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Abstract

Since the discovery of interaction-induced insulating and superconducting states in ”magic”
angle twisted bilayer graphene in 2018, the scientific interest in this new material has reached
incredible heights. While countless theoretical studies have been published, a transparent and
completely unbiased search for instabilities in a model mimicking the fundamental features of
twisted bilayer graphene is lacking. In this thesis we construct a model based on microscopic
symmetry considerations and the extended nature of the Wannier orbitals of the low-energy
narrow bands in twisted bilayer graphene. We further perform a Hartree-Fock decoupling and
minimize the free energy self-consistently through numerical implementation. We find strong
signatures of interaction-induced non-trivial topological insulating states at several commen-
surate fillings of the low-energy bands. The signatures include emergent edge modes in the
insulating gap. Furthermore, we find anisotropic spin density waves in the low-interaction
regime at half and three-quarters filling of the valence bands. Both of these findings yield a
preliminary agreement with experimental evidence.
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Chapter 1

Introduction

Electronic correlations in many-body systems have proved to be a tremendous challenge for
theoretical physicists ever since the development of quantum theory in the first decades of the
20th century. The lack of a complete description is largely owed to the intrinsic complexity of
quantum interactions, where the degrees of freedom increase exponentially with the number
of particles. Thus, when the electronic properties of materials are significantly altered by
interactions, despite decades of intense scientific research, a full theoretical characterization
of the microscopic phases still proves deficient. Such materials often host numerous competing
or coexisting phases, e.g. the high-Tc superconductor, anti-ferromagnetic insulator and strange
metal all hosted by electron-doped cuprates [1], which further obscures the interpretation of the
phase diagram.

The inadequacy of the current understanding of these interaction-induced phases of matter
has led to explorations of new and exciting paths in condensed matter physics. If one could
somehow enhance interaction effects in relatively simple, well-understood materials and thereby
induce new interaction-driven phases, the underlying phenomenons driving these phases might
emerge. A way to achieve this enhancement is to reduce the Fermi velocity of bands near the
Fermi surface by engineering a slowly varying potential which traps the electrons. In 2007,
Neto et al. predicted that applying a small relative twist of the two layers in bilayer graphene
will generate a moiré superlattice which couples the low-energy Dirac fermions of the graphene
monolayers through a slowly varying periodic interlayer hopping and causes a significant reduc-
tion of the Fermi velocity [2]. In the first years to follow, additional theoretical studies extended
the prediction to not only reduce the Fermi velocity of the low-energy bands but also separate
these flattened bands from the remaining bands at the ”magic” angle [3–5]. Furthermore, the
studies all proposed that the Dirac cones of the monolayer graphene spectrum would persist in
twisted bilayer graphene (TBG). Due to the non-trivial topology of the graphene Dirac cones,
this finding implied a possibility of topological phases in TBG. However, as the predictions had
yet to be confirmed by experimental evidence, the broad scientific interest within the field of
condensed matter was limited.

The attention increased dramatically with an experiment performed by Cao et. al in 2018 [6].
We present the main result in Fig. 1.1b where the conductance, G, is shown as a function of
carrier density, n, of the predicted flat bands near the Fermi energy in ”magic” angle TBG. The
device is constructed by encapsulating a TBG sample with a relative twist of θ = 1.08◦ in a
hexagonal boron nitride (hBN) substrate, see Fig. 1.1a. A measurement of the conductance is
then performed while varying the carrier density by sweeping the bottom gate potential, Vg. The
moiré superlattice density is defined as ns = 4/A, where A is the area of the superlattice unit
cell. This definition follows the theoretical predictions of two distinct bands per spin and valley
yielding a total capacity of eight electrons per moiré unit cell. The conductance measurement in
Fig. 1.1b has several compelling features. First and foremost, it confirmed the prediction of the
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CHAPTER 1. INTRODUCTION

a) b)

Figure 1.1: Conductance of low-energy bands in ”magic” angle TBG at T = 0.3 K. a)
Schematic of the TBG device. Twist angle is θ = 1.08◦ ± 0.2◦. b) Measured conductance, G,
as a function of carrier density, n. The moiré superlattice density, ns = 4/A = 2.7 · 1012 cm−2.
Light shaded regions at n = ±ns are the band separation of the low-energy narrow bands.
Darker shaded regions at n = ±ns/2 are the suggested interaction-induced insulating states.
Inset show the density locations of these insulating states in four different ”magic” angle TBG
devices. The figure is adopted from [6].

separation of narrow, low-energy bands through significant insulating gaps at n = ±ns which
can be directly related to the band gaps found in Refs. [4,5]. It further yielded the anticipated
semi-metallic behaviour at charge neutrality. More strikingly, the result suggested interaction-
induced insulating behaviour at n = ±ns/2 which was not entailed in the single-particle band
structure calculations. The result amazed the entire condensed matter community and sparked
an intense exploration of the intriguing prospects of ”magic” angle TBG.

In 2019, only a year after the publication of Ref. [6], new astonishing experiments were pub-
lished. In Fig. 1.2 we present results from Ref. [7]. These measurements are also performed
on a ”magic” angle TBG sample encapsulated in a hBN substrate placed on a layer of graphite
used as a bottom gate, see Fig. 1.2a,b. The present device differs from the previous device in
two manners: The homogeneity of the twist angle across the sample is improved by a factor of
ten and alignment with the hBN subtrate was carefully avioded. Such alignment is known to
explicitly break spatial symmetries of the combined system which could possibly induce oth-
erwise symmetry-forbidden phases in the TBG phase diagram [7, 8]. Due to these two sample
improvements, the measurements presented in Ref. [7] are believed to exhibit more of the intrin-
sic ”magic” angle TBG properties. Fig. 1.2c presents the longitudinal resistance as a function
of carrier density and perpendicular magnetic field at temperature T = 16 mK. While the result
is reminiscent of the result in Fig. 1.1b, several additional features have emerged. Resistance
peaks are now evident at all commensurate fillings of the low-energy bands, that is at all fill-
ings, ν, corresponding to an integer number of electrons in the moiré unit cell. In particular,
we note the strong insulating behaviour at charge neutrality. Furthermore, superconducting
characteristics in the form of field-dependent resistance dips are visible at four distinct fillings
intervals between the peaks. This conjecture is verified by the temperature dependent phase
diagram in Fig. 1.2d, where four superconducting domes are marked by yellow, dashed lines.
The phase diagram displays a multitude of phase transitions across the low-energy bands all
abscent in the single-particle band structure calculations and underline the strong influence of
interactions in ”magic” angle TBG.

The experiment performed in Ref. [7] was followed by a related investigation performed by the
same group disclosed only eight months later in Ref. [9]. In this new experiment, Stepanov et
al. investigated the screening effects of the phase diagram. This was done by varying the hBN
thickness thereby controlling the screening from the image charges in the lower lying graphite
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Figure 1.2: Phase diagram of low-energy bands in ”magic” angle TBG. a) Schematic
of the TBG device. Twist angle is θ = 1.10◦ ± 0.02◦. b) Atomic force microscopy image and
measurement schematic. c) Four-terminal longitudinal resistance as a function of carrier density
at T = 16 mK. Line colors indicate perpendicular magnetic field strength spanning from 0 T
(black line) to 480 mT (red line). Filling factor, ν, is the number of electrons per moiré unit
cell relative to charge neutrality. d) Colour plot of longitudinal resistance, Rxx, as a function of
temperature T , and carrier density, n. The phase diagram shows a multitude of different phases
including metal, band insulator (BI), suggested interaction-induced insulating phases (CS) and
superconducting domes (SC). Boundaries of the superconducting domes are defined as 50% of
the normal state resistance value. The figure is adopted from [7].

layer, see Fig. 1.3a. The investigation revealed significant screening dependence as seen in Fig.
1.3b. While the result further stresses that the phases are deeply rooted in interaction effects
it also provides a highly advantageous tunability of the interaction strength thereby expanding
the experimental platform of TBG investigations.

The intriguing phase diagram in Fig. 1.2d and the theoretical predictions of non-trivial topology
also motivated detailed investigations of ”magic” angle TBG at specific commensurate fillings.
In Fig. 1.4 we show captivating results from the very recent Hall experiment presented in
Ref. [10]. The device was constructed similar to the previous devices with a ”magic” angle
TBG sample encapsulated by hBN and with a graphite bottom gate. The device is connected
to four contacts enabling both longitudinal and transverse (Hall) resistance measurements. The
experiment was performed at fillings close to the commensurate filling of seven electrons per
moiré unit cell. Fig. 1.4B shows the longitudinal resistance, Rxx, and Hall resistance, Rxy, as
a function of perdendicular magnetic field at n = 2.37 · 1012 cm−2. The Hall resistance shows
clear hysteresis with well-quantized magnitudes. Alongside a longitudinal resistance of Rxy ∼ 0
at B = 0, the result suggests a quantized anomalous Hall (QAH) effect arising from a spon-
tanous breaking of time-reversal symmetry and quantized edge states. Fig. 1.4C shows the
Hall resistance as a function of magnetic field and carrier density. While a small hysteresis
persists across a relative large span of carrier densities, the region of a seemingly quantized Hall
resistance is very narrow. This result ties well into the phase diagrams in Figs. 1.2 and 1.3
where the multitude of phases causes very narrow filling ranges beween transitions. The result
in Fig. 1.4 quickly placed TBG as one of the most promising candidates in the state-of-the-art
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a) b)

Figure 1.3: Effect of screening in ”magic” angle TBG. a) Schematic of the electronic
screening by graphite image charges in a TBG device as a function hBN thickness, w. λ refers
to the moiré modulation length as indicated in the inset. b) Colour plot of the longitudinal
resistivity, ρxx, as a function of temperature, T , and filling factor, ν. The measurements has
been performed on three different TBG devices with hBN thickness spanning from 7 nm to
12.5 nm and twist angles from 1.04◦ ± 0.02◦ to 1.15◦ ± 0.02◦. The phase diagrams are highly
screening dependent at all fillings away from charge neutrality. The figure is adopted from [9].

scientific search for interaction-induced topological phases.

The exciting development of ”magic” angle TBG investigations on the experimental side has
naturally generated an immense attention on the theoretical side and a baffling amount of pub-
lications have been released the past few years with methods spanning from renormalization
group analysis to self-consistent solutions of on-site Hubbard models [11,12]. However, the theo-
retical investigations are complicated by two fundamental features of TBG, namely the multiple
degrees of freedom (spin, valley and sublattice) alongside an extended shape of the low-energy
moiré Wannier states. These two features combined opens for countless ordering possibilities
where long-range effects cannot be neglected. In this thesis, we will perform a completely unbi-
ased Hartree-Fock study of an effective model reflecting the dominating long-range interactions
in TBG. The model will be solved self-consistently in a manner which allows for all possible
orders and configurations that will minimize the free energy. Such unconditional solutions is, to
our knowledge, unprecedented in TBG investigations. The Hartree-Fock method is, by defini-
tion, a weak-coupling approach and its applicability in the narrow band regime of ”magic” angle
TBG can be questioned. However, with the persistence of interaction-induced phases despite
the reduction of interaction strength in Fig. 1.3, it is not unlikely that the approach can capture
the mechanisms driving these phases. Furthermore, we will show that our method has a strik-
ing agreement with quantum Monte Carlo (QMC) simulations even in the intermediate-high
interaction regime. This agreement serves not only as a strong justification of the Hartree-Fock
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Figure 1.4: Quantum anomalous Hall effect in TBG with θ = 1.15◦ ± 0.01◦ at T =
1.6 K. B) Longitudinal resistance, Rxx, and Hall resistance, Rxy, as a function of perpendicular
magnetic field, B, at carrier density n = 2.37 · 1012 cm−2. Sweep directions are indicated by
arrows. Hall resistance has well-quantized magnitudes and show clear hysteresis around B = 0
while Rxx(B = 0) ≈ 0. C) Hall resistance as a function of magnetic field and carrier density, n.
Hysterises loops are shaded for clarity. Rear wall show the Hall resistance at B = 0. Hysteresis
loops are evident across a broad filling region while Hall resistance is only quantized in a narrow
filling region around n = 2.37 · 1012 cm−2. The figure is adopted from [10].

approach but also highlight its many advantages. While the QMC simultations are indeed valid
in the high interaction regime, they are inevitably limited to investigations at charge neutrality
due to sign-problems. The Hartree-Fock method, on the other hand, can go beyond this filling
and - in principle - allows for a full mapping of the phase diagram. The many fascinating
experiments published during the recent years offer a unique opportunity of direct comparison
between theoretical results and experimental evidence across the entire narrow band region. If
general agreement is found, the results obtained by our transparent approach could prove to be
a valuable asset in the on-going exploration of the intriguing new scientific platform of ”magic”
angle TBG.

The thesis in structured as follows: In Chapter 2 we remind the reader of the fundamental prop-
erties of graphene. In Chapter 3 we give a phenomenological description of the emergent moiré
pattern in twisted bilayer graphene and the separation of the eight low-energy, narrow bands
at the ”magic” angle. In Chapter 4 we deduce an effective lattice of the moiré superstructure
through symmetry analysis. We then proceed to set up a minimal tight-binding and interaction
model of the effective lattice. In Chapter 5 we combine the two models and perform an unbiased
Hartree-Fock decoupling of the interactions. We further perform a Fourier transformation of
the model followed by a Hartree-Fock decoupling in reciprocal space. In Chapter 6 we describe
the numerical set up and self-consistent solution of the decoupled model. Finally, in Chapter 7
we present and analyze the electronic phases of the effective twisted bilayer graphene model at
various fillings and interaction strengths. We find signatures of non-trivial topological insulating
phases at commensurate fillings corresponding to two, three and four electrons per moiré unit
cell. The topological insulator at charge neutrality, that is with four electrons per moiré unit
cell, is stable across all interaction strengths in the low-intermediate regime, while the insulating
phases at two and three electrons per moiré unit cell are destroyed in the low interaction regime.
Below these critical interaction strengths, we find multiple phases with three general features
in common: They are metallic, magnetic and break one or more spatial symmetries.
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Chapter 2

Graphene

In this chapter we remind the reader of some fundamental properties of monolayer graphene.
We will set up a tight-binding model, present the band structure and discuss the emerging Dirac
cones at high-symmetry points K and K′.
Graphene is a 2D sheet of carbon atoms arranged in a honeycomb lattice, see Fig. 2.1. The
in-plane 2px, 2py and 2s orbitals hybridize to form strongly bound sp2 orbitals, which constitute
the so-called σ-band. The 2pz orbital alone forms the π-band. As the sp2 orbitals are strongly
bound, the σ-band has energies far from the Fermi energy. Thus, when discussing all low-energy
properties of the system, it is sufficient to consider the π-band and we drop all band (orbital)
indices in the proceeding calculations.

Figure 2.1: Illustration of graphene structure. (a) 2D graphene sheet. (b) Zoom-in of a
single honeycomb with illustration of strongly bound sp2 orbitals and loosely bound 2pz orbitals
with electron hopping indicated at the top. The figure is adopted from [13].

The honeycomb lattice consists of two identical triangular lattices with a relative shift of a lattice
spacing (a0), see Fig. 2.2. We label these two triangular sublattices as A and B. The unit cell
of the honeycomb lattice thus contains two atoms, one from each triangular sublattice. The
lattice vectors are denoted a1,2 and can be determined through straightforward trigonometrics
to be,

a1 =
1

2

(√
3

3

)
a0, a2 =

1

2

(
−
√

3
3

)
a0. (2.1)

We identify the corresponding reciprocal lattice vectors using that Ki · aj = 2πδij , and find

K1 =
2π

a0

(
1√
3

1
3

)
, K2 =

2π

a0

(
− 1√

3
1
3

)
. (2.2)

We set a0 = 1 from now on. The first Brillouin zone (BZ) is found by connecting perpendicular
bisectors of the reciprocal vectors as usual. It is depicted in Fig. 2.2.
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Figure 2.2: Honeycomb lattice and Brillouin zone of graphene. Left: Graphene lattice
with unit vectors denoted by a1,2. Blue dots indicate A sites and white dots indicate B sites.
The NN hopping vectors are denoted δδδn with n = 1, 2, 3. Right: Brillouin zone of graphene with
reciprocal vectors K1,2. Brown and yellow dots (K and K′ respectively) are the Dirac points.
The figure is adopted from [14].

2.1 Tight-binding model of graphene

Since we know that the electronic properties of graphene is well described by site-localized pz
orbitals, we set up a tight-binding Hamiltonian of the system,

H0 =
∑
ij

tijc
†
icj , (2.3)

where c†iσ (ciσ) creates (annihilates) an electron at site i. tij is the hopping matrix-element
connecting sites i and j. We have set µ = εpz shifting the zero-point energy to coincide with the
on-site energy without loss of generality. The localization of the operators in a tight-binding
model is in strong contrast to the well-known Bloch states commonly used to describe free elec-
trons in a crystal. Bloch states are delocalized throughout the entire crystal with a periodicity
reflecting the periodic potential of the underlying crystal. By setting up a tight-binding model
we move away from the picture of delocalized Bloch wave functions and construct a basis of
atomic orbitals. The atomic orbitals are a specific example of a localized basis set. A localized
basis set can often be constructed as a superposition of Bloch states in many-body systems
and the wave functions may or may not refer to the usual atomic orbitals [15]. Generally, the
localized states forming a complete basis set are known as Wannier states. The Wannier states
of twisted bilayer graphene will prove to be of great importance in the following chapters.

We proceed from Eq. (2.3) by restricting the model to nearest-neighbour (NN) hopping and
letting

∑
i →

∑
Ri

, where Ri is the position of the unit cell (i.e. Ri = la1 + ma2 for l,m
integers), and get

H0 = −t
N∑

Ri=1

3∑
n=1

(a†ibi+δδδn + b†i+δδδnai), (2.4)

where we have let δδδn denote the NN hopping vectors and set ti,i+δδδn = −t. a† and b† denote
electron creation on A- and B-sites, respectively. The three hopping vectors are,

δδδ1 =
1

2

(√
3
−1

)
, δδδ2 =

(
0
1

)
, δδδ3 = −1

2

(√
3

1

)
. (2.5)
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Fourier tranformation of Eq. (2.3) yields,

H0 = − t

N

N∑
Ri=1

3∑
n=1

∑
k,k′∈BZ

(e−ikRieik
′(Ri+δδδn)a†kbk′ + e−ik(Ri+δδδn)eik

′Rib†kak′)

= −t
3∑

n=1

∑
k∈BZ

(eikδδδna†kbk + h.c.)

= −t
∑

k∈BZ

(
a†k b†k

)( 0 eikδδδ1 + eikδδδ2 + eikδδδ3

e−ikδδδ1 + e−ikδδδ2 + e−ikδδδ3 0

)(
ak
bk

)
(2.6)

Letting bk → eikδ2bk, using that δ2 − δ1 = a2 and δ2 − δ3 = a1 and defining f(k) = e−ika1 +
e−ika2 + 1 we get,

H0 =
∑

k∈BZ

(
a†k b†k

)( 0 −tf(k)
−tf∗(k) 0

)(
ak
bk

)
, (2.7)

(2.8)

with excitation energies and diagonalizing transformation,

Ek = ±t|f(k)|, U =
1√
2

(√
f(k)

f (k)
−
√

f(k)

f (k)

1 1

)
. (2.9)

The energy bands can be seen in Fig. 2.3. The energy landscape is strongly suppressed at
six points commonly refered to as valleys. As the six points correspond to three K points and
three K′ points in the BZ (see Fig. 2.2), there are two inequivalent valleys. The two valleys are
degenerate and graphene is said to exhibit valley degeneracy.

kx /a

3
0

3
k y
/a

3

0

3

2

0

2

E
/t

Figure 2.3: Energy bands of monolayer graphene. The energy landscape dips in areas
surrounding high-symmetry points K and K′ commonly refered to as valleys. The zoom-in
displays the Dirac cone at K.

2.2 Dirac cones and chirality

To investigate the features of the graphene valleys in the very-low-energy regime, we first identify
the band touching points where Ek = ±t|f(k)| = 0 as shown in the zoom-in in Fig. 2.3.
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It can easily be verified, that these points coincide exactly with the high-symmetry points
K = (4π/(3

√
3), 0) and K′ = (−4π/(3

√
3), 0) marked by yellow and brown dots, respectively,

in Fig. 2.2.
Expanding f(k) to linear order in small deviations, q, around K, we get

f(K + q) = e−i(K+q)a1 + e−i(K+q)a2 + 1

≈ e−i2π/3[1− iqa1] + ei2π/3[1− iqa2] + 1

= −ie−i2π/3
√

3qx + 3qy
2

+ iei2π/3
√

3qx − 3qy
2

= −3

2
(qx − iqy), (2.10)

leading to,

H0 =
3

2
t
∑
q

(
a†K+q b†K+q

)( 0 qx + iqy
qx − iqy 0

)(
aK+q

bK+q

)
,

=
∑
q

(
a†K+q b†K+q

)
HK(q)

(
aK+q

bK+q,

)
(2.11)

whereHK(q) = vF q·~s. ~s are the Pauli matrices in two dimensions, i.e. sx and sy, and vF = 3t/2
is the Fermi velocity. Performing a similar expansion around K′ yields HK′(q) = −vFq · ~s∗.
Several important points should be noted. Firstly, from Eq. (2.11) we see the infamous linear
graphene dispersion Eq = ±vF q which yields an effectively massless behavior of the fermions.
Since massless fermions are usually described by the relativistic Dirac equation, the cone evident
in the zoom-in of Fig. 2.3 is dubbed a Dirac cone and the zero-dimensional avioded crossing at
each valley is known as a Dirac point. Secondly, it is evident that the sublattice degree of free-
dom acts as a pseudospin moving in a field of size vF q pointing along q. For positive energies,
we see that pseudospins at K must point along q (positive chirality) while pseudospins at K′

point opposite to q (negative chirality). The opposite chirality of the two valleys emphasizes
their distinction. To underline this feature many authors refer to them as valley K+ and valley
K−. Finally, we note that the two valleys are related by time-reversal and inversion symmetries.

The very low-energy regime of graphene, i.e. the two Dirac cones, is the only relevant regime
when characterizing the electronic properties of twisted bilayer graphene. To summarize, in
this regime we can describe the electronic states by two two-dimensional degrees of freedom:
valley (or chirality) and sublattice. That should of course be put on top of the usual spin, which
has been omitted this entire chapter. In the next chapter we will give a phenomenological ex-
planation as to why this picture is sufficient to describe all relevant features of twisted bilayer
graphene.
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Chapter 3

Adding a Twist

In this chapter we aim to give the reader a phenomenological understanding of the underly-
ing mechanisms leading to separated, low-energy, narrow bands. The separation of said bands
opens the possiblity of a relatively simple effective lattice model describing the emergent super-
structure.

θ

θ

AABA

AB

L1

L2

a)

b)

Figure 3.1: Schematics of atomic alignment in twisted bilayer graphene. a) Different
types of bilayer stacking. Coincidence of all sites are known as AA-stacking and coincidence of
A (B) sites of the top layer with B (A) sites of the bottom layers is known as AB-stacking (BA-
stacking). Starting from AA-stacked bilayer graphene and applying a relative twist results in a
continuous variation of the atomic alignment. The figure is adopted from [16]. b) Illustration
of the AA-stacked regions highlighted in yellow and the AB- and BA-stacked regions marked in
green and blue circles, respectively. The emering periodic pattern is known as a moiré pattern.
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CHAPTER 3. ADDING A TWIST

As discussed in the previous chapter, monolayer graphene has two distinct types of sites dubbed
A- and B-sites. When stacking two layers of graphene, one option is to completely align the two
honeycomb lattices, meaning that A-sites (B-sites) from one layer coincide with A-sites (B-sites)
from the other layer. This stacking is known as AA-stacking, see Fig. 3.1a. Another option is
to create a perfect misalignment such that A-sites (B-sites) from the top layer coincides with B-
sites (A-sites) from the bottom layer resulting in so-called AB-stacking (BA-stacking). Twisted
bilayer graphene (TBG) is, as the name suggests, a system in which to layers of graphene are
stacked on top of each other and a relative twist angle, θ, is applied. We will assume AA-stacked
bilayer graphene where the top layer is rotated by θ while the bottom layer is fixed as indicated
in Fig. 3.1a. The rotation of the top layer causes a continuous varition in the atomic align-
ment, where regions of both stackings will appear. To visualize this more clearly, we consider
the much larger system depicted in Fig. 3.1b. The AA-stacked regions are highlighted in yel-
low and the AB-stacked (BA-stacked) regions are marked in dashed, green (blue) circles. The
emerging periodic pattern, a so-called moiré pattern, reveals a superstructure with length scales
extending over several unit cells of the individual graphene layers. The moiré pattern can be
divided into two superlattices: AA-regions form a triangular superlattice and AB-/BA-regions
form a honeycomb superlattice similar to that of monolayer graphene. An obvious question to
pose is: Which of these two lattices is the relevant effective lattice describing the low-energy
electronic properties of TBG? This question will be addressed in great detail the next chapter.
For the purposes of this chapter, it is sufficient to realize that both lattices have lattice vectors
L1,2 as indicated in Fig. 3.1b, hence the BZs will also be identical.

Kt

Kb

K't
K'b

KM

K'M

ΓM

MM

θ

Figure 3.2: Monolayer BZs and MBZ
of twisted bilayer graphene. Red (blue)
hexagon is the monolayer BZ of top (bottom)
monolayer graphene. Applying a rotation of θ
to the top layer results in a moiré pattern with
corresponding MBZ (black hexagons) with high-
symmetry points as marked. K′t and Kb and
folded into KM while Kt and K′b are folded to
K′M . This folding ensures TRS preservation.

The twist angle in Fig. 3.1 is relatively large
for clarity, however, in usual TBG samples
θ ∼ 1◦ (for reasons which will become clear
shortly). Such small twist angles give rise to
an extremely large modulation wave length of
the moiré pattern spanning up to hundreds
of carbon atoms. Generally, L1,2 ∼ O(a/θ),
where a is the length of the monolayer lat-
tice vectors [6,17]. As a consequence, the BZs
of monolayer graphene are folded numerous
times to obtain the moiré BZ which is thus
refered to as the mini BZ (MBZ). An intruc-
tive way to visualize the MBZ and directly de-
termine the folding of the original monolayer
high-symmetry points can be seen in Fig. 3.2,
where red (blue) indicates the top (bottom)
graphene monolayer. Two MBZs are shown in
black with high-symmetry points as marked.
From Fig. 3.2 it is clear that Kb and K′t fold
into KM while Kt and K′b fold into K′M . This
folding of the Dirac points can also be under-
stood by considering time-reversal symmetry
(TRS). Since TKt,b = K′t,b, the two Dirac
points of the monolayers cannot fold to the
same Dirac point in the MBZ while preserv-
ing TKM = −KM = K′M .

Additionally, when θ ∼ 1◦ we have that |Kt −Kb| << |K′t −Kb|. Since the moiré potential
in this case is slowly varying, the low-energy Bloch states will have equally long wave length
periodicity making small momentum scattering processes dominating. This effect ensures that

11



CHAPTER 3. ADDING A TWIST

although K′t and Kb are folded to the same Dirac point, the direct coupling of the two is highly
suppressed [17]. The two decoupled Dirac cones at KM act as an additional degree of freedom
effectively doubling the number of bands. The decoupling results in an internal charge conser-
vation within each valley which is represented by an overall Uv(1) symmetry.

Kt Kb
kθ

v0 = 3t/2 v    0 v0kθ/2

w = 0 2w << v0kθ 2w ~ v0kθ 

2w

a) b) c)

Figure 3.3: Schematic of intersecting Dirac cones. The two Dirac cones at Kt and Kb in
the top and bottom monolayers, respectively. a) Interlayer tunneling w = 0. The slope of the
cones are given by vF of monolayer graphene derived in Chapter 2. Momentum separation of the
two cones are given by kθ and easily tuned by adjusting the twist angle. Energy at intersection
is given by v0kθ/2 due to the linearity of the dispersion. b) Hybridization and resulting band
separation (∆ = 2w) at large twist angles when 2w << v0kθ. c) Band separation for θ ∼ 1◦

where 2w ∼ v0kθ. In this limit the band width W = v0kθ − 2w → 0 and ∆/W increases.

Having established the emergent moiré pattern and corresponding MBZ, we now move on to
describe the separation of the low-energy bands. To understand how this separation comes
about, we focus on the two monolayer Dirac cones Kt and Kb in the small θ limit and consider
the interlayer tunneling, w. Fig. 3.3a depicts the two intersecting Dirac cones from the top and
bottom monolayer without interlayer tunneling. The electron velocity is given by the Fermi
velocity derived in Chapter 2, v0 = vF = 3t/2, and the momentum separation of the cones due
to the rotation of the top layer is given by kθ. As the dispersion is linear, the energy at the
point of intersection is given by v0kθ/2. In Fig. 3.3b we tune kθ such that 2w << v0kθ. The
two cones hybridize to form low-energy bands connecting Kt and Kb separated by ∆ = 2w from
higher lying bands. Finally in Fig. 3.3c we illustrate the case for θ ∼ 1◦ where 2w ∼ v0kθ. Here
the band width of the low-energy bands W = v0kθ − 2w → 0 (i.e. v → 0) and ∆/W increases
correspondingly. TBG with a twist angle in this regime in dubbed ”magic” angle TBG, due
to the astonishing phase diagrams discussed in Chapter 1. While the relatively simple idea
shown in Fig. 3.3 is sufficient to understand the prominent mechanisms behind the separation
of narrow bands, it does not clarify the ”magic” entailed in ”magic” angle TBG. As with most
other ”magical” phenomena, there is - unfortunately - nothing magical about it.

To conclude this chapter, we present the TBG band structure at various twist angles obtained by
Nam & Kosino in Ref. [18], see Fig. 3.4. The results are computed by allowing for r-dependent,
relative atomic shifts between the two monolayers. They optimize the microscopic atomic struc-
ture by minimizing the total energy of the combined system and find significant atomic shifts
surrounding the AA-regions for twist angles < 1.5◦. The relaxation of the microscopic lattices
has the overall impact of enhancing the AB-/BA-regions at the expense of the AA-regions in the
moiré structure. Applying a combined inter- and intralayer tight-binding model to the relaxed
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Figure 3.4: Band structure of TBG at various twist angles. Solid, black lines are band
structures of microscopically relaxed atomic structures and dotted, red lines are the non-relaxed
band structures. The structures in (c) and (d) have clearly separated narrow bands while the
stuctures in (a) and (f) do not. This figure has been adopted from [18].

microscopic structure yields the results in Fig. 3.4. For θ = 2.65◦, Fig. 3.4a, it is evident that
relaxation effects are insignificant and neither the relaxed nor the non-relaxed band struture
have separated, low-energy bands. By decreasing θ the relaxation effects increase and band
gaps develop while the Fermi velocity of the low-energy bands is reduced, Fig. 3.4(c,d). These
twist angles (θ ∼ 1.0◦ − 1.5◦) defines the regime of ”magic” angle TBG. Interestingly, while
relaxation effects proceed to be significant with a further decrease of θ, the band gaps close and
the low-energy bands can no longer be described separately. We have thus moved away from
the ”magic” angle regime.
Before we proceed to set up an effective low-energy model of the separated bands in the ”magic”
angle regime depicted in Fig. 3.4(c,d), several important features of the bands should be noted.
First and foremost, Dirac points at K and K′ are evident. Secondly, the bands split along
ΓΓΓ−M. From this we deduce, that the bands must be doubly degenerate along the other sym-
metry paths, including a two-fold degeneracy of the energies at both ΓΓΓ and M. Finally, the
particle-hole symmetry is broken. We also note that all band structures of Fig. 3.4 are spin
degenerate protected by an internal SU(2) symmetry in each decoupled valley. Including spin,
we thus have a total of eight bands reflecting the layer, valley and spin degrees of freedom.

In the remainder of this thesis, we will develop and solve an effective model of the separated,
low-energy, narrow bands. We thus focus at the ”magic” angle regime, and omit this (somewhat
bewildering) term in all subsequent chapters.
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Chapter 4

Symmetries and Effective Model

In this chapter we will dive into the symmetry considerations of TBG and construct an effective
model of the moiré superlattice. In the first section we will give an introduction to point group
protected degeneracies from a quantum mechanical perspective. In Section 4.2 we will perform
a symmetry analysis of the high-symmetry points of TBG and use this to deduce the effective
Wannier orbitals. In Section 4.3 we discuss the peculiar, extended shape of the Wannier orbitals
leading to significant long-range effects. Finally we use this property to set up a tight-binding
model describing the separated, low-energy, narrow bands of TBG (Section 4.4) and an effective
interaction model including on-site as well as dominating long-range interactions (Section 4.5).
Since we already know from the previous chapter that the bare bands are spin degenerate, we
only include spin when including interactions.

4.1 Introduction to point group protected degeneracies

We will begin this chapter with an introduction of the general idea behind a symmetry analysis.
Consider a system described by a Hamiltonian, H, which exhibits a number of rotational and
reflection symmetries. Together these symmetries constitute the elements of a point group, G.1

All elements in G will leave the Hamiltonian invariant, hence if S ∈ G we have [Ŝ,H] = 0,
where Ŝ is an operator representing the symmetry S. From this it directly follows that

HŜ |ψn〉 = ŜH |ψn〉 = ŜEn |ψn〉 = En(Ŝ |ψn〉), (4.1)

where we have assumed |ψn〉 to be an eigenfunction of H with eigenvalue En. Thus Ŝ |ψn〉 is
also an eigenfunction of H with eigenvalue En, which leaves us with two options. The first
option is that Ŝ |ψn〉 → |ψn〉 (up to a phase), and we say that |ψn〉 transforms as a singlet under
S. The other option is that Ŝ |ψn〉 → |ψm〉 6= |ψn〉 and we must have that |ψn〉 and |ψm〉 are
degenerate under S. Similarly, for a different symmetry operation P ∈ G we have that P̂ Ŝ |ψn〉
is also an eigenfunction of H with energy En, where P̂ (Ŝ |ψn〉)→ |ψk〉 and either |ψn〉 = |ψk〉 or
|ψn〉 6= |ψk〉. Thus we can establish the symmetry protected degeneracies of the eigenfunctions
by determining their transformations under all symmetry operations in G. To do so we must
determine how the set of operators in G can be represented. Representation theory itself is an
entire branch of mathematics and we will by no means dive into the details of this. For the
purposes of this thesis, it is sufficient to use the common matrix representation within quantum
mechanics, namely 〈ψi| Ŝ |ψj〉 = D(S)ij , where D(S)ij is the entry on the i’th row and j’th
coloumn. Computing entries for the complete set of eigenfunctions, {|ψl〉}, we obtain an l × l
dimensional matrix representation of the symmetry S.

1The term point group very neatly refers to the fact that all symmetries keep at least one point fixed.
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To recognize the potential of this type of representation, we will consider a specific exam-
ple with a system described by a 4 × 4 dimensional Hamiltonian, where we only know that H
obeys the symmetries represented by Ŝ and P̂ , i.e. [H, Ŝ] = [H, P̂ ] = 0. Since H has dimension
4, we must have four eigenstates. We now pick a set of four states, e.g. four orbitals localized at
four different lattice sites, and investigate their transformation under S, that is compute D(S).
We get,

D(S) =


ααα 0 0 0
0 β 0 0
0 0 0 γ
0 0 δ 0

 ,

where |ααα|, |β|, |γ|, |δ| = 1. From Eq. (4.1) we then naively assume that |ψ1〉 , |ψ2〉 are singlets
and (|ψ3〉 , |ψ4〉) form a doublet (i.e. a two-fold degenerate set). We proceed to compute D(P )
and consider two different scenarios. In the first scenario,

D(P ) =


ααα′ 0 0 0
0 β′ 0 0
0 0 0 γ′

0 0 δ′ 0

 ,

where again |ααα′|, |β′|, |γ′|, |δ′| = 1. In this scenario, the four states transform as two singlets
and a doublet under both S and P . However, we note that D(S) and D(P ) can be simulta-
neously diagonalized by the same unitary transformation, U , where D′(P ) = UD(P )U−1 and
D′(S) = UD(S)U−1 are now diagonal2. As unitary transformations cannot alter the system
properties, D′(S) and D′(P ) must be equally valid representations expressed in a new basis
(|ψ1〉 , |ψ2〉 , |ψ′3〉 , |ψ′4〉), where

∣∣ψ′3,4〉 are linear superpositions of |ψ3,4〉. In this basis, all four

states will transform as singlets and we can have four distinct eigenenergies of H ′ = UHU−1.
From the symmetry analysis we thus conclude that, neglecting the possibility of accidental de-
generacies, the original set of states cannot be the eigenstates of the system.

In the second scenario, we find that

D(P ) =


ααα′ 0 0 0
0 β′ 0 0
0 0 γ′ 0
0 0 0 δ′

 .

In this case, we cannot apply a unitary transformation that diagonalizes both D(P ) and D(S),
hence |ψ3,4〉 must be degenerate and transform as a doublet. We conclude that H can at most
have three eigenvalues corresponding to two singlet states |ψ1,2〉 and a doublet (|ψ3〉 , |ψ4〉) and
{|ψl〉} ( l = 1,2,3,4) are really the eigenstates of the system exihibiting the symmetry protected
degeneracies.

In physical systems we will often encounter much larger dimensionality as well as numerous
elements in the point groups. If one were to perform all the steps of the analysis above for
every system, the method quickly loses its appeal. However, if we rewind slightly and consider
at a very general level what was used to perform the analysis, one finds a very powerful tool
hiding between the lines. Our naive assumption from only considering D(S) was discarded
in the first scenario solely due to the fact that we could simultaneously diagonalize D(S) and
D(P ). Having done so, we found two new representations, D′(S) and D′(P ) only consisting of

2For the sake of argument, we ignore the fact that PS must also be an element in the point group and since
D(PS) is already diagonal, it will not be diagonalized by the same transformation.
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Figure 4.1: Rotation of bilayer graphene lattices and MBZ of TBG. a) The microscopic
graphene monolayers with θ = 40◦. Top (bottom) monolayer is red (blue). Lattice sites are
located at each hexagon corner but removed here for clarity. When the rotation center coincides
with the lattice sites of the two graphene layers, the resulting rotation symmetries of the system
are C2y and C3z as indicated. Together these symmetries places TBG in point group D3. b)
MBZ of TBG with reciprocal lattice vectors G1,2 and high-symmtry points as indicated.

four one-dimensional blocks along the diagonal. Each block then corresponded to a singlet. In
the second scenario we could not simultaneously diagonalize D(S) and D(P ), thus the entire
set of representations can only be described by two one-dimensional blocks (two singlets) and
a two-dimensional block (a doublet). The blocks on the diagonal are exactly what is known
as the irreducible representations of a point group, which is defined as a representation of the
group where no unitary transformation can simultaneously diagonalize all elements. Each irre-
ducible representation thus corresponds to a set of degenerate eigenstates and the degeneracy
level is defined alone from the dimensionalty of the irreducible representation. This dimension-
ality is linked to the underlying physics of a given point group and is thus uniquely defined.
Consequently, by determining the point group of a given system, we can immediately deduce
the degeneracy of the energy levels without knowing the energies, the Hamiltonian or the wave
functions. This is one of the very powerful tools of group theory.

4.2 Point group symmetry and effective lattice of twisted bi-
layer graphene

In this section the aim is to set up an effective moiré lattice with localized Wannier orbitals
that reproduces the symmetry transformations of the low-energy Bloch states forming the bare
bands of TBG. To do so, we first determine the transformations at high-symmetry points of
the MBZ either directly from the relaxed band structure in Fig. 3.4 or through symmetry
analysis of the low-energy monolayer states constituting the separated narrow bands. We then
search for Wannier orbitals with symmetries and centers (i.e. lattice sites) which reflect these
transformations in a faithful manner. Once these two features of the Wannier orbitals have
been established, we can directly set up an effective tight-binding model of TBG, which will be
presented in Section 4.4. The findings presented in this section follow the work performed in
Ref. [19].

First and foremost, we must determine the point group of TBG. To do so, we consider two
graphene layers with a relative rotation. The rotation center is chosen to be an AA-stacked
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site, see Fig. 4.1a. Two rotational symmetries are present: a two-fold rotation about the y-axis,
C2y, and a three-fold rotation about the z-axis, C3z. Importantly, C2y is not equivalent to a
mirror symmetry along ŷ, since it also exchanges the two layers. Together these two symmetries
constitute the D3 point group. The irreducible representations of D3 are two one-dimensional
representions (A1, A2) and a two-dimensional representation (E).3 From the previous section
we thus know that [H, Ô] = 0, where Ô represents the elements of D3. We can write the kinetic
Hamiltonian of the system, H, as a sum of single-particle Hamiltonians, Hk, for all k ∈MBZ.
While H must commute with all elements of D3, this is rarely the case for the individual Hk

since a rotation of a point k will usually take it to distinct point k′ in the MBZ. However, if
we focus our attention on the high-symmetry points, where a subgroup S ∈ D3 will take k
into itself, the states can be classified by the irreducible representations of S. As previously
mentioned, we have four distinct high-symmetry points in the MBZ of TBG: ΓΓΓM , KM , K′M and
MM . The ΓΓΓM -point will naturally fall into the full group D3. From inspection of Fig. 4.1b,
we see both rotations of D3 will take KM and K′M to identical points related to the original
ones by a reciprocal vector, thus these points also fall into the full group D3. Finally we note
that only C2y will take MM to an identical point, hence MM falls into the subgroup (or little
group) C2 ∈ D3.

4.2.1 ΓΓΓM -point

As we have two graphene layers and an additional valley degree of freedom in TBG, we must
have at least four distinct states at ΓΓΓM . Furthermore, since ΓΓΓM falls into the D3 group, we
know that the (point group symmetry protected) degeneracy of each energy can at most be
two-fold, meaning that we have at least two different energies. This is in good agreement with
the band structure results presented in Fig. 3.4, where we have two separate energies at ΓΓΓM .
Both energies are two-fold degenerate and the degeneracy is split along the ΓΓΓMMM -line. We
thus look for states at ΓΓΓM transforming as doublets under D3.

The transformation of a Bloch state under D3 can be directly classified from the eigenvalue
under C3z, i.e. (1, ω, ω2) where ω = e−2iπ/3. From a completely group theoretical approach this
can be seen by computing the basis functions (or wave functions) corresponding to the D3 point
group, where one finds that states with C3z eigenvalue 1 transforms as singlets and states with
ω, ω2 transform as a doublet (see e.g. Chapter 4 of Ref. [20]). The eigenvalues have a direct
correspondence to angular momentum Lz = 0,±1, where C3z |ψn〉 = e−2iπLz/3 |ψn〉. Thus, from
a physical perspective, the states with Lz = ±1 should indeed form a doublet to preserve time-
reversal symmetry. Furthermore, we can safely restrict our effective Wannier orbitals to s- or
p-orbitals, since the angular momentum is defined modulo 3, thus all higher order orbitals will
transform as either s or p (take e.g. a d-orbital with Lz = 2, then e−2iπLz/3 = e−4iπ/3 = e2iπ/3,
which is identical to a transformation of a p-orbital with Lz = +1). We write a general Bloch
state as,

ck,τ =
∑
i

eikRici,τ , (4.2)

where ci,τ is the (yet to be determined) Wannier orbital at site i with orbital angular momen-
tum Lorbz = −τ . The reason for this rather counter-intuitive notation will become clear in the

3In the case of D3 this a quite trivially seen from the theorem
∑
i l

2
i = h, where h is the order of D3 (that

is the number of elements in D3) and li is the dimension of the i’th irreducible representation. We have 6
elements in D3: indentity, three two-fold rotations (along ŷ and the two axes related to y by three-fold rotation)
and two three-fold rotations (clockwise and counter-clockwise rotation). Thus h = 6. Furthermore the number
of irreducible representations are equal to the number of classes: identity, C2 and C3 rotations. Combining
this we get l21 + l22 + l23 = 6, which can only be true if we have two one-dimensional representations and one
two-dimensional.
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subsequent sections. We have dropped the overall normalization, as it will not affect the trans-
formation of the states. From Eq. (4.2) we see that the transformation of ck,τ under C3 will
depend on the orbital angular momentum defined by τ , as well as the Bloch wave phase factor,
eikRi , thus Lz = LB.w.z + Lorbz . In the present case eiΓΓΓMRi = 1 for all Ri, hence LB.w.z = 0. It
directly follows, that we must have Lorbz = ±1 to form doublets at ΓΓΓM and reproduce the band
structure in Fig. 3.4. As we only consider s- and p-orbitals, this leads us to effective Wannier
orbitals of type px ± ipy. C2y will take px ± ipy → −(px ∓ ipy) and we have that

C2yC3zcΓΓΓM ,τ =
∑
i

C2yC3zci,τ =
∑
i′

C2ye
2iπτ/3ci′,τ =

∑
i′′

−e2iπ(−τ)/3ci′′,−τ = −e−2iπτ/3cΓΓΓM ,−τ ,

where C3zRi = Ri′ , C2yRi′ = Ri′′ and we recall that Lorbz = −τ . We see that Bloch states
labelled by τ = ±1 do indeed transform as a doublet under D3. While this result is sufficient to
establish the overall transformation of the Bloch states at ΓΓΓM , we have yet to determine some
addtional degree of freedom resulting in two separate doublets as seen in Fig. 3.4.

4.2.2 KM -point

Having established the orbital angular momentum of the Wannier orbitals, Lorbz = ±1, we
will now perform a symmetry analysis at KM to establish the centers of the Wannier orbitals
through LB.w.z (KM ). Before doing so, we identify the Bloch state transformations at KM which
must be obeyed by the effective model.

The group of the KM -point and K′M -point is D3. Since the two points are related through
time-reversal, it is sufficient to consider one, here we focus on KM . From the results in Fig.
3.4 we can identify four degenerate zero-energy states at KM . However, we know that the D3

group can not protect four-fold degeneracy, thus we determine the transformation of the states
through microscopic considerations. As previously mentioned, two Dirac points of the graphene
monolayers fold onto KM and we write KM = K′t + Kb. From the analysis of monolayer
graphene in Chapter 2, we know that the Bloch states at Kt,b and K′t,b are zero-energy states

with off-diagional elements f(k) = e−ika1 + e−ika2 + 1 = 0, thus at these points there will be
no sublattice mixing. Consequently, we have two zero-energy eigenstates at each Dirac point of
monolayer graphene, where each state only has weight on one sublattice. As KM = K′t + Kb

we will have four states at KM which we label as at, bt, ab, bb, where a (b) lives on sublattice A
(B) and superscript indicates the layer. The transformation of the Bloch states at KM must
be preserved in the effective model. Thus by determining the transformation of the four mono-
layer states, we also determine the transformation of the effective Wannier orbitals. Since the
monolayer Bloch states are constructed from pz orbitals, the total angular momentum is given
solely by the Bloch wave contribution. The Bloch wave contribution depends on the position
of the A- and B-sites with respect to the rotation center. As the rotation center coincides
with an AA-stacked site, we can use the analysis of monolayer graphene from Chapter 2, where
the positions of the A-sites are given by ra = (na1 + ma2) with a1,2 = (±

√
3/2, 3/2) and the

postions of the B-sites are given by rb = (na1 + ma2 + δδδ2) with δδδ2 = (0, 1)T . We can neglect
the relative rotation of the two layers, since it merely acts as a rotation of the entire system
in the monolayered subsystems. From Chapter 2 we also have that K = (4π/(3

√
3), 0) and

K′ = −K = (−4π/(3
√

3), 0). The Bloch wave phase factors are e±iKra,b , and the total anglular
momentum of the state is given by the additional phase arising from a three-fold rotation of
ra,b. Here we have immediately infered that ±K → ±K under C3z. Inserting values, we find
that

±Kra = ±2π(n−m)

3

C3z−−→ ±K(nC3za1 +mC3za2) = ±K[n(−
√

3, 0)T +m(−
√

3/2,−3/2)T ]
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Figure 4.2: Effective lattice candidates of TBG. Triangular lattice (yellow dots) coincides
with AA-regions of the moiré structure. Honeycomb lattice (gree/blue dots) coincides with
AB/BA-regions of the moiré structure. Both lattices have lattice vectors L1,2 spanning the unit
cell. The triangular lattice has a single site in each unit cell (AA) and the honeycomb lattice
has two sites (AB/BA) in each unit cell.

= ∓
(4πn

3
+

2πm

3

)
mod 3−−−−→ ±2π(n−m)

3
, (4.3)

thus the two monolayer Bloch states living at the A-sublattices, at,b, both have Lz = 0. This
result is very reasonable from a physical perspective, since any state with finite angular momen-
tum must vanish at the rotation center and at,b both have weight at the AA-site coinciding with
the rotation center. However, bt,b will not have weight at the rotation center, and the states
can carry finite angular momentum. Since we have already established that a C3z rotation of
a1,2 will not add any additional phase, we can limit the analysis of bt,b to the effect of C3z on
δδδ2. Here we find,

±Kδδδ2 = 0
C3z−−→ ±KC3zδδδ2 = ±K(−

√
3/2,−1/2)T = ∓2π

3
. (4.4)

Recall that KM = K′t + Kb, meaning that the Bloch states bt lives at K′t = −Kt and has
Lz = −1 while bb lives at Kb and has Lz = +1. C2y takes K′t → Kb and the two states form
the doublet representation, (E) ,of the D3 group of KM . The singlet representations, (A1, A2),
furnished by at,b must have C2y eigenvalues ±1 corresponding to symmetric and anti-symmetric
combinations (at ± ab), respectively. Thus the single energy at KM has two one-dimensional
irreducible representations, A1,2, furnished by at ± ab and a two-dimensional irreducible repre-
sentation, E, furnished by the doublet (bt, bb). The result is identical to the transformations
obtained in Ref. [19].

Recall that the aim of this section is to determine the centers of the Wannier orbtial, i.e.
the effective lattice, which reproduces the transformation of the Bloch states in KM expressed
in terms of the Wannier orbitals. Having established the required transformations of the Bloch
states, we now consider the possible lattices. The point group of the lattice must be D3, thus
C2y and C3z must both take any given lattice site to another lattice site. The two sites can
either belong to the same or inequivalent sublattices. This leaves us with four options: i) Both
rotations will take all sites to an inequivalent site, ii) C2y will transform all sites to equivalent
sites and C3z will transform all sites to inequivalent sites, iii) C3z will transform all sites to
equivalent sites and C2y will transform all sites to inequivalent sites and iv) both rotations will
transform all sites to equivalent sites. C2y relates two lattice sites, where each of the two sites
is part of a set of three C3z related sites. Thus, for the case i) we must have six inequivalent
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sublattices, i.e. six inequivalent sites in each unit cell. In that case, we have a six-dimensional
degree of freedom and the number of bands in the band structure must be multiples of 6. Since
the band structure in Fig. 3.4 has a total of four bands (neglecting spin), we can rule out
option i). Similarly, for case ii) we must have three sites in each unit cell, and the number
of bands should be multiples of three, which we can also rule out. On the contrary, for case
iii) we only have two sites in each unit cell, and the number of bands in the band structure of
Fig. 3.4 is indeed a multiple of two. Finally, for case iv) we have a single site in each unit cell,
which trivially also agrees with the band structure. The two possible lattices are depicted in
Fig. 4.2. Comparing to Fig. 3.1, it is evident that case iii) corresponds to a honeycomb lattice
with sites coinciding with AB/BA regions and case iv) corresponds to a triangular lattice with
sites at the AA-regions. To reproduce the irreducible representations (A1, A2, E) of KM , we
search for Wannier orbitals where two transform as singlets (Lz = 0) and the remaining two
transforms as a doublet (Lz = ±1). We already have Lorbz = ±1 and have yet to determine
the LB.w.z (KM ) for the two lattice types. Beginning with the triangular lattice, we note that
the only differences between the AA-sites of the moiré lattice and the A-sites of the monolayer
graphene in Fig. 2.2 is an overall rotation as well as much larger length scales in the moiré case.
None of these discrepancies will have an effect on the Bloch wave phase factor, and we can use
the transformation of Eq. (4.3) to directly conclude, that the phase factor will not contribute
to the total angular momentum of the Bloch wave. Thus for a triangular lattice, we have

C2yC3zcKM ,τ =
∑
i

C2yC3ze
iKMRici,τ =

∑
i′

C2ye
iKMRi′e2iπτ/3ci′,τ

=
∑
i′′

−eiKMRi′′e2iπ(−τ)/3ci′′,−τ = −e−2iπτ/3cKM ,−τ ,

where again C3zRi = Ri′ and C2yRi′ = Ri′′ and we recall that Lorbz = −τ . Thus, for the
triangular lattice we have a single doublet at KM furnished by (cKM ,+, cKM ,−). This is not
consistent with the irreducible representations found from microscopic considerations.

In the case of a honeycomb lattice, we can again rely on the monolayer result since, apart
from an overall rotation and a change of length scales, the Bloch wave phase factor of the BA-
sites is identical to the phase factor of the B-sites. Thus from Eq. (4.4) we directly have that
the Bloch state in KM living at the BA-sublattice has LB.w.z = +1. Letting δδδ2 → 2δδδ2 in Eq.
(4.4) we find that the state living at the AB-sublattice will have LB.wz = −1. Denoting the sub-
lattice degree of freedom by s = 1, 2 corresponding to states living at AB- and BA-sublattice,
respectively, we find the total transformation of a Bloch state at KM to be,

C2yC3zcKM ,τ,s =
∑
i∈s

C2yC3ze
iKMRici,τ,s =

∑
i′∈s

C2ye
iKMRi′−2iπ(−1)s/3e2iπτ/3ci,τ,s

=
∑
i′′∈s̄
−eiKMRi′′−2iπ(−1)s̄/3e2iπ(−τ)/3ci′′,−τ,s̄ = −e−2iπ(τ+(−1)s̄)/3cKM ,−τ,s̄, (4.5)

where s̄ denotes the opposite sublattice of s. From this we gather that Bloch states cKM ,+,1, cKM ,−,2
both have Lz = LB.w.z +Lorbz = 0 since τ + (−1)s = 1− 1 = −1 + 1 = 0. Additionally, C2y takes
cKM ,+,1 → −cKM ,−,2 and we have two singlet representations furnished by cKM ,+,1 ∓ cKM ,−,2
with C2y eigenvalue ±1, respectively. The Bloch states (cKM ,+,2, cKM ,−,1) have total angular
momentum Lz = ∓1, respectively. These two states furnish the doublet representation at KM .
Thus the honeycomb lattice reproduces the required representations at KM .

4.2.3 MM -point

The analysis performed at KM and ΓΓΓM is sufficient to determine the Wannier orbitals re-
quired to reproduce the band structure of TBG. In this section we merely ensure that a
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honeycomb lattice with px ± ipy orbitals obeys the little group C2 of MM which can only
host two one-dimensional representations A and B with eigenvalues ±1, respectively [19]. C2y

takes cMM ,τ,s → −cMM ,−τ,−s, thus cMM ,±,+ − cMM ,∓,− belongs to the A representation and
cMM ,±,+ + cMM ,∓,− belongs to the B representation. The band structure in Fig. 3.4 has two
separate energies at MM . The little group C2 allows for an {A,B} set at each energy, which is
consistent with our findings.

Finally, we briefly return to ΓΓΓM , where the additional sublattice degree of freedom from the
honeycomb lattice yields two doublets ((cΓΓΓM ,+,1, cΓΓΓM ,−,2) and (cΓΓΓM ,−,1, cΓΓΓM ,+,2)) as required.
We conclude that the only Wannier orbitals reproducing the band structure and microscopic
symmetries of TBG are px ± ipy orbitals with centers forming a honeycomb lattice. We have
summarized the analysis of the Wannier orbitals in Table 4.1.

ΓΓΓM KM MM

Group D3 D3 C2

Reps {E;E} {A1, A2, E} {A,B;A,B}

Bloch states (cΓΓΓM,+,1, cΓΓΓM,−,2) ; (cKM,+,2 − cKM,−,1), (cMM,+,1 − cMM,−,2), (cMM,+,1 + cMM,−,2) ;

ck,τ,s (cΓΓΓM,−,1, cΓΓΓM,+,2) (cKM,+,2 + cKM,−,1) , (cKM,+,1, cKM,−,2) (cMM,−,1 − cMM,+,2), (cMM,−,1 + cMM,+,2)

Table 4.1: Symmetries, irreducible representations and Bloch states at high-
symmetry points. First line denotes the symmetry group of each high-symmetry point.
Second line denotes the irreducible representations, where A1, A2, A and B are one-dimensional
representations and E is two-dimensional. Third line display the Bloch states furnishing the
representations. The Bloch states are ordered according to the ordering of representations in
the second line. Semicolon indicates symmetry required energy separations.

4.3 Extended Wannier orbitals

We have now established that the only Wannier orbitals reproducing the symmetries of the
band structure will be centered at a honeycomb lattice. Since Wannier orbitals are localized
by definition, we expect the electron densities to peak in a honeycomb pattern, where the
peaks coincide with the centers of the Wannier orbitals at AB-/BA-sites. However, this is
certainly not what experimental data show. In Fig. 4.3 a scanning tunneling microscope (STM)
measurement performed in Ref. [21] is displayed. For the readers not familiar with STM, this
is an experimental technique used to image materials at the atomic level. The technique is
based on quantum tunneling, where a conducting tip is brought close to the surface of the
material. By applying a bias voltage to the tip, a tunneling current will flow between the
tip and the substrate. The present example of an STM measurement uses a constant-current
scheme, where the perpendicular distance from the tip to the material is varied across the
surface to reach the same tunneling current at all points. If the tip must be brought very
close to the sample at a given point, we can directly deduce, that the electron density at this
point must be low. On the contrary, if the tip can be far away from a point in the sample
while supporting the same current flow, the electron density at the given point must be high.
In Fig. 4.3 the colorbar displays the perpendicular height from the tip to the TBG sample.
Clearly, the electron densities are not arranged in a honeycomb lattice but rather in a triangular
lattice resembling the AA-stacked structure, which we already ruled out as an effective lattice
in the previous section. If we trust our symmetry analysis to be correct, the only reasonable
explanation for this discrepancy must be, that the Wannier orbitals are not localized at their
respective centers. The only way to verify this assumption is to construct the Wannier orbitals.
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Figure 4.3: STM topography of TBG at θ = 0.79◦. Topography was taken at a constant
current of 50 pA and a bias voltage of 1 V. Colorbar indicates perpendicular distance from tip
to substrate. The electron densities are arranged in a triangular pattern corresponding to the
AA-regions of the moiré pattern. This figure is adopted from [21].

Figure 4.4: Maximally localized Wan-
nier orbitals of valley τ = +1. The or-
bitals have centers but no weight at AB-
/BA-sites. Approximately all weight of
the orbitals is localized at the three adja-
cent hexagon centers corresponding to AA-
regions of the moiré pattern. The Wan-
nier orbitals individually obey the C3z sym-
metry while a C2y rotation will transfrom
them into each other. The extended shape
is expected to cause significant long-range
effects. This figure is adopted from [22].

They must be constructed as a superposition of the
monolayer Bloch states which on one hand maxi-
mizes the localization and on the other hand obeys
the symmetry findings of the previous section. For-
tunately, this construction has been carried out in
Refs. [22] and [23]. The two studies are in very
good agreement and we choose to present the re-
sults obtained by Koshino et al. (Ref. [22]) in Fig.
4.4. The maximally localized Wannier orbitals pre-
sented here have τ = +1. Before discussing the un-
usual shape Wannier functions, let us first sort out
a possible confusion for the reader, namely the τ
degree of freedom. In Chapter 3 we discussed the
Uv(1) symmetry arising from the decoupled val-
leys at Kt,b and K′t,b. This symmetry yielded an
overall doubling of the number of bands reaching
a total number of four (neglecting spin) from layer
and valley degrees of freedom. In the symmetry
analysis performed in the previous section, we also
reached a total of four bands. However, these were
expressed in terms of a sublattice and orbital de-
gree of freedom. The sublattice degree of freedom
quite naturally relates to the layer degree of free-
dom, as the sites are defined as AB/BA directly
expressing the site and order of the two monolay-
ers. In Ref. [22] they find that the valley degree
of freedom expresses itself in our effective model
as the orbital degree of freedom, τ , where there is
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one-to-one correspondence between chirality of the valley and the orbital angular momentum
given by, Lorbz = −τ , where τ denotes the valley. This relation is the reason for choosing the
rather counter-intuitive labelling of Lorbz in the previous section. We conclude that one can
use sublattice/layer and orbital/valley interchangably to denote the degrees of freedom in the
system and the reader is encouraged to make a note of this equivalence.

Having sorted out the nomenclature, let us return to the intriguing result presented in Fig.
4.4. In agreement with our symmetry considerations, we have two Wannier orbitals of valley
+1 centered at inequivalent sublattices. The orbitals locally obey C3z and C2y, where, to verify
the latter, we recall that C2y exchanges the two layers, thus AB ↔ BA. More importantly,
we note the peculiar extended nature of the orbitals. They are by no means localized at their
center. On the contrary, they exhibit three clearly distinguishable peaks at the neighboring
hexagon centers. By inspection of Figs. 4.2 and 3.1 the hexagon centers exactly constitute
the AA-regions arranged in a triangular lattice. Although the general shape of the Wannier
functions is curious, it does indeed merge the symmetry analysis from the previous section with
the experimental data of Fig. 4.3.

The extended nature of the Wannier functions has the direct consequence that orbitals cen-
tered at different sites will have a significant overlap, and all models restricted to on-site or
nearest-neighbor hopping/interaction must be immediatly abandoned. The electrons in the
narrow bands are fundamentally linked to substantial long-range effects. These effects must be
taken into account in any physically reasonable search for the plethora of phases discussed in
Chapter 1. Obviously, long-range interactions will immensely complicate any model. We will
devote the remainder of this chapter to set up a model of TBG which incorporates the extended
nature of the Wannier orbitals in a manner simple enough to enable solutions within reasonable
computing times.

4.4 Tight-binding model

In this section we set up a tight-binding model of the TBG honeycomb lattice. In agreement
with the findings from the previous sections, the orbitals exhibit on-site (px, py) symmetry.
The aim of the tight-binding model is to reproduce the important features of the relaxed band
structure discussed in Chapter 3, namely Dirac cones at KM (K′M ), two-fold degeneracies at ΓΓΓM
splitting along ΓΓΓMMM and broken particle-hole symmetry. Due to the extended shape of the
Wannier orbitals, we expect that long-range hoppings will have significant magnitudes and play
an important role in the tight-binding model. In Ref. [22] they explicitly calculate the hopping
integrals between the Wannier functions and find that all hoppings with a radius r < 9|L1|
are necessary to exactly reproduce the band structure obtained from a continuum model. A
tight-binding model including all of these hoppings is a lot more complex than what we hoped
for. Fortunately, it is possible to set up a minimal model, which, while not reproducing the
exact shape of the bands, does reproduce the important features of the bands [19, 22]. This
model reads,

Htb =− µ
∑
i

c†i · ci + t1
∑
〈ij〉

[c†i · cj + h.c.]

+ t2
∑
〈ij〉′

[c†i · cj + h.c.] + t′2
∑
〈ij〉′

[(c†i × cj)z + h.c.], (4.6)

where c†i = (c†i,x, c
†
i,y) with c†iν creating an electron at site i in orbital pν . µ is the chemical

potential, t1 is the real nearest-neighbor (NN) hopping amplitude and t2 (t′2) is the real (imag-
inary) part of the hopping amplitude between fifth NNs. Inspecting Fig. 4.5 we note that t1 is
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intersublattice hoppings whereas t2 and t′2 are intrasublattice hoppings.

BA

AB AA

L1

L2 α

t1
t2, t'2

Figure 4.5: Unit cell and relevant hoppings. Illustration of the effective honeycomb lattice
of TBG. Green (blue) sites are AB (BA) sites. AA-stacked sites at the hexagon center are
marked by black dots. Filled, grey area is the unit cell defined by vectors L1,2. The position
of the AB-site (BA-site) within the unit cell is defined by ααα (2ααα). Dotted line indicates NN
hopping, t1, and dashed line indicates fifth NN hopping, t2, t

′
2.

The second term containing the NN hoppings is by far the largest, which should be of no sur-
prise as two out of the three peaks of NN Wannier orbitals will overlap. However, the fact that
the fifth NN is the second most important coupling is not what one would expect intuitively.
In Ref. [22] they find that the fifth NN hopping is the third largest coupling only exceeded by
first and fourth NN by a factor of 3.4 and 1.2, respectively. Surprisingly, the fifth NN hopping
amplitude is larger than the second NN hopping by approximately a factor of 6. Hence the
consideration of this long-range coupling is fully justified.
However, neglecting the fourth NN hopping cannot be justified through this line of thought.
Hence we must return to the aim of this model, i.e. setting up the simplest tight-binding model
reproducing important features of the band structure qualitatively. Returning to Ref. [22] they
find, when including the fourth NN hopping, only a quantitative difference in the bands and we
must conclude that, for the particular scope in question, these terms can be neglected.

To express the sublattice degree of freedom explicitly in our model, we rewrite it in the Bravais
lattice picture with a two-point basis (AB-/BA-sites). We denote the lattice vectors as L1,2

and the vector between AB- and BA-sites as ααα, see Fig. 4.5. ai+ααα (a†i+ααα) annihilates (creates)
electrons at the AB-site in the unit cell positioned at Ri = nL1+mL2, n,m ∈ Z. Likewise bi+2ααα

(b†i+2ααα) annihilates (creates) electrons at the BA-site in the same cell. As before f †i = (f †i,x, f
†
i,y)

for f †i ∈ {a
†
i+ααα,b

†
i+2ααα}. Using this separately on the four terms in Eq. (4.6), we find

H0 = −µ
∑
i

c†i · ci = −µ
∑
Ri

[a†i+ααα · ai+ααα + b†i+2ααα · bi+2ααα], (4.7)

Likewise,

H1 = t1
∑
〈ij〉

[c†i · cj + h.c.]

= t1
∑
Ri

[a†i+ααα · (bi+2ααα + bi+2ααα−L1 + bi+2ααα−L2) + h.c.]. (4.8)
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The remaining two terms require a bit more consideration as they are intrasublattice couplings
and including all six couplings will double count each term. Double counting is usually dealt with
by a simple factor of 1/2. However, since [(c†i ×cj)z +h.c.] = c†i,xcj,y− c

†
i,ycj,x− c

†
j,xci,y + c†j,yci,x,

the terms will cancel and not double, if we include all six couplings and let i run over all sites.
Instead, we choose the same convention as in [19], where the i’th site couples to the site indicated
in Fig. 4.5 and its two C3z related partners. Thus,

H2 = t2
∑
〈ij〉′

[c†i · cj + h.c.]

= t2
∑
Ri

[
a†i+ααα · (ai+ααα−L1+2L2 + ai+ααα−L1−L2 + ai+ααα+2L1−L2)

+ b†i+2ααα · (bi+2ααα−L1+2L2 + bi+2ααα−L1−L2 + bi+2ααα+2L1+L2) + h.c.
]

(4.9)

and

H2′ = t′2
∑
〈ij〉′

[(c†i × cj)z + h.c.]

= t′2
∑
Ri

[[
a†i+ααα × (ai+ααα−L1+2L2 + ai+ααα−L1−L2 + ai+ααα−2L1+L2)

]
z

+
[
b†i+2ααα × (bi+2ααα−L1+2L2 + bi+2ααα−L1−L2 + bi+2ααα−2L1+L2)

]
z

+ h.c.
]
. (4.10)

Having represented our Hamiltonian in the desired basis, we can now proceed to perform Fourier
transformations (FTs) of all four terms, diagonalize Htb = H0 +H1 +H2 +H2′ and present the
resulting bands.

4.4.1 Narrow bands

We define the FTs as follows,

ai+ααα =
1√
Ñ

∑
k∈BZ

eik(Ri+ααα)ak,

a†i+ααα =
1√
Ñ

∑
k∈BZ

e−ik(Ri+ααα)a†k,

bi+2ααα =
1√
Ñ

∑
k∈BZ

eik(Ri+2ααα)bk,

b†i+2ααα =
1√
Ñ

∑
k∈BZ

e−ik(Ri+2ααα)b†k, (4.11)

where Ñ is the number of unit cells in the system. Performing the FT of all terms we get

Htb =
∑

k∈BZ

(
− µ[a†k · ak + b†k · bk] + t1

[
eikααα(1 + e−ikL1 + e−ikL2)a†k · bk + h.c.

]
+ 2t2

[
cos
(
k · (−L1 + 2L2)

)
+ cos

(
k · (−L1 − L2)

)
+ cos

(
k · (2L1 − L2)

)]
(a†k · ak + b†k · bk)

+ 2it′2
[

sin
(
k · (−L1 + 2L2)

)
+ sin

(
k · (−L1 − L2)

)
+ sin

(
k · (2L1 − L2)

)]
·
([

a†k × ak

]
z

+
[
b†k × bk

]
z

))
.

(4.12)
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The full derivation can be seen in Appendix A.

Writing this in terms of the basis f †k =
(
a†k,x a†k,y b†k,x b†k,y

)
, we have

Htb =
∑

k∈BZ
f †k



−µ+ t̃2(k) t̃′2(k) t̃1(k) 0

− t̃′2(k) −µ+ t̃2(k) 0 t̃1(k)

t̃∗1(k) 0 −µ+ t̃2(k) t̃′2(k)

0 t̃∗1(k) − t̃′2(k) −µ+ t̃2(k)


fk, (4.13)

where,

t̃1(k) = t1
[
eikααα(1 + e−ikL1 + e−ikL2)

]
,

t̃2(k) = 2t2
[

cos
(
k · (−L1 + 2L2)

)
+ cos

(
k · (−L1 − L2)

)
+ cos

(
k · (2L1 − L2)

)]
,

t̃′2(k) = 2it′2
[

sin
(
k · (−L1 + 2L2)

)
+ sin

(
k · (−L1 − L2)

)
+ sin

(
k · (2L1 − L2)

)]
. (4.14)

Note that t̃2(k) is real while t̃′2(k) is purely imaginary in agreement with the real space model
in Eq. (4.6).
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Figure 4.6: Energy bands of the tight-binding model. Parameters are a) t1 = 1, t2 =
t′2 = 0, b) t1 = 1, t2 = 0.025, t′2 = 0 and c) t1 = 1, t2 = 0.025, t′2 = 0.1. All three structures
has µ = 0 indicated by dashed lines. In b) particle-hole symmetry is broken and in c) both
particle-hole and orbital symmetry is broken. All three band structures are spin degenerate.

Diagonalizing Eq. (4.13) yields the energy bands seen in Fig. 4.6. In Fig. 4.6a parameters are
t1 = 1, t2 = t′2 = 0 and µ = 0. This band structure exhibits particle-hole symmetry. Further-
more, the two valleys/orbitals are degenerate yielding an emergent SU(2) valley symmetry. In
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Figure 4.7: Fermi surfaces of TBG at various fillings. Parameters are t1 = 1, t2 = 0.025
and t′2 = 0.1. Momentum are in units of 1/a, where a is the length of the monolayer graphene
unit vector. Fillings are labelled according to the number of electrons in the unit cell running
from zero to eight. Dashed and solid lines are the two distinct electron (hole) bands for fillings
above (below) four. Blue hexagons are the TBG MBZ and is inserted as a guide to the eye. Q
in top right figure indicates a possible nesting at filling 2.7.

Fig. 4.6b we set t2 = 0.025, which breaks the particle-hole symmetry. This is evident from
Eq. (4.13), since this term adds the same amount of (k-dependent) energy to particle and hole
bands, i.e. Ep(k) + t̃2(k) = −Eh(k) + t̃2(k). Hence t2 also gives rise to an overall upwards
shift of the bands, meaning that µ = 0 no longer coincides with the Dirac points at KM and
K′M . Finally, we set t′2 = 0.1 in Fig. 4.6c, which breaks orbital symmetry along ΓΓΓM -MM thus
the emergent SU(2) valley symmetry of Fig. 4.6 is broken down to the minimal Uv(1) valley
symmetry. The band structure in Fig. 4.6c exhibits the same features as the relaxed band
structure discussed in Chapter 3. We have thus accomplished what we set out to do, and are
now ready to consider interactions in the system.

4.4.2 Fermi surfaces

When searching for possible interaction-driven instabilities in a system, it is always instructive
to investigate the Fermi surfaces of the non-interacting system. This investigation will reveal
predominant scatterings such as nesting vectors or van Hove singularities, which can be rele-
vant when looking for susceptibility divergences, i.e. instabilities. It thus provides a guidance
towards the areas of parameter space most likely to exihibit spontaneous symmetry breaking.

In Fig. 4.7 the Fermi surfaces at various fillings are displayed. There is no general agreement
on the definition of the fillings in the litterature. To avoid any confusion, this thesis will label
all fillings according to the number of electrons in each unit cell. As each unit cell contains two
sites, each with two orbitals and two spins, the maximal number of electrons in each unit cell
is eight. Dashed and solid lines in Fig. 4.7 are the two distinct electron (hole) bands for fillings
above (below) four. Blue hexagons are the TBG MBZ. Note the small scale on the momentum
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axis reflecting the immense amount of folding when going from the original, monolayer graphene
lattice to the extended moiré pattern in TBG. It is evident that the bands are degenerate along
K′M -ΓΓΓM and MM -KM but split along ΓΓΓM -MM in good agreement with the band structure in
Fig. 4.6c.
Regarding the Fermi surfaces themselves, we first verify that at filling 4, i.e. charge neutral-
ity, the Fermi surface is identical to the monolayer graphene at half filling with Dirac point
at all KM and K′M points. Hence quasiparticles with momenta in the vicinity of these high-
symmetry points perserve the pseudo-relativistic behavior of monolayer graphene. We further
note the broken particle-hole symmetry especially evident at fillings 3 and 5. This is again in
good agreement with the band structure in Fig. 4.6b,c. The Fermi surface at filling 2.7 in top
right corner exihibits several interesting features. For one, it reveals a van Hove point at MM

leading to a peak in the density of states enabling a large amount of small q-scattering. When
scattering with q ≈ 0 dominates, the system is expected to be unstable towards homogeneous
phases, e.g. ferromagnetism. Another prominent feature is the apparent nesting vector, Q,
connecting parallel sections of the Fermi surface, which can make the system instable towards
2π/Q modulated phases, e.g. charge density wave. Thus from inspecting the Fermi surface one
would expect a competition between a homogeneous and a 2π/Q modulated phase. While these
expectations all appear intriguing, the experimental data does not exhibit any striking features
in this filling region (see Fig. 1.2 at ν ∼ −1.5). This should be of no surprise, as we expect
interactions to significantly modify the bands in TBG due to the very low Fermi velocity and
the considerable orbital overlap enhancing interaction effect. Thus we will not rely notably on
the considerations presented in this section. Instead we focus on deriving an interaction model
which directly incorporates the shape of the Wannier functions without bias towards certain
phases. By solving an unbiased model including both interaction and kinetic terms, we avoid
exaggeration of the bare band influence.

4.5 Interaction model

In this section our goal is to obtain an interaction model of TBG. We will follow the line of
argument in Ref. [24] to set up the effective model of the Coulomb interaction and describe all
approximations made along the way.

The effective interaction model is based on the general Coulomb interaction,

U =
1

2

∑
r,r′

∑
σ,σ′

c†σ(r)cσ(r)V (r− r′)c†σ′(r
′)cσ′(r

′), (4.15)

where c†σ(r) (cσ(r)) creates (annihilates) an electron with spin σ at r and V (r−r′) is the Coulomb
interaction. The operators are expanded in terms of the maximally localized Wannier states
(WSs). We have argued that these states are centered at honeycomb sites (AB-/BA-stacking)
with peaks at neighboring hexagon centers (AA-stacking). The expansion is defined as,

cσ(r) =
1

3

∑
R

6∑
p=1

∑
τ=±1

wR+δδδp,τ (r)dτ,σ(R + δδδp), (4.16)

where R = mL1 + nL2 defines the hexagon and p defines the 6 sites related to each hexagon,
see Fig. 4.8. cσ(r) is also expanded in terms of the valley degree of freedom, τ .
Before expanding Eq. (4.15) three approximations are made. i) V (r−r′) is set to V0 for all r and
r′ residing in the same hexagon ii) and 0 otherwise. iii) All valley mixing terms are neglected.
i) Is justified by numerical calculations performed in [23], ii) is justified due to the presence
of metallic gates causing significant screening and iii) is justified by the emergent Uv(1) valley
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symmetry.

With these three approximations implemented we reach

U ≈ V0

2

∑
R

∑
r,r′∈7

∑
σ,σ′

c†σ(R + r)cσ(R + r)c†σ′(R + r′)cσ′(R + r′)

=
V0

2

∑
R

∑
τ,τ ′=±1

∑
σ,σ′

∑
r,r′∈7

nτ,σ(R + r)nτ ′,σ′(R + r′), with (4.17)

nτ,σ(R + r) =
1

32

∑
R̄,R̄′

6∑
p,p′=1

w∗R̄−R+δδδp,τ
(r)wR̄′−R+δδδp′ ,τ

(r)d†τ,σ(R̄ + δδδp)dτ,σ(R̄′ + δδδp′)

≈
6∑

p,p′=1

w∗δδδp,τ (r)wδδδp′ ,τ (r)d†τ,σ(R + δδδp)dτ,σ(R + δδδp′). (4.18)

In the last line we have used that a particle density in a given hexagon (defined by R) only has
non-zero projections onto the six corresponding hexagon sites. Thus

∑
R̄ → 3δδδR̄,R. The factor

of three makes up for the fact that we no longer triple-count the hexagon sites. Eq. (4.18) is
divided into two dominating contributions. The usual density interaction with p = p′ and a
rather peculiar hopping-like contribution with |p − p′| = 1. We only include NN hopping-like
terms and all terms with |p− p′| > 1 are set to 0. We thus get,

∑
r∈7

nτ,σ(R + r) =
6∑
p=1

∑
r∈7
|wδδδp,τ (r)|2d†τ,σ(R + δδδp)dτ,σ(R + δδδp)

+
6∑
p=1

(∑
r∈7

w∗δδδp,τ (r)wδδδp+1,j(r)d†τ,σ(R + δδδp)dτ,σ(R + δδδp+1) + h.c.
)
, (4.19)

Figure 4.8: Real space schematic of TBG.
Lattice vectors L1,2 span the unit cell and define

the position of the hexagon, R = nL1+mL2. d†i
creates a maximally localized WS at honeycomb
lattice site i with maxima at the three neighbor-
ing hexagon centers marked by areas with hori-
zontal, red lines. The WSs of two neighbouring
honeycomb sites overlap at two hexagon centers
as illustrated by the areas marked by horisontal
red lines and vertical grey lines. The position
of honeycomb site i is defined by R + δδδi, where
i = 1, ..., 6. This figure is adopted from [24].

where we impose periodic boundary condi-
tions such that δδδ7 = δδδ1.
To a good approximation the WSs are
normalized and completely C3z-symmetric
with equal weights in the three neighboring
hexagon centers and no weight elsewhere. Us-
ing this we identify∑

r∈7
|wδδδp,j(r)|2 =

1

3
. (4.20)

The hopping-like contributions are less
straight forward. For p 6= p′ orthogonality
requires,

0 =
∑
all r

w∗δδδp(r)wδδδp′ (r)

=
∑
R̄

∑
r∈7

w∗R̄+δδδp
(r)wR̄+δδδp′

(r),

where we have suppressed the valley subscript
for simplicity. As we only include NN cou-
plings, each coupling will have contributions
from two hexagon centers, R̄ = R∨R′, when
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performing the sum. Take e.g. p = 2 and
p′ = 3 with R defining the hexagon illustrat-
ing the δδδ-vectors in Fig. 4.8. This coupling is
also represented for R′ defining the centered,
light blue hexagon with p = 6 and p′ = 5. We

thus get, ∑
r∈7

w∗R+δδδ2
(r)wR+δδδ3

(r) +
∑
r∈7

w∗R′+δδδ6
(r)wR′+δδδ5

(r) = 0

⇒ −
∑
r∈7

w∗R+δδδ2
(r)wR+δδδ3

(r) =
∑
r∈7

w∗R′+δδδ6
(r)wR′+δδδ5

(r) (4.21)

As the model must obey discrete translational symmetry, this relation must hold for R = R′.
Imposing this condition on the expression in the second line of Eq. (4.19) yields∑

p=1,3,5

(∑
r∈7

w∗δδδp,τ (r)wδδδp+1,τ (r)d†τ,σ(R + δδδp)dτ,σ(R + δδδp+1)

−
∑
r∈7

w∗δδδp+1,τ
(r)wδδδp+2,τ (r)d†τ,σ(R + δδδp+1)dτ,σ(R + δδδp+2)

+
∑
r∈7

w∗δδδp+1,τ
(r)wδδδp,τ (r)d†τ,σ(R + δδδp+1)dτ,σ(R + δδδp)

−
∑
r∈7

w∗δδδp+2,τ
(r)wδδδp+1,τ (r)d†τ,σ(R + δδδp+2)dτ,σ(R + δδδp+1)

)
(4.22)

We have written out the hermitian conjugated terms to explicitly see that the condition in
Eq. (4.21) is fulfilled by combining the second term for p = 1 and the third term for p = 5.
The expression indeed fulfills the orthogonality condition for all couplings, which can easily be
verified.
In addition to the orthogonality requirement, the couplings are related through the symmetries
exhibited by the system, i.e. C2y, C3z and time-reversal. Thus they should only vary up to a
phase. In general these terms can be written as,∑

r∈7
w∗δδδp,τ (r)wδδδp+1,τ (r) = α1e

iφp,σ,τ , (4.23)

where α1 is a constant valid for all NN couplings. The phase dependencies can be further
reduced. The entire system exhibits SU(2) spin symmetry, thus the phase cannot differ due
to change in spin. Furthermore the site dependence, i.e. p-dependence, is fully restricted by
orthogonality and point group symmetries. This dependence can be determined from Eq. (4.21),
where we have

−
∑
r∈7

w∗R+δδδ2,τ
(r)wR+δδδ3,τ (r) = −α1e

iφ2,τ =
∑
r∈7

w∗R′+δδδ6,τ
(r)wR′+δδδ5,τ (r)

=
(∑

r∈7
w∗R′+δδδ5,τ

(r)wR′+δδδ6,τ (r)
)∗

= α1e
−iφ5,τ .

As the overall sign is already incorporated in Eq. (4.22), we can directly identify −φ2,τ = φ5,τ .
Since the summation is only performed for p = 1, 3, 5, this leads to −φp+1,τ = φp,τ . Finally we
note that the two valley are related by time-reversal, thus φ+ = −φ− = τφ. Imposing these
findings in Eq. (4.22) yields

α1

∑
p=1,3,5

(
eiτφd†τ,σ(R + δδδp)dτ,σ(R + δδδp+1)
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− e−iτφd†τ,σ(R + δδδp+1)dτ,σ(R + δδδp+2)

+ e−iτφd†τ,σ(R + δδδp+1)dτ,σ(R + δδδp)

− eiτφ(r)d†τ,σ(R + δδδp+2)dτ,σ(R + δδδp+1)
)
.

We note that the expression is still hermitian, as required. It is now clear that the phases can
be absorbed through a gauge transformation as follows,

dτ,σ(R + δδδp) −→ eiτφ/2dτ,σ(R + δδδp), p odd

dτ,σ(R + δδδp) −→ e−iτφ/2dτ,σ(R + δδδp), p even

(4.24)

Performing the transformation and letting the sum run over all p’s, we get

α1

6∑
p=1

(−1)p−1
(
d†τ,σ(R + δδδp)dτ,σ(R + δδδp+1) + d†τ,σ(R + δδδp+1)dτ,σ(R + δδδp)

)
(4.25)

Inserting this and Eq. (4.20) into Eq. (4.19) we get the much simpler expression,

∑
r∈7

nτ,σ(R + r) =
1

3

6∑
p=1

d†τ,σ(R + δδδp)dτ,σ(R + δδδp)

+ α1

6∑
p=1

(−1)p−1
(
d†τ,σ(R + δδδp)dτ,σ(R + δδδp+1) + h.c.

)
, (4.26)

yielding the final interaction model to be,

U =
V0

2

∑
R

∑
τ,τ ′

∑
σ,σ′

(
Qτ,σ(R) + Tτ,σ(R)

)(
Qτ ′,σ′(R) + Tτ ′,σ′(R)

)
, where (4.27)

Qτ,σ(R) =
1

3

6∑
p=1

d†τ,σ(R + δδδp)dτ,σ(R + δδδp), and

Tτ,σ(R) = α1

6∑
p=1

(−1)p−1
(
d†τ,σ(R + δδδp)dτ,σ(R + δδδp+1) + h.c.

)
.

Qτ,σ(R) only contains usual density-density interactions and the terms are dubbed the cluster
charge interaction terms. Due to the curious hopping-like appearance of Tτ,σ(R), these terms
are dubbed assisted hopping interaction terms.
All statements used to simplify the interaction are verified through numerical calculations pre-
sented in Supplementary Material of [24].

4.5.1 Topology and assisted hopping terms

With the tight-binding and interaction model in place, we are ready to combine the two, decou-
ple the interactions and search for the ground states preferred at various commensurate fillings.
Before doing so, we dedicate this short section to discuss the origins of our interaction terms.
The cluster charge terms, Qτ,σ(R), is the TBG analogue to the common on-site Hubbard re-
pulsion terms. Usually, the on-site repulsion expresses the overlap of two site-localized Wannier
orbitals. Due to the extended shape of the Wannier functions in TBG, the usual on-site terms
must be expressed as ”on-hexagon”, or similarly ”on-peak”, where the atypical TBG wavefunc-
tions overlap. Thus the origin of Qτ,σ(R) is nothing but an on-site repulsion of a triangular
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lattice projected onto the honeycomb lattice.

On the contrary, the origin of the assisted hopping terms, Tj,σ(R), is rooted deeply in the un-
derlying topology. To recognize this, we take several steps back and begin with the microscopic
picture of two graphene layers with a relative twist angle. As mentioned previously, this system
can be represented microscopically by a continuum model describing the Dirac cones of each
layer with interlayer tunneling. The continuum model exhibits full C6z symmetry [17, 25, 26].
If the rotation of the two layers is performed about coinciding hexagon centers of the monolay-
ers rather than at an AA-stacked site, the point group of TBG will be D6, which extends the
symmetries of the continuum model to the lattice model. However, if one performs a symmetry
analysis similar to the one performed in Section 4.2, one finds that this point group cannot
reproduce realistic band symmetries [22]. Specifically, it is not possible to generate four zero-
energy states at KM and the Dirac points are destroyed. This might seem alarming to the
reader, as we have apparently ignored the symmetries of the microscopic model. Fortunately,
this is not exactly true.

The additional symmetry required on top of C3z and C2y to generate point group D6 is a
two-fold C2x symmmetry. This is the symmetry labelled C ′′2 in Fig. 4.8. The C2x symmetry
is not locally implemented. The easiest way to see this, is to consider an AB-site. C2x will, as
C2y, flip the two layers, thus AB → BA. However, from inspection of Fig. 4.5, we will need an
additional lattice translation to get back to the original lattice. Furthermore, if we consider the
Wannier states themselves, a C2x transformation of the orbitals px± ipy → px∓ ipy. Comparing
this to a C2x transformation of the valleys in Fig. 3.2 it is clear, that the orbitals transform
into each other while the valleys transform into themselves. As we have argued that these two
degrees of freedom are equivalent, the C2x symmetry is evidently not respected by the effective
orbitals. However, since the valleys are decoupled, flipping all valley indices will not affect the
system globally. Thus we say that C2x is implemented albeit only non-locally.
To figure out the effect of the non-local implementation of C2x we consider the case, where
the symmetry is locally implemented. We then have a C2y symmetry flipping the valley index
and a C2x symmetry preserving the valley index. To represent the valley degree of freedom
as an orbital degree of freedom, one should consider general effective orbitals respecting these
transformation. As the two valleys are decoupled and related by time-reversal, we must have
that the orbital basis is complex conjugated under C2y. We write this generally as o1 ± io2,
where o1,2 can be any atomic orbital, and we demand that the two orbitals have opposite parity
under C2y. In a similar manner, since C2x does not flip the valley index, the two orbitals must
have the same parity under C2x. Now if all orbitals have the same parity under C2x it directly
follows that the overlap of two orbitals must have even parity under C2x. From inspection of
Fig. 4.8 we must then have that,∑

r∈7
w∗R+δδδ2

(r)wR+δδδ3
(r) =

∑
r∈7

w∗R′+δδδ6
(r)wR′+δδδ5

(r).

Recalling the orthogonality requirement of the Wannier states,

−
∑
r∈7

w∗R+δδδ2
(r)wR+δδδ3

(r) =
∑
r∈7

w∗R′+δδδ6
(r)wR′+δδδ5

(r),

we see that these two conditions combined directly leads to α1 = 0, i.e. all assisted hopping
terms must vanish.
As previously mentioned, the reason for not implementing C2x locally, is to preserve the Dirac
points of the band structure. Since Dirac points have non-zero Chern numbers, reproducing
these points is equivalent to a preservation of the topology. We conclude that the origin of
Tj,σ(R) is topological and reflects the presence of Dirac points. We will later see that the
assisted hopping terms have significant impact on the preferred ground states.
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Chapter 5

Full Model and Hartree-Fock
Decoupling

In this chapter the goal is, first and foremost, to combine the tight-binding and interaction
model. Once this is accomplished, we will perform a Hartree-Fock decoupling of the interaction
terms enabling a concurrent, self-consistent solution of the TBG model. These two tasks will
be performed in the first two sections. We will then proceed to consider the full model of TBG
in reciprocal space and present the the Hartree-Fock decoupled Hamiltonian in the q = 0, i.e.
homogeneous, case. Solving the model in reciprocal space will provide direct access to the
interaction-induced band structure modulations, thus adding additional insight to the results
presented in the subsequent chapter.

5.1 Full model in real space

To obtain a model describing the bare, kinetic, bands as well as the interactions, the first step is
to combine the two models in a common basis. The basis of our real space tight-binding model
is simply c†i = (c†i,x, c

†
i,y) (recall Eq. (4.6)), whereas the operators in the interaction model as

described in Eq. (4.27) are labeled by valley and spin indices. As the tight-binding model is
fully spin degenerate, we can directly expand Eq. (4.6) to include spin as follows,

Htb =
∑
σ

[
− µ

∑
i

c†iσ · ciσ + t1
∑
〈ij〉

[c†iσ · cjσ + h.c.] + t2
∑
〈ij〉′

[c†iσ · cjσ + h.c.] + t′2
∑
〈ij〉′

[(c†iσ × cjσ)z + h.c.]
]
.

(5.1)

This expression clearly preserves the four narrow bands of Fig. 4.6 but explicitly includes the
spin degeneracy of each band. Next we consider the correspondence between orbital index and
valley index. Thus far we have expressed the tight-binding model in terms of orbitals (px, py).
To establish the one-to-one correspondence, we rotate (px, py) → (px ± ipy) and introduce

c†i,τ,σ = 1√
2
(ci,τ,σ + τici,τ,σ)†. We note again the highly counter-intuitive definition, that the

orbitals px ± ipy have Lorbz = ∓1 underlining the fact that this is merely an effective decription
of the symmetries. The Wannier orbitals do not resemble the usual atomic px ± ipy orbitals,
which the reader is hopefully fully aware of by now. It can be easily verified that the rotation
will only affect the last term of Eq. (5.1), and we get

Htb =
∑
jσ

[
− µ

∑
i

c†i,τ,σci,τ,σ + t1
∑
〈ij〉

[c†i,τ,σcj,τ,σ + h.c.] (5.2)

+ t2
∑
〈ij〉′

[c†i,τ,σcj,τ,σ + h.c.]
]

+ t′2
∑
〈ij〉′

∑
σ

[−i(c†i,+,σcj,+,σ − c
†
i,−,σcj,−,σ) + h.c.],

where τ indicates valley index. In the fifth NN terms, we only include the couplings depicted
in Fig. 5.1, since (as discussed in Section 4.4) a double counting will cancel the last term. We
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R0

R1

δ1
δ2

δ4
δ5

R2

Figure 5.1: Illustration of NN and fifth NN hoppings. R0 + δδδ1,2 and R1 + δδδ4,5 illustrate

NN hoppings. It is evident that
(
c†τ,σ(R0 + δδδ1)cτ,σ(R0 + δδδ2)

)†
= c†τσ(R1 + δδδ4)cτσ(R1 + δδδ5).

Green/blue arrows and hexagons illustrate the fifth NN hoppings. For fixed R = R2, the red
site corresponds to p = 3. By letting the R′ summation in Eq. (5.3) run over the three NNN
hexagons marked in green, we will couple to the correct sites if p = 3. The remaning three fifth
NN couplings will be accounted for when R runs over the hexagons marked in blue, still fixing
p = 3.

also note that this rotated tight-binding model manifests the time-reversal relation between the
two valleys.

As a final step, we wish to label our sites by the hexagon, denoted by R, and the site’s postion
within that hexagon, i.e. n → R + δδδp for p = 1, .., 6, as in Eq. (4.27). The on-site terms are
trivial, and we simply let

∑
n →

1
3

∑
R

∑
p. The factor of one third accounts for the triple

counting arising as each lattice site is associated with three hexagons. In the NN terms we use

that e.g.
(
c†τ,σ(R0 +δδδ1)cτ,σ(R0 +δδδ2)

)†
= c†τ,σ(R0 +δδδ2)cτ,σ(R0 +δδδ1) = c†τσ(R1 +δδδ4)cτσ(R1 +δδδ5),

see Fig. 5.1. Thus we have that
∑
〈ij〉[c

†
i,τ,σcj,τ,σ + h.c.] →

∑
R

∑
p d
†
τ,σ(R + δδδp)dτ,σ(R + δδδp+1)

will directly include the hermitian conjugation when performing the sum over R. We have also
renamed our operators to match the interaction model.

Next we consider the fifth NN hoppings illustrated in Fig. 5.1. As these are interhexagon
couplings, we must introduce a sum over R′, where R′ are the three NNN hexagons marked
in green in Fig. 5.1. We further note that all th NNs are positioned at the same site with
respects to the hexagon center, i.e. p′ = p for all six interhexagon couplings. Finally we note
that these terms, like the on-site terms, will all be accounted for three times when summing
over all hexagons. Implementing all of these considerations in Eq. (5.2), we get

Htb =
∑
R

∑
p,τ,σ

[
− µ

3
d†τ,σ(R + δδδp)dτ,σ(R + δδδp) + t1d

†
τ,σ(R + δδδp)dτ,σ(R + δδδp+1) (5.3)

+
1

3

∑
R′

[(t2 + (−τ)it′2)d†τ,σ(R + δδδp)dτ,σ(R′ + δδδp) + h.c.]
]
.

This adaptation of the tight-binding model seemingly shares a common basis with the interaction
model in Eq. (4.27). However, we remind the reader of the gauge transformation performed in
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Section 4.5 to reach Eq. (4.27),

dτ,σ(R + δδδp) −→ eiτφ/2dτ,σ(R + δδδp), p odd

dτ,σ(R + δδδp) −→ e−iτφ/2dτ,σ(R + δδδp), p even.

To solve the combined model in a concurrent manner, we must of course implement this trans-
formation in Eq. (5.3). First and foremost, it is easily verified that the phases will cancel
for on-site and fifth NN terms. Thus we only need to consider additional phases in the NN
hoppings, where we have for p odd

t1d
†
τ,σ(R + δδδp)dτ,σ(R + δδδp+1)→ t1e

−iτφ/2d†τ,σ(R + δδδp)e
−iτφ/2dτ,σ(R + δδδp+1),

and for p even,

t1d
†
τ,σ(R + δδδp)dτ,σ(R + δδδp+1)→ t1e

iτφ/2d†τ,σ(R + δδδp)e
iτφ/2dτ,σ(R + δδδp+1).

Combining these two expression yields

Htb =
∑
R

∑
p,τ,σ

[
− µ

3
d†τ,σ(R + δδδp)dτ,σ(R + δδδp) + t1e

(−1)piτφd†τ,σ(R + δδδp)dτ,σ(R + δδδp+1) (5.4)

+
1

3

∑
R′

[(t2 + (−τ)it′2)d†τ,σ(R + δδδp)dτ,σ(R′ + δδδp) + h.c.]
]
.

It is now clear, that our interaction model in Eq. (4.27) and Eq. (5.4) share a common basis
and the full model reads H = Htb + U , where

U =
V0

2

∑
R

(Q+ T )(Q′ + T ′), where (5.5)

Q =
1

3

∑
jσ

6∑
p=1

d†jσ(R + δδδp)djσ(R + δδδp), and

T = α1

∑
jσ

6∑
p=1

(−1)p−1
(
d†jσ(R + δδδp)djσ(R + δδδp+1) + h.c.

)
.

We have shortened the notation slightly for readability. Primes on Q and T indicate primes on
j, σ and p. We will now proceed to decouple the interaction terms to reach a final expression
which can be solved self-consistently.

5.1.1 Hartree-Fock decoupling

A Hartree-Fock (HF) decoupling relies on the assumption that particles can be treated in-
dependently (i.e. one assumes the existence of an uncorrelated ground state) and that the
density operators only deviate slightly from the average value. By considering a system of two
distinguishable particles (a, b), we can then approximate their interaction as

γ a†a b†b ≈ γ(〈a†a〉+ δaa)(〈b†b〉+ δbb),

where γ sets the interaction strength and δff = f †f−〈f †f〉 (f = a, b) are the density operator’s
deviation from the average value. As we assume the deviations to be small, we drop the second
order term in deviations and get

γ a†a b†b ≈ γ(〈a†a〉〈b†b〉+ 〈a†a〉b†b− 〈a†a〉〈b†b〉+ a†a〈b†b〉 − 〈a†a〉〈b†b〉)

35



CHAPTER 5. FULL MODEL AND HARTREE-FOCK DECOUPLING

= γ(a†a〈b†b〉+ 〈a†a〉b†b− 〈a†a〉〈b†b〉).

The last term ensures that γ〈a†a b†〉 is unchanged by preserving the original energy reference.
Within this approximation, we see that the average values of the density operators effectively
act as a field coupling to the density operators of the opposite particle type. We thus refer to
the average values as mean fields and the approximation is also known as a mean field approx-
imation. The mean field approximation very effectively deals with the consistently recurring
issue of four-operator interaction terms in many-body physics. However, a minor issue must
be dealt with before decoupling our interaction: the particles of our system are fermions and
indistingushable by definition. Fortunatly, we can rely on Wick’s theorem, which states that
any n-particle correlation function is given by the determinant of a matrix containing all of
the single-particle Green’s functions [27]. Using this on a general (same-time) two particle
correlation function yields,

〈c†νc†µcµ′cν′〉 =

∣∣∣∣∣〈c†νcν′〉 〈c†νcµ′〉〈c†µcν′〉 〈c†µcµ′〉

∣∣∣∣∣ = 〈c†νcν′〉〈c†µcµ′〉 − 〈c†νcµ′〉〈c†µcν′〉,

where ν, µ can be any quantum number labelling the states. The indistingushability of the
particles is expressed by including the last term, since an operator combination with exchange in
quantum numbers is treated on equal footing as the first, non-exchanged operator combinations,
i.e. we cannot by measurement tell whether the particle is of type ν or µ. As Wick’s theorem
must hold before and after a decoupling, we include these new exchange terms when dealing
with indistingushable particles. A general HF decoupling of a fermionic interaction term thus
reads

c†νc
†
µcµ′cν′ ≈ c†νcν′〈c†µcµ′〉+ c†µcµ′〈c†νcν′〉 − c†µcν′〈c†νcµ′〉 − c†νcµ′〈c†µcν′〉+ 〈c†νcν′〉〈c†µcµ′〉 − 〈c†νcµ′〉〈c†µcν′〉.

This decoupling can be directly applied to the TBG interaction model. A short comment should
be made about the ordering of our operators. The application of Wick’s theorem, hence the
HF decoupling itself, relies on normal ordering of the operators. At first glance, our interaction
contains terms as d†p+1dpd

†
p′+1dp′ = δp,p′+1d

†
p+1dp′ + d†pd

†
p′+1dp′dp, where we suppressed the R-

dependence as well as spin and valley indices. Evidently, normal ordering will introduce NNN
hoppings in the kinetic Hamiltonian. From physical considerations, this seems highly illegiti-
mate. The underlying reason for normal ordering in second quantization is to avoid divergencies
of the vacuum energy, which should never affect the shape of the bands. It should most definitely
not introduce new hoppings in a tight-binding model. Furthermore, our interaction model is de-
rived from a Coulomb interaction, which does not affect the kinetics of a model through normal
ordering. We must conclude, that these terms are an unphysical artefact of the projection and
assume U =: U : enabling the decoupling directly. We will drop the energy offset of the latter
two terms in the decoupling which simply amounts to setting an arbitrary zero-energy reference.

The Hartree terms are all direct terms, i.e. terms not mixing primed and unprimed indices. We
can thus separate all primed and unprimed summations yielding

UH =
V0

2

∑
R

〈Q+ T 〉(Q′ + T ′) + (Q+ T )〈Q′ + T ′〉

= V0

∑
R

n̄(R)(Q+ T ), where

n̄(R) = 〈Q′ + T ′〉

=
∑
τ ′σ′p′

(1

3
〈d†τ ′,σ′,p′dτ ′,σ′,p′〉+ α1(−1)p

′−1[〈d†τ ′,σ′,p′dτ ′,σ′,p′+1〉+ 〈d†τ ′,σ′,p′+1dτ ′,σ′,p′〉]
)
.
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In the first equality we use that primed and unprimed indices are dummy indices and can be
exchanged. In the last expression we introduce p as subscript, making the R-dependence im-
plicit. Often when performing a HF decoupling, the Hartree terms will simply represent the
individual particle’s interaction with the average electron charge. This interaction usually en-
ters as an overall shift of the chemical potential and effectively cancel the charge of ionic crystal
background. When this is the case, the Hartree terms can be neglected in computations. In our
model, due to the topological assisted hopping terms, some Hartree terms will be off-diagonal
elements in the Hamiltonian. The off-diagonal terms will effectively shift the NN hopping, which
will affect the actual shape of the bands. Allowing for inhomogeneous solutions, these terms
alone could break the one or more spatial symmetries giving rise to e.g. density waves. With
this in mind, the importance of including the Hartree terms in our computations is clear.

In the exchange terms (i.e. Fock terms) of the decoupling we can no longer separate our sums
and we must progress more carefully. We will separate our considerations into three types,
namely Q×Q′, Q× T ′, and T × T ′ terms.
Starting with the Q×Q′ terms, we get

UFQQ ∝ −
1

9

∑
τ,τ ′

∑
σ,σ′

∑
p,p′

[
〈d†τ,σ,pdτ ′,σ′,p′〉d

†
τ ′,σ′,p′dτ,σ,p + 〈d†τ ′,σ′,p′dτ,σ,p〉d

†
τ,σ,pdτ ′,σ′,p′

]
= −2

9

∑
τ,τ ′

∑
σ,σ′

∑
p,p′

〈d†τ ′,σ′,p′dτ,σ,p〉d
†
τ,σ,pdτ ′,σ′,p′ . (5.6)

We drop the overall V0
2

∑
R for now.

For the Q× T ′ terms we first note that UFQT ′ = UFTQ′ . We thus get,

UFQT = UFQT ′ + UFTQ′

∝ −2α1

3

∑
ττ ′

∑
σσ′

∑
pp′

(−1)p
′−1
[
〈d†τσpdτ ′σ′p′〉d

†
τ ′σ′p′+1dτσp + 〈d†τ ′σ′p′+1dτσp〉d

†
τσpdτ ′σ′p′

+ 〈d†τσpdτ ′σ′p′+1〉d†τ ′σ′p′dτσp + 〈d†τ ′σ′p′dτσp〉d
†
τσpdτ ′σ′p′+1

]
In the final UF expression we wish to combine all the terms into one prefactor containing the
mean field parameters and just a single operator term. To get all operators in UFQT on the

same form as the ones in UFQQ, we first exhange primed and unprimed indices in the first and
third term. Second we need consider the p subscripts, where two facts are relevant: i) The p-
and p′-summations run completely independent, ii) the p subscripts have periodic boundary
conditions. These two facts allow us to shift the p′ sum on all terms in UFQT independently.
Doing so we get

UFQT ∝ −
2α1

3

∑
ττ ′

∑
σσ′

∑
pp′

[
(−1)p〈d†τ ′σ′p′dτσp−1〉+ (−1)p

′−1〈d†τ ′σ′p′+1dτσp〉

+ (−1)p−1〈d†τ ′σ′p′dτσp+1〉+ (−1)p
′〈d†τ ′σ′p′−1dτσp〉

]
d†τσpdτ ′σ′p′ (5.7)

where we have also used that (−1)p
′±2 = (−1)p

′
. Moving on to UFTT we will have - as for UFQQ

- all combinations twice with primed and unprimed indices exchanged. We account for this by
a factor of two, and get

UFTT ∝ −2α2
1

∑
τ,τ ′

∑
σ,σ′

∑
p,p′

(−1)p+p
′[〈d†τ ′σ′p′+1dτσp〉d

†
τσp+1dτ ′σ′p′ + 〈d

†
τ ′σ′p′dτσp+1〉d†τσpdτ ′σ′p′+1

+ 〈d†τ ′σ′p′+1dτσp+1〉d†τσpdτ ′σ′p′ + 〈d
†
τ ′σ′p′dτσp〉d

†
τσp+1dτ ′σ′p′+1

]
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= −2α2
1

∑
ττ ′

∑
σσ′

∑
pp′

[
(−1)p−1+p′〈d†τ ′σ′p′+1dτσp−1〉+ (−1)p+p

′−1〈d†τ ′σ′p′−1dτσp+1〉

+ (−1)p+p
′〈d†τ ′σ′p′+1dτσp+1〉+ (−1)p+p

′〈d†τ ′σ′p′−1dτσp−1〉
]
d†τσpdτ ′σ′p′ (5.8)

where we have performed the same manipultations as in UFQT . Combining the three terms we
get

UF = UFQQ + UFQT + UFTT

= −V0

∑
R

∑
ττ ′

∑
σσ′

∑
pp′

[1

9
〈d†τ ′σ′p′dτσp〉+

α1

3

[
(−1)p〈d†τ ′σ′p′dτσp−1〉+ (−1)p

′−1〈d†τ ′σ′p′+1dτσp〉

+ (−1)p−1〈d†τ ′σ′p′dτσp+1〉+ (−1)p
′〈d†τ ′σ′p′−1dτσp〉

]
+ α2

1

[
(−1)p−1+p′〈d†τ ′σ′p′+1dτσp−1〉+ (−1)p+p

′−1〈d†τ ′σ′p′−1dτσp+1〉

+ (−1)p+p
′〈d†τ ′σ′p′+1dτσp+1〉+ (−1)p+p

′〈d†τ ′σ′p′−1dτσp−1〉
]]
d†τσpdτ ′σ′p′

= −V0

∑
R

∑
all

[∑
n,m

αn(p′)αm(p)〈d†τ ′σ′p′+ndτσp+m〉
]
d†τσpdτ ′σ′p′ , (5.9)

where
∑

all =
(∑

ττ ′
∑

σσ′
∑

pp′

)
, n,m = {−1, 0, 1} and we have defined,

ᾱ(p) =

α−1

α0

α1

 =

 α1(−1)p

1/3
α1(−1)p−1

 . (5.10)

We have thus accomplished everything we set out to do in these first sections. The full Hamil-
tonian reads,

H = Htb + UHF (5.11)

where

Htb =
∑
R

∑
p,τ,σ

[
− µ

3
d†τ,σ(R + δp)dτ,σ(R + δp) + t1e

(−1)piτφd†τ,σ(R + δp)dτ,σ(R + δp+1) (5.12)

+
1

3

∑
R′

[(t2 + (−τ)it′2)d†τσ(R + δp)dτσ(R′ + δp) + h.c.]
]

and

UHF = V0

∑
R

[
n̄(R)(Q+ T )−

∑
all

[∑
n,m

αn(p′)αm(p)〈d†τ ′σ′p′+ndτσp+m〉
]
d†τσpdτ ′σ′p′

]
. (5.13)

5.2 Full model in reciprocal space

As mentioned in the short introduction to this chapter, we can gain direct access to interaction-
induced modifications of the kinetic bands by performing a Fourier transformation (FT) and
subsequent decoupling of the interaction model and combining it with the Fourier transformed
tight-binding model. To maintain the sublattice degree of freedom in reciprocal space we will
rewrite the interaction model in the Bravais lattice picture. However, as the model is already
rather tedious, we will begin this section with a discussion of intricate details in the HF decou-
pling before transforming to the Bravais lattice picture.
We wish to perform FT of Eq. (5.5) and define the transformations as,

dτ,σ(R + δδδp) =
1√
N

∑
k∈BZ

eik(R+δp)cτ,σ,k ,

38



CHAPTER 5. FULL MODEL AND HARTREE-FOCK DECOUPLING

d†τ,σ(R + δp) =
1√
N

∑
k∈BZ

e−ik(R+δp)c†τ,σ,k (5.14)

where N is the number of sites and k = (kx, ky) are points within the first Brillouin zone.
This definition leads to

Qτ,σ(R) =
1

N

6∑
p=1

∑
k,q

eiq(R+δδδp)c†τ,σ,kcτ,σ,k+q,

and

Tτ,σ(R) =
1

N

6∑
p=1

(−1)p−1
∑
k,q

(
eiq·(R+δp+1)eik·(δp+1−δp)c†τ,σ,kcτ,σ,k+q + e−iq(R+δp+1)e−ik·(δp+1−δp)c†τ,σ,k+qcτ,σ,k

)
where q = k′ − k . We have suppressed the restriction on the k-,q-summations.
Inserting in Eq. (5.5) and simplifying, one finds

U =
V0

2N

∑
τ,τ ′

∑
σ,σ′

∑
k,k′,q

∑
p,p′

((1

3
eiq·δδδp + α1(−1)p−1eiq·δp+1eik·(δp+1−δp)

)
×
(1

3
e−iq·δp′ + α1(−1)p

′−1e−iq·δp′+1eik
′·(δp′+1−δp′ )

)
c†τ,σ,kcτ,σ,k+qc

†
τ ′,σ′,k′cτ ′,σ′,k′−q

+
(
α1(−1)p−1e−iq·δp+1e−ik·(δp+1−δp)

)
×
(1

3
eiq·δp′ + α1(−1)p

′−1eiq·δp′+1eik
′·(δp′+1−δp′ )

)
c†τ,σ,k+qcτ,σ,kc

†
τ ′,σ′,k′cτ ′,σ′,k′+q

+
(1

3
eiq·δp + α1(−1)p−1eiq·δp+1eik·(δp+1−δp)

)
×
(
α1(−1)p

′−1e−iq·δp′+1e−ik
′·(δp′+1−δp′ )

)
c†τ,σ,kcτ,σ,k+qc

†
τ ′,σ′,k′+qcτ ′,σ′,k′

+
(
α1(−1)p−1e−iq·δp+1e−ik·(δp+1−δp)

)
×
(
α1(−1)p

′−1eiq·δp′+1e−ik
′·(δp′+1−δp′ )

)
c†τ,σ,k+qcτ,σ,kc

†
τ ′,σ′,k′−qcτ ′,σ′,k′

)
. (5.15)

The full derivation can be seen in Appendix B. Due to the rather complicated form factors it is
unclear whether the operators can be collected to a single term. We thus proceed be considering
separate decouplings of each term.
Decoupling the operators of the first term in Eq. (5.15) yields,

c†τ,σ,kc
†
τ ′,σ′,k′cτ ′,σ′,k′−qcτ,σ,k+q ≈ 〈c†τ ′,σ′,k′cτ ′,σ′,k′−q〉c

†
τ,σ,kcτ,σ,k+q + 〈c†τ,σ,kcτ,σ,k+q〉c†τ ′,σ′,k′cτ ′,σ′,k′−q

− 〈c†τ ′,σ′,k′cτ,σ,k+q〉c†τ,σ,kcτ ′,σ′,k′−q − 〈c
†
τ,σ,kcτ ′,σ′,k′−q〉c

†
τ ′,σ′,k′cτ,σ,k+q,

where we have dropped the energy offset. Clearly, if we impose no further restrictions, we
are left with an overwhelming amount of terms. As we have no general knowledge of specific
q-modulated phases, we choose to study all homogeneous instabilities, i.e. set 〈c†j,σ,kcj′,σ′,k′〉 =

δk,k′〈c†j,σ,kcj′,σ′,k′〉. When including the k-,k′- and q-summation, this yields

∑
k,k′,q

c†τ,σ,kc
†
τ ′,σ′,k′cτ ′,σ′,k′−qcτ,σ,k+q ≈

∑
k,k′,q

(
δq,0
[
〈c†τ ′,σ′,k′cτ ′,σ′,k′−q〉c

†
τ,σ,kcτ,σ,k+q + 〈c†τ,σ,kcτ,σ,k+q〉c†τ ′,σ′,k′cτ ′,σ′,k′−q

]
− δk′,k+q

[
〈c†τ ′,σ′,k′cτ,σ,k+q〉c†τ,σ,kcτ ′,σ′,k′−q − 〈c

†
τ,σ,kcτ ′,σ′,k′−q〉c

†
τ ′,σ′,k′cτ,σ,k+q

])
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=
∑
k,k′

([
〈c†τ ′,σ′,k′cτ ′,σ′,k′〉c

†
τ,σ,kcτ,σ,k + 〈c†τ,σ,kcτ,σ,k〉c

†
τ ′,σ′,k′cτ ′,σ′,k′

]
−
[
〈c†τ ′,σ′,k′cτ,σ,k′〉c

†
τ,σ,kcτ ′,σ′,k + 〈c†τ,σ,kcτ ′,σ′,k〉c

†
τ ′,σ′,k′cτ,σ,k′

])
Inspecting Eq. (5.15) one finds that the form factors in this first term is equal in unprimed and
primed indices. We can thus exchange the two and find∑

k,k′,q

c†τ,σ,kc
†
τ ′,σ′,k′cτ ′,σ′,k′−qcτ,σ,k+q ≈ 2

∑
k

[
n̄σ
′σ′
τ ′τ ′ c

†
τ,σ,kcτ,σ,k − n̄

σ′σ
τ ′τ c

†
τ,σ,kcτ ′,σ′,k

]
,

where n̄σσ
′

ττ ′ =
∑

k′〈c
†
τ,σ,k′cτ ′,σ′,k′〉. From this we gather, that by decoupling the first term in

Eq. (5.15), U (1), we can write U (1) =
∑

k c†kUkck, where the k′-sum is contained in Uk and
completely separated from the k-dependence. This result is well-known from e.g. the Stoner
model and yields no complications when setting up the self-consistent solution. However, when
applying the homogeneity condition to the second term, we get

c†τ,σ,k+qc
†
τ ′,σ′,k′cτ ′,σ′,k′+qcτ,σ,k ≈ 〈c†τ ′,σ′,k′cτ ′,σ′,k′+q〉c†τ,σ,k+qcτ,σ,k + 〈c†τ,σ,k+qcτ,σ,k〉c

†
τ ′,σ′,k′cτ ′,σ′,k′+q

− 〈c†τ ′,σ′,k′cτ,σ,k〉c
†
τ,σ,k+qcτ ′,σ′,k′+q − 〈c†τ,σ,k+qcτ ′,σ′,k′+q〉c†τ ′,σ′,k′cτ,σ,k

= δq,0
[
〈c†τ ′,σ′,k′cτ ′,σ′,k′+q〉c†τ,σ,k+qcτ,σ,k + 〈c†τ,σ,k+qcτ,σ,k〉c

†
τ ′,σ′,k′cτ ′,σ′,k′+q

]
− δk′,k

[
〈c†τ ′,σ′,k′cτ,σ,k〉c

†
τ,σ,k+qcτ ′,σ′,k′+q − 〈c†τ,σ,k+qcτ ′,σ′,k′+q〉c†τ ′,σ′,k′cτ,σ,k

]
,

leaving no restriction on q in the exchange terms. To obtain a solution where we can write U (2)

in terms of a q-independent spinor (as was the case for U (1) =
∑

k c†kUkck) we must perform a

shift in momenta such that e.g. c†τ,σ,k+qc
†
τ ′,σ′,k′cτ ′,σ′,k′+qcτ,σ,k → c†τ,σ,k+qc

†
τ ′,σ′,k′−qcτ ′,σ′,k′cτ,σ,k,

i.e. k′ → k′−q. In a simpler model such shifts can be performed with no further considerations
as the k′-sum runs independently over the entire first BZ. Even if k′ − q resides outside the
first BZ, it is related to a point within the first BZ through a reciprocal vector, and thus will
be included in the sum. The complicated form factors of our model makes the validity of any
such shift less straightforward. A detailed discussion of said shift is presented in Appendix C.
Here we merely state that we can indeed shift the momentum dependence independently in
each term. Applying this to the second term now yields,∑

k,k′,q

c†τ,σ,k+qc
†
τ ′,σ′,k′−qcτ ′,σ′,k′cτ,σ,k ≈

∑
k,k′,q

(
δq,0
[
〈c†τ ′,σ′,k′−qcτ ′,σ′,k′〉c

†
τ,σ,k+qcτ,σ,k + 〈c†τ,σ,k+qcτ,σ,k〉c

†
τ ′,σ′,k′−qcτ ′,σ′,k′

]
− δk′,k+q

[
〈c†τ ′,σ′,k′−qcτ,σ,k〉c

†
τ,σ,k+qcτ ′,σ′,k′ − 〈c

†
τ,σ,k+qcτ ′,σ′,k′〉c

†
τ ′,σ′,k′−qcτ,σ,k

])
=
∑
k,k′

([
〈c†τ ′,σ′,k′cτ ′,σ′,k′〉c

†
τ,σ,kcτ,σ,k + 〈c†τ,σ,kcτ,σ,k〉c

†
τ ′,σ′,k′cτ ′,σ′,k′

]
−
[
〈c†τ ′,σ′,kcτ,σ,k〉c

†
τ,σ,k′cτ ′,σ′,k′ − 〈c

†
τ,σ,k′cτ ′,σ′,k′〉c

†
τ ′,σ′,kcτ,σ,k

])
.

We can now write U (2) =
∑

k c†kUkck by performing similar manipulations as for U (1). The
considerations and final structure of the homogeneous, HF decoupled interaction model in re-
ciprocal space presented in this section is equally valid in the Bravais lattice picture.
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5.2.1 Interaction model in the Bravais lattice picture

Before expanding the interaction model to the Bravais lattice picture, we briefly mention
the manipulations of the tight-binding model required to obtain a common basis of the two
models. As in the real space case, we can easily expand the model to include spin due

to the SU(2) symmetry. Furthermore we rotate the basis
(
a†x,σ,k a†y,σ,k b†x,σ,k b†y,σ,k

)
→(

a†+,σ,k a†−,σ,k b†+,σ,k b†−,σ,k

)
, where c†τ,σ,k = (cx,σ,k + τicy,σ,k)†/

√
2 with c = a, b and Lorbz =

−τ . Applying the expansion and rotation to Eq. (4.13) yields,

Htb =
∑

k∈BZ
f †k



t̃−(k) 0 0 0 t̃1(k) 0 0 0

0 t̃+(k) 0 0 0 t̃1(k) 0 0

0 0 t̃−(k) 0 0 0 t̃1(k) 0

0 0 0 t̃+(k) 0 0 0 t̃1(k)

t̃1
∗
(k) 0 0 0 t̃−(k) 0 0 0

0 t̃1
∗
(k) 0 0 0 t̃+(k)) 0 0

0 0 t̃1
∗
(k) 0 0 0 t̃−(k) 0

0 0 0 t̃1
∗
(k) 0 0 0 t̃+(k)



fk, (5.16)

where f †k =
(
a†+↑k a†−↑k a†+↓k a†−↓k b†+↑k b†−↑k b†+↓k b†−↓k

)
and t̃±(k) = −µ + t̃2(k) ±

it̃′2(k). Recall that t̃′2(k) is purely imaginary. We write this as

Htb =
∑

k∈BZ
f †k[−µ+ t̃2(k)]s0σ0τ0 − it̃′2(k)s0σ0τz +Re[t̃1(k)]sxσ0τ0 + Im[t̃1(k)]syσ0τ0, (5.17)

where si, σi, τi (i = 0, 1, 2, 3) are the Pauli matrices in sublattice, spin and valley space, re-
spectively. Finally, we incorporate the gauge transformation. Recall that t1 → t1e

(−1)piτφ in
real space. This phase can be pulled straight through the FT, and we incorporate it by simply
letting t̃1(k)→ t̃1(k)eiτφ. Here we have used that AB-sites (a operators) corresponds to p even
and BA-sites (b operators) corresponds to p odd. This is easily verified by inspection of Figs.
4.5 and 4.8. Thus the site-dependent sign is already incorporated through complex conjugation
in Eq. (5.16) and we can now focus our attention on the interaction model.

To represent U in the Bravais lattice picture, we return to the original real space representation.
The real space interactions reads

U =
V0

2

∑
R

∑
τ,τ ′

∑
σ,σ′

(
1

3
Qτ,σ(R) + α1Tτ,σ(R)

)(
1

3
Qτ ′,σ′(R) + α1Tτ ′,σ′(R)

)
, where (5.18)

Qτ,σ(R) =
6∑
p=1

d†τ,σ(R + δδδp)dτ,σ(R + δδδp), and

Tτ,σ(R) =
6∑
p=1

(−1)p−1
(
d†τ,σ(R + δδδp)dτ,σ(R + δδδp+1) + h.c.

)
.
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This can be written as,

Qτ,σ(R) =
∑
p even

a†τ,σ(R + δδδp)aτ,σ(R + δδδp) +
∑
p odd

b†τ,σ(R + δδδp)bτ,σ(R + δδδp)

=
∑

p=2,4,6

(a†τ,σ(R + δδδp)aτ,σ(R + δδδp) + b†τ,σ(R + δδδp+1)bτ,σ(R + δδδp+1)), (5.19)

where a (b) operators correspond to AB-sites (BA-sites) as usual. The assisted hopping terms
are

Tτ,σ(R) = −
∑
p even

(
a†τ,σ(R + δδδp)bτ,σ(R + δδδp+1) + h.c.

)
+
∑
p odd

(
b†τ,σ(R + δδδp)aτ,σ(R + δδδp+1) + h.c.

)
=

∑
p=2,4,6

[
− a†τ,σ(R + δδδp)bτ,σ(R + δδδp+1) + b†τ,σ(R + δδδp+1)aτ,σ(R + δδδp+2) + h.c.

]
.

(5.20)

Note the periodic boundary conditions. The Fourier transformations reads,

aτ,σ(R + δδδp) =
1√
Ñ

∑
k∈BZ

eik(R+δδδp)aτ,σ,k,

a†τ,σ(R + δδδp) =
1√
Ñ

∑
k∈BZ

e−ik(R+δδδp)a†τ,σ,k,

bτ,σ(R + δδδp) =
1√
Ñ

∑
k∈BZ

eik(R+δδδp)bτ,σ,k,

b†τ,σ(R + δδδp) =
1√
Ñ

∑
k∈BZ

e−ik(R+δδδp)b†τ,σ,k,

(5.21)

where Ñ is now the number of unit cells. Performing the transformations, we get

Qτ,σ(R) =
1

Ñ

∑
k,q

∑
p=2,4,6

(
eiq(R+δδδp)a†τσkaτσk+q + eiq(R+δδδp+1)b†τσkbτσk+q

)
,

Tτ,σ(R) =
1

Ñ

∑
k,q

∑
p=2,4,6

[
eiqReiqδδδp+1(eikδδδp − eikδδδp+2)a†τσkbτσk+q

+ e−iqRe−iqδδδp+1(e−ikδδδp − e−ikδδδp+2)b†τσk+qaτσk

]
, (5.22)

where q = k′ − k. We have used that δδδp+1 − δδδp = δδδp+2. With these expressions one can obtain
the following rather tedious interaction model (see Appendix D)

U = UQ×Q′ + UQ×T ′ + UT×Q′ + UT×T ′ (5.23)

with

UQ×Q′ =
V0

2Ñ

∑
τ,τ ′

∑
σ,σ′

∑
k,k′,q

∑
p,p′=2,4,6

1

9

(
eiq(δδδp−δδδp′ )a†τσkaτσk+qa

†
τ ′σ′k′aτ ′σ′k′−q

+ eiq(δδδp+1−δδδp′+1)b†τσkbτσk+qb
†
τ ′σ′k′bτ ′σ′k′−q

+ eiq(δδδp−δδδp′+1)a†τσkaτσk+qb
†
τ ′σ′k′bτ ′σ′k′−q

+ eiq(δδδp+1−δδδp′ )b†τσkbτσk+qa
†
τ ′σ′k′aτ ′σ′k′−q

)
. (5.24)
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UQ×T ′ =
V0

2Ñ

∑
τ,τ ′

∑
σ,σ′

∑
k,k′,q

∑
p,p′=2,4,6

α1

3

(
eiq(δδδp−δδδp′+1)(eik

′δδδp′ − eik′δδδp′+2)a†τσkaτσk+qa
†
τ ′σ′k′bτ ′σ′k′−q

+ eiq(δδδp+1−δδδp′+1)(eik
′δδδp′ − eik′δδδp′+2)b†τσkbτσk+qa

†
τ ′σ′k′bτ ′σ′k′−q

+ eiq(δδδp−δδδp′+1)(e−i(k
′−q)δδδp′ − e−i(k′−q)δδδp′+2)a†τσkaτσk+qb

†
τ ′σ′k′aτ ′σ′k′−q

+ eiq(δδδp+1−δδδp′+1)(e−i(k
′−q)δδδp′ − e−i(k′−q)δδδp′+2)b†τσkbτσk+qb

†
τ ′σ′k′aτ ′σ′k′−q

)
. (5.25)

UT×Q′ =
V0

2Ñ

∑
τ,τ ′

∑
σ,σ′

∑
k,k′,q

∑
p,p′=2,4,6

α1

3

(
e−iq(δδδp′−δδδp+1)(eikδδδp − eikδδδp+2)a†τσkbτσk+qa

†
τ ′σ′k′aτ ′σ′k′−q

+ e−iq(δδδp′+1−δδδp+1)(eikδδδp − eikδδδp+2)a†τσkbτσk+qb
†
τ ′σ′k′bτ ′σ′k′−q

+ eiq(δδδp′−δδδp+1)(e−ikδδδp − e−ikδδδp+2)b†τσk+qaτσka
†
τ ′σ′k′−qaτ ′σ′k′

+ eiq(δδδp′+1−δδδp+1)(e−ikδδδp − e−ikδδδp+2)b†τσk+qaτσkb
†
τ ′σ′k′−qbτ ′σ′k′

)
. (5.26)

UT×T ′ =
V0

2Ñ

∑
τ,τ ′

∑
σ,σ′

∑
k,k′,q

∑
p,p′=2,4,6

α2
1

[
eiq(δδδp+1−δδδp′+1)(eikδδδp − eikδδδp+2)(eik

′δδδp′ − eik′δδδp′+2)a†τσkbτσk+qa
†
τ ′σ′k′bτ ′σ′k′−q

+ eiq(δδδp+1−δδδp′+1)(eikδδδp − eikδδδp+2)(e−i(k
′−q)δδδp′ − e−i(k′−q)δδδp′+2)a†τσkbτσk+qb

†
τ ′σ′k′aτ ′σ′k′−q

+ e−iq(δδδp+1−δδδp′+1)(e−ikδδδp − e−ikδδδp+2)(ei(k
′−q)δδδp′ − ei(k′−q)δδδp′+2)b†τσk+qaτσka

†
τ ′σ′k′−qbτ ′σ′k′

+ e−iq(δδδp+1−δδδp′+1)(e−ikδδδp − e−ikδδδp+2)(e−ik
′δδδp′ − e−ik′δδδp′+2)b†τσk+qaτσkb

†
τ ′σ′k′−qaτ ′σ′k′

]
.

(5.27)

We devote the next section to consider the Hartree terms followed by a section on the Fock
terms.

Hartree terms

In principle one should of course perform 16 independent HF decouplings however, as we are
only interested in the homogeneous Hartree terms for now, we recall that these require q = 0.
Applying this restriction, one can easily show that

∑
p=2,4,6(e(−)ikδδδp − e(−)ikδδδp+2) = 0, which

leads to UHQ×T ′ = UHT×Q′ = UHT×T ′ = 0. Thus we return to Eq. (5.24) and insert the direct terms
of the decoupling,

UH =
V0

2Ñ

∑
τ,τ ′

∑
σ,σ′

∑
k,k′,q

∑
p,p′=2,4,6

1

9
δδδq,0

(
eiq(δδδp−δδδp′ )(〈a†τσkaτσk+q〉a†τ ′σ′k′aτ ′σ′k′−q + a†τσkaτσk+q〈a†τ ′σ′k′aτ ′σ′k′−q〉)

+ eiq(δδδp+1−δδδp′+1)(〈b†τσkbτσk+q〉b†τ ′σ′k′bτ ′σ′k′−q + b†τσkbτσk+q〈b†τ ′σ′k′bτ ′σ′k′−q〉)

+ eiq(δδδp−δδδp′+1)(〈a†τσkaτσk+q〉b†τ ′σ′k′bτ ′σ′k′−q + a†τσkaτσk+q〈b†τ ′σ′k′bτ ′σ′k′−q〉)

+ eiq(δδδp+1−δδδp′ )(〈b†τσkbτσk+q〉a†τ ′σ′k′aτ ′σ′k′−q + b†τσkbτσk+q〈a†τ ′σ′k′aτ ′σ′k′−q〉)
)

=
V0

2Ñ

∑
τ,τ ′

∑
σ,σ′

∑
k,k′

∑
p,p′=2,4,6

1

9

(
〈a†τσkaτσk〉a

†
τ ′σ′k′aτ ′σ′k′ + a†τσkaτσk〈a

†
τ ′σ′k′aτ ′σ′k′〉

+ 〈b†τσkbτσk〉b
†
τ ′σ′k′bτ ′σ′k′ + b†τσkbτσk〈b

†
τ ′σ′k′bτ ′σ′k′〉

+ 〈a†τσkaτσk〉b
†
τ ′σ′k′bτ ′σ′k′ + a†τσkaτσk〈b

†
τ ′σ′k′bτ ′σ′k′〉

+ 〈b†τσkbτσk〉a
†
τ ′σ′k′aτ ′σ′k′ + b†τσkbτσk〈a

†
τ ′σ′k′aτ ′σ′k′〉

)
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=
V0

2Ñ

∑
τ,τ ′

∑
σ,σ′

∑
k,k′

(
2a†τσkaτσk〈a

†
τ ′σ′k′aτ ′σ′k′〉+ 2b†τσkbτσk〈b

†
τ ′σ′k′bτ ′σ′k′〉

+ 2a†τσkaτσk〈b
†
τ ′σ′k′bτ ′σ′k′〉+ 2b†τσkbτσk〈a

†
τ ′σ′k′aτ ′σ′k′〉

)
= V0

∑
τσk

(a†τσkn̄aτσk + b†τσkn̄bτσk)

= V0

∑
k

f †k[n̄⊗ 18×8]fk

≡ V0

∑
k

f †kM
H fk (5.28)

where,

n̄ =
1

Ñ

∑
τ ′σ′k′

(〈a†τ ′σ′k′aτ ′σ′k′〉+ 〈b†τ ′σ′k′bτ ′σ′k′〉), (5.29)

and f †k =
(
a†+↑k a†−↑k a†+↓k a†−↓k b†+↑k b†−↑k b†+↓k b†−↓k

)
as in Eq. (5.17).

Fock terms

The exchange terms will contain contributions from all four combinations in Eqs. (5.24)-(5.27).
A detailed derivation of UF can be seen in Appendix E. Here we simply list the findings after
applying the homogenuity condition and performing the required shifts in momentum space as
discussed previously.

UFQ×Q′ = − V0

2Ñ

∑
τ,τ ′

∑
σ,σ′

∑
k,k′

∑
p,p′

1

9

(
(ei(k

′−k)(δδδp−δδδp′ ) + e−i(k
′−k)(δδδp−δδδp′ ))〈a†τ ′σ′k′aτσk′〉a

†
τσkaτ ′σ′k

+ (ei(k
′−k)(δδδp+1−δδδp′+1) + e−i(k

′−k)(δδδp+1−δδδp′+1))〈b†τ ′σ′k′bτσk′〉b
†
τσkbτ ′σ′k

+ (ei(k
′−k)(δδδp−δδδp′+1) + e−i(k

′−k)(δδδp+1−δδδp′ ))〈b†τ ′σ′k′aτσk′〉a
†
τσkbτ ′σ′k

+ (ei(k
′−k)(δδδp+1−δδδp′ ) + e−i(k

′−k)(δδδp−δδδp′+1))〈a†τ ′σ′k′bτσk′〉b
†
τσkaτ ′σ′k (5.30)

UFQ×T ′ = − V0

2Ñ

∑
τ,τ ′

∑
σ,σ′

∑
k,k′

∑
p,p′

α1

3

(
[e−i(k

′−k)(δδδp−δδδp′+1)(eikδδδp′ − eikδδδp′+2)〈a†τ ′σ′k′bτσk′〉

+ ei(k
′−k)(δδδp−δδδp′+1)(e−ikδδδp′ − e−ikδδδp′+2)〈b†τ ′σ′k′aτσk′〉]a

†
τσkaτ ′σ′k

+ [ei(k
′−k)(δδδp−δδδp′+1)(eik

′δδδp′ − eik′δδδp′+2)〈a†τ ′σ′k′aτσk′〉

+ e−i(k
′−k)(δδδp+1−δδδp′+1)(eikδδδp′ − eikδδδp′+2)〈b†τ ′σ′k′bτσk′〉]a

†
τσkbτ ′σ′k

+ [ei(k
′−k)(δδδp+1−δδδp′+1)(eik

′δδδp′ − eik′δδδp′+2)〈a†τ ′σ′k′bτσk′〉

+ e−i(k
′−k)(δδδp+1−δδδp′+1)(e−ik

′δδδp′ − e−ik′δδδp′+2)〈b†τ ′σ′k′aτσk′〉]b
†
τσkbτ ′σ′k

+ [e−i(k
′−k)(δδδp−δδδp′+1)(e−ik

′δδδp′ − e−ik′δδδp′+2)〈a†τ ′σ′k′aτσk′〉

+ ei(k
′−k)(δδδp+1−δδδp′+1)(e−ikδδδp′ − e−ikδδδp′+2)〈b†τ ′σ′k′bτσk′〉]b

†
τσkaτ ′σ′k (5.31)

UFT×Q′ = − V0

2Ñ

∑
τ,τ ′

∑
σ,σ′

∑
k,k′

∑
p,p′

α1

3

(
[ei(k

′−k)(δδδp′−δδδp+1)(eik
′δδδp − eik′δδδp+2)〈a†τ ′σ′k′aτσk′〉

+ e−i(k
′−k)(δδδp′+1−δδδp+1)(eikδδδp − eikδδδp+2)〈b†τ ′σ′k′bτσk′〉]a

†
τσkbτ ′σ′k

+ [e−i(k
′−k)(δδδp′−δδδp+1)(eikδδδp − eikδδδp+2)〈a†τ ′σ′k′bτσk′〉
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+ ei(k
′−k)(δδδp′−δδδp+1)(e−ikδδδp − e−ikδδδp+2)〈b†τ ′σ′k′aτσk′〉]a

†
τσkaτ ′σ′k

+ [ei(k
′−k)(δδδp′+1−δδδp+1)(eik

′δδδp − eik′δδδp+2)〈a†τ ′σ′k′bτσk′〉

+ e−i(k
′−k)(δδδp′+1−δδδp+1)(e−ik

′δδδp − e−ik′δδδp+2)〈b†τ ′σ′k′aτσk′〉]b
†
τσkbτ ′σ′k

+ [e−i(k
′−k)(δδδp′−δδδp+1)(e−ik

′δδδp − e−ik′δδδp+2)〈a†τ ′σ′k′aτσk′〉

+ ei(k
′−k)(δδδp′+1−δδδp+1)(e−ikδδδp − e−ikδδδp+2)〈b†τ ′σ′k′bτσk′〉]b

†
τσkaτ ′σ′k (5.32)

UFT×T ′ = −2α2
1V0

2Ñ

∑
τ,τ ′

∑
σ,σ′

∑
k,k′

∑
p,p′

(
e−i(k

′−k)(δδδp+1−δδδp′+1)(eik
′δδδp − eik′δδδp+2)(eikδδδp′ − eikδδδp′+2)〈a†τ ′σ′k′bτσk′〉a

†
τσkbτ ′σ′k

+ e−i(k
′−k)(δδδp+1−δδδp′+1)(eik

′δδδp − eik′δδδp+2)(e−ik
′δδδp′ − e−ik′δδδp′+2)〈a†τ ′σ′k′aτσk′〉b

†
τσkbτ ′σ′k

+ ei(k
′−k)(δδδp+1−δδδp′+1)(eikδδδp − eikδδδp+2)(e−ikδδδp′ − e−ikδδδp′+2)〈b†τ ′σ′k′bτσk′〉a

†
τσkaτ ′σ′k

+ ei(k
′−k)(δδδp+1−δδδp′+1)(e−ik

′δδδp − e−ik′δδδp+2)(e−ikδδδp′ − e−ikδδδp′+2)〈b†τ ′σ′k′aτσk′〉b
†
τσkaτ ′σ′k

)
.

(5.33)

Collecting equal operator terms and defining

Aα
†β
pp′ (k′ − k) ≡ ei(k′−k)(δδδp−δδδp′ )〈α†τ ′σ′k′βτσk′〉 and (5.34)

Bp(k) ≡ eikδδδp − eikδδδp+2 , (5.35)

allows us to write the full contribution from exchange term as,

UF = −V0

Ñ

∑
τ,τ ′

∑
σ,σ′

∑
k,k′

∑
p,p′

[ 1

18
[Aa

†a
pp′ (k

′ − k) +Aa
†a
pp′ (k− k′)] +

α1

3
[Aa

†b
pp̄′ (k− k′)Bp′(k) +Ab

†a
pp̄′ (k

′ − k)Bp′(−k)]

+ α2
1A

b†b
p̄p̄′(k

′ − k)Bp(k)Bp′(−k)
]
a†τσkaτ ′σ′k

+
[ 1

18
[Ab

†b
p̄p̄′(k

′ − k) +Ab
†b
p̄p̄′(k− k′)] +

α1

3
[Aa

†b
p̄p̄′ (k

′ − k)Bp′(k
′) +Ab

†a
p̄p̄′ (k− k′)Bp′(−k′)]

+ α2
1A

a†a
p̄p̄′ (k− k′)Bp(k

′)Bp′(−k′)
]
b†τσkbτ ′σ′k

+
[ 1

18
[Ab

†a
pp̄′ (k

′ − k) +Ab
†a
p̄p′ (k− k′)] +

α1

3
[Aa

†a
pp̄′ (k

′ − k)Bp′(k
′) +Ab

†b
p̄p̄′(k− k′)Bp′(k)]

+ α2
1A

a†b
p̄p̄′ (k− k′)Bp(k

′)Bp′(k)
]
a†τσkbτ ′σ′k

+
[ 1

18
[Aa

†b
p̄p′ (k

′ − k) +Aa
†b
pp̄′ (k− k′)] +

α1

3
[Aa

†a
pp̄′ (k− k′)Bp′(−k′) +Ab

†b
p̄p̄′(k

′ − k)Bp′(−k)]

+ α2
1A

b†a
p̄p̄′ (k

′ − k)Bp(−k′)Bp′(−k)
]
b†τσkaτ ′σ′k. (5.36)

Here p̄ (p̄′) denote odd values of p (p′), i.e. all terms with δδδp+1 (δδδp′+1). The matrix structure is,

UF = −V0

∑
k

f †k

(
M

1
M

2
M

3
M

4

)
fk

≡ −V0

∑
k

f †kM
F fk (5.37)

with

Mσ′σ
1,τ ′τ =

1

Ñ

∑
p,p′,k′

[ 1

18
[Aa

†a
pp′ (k

′ − k) +Aa
†a
pp′ (k− k′)]
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+
α1

3
[Aa

†b
pp̄′ (k− k′)Bp′(k) +Ab

†a
pp̄′ (k

′ − k)Bp′(−k)] + α2
1A

b†b
p̄p̄′(k

′ − k)Bp(k)Bp′(−k)
]
,

Mσ′σ
2,τ ′τ =

1

Ñ

∑
p,p′,k′

[ 1

18
[Ab

†a
pp̄′ (k

′ − k) +Ab
†a
p̄p′ (k− k′)]

+
α1

3
[Aa

†a
pp̄′ (k

′ − k)Bp′(k
′) +Ab

†b
p̄p̄′(k− k′)Bp′(k)] + α2

1A
a†b
p̄p̄′ (k− k′)Bp(k

′)Bp′(k)
]
,

Mσ′σ
3,τ ′τ =

1

Ñ

∑
p,p′,k′

[ 1

18
[Aa

†b
p̄p′ (k

′ − k) +Aa
†b
pp̄′ (k− k′)]

+
α1

3
[Aa

†a
pp̄′ (k− k′)Bp′(−k′) +Ab

†b
p̄p̄′(k

′ − k)Bp′(−k)] + α2
1A

b†a
p̄p̄′ (k

′ − k)Bp(−k′)Bp′(−k)
]
,

Mσ′σ
4,τ ′τ =

1

Ñ

∑
p,p′,k′

[ 1

18
[Ab

†b
p̄p̄′(k

′ − k) +Ab
†b
p̄p̄′(k− k′)]

+
α1

3
[Aa

†b
p̄p̄′ (k

′ − k)Bp′(k
′) +Ab

†a
p̄p̄′ (k− k′)Bp′(−k′)] + α2

1A
a†a
p̄p̄′ (k− k′)Bp(k

′)Bp′(−k′)
]
.

Note that M †
1

= M
1
, M †

4
= M

4
and M †

2
= M

3
, thus (UF )† = UF as required.

The full TBG model in reciprocal space is,

H =
∑

k∈BZ
f †k

[
Htb + V0

(
MH −MF

)]
fk, (5.38)

where,

Htb = [−µ+ t̃2(k)]s0σ0τ0 − it̃′2(k)s0σ0τz +Re[t̃1(k)]sxσ0τ0 + Im[t̃1(k)]syσ0τ0 ,

MH = n̄⊗ 18×8

and MF is as defined in Eq. 5.37.
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Chapter 6

Numerics

In this chapter we will go through the numerical solution of the TBG model. In the first section,
we describe the symmetry requirements, numbering and set up of the real space model. In the
subsequent section, we derive the discretization of momentum space and outline the set up of
the reciprocal space model. In the final section, we discuss the self-consistent iteration scheme
and argue why the preferred ground state of the system is reached upon convergence.

6.1 Real space lattice

The HF decoupling of the real space TBG model (Eq. (5.11)) performed in the last chapter
reveals a complicated structure of not only independent summations over primed and unprimed
indices leading to the ”all-to-all” operator combinations within each hexagon, but also a cou-
pling of each operator combination to nine different mean fields with varying strength set by ᾱ.
The intertwined mean field couplings of the real space model is reflected in reciprocal space by
an unusual amount of form factors, which must all be accounted for in the numerical solution.
Aside from these intricate couplings, the honeycomb lattice further complicates the numerics.
In a simple, square lattice, all system parameters are given more or less by definition: the system
size can be set by side lenght L yielding an L×L matrix with a total of N = L2 sites. The site
numbering is intuitively given by starting in one corner and counting all sites, one row at a time,
up to L2. Additionally, all mirror and rotational symmetries are automatically respected in this
L×L lattice. Unfortunately, things get less intuitive in the case of a honeycomb lattice, where
the required preservation of C3z symmetry prevents a square system. In this setion, we will
outline the numerical set up of the symmetry-preserving real space lattice and corresponding
discretization of points in the first MBZ. We will leave the detailed set up of the mean field
couplings to Appendix F.

When setting up the honeycomb lattice, three goals must be achieved. i) We must preserve C3z

and C2y, ii) in accordance with the model, the full Hamiltonian is set up as a sum over hexagon
indices, which we thus need to label in a structured manner and iii) on top of the hexagon
numbering, we must also number all individual sites, as each site must be uniquely identified
by a single input in the Hamiltonian. In the description of the numbering conventions, we will
ignore the valley and spin degrees of freedom for clarity.

Preservation of C3z and C2y with respect to the rotation center requires that each hexagon
has all symmetry related partners present in the system. Thus, we consider a simple system
of three hexagons, with the rotation center placed at the AA-region in one, see Fig. 6.1. It is
evident that C3z require hexagons adjacent to all six sides of the centered hexagon to include all
symmetry partners of the non-centered hexagons. We proceed to consider valid expansions of
the system by adding an additional hexagon in the bottom panel of Fig. 6.1. Though the final
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C3z C2y

C2yC3z

Figure 6.1: Symmetry preservation in real space. To obey C3z and C2y, each hexagon
must have all symmetry related partners represented in the system and we must add hexagons
in sets as depicted. Black dot is the origin of the system. Dashed line in the first figure is the
y-axes and arrows indicate rotation direction of the two symmetries.

star-like system does indeed obey all symmetries, the numerics become unnecessarily involved if
we allow for partially filled edges. Thus, we choose a convention where we always add hexagons
along the entire perimeter on the system, when increasing the system size. Examples of such
systems can be seen in Fig. 6.2. The reader might notice, that the numerical set up has been
rotated by 30◦ compared to the derivations in the previous chapters. This is purely due to
numerical details, and can of course be done without loss of generality. We define the system
size, L, to be the number of hexagons along each of the six sides in the system. If we expand
the system size, the added set of hexagons along the perimeter will constitute a new and larger
hexagon with L + 1 small hexagons along each side. We will refer to these sets of hexagons
as rings to avoid confusion. The number of hexagons in each ring, Rr, will clearly increase
with system size and is given by Rr = 6r, where r is the ring number defined by r = Lr − 1
and Lr is the side length of ring r. Note that we use zero-based indexing in accordance with
the Python syntax used to perform the computations. From the definition of Rr we can easily
define the total number of hexagons in the system as Rtot =

∑L−1
r=0 6r+ 1, where the additional

one accounts for the single hexagon in the r = 0 ring. This expression can be verified from
inspection of Fig. 6.2a, where Rtot =

∑4
r=0 6r + 1 = 61 (note again the zero-indexing in the

figure). Once the total number of hexagons in the system is established, we can label each
hexagon by a number, R, as illustrated in Fig. 6.2a. We choose the numbering starting point
and direction in each ring in accordance with the numbering starting point and direction of
the δδδp vectors (see Fig. 6.2b). With the numbering and symmetries in place, we have already
accomplished goals i) and ii).

Adding a ring of hexagons to the system will naturally add additional sites to the system.
However, as each site is adjacent to three different hexagons, some of the sites will already be
accounted for in the previous ring. We illustrate this point in Fig. 6.2b, where orange sites
belong to r = 0 and purple sites belong to r = 1. To define the total number of sites, N , let
us again consider the number of added sites as a function of Lr. We find that Nr = 12Lr − 6,
where Nr is the number of sites belonging to ring r, leading to N =

∑L
Lr=1 12Lr − 6. For the

case in Fig. 6.2b we have N =
∑2

Lr=1 12Lr−6 = 6+18 = 24 in agreement with the numbering.
Should the reader not be convinced, it is easy to verify that N = 150 in Fig. 6.2a by counting
all hexagon corners once. We number all sites in accordance with the hexagon numbering. With
all sites numbered we can now define our Hamiltonian as an N × N matrix, where the input
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Figure 6.2: Numbering conventions for hexagons and sites. a) Numbering convention of
hexagons in a system of size L = 5. Green hexagons are the three NNN hexagons related to the
fifth NN hoppings of sites in the red hexagon. b) Numbering convention for the individual sites
in a system of size L = 2. For each ring of hexagons added, we add a corresponding ring of sites.
Orange sites belong to ring 0 and purple sites belong to ring 1. Both numbering conventions
are chosen in accordance with the δδδp vectors defined as depicted.

on position (n,m) defines the mean fields and hoppings related to operator combination d†ndm.
Now recall that our model is set up as a sum over hexagon indices, R, and the position, p, of
the site within that hexagon. Thus we write a function, f(R), which takes the hexagon number
as input, and returns the site numbers, n, ordered by their corresponding p index. To clarify,
we consider the case for f(R = 3) which returns an array, n̄ = [2, 11, 12, 13, 14, 3], where the
order of site numbers corresponds to positions p̄ = [0, 1, 2, 3, 4, 5], see Fig. 6.2b.1 This function
enables a direct implementation of NN hopping terms, t1e

(−1)piφd†(R + δδδp)d(R + δδδp+1), given
by H(n̄[p], n̄[p+ 1]) = t1e

(−1)piφ, where p = 0, ..., 5 with periodic boundaries.

The fifth NN hoppings,
∑

R′ [(t2 + it′2)d†(R+δδδp)d(R′+δδδp)+h.c.]/3 , are interhexagon couplings
relating equal p indices. To implement these terms, we write a function g(R) which returns an
array R̄NNN = [R0, R1, R2], where R0,1,2 are the three NNN hexagons included in the R′-sum.
To exemplify, we consider g(R = 1) which will return RNNN = [20, 3, 17], see Fig. 6.2a. We
then compute f(R = 1) → n̄, f(R = 20) → m̄0, f(R = 3) → m̄1 and f(R = 17) → m̄2, where
n̄, m̄0,1,2 all contain the six site numbers of the hexagon in question. The fifth NN hoppings are
then implemented by setting H(n̄[p], m̄i[p]) + = (t2 + it′2)/3 and H(m̄i[p], n̄[p]) + = (t2− it′2)/3
for i = 0, 1, 2 and p = 0, ..., 5. Here + = is the Python syntax for adding to the value al-
ready present at H(n,m), thus when performing this rutine for all R, each term will add up
to (t2 ± it′2) due to the triple counting discussed in Section 5.1. The on-site terms are trivially
implemented as H(n, n) = −µ. We will leave the details regarding the structure of the mean
fields and implementation of the interactions to Appendix F.

As a final note on the numerical set up in real space, we comment on the consequences of
including the four flavours of each site, that is τ = ± and σ =↑, ↓ labelling valley and spin,
respectively. Each input in the Hamiltonian must be uniquely defined by a single operator
combination d†τ,σ,ndτ ′,σ′,m, where n,m refers to the site numbers as previous. We thus de-

1Note that the p-index merely defines an overall sign of the prefactors and (−1)p=0 = (−1)p=6, thus the
substitution to zero-indexing, δδδ6 → δδδ0, has been made without further complications.
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fine i = 4n + flavour and j = 4m + flavour, where flavour = 0, 1, 2, 3 corresponds to
+ ↑,− ↑,+ ↓,− ↓, respectively, and H(n,m) → H(i, j). Thus i = 0 all relates to d†+,↑,0,

i = 1 relates to d†−,↑,0 etc. Each site has four rows (columns) related to creating (annihilat-
ing) an electron where each of these rows (columns) reflect a specific flavour at that given
site. In this convention, the function f(R) returns an array, ī, with 24 entries defining all
i-indices of R. Alongside ī it returns an array p̄ = [0, 0, 0, 0, 1, 1, 1, 1, 2, ..., 5, 5, 5, 5] identify-
ing the p index of ī[l] (l = 0,...,24). We can use this to infer the additional valley-dependent
signs, where the NN hoppings are given by H (̄i[l], ī[l + 4]) = t1 exp

[
(−1)p̄[l]i(−1)lφ

]
with pe-

riodic boundary conditions. To verify this rather tortuous expression we consider the hopping
d†−,↑,n=0d−,↑,m=1. The set {−, ↑, n = 0} is represented by i = 4 · 0 + 1 = 1 and the set
{−, ↑,m = 1} is represented by j = 4 · 1 + 1 = 5. From the tight-binding model we have that
H(1, 5) is given by t1e

(−1)piτφ = t1e
(−1)p=0i(−1)φ = t1e

−iφ. From the numerics we have that
H(1, 5) = t1 exp

[
(−1)p̄[l]i(−1)lφ

]
= t1 exp

[
(−1)0i(−1)1φ

]
= t1e

−iφ. Indeed, the defintion fits.
We can implement the valley-dependent sign of the fifth NN hoppings in a similar manner, where
H (̄i[l], j̄[l]) + = (t2 + (−1)lit′2)/3. Overall the convention used is implemented in a Hamiltonian
with dimensions 4N × 4N , where N is the total number of sites and the factors of four reflect
the four different flavours at each site. Once the Hamiltonian is set up, we iterate the model
self-consistently until all mean fields converge. Before describing the self-consistent iteration
scheme, we explain the basics behind a numerical set up of the TBG model in reciprocal space.

6.2 Discretization of momentum space

To set up our Hamiltonian in reciprocal space, the primary task is to determine allowed points in
momentum space. These can be determined by demanding periodic boundary conditions such
that ψ(r) = ψ(r + R), where R = nL1 +mL2 translates the state across the lattice. Through
Bloch’s theorem we have that ψ(r + R) = eikRψ(r)⇒ eikR = 1⇒ k ·R = 2πn for n ∈ Z. We

x

y

L1 L2

R1

R2 R3

a) b)

Figure 6.3: Visualization of real space periodicity. Filled rhombi display unit cells in
a system of size L = 2. When imposing periodic boundary conditions unit cells marked by
solid and dashed green lines are equivalent. a) Illustration of the number of unit cells along
x̂ (2L) and ŷ (L). L1,2 denote the lattice vectors. b) Translation vector R1 = L(L1 + L2)
connecting equivalent unit cells along y. R2,3 are the C3z related partners of R1. To preserve
this symmetry, periodicity requirements set by R1 must also hold for R2,3.
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will consider a small system with L = 2 for simplicity, see Fig. 6.3. In Fig. 6.3a, the unit cell
marked by solid, green lines is repeated by the unit cell marked in dashed green lines. We define
the vector connecting these two unit cells as R1 = 2L1 + 2L2. It is straightforward to show
that, in general terms, R1 = L(L1 + L2), where L is the size of the system as defined in the
previous section. From trigonometric considerations, we have that L1,2 = (∓1/2,

√
3/2)TLM

where LM = |L1,2|. We thus have,

k ·R1 = k ·
(

0√
3

)
LML =

√
3kyLML = 2πn⇒ ky =

2π√
3LML

n. (6.1)

We directly conclude, that ky is discretized in steps of 2π/(
√

3LML). As we have expressed
the model in the Bravais lattice picture, the number of inequivalent ky-points should reflect the
periodicity along ŷ equal to L, see Fig. 6.3a. Thus, in the present case, we must have two
different values of n where the choice of integers sets the origin.
Due to C3z, the same periodicity requirement must hold for R2,3 = R±120◦

z R1 = (∓3/2,−
√

3/2)TLML
(see Fig.6.3b), where we find

k ·R2 = k ·
(
−3/2

−
√

3/2

)
LML⇒ −

3kx
2
−
√

3ky
2

=
2π

LML
n2

k ·R3 = k ·
(

3/2

−
√

3/2

)
LML⇒

3kx
2
−
√

3ky
2

=
2π

LML
n3

⇒ kx =
2π

3LML
(n3 − n2). (6.2)

We conclude that kx is discretized in steps of 2π/(3LML). The number of unit cells along x̂ is
2L (see Fig.6.3a), thus we have four different values of m = (n3 − n2).

G1 G2

kyKM

K'M

2π

4π
3LM

-2π
3LM 

-4π
3LM

3LM 

kx

Figure 6.4: MBZ and boundaries.
G1,2 denotes reciprocal lattice vectors.
Filled and empty blue dots are the
Dirac points. Minimum and maxi-
mum kx (ky) values are ∓4π/(3LM )
(∓2π/(

√
3LM )), respectively.

Having established the discretization in both directions,
all that is left to do, is to determine the boundaries of
the first MBZ. From Gi · Lj = 2πδij it is easy to show
that

G1,2 =

(
∓1

1/
√

3

)
2π

LM
.

Straightforward trigonometrics yields the intervals

kx = [−4π/(3LM ); 4π/(3LM )[

and

ky = [−2π/(
√

3LM ); 2π/(
√

3LM )[.

Using again the case of L = 2, if we take steps
according to Eqs. (6.1) and (6.2) we get for ky
that n = −2,−1, 0, 1 and for kx that m = −4, .., 3,
which does not agree with our previous conclusion that
(#n,#m) = (L, 2L). The discrepancy is due to the ambiguity in the choice of axis. C3z re-
quires that the discretization also holds for x̂′ along R2 and x̂′′ along R3. We solve this issue
numerically, by producing a grid of all k-points along x̂, ŷ. The set of k-values are then rotated
by ±120◦, repectively, and only coinciding points are allowed in the final grid. An example of
points before and after this selection can be seen in Fig. 6.5. This proceedure will yield a set
of Ñ inequivalent k-points, where Ñ is the number of unit cells in the corresponding real space
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0.10.1-0.1 -0.1
-0.1-0.1

kxa kxa

kyakya

a) b)

Figure 6.5: Numerical selection of allowed k-points for L = 6. Black lines mark the
MBZ boundaries and cyan line is G2 inserted as a guide to the eye. a) Initial grid of k values
with spacing according the Eqs. (6.1) and (6.2) before the selection. Here we merely sort away
all values residing outside the MBZ (blue points) and keep the remaining (orange points). We
include all points reciding on the six MBZ edges before the selection. b) Remaining points
after the C3z selection has been performed. Here we sort away half of the edges two avoid
double counting. The orange points in b) is the final set of k-points for the case of L = 6.
kx,y are in units of the reciprocal monolayer unit vector length, 1/a, and we have used that
LM = a/(2 sin(θ/2)) [22].

system.

Having identified the symmetry allowed set of k-points, the TBG model in Eq. (5.38) can be
set up. We set the dimensions of the full Hamiltonian as dim(H) = (Ñ , 8, 8) and structure

the mean field parameters in the same manner such that e.g. MF (0, 0, 0) = 〈a†+,↑,k(0)a+,↑,k(0)〉.
Here k(0) simply refers to the first point in an array containing all k-points. The tight-binding
model is generated by computing the k-dependent hopping parameters according to Eq. (4.14)
(with the additional gauge tranformation of t̃1(k)) enabling a straightforward implementation of
Eq. (5.16), where Htb has dimensions dim(Htb) = dim(H). The implementation of the Hartree
terms is also straightforward as n̄ = Ñ−1

∑
k′,iMF (k′, i, i) where {k′} = {k} and i = 0, .., 7.

Implementation of the Fock terms are tremendously more intricate. Here we merely sketch the
set up. Each Ms (s = 1,2,3,4) has four different form factors related to four different mean fields.

Each form factor has both k′- and k-dependence. We set up the 4× 4 = 16 form factors as ar-
rays with dimensions dim(M̄st) = (#k,#k′) where s, t = 1, 2, 3, 4. We then compute the input

of e.g. a†ikajk = −V0
∑

k′
(
M11(k′)MF (k′, j, i) +M12(k′)MF (k′, j, i+ 4) +M13(k′)MF (k′, j +

4, i) +M14(k′)MF (k′, j + 4, i+ 4)
)
. Here we have used that for i, j = 0, .., 3 (i, j = 4, .., 7) the

sublattice is a (b). We have also directly imposed the exchange structure of the Fock terms such

that the input on a†ikajk is given by inputs MF (k′, j, i). Finally, we note that the structure
of the form factors directly enables the sum to be performed by matrix multiplication which
reduces the computation times significantly.

6.3 Self-consistent solution

We have now discussed the numerical implementation of the decoupled TBG model in real as
well as reciprocal space. This is of course a monumental part of solving the system. However,
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we have yet to discuss how one obtains the correct solution of the system, i.e. the ground state.
The ground state is, by definition, the state with the lowest (Helmholtz) free energy. Since
the mean fields act as effective fields in the system, the free energy naturally depends on the
”strength” of these fields, i.e. their values. Now, one could simply guess these values, but the
probability of guessing the exact configuration of Rtot × 6 · 4× 6 · 4 mean fields resulting in the
lowest possible energy is obviously vanishing. Furthermore, as the mean fields are average values
of operators, these averages depend on the Hamiltonian, and consequently the free energy, by
definition. Thus, what we have on our hands are a set of self-consistent equations which can be
solved iteratively. To see how the iteration scheme comes about, we first identify

〈c†kcl〉 =
〈∑

r

γ†rU
†
r,k

∑
s

Ul,sγs

〉
=
∑
r,s

U †r,kUl,s〈γ
†
rγs〉

=
∑
r,s

U †r,kUl,sδr,sf(Er, µ), (6.3)

where k, l can be any indices labelling the states, U is the unitary transformation diagonaliz-
ing H, γ’s denote the eigenvectors, Er are the eigenenergies, µ is the chemical potential and
f(Er, µ) is the Fermi-Dirac distribution. In real space r, s run over all 4N = 8Ñ states, where,
as previous, N is the number of sites and Ñ is the number of unit cells. In reciprocal space,
we have assumed homogeneity ensuring that k is a good quantum number, thus r, s will only
run over the eight possible flavour combinations of each k. We specifically write the chemical
potential as a variable in the Fermi-Dirac distribution, since the carrier density is given by

〈n〉 = Ñ−1
∑8Ñ

n=0 f(En, µ) ∈ [0, 8], where we can vary the chemical potential to set the desired
filling.

The iteration scheme is sketched in Fig. 6.6. To initialize the Hamiltonian, we must asign
some value to the mean field parameters. To avoid bias in this intialization, we choose a ran-
dom value between zero and one for all parameters. These random mean fields are used to set
up the Hamiltonian as described in the previous two sections. We proceed to diagonalize the
Hamiltonian and obtain the eigensystem, {E,U}. Inserting this system in Eq. (6.3), we gener-
ate new values of the mean fields. The new mean fields are used to set up a new Hamiltonian,
which can again be diagonalized to obtain a new set, {E,U}, used to generate a third set of
mean fields etc. The proceedure of a single iteration is: Set up the Hamiltonian → Diagonalize
the Hamiltonian → Generate new mean fields. After each iteration, we check if the system
has converged. Due to the immense amount of various mean fields in our model, we choose to
define convergence by the condition

∑
n |En(m− 1)− En(m)| < 8Ñ · 10−10t1 with m denoting

the iteration number, i.e. the average change of each energy in a single iteration must be less
than 10−10t1. When this requirement is met, the iterations are stopped and we can deduce the
ground state from the final mean fields.
Alongside the iteration of the mean fields, we also iterate the chemical potential, µ, to set the
desired filling of the system. The small proceedure is illustrated in the dashed rectangle in Fig.
6.6. From the eigensystem {E,U} obtained through the diagonalization of H, we calculate

〈n〉 = Ñ−1
∑8Ñ

n=0 f(En, µ). We then set µ(m + 1) = µ(m) + η(ν − 〈n〉), where ν ∈ [0, 8] is the
target filling set by the user, η sets the size of the change and m is again the iteration number.
It is evident that µ will decrease for ν < 〈n〉 and increase for ν > 〈n〉 as it should be. The
expression also ensures fixed µ as soon as ν = 〈n〉.

Before presenting the results obtained through this scheme, we wish to clarify why convergence
of the energies reflects a minimization of the free energy. To demonstrate this concept we
consider an on-site Hubbard model for simplicity. The mean field decoupled interaction of this
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Adjust μ

Figure 6.6: Schematic of the self-consistent iteration scheme. Rutine shown in the
solid rectangle describes the primary iteration of the mean field parameters. Rutine in dotted
rectangle show the parallel iteration of the chemical potential, µ. The abrieviations are mean
field parameters (MFs) and Hamiltonian (H). See text for detailed describtion of both rutines.

model reads UMF
Hub = V

∑
i(〈ni↓〉ni↑ + ni↓〈ni↑〉 − 〈ni↓〉〈ni↑〉), where niσ = c†iσciσ, i denotes the

site and σ denotes the spin. We choose the z-direction to point along the spin without loss of
generality, thus the exchange terms 〈c†i↑ci↓〉 = 0. The exact form of the kinetic Hamiltonian is
not important in the following.
Let us denote the mean field parameters minimizing the free energy, FMF , as n̄iσ (σ =↑, ↓). We
must then have that

0 =
dFMF

dn̄iσ
=

d

dn̄iσ

(
− 1

β
ln[ZMF ]

)
=

1

ZMF
Tr
[
e−βHMF

d

dn̄iσ
HMF

]
=

1

ZMF
Tr
[
e−βHMF V (niσ̄ − n̄iσ̄)

]
= V (〈niσ̄〉MF − n̄iσ̄)

where ZMF = Tr[e−βHMF ] is the partition function of the mean field decoupled Hamiltonian,
HMF = Hkin + UMF

Hub . Now let 〈niσ̄〉MF (m) denote the value of the mean field parameter
computed in iteration m. We then have that

dFMF (m)

d[〈niσ̄〉MF (m− 1)]
= V (〈niσ̄〉MF (m)− 〈niσ̄〉MF (m− 1)) = 0

only when 〈niσ̄〉MF (m) = n̄iσ̄(m−1) for all i, i.e. at convergence. If 〈niσ̄〉MF (m) 6= n̄iσ̄(m−1)→
HMF (m) 6= HMF (m−1)→

∑
n |En(m−1)−En(m)| 6= 0, thus we conclude that convergence of

the eigenenergies ensures convergence of the mean fields, which in turn ensures a minimization
of the free energy.
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Results

In this chapter we present results obtained self-consistently from the numerical procedure de-
scribed in the previous chapter. We focus on three commensurate fillings of the bands with
ν = 2, 3, 4 electrons per unit cell, recall that ν = 4 corresponds to charge neutrality. All three
commensurate fillings will be explored at low and intermediate interaction strengths. The results
are computed with periodic boundary conditions unless open boundary conditions are explicitly
stated. The parameters of the assisted hopping interactions, α1 and φ, express the overlap of
neighboring Wannier states within each hexagon. This overlap is computed in Supplementary
Material of Ref. [24], thus we adopt the values α1 = 0.23 and φ = 0.743π in our computa-
tions. Note the ratio between cluster charge interactions and assisted hopping interactions is
α1/(1/3) ∼ O(1) directly expressing the extended shape of the Wannier orbitals. Remaining
parameters are N = 600⇔ Ñ = 300, t1 = t = 1.0, t2 = 0.025t, t′2 = 0.1t and the temperature,
T = 2.5 · 10−5t . Before presenting the results, we recall the symmetries of the system. The
model is invariant under Uv(1) ⊗ SU(2) ⊗ SU(2) representing the valley charge conservation
and spin degeneracy in the two decoupled valleys. In addtion, the model exhibits spinfull and
spinless TRS and the spatial symmetries are the point group D3, the global C2x and discrete
translational symmetry among unit cells.

7.1 Charge neutrality

The first results we present in this thesis are obtained at filling ν = 4, that is at charge
neutrality (CN), where four out of the eight narrow bands are filled. The renormalized real
space mean fields (MFs) for V0 = 6.0t are shown in Table 7.1. The result is homogeneous despite
a completely random, inhomogeneous intialization of the MFs. We first note that all on-site
MFs are unchanged when including the interactions. Furthermore, all spin/valley mixing mean
fields are also unchanged. Thus the result does not break neither the spin SU(2) symmetries
nor the Uv(1) valley symmetry. Let us first discuss the intersublattice renormalized hoppings,

i.e. terms of type 〈d†τσpdτσp±1,3〉. While the MFs themselves might seem slightly confusing,
the overall structure yields nothing but a sublattice and valley dependent phase in complete
agreement with the gauge transformation. Upon inspection, it is clear that 〈d†τσpdτσp±1,3〉 =

|〈d†τσpdτσp±1,3〉|e(−1)piτφ′ , where φ′ is the renormalized φ. These terms will modify the shape
and width of the bands but not cause any bands splitting, crossings, gap openings or other
interesting features.
The appearance of the purely imaginary 〈d†τ,σ,pdτ,σ,p±2〉 terms, on the other hand, cannot be

understood directly from the gauge transformation, as it only affects intersublattice terms where
the phases cancel. They can, however, be deduced from the exchange terms of the decoupled
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V0 = 6t AB (p = 0, 2, 4) and BA (p = 1, 3, 5)

d†+↑p d†−↑p d†+↓p d†−↓p
d+↑p - - - -
d−↑p - - - -
d+↓p - - - -
d−↓p - - - -
d+↑p±1 −0.066 + (−1)p0.027i - - -
d−↑p±1 - −0.066− (−1)p0.027i - -
d+↓p±1 - - −0.066 + (−1)p0.027i -
d−↓p±1 - - - −0.066− (−1)p0.027i
d+↑p±2 ±0.084i - - -
d−↑p±2 - ∓0.084i - -
d+↓p±2 - - ±0.084i -
d−↓p±2 - - - ∓0.084i
d+↑p+3 0.059− (−1)p0.024i - - -
d−↑p+3 - 0.059 + (−1)p0.024i - -
d+↓p+3 - - 0.059− (−1)p0.024i -
d−↓p+3 - - - 0.059 + (−1)p0.024i

Table 7.1: Renormalized MFs at ν = 4 and V0 = 6t. The input on (dτ ′σ′p′ , d
†
τσp) represents

the MF parameter 〈d†τσpdτ ′σ′p′〉. The± signs on the NNN hoppings refer to the hopping direction
p ± 2. As the result is homogeneous the listed values contain information about all sites. We
have subtracted the bare band contributions evaluated at ν = 4 and ignored all MFs with
|MF |max
|MF | > 100.

interaction. To see this, we consider exchange terms with p′ = p± 2, and have

U ∝
∑
n,m

αn(p± 2)αm(p)〈d†p±2+ndp+m〉d
†
pdp±2,

where we drop the spin and valley indices for simplicity and n,m = {−1, 0, 1} as previous. As

Htb includes NN hoppings, we always have finite values of 〈d†p±1dp〉 and 〈d†p±2dp±1〉, where all
positive (negative) signs are represented in the p′ = p+ 2 (p′ = p− 2) term. We thus have,

U ∝
(
α∓1(p± 2)α0(p)〈d†p±1dp〉+ α0(p± 2)α±1(p)〈d†p±2dp±1〉

)
d†pdp±2

=
α1

3
|〈NN〉|(±e−iτφ ∓ eiτφ)d†pdp±2 = ∓2iα1

3
|〈NN〉| sin(τφ)d†pdp±2 (7.1)

τ = +1 τ = _1

Figure 7.1: Illustration of the emergent
NNN hoppings at CN. Arrow directions in-
dicate the sign of the coupling. The NNN hop-
pings are purely imaginary with the sign deter-
mined by hopping direction and valley index.
The hoppings result in an effective flux at the
center of each hexagon. The fluxes of the two
valleys are opposite, thus the net flux is zero.

for p even, and

U ∝ α1

3
|〈NN〉|(∓eiτφ ± e−iτφ)d†pdp±2

= ∓2iα1

3
|〈NN〉| sin(τφ)d†pdp±2 (7.2)

for p odd. Here we have used that Htb pre-
serves D3, thus all NN couplings have equal
magnitudes and we denote it |〈NN〉|. It is
evident that the emergence of NNN hoppings
is inevitable in our model. Furthermore, the
gauge transformation ensures these hoppings
to be purely imaginary with an overall sign
according to hopping direction and valley in-
dex, as is also evident in Table 7.1. We note
that the sign is identical for p even and odd.
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The NN mean fields all have either n or m = ±1 and we conclude that these purely imaginary
NNN hoppings are a direct consequence of the topological assisted hopping interaction. Fig. 7.1
illustrate the imaginary hoppings, where the arrow directions indicate the sign of the coupling.
It is evident that an effective flux can be associated with the center of each hexagon for each
valley. The two valleys will experience opposite fluxes and the net flux is zero.
The presence of the NNN hoppings causes an instability of the Dirac semi-metallic phase at
charge neutrality and the Dirac cones are gapped away, see Fig. 7.2. Here we use that the result
is homogeneous, allowing for a solution of the system in reciprocal space with q = 0 as derived
in Chapter 5. The results obtained in reciprocal space are in complete quantitative agreement
with the real space results. Top left plot in Fig. 7.2 show the bare, kinetic bands (V0 = 0). The
result is identical to the bands presented in Chapter 4. The three band structures presented with
V0 6= 0 all have an energy offset defined thorugh the Hartree terms and the chemical potential, µ.
The latter is marked by dashed lines in Fig. 7.2. As we shift µ to ensure ν = 4, the correct filling
is obtained when the offet is roughly Eoff ≈ V0

∑
R n̄(R)− µ = V0ν − µ = 4V0 − 4V0/2 = 2V0.

This value of the offset is exact, if µ is positioned in the middle of the gap. However, since
we choose to disregard the last terms of the HF decoupling, the excitation energies have an
arbitrary energy reference and there is no reason to fix µ to the gap center.

3

22
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3-3

0E/t

K'M KMΓM MM

E/t

E/tE/t

16

8
K'M KMΓM MM

V0 = 0 V0 = 3

V0 = 6 V0 = 9

Figure 7.2: Band structures at CN for various interaction strengths. Top left figure
show the bare bands. This structure is identical to the structure presented in Chapter 4.
Remaining structures have V0 6= 0 and significant gaps are evident in all three cases. The gap
size increases with increasing V0. The shape of the occupied bands gradually shifts from concave
to convex.

It is evident that a significant gap is present even at V0 = 3. The gap increases with interaction
strength, while the shape of the filled bands gradually shifts from a concave to a convex struc-
ture. The form factors in MF must thus exhibit this convex shape, and the gradual shift directly
expresses the competition between Htb and UHF . To investigate a possible critical interaction
strength of this insulating phase, we plot the gap size at KM , ∆(KM ), as a function of V0 in
Fig. 7.3. Blue line is the gap size of the full model with α1 = 0.23 as usual and orange line is the
gap size for the α1 = 0 case, i.e. without the assisted hopping terms. For α1 = 0 the spectrum
remains gapless. The slight increase in gap size is a finite size effect and ∆(KM , α1 = 0)→ 0 for
N →∞. For α1 = 0.23 the gap opens for infinitely small V0 and the size increases linearly with
V0. Thus, the result confirms both the origin and inevitable emergence of the NNN hoppings.

The fact that the imaginary NNN hoppings opens a gap at charge neutrality should not be a
surprise to the readers familiar with the Haldene model [28]. The Haldane model was the first
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theoretical proposal of a topolgical insulator which produces a quantum Hall effect without any
net magnetic flux through the system.

α1= 0.23
α1= 0.00

Δ(KM)/t

V0/t

3.5

0.0

1.0

2.0

0.0 4.0 10.0

Figure 7.3: Gap size as a function of
interaction strength at CN. Blue line
is the gap size of the full TBG model and
the values can be directly compared to the
bands shown in Fig. 7.2. The gap opens
immediatly as we include interactions, and
the size of the gap increases linearly with
increasing V0. Orange line show the gap
size without assisted hoppings. The slight
increase in gap size with V0 for α1 = 0 is
a finite size effect and ∆(KM , α1 = 0)→ 0
for N →∞.

In the orignial Haldane model, a gap emerges
in the graphene spectrum due to broken (spin-
less) time-reversal symmetry. In the present case
we have four copies of the Haldane model in-
cluding both valley and spin. Since the val-
leys are related through time-reversal and expe-
rience opposite effective fluxes (see Fig. 7.1),
the result does not break (spinless or spin-
full) time-reversal despite the emergence of a
gap.

Haldane showed that complex NNN hoppings on
a honeycomb lattice not only causes a gap to
open but also relates a Chern number, C = ±1
for τ = ±1, to the bands in the present regime
[28]. We remind the reader that the Chern num-
ber is a topological invariant which manifests it-
self through gapless edge modes in a topological
insulator. The number of edge modes associated
with each band is quantized according to the Chern
number, C, and the system exhibits a quantized
Hall conductance, i.e. the quantum Hall effect.
Thus, following the findings of Haldane, we expect
the result to exhibit quantized edge modes and we
dub this phase the quantum valley Hall (QVH)
phase. To investigate this feature, we derive an ex-
pression of the site-resolved local density of states,
LDOS, as

LDOS(i, ω) = − 1

π
Im[GR(i, ω)]

= − 1

π
Im
[∑

n

|Ui,n|2

ω − En + iη

]
, (7.3)

where i reflects both site and flavours as in the previous chapter, GR is the retarded Green’s
function, U is the unitary tranformation that diagonalizes H and η → 0. This is expression is
found using that

G(i, τ) = −[θ(τ)〈ci(τ)c†i (0)〉 − θ(−τ)〈c†i (0)ci(τ)〉]

= −[θ(τ)
∑
n

Ui,nU
†
n,i〈γn(τ)γ†n(0)〉 − θ(−τ)

∑
m

U †m,iUi,m〈γ
†
m(0)γm(τ)〉]

=
∑
n

|Ui,n|2
(
− [θ(τ)〈γnγ†n〉 − θ(−τ)〈γ†nγn〉]e−Enτ

)
=
∑
n

|Ui,n|2
(
− [θ(τ)(1− f(En))− θ(−τ)f(En)]e−Enτ

)
⇒ G(i, ikn) =

∫ β

0
eiknτG(i, τ)dτ

=
∑
n

|Ui,n|2

ikn − En
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⇒ GR(i, ω) =
∑
n

|Ui,n|2

ω − En + iη

where G is the Matsubara Green’s function, τ is imaginiary time, ikn are the Matsubara fre-
quencies and we used analytical continuation in the last step. By opening the boundaries of the
system in the QVH phase and integrating the LDOS across the gap, edge localized states should
appear. The result is shown in Fig. 7.4, where we present both valley and spin-resolved LDOS
for later comparison. For the valley-resolved (spin- resolved) results, top (bottom) panel of Fig.
7.4, we have added the contributions from both spin directions (valleys). The edge modes are
clearly visible in all four cases. In the QVH phase at CN we have the valence bands of both
spin directions filled for both valleys, thus the in-gap LDOS, LDOS∆, is equal for σ =↑, ↓ and
τ = ±1. While the computation of the Chern numbers, hence the quantization of the number
of edge states, is left for future work, the clear evidence of gapless edge modes justifies the claim
of the non-trivial topology of the QVH phase. This is a rather striking result, as it places TBG
as a strong contestant in the search for interaction-induced topological phases in real phases of
matter. A search which has been subject to increasing interest during recent years [29–32].

The possibility of experimental evidence of these topological edge modes at CN is, unfortu-
nately, doubtful. According to Haldane model, the propagation direction changes with valley
index while both spin directions for each valley will propagate in the same direction. Thus
even if one splits the spin degeneracy by applying an external magnetic field, we will still have
two counter-propagating modes with equal spin and opposite valley index yielding no net Hall
conductance. At this stage, what we can verify from experiments is the general insulating be-
haviour expected at CN from the measurements performed by Lu et al., Fig. 1.2. Furthermore,
if the QVH is a general feature across various fillings, it could in principle lead to the supposed
QAH measurement performed by Serlin et al., see Fig. 1.4.

As a final note on the QVH phase at CN, we mention the findings of a direct comparison
between the HF study presented in this thesis and a quantum Monte Carlo (QMC) study of the
same model performed by Yuan Da Liao from the Chinese Academy of Sciences in Beijing. The
preprint manuscript is attached in Appendix G. First and foremost, the QMC study confirms
the QVH phase. Furthermore, we find a qualitative agreement on the linear increase in gap size
with increasing V0. Strikingly, we even find a quantitative agreement on the NNN hoppings
for α1 = 0.1 and V0 = 8t. The power of this comparison cannot be underestimated. QMC
simulations offer an exact solution of the model, and the general agreement serves as a direct
validation of the HF approximation in the TBG model. Additionally, QMC simulations will
often encounter the so-called sign-problem which prohibits solutions. In the present case, a
sign-problem free simulation can only be performed at CN with φ = π/2. This is in strong
contrast to the HF model of this thesis, as both the filling and φ are free parameters and can be
chosen as desired. Thus the HF machinery offers a much larger exploration of the TBG phase
diagram.
In the study attached in Appendix G the parameters are chosen as φ = π/2 (to avoid a sign-
problem) and α1 = 0.45. Thus the result also provides a general parameters check, and verifies
that the QVH is stable across varying φ and α1. From Eqs. (7.1) and (7.2) we assume that the
magnitude of the NNN hoppings increase with α1, which is confirmed by the results presented
in Appendix G. In addition to this parameters check, we also check for finite size issues and
find complete quantitative agreement between the MFs in Table 7.1, N = 600, and a system
with N = 1350.

The validation of the interaction-induced QVH phase at CN from QMC raises a series of ques-
tions which can only be answered by HF calculations. Is the QVH phase stabil across several
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Figure 7.4: Spin- and valley-resolved in-gap LDOS at CN for V0 = 6t. The LDOSs are
integrated for 8.8 ≤ ω/t ≤ 11.8 with discretisation ∆ω = 10−2 and η = 0.001. Top panel show
valley-resolved LDOS(τ, n) =

∑
σ LDOS(τ, σ, n), where n is the site index. Bottom panel show

the spin-resolved LDOS(σ, n) =
∑

τ LDOS(τ, σ, n). All four plots are identical, as we have four
occupied bands corresponding to one band of each flavours at CN. Units of rx,y, aM = LM/

√
3,

is the moiré lattice spacing.

of the commensurate filling regions, where the experimental evidence suggest insulating phases
(Figs. 1.2, 1.3)? Is the QVH phase encountered at infinitely small interaction strengths at
all fillings? And finally, can the QVH phase pose as a possible explanation of the QAH effect
observed in Ref. [10]? We will attempt to answer these questions in the subsequent sections.

7.2 Three-quarters and half filling at intermediate interaction
strengths

In this section we present results at three-quarters and half filling of the valence bands, i.e.
ν = 3, 2 electrons per unit cell, respectively. We will primarily discuss results obtained at
V0 = 6t in the intermediate interaction regime. We know from the results at charge neutrality
that the HF method produces strikingly realiable results in this regime at ν = 4. Furthermore,
we know that the order parameters of the QVH phase, that is the NNN hoppings, increase
with interaction strength. Thus, it is not unreasonable to begin our exploration of new fillings
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regimes and the universality of the QVH phase at this relatively high interaction strength.
We find a homogeneous ground state at ν = 3 and V0 = 6t and the renormalized real space
MFs are shown in Table 7.2. The results are obtained with the usual parameters listed in the
introduction to this chapter. We have initialized the MFs in a homogeneous, random manner,
where all 24 × 24 MFs for each hexagon (see Appendix F) are generated randomly, but we
use the same random 24 × 24 MFs as the initial MFs in each hexagon. We will return to the
justification of this initialization later.

V0 = 6t AB (p = 0, 2, 4) and BA (p = 1, 3, 5)

d†+↑p d†−↑p d†+↓p d†−↓p
d+↑p 0.004 - 0.190− 0.100i -
d−↑p - 0.125 - -
d+↓p 0.190 + 0.100i - -0.254 -
d−↓p - - - 0.125
d+↑p±1 −0.073 + (−1)p0.004i - AB: 0.087 + 0.059i -
d−↑p±1 - −0.045− (−1)p0.049i - -
d+↓p±1 AB: 0.105i - −0.132− (−1)p0.115i -
d−↓p±1 - - - −0.045− (−1)p0.049i
d+↑p±2 −0.050± 0.064i - ±0.017± 0.032i -
d−↑p±2 - −0.050∓ 0.084i - -
d+↓p±2 ∓0.017± 0.032i - −0.050± 0.020i -
d−↓p±2 - - - −0.050∓ 0.084i
d+↑p+3 0.011− (−1)p0.040i - AB: 0.020− 0.034i -
d−↑p+3 - 0.010 + (−1)p0.062i - -
d+↓p+3 AB: 0.016− 0.036i - 0.014 + (−1)p0.007i -
d−↓p+3 - - - 0.010 + (−1)p0.062i

Table 7.2: Renormalized MFs at ν = 3 and V0 = 6t. The input on (dτ ′σ′p′ , d
†
τσp) rep-

resents the MF parameter 〈d†τσpdτ ′σ′p′〉. The ± signs on the NNN hoppings refers to the
hopping direction p ± 2. The NN and NNNN hoppings marked by AB are the values for
the AB-sublattice. The BA-sublattice values are defined through hermitian conjugation, since
〈d†+↑p=ABd+↓p±1=BA〉† = 〈d†+↓p=BAd+↑p∓1=AB〉. As the result is homogeneous, the listed values
contain information about all sites. We have subtracted the bare band contributions evaluated
at ν = 3 and ignored all MFs with |MF |max

|MF | > 100.

The structure of the renormalized MFs at ν = 3 in Table 7.2 is slightly more complicated than
the result at CN. However, the result preserves Uv(1) and we can inspect the result one valley
at a time. For τ = −1 the renormalization affects the same MFs as the previous result at CN
with an additional renormalization of the densities. For ν = 3 in the bare band case, we enter
at metallic phase and the chemical potential is positioned in the valence bands (see Fig. 7.2).
The increase in carrier density evident in the diagonal on-site terms implies a band modification
lowering the bands. We will confirm this assertion later. Furthermore, we note that seemingly
real component of the NNN hoppings is solely due to the subtraction of the bare bands, and the
full value of e.g. 〈d†+↑pd+↑p±2〉 = ±0.064i. The result for τ = −1 preserves the internal SU(2).

For τ = +1 the interaction induces non-zero σx,z,y-components, that is 〈d†+↑pd+↑p〉−〈d†+↓pd+↓p〉 6=
0 and 〈d†+↑pd+↓p〉 − 〈d†+↓pd+↑p〉 6= 0, thus we have a finite magnetization in this valley and the
result breaks the internal SU(2) symmetry. Since the model does not include any mechanisms
coupling to the spin (e.g. magnetic field or spin-orbit coupling), it points along an arbitrary
direction in the SU(2) Bloch sphere. The direction is equal for all sites, hence it is ferromag-
netic. The ferromagnetism naturally also induces non-zero σx,y,z-components in the hoppings.
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We show this valley selective ferromagnetism in Fig. 7.5a, where we choose to plot the σz-
component without loss of generality. The ferromagnetism is clearly present (absent) in τ = +1
(τ = −1). Additionally, as opposed to τ = −1, the interactions decrease the total density of
τ = +1. Thus we must have significant valley polarization, as is indeed evident from Fig. 7.5b.
Finally, we note that the QVH structure of the NNN hoppings is also present for τ = +1. We
dub this phase a QVH phase with valley selective ferromagnetism.
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Figure 7.5: Spin and valley polarization at ν = 3 and V0 = 6t. a) Spin polarization along
ẑ of the two valleys. Valley +1 has non-zero ferromagnetic spin polarization. Valley −1 has
no spin polarization. b) Valley polarization,

∑
σ(〈nn,σ,+〉 − 〈nn,σ,−〉) ≡ 〈ni,+〉 − 〈ni,−〉 = −0.5,

yielding two occupied bands with τ = −1 and a single occupancied band with τ = +1.

The emergent ferromagnetism is the justification for the homogeneous initilization of the MFs.
As the reader may be aware, a random initialization of the individual spins in a ferromagnetic
system will usually lead to domains of different spin directions. In the present case, we acciden-
tally managed to construct a homogeneous ferromagnet from an inhomogeneous initialization.
However, the reproducibility of the ferromagnetic phase from an inhomogeneous initialization
with only a single domain, i.e. spin direction, was poor and computation times were unneces-
sarily long. We found by the homogeneous, yet random, initialization that the results presented
here are highly reproducible, though the magnetism can shift to τ = −1 and the spin direction
naturally differs from computation to computaion. Both of these variations are to be expected
from SU(2) and the random aspect of the initialization.

The results obtained at ν = 3, 4 implies a strikingly simple interpretation depicted in Fig. 7.6.
In this interpretation we consider eight completely decoupled bands. The four upper bands are
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the conduction bands and the four lower bands are the valence bands. Each conduction/valence
band can be labelled with a particular flavour. Here we assume a rotation of the spin sub-
space has been performed such that ↑ really points along the spin in the SU(2) Bloch sphere.

}
}

Conduction
bands

Valence
bands τ = +1, σ = 

τ = +1, σ = 

τ = _1, σ = 

τ = _1, σ = 

τ = _1, σ = 
τ = +1, σ = 
τ = _1, σ = 
τ = +1, σ = 

ν = 4

ν = 3

ν = 2

Figure 7.6: Schematic representation
of bands and occupancies at various
fillings. Labelling each band by its flavour,
we find at CN that we have two bands
of opposite spin filled in each valley. The
bands are spin degenerate, thus SU(2) is
preserved within each valley. At ν = 3 we
have two spin degenerate bands filled for
τ = −1 and a single spin ↑ band filled for
τ = +1. Thus the total system is valley
and spin polarized. At ν = 2 we have one
band filled in each valley. Both bands have
σ = ↑ and SU(2) is broken independently
in each valley.

At CN (ν = 4) we have all valence bands
filled, and the system exhibits neither spin
nor valley polarization. At three-quarter fill-
ing (ν = 3) we have both spin direc-
tions of τ = −1 filled, and this valley
will have no net magnetization. However,
as we can only fill three bands, the sec-
ond valley must be completely spin polarized.
This picture certainly agrees with our find-
ings so far. Following this line of thought,
we have two options at ν = 2. Ei-
ther the system pushes the band labelled by
{τ = +1, σ = ↑} above the chemical poten-
tial and thereby finds a completely valley po-
larized phase with no net magnetization or the
system pushes the band labelled by {τ =
−1, σ = ↓} above the chemical potential and
has one band filled for each valley with fi-
nite magnetization in both valleys. Indeed,
when computing the results at ν = 2 we
find the latter of the two as indicated in Fig.
7.6.

We present the renormalized MFs at ν = 2 in Table
7.3 and the σz-component of the valley-resolved ferromagnetism in Fig. 7.7a. The result still pre-
serves the Uv(1) symmetry, thus each valley break SU(2) independently and pick two different,
arbitrary directions in the Bloch sphere. We note from Table 7.3 that the magnitude of the spin
is equal in both valleys as

√
0.0562 + 0.1912 + 0.1512 =

√
0.1422 + 0.1682 + (−0.120)2 = 0.25.

Adding the contributions from both valleys, we indeed get a total ferromagnetic spin of
|σ̄| = 1/2, yielding a complete spin polarization of the bands. For completeness we plot the
valley polarization in Fig. 7.7b, where we merely confirm an equal occupation of both valleys
as expected. The QVH structure of the NNN hoppings is evident from the MFs yet again and
we dub the phase found at ν = 2 with V0 = 6t a ferromagnetic QVH phase.

Throughout the analysis of the preferred electronic phases at ν = 2, 3 and V0 = 6t we have
hinted at the emergence of a gap and even dubbed the phases accordingly. However, we have
yet to establish the presence of an insulating gap. Thus we display the modified band structures
of the two in Fig. 7.8. These are obtained by performing a Fourier tranformation of all the real
space MFs, use these as inputs in the self-consistent k-space computation and plot the bands
upon convergence.
An insulating gap has clearly emerged in the structures. The position of the chemical poten-
tial just below the empty bands is a consequence of the very low temperature regime (recall
T = 2.5 · 10−5t) effectively causing the Fermi-Dirac distribution to be a step function. Thus,
as soon as the chemical potential is below a given band the occupancy of said band is zero.
As before, the exact position of the chemical potential within the gap has no significance. For
ν = 3 we have three filled bands, two from valley τ = −1 and one from valley τ = +1. The two
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V0 = 6t AB (p = 0, 2, 4) and BA (p = 1, 3, 5)

d†+↑p d†−↑p d†+↓p d†−↓p
d+↑p 0.056 - 0.191− 0.151i -
d−↑p - 0.142 - 0.168 + 0.120i
d+↓p 0.191 + 0.151i - −0.055 -
d−↓p - 0.168− 0.120i - −0.141
d+↑p±1 −0.053 + (−1)p0.003i - AB: 0.110 + 0.048i -
d−↑p±1 - −0.034− (−1)p0.040i - AB: 0.091− 0.045i
d+↓p±1 AB: −0.021 + 0.118i - −0.079− (−1)p0.045i -
d−↓p±1 - AB: −0.013− 0.100i - −0.099 + (−1)p0.083i
d+↑p±2 −0.078± 0.051i - ±0.025± 0.032i -
d−↑p±2 - −0.078∓ 0.066i - 0.020− 0.028i
d+↓p±2 ∓0.025± 0.032i - −0.078± 0.033i -
d−↓p±2 - −0.020∓ 0.028i - −0.078∓ 0.018i
d+↑p+3 −0.045− (−1)p0.067i - AB:−0.030− 0.033i -
d−↑p+3 - −0.046 + (−1)p0.083i - AB: −0.024 + 0.029i
d+↓p+3 AB:0.026− 0.037i - −0.043− (−1)p0.047i -
d−↓p+3 - AB: 0.020 + 0.032i - −0.042 + (−1)p0.031i

Table 7.3: Renormalized MFs at ν = 2 and V0 = 6t. The input on (dτ ′σ′p′ , d
†
τσp) rep-

resents the MF parameter 〈d†τσpdτ ′σ′p′〉. The ± signs on the NNN hoppings refers to the
hopping direction p ± 2. The NN and NNNN hoppings marked by AB are the values for
the AB-sublattice. The BA-sublattice values are defined through hermitian conjugation, since
〈d†+↑p=ABd+↓p±1=BA〉† = 〈d†+↓p=BAd+↑p∓1=AB〉. As the result is homogeneous, the listed values
contain information about all sites. We have subtracted the bare band contributions evaluated
at ν = 2 and ignored all MFs with |MF |max

|MF | > 100.

bands with τ = −1 preserves SU(2) within that valley and are degenerate. A residual splitting
along ΓΓΓMMM from the bare bands splits the degenerate τ = −1 bands from the τ = +1 band.
For ν = 2 we have two filled bands, one from each valley, and a residual splitting along ΓΓΓMMM

remains.

At CN it was reasonable to assume the gap to have non-trivial topology due to the almost
direct applicabilty of the Haldane model. We further argued for this non-trivial topology of
the bands through the emergence of gapless edge states. The emergence of insulating gaps at
ν = 2, 3 enable an investigation of the in-gap LDOS at the two fillings. The results are obtained
in the same manner as described in the previous section. The valley- and spin-resolved results
are shown in Figs. 7.9 and 7.10.

The emergence of gapless edge modes is indisputable at both fillings. At ν = 2 (Fig. 7.9), the
in-gap LDOSs are equivalent for both valleys. This agrees well with the band structure and
MFs, where one (spin polarized) band from each valley is occupied. Since the two valleys are
completely decoupled, we must have that each gapless mode connects the bulk bands labelled
by σ =↑, ↓ within the same valley. From the MFs we know that both bands are primarily spin
↑ along ẑ. Thus the spin can be expected to rotate from ↑ to ↓ when moving from the bottom
to the top of the gap. This should in principle yield an equal contribution from both spin
directions. On the contrary, Fig. 7.9 show a dominating spin ↓ contribution. However, upon
further inspection, we do find that∑

n

∫ −∆+0.1
−∆ LDOS(ω, n ↑)dω∑

n

∫ −∆+0.1
−∆ LDOS(ω, n ↓)dω

= 2.28,
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Figure 7.7: Spin and valley polarization at ν = 2 and V0 = 6t. a) Spin polarization along
ẑ of the two valleys. Both valleys are ferromagnetic. The two valleys are decoupled and break
SU(2) independently, thus the magnitude of the spin along ẑ is different for the two. b) Valley
polarization

∑
σ(〈nn,σ,+〉 − 〈nn,σ,−〉) ≡ 〈ni,+〉 − 〈ni,−〉 = 0.0 yielding no valley polarization and

equal occupancy of a single band for each valley.
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Figure 7.8: Band structures of ν = 2, 3 with V0 = 6t. An insulating gap has emergered in
both band structure. At ν = 3 the two τ = −1 bands are degenerate while a single τ = +1
band is evident from the residual splitting from Htb along ΓΓΓMMM . At ν = 2 a single band is
occupied in each valley. These bands also split along ΓΓΓMMM .

and, ∑
n

∫ ∆
∆−0.1 LDOS(ω, n ↑)dω∑

n

∫ ∆
∆−0.1 LDOS(ω, n ↓)dω

= 0.71,

where we have suppressed the τ summation for simplicity, n indicates the site and ±∆ are the
energies at the upper and lower gap edge, respectively. Thus we do indeed have a larger spin
↑ contribution near the lower band and a larger spin ↓ contribution near the upper band. Fur-
thermore, we find upon inspection of the energy spectrum that the in-gap excitation energies
are not equidistant and two excitation energies recide in the interval −∆ < ω < −∆ + 0.1 while
six excitation energies reside within ∆ − 0.1 < ω < ∆. Thus the spin polarization could be a
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Figure 7.9: Spin- and valley-resolved in-gap LDOS at ν = 2. The LDOSs are integrated
for 3.38 ≤ ω/t ≤ 4.74 with discretisation ∆ω = 4.5 ·10−3 and η = 0.001. Top panel show valley-
resolved LDOS(τ, n) =

∑
σ LDOS(τ, σ, n), where n is the site index. Bottom panel show the

spin-resolved LDOS(σ, n) =
∑

τ LDOS(τ, σ, n). Valley-resolved plots are identical, as we have
one occupied bands from each valley. Units of rx,y, aM = LM/

√
3, is the moiré lattice spacing

finite size artifact. A further exploration of this is left for future work.
The result in Fig. 7.9 suggests that the ferromagnetic QVH phase does indeed exhibit non-
trivial topology as was the case for the non-magnetic QVH phase at CN. However, the Hall
conductance in the Haldane model is derived at CN from the gap-closing-and-opening at KM

(K′M ) and the results are not applicable at ν = 2. Nonetheless, we can state is that the ferro-
magnetism breaks spinfull time-reversal, T , while spinless T is still preserved. If we still have
|C| = 1 for all bands and the propagation direction of the edge mode is still defined by the val-
ley index, the two modes will counter-propagate and the total Hall conductance is zero despite
the broken spinfull T . To investigate this hypothesis, one must perform a proper topological
analysis. This requires a computation of the Berry curvature of each occupied band, Ωn(k),
where the associated Chern number can then be calculated as Cn = 1

2π

∫
BZ dk Ωn(k) [33]. The

analysis is left for future work.

At ν = 3 we have two bands with τ = −1 and a single band with τ = +1 occupied. As the
valleys are still decoupled, one would intuitively assume from the result at CN that the in-gap
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Figure 7.10: Spin- and valley-resolved in-gap LDOS at ν = 3. The LDOSs are integrated
for 6.45 ≤ ω/t ≤ 7.81 with discretisation ∆ω = 4.5 · 10−3 and η = 0.001. Top panel show
valley-resolved LDOS(τ, n) =

∑
σ LDOS(τ, σ, n), where n is the site index. Bottom panel

show the spin-resolved LDOS(σ, n) =
∑

τ LDOS(τ, σ, n). Units of rx,y, aM = LM/
√

3, is the
moiré lattice spacing

LDOS of valley −1 would be roughly twice as large as the in-gap LDOS for valley +1. Interest-
ingly, we find quite the contrary conclusion in Fig. 7.10. Without a proper topological analysis,
one can only conjucture at this discrepancy. What we can confirm is a visible difference in
the valley-resolved in-gap LDOS. This difference presumably refers to the spontanously broken
(spinfull and spinless) T and suggests the possibility of a finite, quantized, net Hall conductance
without external magnetic field, i.e. a quantum anomalous Hall (QAH) effect. Since we have
approximate particle-hole symmetry of the bare bands (broken by the small t2 = 0.025) it is
not unreasonable to conjecture that the proposed QAH at ν = 7 (three-quarters filling of the
conduction bands) presented in Ref. [10] and discussed in Chapter 1 might be closely related to
the results presented here at ν = 3. We also note the apparent spin polarization of the gapless
edge modes. This is most likely caused by the mechanisms discussed for the ν = 2 case.

We end the discussion of the results at ν = 2, 3 with an investigation of the V0 dependence.
From the results at CN we know that a decrease in V0 causes the bands to gradually bend
upwards, see Fig. 7.2. For Fig. 7.8 one can imagine how this modification in shape alongside a
decrease of the gap will cause the occupied bands to overlap in energy with the empty bands,

67



CHAPTER 7. RESULTS

9

K'M KMΓM MMK'M KMΓM MM

V0 = 4.1t
c

1

ν= 3 ν= 2

E/t

11

4

E/t

V0 = 4.2tc

Figure 7.11: Band structures for V c
0 at ν = 2, 3. Reducing V0 will cause an upwards bending

of the occupied bands and a decrease of the band gap. Combining these two effects leads to a
critical interaction strength required to open an insulating gap. Upon further reduction of V0

in the present two structure, the chemical potential can no longer avoid a band crossing.

thus closing the gap at a critical interaction strength V c
0 . We find at ν = 3 that V c

0 = 4.2t and
at ν = 2 that V c

0 = 4.1t, see Fig. 7.11. It is clear that upon further upwards bending of the
bands at KM (K′M ) and reduction of the gap, the chemical potential can no longer avoid band
crossings. This is in stark contrast to the results at CN, where an arbitrarily small splitting of
the bands will open an insulating gap. We will discuss the results at ν = 2, 3 below the critical
interaction strength in the following, last section of this chapter.

7.3 Three-quarters and half filling at low interaction strengths

When the insulating gap closes at ν = 2, 3, distinct phases occur upon variations of V0. We will
begin by stating the two common properties of the phases presented in this section: i) all phases
are inhomogeneous and ii) all phases are metallic, i.e. the insulating gap does not reemerge with
the inhomogeneous structures. Due to the inhomogeneity, we will spare the reader of endless
tables listing all of the MFs and restrict our discussion to figures displaying the inhomogeneous
structures. Additionally, since q 6= 0, we do not have access to the modified band structures
with the current machinery. The metallic behaviour is thus established from the real space
excitation energy spectra and yields an important agreement with experiments. Recall Fig.
1.3 where increasing the screening, i.e. decreasing the interactions, suppresses the resitivity at
fillings ν = 2, 3. While an agreement on general transport properties is neat, the overall goal
from a theoretical point of view must be to determine the full electronic ground state. As a
multitude of electronic phases, e.g. charge density wave, spin density waves, (anti)ferromagnets
etc., can all be metallic, the transport properties merely serve as motivation to explore the
phase diagram in the low V0 regime.

We first present results at ν = 3 with V0 = 2t, 3t. The results are obtained with a random,
homogeneous initialization of the MFs as in the previous section. In Fig. 7.12a we display the
site- and valley-resolved σy-component of the spin for V0 = 2t. All valley mixing MFs are zero,
thus the result preserves Uv(1) and the valleys remain decoupled. Valley +1 preserves SU(2)
while valley −1 breaks it. To investigate the spin modulation of τ = −1 we perform a Fourier
analysis, using that

Mi(q) =
1

N

∑
r

eiqrMi(r), (7.4)

where r is the position of the site, N is the total number of the sites, q = k− k′ and Mi(r) =

〈d†τ (r)σi(r)dτ (r)〉 for i = x, y, z and d†τ (r) = (d†τ↑(r), d†τ↓(r)). Mi(q) will peak at q-points
corresponding to the modulation of Mi(r). My(q) of Fig. 7.12a with τ = −1 can be seen in Fig.
7.13a, where we subtract the average magnetization along ŷ to avoid a peak at ΓΓΓM . We find
three inequivalent q-vectors related by C3z. Interestingly, the modulation directions are sligthy
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rotated with respects to the original x̂ which breaks C2y. The angle of rotation is θ = 11◦. Fig.
7.13b depict the spin modulations obtained through an inverse Fourier transformation only
including the six dominating q-vectors with an overlay of the modulation’s contour lines. We
find that the wave length of the modulation is λ = 6.54aM = 3.77LM . This length scale sets the
size of the modulation unit cells. However, due to the relative rotation between the modulations
and the underlying lattice, translational symmetry is not preserved among the modulation unit
cells. As we have seen previous, the slight relative rotation should induce a moiré pattern with
length scale ∼ O(LM/θ) = 5.2LM . However, as we also find incommensurate length scales
the lattice and spin modulations, this estimate no longer holds and a moiré pattern is not
guaranteed. If an enhanced, well-defined, unit cell exists, the lenght scale is >> L = 10 (recall
the definition of the system size from the previous chapter). Generally, when modulation length
scales are ' L, the system cannot display the full structure due to periodic boundaries. Thus
the result in Fig. 7.12a is expected to be highly system size dependent.
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Figure 7.12: Site- and valley-resolved dominating spin components at ν = 3. a) Spin
component along ŷ with V0 = 2t. The result preserves Uv(1). Valley +1 has no spin polarization.
Valley −1 is ferromagnetic with modulations breaking spatial symmetries. b) Spin component
along ẑ with V0 = 3t. The result breaks Uv(1) and substantial valley mixing is present. Both
figures show striped, antiferromagnetic spin modulations. The modulation lengths are indicated
by λ±1. Due to valley mixing, the two modulations will interfere and the combined modulation
has λint ∼ 15LM > L = 10.

We conclude that the result at ν = 3 for V0 = 2t suggests that a spin density wave (SDW)
could be energetically favorable. The result further indicates that the spin modulation will only
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be present in one of the valleys, and that this valley will spontanously break the translational
symmetry and possibly enhance the TBG moiré unit cell to an even larger superstructure.

For V0 = 3t the result alters significantly. In Fig. 7.12b we plot the site- and valley-resolved
σz-component. This result has substantial valley mixing with |τx|, |τy| ≈ 0.1 (where τx,y are
the Pauli matrices in valley space) and thus breaks Uv(1). The fact that the valleys mix is a
new feature not previously encountered in this thesis. This leads us to suspect that the valley
mixing phase might be merely a local minimum in the free energy landscape trapping the MFs.
Interestingly, we find that even when using the converged MFs of the result for V0 = 2t as input
in the V0 = 3t computation, the valley mixing MFs are quickly induced, and the result moves
towards the striped spin modulation in Fig. 7.12b. This finding suggests that the valley mixing
phase is really a global minimum and further implies a highly involved phase diagram at ν = 3
in the low V0 regime, where it is reasonable to assume that more phases might emerge with
a complete sweep of V0. In addition to the valley mixing, Fig. 7.12b show significant striped
spin modulations breaking C3z while preserving C2 along q. By Fourier analysis we find wave
lengths λ+1 = |2π/q+1| = 3.75LM and λ−1 = 5.0LM as indicated in the figure. However, as
the valleys are not decoupled, the separation is meaningless and the true modulation length is
defined from the inteference of the two patterns. Here we note that, on top of the different wave
lengths, the two modulation structures has a relative phase shift evident by comparing the two
structures in Fig. 7.12b. We find that the interference has λint ∼ 15 > L = 10, thus the result
is again expected to be system size dependent
While further investigation is needed to draw certain conclusion, both results in Fig. 7.12 sug-
gest that broken spatial symmetries and SDWs could be a general feature at ν = 3 in the low
V0 regime.
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Figure 7.13: Fourier spectrum and dominating 2π/q modulations along σy for ν = 3,
τ = −1 and V0 = 2t. a) Fourier spectrum of the spin modulations depicted in Fig. 7.12a
for τ = −1. The spectrum peaks at three distinct q-vectors related by C3z. The peaks are
rotated by θ = 11◦ with respect to the C3z related axis of the MBZ. We have subtracted the
average magnetization along ŷ to avoid a peak at q = (0, 0). b) Inverse FT of the six peaks
in a). The spin modulations has a strong resemblance to the total modulations in Fig. 7.12a
for τ = −1. Overlay is a contour plot of the interference pattern of all three modulation waves
with interference wave length λ = 3.77LM .

At ν = 2, the low V0 regime proves even more intricate. Initiating the MFs homogeneously as
previous immediately traps the system in a local minimum of the free energy landscape, where
convergence at commensurate filling ν = 2 is impossible with the current iteration scheme. Thus
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Figure 7.14: Site-resolved dominating spin components at ν = 2. Both result has valley
mixing. a) Spin component along x̂ with V0 = 2t. Striped, ferromagnetic spin modulations
reminiscent of the result at ν = 3 and V0 = 3t are evident. Fourier analysis yields the modulation
length λ = 2.5LM b) Spin component along ŷ with V0 = 3t. The result suggest a domain wall
along ry with rx/aM ∼ −1. The domain wall obscures the modulation pattern. The result
breaks translational symmetry and the modulations could be similar to the pattern in τ = −1
at ν = 3 for V0 = 2t.

we initiate the MFs in a random and inhomogeneous manner. The site-resolved spin along x̂
for V0 = 2t, 3t is shown in Fig. 7.14. We have not resolved the results in the valley degree of
freedom due to significant valley mixing of |τx,y| ∼ 0.01, 0.03 for V0 = 2t, 3t, respectively. The
results are reminiscent of the preceeding results at ν = 3 with two notable differences: i) both
results exhibit significant valley mixing and ii) the spin modulations are exchanged in terms of
interaction strength such that the striped SDW is now present for V0 = 2t and moiré super-
structure SDW is (questionably) present for V0 = 3t. We also note that the result for V0 = 3t
suggests the presence of a domain wall around rx/aM ∼ −1. As we have previously discussed
the likely emergence of domain walls in spin structures with an inhomogeneous initialization, it
is not an unexpected outcome. However, it further complicates the analysis of the spin modu-
lations for V0 = 3t, as no well-defined pattern is evident. Fourier analysis of this result yields a
multitude of different q-peaks, reflecting the lack of universal structure. In contrast, a Fourier
analysis of Fig. 7.14a yields a single modulation length of λ = 2.5LM fully consistent with
the visible SDW. As λ < L = 10, the result is expected to be system size independent. While
further investigations are desirable at V0 = 3t, the result at V0 = 2t is fully reproducible be-
tween random initilization and seems reliable. We again note that the quite different results at
V0 = 2t, 3t points towards a highly complicated phase diagram and investigations at additional
interaction strengths is needed to make general conclusions. Though nothing definite can be
deduced before these investigations have been performed, we choose to include the results due
to a recent experiment presented Ref. [34]. Here Cao et al. reports finite transverse resistance
of TBG samples with ν ∼ 2. The transverse resistance suggests an anisotropic resistivity tensor
with non-zero off-diagonal components. Cao et al. uses this to conjecture that the correlated
electronic state might be either a nematic phase or a (charge/spin) density wave. This conjec-
ture agrees with our preliminary results at ν = 2 and serves as a strong motivation of further
investigations in this parameter range. Since spin structures are measurable in neutron scat-
tering experiments, it opens the possibility of direct comparison between theoretical preditions
and experimental evidence.

With this intriguing prospect, we finalize the results presented in this thesis. The results sug-
gests a wide range of interaction-induced electronic phases in TBG and indicate that further
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investigations of parameter space will add new and exotic phases to the phase diagram. In
particular, the results imply that the topological QVH phase is a general feature of the TBG
model for intermediate interactions strengths which places TBG as a promising candidate of an
experimental realization of interaction-induced topological phases of matter.
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Chapter 8

Conclusion and Outlook

Throughout this thesis we contructed a model reflecting the symmetries and extended nature of
the Wannier orbitals in ”magic” angle TBG. We further performed a Hartree-Fock decoupling
of said model and implemented a self-consistent solution numerically. The self-consistent mini-
mization of the free energy yielded a general feature of the TBG model with interaction-induced
imaginary next-nearest neighbor hoppings reminiscent of the Haldane model. The imaginary
hoppings generated an insulating gap in the band structure where a clear presence of edge
modes in the gap suggests a non-trivial topology of the phases. These quantum valley Hall
(QVH) phases was identified across several band fillings and interaction strength. In particular,
we found a strong stability of the QVH phase at charge neutrality across all low-intermediate
interaction strengths. This finding ties well into the experimental evidence of a clear insulating
gap persistent across several interaction strengths [9].
At three-quarters and half filling of the valence bands we found that the signatures of the
QVH phase disappeared below critical values of the interaction strength. In this low interaction
strength regime, we found significant variations of the phases across narrow regions. The vari-
ations suggest a highly complex phase diagram reflecting the numerous symmetries all subject
to spontanous breaking. Despite the variations, all phases found at low interaction strengths
exhibited an anisotropy in the form of spin density waves which is in general agreement with
new experimental evidence [8]. A further investigation of this regime is an intriguing opportu-
nity to identify the fundamental mechanism driving the spin density waves thereby opening the
possiblity of a direct comparison to neutron scattering experiments.

While further analysis of the results presented in this thesis alone could be instructive, the
constructed model offers a much wider exploration of the TBG platform. In particular, a decou-
pling in the superconducting channels could yield compelling exotic phenomenons. Currently,
the theoretical predictions of the superconducting pairing mechanisms in TBG are pointing in
all directions, to say the least. Unconventional p + ip-, d + id- and extended s-wave pairings
have all been proposed [35–39] alongside studies predicting a conventional phonon-driven super-
conductivity [40, 41]. However, many of these studies does not go beyond the on-site Hubbard
interaction [35, 39, 40], thus an exploration of the possible pairing mechanisms in our lattice
model which directly reflects the shape of the Wannier orbitals could prove valuable. If su-
perconductivity can be self-consistently stabilized, an additional investigation of the interplay
between superconductiviting and insulating phases might yield tremendous insight into the elec-
tronic behaviour in strongly correlated materials and, if dreams really do come true, lay a piece
in the unsolved scientific puzzle of high-Tc superconductivity.

73



Bibliography

[1] Cyril Proust and Louis Taillefer. The remarkable underlying ground states of cuprate
superconductors. Annual Review of Condensed Matter Physics, 10(1):409–429, 2019.

[2] J. M. B. Lopes dos Santos, N. M. R. Peres, and A. H. Castro Neto. Graphene bilayer with
a twist: Electronic structure. Phys. Rev. Lett., 99:256802, Dec 2007.

[3] G. Trambly de Laissardiere, D. Mayou, and L. Magaud. Localization of dirac electrons in
rotated graphene bilayers. Nano Letters, 10(3):804–808, Mar 2010.
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symmetry breaking in a moiré superlattice. arXiv:1911.11367, 2019.

[9] Petr Stepanov, Ipsita Das, Xiaobo Lu, Ali Fahimniya, Kenji Watanabe, Takashi Taniguchi,
Frank H. L. Koppens, Johannes Lischner, Leonid Levitov, and Dmitri K. Efetov. The
interplay of insulating and superconducting orders in magic-angle graphene bilayers.
arXiv:1911.09198, 2019.

[10] M. Serlin, C. L. Tschirhart, H. Polshyn, Y. Zhang, J. Zhu, K. Watanabe, T. Taniguchi,
L. Balents, and A. F. Young. Intrinsic quantized anomalous hall effect in a moiré het-
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Appendix A

Fourier transformation of the
tight-binding model

In this appendix, we perform a Fourier tranformation of Htb.
We define the transformations as follows,

ai+ααα =
1√
Ñ

∑
k∈BZ

eik(Ri+ααα)ak,

a†i+ααα =
1√
Ñ

∑
k∈BZ

e−ik(Ri+ααα)a†k,

bi+2ααα =
1√
Ñ

∑
k∈BZ

eik(Ri+2ααα)bk,

b†i+2ααα =
1√
Ñ

∑
k∈BZ

e−ik(Ri+2ααα)b†k, (A.1)

where Ñ is the number of unit cells in the system.
Inserting into Eq. (4.7) yields,

H0 = −µ
∑
Ri

[a†i+ααα · ai+ααα + b†i+2ααα · bi+2ααα]

= − µ
Ñ

∑
Ri

∑
k,k′∈BZ

[
e−ik(Ri+ααα)eik

′(Ri+ααα)a†k · ak′ + e−ik(Ri+2ααα)eik
′(Ri+2ααα)b†k · bk′

]
= − µ

Ñ

∑
k,k′∈BZ

∑
Ri

e−i(k−k
′)Ri
[
e−i(k−k

′)αααa†k · ak′ + e−i(k−k
′)2αααb†k · bk′

]
= − µ

Ñ

∑
k,k′∈BZ

∑
G

δk′,k+G

[
e−i(k−k

′)αααa†k · ak + e−i(k−k
′)2αααb†k · bk

]
= − µ

Ñ

∑
k∈BZ

∑
G

[
eiGαααa†k · ak+G + eiG2αααb†k · bk+G

]
, (A.2)

where G = rK1 + sK2 , r, s ∈ Z, are the reciprocal lattice vectors.
From the definition in Eq. (A.1) we have,

ak+G =
1√
Ñ

∑
Ri

e−i(k+G)(Ri+ααα)ai+ααα

=
1√
Ñ

∑
Ri

e−ik(Ri+ααα)ai+αααe
−iGααα

= ake
−iGααα. (A.3)
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Likewise we have bk+G = bke
−iG2ααα. The result is general for ααα being any shift of position

relative to Ri. Inserting into Eq. (A.2) we get,

H0 = − µ
Ñ

∑
k∈BZ

∑
G

[
eiGαααe−iGαααa†k · ak + eiG2αααe−iG2αααb†k · bk

]
= − µ

Ñ

∑
k∈BZ

∑
G

[
a†k · ak + b†k · bk

]
= −µ

∑
k∈BZ

[a†k · ak + b†k · bk], (A.4)

since we have Ñ distinct reciprocal lattice vectors. Using the definitions of Eq. (A.1) in the
second term (Eq. (4.8)), we get

H1 = t1
∑
Ri

[a†i+ααα · (bi+2ααα + bi+2ααα−L1 + bi+2ααα−L2) + h.c.]

=
t1

Ñ

∑
Ri

∑
k,k′∈BZ

[
e−ik(Ri+ααα)a†k · (e

ik′(Ri+2ααα) + eik
′(Ri+2ααα−L1) + eik

′(Ri+2ααα−L2))bk′

+ (e−ik
′(Ri+2ααα) + e−ik

′(Ri+2ααα−L1) + e−ik
′(Ri+2ααα−L2))b†k′ · e

ik(Ri+ααα)ak

]
=
t1

Ñ

∑
k,k′∈BZ

∑
Ri

[
e−i(k−k

′)Rie−ikααα(eik
′2ααα + eik

′(2ααα−L1) + eik
′(2ααα−L2))a†k · bk′

+ ei(k−k
′)Rieikααα(e−ik

′2ααα + e−ik
′(2ααα−L1) + e−ik

′(2ααα−L2))b†k′ · ak

]
=
t1

Ñ

∑
k,k′∈BZ

∑
G

δδδk′,k+G

[
e−ikααα(eik

′2ααα + eik
′(2ααα−L1) + eik

′(2ααα−L2))a†k · bk′

+ eikααα(e−ik
′2ααα + e−ik

′(2ααα−L1) + e−ik
′(2ααα−L2))b†k · ak′

]
=
t1

Ñ

∑
k∈BZ

∑
G

[
e−ikααα(ei(k+G)2ααα + ei(k+G)(2ααα−L1) + ei(k+G)(2ααα−L2))a†k · bk+G

+ eikααα(e−i(k+G)2ααα + e−i(k+G)(2ααα−L1) + e−i(k+G)(2ααα−L2))b†k+G · ak

]
(A.5)

Recalling that each phase has its origin in individual FTs with different shifts in real space, we
can follow the same procedure as in Eq. (A.3) and get,

H1 =
t1

Ñ

∑
k∈BZ

∑
G

[
e−ikααα(ei(k+G)2αααe−iG2ααα + ei(k+G)(2ααα−L1)e−iG(2ααα−L1) + ei(k+G)(2ααα−L2)e−iG(2ααα−L2))a†k · bk

+ eikααα(e−i(k+G)2αααeiG2ααα + e−i(k+G)(2ααα−L1)eiG(2ααα−L1) + e−i(k+G)(2ααα−L2)eiG(2ααα−L2))b†k · ak

]
=
t1

Ñ

∑
k∈BZ

Ñ
[
e−ikααα(eik2ααα + eik(2ααα−L1)) + eik(2ααα−L2))a†k · bk

+ eikααα(e−ik2ααα + e−ik(2ααα−L1) + e−ik(2ααα−L1))b†k · ak

]
= t1

∑
k∈BZ

[
eikααα(1 + e−ikL1 + e−ikL2)a†k · bk + h.c.

]
(A.6)

Proceeding to the third term of the Hamiltonian, Eq. (4.9), we get

H2 = t2
∑
Ri

[
a†i+ααα · (ai+ααα−L1+2L2 + ai+ααα−L1−L2 + ai+ααα+2L1−L2)

+ b†i+2ααα · (bi+2ααα−L1+2L2 + bi+2ααα−L1−L2 + bi+2ααα+2L1−L2) + h.c.
]
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=
t2

Ñ

∑
Ri

∑
k,k′∈BZ

[
e−ik(Ri+ααα)(eik

′(Ri+ααα−L1+2L2) + eik
′(Ri+ααα−L1−L2) + eik

′(Ri+ααα+2L1−L2))a†k · ak′

+ e−ik(Ri+2ααα)(eik
′(Ri+2ααα−L1+2L2) + eik

′(Ri+2ααα−L1−L2) + eik
′(Ri+2ααα+2L1−L2))b†k · bk′

+ eik(Ri+ααα)(e−ik
′(Ri+ααα−L1+2L2) + e−ik

′(Ri+ααα−L1−L2) + e−ik
′(Ri+ααα+2L1−L2))a†k′ · ak

+ eik(Ri+2ααα)(e−ik
′(Ri+2ααα−L1+2L2) + e−ik

′(Ri+2ααα−L1−L2) + e−ik
′(Ri+2ααα+2L1−L2))b†k′ · bk

]
=
t2

Ñ

∑
Ri

∑
k,k′∈BZ

[
e−i(k−k

′)Rie−ikααα(eik
′(ααα−L1+2L2) + eik

′(ααα−L1−L2) + eik
′(+ααα+2L1−L2))a†k · ak′

+ e−i(k−k
′)Rie−ik2ααα(eik

′(2ααα−L1+2L2) + eik
′(2ααα−L1−L2) + eik

′(2ααα+2L1−L2))b†k · bk′

+
[
ei(k−k

′)Rieikααα(e−ik
′(ααα−L1+2L2) + e−ik

′(ααα−L1−L2) + e−ik
′(+ααα+2L1−L2))a†k′ · ak

+ ei(k−k
′)Rieik2ααα(e−ik

′(2ααα−L1+2L2) + e−ik
′(2ααα−L1−L2) + e−ik

′(2ααα+2L1−L2))b†k′ · bk

]
=
t2

Ñ

∑
k∈BZ

∑
G

[
e−ikααα(ei(k+G)(ααα−L1+2L2) + ei(k+G)(ααα−L1−L2) + ei(k+G)(ααα+2L1−L2))a†k · ak+G

+ e−ik2ααα(ei(k+G)(2ααα−L1+2L2) + ei(k+G)(2ααα−L1−L2) + ei(k+G)(2ααα+2L1−L2))b†k · bk+G

+ eikααα(e−i(k+G)(ααα−L1+2L2) + e−i(k+G)(ααα−L1−L2) + e−i(k+G)(ααα+2L1−L2))a†k+G · ak

+ eik2ααα(e−i(k+G)(2ααα−L1+2L2) + e−i(k+G)(2ααα−L1−L2) + e−i(k+G)(2ααα+2L1−L2))b†k+G · bk

]
=
t2

Ñ

∑
k∈BZ

Ñ
[
(eik(−L1+2L2) + eik(−L1−L2) + eik(2L1−L2))a†k · ak

+ (eik(−L1+2L2) + eik(−L1−L2) + eik(2L1−L2))b†k · bk

+ (e−ik(−L1+2L2) + e−ik(−L1−L2) + e−ik(2L1−L2))a†k · ak

+ (e−ik(−L1+2L2) + e−ik(−L1−L2) + e−ik(2L1−L2))b†k · bk

]
= 2t2

∑
k∈BZ

[
cos
(
k · (−L1 + 2L2)

)
+ cos

(
k · (−L1 − L2)

)
+ cos

(
k · (2L1 − L2)

)]
(a†k · ak + b†k · bk).

(A.7)

Finally we turn our attention to the fourth and last term of the Hamiltonian, Eq. (4.10),

H2′ = t′2
∑
Ri

[[
a†i+ααα × (ai+ααα−L1+2L2 + ai+ααα−L1−L2 + ai+ααα−2L1+L2)

]
z

+
[
b†i+2ααα × (bi+2ααα−L1+2L2 + bi+2ααα−L1−L2 + bi+2ααα−2L1+L2)

]
z

−
[
(a†i+ααα−L1+2L2

+ a†i+ααα−L1−L2
+ a†i+ααα−2L1+L2

)× ai+ααα
]
z

−
[
(b†i+2ααα−L1+2L2

+ b†i+2ααα−L1−L2
+ b†i+2ααα−2L1+L2

)× bi+2ααα

]
z

]
,

where we used that
(

[a†i × aj ]z

)†
= −[a†j × ai]z, which can easily be verified.

H2′ =
t′2
Ñ

∑
Ri

∑
k,k′∈BZ

[[
e−ik(Ri+ααα)a†k × (eik

′(Ri+ααα−L1+2L2)ak′ + eik
′(Ri+ααα−L1−L2)ak′ + eik

′(Ri+ααα+2L1−L2)ak′)
]
z

+
[
e−ik(Ri+2ααα)b†k × (eik

′(Ri+2ααα−L1+2L2)bk′ + eik
′(Ri+2ααα−L1−L2)bk′ + eik

′(Ri+2ααα+2L1−L2)bk′)
]
z

−
[
(e−ik

′(Ri+ααα−L1+2L2)ak′ + e−ik
′(Ri+ααα−L1−L2)ak′ + e−ik

′(Ri+ααα+2L1−L2)ak′)× eik(Ri+ααα)a†k
]
z

−
[
(e−ik

′(Ri+2ααα−L1+2L2)bk′ + e−ik
′(Ri+2ααα−L1−L2)bk′ + e−ik

′(Ri+2ααα+2L1−L2)bk′)× eik(Ri+2ααα)b†k
]
z

]
=
t′2
Ñ

∑
Ri

∑
k,k′∈BZ

[
e−i(k−k

′)Rie−ikααα(eik
′(ααα−L1+2L2) + eik

′(ααα−L1−L2) + eik
′(ααα+2L1−L2))

[
a†k × ak′

]
z
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+ e−i(k−k
′)Rieik2ααα(eik

′(2ααα−L1+2L2) + eik
′(2ααα−L1−L2) + eik

′(2ααα+2L1−L2))
[
b†k × bk′

]
z

− ei(k−k′)Rieikααα(e−ik
′(ααα−L1+2L2) + e−ik

′(ααα−L1−L2) + e−ik
′(ααα+2L1−L2))

[
a†k′ × ak

]
z

− ei(k−k′)Rie−ik2ααα(e−ik
′(2ααα−L1+2L2) + e−ik

′(2ααα−L1−L2) + e−ik
′(2ααα+2L1−L2))

[
b†k′ × bk

]
z

=
t′2
Ñ

∑
k∈BZ

∑
G

[
e−ikααα(ei(k+G)(ααα−L1+2L2) + ei(k+G)(ααα−L1−L2) + ei(k+G)(ααα+2L1−L2))

[
a†k × ak+G

]
z

+ e−ik2ααα(ei(k+G)(2ααα−L1+2L2) + ei(k+G)(2ααα−L1−L2) + ei(k+G)(2ααα+2L1−L2))
[
b†k × bk+G

]
z

− eikααα(e−i(k+G)(ααα−L1+2L2) + e−i(k+G)(ααα−L1−L2) + e−i(k+G)(ααα+2L1−L2))
[
a†k+G × ak

]
z

− eik2ααα(e−i(k+G)(2ααα−L1+2L2) + e−i(k+G)(2ααα−L1−L2) + e−i(k+G)(2ααα+2L1−L2))
[
b†k+G × bk

]
z

=
t′2
Ñ

∑
k∈BZ

Ñ
[
(eik(−L1+2L2) + eik(−L1−L2) + eik(2L1−L2))

[
a†k × ak

]
z

+ (eik(−L1+2L2) + eik(−L1−L2) + eik(2L1−L2))
[
b†k × bk

]
z

− (e−ik(−L1+2L2) + e−ik(−L1−L2) + e−ik(2L1−L2))
[
a†k × ak

]
z

− (e−ik(−L1+2L2) + e−ik(−L1−L2) + e−ik(2L1−L2))
[
b†k × bk

]
z

= 2it′2
∑

k∈BZ

[
sin
(
k · (−L1 + 2L2)

)
+ sin

(
k · (−L1 − L2)

)
+ sin

(
k · (2L1 − L2)

)]
·
([

a†k × ak

]
z

+
[
b†k × bk

]
z

)
. (A.8)

Combining the results, the tight-binding Hamiltonian in k-space is

Htb =
∑

k∈BZ

(
− µ[a†k · ak + b†k · bk] + t1

[
eikααα(1 + e−ikL1 + e−ikL2)a†k · bk + h.c.

]
+ 2t2

[
cos
(
k · (−L1 + 2L2)

)
+ cos

(
k · (−L1 − L2)

)
+ cos

(
k · (2L1 − L2)

)]
(a†k · ak + b†k · bk)

+ 2it′2
[

sin
(
k · (−L1 + 2L2)

)
+ sin

(
k · (−L1 − L2)

)
+ sin

(
k · (2L1 − L2)

)]
·
([

a†k × ak

]
z

+
[
b†k × bk

]
z

))
.

(A.9)

Writing this in terms of the basis f †k = (a†k,x , a
†
k,y , b

†
k,x , b

†
k,y), we have

Htb =
∑

k∈BZ
f †k



−µ+ t̃2(k) t̃′2(k) t̃1(k) 0

− t̃′2(k) −µ+ t̃2(k) 0 t̃1(k)

t̃∗1(k) 0 −µ+ t̃2(k) t̃′2(k)

0 t̃∗1(k) − t̃′2(k) −µ+ t̃2(k)


fk, (A.10)

where,

t̃1(k) = t1
[
eikααα(1 + e−ikL1 + e−ikL2)

]
,

t̃2(k) = 2t2
[

cos
(
k · (−L1 + 2L2)

)
+ cos

(
k · (−L1 − L2)

)
+ cos

(
k · (2L1 − L2)

)]
,

t̃′2(k) = 2it′2
[

sin
(
k · (−L1 + 2L2)

)
+ sin

(
k · (−L1 − L2)

)
+ sin

(
k · (2L1 − L2)

)]
. (A.11)
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Appendix B

Fourier transformation of the
interaction model

In this appendix, we derive the Fourier transformation (FT) of

U =
V0

2

∑
R

∑
j,j′

∑
σ,σ′

(
1

3
Qj,σ(R) + α1Tj,σ(R)

)(
1

3
Qj′,σ′(R) + α1Tj′,σ′(R)

)
. (B.1)

We define the Fourier transformations as follows,

dj,σ(R + δδδp) =
1√
N

∑
k∈BZ

eik(R+δδδp)cj,σ,k ,

d†j,σ(R + δδδp) =
1√
N

∑
k∈BZ

e−ik(R+δδδp)c†j,σ,k (B.2)

where N is the total number of sites and k = (kx, ky) are points within the first Brillouin zone
defined by the reciprocal vectors of L1,2.
We perform the FT of each term individually,

Qj,σ(R) =
1

N

6∑
p=1

∑
k,k′

e−ik(R+δδδp)eik
′(R+δδδp)c†j,σ,kcj,σ,k′

=
1

N

6∑
p=1

∑
k,k′

e−i(k−k
′)(R+δδδp)c†j,σ,kcj,σ,k′

=
1

N

6∑
p=1

∑
k,q

eiq(R+δδδp)c†j,σ,kcj,σ,k+q,

where q = k′ − k. Likewise,

Tj,σ(R) =
1

N

6∑
p=1

(−1)p−1
∑
k,k′

(
e−ik(R+δδδp)eik

′(R+δδδp+1)c†j,σ,kcj,σ,k′ + h.c.
)

=
1

N

6∑
p=1

(−1)p−1
∑
k,k′

(
e−i(k−k

′)Re−ik·δδδpeik
′·δδδp+1c†j,σ,kcj,σ,k′ + ei(k−k

′)Reik·δδδpe−ik
′·δδδp+1c†j,σ,k′cj,σ,k

)

=
1

N

6∑
p=1

(−1)p−1
∑
k,q

(
eiqRe−ik·δδδpei(k+q)·δδδp+1c†j,σ,kcj,σ,k+q + e−iqReik·δδδpe−i(k+q)·δδδp+1c†j,σ,k+qcj,σ,k

)
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APPENDIX B. FOURIER TRANSFORMATION OF THE INTERACTION MODEL

=
1

N

6∑
p=1

(−1)p−1
∑
k,q

(
eiq·(R+δδδp+1)eik·(δδδp+1−δδδp)c†j,σ,kcj,σ,k+q + e−iq(R+δδδp+1)e−ik·(δδδp+1−δδδp)c†j,σ,k+qcj,σ,k

)
where we have suppressed the restriction on the k,q-sums.
Inserting in Eq. (B.1), we get

U =
V0

2N2

∑
R

∑
j,j′

∑
σ,σ′

∑
k,k′

q,q′

∑
p,p′

(
1

3
eiq·(R+δδδp)c†j,σ,kcj,σ,k+q + α1(−1)p−1

×
(
eiq·(R+δδδp+1)eik·(δδδp+1−δδδp)c†j,σ,kcj,σ,k+q + e−iq·(R+δδδp+1)e−ik·(δδδp+1−δδδp)c†j,σ,k+qcj,σ,k

))

×

(
1

3
eiq
′·(R+δδδp′ )c†j′,σ′,k′cj′,σ′,k′+q′ + α1(−1)p

′−1

×
(
eiq
′·(R+δδδp′+1)eik

′·(δδδp′+1−δδδp′ )c†j′,σ′,k′cj′,σ′,k′+q′ + e−iq
′·(R+δδδp′+1)e−ik

′·(δδδp′+1−δδδp′ )c†j′,σ′,k′+q′cj′,σ′,k′
))

=
V0

2N2

∑
R

∑
j,j′

∑
σ,σ′

∑
k,k′

q,q′

∑
p,p′

(
eiq·R

(1

3
eiq·δδδp + α1(−1)p−1eiq·δδδp+1eik·(δδδp+1−δδδp)

)
c†j,σ,kcj,σ,k+q

+ e−iq·Rα1(−1)p−1e−iq·δδδp+1e−ik·(δδδp+1−δδδp)c†j,σ,k+qcj,σ,k

)

×

(
eiq
′·R
(1

3
eiq
′·δδδp′ + α1(−1)p

′−1eiq
′·δδδp′+1eik

′·(δδδp′+1−δδδp′ )
)
c†j′,σ′,k′cj′,σ′,k′+q′

+ e−iq
′·Rα1(−1)p

′−1e−iq
′δδδp′+1e−ik

′·(δδδp′+1−δδδp′ )c†j′,σ′,k′+q′cj′,σ′,k′

)

=
V0

2N2

∑
R

∑
j,j′

∑
σ,σ′

∑
k,k′

q,q′

∑
p,p′

(
ei(q+q′)·R

(1

3
eiq·δδδp + α1(−1)p−1eiq·δδδp+1eik·(δδδp+1−δδδp)

)

×
(1

3
eiq
′·δδδp′ + α1(−1)p

′−1eiq
′·δδδp′+1eik

′·(δδδp′+1−δδδp′ )
)
c†j,σ,kcj,σ,k+qc

†
j′,σ′,k′cj′,σ′,k′+q′

+ e−i(q−q
′)·R
(
α1(−1)p−1e−iq·δδδp+1e−ik·(δδδp+1−δδδp)

)
×
(1

3
eiq
′·δδδp′ + α1(−1)p

′−1eiq
′·δδδp′+1eik

′·(δδδp′+1−δδδp′ )
)
c†j,σ,k+qcj,σ,kc

†
j′,σ′,k′cj′,σ′,k′+q′

+ ei(q−q
′)·R
(1

3
eiq·δδδp + α1(−1)p−1eiq·δδδp+1eik·(δδδp+1−δδδp)

)
×
(
α1(−1)p

′−1e−iq
′·δδδp′+1e−ik

′·(δδδp′+1−δδδp′ )
)
c†j,σ,kcj,σ,k+qc

†
j′,σ′,k′+q′cj′,σ′,k′

+ e−i(q+q′)·R
(
α1(−1)p−1e−iq·δδδp+1e−ik·(δδδp+1−δδδp)

)
×
(
α1(−1)p

′−1e−iq
′·δδδp′+1e−ik

′·(δδδp′+1−δδδp′ )
)
c†j,σ,k+qcj,σ,kc

†
j′,σ′,k′+q′cj′,σ′,k′

)
. (B.3)

Performing the summation over R eliminates the q′-sum, since
∑

R e
(−)i(q±q′)R =

∑
G δq′,∓(q+G),

where G are the reciprocal lattice vectors. The effect of this substitution is similar in all four
terms and can be evaluated individually. To avoid long expressions we merely study the G-
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summation performed on the first term and fix all other variables.∑
G

δq′,−(q+G)

((1

3
eiq·δδδp + α1(−1)p−1eiq·δδδp+1eik·(δδδp+1−δδδp)

)
×
(1

3
eiq
′·δδδp′ + α1(−1)p

′−1eiq
′·δδδp′+1eik

′·(δδδp′+1−δδδp′ )
)
c†j,σ,kcj,σ,k+qc

†
j′,σ′,k′cj′,σ′,k′+q′

=
∑
G

((1

3
eiq·δδδp + α1(−1)p−1eiq·δδδp+1eik·(δδδp+1−δδδp)

)
×
(1

3
e−i(q+G)·δδδp′ + α1(−1)p

′−1e−i(q+G)·δδδp′+1eik
′·(δδδp′+1−δδδp′ )

)
c†j,σ,kcj,σ,k+qc

†
j′,σ′,k′cj′,σ′,k′−q−G

=
∑
G

((1

3
eiq·δδδp + α1(−1)p−1eiq·δδδp+1eik·(δδδp+1−δδδp)

)
c†j,σ,kcj,σ,k+q

×
(1

3
e−i(q+G)·δδδp′ c†j′,σ′,k′cj′,σ′,k′−G−q + α1(−1)p

′−1e−i(q+G)·δδδp′+1eik
′·(δδδp′+1−δδδp′ )c†j′,σ′,k′cj′,σ′,k′−G−q

)
=

((1

3
eiq·δδδp + α1(−1)p−1eiq·δδδp+1eik·(δδδp+1−δδδp)

)
c†j,σ,kcj,σ,k+q

×
∑
G

(1

3
e−i(q+G)·δδδp′ c†j′,σ′,k′cj′,σ′,k′−G−q + α1(−1)p

′−1e−i(q+G)·δδδp′+1eik
′·(δδδp′+1−δδδp′ )c†j′,σ′,k′cj′,σ′,k′−G−q

)
(B.4)

We wish to let cj′,σ′,k′−G−q → cj′,σ′,k′−q, which can be usually be done without further consid-
eration in the case of single-site unit cells with the atom at R. In our slightly more complicated
case, we must return to the definitions in Eq. (B.2) and get

cj′,σ′,k′−G−q =
1√
N

∑
R

e−i(k
′−G−q)(R+β)dj′,σ′(R + β)

=
1√
N

∑
R

e−i(k
′−q)(R+β)dj′,σ′(R + β)eiG(R+β)

=
1√
N

∑
R

e−i(k
′−q)(R+β)dj′,σ′(R + β)eiGβ

= cj′,σ′,k′−qe
iGβ, (B.5)

where β must be obtained from the original real-space operator prior to the Fourier transfor-
mation.
The result is general such that cj,σ,k̃±G = cj,σ,k̃e

∓iGβ and c†
j,σ,k̃±G = c†

j,σ,k̃
e±iGβ. Keeping track

of original operators from Eq. (B.1) and inserting into Eq. (B.4) one finds (disregarding the
G-independent prefactor),∑
G

(1

3
e−i(q+G)·δδδp′ c†j′,σ′,k′e

iG·δδδp′ cj′,σ′,k′−q + α1(−1)p
′−1e−i(q+G)·δδδp′+1eik

′·(δδδp′+1−δδδp′ )c†j′,σ′,k′e
iG·δδδp′+1cj′,σ′,k′−q

)
=
∑
G

(1

3
e−iq·δδδp′ c†j′,σ′,k′cj′,σ′,k′−q + α1(−1)p

′−1e−iq·δδδp′+1eik
′·(δδδp′+1−δδδp′ )c†j′,σ′,k′cj′,σ′,k′−q

)
= N

(1

3
e−iq·δδδp′ c†j′,σ′,k′cj′,σ′,k′−q + α1(−1)p

′−1e−iq·δδδp′+1eik
′·(δδδp′+1−δδδp′ )c†j′,σ′,k′cj′,σ′,k′−q

)
, (B.6)

where we use that the number of distinct reciprocal lattice vectors is equal to the number of
sites.
Repeating this procedure on the remaining three terms of Eq. (B.3) yields,

U =
V0

2N

∑
j,j′

∑
σ,σ′

∑
k,k′,q

∑
p,p′

((1

3
eiq·δδδp + α1(−1)p−1eiq·δδδp+1eik·(δδδp+1−δδδp)

)
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×
(1

3
e−iq·δδδp′ + α1(−1)p

′−1e−iq·δδδp′+1eik
′·(δδδp′+1−δδδp′ )

)
c†j,σ,kcj,σ,k+qc

†
j′,σ′,k′cj′,σ′,k′−q

+
(
α1(−1)p−1e−iq·δδδp+1e−ik·(δδδp+1−δδδp)

)
×
(1

3
eiq·δδδp′ + α1(−1)p

′−1eiq·δδδp′+1eik
′·(δδδp′+1−δδδp′ )

)
c†j,σ,k+qcj,σ,kc

†
j′,σ′,k′cj′,σ′,k′+q

+
(1

3
eiq·δδδp + α1(−1)p−1eiq·δδδp+1eik·(δδδp+1−δδδp)

)
×
(
α1(−1)p

′−1e−iq·δδδp′+1e−ik
′·(δδδp′+1−δδδp′ )

)
c†j,σ,kcj,σ,k+qc

†
j′,σ′,k′+qcj′,σ′,k′

+
(
α1(−1)p−1e−iq·δδδp+1e−ik·(δδδp+1−δδδp)

)
×
(
α1(−1)p

′−1eiq·δδδp′+1e−ik
′·(δδδp′+1−δδδp′ )

)
c†j,σ,k+qcj,σ,kc

†
j′,σ′,k′−qcj′,σ′,k′

)
, (B.7)

which can be readily verified.
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Appendix C

Momentum shift of U

In this appendix we study the consequences of a momentum shift on individual terms of U . The
FT of U reads,

U =
V0

2N

∑
τ,τ ′

∑
σ,σ′

∑
k,k′,q

∑
p,p′

((1

3
eiq·δδδp + α1(−1)p−1eiq·δδδp+1eik·(δδδp+1−δδδp)

)
×
(1

3
e−iq·δδδp′ + α1(−1)p

′−1e−iq·δδδp′+1eik
′·(δδδp′+1−δδδp′ )

)
c†τ,σ,kcτ,σ,k+qc

†
τ ′,σ′,k′cτ ′,σ′,k′−q

+
(
α1(−1)p−1e−iq·δδδp+1e−ik·(δδδp+1−δδδp)

)
×
(1

3
eiq·δδδp′ + α1(−1)p

′−1eiq·δδδp′+1eik
′·(δδδp′+1−δδδp′ )

)
c†τ,σ,k+qcτ,σ,kc

†
τ ′,σ′,k′cτ ′,σ′,k′+q

+
(1

3
eiq·δδδp + α1(−1)p−1eiq·δδδp+1eik·(δδδp+1−δδδp)

)
×
(
α1(−1)p

′−1e−iq·δδδp′+1e−ik
′·(δδδp′+1−δδδp′ )

)
c†τ,σ,kcτ,σ,k+qc

†
τ ′,σ′,k′+qcτ ′,σ′,k′

+
(
α1(−1)p−1e−iq·δδδp+1e−ik·(δδδp+1−δδδp)

)
×
(
α1(−1)p

′−1eiq·δδδp′+1e−ik
′·(δδδp′+1−δδδp′ )

)
c†τ,σ,k+qcτ,σ,kc

†
τ ′,σ′,k′−qcτ ′,σ′,k′

)
(C.1)

An identical shift of k′ → k̃ − q must be performed on the second and third term to obtain a
restriction on q in the HF decoupling .
As we wish to shift k′ we will consider the possible interactions for fixed k and q. Two cases will
be studied, i) the simple case for k,k + q,k′,k′ + q ∈ BZ and ii) the case for k,k + q,k′ ∈ BZ
and k′ + q /∈ BZ. We will not study the case for k + q /∈ BZ, as these terms will remain
unchanged. The essential details to consider are first whether all interactions are represented
after performing the shift and second whether the phases on each interaction are identical to
the phases before the shift.

An illustration of the first case with all points within the first BZ can be seen in Fig. C.1. As
evident from the figure, we now consider interactions from the second term in U , however as the
interactions in the third term simply have creation and annihilation operators (filled and empty
circles respectively) interchanged, the result will apply to both terms. As k′, and hence k̃, run
through all values within the first BZ for fixed k all interactions will be taken into account after
performing a shift. This is illustrated in Fig. C.1b, where k̃ is clearly different from k′ in Fig.
C.1a, thus this interaction certainly appears at a different time when performing the sum. The
orders of the terms are, however, insignificant as long as all values of k̃ are present for fixed k.
To ensure the consistency of the phases, we consider a generic form of the interaction terms
eiq·aeik·beiq·a

′
eik
′·b′c†k+qckc

†
k′ck′+q → eiq·aeik·beiq·a

′
ei(k̃−q)·b′c†k+qckc

†
k̃−qck̃. The momentum of
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k

k'

q

k

q

-q

k~

a) b)

Figure C.1: Illustration of interaction term with k,k + q,k′,k′ + q ∈ BZ. Filled circles are
creation operators whereas empty circles are annihilation operators. a) depicts an interaction
in the original term while b) depict the same interaction after the shift. The terms will appear
at different times in the k′/k̃ sum.

the phase still relates to the momentum of the creation operator while all other phases are
unchanged. We conclude that for the first case, where all points reside inside the first BZ, a
shift of k′ → k̃− q can be performed with no further complications.

We now turn our attention to the slightly more complicated case, for k′ + q /∈ BZ, see Fig.
C.2. k + q and k̃ − q reside outside the first BZ and are folded back in with G1 and G2,
respectively. Note that k′ and k̃ still reside inside the first BZ as required by the restriction on
the associated sums. As for the first case, since the entire summation of k′ (k̃) is performed
for fixed k, all interactions will be taken into account. The important difference in these types
of terms is the folding, since G1 6= G2. Thus we must ensure that the phases are individually
unaffected by the folding.

k

k'

q

k

q

-q

k~

a) b)

G1
G2

Figure C.2: Illustration of interaction term with k,k + q,k′ ∈ BZ and k′ + q /∈ BZ. Filled
circles are creation operators and empty are annihilation operators. a) depicts an interaction
in the original term while b) depict the same interaction after the shift. As k + q (k̃−q) reside
outside the first BZ it is folded back in with a reciprocal vector. Note that G1 6= G2.

In general we must have that U(q) = U(q + G) since the Hamiltonian should obey the discrete
translational symmetry of the Bravais lattice. To investigate if the terms satisfies this equality
individually, we study one term at a time (denoted U (i), i = 1, 2, 3, 4), perform the shift q →
q + G and employ the generalized result of Eq. (B.5).

U
(1)
q ∝

∑
k,k′,q

(1

3
eiq·δδδp + α1(−1)p−1eiq·δδδp+1eik·(δδδp+1−δδδp)

)(1

3
e−iq·δδδp′ + α1(−1)p

′−1e−iq·δδδp′+1eik
′·(δδδp′+1−δδδp′ )

)
× c†j,σ,kcj,σ,k+qc

†
j′,σ′,k′cj′,σ′,k′−q
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→U (1)
q+G ∝

∑
k,k′,q

(1

3
ei(q+G)·δδδp + α1(−1)p−1ei(q+G)·δδδp+1eik·(δδδp+1−δδδp)

)
c†j,σ,kcj,σ,k+(q+G)

×
(1

3
e−i(q+G)·δδδp′ + α1(−1)p

′−1e−i(q+G)·δδδp′+1eik
′·(δδδp′+1−δδδp′ )

)
c†j′,σ′,k′cj′,σ′,k′−(q+G)

=
∑
k,k′,q

(1

3
ei(q+G)·δδδpc†j,σ,ke

−iGδδδpcj,σ,k+q + α1(−1)p−1ei(q+G)·δδδp+1eik·(δδδp+1−δδδp)c†j,σ,ke
−iGδδδp+1cj,σ,k+q

)
×
(1

3
e−i(q+G)·δδδp′ c†j′,σ′,k′e

iGδδδp′ cj′,σ′,k′−q + α1(−1)p
′−1e−i(q+G)·δδδp′+1eik

′·(δδδp′+1−δδδp′ )c†j′,σ′,k′e
iGδδδp′+1cj′,σ′,k′−q

)
=
∑
k,k′,q

(1

3
eiq·δδδp + α1(−1)p−1eiq·δδδp+1eik·(δδδp+1−δδδp)

)(1

3
e−iq·δδδp′ + α1(−1)p

′−1e−iq·δδδp′+1eik
′·(δδδp′+1−δδδp′ )

)
× c†j,σ,kcj,σ,k+qc

†
j′,σ′,k′cj′,σ′,k′−q

(C.2)

U
(2)
q ∝

∑
k,k′,q

(
α1(−1)p−1e−iq·δδδp+1e−ik·(δδδp+1−δδδp)

)(1

3
eiq·δδδp′ + α1(−1)p

′−1eiq·δδδp′+1eik
′·(δδδp′+1−δδδp′ )

)
× c†j,σ,k+qcj,σ,kc

†
j′,σ′,k′cj′,σ′,k′+q

→U (2)
q+G ∝

∑
k,k′,q

(
α1(−1)p−1e−i(q+G)·δδδp+1e−ik·(δδδp+1−δδδp)

)
c†j,σ,k+(q+G)cj,σ,k

×
(1

3
ei(q+G)·δδδp′ + α1(−1)p

′−1ei(q+G)·δδδp′+1eik
′·(δδδp′+1−δδδp′ )

)
c†j′,σ′,k′cj′,σ′,k′+(q+G)

=
∑
k,k′,q

(
α1(−1)p−1e−i(q+G)·δδδp+1e−ik·(δδδp+1−δδδp)

)
eiGδδδp+1c†j,σ,k+qcj,σ,k

×
(1

3
ei(q+G)·δδδp′ c†j′,σ′,k′e

−iGδδδp′ cj′,σ′,k′+ + α1(−1)p
′−1ei(q+G)·δδδp′+1eik

′·(δδδp′+1−δδδp′ )c†j′,σ′,k′e
−iGδδδp′+1cj′,σ′,k′+q

)
=
∑
k,k′,q

(
α1(−1)p−1e−iq·δδδp+1e−ik·(δδδp+1−δδδp)

)(1

3
eiq·δδδp′ + α1(−1)p

′−1eiq·δδδp′+1eik
′·(δδδp′+1−δδδp′ )

)
× c†j,σ,k+qcj,σ,kc

†
j′,σ′,k′cj′,σ′,k′+q

(C.3)

U
(3)
q ∝

∑
k,k′,q

(1

3
eiq·δδδp + α1(−1)p−1eiq·δδδp+1eik·(δδδp+1−δδδp)

)(
α1(−1)p

′−1e−iq·δδδp′+1e−ik
′·(δδδp′+1−δδδp′ )

)
× c†j,σ,kcj,σ,k+qc

†
j′,σ′,k′+qcj′,σ′,k′

→U (3)
q+G ∝

∑
k,k′,q

(1

3
ei(q+G)·δδδp + α1(−1)p−1ei(q+G)·δδδp+1eik·(δδδp+1−δδδp)

)
c†j,σ,kcj,σ,k+(q+G)

×
(
α1(−1)p

′−1e−i(q+G)·δδδp′+1e−ik
′·(δδδp′+1−δδδp′ )

)
c†j′,σ′,k′+(q+G)cj′,σ′,k′

=
∑
k,k′,q

(1

3
ei(q+G)·δδδpc†j,σ,ke

−iGδδδpcj,σ,k+q + α1(−1)p−1ei(q+G)·δδδp+1eik·(δδδp+1−δδδp)c†j,σ,ke
−iGδδδp+1cj,σ,k+q

)
×
(
α1(−1)p

′−1e−i(q+G)·δδδp′+1e−ik
′·(δδδp′+1−δδδp′ )

)
eiGδδδp′+1c†j′,σ′,k′+qcj′,σ′,k′

=
∑
k,k′,q

(1

3
eiq·δδδp + α1(−1)p−1eiq·δδδp+1eik·(δδδp+1−δδδp)

)(
α1(−1)p

′−1e−iq·δδδp′+1e−ik
′·(δδδp′+1−δδδp′ )

)
× c†j,σ,kcj,σ,k+qc

†
j′,σ′,k′+qcj′,σ′,k′

(C.4)
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U
(4)
q ∝

∑
k,k′,q

(
α1(−1)p−1e−iq·δδδp+1e−ik·(δδδp+1−δδδp)

)(
α1(−1)p

′−1eiq·δδδp′+1e−ik
′·(δδδp′+1−δδδp′ )

)

× c†j,σ,k+qcj,σ,kc
†
j′,σ′,k′−qcj′,σ′,k′

)
→U (4)

q+G ∝
∑
k,k′,q

(
α1(−1)p−1e−i(q+G)·δδδp+1e−ik·(δδδp+1−δδδp)

)
c†j,σ,k+(q+G)cj,σ,k

×
(
α1(−1)p

′−1ei(q+G)·δδδp′+1e−ik
′·(δδδp′+1−δδδp′ )

)
c†j′,σ′,k′−(q+G)cj′,σ′,k′

)
=
∑
k,k′,q

(
α1(−1)p−1e−i(q+G)·δδδp+1e−ik·(δδδp+1−δδδp)

)
eiGδδδp+1c†j,σ,k+qcj,σ,k

×
(
α1(−1)p

′−1ei(q+G)·δδδp′+1e−ik
′·(δδδp′+1−δδδp′ )

)
e−iGδδδp′+1c†j′,σ′,k′−qcj′,σ′,k′

)
=
∑
k,k′,q

(
α1(−1)p−1e−iq·δδδp+1e−ik·(δδδp+1−δδδp)

)(
α1(−1)p

′−1eiq·δδδp′+1e−ik
′·(δδδp′+1−δδδp′ )

)

× c†j,σ,k+qcj,σ,kc
†
j′,σ′,k′−qcj′,σ′,k′

)
(C.5)

The results are general and do not depend on either k,k′, q or G. With the knowledge that
folding of one term is independent of folding in the three remaining terms, we can reduce our
further investigation of folding effects of the shifted terms to the second and third term. We
drop valley and spin indices for readability.

U
(2)
q ∝

∑
k,k̃,q

(1

3
eiq·δδδp + α1(−1)p−1eiq·δδδp+1eik·(δδδp+1−δδδp)

)(
α1(−1)p

′−1e−iq·δδδp′+1e−i(k̃−q)·(δδδp′+1−δδδp′ )
)
c†k+qckc

†
k̃−qck̃

→U (2)
q+G ∝

∑
k,k̃,q

(
α1(−1)p−1e−i(q+G)·δδδp+1e−ik·(δδδp+1−δδδp)

)
c†k+(q+G)ck

×
(1

3
ei(q+G)·δδδp′ + α1(−1)p

′−1ei(q+G)·δδδp′+1ei(k̃−q−G)·(δδδp′+1−δδδp′ )
)
c†
k̃−q−Gck̃

=
∑
k,k̃,q

(
α1(−1)p−1e−iq·δδδp+1e−ik·(δδδp+1−δδδp)

)
c†k+qck

×
(1

3
ei(q+G)·δδδp′ + α1(−1)p

′−1eiq·δδδp′+1eiG·δδδp′ei(k̃−q)·(δδδp′+1−δδδp′ )
)
c†
k̃−q−Gck̃

=
∑
k,k̃,q

(
α1(−1)p−1e−iq·δδδp+1e−ik·(δδδp+1−δδδp)

)
c†k+qck

×
(1

3
ei(q+G)·δδδp′ + α1(−1)p

′−1eiq·δδδp′+1eiG·δδδp′ei(k̃−q)·(δδδp′+1−δδδp′ )
)
e−iG·δδδp′ c†

k̃−qck̃

=
∑
k,k̃,q

(
α1(−1)p−1e−iq·δδδp+1e−ik·(δδδp+1−δδδp)

)(1

3
eiq·δδδp′ + α1(−1)p

′−1eiq·δδδp′+1ei(k̃−q)·(δδδp′+1−δδδp′ )
)

× c†k+qckc
†
k̃−qck̃

(C.6)

where the phase from the annihilation operator in the last two terms are identical. This can
be verified by going back to the original real space definitions in Eq. (5.18). The result is
independent of G, hence there is no consequence of folding with different reciprocal vectors as
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illustrated in Fig. C.2.
Comparing to Eq. (C.3) it is clear that this resembles the first case, hence it is possible to let
k′ → k̃ − q without additional phases. For completeness we repeat the calculation for third
term.

U
(3)
q ∝

∑
k,k̃,q

(1

3
eiq·δδδp + α1(−1)p−1eiq·δδδp+1eik·(δδδp+1−δδδp)

)(
α1(−1)p

′−1e−iq·δδδp′+1e−i(k̃−q)·(δδδp′+1−δδδp′ )
)
c†kck+qc

†
k̃
ck̃−q

→U (3)
q+G ∝

∑
k,k̃,q

(1

3
ei(q+G)·δδδp + α1(−1)p−1ei(q+G)·δδδp+1eik·(δδδp+1−δδδp)

)
c†kck+q+G

×
(
α1(−1)p

′−1e−i(q+G)·δδδp′+1e−i(k̃−q−G)·(δδδp′+1−δδδp′ )
)
c†
k̃
ck̃−q−G

=
∑
k,k̃,q

(1

3
eiq·δδδp + α1(−1)p−1eiq·δδδp+1eik·(δδδp+1−δδδp)

)
c†kck+q

×
(
α1(−1)p

′−1e−iq·δδδp′+1e−iG·δδδp′e−i(k̃−q)·(δδδp′+1−δδδp′ )
)
c†
k̃
eiG·δδδp′ ck̃−q

=
∑
k,k̃,q

(1

3
eiq·δδδp + α1(−1)p−1eiq·δδδp+1eik·(δδδp+1−δδδp)

)(
α1(−1)p

′−1e−iq·δδδp′+1e−i(k̃−q)·(δδδp′+1−δδδp′ )
)
c†kck+qc

†
k̃
ck̃−q.

(C.7)

The conclusion remains. We can perform the shift on the second and third term with no
additional phases arising and no ambiguity between shifted and non-shifted terms. In the
proceeding we rename k̃→ k′.
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Appendix D

Interaction model in the Bravais
lattice picture

To represent UHF in the f †k basis, we must return to the original real space representation of U
which reads,

U =
V0

2

∑
R

∑
j,j′

∑
σ,σ′

(
1

3
Qj,σ(R) + α1Tj,σ(R)

)(
1

3
Qj′,σ′(R) + α1Tj′,σ′(R)

)
, where (D.1)

Qj,σ(R) =
6∑
p=1

d†j,σ(R + δδδp)dj,σ(R + δδδp), and

Tj,σ(R) =
6∑
p=1

(−1)p−1
(
d†j,σ(R + δδδp)dj,σ(R + δδδp+1) + h.c.

)
.

R is the center of each honeycomb thus Ri of the tight-binding model and R are identical. By
inspecting Figs. 4.5 and 4.8, we can identify p = 1, 3, 5 as BA-sites and p = 2, 4, 6 as AB-sites
(represented by b-operators and a-operators, respectively).
We thus have,

Qj,σ(R) =
∑
p even

a†j,σ(R + δδδp)aj,σ(R + δδδp) +
∑
p odd

b†j,σ(R + δδδp)bj,σ(R + δδδp)

=
∑

p=2,4,6

(a†j,σ(R + δδδp)aj,σ(R + δδδp) + b†j,σ(R + δδδp+1)bj,σ(R + δδδp+1)), (D.2)

and,

Tj,σ(R) = −
∑
p even

(
a†j,σ(R + δδδp)bj,σ(R + δδδp+1) + h.c.

)
+
∑
p odd

(
b†j,σ(R + δδδp)aj,σ(R + δδδp+1) + h.c.

)
=

∑
p=2,4,6

[
− a†j,σ(R + δδδp)bj,σ(R + δδδp+1) + b†j,σ(R + δδδp+1)aj,σ(R + δδδp+2) + h.c.

]
(D.3)

Note the periodic boundary conditions. Using the same Fourier transformations as in Eq. (4.11)
with ααα replaced by the δδδ in question, we have

Qj,σ(R) =
1

N

∑
k,k′

∑
p=2,4,6

(
e−ik(R+δδδp)eik

′(R+δδδp)a†jσkajσk′ + e−ik(R+δδδp+1)eik
′(R+δδδp+1)b†jσkbjσk′

)
=

1

N

∑
k,q

∑
p=2,4,6

(
eiq(R+δδδp)a†jσkajσk+q + eiq(R+δδδp+1)b†jσkbjσk+q

)
, and,
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Tj,σ(R) =
1

N

∑
k,k′

∑
p=2,4,6

(
− e−ik(R+δδδp)eik

′(R+δδδp+1)a†jσkbjσk′ − e
ik(R+δδδp)e−ik

′(R+δδδp+1)b†jσk′ajσk

+ e−ik
′(R+δδδp+1)eik(R+δδδp+2)b†jσk′ajσk + eik

′(R+δδδp+1)e−ik(R+δδδp+2)a†jσkbjσk′
)

=
1

N

∑
k,k′

∑
p=2,4,6

[(
eik
′(R+δδδp+1)e−ik(R+δδδp+2) − e−ik(R+δδδp)eik

′(R+δδδp+1)
)
a†jσkbjσk′

+
(
e−ik

′(R+δδδp+1)eik(R+δδδp+2) − eik(R+δδδp)e−ik
′(R+δδδp+1)

)
b†jσk′ajσk

]
=

1

N

∑
k,q

∑
p=2,4,6

[
eiqReiqδδδp+1(eik(δδδp+1−δδδp+2) − eik(δδδp+1−δδδp))a†jσkbjσk+q

+ e−iqRe−iqδδδp+1(e−ik(δδδp+1−δδδp+2) − e−ik(δδδp+1−δδδp))b†jσk+qajσk

]
=

1

N

∑
k,q

∑
p=2,4,6

[
eiqReiqδδδp+1(eikδδδp − eikδδδp+2)a†jσkbjσk+q

+ e−iqRe−iqδδδp+1(e−ikδδδp − e−ikδδδp+2)b†jσk+qajσk

]
(D.4)

where q = k′−k and N is the number of unit cells. In the last equality we used that δδδp+1−δδδp =
δδδp+2. With these expression we obtain,

U =
V0

2N2

∑
R

∑
j,j′

∑
σ,σ′

∑
k,k′

q,q′

∑
p,p′=2,4,6

(
1

3

(
eiq(R+δδδp)a†jσkajσk+q + eiq(R+δδδp+1)b†jσkbjσk+q

)
+ α1

[
eiqReiqδδδp+1(eikδδδp − eikδδδp+2)a†jσkbjσk+q

+ e−iqRe−iqδδδp+1(e−ikδδδp − e−ikδδδp+2)b†jσk+qajσk

])

×

(
1

3

(
eiq
′(R+δδδp′ )a†j′σ′k′aj′σ′k′+q′ + eiq

′(R+δδδp′+1)b†j′σ′k′bj′σ′k′+q′
)

+ α1

[
eiq
′Reiq

′δδδp′+1(eik
′δδδp′ − eik′δδδp′+2)a†j′σ′k′bj′σ′k′+q′

+ e−iq
′Re−iq

′δδδp′+1(e−ik
′δδδp′ − e−ik′δδδp′+2)b†j′σ′k′+q′aj′σ′k′

])
. (D.5)

Term by term we get

UQ×Q′ =
V0

2N2

∑
R

∑
j,j′

∑
σ,σ′

∑
k,k′

q,q′

∑
p,p′=2,4,6

1

9

(
eiq(R+δδδp)a†jσkajσk+q + eiq(R+δδδp+1)b†jσkbjσk+q

)
×
(
eiq
′(R+δδδp′ )a†j′σ′k′aj′σ′k′+q′ + eiq

′(R+δδδp′+1)b†j′σ′k′bj′σ′k′+q′
)

=
V0

2N2

∑
R

∑
j,j′

∑
σ,σ′

∑
k,k′

q,q′

∑
p,p′=2,4,6

1

9
ei(q+q′)R

(
eiqδδδpeiq

′δδδp′a†jσkajσk+qa
†
j′σ′k′aj′σ′k′+q′

+ eiqδδδp+1eiq
′δδδp′+1b†jσkbjσk+qb

†
j′σ′k′bj′σ′k′+q′

+ eiqδδδpeiq
′δδδp′+1a†jσkajσk+qb

†
j′σ′k′bj′σ′k′+q′

+ eiqδδδp+1eiq
′δδδp′ b†jσkbjσk+qa

†
j′σ′k′aj′σ′k′+q′

)
(D.6)
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Using that
∑

R e
i(q+q′)R =

∑
G δq′,−(q+G), adopting the result from Eq. (B.5) and performing

the same calculations as in Eqs. (B.6), (B.7) one finds,

UQ×Q′ =
V0

2N

∑
j,j′

∑
σ,σ′

∑
k,k′,q

∑
p,p′=2,4,6

1

9

(
eiq(δδδp−δδδp′ )a†jσkajσk+qa

†
j′σ′k′aj′σ′k′−q

+ eiq(δδδp+1−δδδp′+1)b†jσkbjσk+qb
†
j′σ′k′bj′σ′k′−q

+ eiq(δδδp−δδδp′+1)a†jσkajσk+qb
†
j′σ′k′bj′σ′k′−q

+ eiq(δδδp+1−δδδp′ )b†jσkbjσk+qa
†
j′σ′k′aj′σ′k′−q

)
. (D.7)

Proceeding to the next term, we get

UQ×T ′ =
V0

2N2

∑
R

∑
j,j′

∑
σ,σ′

∑
k,k′

q,q′

∑
p,p′=2,4,6

α1

3

(
eiq(R+δδδp)a†jσkajσk+q + eiq(R+δδδp+1)b†jσkbjσk+q

)
×
[
eiq
′Reiq

′δδδp′+1(eik
′δδδp′ − eik′δδδp′+2)a†j′σ′k′bj′σ′k′+q′

+ e−iq
′Re−iq

′δδδp′+1(e−ik
′δδδp′ − e−ik′δδδp′+2)b†j′σ′k′+q′aj′σ′k′

]
=

V0

2N2

∑
R

∑
j,j′

∑
σ,σ′

∑
k,k′

q,q′

∑
p,p′=2,4,6

α1

3

(
ei(q+q′)R

[
eiqδδδpeiq

′δδδp′+1(eik
′δδδp′ − eik′δδδp′+2)a†jσkajσk+qa

†
j′σ′k′bj′σ′k′+q′

+ eiqδδδp+1eiq
′δδδp′+1(eik

′δδδp′ − eik′δδδp′+2)b†jσkbjσk+qa
†
j′σ′k′bj′σ′k′+q′

]
+ ei(q−q

′)R
[
eiqδδδpe−iq

′δδδp′+1(e−ik
′δδδp′ − e−ik′δδδp′+2)a†jσkajσk+qb

†
j′σ′k′+q′aj′σ′k′

+ eiqδδδp+1e−iq
′δδδp′+1(e−ik

′δδδp′ − e−ik′δδδp′+2)b†jσkbjσk+qb
†
j′σ′k′+q′aj′σ′k′

])

=
V0

2N

∑
j,j′

∑
σ,σ′

∑
k,k′,q

∑
p,p′=2,4,6

α1

3

(
eiq(δδδp−δδδp′+1)(eik

′δδδp′ − eik′δδδp′+2)a†jσkajσk+qa
†
j′σ′k′bj′σ′k′−q

+ eiq(δδδp+1−δδδp′+1)(eik
′δδδp′ − eik′δδδp′+2)b†jσkbjσk+qa

†
j′σ′k′bj′σ′k′−q

+ eiq(δδδp−δδδp′+1)(e−ik
′δδδp′ − e−ik′δδδp′+2)a†jσkajσk+qb

†
j′σ′k′+qaj′σ′k′

+ eiq(δδδp+1−δδδp′+1)(e−ik
′δδδp′ − e−ik′δδδp′+2)b†jσkbjσk+qb

†
j′σ′k′+qaj′σ′k′

)
. (D.8)

As described in Section 5.2.1, we need to perform a shift in momentum of the third and fourth
term to obtain q-restrictions in the exchange terms of the HF decoupling. This can be done
without complication, which can be readily verified by following the proceedure in Appendix
C. We thus get

UQ×T ′ =
V0

2N

∑
j,j′

∑
σ,σ′

∑
k,k′,q

∑
p,p′=2,4,6

α1

3

(
eiq(δδδp−δδδp′+1)(eik

′δδδp′ − eik′δδδp′+2)a†jσkajσk+qa
†
j′σ′k′bj′σ′k′−q

+ eiq(δδδp+1−δδδp′+1)(eik
′δδδp′ − eik′δδδp′+2)b†jσkbjσk+qa

†
j′σ′k′bj′σ′k′−q

+ eiq(δδδp−δδδp′+1)(e−i(k
′−q)δδδp′ − e−i(k′−q)δδδp′+2)a†jσkajσk+qb

†
j′σ′k′aj′σ′k′−q

+ eiq(δδδp+1−δδδp′+1)(e−i(k
′−q)δδδp′ − e−i(k′−q)δδδp′+2)b†jσkbjσk+qb

†
j′σ′k′aj′σ′k′−q

)
. (D.9)
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Likewise,

UT×Q′ =
V0

2N2

∑
R

∑
j,j′

∑
σ,σ′

∑
k,k′

q,q′

∑
p,p′=2,4,6

α1

3

[
eiqReiqδδδp+1(eikδδδp − eikδδδp+2)a†jσkbjσk+q

+ e−iqRe−iqδδδp+1(e−ikδδδp − e−ikδδδp+2)b†jσk+qajσk

]
×
[
eiq
′(R+δδδp′ )a†j′σ′k′aj′σ′k′+q′ + eiq

′(R+δδδp′+1)b†j′σ′k′bj′σ′k′+q′

]
=

V0

2N2

∑
R

∑
j,j′

∑
σ,σ′

∑
k,k′

q,q′

∑
p,p′=2,4,6

α1

3

(
ei(q+q′)R

[
eiq
′δδδp′eiqδδδp+1(eikδδδp − eikδδδp+2)a†jσkbjσk+qa

†
j′σ′k′aj′σ′k′+q′

+ eiq
′δδδp′+1eiqδδδp+1(eikδδδp − eikδδδp+2)a†jσkbjσk+qb

†
j′σ′k′bj′σ′k′+q′

]
+

(
e−i(q−q

′)R
[
eiq
′δδδp′e−iqδδδp+1(e−ikδδδp − e−ikδδδp+2)b†jσk+qajσka

†
j′σ′k′aj′σ′k′+q′

+ eiq
′δδδp′+1e−iqδδδp+1(e−ikδδδp − e−ikδδδp+2)b†jσk+qajσk+qb

†
j′σ′k′bj′σ′k′+q′

])

=
V0

2N

∑
j,j′

∑
σ,σ′

∑
k,k′,q

∑
p,p′=2,4,6

α1

3

(
e−iq(δδδp′−δδδp+1)(eikδδδp − eikδδδp+2)a†jσkbjσk+qa

†
j′σ′k′aj′σ′k′−q

+ e−iq(δδδp′+1−δδδp+1)(eikδδδp − eikδδδp+2)a†jσkbjσk+qb
†
j′σ′k′bj′σ′k′−q

+ eiq(δδδp′−δδδp+1)(e−ikδδδp − e−ikδδδp+2)b†jσk+qajσka
†
j′σ′k′aj′σ′k′+q

+ eiq(δδδp′+1−δδδp+1)(e−ikδδδp − e−ikδδδp+2)b†jσk+qajσkb
†
j′σ′k′bj′σ′k′+q

)

=
V0

2N

∑
j,j′

∑
σ,σ′

∑
k,k′,q

∑
p,p′=2,4,6

α1

3

(
e−iq(δδδp′−δδδp+1)(eikδδδp − eikδδδp+2)a†jσkbjσk+qa

†
j′σ′k′aj′σ′k′−q

+ e−iq(δδδp′+1−δδδp+1)(eikδδδp − eikδδδp+2)a†jσkbjσk+qb
†
j′σ′k′bj′σ′k′−q

+ eiq(δδδp′−δδδp+1)(e−ikδδδp − e−ikδδδp+2)b†jσk+qajσka
†
j′σ′k′−qaj′σ′k′

+ eiq(δδδp′+1−δδδp+1)(e−ikδδδp − e−ikδδδp+2)b†jσk+qajσkb
†
j′σ′k′−qbj′σ′k′

)
. (D.10)

Finally, we have

UT×T ′ =
V0

2N2

∑
R

∑
j,j′

σ,σ′

∑
k,k′

q,q′

∑
p,p′=2,4,6

α2
1

[
eiqReiqδδδp+1(eikδδδp − eikδδδp+2)a†jσkbjσk+q

+ e−iqRe−iqδδδp+1(e−ikδδδp − e−ikδδδp+2)b†jσk+qajσk

]
×
[
eiq
′Reiq

′δδδp′+1(eik
′δδδp′ − eik′δδδp′+2)a†j′σ′k′bj′σ′k′+q′

+ e−iq
′Re−iq

′δδδp′+1(e−ik
′δδδp′ − e−ik′δδδp′+2)b†j′σ′k′+q′aj′σ′k′

]
=
α2

1V0

2N2

∑
R

∑
j,j′

σ,σ′

∑
k,k′

q,q′

∑
p,p′

[
ei(q+q′)Reiqδδδp+1eiq

′δδδp′+1(eikδδδp − eikδδδp+2)(eik
′δδδp′ − eik′δδδp′+2)a†jσkbjσk+qa

†
j′σ′k′bj′σ′k′+q′

+ ei(q−q
′)Reiqδδδp+1e−iq

′δδδp′+1(eikδδδp − eikδδδp+2)(e−ik
′δδδp′ − e−ik′δδδp′+2)a†jσkbjσk+qb

†
j′σ′k′+q′aj′σ′k′
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+ e−i(q−q
′)Re−iqδδδp+1eiq

′δδδp′+1(e−ikδδδp − e−ikδδδp+2)(eik
′δδδp′ − eik′δδδp′+2)b†jσk+qajσka

†
j′σ′k′bj′σ′k′+q′

+ e−i(q+q′)Re−iqδδδp+1e−iq
′δδδp′+1(e−ikδδδp − e−ikδδδp+2)(e−ik

′δδδp′ − e−ik′δδδp′+2)b†jσk+qajσkb
†
j′σ′k′+q′aj′σ′k′

]
=

V0

2N

∑
j,j′

∑
σ,σ′

∑
k,k′,q

∑
p,p′=2,4,6

α2
1

[
eiq(δδδp+1−δδδp′+1)(eikδδδp − eikδδδp+2)(eik

′δδδp′ − eik′δδδp′+2)a†jσkbjσk+qa
†
j′σ′k′bj′σ′k′−q

+ eiq(δδδp+1−δδδp′+1)(eikδδδp − eikδδδp+2)(e−ik
′δδδp′ − e−ik′δδδp′+2)a†jσkbjσk+qb

†
j′σ′k′+qaj′σ′k′

+ e−iq(δδδp+1−δδδp′+1)(e−ikδδδp − e−ikδδδp+2)(eik
′δδδp′ − eik′δδδp′+2)b†jσk+qajσka

†
j′σ′k′bj′σ′k′+q

+ e−iq(δδδp+1−δδδp′+1)(e−ikδδδp − e−ikδδδp+2)(e−ik
′δδδp′ − e−ik′δδδp′+2)b†jσk+qajσkb

†
j′σ′k′−qaj′σ′k′

]
=

V0

2N

∑
j,j′

∑
σ,σ′

∑
k,k′,q

∑
p,p′=2,4,6

α2
1

[
eiq(δδδp+1−δδδp′+1)(eikδδδp − eikδδδp+2)(eik

′δδδp′ − eik′δδδp′+2)a†jσkbjσk+qa
†
j′σ′k′bj′σ′k′−q

+ eiq(δδδp+1−δδδp′+1)(eikδδδp − eikδδδp+2)(e−i(k
′−q)δδδp′ − e−i(k′−q)δδδp′+2)a†jσkbjσk+qb

†
j′σ′k′aj′σ′k′−q

+ e−iq(δδδp+1−δδδp′+1)(e−ikδδδp − e−ikδδδp+2)(ei(k
′−q)δδδp′ − ei(k′−q)δδδp′+2)b†jσk+qajσka

†
j′σ′k′−qbj′σ′k′

+ e−iq(δδδp+1−δδδp′+1)(e−ikδδδp − e−ikδδδp+2)(e−ik
′δδδp′ − e−ik′δδδp′+2)b†jσk+qajσkb

†
j′σ′k′−qaj′σ′k′

]
.

(D.11)
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Appendix E

Fock terms in the Bravais lattice
picture

In this appendix we derive the Fock terms of the interaction model in the Bravais lattice picture.
The exchange terms will contain contributions from all four combinations in Eqs. (5.24)-(5.27).
We thus begin by writing the exchange terms of each part individually with the homogeneity
condition applied.

UFQ×Q′ = − V0

2N

∑
j,j′

∑
σ,σ′

∑
k,k′,q

∑
p,p′

δk′,k+q

9

(
eiq(δδδp−δδδp′ )[〈a†jσkaj′σ′k′−q〉a

†
j′σ′k′ajσk+q + a†jσkaj′σ′k′−q〈a

†
j′σ′k′ajσk+q〉]

+ eiq(δδδp+1−δδδp′+1)[〈b†jσkbj′σ′k′−q〉b
†
j′σ′k′bjσk+q + b†jσkbj′σ′k′−q〈b

†
j′σ′k′bjσk+q〉]

+ eiq(δδδp−δδδp′+1)[〈a†jσkbj′σ′k′−q〉b
†
j′σ′k′ajσk+q + a†jσkbj′σ′k′−q〈b

†
j′σ′k′ajσk+q〉]

+ eiq(δδδp+1−δδδp′ )[〈b†jσkaj′σ′k′−q〉a
†
j′σ′k′bjσk+q + b†jσkaj′σ′k′−q〈a

†
j′σ′k′bjσk+q〉]

)
= − V0

2N

∑
j,j′

∑
σ,σ′

∑
k,k′

∑
p,p′

1

9

(
ei(k

′−k)(δδδp−δδδp′ )[〈a†jσkaj′σ′k〉a
†
j′σ′k′ajσk′ + a†jσkaj′σ′k〈a

†
j′σ′k′ajσk′〉]

+ ei(k
′−k)(δδδp+1−δδδp′+1)[〈b†jσkbj′σ′k〉b

†
j′σ′k′bjσk′ + b†jσkbj′σ′k〈b

†
j′σ′k′bjσk′〉]

+ ei(k
′−k)(δδδp−δδδp′+1)[〈a†jσkbj′σ′k〉b

†
j′σ′k′ajσk′ + a†jσkbj′σ′k〈b

†
j′σ′k′ajσk′〉]

+ ei(k
′−k)(δδδp+1−δδδp′ )[〈b†jσkaj′σ′k〉a

†
j′σ′k′bjσk′ + b†jσkaj′σ′k〈a

†
j′σ′k′bjσk′〉]

)
= − V0

2N

∑
j,j′

∑
σ,σ′

∑
k,k′

∑
p,p′

1

9

(
(ei(k

′−k)(δδδp−δδδp′ ) + e−i(k
′−k)(δδδp−δδδp′ ))〈a†j′σ′k′ajσk′〉a

†
jσkaj′σ′k

+ (ei(k
′−k)(δδδp+1−δδδp′+1) + e−i(k

′−k)(δδδp+1−δδδp′+1))〈b†j′σ′k′bjσk′〉b
†
jσkbj′σ′k

+ (ei(k
′−k)(δδδp−δδδp′+1) + e−i(k

′−k)(δδδp+1−δδδp′ ))〈b†j′σ′k′ajσk′〉a
†
jσkbj′σ′k

+ (ei(k
′−k)(δδδp+1−δδδp′ ) + e−i(k

′−k)(δδδp−δδδp′+1))〈a†j′σ′k′bjσk′〉b
†
jσkaj′σ′k (E.1)

UFQ×T ′ = − V0

2N

∑
j,j′

∑
σ,σ′

∑
k,k′,q

∑
p,p′

α1

3
δk′,k+q

(
eiq(δδδp−δδδp′+1)(eik

′δδδp′ − eik′δδδp′+2)

× [〈a†jσkbj′σ′k′−q〉a
†
j′σ′k′ajσk+q + 〈a†j′σ′k′ajσk+q〉a†jσkbj′σ′k′−q]

+ eiq(δδδp+1−δδδp′+1)(eik
′δδδp′ − eik′δδδp′+2)

× [〈b†jσkbj′σ′k′−q〉a
†
j′σ′k′bjσk+q + 〈a†j′σ′k′bjσk+q〉b†jσkbj′σ′k′−q]

+ eiq(δδδp−δδδp′+1)(e−i(k
′−q)δδδp′ − e−i(k′−q)δδδp′+2)
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× [〈a†jσkaj′σ′k′−q〉b
†
j′σ′k′ajσk+q + 〈b†j′σ′k′ajσk+q〉a†jσkaj′σ′k′−q]

+ eiq(δδδp+1−δδδp′+1)(e−i(k
′−q)δδδp′ − e−i(k′−q)δδδp′+2)

× [〈b†jσkaj′σ′k′−q〉b
†
j′σ′k′bjσk+q + 〈b†j′σ′k′bjσk+q〉b†jσkaj′σ′k′−q]

)

= − V0

2N

∑
j,j′

∑
σ,σ′

∑
k,k′

∑
p,p′

α1

3

(
ei(k

′−k)(δδδp−δδδp′+1)(eik
′δδδp′ − eik′δδδp′+2)

× [〈a†jσkbj′σ′k〉a
†
j′σ′k′ajσk′ + 〈a

†
j′σ′k′ajσk′〉a

†
jσkbj′σ′k]

+ ei(k
′−k)(δδδp+1−δδδp′+1)(eik

′δδδp′ − eik′δδδp′+2)

× [〈b†jσkbj′σ′k〉a
†
j′σ′k′bjσk′ + 〈a

†
j′σ′k′bjσk′〉b

†
jσkbj′σ′k]

+ ei(k
′−k)(δδδp−δδδp′+1)(e−ikδδδp′ − e−ikδδδp′+2)

× [〈a†jσkaj′σ′k〉b
†
j′σ′k′ajσk′ + 〈b

†
j′σ′k′ajσk′〉a

†
jσkaj′σ′k]

+ ei(k
′−k)(δδδp+1−δδδp′+1)(e−ikδδδp′ − e−ikδδδp′+2)

× [〈b†jσkaj′σ′k〉b
†
j′σ′k′bjσk′ + 〈b

†
j′σ′k′bjσk′〉b

†
jσkaj′σ′k]

)

= − V0

2N

∑
j,j′

∑
σ,σ′

∑
k,k′

∑
p,p′

α1

3

(
[e−i(k

′−k)(δδδp−δδδp′+1)(eikδδδp′ − eikδδδp′+2)〈a†j′σ′k′bjσk′〉

+ ei(k
′−k)(δδδp−δδδp′+1)(e−ikδδδp′ − e−ikδδδp′+2)〈b†j′σ′k′ajσk′〉]a

†
jσkaj′σ′k

+ [ei(k
′−k)(δδδp−δδδp′+1)(eik

′δδδp′ − eik′δδδp′+2)〈a†j′σ′k′ajσk′〉

+ e−i(k
′−k)(δδδp+1−δδδp′+1)(eikδδδp′ − eikδδδp′+2)〈b†j′σ′k′bjσk′〉]a

†
jσkbj′σ′k

+ [ei(k
′−k)(δδδp+1−δδδp′+1)(eik

′δδδp′ − eik′δδδp′+2)〈a†j′σ′k′bjσk′〉

+ e−i(k
′−k)(δδδp+1−δδδp′+1)(e−ik

′δδδp′ − e−ik′δδδp′+2)〈b†j′σ′k′ajσk′〉]b
†
jσkbj′σ′k

+ [e−i(k
′−k)(δδδp−δδδp′+1)(e−ik

′δδδp′ − e−ik′δδδp′+2)〈a†j′σ′k′ajσk′〉

+ ei(k
′−k)(δδδp+1−δδδp′+1)(e−ikδδδp′ − e−ikδδδp′+2)〈b†j′σ′k′bjσk′〉]b

†
jσkaj′σ′k (E.2)

UFT×Q′ = − V0

2N

∑
j,j′

∑
σ,σ′

∑
k,k′,q

∑
p,p′

α1

3
δk′,k+q

(
e−iq(δδδp′−δδδp+1)(eikδδδp − eikδδδp+2)

× [〈a†jσkaj′σ′k′−q〉a
†
j′σ′k′bjσk+q + 〈a†j′σ′k′bjσk+q〉a†jσkaj′σ′k′−q]

+ e−iq(δδδp′+1−δδδp+1)(eikδδδp − eikδδδp+2)

× [〈a†jσkbj′σ′k′−q〉b
†
j′σ′k′bjσk+q + 〈b†j′σ′k′bjσk+q〉a†jσkbj′σ′k′−q]

+ eiq(δδδp′−δδδp+1)(e−ikδδδp − e−ikδδδp+2)

× [〈b†jσk+qaj′σ′k′〉a
†
j′σ′k′−qajσk + 〈a†j′σ′k′−qajσk〉b

†
jσk+qaj′σ′k′ ]

+ eiq(δδδp′+1−δδδp+1)(e−ikδδδp − e−ikδδδp+2)

× [〈b†jσk+qbj′σ′k′〉b
†
j′σ′k′−qajσk + 〈b†j′σ′k′−qajσk〉b

†
jσk+qbj′σ′k′ ]

)

= − V0

2N

∑
j,j′

∑
σ,σ′

∑
k,k′

∑
p,p′

α1

3

(
e−i(k

′−k)(δδδp′−δδδp+1)(eikδδδp − eikδδδp+2)

× [〈a†jσkaj′σ′k〉a
†
j′σ′k′bjσk′ + 〈a

†
j′σ′k′bjσk′〉a

†
jσkaj′σ′k]
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+ e−i(k
′−k)(δδδp′+1−δδδp+1)(eikδδδp − eikδδδp+2)

× [〈a†jσkbj′σ′k〉b
†
j′σ′k′bjσk′ + 〈b

†
j′σ′k′bjσk′〉a

†
jσkbj′σ′k]

+ ei(k
′−k)(δδδp′−δδδp+1)(e−ikδδδp − e−ikδδδp+2)

× [〈b†jσk′aj′σ′k′〉a
†
j′σ′kajσk + 〈a†j′σ′kajσk〉b

†
jσk′aj′σ′k′ ]

+ ei(k
′−k)(δδδp′+1−δδδp+1)(e−ikδδδp − e−ikδδδp+2)

× [〈b†jσk′bj′σ′k′〉b
†
j′σ′kajσk + 〈b†j′σ′kajσk〉b

†
jσk′bj′σ′k′ ]

)

= − V0

2N

∑
j,j′

∑
σ,σ′

∑
k,k′

∑
p,p′

α1

3

(
[ei(k

′−k)(δδδp′−δδδp+1)(eik
′δδδp − eik′δδδp+2)〈a†j′σ′k′ajσk′〉

+ e−i(k
′−k)(δδδp′+1−δδδp+1)(eikδδδp − eikδδδp+2)〈b†j′σ′k′bjσk′〉]a

†
jσkbj′σ′k

+ [e−i(k
′−k)(δδδp′−δδδp+1)(eikδδδp − eikδδδp+2)〈a†j′σ′k′bjσk′〉

+ ei(k
′−k)(δδδp′−δδδp+1)(e−ikδδδp − e−ikδδδp+2)〈b†j′σ′k′ajσk′〉]a

†
jσkaj′σ′k

+ [ei(k
′−k)(δδδp′+1−δδδp+1)(eik

′δδδp − eik′δδδp+2)〈a†j′σ′k′bjσk′〉

+ e−i(k
′−k)(δδδp′+1−δδδp+1)(e−ik

′δδδp − e−ik′δδδp+2)〈b†j′σ′k′ajσk′〉]b
†
jσkbj′σ′k

+ [e−i(k
′−k)(δδδp′−δδδp+1)(e−ik

′δδδp − e−ik′δδδp+2)〈a†j′σ′k′ajσk′〉

+ ei(k
′−k)(δδδp′+1−δδδp+1)(e−ikδδδp − e−ikδδδp+2)〈b†j′σ′k′bjσk′〉]b

†
jσkaj′σ′k (E.3)

UFT×T ′ = − V0

2N

∑
j,j′

∑
σ,σ′

∑
k,k′,q

∑
p,p′

α2
1 δk′,k+q

(
eiq(δδδp+1−δδδp′+1)(eikδδδp − eikδδδp+2)(eik

′δδδp′ − eik′δδδp′+2)

× [〈a†jσkbj′σ′k′−q〉a
†
j′σ′k′bjσk+q + 〈a†j′σ′k′bjσk+q〉a†jσkbj′σ′k′−q]

+ eiq(δδδp+1−δδδp′+1)(eikδδδp − eikδδδp+2)(e−i(k
′−q)δδδp′ − e−i(k′−q)δδδp′+2)

× [〈a†jσkaj′σ′k′−q〉b
†
j′σ′k′bjσk+q + 〈b†j′σ′k′bjσk+q〉a†jσkaj′σ′k′−q]

+ e−iq(δδδp+1−δδδp′+1)(e−ikδδδp − e−ikδδδp+2)(ei(k
′−q)δδδp′ − ei(k′−q)δδδp′+2)

× [〈b†jσk+qbj′σ′k′〉a
†
j′σ′k′−qajσk + 〈a†j′σ′k′−qajσk〉b

†
jσk+qbj′σ′k′ ]

+ e−iq(δδδp+1−δδδp′+1)(e−ikδδδp − e−ikδδδp+2)(e−ik
′δδδp′ − e−ik′δδδp′+2)

× [〈b†jσk+qaj′σ′k′〉b
†
j′σ′k′−qajσk + 〈b†j′σ′k′−qajσk〉b

†
jσk+qaj′σ′k′ ]

)

= − V0

2N

∑
j,j′

∑
σ,σ′

∑
k,k′

∑
p,p′

α2
1

(
ei(k

′−k)(δδδp+1−δδδp′+1)(eikδδδp − eikδδδp+2)(eik
′δδδp′ − eik′δδδp′+2)

× [〈a†jσkbj′σ′k〉a
†
j′σ′k′bjσk′ + 〈a

†
j′σ′k′bjσk′〉a

†
jσkbj′σ′k]

+ ei(k
′−k)(δδδp+1−δδδp′+1)(eikδδδp − eikδδδp+2)(e−ikδδδp′ − e−ikδδδp′+2)

× [〈a†jσkaj′σ′k〉b
†
j′σ′k′bjσk′ + 〈b

†
j′σ′k′bjσk′〉a

†
jσkaj′σ′k]

+ e−i(k
′−k)(δδδp+1−δδδp′+1)(e−ikδδδp − e−ikδδδp+2)(eikδδδp′ − eikδδδp′+2)

× [〈b†jσk′bj′σ′k′〉a
†
j′σ′kajσk + 〈a†j′σ′kajσk〉b

†
jσk′bj′σ′k′ ]

+ e−i(k
′−k)(δδδp+1−δδδp′+1)(e−ikδδδp − e−ikδδδp+2)(e−ik

′δδδp′ − e−ik′δδδp′+2)

× [〈b†jσk′aj′σ′k′〉b
†
j′σ′kajσk + 〈b†j′σ′kajσk〉b

†
jσk′aj′σ′k′ ]

)
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= − V0

2N

∑
j,j′

∑
σ,σ′

∑
k,k′

∑
p,p′

α2
1

(
[e−i(k

′−k)(δδδp+1−δδδp′+1)(eik
′δδδp − eik′δδδp+2)(eikδδδp′ − eikδδδp′+2)〈a†j′σ′k′bjσk′〉

+ ei(k
′−k)(δδδp+1−δδδp′+1)(eikδδδp − eikδδδp+2)(eik

′δδδp′ − eik′δδδp′+2)〈a†j′σ′k′bjσk′〉]a
†
jσkbj′σ′k

+ [e−i(k
′−k)(δδδp+1−δδδp′+1)(eik

′δδδp − eik′δδδp+2)(e−ik
′δδδp′ − e−ik′δδδp′+2)〈a†j′σ′k′ajσk′〉

+ ei(k
′−k)(δδδp+1−δδδp′+1)(e−ik

′δδδp − e−ik′δδδp+2)(eik
′δδδp′ − eik′δδδp′+2)〈a†j′σ′k′ajσk′〉]b

†
jσkbj′σ′k

+ [ei(k
′−k)(δδδp+1−δδδp′+1)(eikδδδp − eikδδδp+2)(e−ikδδδp′ − e−ikδδδp′+2)〈b†j′σ′k′bjσk′〉

+ e−i(k
′−k)(δδδp+1−δδδp′+1)(e−ikδδδp − e−ikδδδp+2)(eikδδδp′ − eikδδδp′+2)〈b†j′σ′k′bjσk′〉]a

†
jσkaj′σ′k

+ [e−i(k
′−k)(δδδp+1−δδδp′+1)(e−ikδδδp − e−ikδδδp+2)(e−ik

′δδδp′ − e−ik′δδδp′+2)〈b†j′σ′k′ajσk′〉

+ ei(k
′−k)(δδδp+1−δδδp′+1)(e−ik

′δδδp − e−ik′δδδp+2)(e−ikδδδp′ − e−ikδδδp′+2)〈b†j′σ′k′ajσk′〉]b
†
jσkaj′σ′k

)

= −2α2
1V0

2N

∑
j,j′

∑
σ,σ′

∑
k,k′

∑
p,p′

(
e−i(k

′−k)(δδδp+1−δδδp′+1)(eik
′δδδp − eik′δδδp+2)(eikδδδp′ − eikδδδp′+2)〈a†j′σ′k′bjσk′〉a

†
jσkbj′σ′k

+ e−i(k
′−k)(δδδp+1−δδδp′+1)(eik

′δδδp − eik′δδδp+2)(e−ik
′δδδp′ − e−ik′δδδp′+2)〈a†j′σ′k′ajσk′〉b

†
jσkbj′σ′k

+ ei(k
′−k)(δδδp+1−δδδp′+1)(eikδδδp − eikδδδp+2)(e−ikδδδp′ − e−ikδδδp′+2)〈b†j′σ′k′bjσk′〉a

†
jσkaj′σ′k

+ ei(k
′−k)(δδδp+1−δδδp′+1)(e−ik

′δδδp − e−ik′δδδp+2)(e−ikδδδp′ − e−ikδδδp′+2)〈b†j′σ′k′ajσk′〉b
†
jσkaj′σ′k

)
(E.4)

Collecting terms and defining

Aα
†β
pp′ (k′ − k) ≡ ei(k′−k)(δδδp−δδδp′ )〈α†j′σ′k′βjσk′〉 and (E.5)

Bp(k) ≡ eikδδδp − eikδδδp+2 , (E.6)

allows us to write the full contribution from exchange term as,

UF = −V0

N

∑
j,j′

∑
σ,σ′

∑
k,k′

∑
p,p′

[ 1

18
[Aa

†a
pp′ (k

′ − k) +Aa
†a
pp′ (k− k′)] +

α1

3
[Aa

†b
pp̄′ (k− k′)Bp′(k) +Ab

†a
pp̄′ (k

′ − k)Bp′(−k)]

+ α2
1A

b†b
p̄p̄′(k

′ − k)Bp(k)Bp′(−k)
]
a†jσkaj′σ′k

+
[ 1

18
[Ab

†b
p̄p̄′(k

′ − k) +Ab
†b
p̄p̄′(k− k′)] +

α1

3
[Aa

†b
p̄p̄′ (k

′ − k)Bp′(k
′) +Ab

†a
p̄p̄′ (k− k′)Bp′(−k′)]

+ α2
1A

a†a
p̄p̄′ (k− k′)Bp(k

′)Bp′(−k′)
]
b†jσkbj′σ′k

+
[ 1

18
[Ab

†a
pp̄′ (k

′ − k) +Ab
†a
p̄p′ (k− k′)] +

α1

3
[Aa

†a
pp̄′ (k

′ − k)Bp′(k
′) +Ab

†b
p̄p̄′(k− k′)Bp′(k)]

+ α2
1A

a†b
p̄p̄′ (k− k′)Bp(k

′)Bp′(k)
]
a†jσkbj′σ′k

+
[ 1

18
[Aa

†b
p̄p′ (k

′ − k) +Aa
†b
pp̄′ (k− k′)] +

α1

3
[Aa

†a
pp̄′ (k− k′)Bp′(−k′) +Ab

†b
p̄p̄′(k

′ − k)Bp′(−k)]

+ α2
1A

b†a
p̄p̄′ (k

′ − k)Bp(−k′)Bp′(−k)
]
b†jσkaj′σ′k. (E.7)

Here p̄ (p̄′) denote odd values of p (p′), i.e. all terms with δδδp+1 (δδδp′+1). The matrix structure is,

UF = −V0

∑
k

f †k

(
M1 M2

M3 M4

)
fk
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≡ −V0

∑
k

f †kM
F fk (E.8)

with

Mσ′σ
1,j′j =

1

N

∑
p,p′,k′

[ 1

18
[Aa

†a
pp′ (k

′ − k) +Aa
†a
pp′ (k− k′)]

+
α1

3
[Aa

†b
pp̄′ (k− k′)Bp′(k) +Ab

†a
pp̄′ (k

′ − k)Bp′(−k)] + α2
1A

b†b
p̄p̄′(k

′ − k)Bp(k)Bp′(−k)
]
,

Mσ′σ
2,j′j =

1

N

∑
p,p′,k′

[ 1

18
[Ab

†a
pp̄′ (k

′ − k) +Ab
†a
p̄p′ (k− k′)]

+
α1

3
[Aa

†a
pp̄′ (k

′ − k)Bp′(k
′) +Ab

†b
p̄p̄′(k− k′)Bp′(k)] + α2

1A
a†b
p̄p̄′ (k− k′)Bp(k

′)Bp′(k)
]
,

Mσ′σ
3,j′j =

1

N

∑
p,p′,k′

[ 1

18
[Aa

†b
p̄p′ (k

′ − k) +Aa
†b
pp̄′ (k− k′)]

+
α1

3
[Aa

†a
pp̄′ (k− k′)Bp′(−k′) +Ab

†b
p̄p̄′(k

′ − k)Bp′(−k)] + α2
1A

b†a
p̄p̄′ (k

′ − k)Bp(−k′)Bp′(−k)
]
,

Mσ′σ
4,j′j =

1

N

∑
p,p′,k′

[ 1

18
[Ab

†b
p̄p̄′(k

′ − k) +Ab
†b
p̄p̄′(k− k′)]

+
α1

3
[Aa

†b
p̄p̄′ (k

′ − k)Bp′(k
′) +Ab

†a
p̄p̄′ (k− k′)Bp′(−k′)] + α2

1A
a†a
p̄p̄′ (k− k′)Bp(k

′)Bp′(−k′)
]
.

(E.9)
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Appendix F

Numerical implementation of
interactions in real space

In this appendix we will describe the numerical implementation of the HF decoupled interactions
in real space. The interactions read,

UHF = V0

∑
R

[
n̄(R)(Q+ T )−

∑
all

[∑
n,m

αn(p′)αm(p)〈d†τ ′σ′p′+ndτσp+m〉
]
d†τσpdτ ′σ′p′

]
, (F.1)

where
∑

all =
(∑

ττ ′
∑

σσ′
∑

pp′

)
, n,m = {−1, 0, 1} and we have defined,

n̄(R) =
∑
τ ′σ′p′

(
α0(p′)〈d†τ ′,σ′,p′dτ ′,σ′,p′〉+ α+1(p′)[〈d†τ ′,σ′,p′dτ ′,σ′,p′+1〉+ 〈d†τ ′,σ′,p′+1dτ ′,σ′,p′〉]

)
,

(F.2)

ᾱ(p) =

α−1

α0

α+1

 =

 α1(−1)p

1/3
α1(−1)p−1

 .

As the interactions are defined by a sum over all hexagons, R, it is natural to structure the mean
fields accordingly. Thus we set up an array with dimensions dim(MF ) = (Rtot, 6 × 4, 6 × 4).
Here each of the Rtot layers contain all mean field parameters related to each hexagon, R =
0, ..., Rtot − 1. As we have six sites associated with each hexagon and four flavours associated
with each site, MF (R) has 24 × 24 inputs where MF (R, i′, j′) = 〈d†i′dj′〉 for i′, j′ = {τ =
±1;σ =↑, ↓; p = 0, .., 5} = 0, ..., 24. With this structure of the mean fields, it is sufficient to
consider a general method of computing the Hartree and Fock terms within a single hexagon
which can easily be extended to the entire system by looping over all R.
We begin by considering the Hartree terms visualized in Fig. F.1a. These terms do not mix

primed and unprimed indices, and we only need to compute a single parameter, n̄(R), for each
hexagon. The first term of n̄(R) contains all diagonal terms of MF (R), MF (R, i′, i′), while the
latter two contain all terms with equal flavours but shifted by ±1 site, respectively, equivalent
to MF (R, i′, i′ + 4) + MF (R, i′ + 4, i′). The last two terms of n̄(R) will thus be represented
by elements along the shifted diagonals as depicted in Fig. F.1a, where green areas are all
〈d†τ ′,σ′,p′dτ ′,σ′,p′+1〉 and blue areas are all 〈d†τ ′,σ′,p′+1dτ ′,σ′,p′〉. Periodic boundary conditions are

imposed by including the small diagonals in bottom left (〈d†τ ′,σ′,p′=5dτ ′,σ′,p′+1=0〉) and top right

(〈d†τ ′,σ′,p′+1=0dτ ′,σ′,p′=5〉) corners. We sum over a total of 3 × 24 = 72 terms for each n̄(R) in
accordance with Eq. (F.2). n̄(R) is added to H(i, i), H(i, i + 4) and H(i + 4, i), where i is
defined from the unique site number and determined through the function f(R) as described in
the main text. The additional prefactors in (Q+T ) (α0 and α+1, respectively) is accounted for
when n̄(R) is included in H.
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SPACE

α+1

α+1

24

24

}}

α+1

24

24

}}α-1
α0

α+1α-1 α0
a) b)

α0

Figure F.1: Visualization of Hartree and Fock terms. The encapsulated areas represent
the MF (R) matrix with 24 × 24 inputs. a) All mean fields included in n̄(R). Grey area is

〈d†τ ′,σ′,p′dτ ′,σ′,p′〉, green areas are 〈d†τ ′,σ′,p′dτ ′,σ′,p′+1〉 and blue areas are 〈d†τ ′,σ′,p′+1dτ ′,σ′,p′〉. α0,+1

indicate the relevant prefactor for terms in the given area. b) The nine terms included in a

single Fock term. Centered, striped area marks the 〈d†τ ′σ′p′dτσp〉 mean field. Remaining eight
areas are the assisted hopping exchange terms, when (n,m) 6= (0, 0). Each mean field is related
to a prefactor combination indicated by α±1,0 marking the prefactor for the given row/column.

In the Fock terms, the sums over primed and unprimed indicies cannot be separated. Thus
we must compute an individual input for each d†τ,σ,pdτ ′,σ′,p′ in the hexagon. A visualization of
one of these inputs is depicted in Fig. F.1b. Each input is a sum of nine mean fields with nine
different prefactor combinations. In Fig. F.1b the centered area marked with stripes illustrates
the particular operator combination in question. Here we take the combination d†+,↓,4d−,↑,1 as
an example. As the Fock terms are exchange terms, the centered area marked with stripes
corresponds to 〈d†−,↑,1d+,↓,4〉. The value of this mean field is weighted by α0(1)α0(4) = 1/9 in

accordance with Eq. (F.1). On top of this value, the input at d†τ,σ,pdτ ′,σ′,p′ contains eight assisted
hopping exchange terms depicted by the eight adjacent filled, red areas. These mean fields are
〈d†−,↑,0d+,↓,3〉, 〈d†−,↑,0d+,↓,4〉, 〈d†−,↑,0d+,↓,5〉, 〈d†−,↑,1d+,↓,3〉, 〈d†−,↑,1d+,↓,5〉, 〈d†−,↑,2d+,↓,3〉, 〈d†−,↑,2d+,↓,4〉
and 〈d†−,↑,2d+,↓,5〉. In our convention, the summation over said mean fields with the appropri-

ate prefactors can be written as
∑

n,m αn(p′ = 1)αm(p = 4)MF (R, i′ + n, j′ + m), where
n,m = {−1, 0, 1}, i′ = 5 and j′ = 18. This summation is carried out for all 24 × 24 operator
combinations of each hexagon and inserted at the uniquely defined positions in H by use of the
function f(R) as described in the main text.
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Twisted bilayer graphene (TBG) provides a unique framework to elucidate the interplay between strong
correlations and topological phenomena in two-dimensional systems. The existence of multiple electronic
degrees of freedom – charge, spin, and valley – gives rise to a plethora of possible ordered states and instabilities.
Identifying which of them are realized in the regime of strong correlations is fundamental to shed light on the
nature of the superconducting and correlated insulating states observed in the TBG experiments. Here, we use
unbiased, sign-problem-free quantum Monte Carlo simulations to solve an effective interacting lattice model
for TBG at charge neutrality. Besides the usual cluster Hubbard-like repulsion, this model also contains an
assisted hopping interaction that emerges due to the non-trivial topological properties of TBG. Such a non-local
interaction fundamentally alters the phase diagram at charge neutrality, gapping the Dirac cones even for small
values of the interaction. As the interaction strength increases, a sequence of different correlated insulating
phases emerge, including a quantum valley Hall state with topological edge states, an intervalley-coherent
insulator, and a valence bond solid. The charge-neutrality correlated insulating phases discovered here provide
the sought-after reference states needed for a comprehensive understanding of the insulating states at integer
fillings and the proximate superconducting states of TBG.

I. INTRODUCTION

The recent discovery of correlated insulating and supercon-
ducting phases in twisted bilayer graphene (TBG) [1–3] and
other moiré systems [4–7] sparked a flurry of activity to elu-
cidate and predict the electronic quantum phases realized in
their phase diagrams [8–51]. Because the low-energy bands
of TBG have a very small bandwidth, of about 10meV at the
magic twist angle, the Coulomb interaction, which is of the
order of 25meV, is expected to play a fundamental role in shap-
ing the phase diagram [1, 13, 20, 22]. Indeed, insulating states
have been reported at all commensurate fillings of the moiré
superlattice [10], signaling to the importance of strong correla-
tions. Besides correlations, topological phenomena have also
been reported, including a quantum anomalous Hall (QAH)
phase [52, 53].

An important issue is the nature of the quantum ground
state at charge neutrality, characterized in real space by 4 elec-
trons per moiré unit cell, and in momentum space by Dirac
points at the Fermi level. Experimentally, a large charge gap
characteristic of an insulating state was reported in transport
measurements in Ref. [10] and in STM measurements in Ref.
[11], despite no obvious alignment with the underlying hBN
layer. The fact that this gap is not observed in all devices has
been attributed to inhomogeneity [10]. Theoretically, because
the electronic states in TBG have several degrees of freedom
– spin, valley, and sublattice – various possible ground states

can emerge. Indeed, Hartree-Fock calculations of the contin-
uum model at charge neutrality found various possible phases,
such as orbital-magnetization density-waves, valley polarized
states, and states that spontaneously break the three-fold rota-
tional symmetry of the moiré lattice [39, 43, 44, 54, 55]. To
distinguish among these different possibilities, it is desirable
to employ a method that is not only unbiased, but that can also
handle strong correlations.
Large-scale quantum Monte Carlo (QMC) simulations pro-

vide an optimal tool, limited only by the finite lattice sizes.
Although such a limitation makes it impossible to simulate a
model with thousands of carbon atoms per moiré unit cell, it
is very well suited to solve lattice models on the moiré length
scale. At charge neutrality, the non-interacting part of the
model has onlyDirac points at the Fermi level. The crucial part
of the model, however, is the interacting part, which governs
the system’s behavior in the strong coupling regime. At first
sight, based on the analogywith other strongly-correlatedmod-
els, it would seem enough to consider a cluster Hubbard-like
repulsion as the main interaction of the problem. Previously,
some of us used QMC to simulate this model, which does not
suffer from the infamous fermionic sign-problem [56, 57]. The
result was a variety of valence-bond insulating states, which
however only onset at relatively large values of the interaction
*, of the order of several times the bandwidth, . Below these
large values, the system remained in the Dirac semi-metal
phase.
However, microscopically, the full interaction of the lattice
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model can be derived from projecting the screened Coulomb
repulsion on the Wannier states of TBG. The latter turn out
to be quite different than in other correlated materials, as they
have nodes on the sites of the moiré honeycomb superlattice
and a three-peak structure that overlaps with Wannier func-
tions centered at other sites [20–22]. Recent work has shown
that this leads to the emergence of an additional and sizable
non-local interaction, of the form of an assisted-hopping term
[32, 48]. This new interaction ultimately arises from the
fact that, in a lattice model, the symmetries of the contin-
uum model cannot all be implemented locally, a phenomenon
dubbed Wannier obstruction [22]. Therefore, the assisted-
hopping interaction is not a simple perturbation, but a direct
and unavoidable manifestation of the non-trivial topological
properties of TBG.

In this paper, we study the impact of the assisted-hopping
interaction on the ground state of TBG at charge neutrality
via sign-problem-free QMC simulations. We find that such a
term qualitatively changes the phase diagram, as compared to
the case where only the Hubbard interaction is included. In
particular, the Dirac semi-metal phase is no longer stable, but
is gapped already at weak-coupling. We show that this gap is
a manifestation of a quantum valley Hall (QVH) state, char-
acterized by topological edge states. We confirm this weak-
coupling result by unrestricted Hartree-Fock (HF) calculations
of the same model simulated by QMC. The HF calculations,
well suited for weak interactions, also show that the QVH
state is a robust property of the weak-coupling regime, and is
directly connected to the assisted-hopping term. As the inter-
action strength increases, a different type of insulating phase
arises, displaying intra-valley coherence (IVC) order. This on-
site IVC order breaks the spin-valley SU(4) symmetry of the
interacting part of the model, resembling recently proposed
ferromagnetic-like SU(4) states proposed to emerge in TBG at
charge neutrality and other integer fillings [32, 43]. Upon fur-
ther increasing the interaction, a columnar valence bond solid
(cVBS) insulator state appears, favored by the Hubbard-like
interaction [56, 57]. Importantly, the presence of the assisted-
hopping term makes the QVH and IVC states accessible al-
ready for substantially smaller values of */, , as compared
to the case where there is only Hubbard repulsion. Therefore,
the experimental observation of such quantum states in TBG
at charge neutrality would provide strong evidence for the im-
portance of non-local, topologically-driven interactions in this
system.

II. MODEL, SYMMETRY ANALYSIS AND METHOD

As shown in Fig. 1 (a), our model describes two valleys
(orbitals) of spinful fermions on the honeycomb lattice that is
dual to the triangular moiré superlattice. The Hamiltonian is
given by � = �0 +�9, with the non-interacting tight-binding
term:

�0 = −C
∑
〈8 9 〉;f

(
2†8;f2 9;f + h.c.

)
, (1)

where 2†8;f (28;f) denotes creation (annihilation) operators of
electrons at site 8, valley ; = 1, 2 with spin f =↑, ↓. The
nearest neighbor hopping C = 1 and we use the bare bandwidth
, = 6C as the energy unit in the remainder of the paper.
While this simple band dispersion displays Dirac points at
charge neutrality, it does not faithfully reflect the detailed band
dispersion obtained by DFT calculations and the topological
features of the bands. However, the precise form of �0 is
not expected to play a dominant role in the strong-coupling
regime [32], which is our focus here. For this same reason, it
is fundamental to correctly capture the effective interaction of
this lattice model. Here, we consider an interaction term �9
that contains two contributions:

�9 = *
∑
9

(&9 + U)9 − 4)2, (2)

where * sets the overall strength of the Coulomb in-
teraction. The two contributions in Eq. (2) consist
of the cluster charge &9 ≡ ∑

9∈9
= 9

3 , with = 9 =∑
;f 2

†
9;f2 9;f , and the cluster assisted hopping )9 ≡∑

9 ,f

(
82†9+1,1f2 9 ,1f − 82†9+1,2f2 9 ,2f + ℎ.2.

)
. Here, the index

9 = 1, . . . , 6 sums over all six sites of the elemental hexagon in
the honeycomb lattice. The pre-factor U controls the relative
strength of the two interactions. Hereafter, we fix the elec-
tronic filling strictly at the charge neutrality point, where there
are four electrons per hexagon once averaging over the lattice.

This form of �9, introduced in Ref. [32], follows from
projecting the screened Coulomb interaction on the Wannier
states of TBG. The cluster charge term&9 is analogous to the
Hubbard onsite repulsion in the standard Hubbard model; the
reason why it extends over the entire hexagon is because of the
screening length set by the separation between the gates in a
TBG device and because of the overlap betweenWannier states
of neighboring sites. In TBG, the Wannier wave-functions are
not peaked at the honeycomb sites, but instead are extended
and peaked at the centers of the three neighboring hexagons.
Therefore, one single Wannier state overlaps spatially with
otherWannier states on neighboring sites, leading to the cluster
charging term&9. On the other hand, the origin of the assisted
hopping term)9 is topological. As explained in Refs. [22, 58],
there is an obstruction to construct fully symmetric Wannier
states for the isolated nearly-flat bands if one attempts to extend
the symmetries of the continuum model of TBG to a lattice
model. However, it is still possible to construct Wannier states
by implementing the valley-related symmetry�2T non-locally
[20, 21]. Here, �2 refers to two-fold rotations with respect to
the I-axis and T , to time-reversal. As a consequence, the
spatial integral of two neighboring Wannier states inside a
single hexagon becomes nonzero, giving rise to the crucial )9
term. The coefficient U is of order unity, and depends on the
details of the Wannier states [32].

An interesting feature of �9 is its emergent SU(4) sym-
metry. To illustrate this, we introduce the spinor k8 =(
281↑, 281↓, 282↑, 282↓

)) and rewrite the interactions as:



3

l=1 l=2

U/W

α

10 12
0.1

0.2

0.3

0.4

0.5

0.6

0 2 4 6 8

IVC cVBS

IVC

QVH

U(Q+αT)2

Orbital 1
Orbital 2
T

(a) (b)

Q

FIG. 1. Ground state phase diagram at charge neutrality obtained via QMC simulations. (a) Schematics of the model: each lattice site
on the dual moiré honeycomb lattice contains two valleys ; = 1, 2 (red and green triangles) and spins f =↑, ↓ (not shown), with spin-valley
SU(4) symmetry. The interactions act on every hexagon and consist of the cluster charge term &9 (yellow dots) and the assisted-hopping
interaction term )9 (blue arrows). (b) Ground state phase diagram, spanned by the */, and U axes, obtained from QMC simulations. The
y-axis at * = 0 (dash line) stands for the Dirac semi-metal phase. At very small *, the ground state is a quantum valley Hall (QVH) phase
characterized by emergent imaginary next-nearest-neighbor hopping with complex conjugation at the valley index, as illustrated by the red
and green dashed hoppings with opposite directions. The system has an insulating bulk but acquires topological edge states. Upon further
increasing *, an intervalley-coherent (IVC) insulating state is found, which breaks the SU(4) symmetry at every lattice site by removing the
valley symmetry. Because it preserves the lattice translational symmetry, it is ferromagnetic-like. The columnar valence bond solid (cVBS)
insulator, which appears after the IVC phase, breaks the lattice translational symmetry and preserves the onsite SU(4) symmetry. Note that
there is a re-emergence of the IVC phase for the largest interactions probed. The phase transitions between QVH and IVC (blue line), between
the IVC and cVBS (black line), and between the cVBS and IVC (red line) are all first order.

&9 =
1
3

∑
8∈9

k†8 k8 (3)

)9 = 8
∑
8∈9

k†8+1)0k8 + h.c. (4)

with )0 = diag(1, 1,−1,−1) denoting a diagonal matrix. Con-
sider the unitary transformation k8∈A → *k8 and k8∈B →
)0*)0k8 , where* is an arbitrary 4×4 unitarymatrix andA(B)
are the two sublattices of the honeycomb lattice. It is clear that
both &9 and )9 are invariant under this transformation. On
the other hand, the kinetic term �0 is not SU(4) symmetric,
but invariant only underU(1) × SU(2) × SU(2), i.e. the valley
U(1) symmetry and the two independent spin SU(2) rotations
for the two valleys [22, 38]. Thus, strictly speaking, the SU(4)
symmetry is exact for �9 but only approximate for �0.

To solve the model � = �0 + �9 non-perturbatively,
we employ large-scale projection QMC simulations [56, 57].
This QMC approach, employed in several previous studies
[56, 57, 59–62], provides results about the ) = 0 ground state,
the correlation functions (which are used to determine broken
symmetries), and the electronic spectra (both single-particle
and collective excitations). Despite the presence of the as-
sisted hopping interaction, the model at charge-neutrality does
not suffer from the sign-problem (see Appendix B). Thus, it

can be efficiently simulated by introducing an extended aux-
iliary bosonic field that dynamically couples to the electrons
on a hexagon – in contrast to the standard Hubbard model,
where the auxiliary field is local. Details about the QMC im-
plementation, as well as comparison with results from exact
diagonalization, are discussed in the Appendix A and Ap-
pendix C.

We also complemented the unbiased QMC simulations with
self-consistent HF calculations, which are well-suited for the
weak-coupling regime, and can be employed even when addi-
tional terms are included in � that introduce a sign-problem
for QMC. The HF approach is fully unrestricted in the sense
that �0 +�9 is mean-field decoupled in all channels, and free
to acquire any value in site-, spin-, and valley-space. Fur-
ther technical details, including the resulting coupled set of
(real-space) self-consistency equations, can be found in the
Appendix E. In the regime of weak interactions, we find ex-
cellent agreement between the results obtained from HF and
QMC, as shown below.
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FIG. 2. Quantum valley Hall insulator (QVH) and gapless edge
states. (a) The single-particle gap Δsp ( )/, at the K point as a
function of */, for U = 0.45, extracted from both QMC (blue
points) andHF calculations (red points). For QMC, the spatial system
size is ! = 12. The Dirac semi-metal is gapped out at the smallest
small * values probed. (b) Single-particle gap extracted from QMC
with ! = 12 along a high-symmetry path of the Brillouin zone. (c)
The topological nature of the QVH phase is manifested by valley-
polarized edge states. Here we compare the edge Green’s function
for valley ; = 1 and spin ↑ at */, = 0.25 (inside the QVH phase)
and */, = 2.0 (inside the IVC phase). It is clear that gapless edge
modes only appear in the former case, highlighting the topological
nature of the QVH phase.
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FIG. 3. In-gap local density of states in theQVHphase. Real space
plot of the local density of states integrated over 1.66 < �/, < 2.00
with*/, = 0.5. The result is computed with parameters as in Table
I and open boundary conditions.

III. QUANTUM VALLEY HALL PHASE,
INTERVALLEY-COHERENT INSULATOR, AND

VALENCE-BOND SOLID

The QMC-derived phase diagram for the ground states at
charge neutrality is shown in Fig. 1 (b) as a function of */,
and U. We emphasize that while * gives the overall magni-
tude of the total interaction term, U is proportional to the rela-
tive strength between the assisted-hopping and cluster-charge
terms. We find that three types of correlated insulating phases
emerge in the phase diagram: the quantum valley Hall (QVH)
phase, the intervalley-coherent (IVC) phase, and the columnar
valence bond solid (cVBS).
The QVH phase is the ground state for small* values and is

characterized by a gap in the single-particle spectrum. This gap
can be extracted from the imaginary-time decay of the Green’s
function along a high-symmetry path of the Brillouin zone
(BZ), � (k, g) ∼ 4−Δsp (k)g . Fig. 2(a) shows the enhancement
of the single-particle gap at the  point of the BZ as a function
of* for a fixed U = 0.45 (blue points). Together with Fig. 2(b),
one sees the gap opens at the entire BZ at infinitesimally small
*. In many honeycomb lattice models, the Dirac cone at the
 point is protected by a symmetry, and the semi-metal phase
is robust against weak interactions [56, 57, 59, 66]. In TBG,
however, the relevant symmetry, �2T , cannot be implemented
locally due to the topological Wannier obstruction. This opens
up the possibility of very weak interactions gapping out the
Dirac cone.
In our QMC simulations, for any non-zero U that we investi-

gated, a gap appeared even for the smallest values of* probed.
This suggests a weak-coupling origin of this phase. To verify
it, we performed HF calculations on the same lattice model.
The results, shown by the red points in Fig. 2(a), are in very
good agreement with the QMC results. We also used HF to
investigate the stability of the gap against changing the phase
that appears in the assisted-hopping term )9 [32]. This phase
can be gauged away, at the expense of introducing complex
hopping terms in �0, which introduce a sign-problem to the
QMC simulations. However, they do not affect the efficiency
of the HF algorithm. As discussed in the Appendix E, our
analysis confirm that the onset of the QVH phase is robust and
appears regardless of the phase of )9.
Importantly, we find that the gap completely disappears

when U = 0, in agreement with Ref. [57]. Combined with
the fact that the gap onsets for small interaction values when
U ≠ 0, this suggests that the origin of the gap can be understood
from a mean-field decoupling of the cross-term

∑
9&9)9 of

the interaction in Eq. 2. This cross-term can be rewritten as:

∑
9

&9)9 = 8
∑
9

6∑
8, 9=1

2∑
;,<=1
(−1)<

(
2†8,;2

†
9+1,<2 9 ,<28,; − ℎ.2.

)
(5)

where ; and < are valley indices and the spin index is omitted
for simplicity. The terms with 9 = 8 − 1 and 9 = 8 vanish after
summing over different hexagons. In the weak-coupling limit,
we can do a mean-field decoupling and use 〈2†8,;28+1,<〉 ∝ X;<,
due to the nearest-neighbor hopping term present in �0. The
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cross-term then becomes:

∑
9

&9)9 ∝ −8
∑
9

6∑
8=1

2∑
;=1
(−1);

(
2†8,;28+2,; + 2†8−2,;28,; − ℎ.2.

)
(6)

Thus, the cross-term of the interaction naturally induces
an imaginary hopping between next-nearest-neighbors in the
weak-coupling limit. As a consequence, themean-fieldHamil-
tonian becomes two copies (four, if we consider the spin degen-
eracy) of the Haldane model [64], leading to a Chern number
of ±1 for the two different valleys. For this reason, we call this
state a QVH phase; it is illustrated in the corresponding inset in
Fig. 1 (b). We verified that our self-consistent HF calculation
generates the same pattern of imaginary NNN hopping.

One of the hallmarks of the Haldane model is the existence
of gapless edge modes, despite the bulk being gapped. In
the QVH phase, these edge states should be valley-polarized.
To probe them, we performed QMC simulations with open
boundary conditions and extracted the imaginary-time Green’s
functions on the edge, �edge (g) ∼ 4−Δspg . As shown in Fig. 2
(c), in the regime of small * (*/, = 0.25), the Green’s
function on the edge decays to a constant in the long imaginary-
time limit, demonstrating the existence of a gapless edge mode
in the QVH phase. To verify the existence of edge states, we
also use HF to capture the topological nature of the QVH
phase. In practice, we open the boundaries in the system
and compute a self-consistent result with parameters as in
Table I (C = 1 ,U = 0.45, */, = 0.5, ) = 2.5 · 10−5 and
# = 4× 600). We find clear evidence of edge states as seen in
Fig. 3. Note that a Chern number can be defined separately for
each valley ; = 1 and ; = 2 (with spin degeneracy). Because
the valley * (1) symmetry guarantees that these two Chern
numbers must be equal, the whole system is characterized by
one Chern number that takes integer values, i.e. it belongs to
aZ classification [65].

Fig. 2(c) also shows that, as * increases (*/, = 2), the
gapless edge mode disappears, signalling a departure from the
topological QVH phase. Clearly, the bulk remains gapped,
as shown in Fig. 2(a). The new insulating phase is an in-
tervalley coherent (IVC) state, which spontaneously breaks
the onsite spin-valley SU(4) symmetry. In the QMC sim-
ulations, IVC order is signalled by an enhancement of the
correlation function �� (k) = 1

!4
∑
8, 9∈A(B) 48k· (r8−r 9 ) 〈�8 � 9 〉,

here, the operator �8 =
∑
f (2†8,;,f28,;′,f + ℎ.2.), ; ≠ ; ′, rep-

resents an “onsite hopping" between the two different val-
leys. Thus, the correlation function is a 2 × 2 matrix in

sublattice space, i.e.
(
�AA� �AB�
�BA� �BB�

)
, which has the relation

�AA� = �BB� = −�AB� = −�BA� . In the upper panels
of Figs. 4(a) and 4(b), we show one of diagonal compent
�AA� (k). The fact that the correlation function is peaked at
k = � implies that the IVC order is ferromagnetic-like, i.e. it
does not break translational symmetry. Such an onsite cou-
pling between opposite valleys (see the corresponding inset in
the phase diagram in Fig. 1 (b)) breaks the valley* (1) symme-
try, and hence the SU(4) symmetry of the model. The fact that
the SU(4) symmetry-breaking pattern is ferromagnetic-like is

similar to recent analytical results [32, 33], which focused,
however, at integer fillings away from charge neutrality.
For larger values of */, , as shown in Fig. 4, the IVC

order fades away, but the system remains insulating. The
new state that emerges is the columnar valence-bond solid
(cVBS) insulator, characterized by the appearance of strong
nearest-neighbor bonds forming the pattern illustrated in the
corresponding inset of Fig. 1 (b). The onset of cVBS or-
der is signalled by an enhancement of the bond-bond correla-
tion function [56, 57],�� (k) = 1

!4
∑
8, 9 4

8k· (r8−r 9 ) 〈�8, X� 9 , X〉 ,
with bond operator �8, X =

∑
;,f (2†8,;,f28+X,;,f + ℎ.2.) and X

denoting one of the three nearest-neighbor bond directions
of the honeycomb lattice (4̂1, 4̂2 and 4̂3). For this particular
calculation, 4̂1 was chosen.
As shown in the lower panels of Figs. 4(a) and 4(b), we

find an enhanced �� (k) at momenta K and K′, demonstrat-
ing that the bond-order pattern breaks translational symmetry.
However, a peak of �� (k) at these momenta does not allow
us to unambiguously identify the cVBS state, as the plaquette
valence-bond solid (pVBS) also displays peaks at the same
momenta [56, 57, 66, 67]. To further distinguish the two types
of VBS phases, we construct the complex order parameter
�K = 1

!2
∑
8

(
�8,4̂1 + l�8,4̂2 + l2�8,4̂3

)
48K·r8 with l = 48

2c
3 .

TheMonte Carlo histogram of �K is different for the two VBS
phases [66, 67]: for the pVBS state, the angular distribution of
�K is peaked at arg(�K) = c

3 , c,
5c
3 , whereas for the cVBS

state, it is peaked at arg(�K) = 0, 2c
3 ,

4c
3 . Our results, shown

in the inset of Fig. 4(a), clearly demonstrate that the cVBS
order is realized in our phase diagram.
The phase boundaries in Fig. 1(b) are obtained by scanning

the correlation functions �� (�) and �� (K) as a function of
*/, for fixed values of U. Two of these scans are shown
in Fig. 4, for U = 0.4 (panel (a)) and U = 0.6 (panel (b)).
It is clear that, as */, increases, in both cases the ground
state evolves from QVH to IVC to cVBS and then back to
IVC. Furthermore, in the strong coupling limit */, → ∞,
the IVC order �� (k = 0) is independent of U and saturates
at 0.5, consistent with our analytical calculation at the charge
neutrality point, see Appendix D. The transitions between IVC
to cVBS are first order, as signaled by the fact that as the system
size ! increases, the suppression of the IVC order becomes
sharper (see for instance the region around */, ∼ 5 and
*/, ∼ 11 in panel (a)). A similar sharp drop is also featured
at the QVH-IVC transition (region around*/, ∼ 2.5 in panel
(a)), indicating that the QVH-IVC and IVC-cVBS transitions
are all first-order. It is interesting to note that, as U increases,
the values of*/, for which the IVC and cVBS phases emerge
are strongly reduced.

IV. DISCUSSION

In this paper, we employed QMC simulations, which are
exact and unbiased, to obtain the phase diagram of a lattice
model of TBG at charge neutrality. Our main result is that
even very small interaction values trigger a transition from
the non-interacting Dirac semi-metal phase to an insulating
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solid (cVBS) insulating states. Correlation functions �� (�) and
�� (K), indicative of IVCand cVBSorders, respectively, as a function
of */, for (a) U = 0.4 and (b) U = 0.6. Linear system sizes are
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IVC-cVBS transition, and the cVBS-IVC transition are all first-order.
The inset in panel (a) presents the histogram of the complex bond
order parameter �K at */, ∼ 5.3. The positions of the three peaks
are those expected for a cVBS phase, instead of a pVBS state.

state. Upon increasing *, the nature of the insulator changes
from a non-symmetry-breaking topological QVH phase, to
an onsite SU(4) symmetry-breaking IVC state, to a transla-
tional symmetry-breaking cVBS phase, and then finally back
to a reentrant IVC state. This rich phase diagram is a conse-
quence of the interplay between two different types of inter-
action terms: a cluster-charge repulsion &9 and a non-local
assisted-hopping interaction )9. The former is analogous to

the standard Hubbard repulsion and, as such, is expected to
promote either SU(4) antiferromagnetic order or valence-bond
order in the strong-coupling regime. The latter, on the other
hand, arises from the topological properties of the flat bands
in TBG. When combined with &9, it gives rise not only to
SU(4) ferromagnetic-like order, but also to correlated insu-
lating phases with topological properties, such as the QVH
phase.
While the precise value of */, in TBG is not known,

a widely used estimate is that this ratio is of order 1 [32].
Referring to our phase diagram in Fig. 1(b), this means that
certainly the QVH phase and possibly the IVC phase can be
realized at charge neutrality, provided that U is not too small.
While some experimental probes do report a gap at charge
neutrality Ref. [10, 11], additional experiments are needed to
establish its ubiquity among different devices and the nature of
the insulating state. The main manifestation of the QVH phase
would be the appearance of gapless edge states, whereas in the
case of the IVC state, it would be the emergence of a k = 0
order with onsite coupling between the two different valleys.
In a more general context beyond TBG, our work offers

a promising route to realize correlation-driven topological
phases. As explained above, the topological QVH insulating
state appears due to the cross-term in the interaction Hamilto-
nian that contains both &9 and )9. While repulsive interac-
tions similar to the charge-cluster one are generally expected
to appear in any correlated electronic system, an interesting
question is about the necessary conditions for the emergence
of an interaction similar to the assisted-hopping. In our case, it
arises from the projection of the standard Coulomb repulsion
onWannier states that suffer from topological obstruction. The
latter, in turn, is a manifestation of the phenomenon of fragile
topology [68]. Thus, interacting systems with fragile topology
may offer an appealing route to search for interaction-driven
topological states.
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Appendix A: Projection QMC method

Since we are interested in the ground state properties of the
system, the projection QMC is the method of choice [59, 62,
69]. In PQMC, one can obtain a ground state wave function
|Ψ0〉 from projecting a trial wave function |Ψ) 〉 along the
imaginary axis |Ψ0〉 = lim

Θ→∞
4−

Θ
2 H |Ψ) 〉, then observable can

be calculated as

〈$̂〉 = 〈Ψ0 |$̂ |Ψ0〉
〈Ψ0 |Ψ0〉 = lim

Θ→∞
〈Ψ) |4− Θ2 H$̂4−

Θ
2 H |Ψ) 〉

〈Ψ) |4−ΘH |Ψ) 〉
. (A1)

To evaluate overlaps in the above equation, we performed

Trotter decomposition to discretize Θ into !g slices (Θ =
!gΔg). Each slices Δg is small and the systematic error is
O(Δg2). After the Trotter decomposition, we have

〈Ψ) |4−Θ� |Ψ) 〉 = 〈Ψ) |
(
4−Δg�* 4−Δg�0

)!g |Ψ) 〉 + O(Δg2)
(A2)

where the non-interacting and interacting parts of the Hamil-
tonian is separated. To treat the interacting part, one usually
employ a Hubbard Stratonovich (HS) transformation to decou-
ple the interacting quartic fermion term to fermion bilinears
coupled to auxiliary fields.
For the cluster interaction in Eq. (2) of the main text, we

make use of a fourth order (* (2) symmetric decoupling

4−Δg* (&9+U)9−4)2 =
1
4

∑
{B9 }

W(B9)48U[ (B9)
(
&9+U)9−4

)

(A3)
with U =

√
Δg*, W(±1) = 1 +

√
6/3, W(±2) = 1 −

√
6/3,

[(±1) = ±
√

2(3 −
√

6), [(±2) = ±
√

2(3 +
√

6) and the sum is
taken over the auxiliary fields B9 on each hexagon which can
take four values±2 and±1. After tracing out the free fermionic
degrees of freedom, we obtain the following formula with a
constant factor omitted

〈Ψ) |4−Θ� |Ψ) 〉 =
∑
{B9,g

}

[(∏
g

∏
9

W(B9,g)4−4U[ (B9,g
)
)

det
[
%†�(Θ, 0)%] ]

(A4)

where % is the coefficient matrix of trial wave function |Ψ) 〉.
In the simulation, we choose the ground state wavefunction
of the half-filled non-interacting system (described by �0) as
the trial wave function. In the above formula, the � matrix is
defined as

�(g + 1, g) = 4+ [ {B9,g
}]4−Δg (A5)

and has properties �(g3, g1) = �(g3, g2)�(g2, g1), i.e. the �
matrix is an imaginary time propagator, where we have written
the coefficient matrix of interaction part as + [{B9,g}] and  
is the hopping matrix from the �0.

The configurational space {B9 (8, g)} with size ! × ! × Θ
is the space in which the physical observables in Eq. (A1) are
computed with ensemble average. We choose the projection
length Θ = 2!/C and discretize it with a step Δg = 0.1/C. The
spatial system sizes are ! = 6, 9, 12, 15.

Every hexagon contains six sites, as shown in the figure
below, so our + [{B9,g}] matrix is a block matrix, every block
contributes a 6 × 6 matrix,

The Monte Carlo sampling of auxiliary fields are further
performed based on the weight defined in the sum of Eq. (A4).
The measurements are performed near g = Θ/2. Single par-
ticle observables are measured by Green’s function directly
and many body correlation functions are measured from the

1

6

5

4

3

2

©«

1
3 8U −8U 0 0 0
−8U 1

3 0 8U 0 0
8U 0 1

3 0 −8U 0
0 −8U 0 1

3 0 8U

0 0 8U 0 1
3 −8U

0 0 0 −8U 8U 1
3

ª®®®®®®®®¬
products of single-particle Green’s function based on their cor-
responding form after Wick-decomposition. The equal time
Green’s function are calculated as

� (g, g) = 1 − '(g) (! (g)'(g))−1 ! (g) (A6)

with '(g) = �(g, 0)%, ! (g) = %†�(Θ, g).

Appendix B: Absence of sign-problem

At the charge neutrality point, the model is sign-problem-
free, as can be seen from the following analysis. Define
,f,;,(8 as the update weight of one fixed auxiliary field at
the 8-th hexagon, where ; = 1, 2 is a valley/orbital index and
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f =↑, ↓ is a spin index. From the symmetry of the Hamil-
tonian, ,↑,;,(8 = ,↓,;,(8 . Since the model is particle-hole
symmetric at charge neutrality, one can perform a particle-
hole transformation (PHS) only for the valley ; = 2. Then one
can focus on a fixed auxiliary field, and focus only on one spin

flavor, such as spin up. Eq. (A3) in the main text can then
be abbreviated as Eq. (B1) and Eq. (B2). Applying PHS for
valley 2 and using the relation Eq. (B3), we find that Eq. (B2)
becomes Eq. (B4).

�>A ; = 1, exp ©«
8U[((8)


6∑
?=1

(
82†
?+1,1,↑2?,1,↑ − 82

†
?,1,↑2?+1,1,↑

)
+ 1

3

6∑
?=1

(
2†
?,1,↑2?,1,↑ −

1
2

)
ª®¬

(B1)

�>A ; = 2, exp ©«
8U[((8)


6∑
?=1

(
−82†

?+1,2,↑2?,2,↑ + 82
†
?,2,↑2?+1,2,↑

)
+ 1

3

6∑
?=1

(
2†
?,2,↑2?,2,↑ −

1
2

)
ª®¬

(B2)

−82†
?+1,2,↑2?,2,↑ + 82

†
?,2,↑2?+1,2,↑

%�(−→ 82†
?+1,2,↑2?,2,↑ − 82

†
?,2,↑2?+1,2,↑

2†
?,2,↑2?,2,↑ −

1
2
%�(−→ 1

2
− 2†

?,2,↑2?,2,↑
(B3)

�>A ; = 2 %�(, exp ©«
8U[((8)


6∑
?=1

(
82†
?+1,2,↑2?,2,↑ − 82

†
?,2,↑2?+1,2,↑

)
+ 1

3

6∑
?=1

(
1
2
− 2†

?,2,↑2?,2,↑

)
ª®¬

(B4)

�>A ; = 1, 4−U[ ((8)B+8U[ (B9)A → 4−U[ (B9)B48U[ (B9)A

�>A ; = 2 %�(, 4−U[ ((8)B+8U[ (B9)A → 4−U[ (B9)B4−8U[ (B9)A
(B5)

Let us define the matrices A = 1
3
∑6
?=1

(
2†
?,2,↑2?,2,↑ − 1

2

)
and 8B =

∑6
?=1

(
82†
?+1,1,↑2?,1,↑ − 82

†
?,1,↑2?+1,1,↑

)
– or, equiv-

alenty, B =
∑6
?=1

(
2†
?+1,1,↑2?,1,↑ − 2

†
?,1,↑2?+1,1,↑

)
. The matri-

ces A and B are real matrices. Then, due to the fact that the
matrix A is a diagonal matrix and A88 = A 9 9 , Eqs. (B1) and
(B4) can be writen as Eq. (B5).

Because of the relations above, the total weight of
the model is

∑
(8 ,↑,1,(8 ∗ ,↑,2,(8 ∗ ,↓,1,(8 ∗ ,↓,1,(8 =∑

(8

(
,↑,1,(8,

∗
↑,1,(8

)2
, which is a real positive number. This

implies that the QMC simulations are sign-problem-free.

Appendix C: Benchmark with Exact Diagonalization

We employ Lanczos exact diagonalization (ED) to bench-
mark the PQMC results. The system contains 2 × 2 unit cells
of the honeycomb lattice with periodic boundary condition (16
electrons in total). We make use of symmetries, such as the
valley * (1) symmetry and the total (I conservation for each
valley, to reduce the computational cost of the ED. The ground
state lays in the subspace with #↑ = 4, #↓ = 4 in both valleys,
where #↑(#↓) is the number of electrons with spin up (down)
in each valley. The dimension of the ground-state subspace is

about 24 million. In the PQMC simulations, we choose the
linear system size ! = 2 and the projection length Θ = 100/C
with Trotter slice Δg = 0.0005/C. We compared the ground-
state expectation values of 〈�0〉 and of the double occupation
as a function of */C at U = 0.3, which are shown below. The
results of both methods agree very well.

U/W

ED
QMC

1 2N|

∑ i,l
n 

  n i,l,↑
i,l

,↓

H
0

ED
QMC

(a) (b)

10

-24

-22

-20

-18

-16

-14

-12

0.24

0.245

0.25

0.255

0.26

0.265

0 1 2 3 4 5 6 7 8 9
U/W

100 1 2 3 4 5 6 7 8 9

FIG. 5. (a) Kinetic energy and (b) Double occupancy as a function
of*/, for U = 0.3. Red circles and blue squares with error bars are
obtained from ED and QMC, respectively.

Appendix D: Strong Coupling Limit at the charge neutrality
point

For the system at the charge neutrality point, each unit cell
contains four fermions in average. Following the method ap-
plied in Ref. [32], the ground state |Ψ6A 〉 of the interaction �9
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should be annihilated by the assisted hopping operator )9 for any hexagon. The general form of the wavefunction is

|Ψ6A 〉 =
∏
8

(
U12
†
8,1,=̂ + (−)B (8)U22

†
8,2,<̂

) (
W

(
U∗22

†
8,1,=̂ − (−)B (8)U∗12†8,2,<̂

)
+ V12

†
8,1,−=̂ + (−)B (8) V22

†
8,2,−<̂

)
|∅〉 (D1)

where B(8) = 0 and 1 if the site 8 is on sublattice A and
B respectively. =̂ and <̂ are two arbitrary spin quantization
directions. U1, U2, V1, and V2 are four complex variables that
satisfy |U1 |2 + |U2 |2 = |W |2 + |V1 |2 + |V2 |2 = 1.

Furthermore, consider the hopping between two sites. Ap-
plying the second order perturbation theory, the energy is min-
imized when |U1 | = |U2 | = 1/

√
2, W = 0, and |V1 | = |V2 | =

1/
√

2. So the ground state is an equal mixture of two valleys.

It is easy to obtain that

〈2†8,1,=̂28,2,<̂〉 = (−)B (8)U∗1U2

〈2†8,1,=̂28,2,−<̂〉 = 〈2†8,1,−=̂28,2,<̂〉 = 0

〈2†8,1,−=̂28,2,−<̂〉 = (−)B (8) V∗1V2

(D2)

Suppose that =̂ = (sin \ cos q, sin \ sin q, cos \) and <̂ = (sin \ ′ cos q′, sin \ ′ sin q′, cos \ ′). We obtain that the operator

�8,↑ = 〈2†8,1,↑28,2,↑ + ℎ.2.〉 = (−)B (8)
(
cos

\

2
cos

\ ′

2
U∗1U2 + sin

\

2
sin

\ ′

2
48 (q−q

′) V∗1V2 + 2.2
)

(D3)

�8,↓ = 〈2†8,1,↓28,2,↓ + ℎ.2.〉 = (−)B (8)
(
cos

\

2
cos

\ ′

2
V∗1V2 − sin

\

2
sin

\ ′

2
48 (q−q

′)U∗1U2 + 2.2
)

(D4)

As a consequence, when average over all the possible configurations of the ground states, we obtain

�AA� =
1
!4

∑
8, 9∈A

〈〈(�8,↑ + �8,↓) (
� 9 ,↑ + � 9 ,↓

)〉〉 = 1
!4

∑
8, 9∈A

(〈〈�8,↑� 9 ,↑〉〉 + 〈〈�8,↓� 9 ,↓〉〉)

= 2 ×
(
〈〈cos2 \

2
cos2 \

′

2
〉〉

(
|U1 |2 |U2 |2 + |V1 |2 |V2 |2

)
+ 〈〈sin2 \

2
sin2 \

′

2
〉〉

(
|U1 |2 |U2 |2 + |V1 |2 |V2 |2

))
(D5)

where 〈〈· · · 〉〉 refers to the average over the direction =̂ and <̂,
as well as the phases of U1, U2, V1, and V2. Averaging over
=̂ and <̂ on the sphere, we obtain 〈〈cos2 \

2 〉〉 = 〈〈cos2 \′
2 〉〉 =

〈〈sin2 \
2 〉〉 = 〈〈sin2 \′

2 〉〉 = 1
2 . Thus, �AA� = 1

2 . Similarly, we
can obtain �BB� = −�AB� = −�BA� = 1

2 . This is consistent
with the QMC result in the limit*/, →∞.

Appendix E: Hartree-Fock method

To solve the TBG model within the Hartree-Fock approach,
we write the Hamiltonian in Eq. (2) of the main text as

�9 = *
∑
9

(& ′
9
+ U) ′

9
) (&9 + U)9), (E1)

where primes indicate independent index summations. The
direct terms immediately give

��
9
= 2*

∑
9

〈
& ′
9
+ U) ′

9

〉(&9 + U)9). (E2)

The exchange terms are Eq. (E3), where
∑

all =( ∑
;,;′=1,2

∑
ff′

∑6
8,8′=1

)
. Manipulating and collecting terms

in (E2) and (E3) yields theHartree-FockHamiltonian Eq. (E3).

��
9
= −*

∑
9

∑
all

[1
9
[〈2†8′;′f′28;f〉2†8;f28′;′f′ + ℎ.2.]

+ U8
3

{[(−);′+1〈2†8′+1;′f′28;f〉2†8;f28′;′f′ + ℎ.2.] + [(−);′ 〈2†8′;′f′28;f〉2†8;f28′+1;′f′ + ℎ.2.]}
+ U282

{[(−);′+; 〈2†8′+1;′f′28;f〉2†8+1;f28′;′f′ + ℎ.2.] − [(−1);′+; 〈2†8′+1;′f′28+1;f〉2†8;f28′;′f′ + ℎ.2.]
− [(−1);′+; 〈2†8′;′f′28;f〉2†8+1;f28′+1;′f′ + ℎ.2.] + [(−);

′+; 〈2†8′;′f′28+1;f〉2†8;f28′+1;′f′ + ℎ.2.]
}]
,
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���
9

= 2*
∑
9

{
=̄9 (&9 + U)9) −

∑
all

[∑
=,<

U= (; ′)U< (; + 1)〈2†8′+=;′f′28+<;f〉
]
2†8;f28′;′f′

}
. (E3)

Here =, < = {−1, 0, 1} and we have defined

=̄9 = 〈&9 + U)9〉,

U(;) = ©«
U−1
U0
U1

ª®¬
=

©«
(−1); 8 U

1/3
(−1);+1 8 U

ª®¬
.

We solve the full Hartree-Fock Hamiltonian (� = �0 +���9 )
self-consistently using that

〈2†^2_〉 =
#∑

n ,[=1
*†n ^*_[ 〈W†n W[〉 =

∑
n

*†n ^*_n 5 (�n , `),

(E4)

where ^, _ = {8;f},* is the unitary tranformation diagonaliz-
ing�, W’s are the eigenvectors and 5 (�n , `) is the Fermi-Dirac
distribution of the excitation energies, �n . We explicitly write
the dependence on the chemical potential, `, as we iterate this
value to fulfil #−1 ∑

n 5 (�n , `) = a, where a is the filling.
We compute results at charge neutrality (a = 0.5) with a

total of 600 lattice sites and periodic boundary conditions.
The calculations are fully unrestricted; thus we iterate all (4×
600)2 mean-fields, and define convergence by the condition
that

∑ |Δ�n | < # × 10−10, where Δ�n is the change of the
excitation energies from one iteration to the next, and # is
the total number of states (4 × 600). In Table I we present an
example of the HF calculations, displaying results for C = 1
,U = 0.45 and */, = 0.5. We set the temperature ) =
2.5 · 10−5 in all computations. The values in the table are
the renormalized mean-fields. It is evident that all hoppings
within each hexagon are renormalized due to the interactions.
The simple hopping renormalizations, however, do not open a
gap in the Dirac cones. The gap is generated directly by the
mean-fields 〈2†8,1,f28±2,1,f〉 = −〈2†8,2,f28±2,2,f〉 = ±0.09148,
which explicitly display a spin degenerate quantum valley Hall
(QVH) phase, as illustrated in Fig. 1(b) of the main text.

In Fig. 6(a) we show the single-particle gap in the QVH
phase with U = 0.45 for several interaction strengths. Fig.
6(b) displays the corresponding band structures. The Dirac
cone at  in the bare bands is immediately gapped out when
including interactions. The renormalization initially flattens
the bands with a significant gap at all high-symmetry points.
As * increases the valence band gradually develops a peak at
Γwhile it is pushed down correspondingly at  . This behavior
results in a gradual shift of the maximal gap value from Γ to
 .
Finally we present results obtained by implementing the

interaction terms found in Ref. [32]. As mentioned in the
discussion section of the main text, we are able to solve this

model within the HF approach as it does not suffer from sign
problems. The assisted hopping reads

)9 =
6∑
8=1

∑
;,f

(−)8−1 (2†8;f28+1;f + h.c.
)
. (E5)

Δ
/W

U/W =  0.25

U/W =  0.50

U/W =  1.0

M MK Γ

M MK Γ M MK Γ

U/W = 0.25

U/W = 0.50

U/W = 1.0

3.0

2.0

1.0

0.0

E
/W

U/W = 0.0

(a)

(b)
E

/W

-0.5

0.5

2.0

0.0

3.0

0.0

E
/W

E
/W

5.0

0.0

FIG. 6. QVH insulator and band strutures (a) The single-particle
gap Δ/, along the high-symmetry path of the BZ with U = 0.45
and various interaction strengths. The Dirac cones are gapped at
infinitely small* and the system enters the QVH state. The maximal
gap value gradually shifts from Γ to the  . (b) Band structures at
various interaction strengths with U = 0.45. Top left plot displays
the bare kinetic bands in the absence of any interactions. The Dirac
cone at  is evident and confirms the semi-metallic phase of the bare
bands. The remaining three plots of (b) present the renormalized band
structures with increasing*. The two bands flattens for small* and
gradually develops a peak at Γ. All bands are fourfold degenerate, as
the QVH phase does not break the approximate (* (4) symmetry.

The other terms, &9 and �0, remain unchanged. To reach
this expression for )9, we have performed the following gauge
transformation,

28;f −→ 48 \;/228;f , 8 odd

28;f −→ 4−8 \;/228;f . 8 even
(E6)

The transformation introduces phases in�0 effectively causing
C to become complex. We set the phases according to Ref.
[32], that is \1 = −\2 = 0.743c. The renormalized mean-
fields are presented in Table II, where we have performed the
inverse gauge transformation for direct comparison with Table
I. Input parameters are the same as those used to generate Table
I. The result is consistent with the values presented in Table I
and clearly also features a QVH phase.
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U/W = 0.50
28,1,f 28,2,f 28±1,1,f 28±1,2,f 28±2,1,f 28±2,2,f 28+3,1,f 28+3,2,f

2†
8,1,f - - −0.0209 - ±0.09148 - 0.0024 -
2†
8,2,f - - - −0.0209 - ∓0.09148 - 0.0024

TABLE I. Mean-field renormalization with */, = 0.50 and U = 0.45. The input on [2†
8;f

, 2 9;′f] represents the renormalized mean-field
parameter 〈2†

8;f
2 9;′f〉. The result is homogenous and spin degenerate, hence the listed values contain information about all sites and flavours.

Note that interactions have generated neither spin- nor valley-mixing. We have subtracted the bare band contributions evaluated at a = 0.5 and
ignored all mean-fields with |"� |<0G

|"� | > 100.

U/W = 0.50
28,1,f 28,2,f 28±1,1,f 28±1,2,f 28±2,1,f 28±2,2,f 28+3,1,f 28+3,2,f

2†
8,1,f - - −0.1015 − (−)80.05558 - ∓0.09458 - −0.0806 + (−)80.03008 -
2†
8,2,f - - - −0.1015 + (−)80.05558 - ±0.09458 - −0.0806 − (−)80.03008

TABLE II. Mean-field renormalization with */, = 0.50 and U = 0.45 using model from Ref. [32]. The input on [2†
8;f

, 2 9;′f]
represents the renormalized mean-field parameter 〈2†

8;f
2 9;′f〉. The result is homogenous and spin degenerate, hence the listed values contain

information about all sites and flavours. We have subtracted the bare band contributions evaluated at a = 0.5 and ignored all mean-fields with
|"� |<0G

|"� | > 100.
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