When using cleaned events, there is a risk that pulses
stemming from signal have been discarded, which is undesired. It is,
however, not set in stone that the model should not be able to extract
all relevant information, when the signal is more noisy. But since the
model was found training on cleaned events, it is not guaranteed that
the same architecture is optimal for training on uncleaned events; it
is likely that a larger NN is required, since the NN has to distinguish
signal from noise in addition to the reconstruction.

In Table 5, various models based on the core model described in the
previous chapter are compared. Models are labeled as𝑅𝑁𝑁𝑆𝑅𝑇(𝑑𝑒𝑛𝑐𝑜𝑑𝑒, 𝑤𝑒𝑛𝑐𝑜𝑑𝑒, 𝑑𝑑𝑒𝑐𝑜𝑑𝑒)
with no superscript, if uncleaned events are used. The performance of
each model is summarized in 12 numbers: The performances across the
energy intervals log10 𝐸 ∈ [0, 1), log10 𝐸 ∈ [1, 2) and log10 𝐸 ∈ [2, 3]
in units of [ 𝐸

GeV], where the performances are measured as the width
of the logarithmic energy error distribution (first column), the upper
bound of the distance to the IV (second column), the upper bound on
the directional error (third column) and finally the width of the error
distribution of the time component of the IV.

69
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Model 𝑊 (log10 [
𝐸𝑝𝑟𝑒𝑑

𝐸𝑡𝑟𝑢𝑒
]) 𝑈(| ⃗𝑥𝑟𝑒𝑐𝑜 − ⃗𝑥𝑡𝑟𝑢𝑒|) [m] 𝑈 (ΔΨ) [deg] 𝑊(Δ𝑡) [ns]

log10 𝐸 ∈ [0, 1), [ 𝐸
𝐺𝑒𝑉]

𝑅𝑁𝑁𝑆𝑅𝑇(4, 128, 2) 0.1413 20.77 61.66 28.86
𝑅𝑁𝑁𝑆𝑅𝑇(3, 128, 2) 0.1457 20.82 61.69 28.91
𝑅𝑁𝑁(3, 256, 2) 0.1419 20.77 61.97 28.67
𝑅𝑁𝑁(3, 128, 2) 0.1415 20.86 61.87 29.3
𝑅𝑁𝑁(2, 256, 4) 0.1436 20.93 62.53 28.99

log10 𝐸 ∈ [1, 2), [ 𝐸
𝐺𝑒𝑉]

𝑅𝑁𝑁𝑆𝑅𝑇(4, 128, 2) 0.171 33.12 38.8 56.91
𝑅𝑁𝑁𝑆𝑅𝑇(3, 128, 2) 0.1736 33.43 38.97 57.05
𝑅𝑁𝑁(3, 256, 2) 0.1658 33.01 38.89 56.06
𝑅𝑁𝑁(3, 128, 2) 0.1699 33.33 39.3 57.61
𝑅𝑁𝑁(2, 256, 4) 0.1726 33.23 39.12 57.69

log10 𝐸 ∈ [2, 3), [ 𝐸
𝐺𝑒𝑉]

𝑅𝑁𝑁𝑆𝑅𝑇(4, 128, 2) 0.2646 36.05 25.36 54.9
𝑅𝑁𝑁𝑆𝑅𝑇(3, 128, 2) 0.2658 36.8 25.49 54.14
𝑅𝑁𝑁(3, 256, 2) 0.2462 35.31 24.56 52.22
𝑅𝑁𝑁(3, 128, 2) 0.2496 35.87 25.28 55.95
𝑅𝑁𝑁(2, 256, 4) 0.2518 34.84 24.69 54.93

Table 5: Summary of performances of models taking cleaned (superscripted
SRT) and uncleaned (no superscript) sequential inputs. Performances
are calculated using Eq. (76) and Eq. (81) and are reported as the
average performance (lower is better) over 3 different energy intervals:
log10 𝐸 ∈ [0, 1), log10 𝐸 ∈ [1, 2) and log10 𝐸 ∈ [2, 3] in units of [ 𝐸

𝐺𝑒𝑉 ].
The best performances are reported in bold.

From the performances it is seen that the difference between 𝑅𝑁𝑁-
and 𝑅𝑁𝑁𝑆𝑅𝑇 is close to negligible at lower energies (𝐸 < 10 GeV); the
differences between the best performing 𝑅𝑁𝑁- and 𝑅𝑁𝑁𝑆𝑅𝑇 models is
in most cases less than 1 %. A different picture is painted at high energy
(𝐸 > 100 GeV): In this range, 𝑅𝑁𝑁-models persistently outperform
𝑅𝑁𝑁𝑆𝑅𝑇-models with up to 5 % increase in performance. Despite the
fact that the sequences are significantly longer for uncleaned events
(see Figure 28), the 𝑅𝑁𝑁-models are able to extract the valuable infor-
mation despite the noisy signal, which likely is due to the SRT-cleaning
removing signal pulses.

As mentioned in Section 2.6, the current likelihood-based reconstruc-
tion approach may only achieve inference speeds (i.e. reconstructions
per second) of 𝒪(10−1). The NN-based models developed in this work
achieve significantly higher inference speeds: In Table 6, the inference
speed, number of parameters and size of some of the best performing
models are compared.
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𝑅𝑁𝑁𝑆𝑅𝑇(4, 128, 2) 𝑅𝑁𝑁𝑆𝑅𝑇(3, 128, 2) 𝑅𝑁𝑁(3, 256, 2) 𝑅𝑁𝑁(3, 128, 2)

Inference Speed 7233𝑠−1 8047𝑠−1 6338𝑠−1 7325𝑠−1

Parameters 1.18 M 0.89 M 3.40 M 0.89 M
Size 4.73 MB 3.55 MB 13.61 MB 3.55 MB

Table 6: Inference speeds (events reconstructed per second) and sizes (in terms
of memory requirements and number of parameters) of 𝑅𝑁𝑁(...) and
𝑅𝑁𝑁𝑆𝑅𝑇(...) models. Inference was run with a batchsize of 512 on 1
NVIDIA GeForce GTX 1080 GPU.

As shown, inference speeds above 6000 reconstructions per second
can consistently be achieved for the best performingmodels. If the batch-
size is increased further, even higher inference speeds can be achieved.
The inference speed of all displayed model’s have been achieved us-
ing 1 NVIDIA GeForce GTX 1080 GPU [90]. Comparing the number The NVIDIA

GeForce GTX 1080 is
a consumer-grade
graphics card sitting
at a retail price of
approximately 800 $
in Denmark

of parameters of the models 𝑅𝑁𝑁(3, 256, 2) and 𝑅𝑁𝑁(3, 128, 2) with
their performances displayed in Table 5, we see that only a minor im-
provement in terms of reconstruction performance is achieved, when
the number of model parameters is increased from 900.000 to roughly
3.500.000.

6.1.2 Full Reconstruction Performance

In Figure 43, the performance of full reconstructions using𝑅𝑁𝑁(3, 256, 2)
(blue) are compared to the performance of Retro’s reconstructions (or-
ange). On every plot, the gray histogram with a secondary, logarithmic
y-axis on the right displays the amount of events in the training set for
the given energy range. Additionally, the entire error distributions as a
function of energy are shown in Figure 44 for polar angle and energy re-
constructions, since these specific reconstructions exhibit biases, which
are discussed below. In Section A.5, additional performance plots are
shown.
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Figure 43: Performance as a function of energy for full reconstructions with
𝑅𝑁𝑁(3, 256, 2) (blue) compared to Retro’s reconstructions (or-
ange). Performances are parametrized as the width 𝑊 (Eq. (76))
or upper bound 𝑈 (Eq. (81)) of the relevant error distribution. Un-
certainties are calculated using Eq. (80) and Eq. (82) respectively.
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In the top-left of Figure 43, the direction reconstruction performance
is shown, where the angular difference ΔΨ between the reconstructed
and true directions is given by Eq. (86). As shown, 𝑅𝑁𝑁 outperforms
the Retro reconstructions across the entire energy range with 20 % or
larger improvements with respect to the upper bound. Furthermore,
the resolution steadily increases with energy for both 𝑅𝑁𝑁 and Retro
reconstructions up until log10 𝐸 ≈ 2.5, where the resolution begins
to decrease again. It is currently not known why Retro direction re-
construction performance decreases above a certain threshold, but it
has been conjectured to stem from the fact that high-energy events are
less likely to be contained in the densely instrumented DeepCore. It
should be noted as well that the error is calculated with respect to the
𝜈𝜇-direction, which is not aligned with the direction of the muon that
leaves a track (see Eq. (22)). The reconstruction of the actual track is
therefore better than what is suggested by the performance plot.

The direction reconstruction performance can also be probed by in-
specting the distributions of the polar and azimuthal angle errors. As
previously discussed, this approach has the disadvantage of being coor-
dinate dependent, but since the polar angle is important for oscillation
analyses, it is considered as well.

The polar reconstruction performance is shown in the top-right of
Figure 43: In this case, Retro reconstructions generally outperform
𝑅𝑁𝑁, but with approximately equal performance in the energy range
log10 𝐸 ∈ [10, 100]. As previously mentioned, the error distribution
of the polar reconstruction is shown in Figure 44a from which it is
seen that 𝑅𝑁𝑁 is biased towards predicting too small polar angles,
especially at low energies. The reason behind this bias is likely to be
the following: Since most neutrinos are going upwards (corresponding
to low 𝜃-values), when the NN is faced with a sequence with little
information (such as a low energy event), it defaults to predicting an
upwards-going neutrino, since such a tactic reduces the loss the most -
it can therefore very likely be removed by reweighting the data to be
uniformly distributed on a sphere. Increasing the performance of polar
angle reconstructions is discused further in Section 6.3.
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(a) (b)

Figure 44: Error distributions as a function of energy for the polar reconstruc-
tion (left) and energy reconstruction (right) using the logarithmic
error metric. The 16th, 50th and 84th percentiles of the error dis-
tributions are shown for 𝑅𝑁𝑁 (red) and Retro (green) reconstruc-
tions.

Performance with respect to energy reconstruction is probed in two
different ways: In the middle-left plot of Figure 43 the LE (given by Eq.
(84)) is used and in the middle-right plot of Figure 43 the RE (given by
Eq. (83)) is used. 𝑅𝑁𝑁 performs much better compared to Retro for
both performance metrics, despite the fact that the used loss function
given by Eq. (109) is optimized to reduce the LE.

With respect to the LE as performance metric, 𝑅𝑁𝑁 is consistently
at least 10 % better than Retro. Interestingly, the performance for both The kink in energy

reconstruction
performance with
respect to the relative
error of the Retro
algorithm is likely
due to the fact that
the likelihood-model
assumes energy loss
purely due to
ionization, whereas
radiative losses
becomes significant
at energies above 100
GeV

𝑅𝑁𝑁 andRetro decreases as a function of energy, when the LE is used as
metric, whereas the performance tends to increase, when the RE is used
as metric. The kink in performance at log𝐸 ≈ 2.5 in the relative error
plot of Figure 43 is likely due to a small amount of data at high energies
compared to the rest of the spectrum. From the error distribution shown
in Figure 44b it is seen that both Retro and 𝑅𝑁𝑁 tend to assign a too
large energy to low-energy events and a too low energy to high-energy
events. In the case of Retro reconstructions, predicting too low energies
begins at log𝐸 ≈ 1.5, which is punished harder, when a LE metric
is used (see Figure 35). Additionally, 𝑅𝑁𝑁 is most heavily biased at
low energies despite the fact that the performance plots suggests best
performance in this region. This can in part be attributed to the fact that
𝑅𝑁𝑁 was trained on relatively few low-energy events, and the used
weights, 𝑤𝑏𝑙𝑖𝑛𝑑𝑖𝑛𝑔, skews the distribution even further towards higher
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energies. Increasing the performance and removing the bias at low
energies is discussed in Section 6.3.

Finally, the reconstructed IV errors are shown in the bottom-left
and -right plots of Figure 43. The performance of both the spatial
and temporal 𝑅𝑁𝑁 reconstructions outperform Retro across the entire
energy range. Strangely, for IV reconstructions, performance decreases
up until log𝐸 ≈ 80 GeV, whereafter it increases as a function of energy.
As previously mentioned, the cause of such performance shapes is
unknown, but since 𝑅𝑁𝑁 and Retro tend to agree on the shapes, it is
plausible that it is a feature of the dataset.

6.1.3 Feature Engineering

A phrase commonly heard in ML communities is that a model is only as
good as the data it is trained on. It might therefore be beneficial in terms
of performance to enrich the input sequences with information, which
the NNs might have difficulties extracting. Therefore models taking
additional sequential and scalar features have been tested. The added
features can be separated into two categories: Features extracted directly
from the sequences, including simple estimates of the neutrino direction
and signal speed from DOM i to DOM i+1 and features containing
information about nearest neighbors. The idea behind adding the latter
is that there might be valuable information hidden in the part of the
detector that did not trigger. The added scalar features are

1. LineFit[91]: A rough and fast estimate of the particle direction
parametrized as x-, y- and z-components of a unit vector. The
particle trajectory is found by minimizing the Huber loss[92] of
the distances Δ𝑑 between the trajectory and the triggered DOMs
given by

Δ𝑑𝑖 = | ⃗𝑣 ⋅ (𝑡𝑖 − 𝑡0) − ( ⃗𝑟𝑖 − ⃗𝑟0)|, (110)

where ⃗𝑟𝑖 and 𝑡𝑖 are the i’th DOM coordinates and triggertime and
⃗𝑣, ⃗𝑟0 and 𝑡0 are fitted.

2. Tensor of Inertia (ToI)[93]: An additional rough and fast esti-
mate of the particle direction. The particle direction is reported as
the principal axis of the ToI with the smallest eigenvalue, which
approximates the direction of the particle. The ToI is calculated
in the classical way, where the charge of each triggered DOM acts
as a virtual mass. Additionally, the ratio

𝜆𝑚𝑖𝑛
∑𝑖 𝜆𝑖

(111)

is calculated, where 𝜆𝑚𝑖𝑛 is the smallest eigenvalue. The smaller
this ratio is, the more track-like the event is.
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In addition to the above-mentioned scalar features, the following
features are added to each sequence element

1. DOM_charge_significance: A measure of how significant the en-
ergy deposited to a single DOM is. Calculated as

DOM_charge_significance =
𝑁𝐷𝑂𝑀𝑠 ⋅ DOM_charge

∑ DOM_charge
(112)

2. DOM_d_prev: Euclidian distance to the previous DOM in sequence.

3. DOM_v_from_prev: Signal speed from the previous DOM to cur-
rent. Calculated as

DOM_v_from_prev =
DOM_d_prev

DOM_time𝑖 − DOM_time𝑖−1
(113)

4. DOM_Minkowski_prev: The Minkowski distance to the previous
DOM in sequence. The Minkowski distance can be used to deter-
mine whether there is a causal relationship between triggers. It is
calculated with metric signature (+, -, -, -).

5. DOM_d_closest: The Euclidian distance to the closest DOM in the
sequence.

6. DOM_Minkowski_closest: The Minkowski distance to the closest
DOM in the sequence.

7. DOM_closest1: The x, y, z, t and charge values of the nearest neigh-
bor, i.e. a DOM that potentially did not trigger.

8. DOM_closest2: The x, y, z, t and charge values of the second nearest
neighbor.

Due to the nature of the detector, the nearest neighbors are always
on the same string. If information on DOMs that did not trigger proves
to be useful, the neighborhood could be extended to include DOMs on
different strings.

To investigate whether the added features increase performance, the
previously described 𝑅𝑁𝑁(3, 256, 2) is compared to an an identical
model and an almost-identical model, which only differs by taking the
features described above as additional inputs. The comparison with
a retrained identical model is included to get an idea of the inherent
variance in performance due to the stochastic nature of training NNs.
The relative improvements in performance over the baseline-model in
Figure 43 are shown in Figure 45.
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Figure 45: Relative improvements in performance of 𝑅𝑁𝑁(3, 256, 2) when tak-
ing the engineered features described above as additional inputs
(blue) compared to an identical 𝑅𝑁𝑁(3, 256, 2) only taking the
features described in Table 3 (orange). The deviation from equal
performance of the identical model is due to the inherent variance
of training NNs. The relative improvement is measured in terms of
the performance measures used in Figure 43

It is difficult to determine whether or not an overall increase in per-
formance is achieved; most performance measures of the model taking
additional inputs see both increases and decreases at < 5 % in per-
formance as a function of energy. Likewise, the identical model see
similar increases and decreases in performance, which stems from the
inherent variance in training. The difference in performance is therefore
unlikely to be attributable to the added features but merely statistical
fluctuations. Since some of the variance is explained by the stochastic
nature of training, it is difficult to quantify how big the decrease or
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increase in performance is. Bayesian attempts at quantifying variance
due to training can be carried out using Dropout [94], but due to time
limitation it has not been done in this work.

6.1.4 Feature importance

NNs are notoriously known for being black box models. It is now
attempted to partially open the black box and glimpse into the inner
workings of the developed models through the use of Permutation
Feature Importance (PFI) [95]. PFI is a method that can be used to
gauge the importances of the different features to the model. Let the
model performance be described by a number 𝑃, which for e.g. the
energy reconstruction is the width of the logarithmic error distribution
shown in the middle-left plot of Figure 43. The PFI is then defined to
be

PFI(𝑥) =
𝑃𝑃𝑒𝑟𝑚𝑢𝑡𝑒𝑑 − 𝑃

𝑃 , (114)

where 𝑃𝑃𝑒𝑟𝑚𝑢𝑡𝑒𝑑 is the model performance, when the feature 𝑥 has
been replaced by a randomly chosen value from the empirical distribu-
tion of 𝑥. In other words, it is the fractional decrease in performance,
when the information from a certain feature is removed. The hypothesis PFI was first used on

random forest
classifiers with
tabular data, where
the column with
feature 𝑥 was
permuted - hence the
name.

is then that the larger the decrease in performance, the more important
the feature is to the model. In the specific case of RNNs, the PFI of a
sequential feature 𝑥𝑠𝑒𝑞 such as DOM_charge is attained by replacing its
value in every sequence element by randomly chosen values from the
entire distribution of DOM_charge .

In figure Figure 46 the 24 most important PFI scores are shown for
direction, polar angle, energy, azimuthal angle, interaction vertex and
time reconstructions for the 𝑅𝑁𝑁(3, 256, 2)-model taking additional
inputs. Each PFI is calculated on the basis of 100.000 randomly selected
events. Generally, the by far most important features for all reconstruc-
tions are the non-engineered features, likely due to the fact that these
features carry all the information. Interestingly, the features carrying
information on what parts of the detector that did not trigger achieve
high FPI scores across all reconstructions, despite the fact that the per-
formances are unlikely to have increased because of them as previously
seen. Furthermore, all engineered features are compatible with having
PFI scores of 0 at 5 % significance level, meaning they are not important
at all.
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Direction Reconstruction Polar Angle Reconstruction

Energy Reconstruction Azimuthal Angle Reconstruction

Interaction Vertex Reconstruction Interaction Time Reconstruction

Figure 46: Permutation feature importance for direction, polar angle, energy,
azimuthal angle, interaction vertex and time reconstructions for
𝑅𝑁𝑁(3, 256, 2). The 24 most important features are shown. Higher
values means a feature is more important. Note the different scales
in each plot.
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Perhaps surprisingly, DOM_charge is among the features compatible
with having a PFI score of 0 for all reconstructions. This result might
be suggesting that at GeV-energies, each triggered DOM registers too
few photons to convey meaningful information about the particle track.
Since the input sequences only consist of triggeredDOMs, the triggering
of each DOM essentially only carries one bit of information (besides its
position and triggertime): Triggered or not triggered.

For the direction reconstruction, the spatiotemporal features are the
most important, with the time- and z-components scoring highest. This
is in agreement with the fact that the inherent resolution of the detector
is highest with respect to the time- and z-components of the pulses. For
polar angle reconstruction, the discrepancy between the importance of
the time- and z-components and the x- and y-components is even larger,
which is expected; the azimuthal component only depends on the 𝑥−
and 𝑦−components of the direction vector (hence these features achieve
a higher score for the azimuthal reconstruction than the 𝑧−component)
and the polar component only depends on the 𝑧−component.

The energy reconstruction also depend on all spatiotemporal compo-
nents, all achieving relatively low PFI scores between 0.1 and 0.5, but
with the 𝑡− and 𝑧−components being the most important. Compared to
the interaction time reconstruction, which predictably depends strongly
on DOM_time, it is not clear a priori which feature the energy reconstruc-
tion should depend mostly on. It can, however, be said that it turns out
to depend the most on the features with the highest resolution.

6.2 electron-, muon- and tau reconstruction

As discussed in Section 2.5, different neutrino-types have different
signatures. It is therefore not unthinkable that different models should
be used for different types of neutrinos. Such an approach, however,
requires the experimenter to be able to distinguish between the events,
and therefore classifiers must be developed. Such a classifier has been
developed and is introduced in the following section. Afterwards, it is
investigated whether a single model reconstructing all neutrinos can
competewith 3 differentmodels, each handling its own type of neutrino

6.2.1 Track and Cascade Classification

In Section 1.2.1, it was discussed how neutrinos interact via neutral or
charged currents (NC and CC). Any NC event will produce a cascade
response giving the experimenter no way of distinguishing between
neutrino types. Furthermore, 𝜈𝑒- and 𝜈𝜏-events at low energies produce
cascade-responses as well, and only CC 𝜈𝜇-events produce track-like
responses. Traditionally, events have therefore been classified as either
cascades or tracks; hence this approach is taken in this work.
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The classifier is trainedusing the (by nowwell-known)𝑅𝑁𝑁(3, 256, 2)
architecture and the cross entropy loss function given by Eq. (94). The
model is trained on a subsample of the entire OscNext-sample sum-
marized in Table 2. Approximately 90 % of 𝜈𝜇-events were CC-events
leading to a samplesize of 5.2 ⋅ 106 CC 𝜈𝜇-events, and all 𝜈𝑒-events
(1.6 ⋅ 106) were used. Since 𝜈𝑒-events are guaranteed to produce cas-
cades, and 𝜈𝜏-events can produce track-like responses as well (due
to the decay of the 𝜏 into a 𝜇), 𝜈𝜏-events are not included in the sam-
ple. Weights are used to create a balanced training set with an average
weight of 1 such that no bias is introduced, i.e. 𝜈𝑒-events are given the
weight

𝑤𝜈𝑒
=

𝑁𝜈𝑒
+ 𝑁𝜈𝜇

2𝑁𝜈𝑒

(115)

and 𝜈𝜇-events are given the weight

𝑤𝜈𝜇
=

𝑁𝜈𝑒
+ 𝑁𝜈𝜇

2𝑁𝜈𝜇

. (116)

Unfortunately, it has
not been possible to
compare classification
scores based on
predictions on the
same sample nor
retrieve the data
shown for the
BDT-classifier

In Figure 47 the distribution of the predicted track-like scores on the
held-out testset are shown (right) along with the distribution of track-
like scores for the currently used BDT-classifier (left) generated on a
different sample of CC muon neutrinos and electron neutrinos - one
should therefore be cautious about making definite claims about which
classifier that performs best. It should be noted that the BDT-scores are
not normalized and are shown on a linear scale, whereas the NN-scores
are normalized and shown on a logarithmic scale.

Despite these differences, the distributions follow the same pattern.
A noteworthy difference between the distributions is the track-peak
heights at a classification score of 1, where the NN peak is is relatively
larger than its BDT counterpart. Based on the apparent looks of the
distributions, the NN-based classifier appears to outperform the BDT.
To make a conclusive determination, however, a data-based comparison
should be conducted.
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Figure 47: Track-like classifier scores for the currently used BDT-based classi-
fier (left, courtesy of Tom Stuttard) and the developed NN-based
classifier (right). The classifiers are evaluated on different datasets.
Additionally, the BDT-scores are not normalized and are shown on
a linear y-scale, whereas the NN-scores are shown on a logarithmic
scale and the distributions are normalized.

The ROC curves for the NN-based classifier for different energy
ranges are shown in Figure 48 along with their corresponding AUC-
values. Each curve displays a characteristic steep rise in TPR with
a more or less constant FPR. Unsuprisingly, the performance of the
classifier increases with energy. For the highest energies, AUC-scores
of 0.95+ are achieved, and an almost completely clean CC 𝜈𝜇-sample
can be extracted while only discarding approximately 10% signal.
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Figure 48: ROC curves of the NN-based classifier at different energy ranges
along with their corresponding AUC-values.

At lower energies, it is much more difficult to distinguish between
tracks and cascades; AUC-scores are below 0.65 for events with energies
< 100 GeV. It might therefore be necessary to build a model capable of
reconstructing all neutrino flavours in one go.

6.2.2 Reconstruction with a Single Model

As shown above, it is difficult at low energy to efficiently generate clean
samples of either type of neutrino, and therefore one might have to
resort to reconstructing any neutrino with the same model.

The focus in this work has been on optimizing the performance
with respect to reconstructions of muon neutrinos. However, to get
an idea of how well electron- and tau neutrinos can be reconstructed,
an 𝑅𝑁𝑁(3, 256, 2)-model has been trained and evaluated on the entire
dataset summarized in Table 2 for a total of 8.8⋅106 training events, i.e. a
model reconstructing all flavours of neutrinos. This model is compared
to the performance of 3 different models: A 𝑅𝑁𝑁(3, 256, 2)-model only
reconstructing electron neutrinos, a 𝑅𝑁𝑁(3, 256, 2)-model only recon-
structing muon neutrinos, and finally a 𝑅𝑁𝑁(3, 256, 2)-model only re-
constructing tau neutrinos.

Training of the abovementioned models was carried out using the
previously described logcosh-loss given by Eq. (109) and the previ-
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ously described weights 𝑤𝛼=0.7
𝑏𝑎𝑙𝑎𝑛𝑐𝑒𝑑. In Figure 49, the performance of the

above-mentionedmodels are shownwith the all-neutrinomodel in blue,
the single-flavour models in orange and the Retro reconstruction in
green for selected reconstruction variables: The energy reconstruction
performance is shown in the left column and the polar angle recon-
struction performance is shown in the right column. In the top row,
𝜈𝑒-performances are shown, in the middle row 𝜈𝜇-performances and
finally 𝜈𝜏-performances are shown in the bottom row.
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Figure 49: Energy (left) and polar angle (right) reconstruction performances
of a single model reconstructing all neutrinos (blue) compared to
neutrino-specific reconstruction models (orange) and the perfor-
mance of the Retro reconstruction (green).
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Interestingly, for the polar reconstruction the all-neutrino model out-
performs the single-flavour models. For 𝜈𝑒- and 𝜈𝜏-reconstructions, this
effect is likely due to the fact that both event-types primarily produce
cascade-like responses, and therefore reconstructing both neutrinos at
once corresponds to doubling the amount of data. Nonetheless, the
same effect is not seen with respect to the energy reconstruction: In this
scenario, the 𝜈𝜇-reconstructions benefit from reconstructing all flavours
at once in the mid energy-range, while the 𝜈𝑒-reconstructions become
worse for the same range.

Perhaps the biggest deterioration is seen for the 𝜈𝜏 energy reconstruc-
tions. At low energy, this is expected, since there is a significant lower
bound on the 𝜈𝜏-energy due to the 𝜏-mass, which a single-flavourmodel
learns. At higher energies, it is more unclear why the single-flavour
model is performing better.

6.3 specialized reconstruction models

When onemodel is built to reconstruct all parameters of interest (energy,
direction, interaction vertex and interaction time), the used loss function
potentially has to be tuned to put all contributions on an equal footing.
For instance, there is no a priori guarantee that the energy- and direction-
components in Eq. (109) contribute equally, and there is therefore a
possibility that the model will only achieve optimal performance with
respect to one of the regression tasks.

The correlation coefficients between the different reconstruction er-
rors of 𝑅𝑁𝑁(3, 256, 2) trained with the logcosh-loss function given by
Eq. (109) is displayed in Figure 50. As shown, some components cor-
relate more strongly with the loss value indicative of a larger overall If the performance

with respect to one
parameter is
’orthogonal’ with
respect to the
performance of
another parameter,
the described
phenomenon will not
be present.

contribution to the loss: The IV reconstruction is seen to be the dominant
contributor, whichmight be at the cost of performance w.r.t. polar angle
reconstruction, as this error correlates less strongly with the loss-value.
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Figure 50: Correlation coefficients between different performance measures
and the loss value for 𝑅𝑁𝑁(3, 256, 2) trained using the loss function
given in Eq. (109).𝑥𝐼𝑉, 𝑦𝐼𝑉 and 𝑧𝐼𝑉 are the cartesian components of
the interaction vertex.

Since some regression tasks might be suppressed due to the loss
function construction, it has been investigatedwhether different models
should be used for different regression tasks. By splitting Eq. (109)
into 3 separate loss functions given by

𝐿𝐸𝑛𝑒𝑟𝑔𝑦 =
1
𝑁

𝑁
∑
𝑖=1

logcosh(LE(𝐸𝑟𝑒𝑐𝑜, 𝐸𝑡𝑟𝑢𝑒)𝑖), (117)

𝐿𝐼𝑉 =
1
𝑁

𝑁
∑
𝑖=1

logcosh(EuclidDist(rreco, rtrue)𝑖), and (118)

𝐿𝐷𝑖𝑟𝑒𝑐𝑡𝑖𝑜𝑛 =
1
𝑁

𝑁
∑
𝑖=1

logcosh(VertexDist(p𝑟𝑒𝑐𝑜, p𝑡𝑟𝑢𝑒)𝑖), (119)

and training and evaluating 3 differentmodels (labelled𝑅𝑁𝑁𝐸𝑛𝑒𝑟𝑔𝑦(3, 256, 2),
𝑅𝑁𝑁𝐼𝑉(3, 256, 2) and 𝑅𝑁𝑁𝐷𝑖𝑟𝑒𝑐𝑡𝑖𝑜𝑛(3, 256, 2)) based on each loss func-
tion, whether or not performance is lost is deduced.

The relative improvement in performance w.r.t. polar angle (up-
per left), energy (upper right), IV (lower left) and interaction time
(lower right) reconstructions, when the models 𝑅𝑁𝑁𝐸𝑛𝑒𝑟𝑔𝑦(3, 256, 2),
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𝑅𝑁𝑁𝐼𝑉(3, 256, 2) and 𝑅𝑁𝑁𝐷𝑖𝑟𝑒𝑐𝑡𝑖𝑜𝑛(3, 256, 2) perform the regressions
compared to the single model 𝑅𝑁𝑁𝑎𝑙𝑙(3, 256, 2) performing all regres-
sion tasks is shown in Figure 51 (azimuthal and direction reconstruc-
tion performance improvements are shown in Section A.3). Several
of each model were trained to ensure that performance changes were
not merely due to statistical fluctuations; hence, representative model
performances are shown.
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Figure 51: Relative improvements in performance w.r.t. 𝑅𝑁𝑁𝑎𝑙𝑙(3, 256, 2),
when the regression tasks are divided among 3 models. All archi-
tectures are identical, but the loss functions have been altered to Eqs.
(117 - 119). As can be seen, the directional reconstruction benefits
from being handled by a separate model, 𝑅𝑁𝑁𝐷𝑖𝑟𝑒𝑐𝑡𝑖𝑜𝑛(3, 256, 2).

Performing all regression tasks with a single model appears to have a
regularizing effectwith respect to the IV reconstruction: 𝑅𝑁𝑁𝐼𝑉(3, 256, 2)
performs worse than 𝑅𝑁𝑁𝑎𝑙𝑙(3, 256, 2)across the entire energy range.
On the opposite, the direction reconstruction appears to benefit from
splitting up the regression tasks. This effect is most prominent at higher
energies. The next section is therefore devoted to optimizing the direc-
tion reconstruction by tuning the used loss function.
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6.3.1 Tuning the Direction Loss

As described in Section 5.3.3, other error measures have been investi-
gated to optimize the direction reconstruction, specifically the angular
difference directly given by Eq. (86) and the negative cosine similarity
given by Eq. (87). Both error measures introduce difficulties in each
their way.

The angular difference has the interesting feature that as the predictor
gets better (i.e. cos 𝑥 approaches 1), the gradients become larger and
larger: Since the derivative of the inverse is given by

𝑑
𝑑𝑥 arccos 𝑥 = −

1
1 − 𝑥2 , (120)

the derivative diverges, when the predictor makes perfect predictions.
Needless to say, this unwanted featuremakes it very difficult to optimize
NN.

The negative cosine similarity introduces a different problem. Since
the NN is not guaranteed to predict a vector of unit length, it will
occasionally produce predictions of length 0 or close to it, making the
loss function unstable. This can be partially resolved by altering the
loss function to

NegSim(rreco, rtrue) = 1 −
rreco ⋅ rtrue

|rreco||rtrue| + 𝜖, (121)

where 𝜖 > 0 is a small number, but it does not solve the problem
completely; if 𝜖 is made too large, the NN can simply reduce its loss
value by predicting short vectors, but if it is not large enough, short-
length vectors can generate large gradients making the optimization
process unstable. This issue can partially be alleviated through gradient
clipping [96], but the process is messy. Experiments with all error
measures mentioned in Section 5.3.3 have been carried out, but due to
the above-mentioned issues, a loss function incorporating the Euclidian
distance between the direction vectors (Eq. (88)) gave the best results.

When the unit vector is predicted by a NN, the network learns that
target values above 1 or below -1 are not possible. This fact causes
networks to too seldom predict an 𝑥−, 𝑦− or 𝑧−component close to
one of the bounding values. This effect is strengthened further, when a
convex loss function with respect to the errors is used. This effect is due
to the fact that in the face of uncertainty, theNN canminimize the loss by
predicting a value close to themean of the target distribution, ultimately
resulting in too short predictions as shown in the right plot of Figure
52. In the left plot of Figure 52, the distribution of the 𝑥−component
of the direction vector is shown to be strongly affected by the used
loss function, where the described effect is strongest for the logcosh-
loss (blue) due to its stronger convexity compared to a regular L1-loss
(orange).
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Figure 52: Left: Distribution of the 𝑥−component of the direction vector rreco
predicted by 𝑅𝑁𝑁𝐷𝑖𝑟𝑒𝑐𝑡𝑖𝑜𝑛(3, 256, 2), when EuclidDist(rreco, rtrue))
is input to a logcosh (blue), L1 (orange) or L1 with a penalty term
(green) given by Eq. (122). The true distribution is shown in red.
Right: The distribution of the lengths of the predicted direction
vectors.

The problem is solved to a certain extent by adding a penalty term to
the L1-loss, transforming the loss to

𝑙(rreco, rtrue)) = 𝐿1(rreco, rtrue)) + 𝛼 ⋅ (1 − |rreco|)2, (122)

where 𝛼 is a tunable parameter. When 𝑅𝑁𝑁𝐷𝑖𝑟𝑒𝑐𝑡𝑖𝑜𝑛(3, 256, 2) is trained
with this loss (here with 𝛼 = 1), more correct distributions (orange) of
the components are achieved as shown in Figure 52. The distributions
of the predicted 𝑦− and 𝑧−components with the different loss functions
are shown in Section A.4.

As mentioned, adding a penalty term to the L1-loss does not com-
pletely solve the problem of too few predictions with component-values
close to -1 and 1. In the end, this might not be as big of an issue as it
could seem, since it is the relative sizes of the components with respect
to each other that determines the direction. Therefore, if the absolute
values of all the components generally are too small, the individual
errors might neutralize each other. Using this line of argument, adding
a penalty term could be futile, but there are two reasons why that is
not the case. First and foremost, it turns out that the penalty term leads
to better performance at low energies with respect to the polar angle
reconstruction (as we will see later). Secondly, achieving high accuracy
with respect to the individual direction components becomes important,
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when estimates of the errors on the azimuthal and polar angles are
generated using probabilistic loss functions.

6.4 ensemble models

The high variance in single model performance means that different
models produce different predictions. It is therefore possible to combine
several identical (with respect to architecture) models into an ensem-
ble of models utilizing the strength of each individual submodel[97].
In this section, the description of a 𝜈𝜇-reconstructing ensemble is de-
scribed.

The more uncorrelated the used models are, the better performance
can be achieved. In this work, the used submodels are therefore trained
with different weights and loss functions, and the models are com-
bined using another NN (called a meta-learner). The performance of
𝑅𝑁𝑁𝑎𝑙𝑙(3, 256, 2)is attributed to its superior ability to extract informa-
tion. Hence, an identical architecture is used for the meta-learner. The
general ensemble architecture used is sketched in Figure 53: 𝑁 dif-
ferent models make reconstructions, where the performance of each
model is controlled via the used loss-function and used weights. Then
a meta-learner outputs a final reconstruction based on the event and
the individual reconstructions

Figure 53: Sketch of ensemble architecture. 𝑁 models predict a set of tar-
get variables, whereafter a meta-learner combines the individual
predictions into a final reconstruction. In addition to the 𝑁 recon-
structions, the meta-learner is also fed the event.
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By using point-predicting models (as opposed to models predicting
a distribution) for the submodels and a distribution-predicting meta-
learner, an error estimate is generated as well. In this work, errors are
assumed to be Gaussian, and are generated by letting the NN approxi-
mate a likelihood-function, i.e. the used loss function is the negative
log-likelihood given by Eq. (93). In accordance with the discussion in
Section 6.3, two different ensembles have been developed: One energy-
and IV-reconstructing ensemble and one direction-reconstructing en-
semble. In Table 7, the used submodels in each case are summarized:
Each ensemble consists of 8 submodels (4 unique) trainedwith different
weights and loss functions.

Energy + IV Direction

Loss Weights 𝑁 Loss Weights 𝑁

logcosh 𝑤𝑏𝑙𝑖𝑛𝑑𝑖𝑛𝑔 2 logcosh 𝑤𝑏𝑙𝑖𝑛𝑑𝑖𝑛𝑔 2
logcosh 𝑤𝛼=0.7

𝑏𝑎𝑙𝑎𝑛𝑐𝑒𝑑 2 L1+ penalty 𝑤𝑏𝑙𝑖𝑛𝑑𝑖𝑛𝑔 2
logcosh 𝑤𝑙𝑜𝑤 2 L1+ penalty 𝑤𝐷𝑖𝑟𝑒𝑐𝑡𝑖𝑜𝑛 2
logcosh 𝑤ℎ𝑖𝑔ℎ 2 L1 𝑤𝐷𝑖𝑟𝑒𝑐𝑡𝑖𝑜𝑛 2

𝑁𝑡𝑜𝑡𝑎𝑙 8 8

Table 7: Summary of the training procedures of the submodels in the energy
+ IV-reconstructing ensemble and the direction-reconstructing en-
semble: The used event-weights, the used loss function and the num-
ber of identical models in the ensembles. All submodels have the
𝑅𝑁𝑁(3, 256, 2)-architecture. 𝑤𝐷𝑖𝑟𝑒𝑐𝑡𝑖𝑜𝑛 reweighs the distribution to
be uniform on the unit sphere.

The weights and loss functions are described in Section 5.4. The
final meta-learners were in both cases trained using 𝑤𝛼=0.7

𝑏𝑎𝑙𝑎𝑛𝑐𝑒𝑑 and were
evaluated on the held-out test set. For the direction-reconstructing
ensemble, the regularizing penalty term given by Eq. (122) was added
to the loss function. The performances of the ensembles are shown for
the polar angle reconstructions (right) and the energy reconstructions
in Figure 54 - the additional reconstruction performances are shown in
Section A.6.
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Figure 54: Ensemble model performances (blue) compared to the Retro re-
construction performance (orange) and the best performing sub-
model of the ensemble (cyan) evaluated on the held-out testset.
The performances of the energy reconstructions (left) and polar
angle reconstructions (right) are shown along with the relative
improvements compared to Retro.

As shown, the ensemble models perform similarly or better across
the entire energy range for both reconstructions. For the energy recon-
structions, more than a 20 % increase in performance is seen and the
polar angle reconstructions attain increases in performance between
5 % and 10% for for the majority of the energy range. Furthermore,
the performance is seen to increase, when several models are gathered
together in an ensemble.

If Figure 53a is compared to the middle-left plot of Figure 43, at
first glance the performance would appear to have decreased. This is
however an artefact of the fact that performance is measured as a width
of a distribution not taking potential bias into account. As shown in
Figure 44b, the width of the logarithmic error distribution at low energy
is small, but heavily biased. The ensemble trained with a different set of
weights more or less completely removes this bias in the range, where
the vast majority of data is as shown in Figure 55.
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Figure 55: Logarithmic error distribution of ensemble-model (blue) compared
to the logarithmic error distribution of the Retro reconstructions
(green).

Being able to produce point-estimates of the energy and the direction
that outperform the existing state-of-the-art reconstruction algorithm
is an accomplishment in itself. Additionally, the ensemble models also
produce sensible error estimates, which the Retro algorithm to the
author’s knowledge is not capable of.

As previously mentioned, the estimated errors are forced to be Gaus-
sian. If some random variable 𝑋 ∼ 𝒩(𝜇, 𝜎2), then the transformed
variable

𝑧 =
𝑋 − 𝜇

𝜎 (123)

will be distributed as

𝑧 ∼ 𝒩(0, 1), (124)

where 𝑧 is known as the 𝑧-score. In other words, if the individual
point- and error-estimates 𝜇𝑖, 𝜎𝑖 are correct, applying the transforma-
tion given by Eq. (123) and histogramming the values should produce
a unit Gauss. The z-score distributions for the logarithm of energy (left)
and z-component 𝑟𝑧 of the direction vector (right) are shown in Figure
56 along with Gaussian fits to each distribution. Z-score distributions
for the remaining components of the direction vector along with the
IV reconstruction are all similar and are shown in Section A.7. Neither
of the distributions are unit Gaussians: Both widths are too small in-
dicative of an overestimation of the errors, the tails are too long (too
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many 2+ 𝜎-events) and both distributions are slightly skewed. Judging
by the looks of the distributions, however, they are reasonably close to
unit Gaussians meaning the error estimates are sensible
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Figure 56: Z-score distributions for the reconstructed logarithm of the energy
(left) and z-component of the direction vector (right) along with a
Gaussian 𝜒2-fit to each. The first and last bins are overflow bins.

Depending on the wanted level of accuracy (and the size of the
errors), various methods of estimating the error on functions of e.g. the
reconstructed logarithm of the energy or the direction vector (such as
the energy or the polar angle) exist such as calculation through the law
of error propagation or through simulation.



7
CONCLUS ION & OUTLOOK

In the past 6 chapters, a small fraction of the fascinating world of neu-
trino physics and deep learning has been investigated. Algorithms
based on Recurrent Neural Network building blocks such as the Gated
Recurrent Unit have been employed to answer 3 important questions
about the neutrinos in the Icecube detector: What were you? Where did
you come from? And how energetic were you? In this short chapter, the
main results presented in this work are summarized before an outline
of where to go next is presented

7.1 conclusion

Several reconstruction algorithms have been developed capable of clas-
sifying and reconstructing 𝜈𝑒−, 𝜈𝜇−, and 𝜈𝜏− interaction vertices, inter-
action times, energies and directions. When reconstructions are carried
out on an out-of-date consumer-grade GPU (NVIDIA GeForce GTX
1080), inference speeds of 5000+ events per second were reached; a
significant upgrade in itself over the current state-of-the-art low energy
reconstruction algorithm Retro only reaching speeds on the order of
𝒪(10−2) events per second.

A deep learning-based classifier has been developed to classify events
into track- or cascade-like signal. The classifier appears to outperform
the currently used BDT-classifier, achieving AUC-scores ranging from
59.2% − 97.7% for the lowest and highest energies in the GeV-range
respectively.

The best performing 𝜈𝜇-reconstruction model developed in this work
is an ensemble model consisting of 8 different 3𝑀-parameter submod-
els. The model achieves energy and polar angle reconstruction per-
formances more than 10 % better than the Retro algorithm across the
majority of the GeV energy range.

In addition to producing better reconstructions faster, the developed
ensemble model is capable of producing reasonable error estimates: For
instance, the z-score distribution of the logarithm of the reconstructed
energies are approximately distributed as 𝑧log𝐸 ∼ 𝒩(0.08, 0.802).

7.2 outlook

A natural question to ask at this point must be: Can we do even better?
The answer is likely ’yes’. Since neural network performance tends to
increase when more data is added, it is highly probable that additional
performance increases can be achieved. In Figure 57 the validation

96
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loss is shown for 𝑅𝑁𝑁𝑎𝑙𝑙(3, 256, 2)when the amount of training data is
varied. As can be seen, the loss-value upon convergence decreases as a
function of the train set size, and there is no reason to believe that this
trend should not continue (and performance is positively correlated to
the loss value upon convergence)
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Figure 57: Validation loss during training for 𝑅𝑁𝑁𝑎𝑙𝑙(3, 256, 2)when using
100% (green), 50% (orange) and 25% (blue) of the available train-
ing data.

Since the training data stems from simulation, it is probably fairly
easy to further improve the performance of the developed models;
simply simulate more data.

It is one thing to performwell on simulated data, a feat that might not
be reproducable on real events. To ensure that the developed models
are able to accurately reconstruct true events, some form of validation
is therefore desirable. The Icecube detector has previously been used to
detect the cosmic ray shadow of the Moon [98], which is an approach
that can be used to determine whether the direction reconstructions
of the models are sensible. If the RNN-models also are superior to
the traditional likelihood-based approach on real data, the obtained
resolution on the shadow of the Moon should be better. To determine
whether energy reconstructions on real data are sensible, a different
approach must be taken such as matching the reconstructed energy
spectrum to the expected spectrum.

As discussed in Section 2.1.3, the vast majority of detected events is
background. Due to the high noise rates of the DOMs, several triggers
are even caused purely by noise and with the upcoming upgrade to
Icecube [99], noise rates are expected to increase even more. Hence,
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there might be a NN-based classification algorithm yet to be discov-
ered capable of outperforming the currently used BDT-approach for
background and noise detection.

Finally, to the author’s knowledge there is currently noworking recon-
struction algorithm ready for when Icecube Upgrade is implemented -
and there is no apparent reason as to why a NN should not be able to
produce even better reconstructions, when the detector resolution is
increased.
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a.1 target- and input distributions
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Figure 58: Distributions of 𝑥−, 𝑦− and 𝑧-components of the neutrino direc-
tions.
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Figure 59: Distributions of 𝑥−, 𝑦− and 𝑧-components of the neutrino interac-
tion vertices.
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Figure 61: Distributions of 𝑥−, 𝑦−, and 𝑧-coordinates of the DOMs.
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a.2 model summary

Model(
(mods ) : ModuleList (

(0 ) : Sequent ia l (
(0 ) : ResBlock (

( l i n ea r0 ) : Linear ( in_ f ea tu r e s =7, ou t_ fea tures =64, b ias=True)
(norm1 ) : LayerNorm((64 ,) , eps=1e−05 , e lementwise_af f ine=True)
( non_l in1 ) : LeakyReLU( negat ive_s lope =0.01)
( l i n e a r 1 ) : Linear ( in_ f ea tu r e s =64, ou t_ fea tures =64, b ias=True)
(norm2 ) : LayerNorm((64 ,) , eps=1e−05 , e lementwise_af f ine=True)
( non_lin2 ) : LeakyReLU( negat ive_s lope =0.01)
( l i n ea r2 ) : Linear ( in_ f ea tu r e s =64, ou t_ fea tures =64, b ias=True)

)
)
( 1 ) : RnnBlock(

(par_RNNs ) : ModuleList (
(0 ) : GRU(64 , 256 , num_layers=3, b a t c h _ f i r s t=True , b i d i r e c t i o n a l=True)

)
( in i t _h idden_s t a t e s ) : ParameterLis t (

(0 ) : Parameter conta in ing : [
torch . cuda . FloatTensor of s i z e 1536 (GPU 0)

]
)

)
(2) : Sequent ia l (

(0 ) : ResBlock (
(norm1 ) : BatchNorm1d(

512 , eps=1e−05 , momentum=0.1 , a f f i n e=True , t rack_runn ing_s ta t s=True
)
( non_l in1 ) : LeakyReLU( negat ive_s lope =0.01)
( l i n e a r 1 ) : Linear ( in_ f ea tu r e s =512 , ou t_ fea tures =512 , b ias=True)
(norm2 ) : BatchNorm1d(

512 , eps=1e−05 , momentum=0.1 , a f f i n e=True , t rack_runn ing_s ta t s=True
)
( non_lin2 ) : LeakyReLU( negat ive_s lope =0.01)
( l i n ea r2 ) : Linear ( in_ f ea tu r e s =512 , ou t_ fea tures =512 , b ias=True)

)
)
(3 ) : Sequent ia l (

(0 ) : Linear ( in_ f ea tu r e s =512 , ou t_ fea tures =8, b ias=True)
)

)
)
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a.3 performance improvement
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Figure 63: Additional plots of relative improvements in performance w.r.t.
𝑅𝑁𝑁𝑎𝑙𝑙(3, 256, 2), when the regression tasks are divided among 3
models. All architectures are identical, but the loss functions have
been altered.
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a.4 prediction distributions
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Figure 64: Distributions of y-components when different loss-functions are
used in direction regression.
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Figure 65: Distributions of z-components when different loss-functions are
used in direction regression.
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a.5 baseline performance plots
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Figure 66: Error distribution of azimuthal reconstruction for the baseline
model.
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Figure 67: Error distribution of interaction time reconstruction for the baseline
model.
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Figure 68: Error distribution of the x-component of the interaction vertex re-
construction for the baseline model.
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Figure 69: Error distribution of the y-component of the interaction vertex re-
construction for the baseline model.
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Figure 70: Error distribution of the z-component of the interaction vertex re-
construction for the baseline model.
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a.6 ensemble performance plots
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Figure 71: Ensemble model azimuthal reconstruction performance.
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Figure 72: Ensemble model direction reconstruction performance.
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Figure 73: Ensemble model interaction vertex reconstruction performance.
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Figure 74: Ensemble model interaction time reconstruction performance.
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Figure 75: Ensemble model azimuthal error distribution.
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Figure 76: Ensemble model interaction time error distribution.



A.6 ensemble performance plots 111

0.5 1.0 1.5 2.0 2.5
log10(𝐸) [𝐸/GeV]

−80

−60

−40

−20

0

20

40

60

80

Δ𝑥
[m

]

Vertex 𝑥 reconstruction performance

𝑅𝑁𝑁 84th perc.
𝑅𝑁𝑁 50th perc.
𝑅𝑁𝑁 16th perc.
Retro 84th perc.
Retro 50th perc.
Retro 16th perc.

0

250

500

750

1000

1250

1500

1750

2000

Figure 77: Ensemble model interaction vertex x-coordinate error distribution.
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Figure 78: Ensemble model interaction vertex y-coordinate error distribution.
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Figure 79: Ensemble model interaction vertex z-coordinate error distribution.
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Figure 80: Z-score distribution for reconstructed direction x-component.
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Figure 81: Z-score distribution for reconstructed direction y-component.
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Figure 82: Z-score distribution for reconstructed interaction vertex x-
component.
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Figure 83: Z-score distribution for reconstructed interaction vertex y-
component.
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Figure 84: Z-score distribution for reconstructed interaction vertex z-
component.
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Figure 85: Z-score distribution for reconstructed interaction time.
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