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Chapter 1

Introduction

Quantum dots are nano-scale semiconductor particles showing optical prop-
erties predicted by quantum mechanics. As ’artificial atoms’, Qdots have
energy spectrum with discrete energy levels and can be measured and ma-
nipulated by light. Physics of spin and angular momentum in Qdots are what
intriguing to research. By exploiting the physics of Qdots, people may store
qubit in the QD, a very nice two level system. It is clear that qubit are ba-
sis of quantum computation and quantum information processing. In short,
QDs are potential nano-structural device with broad application prospects
in the field of quantum information. There are several technicals (through
epitaxial or chemical growth) to make a quantum dot nowadays, but in the
present work, we only focus on physics in Stranski-Krastanov quantum dots,
especially, the CdSe/ZnSe QD. We are motivated by the article[6]. Specif-
ically, In this thesis, we focus on coupling of a single quantum dot with
electromagnetic fields.

In general, QDs exhibit different selection rules from real atom (for in-
stance the hydrogen atom) due to QDs’ specific structure and symmetry.
We want to theoretically model a simple quantum dot and see how its dipole
transitions are controlled by the strain effect. In this thesis, we first review
selection rules for fine structure of hydrogen atom under an external magnetic
field, then for a single particle QD[2]. In the case of QD, we will see photons
emitted by QD are linearly polarised and highly dependent on rotation of
an external transverse magnetic field until we consider attribution of strain
anistropy effect.

3



Chapter 2

Review of Hydrogen Atom

Before we start study of selection rules for a quantum dot, we review that
for a hydrogen atom and some basic quantum mechanics from books [4][3].
Generally, in this chapter, we first review the states of fine structure of a
hydrogen atom, then we consider weak Zeeman effect as a small perturbation,
and derive new states. Finally, we calculate electric dipole transitions among
these states. As an important result, we will also see how the polarisations
of emitted photon due to electric dipole transition are highly dependent on
rotation of external magnetic field.

2.1 States

Under spherical coordinate, the spatial wave function of an electron in hy-
drogen atom can be written as product of radical function R(r) and spherical
harmonics Y (θ, φ) labeled by principle quantum number n, Azimuthal quan-
tum number l and magnetic quantum number ml.

ψnlm(r, θ, φ) = Rnl(r)Y
m
l (θ, φ)

where states with same quantum number n are degenerate. l and ml are
physical quantities about angular momentum. Note that relation of these
three quantum numbers are given: n = 0, 1, 2, 3, ...; l = 0, 1, 2, ..., n − 1;
ml = −l,−l + 1, ..., l − 1, l + 1

As we always want to consider transitions of two-level system, in this
case, we need wave functions for ground states (n = 1) and first excited
states (n = 2):

ψ100(r, θ, φ) =
1√
πa3/2

e−r/a

ψ200(r, θ, φ) =

√
2

8
√
πa5/2

re−r/(2a) cos (θ)
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ψ21±1(r, θ, φ) = ∓ 1

8
√
πa5/2

re−r/(2a) sin (θ) e±iφ

where a is the Bohr radius. Certainly, these wave functions are mutually
orthogonal.

2.1.1 Fine structure

A more realistic model for hydrogen is made by adding small corrections due
to relativistic correction and spin-orbit coupling. The total Hamiltonian of
the system is given by:

Htot = − h̄2

2m
∇2 − e2

4πε0

1

r
− p4

8m3c2
+

(
e2

8πε0

)
1

m2c2r3
~S · ~L

where on the right the first two terms are interaction of the electron with
nucleus through Coulomb force, the third and forth terms are respectively
relativistic correction and spin-orbital interaction. By treating two correc-
tions as small perturbations, we can use non-degenerate perturbation theory
to calculate first order energy correction. So we have energy levels for the
total Hamiltonian given by:

E = −13.6eV

n2

[
1 +

α2

n2

(
n

j + 1/2
− 3

4

)]
where α is fine structure constant. From this equation we see that the degen-
eracy of the states depends on not only principle quantum number n but also
total angular momentum j. We also note that both spin and orbital angular
momenta do not commute with the Hamiltonian of spin-orbital interactions.
So n, l,ml are no longer good quantum numbers to label states of the new
system, instead we use n, l, j,mj. Note that j = l ± 1/2 when l 6= 0, and
j = 1/2 when l = 0.

2.1.2 Weak Zeeman Effect

Zeeman effect is a phenomenon that when an external magnetic field is placed
on an atom, energy levels of electron are shifted due to spin-orbital coupling.
The Hamiltonian of this effect is given:

H ′zm =
e

2mec

(−→
L + ge

−→
S
)−→
B (2.1)

where ge is the electron spin g factor, for simplicity of calculation, we let it
equals to 2. In this part we only consider the case where Zeeman effect is
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much small compared to fine structure corrections. That is, we will treat the
Hamiltonian of Zeeman effect as small perturbation and let the fine structure
term as unperturbed.

Now we express the states characterized by l, j,mj into liner combination
of |lml〉| sms〉 using the Clebsch-Gorden coefficients. Review that:

C-G Coefficients ms = 1/2 ms = −1/2

j = l + 1/2

√
l +mj + 1/2

2l + 1

√
l −mj + 1/2

2l + 1

j = l − 1/2 −
√
l −mj + 1/2

2l + 1

√
l +mj + 1/2

2l + 1
Also by only considering ground state n=1 and first excited state n=2,

we have quantum numbers n = 1, 2; l=0,1; j = 1
2
, 3

2
; mj = ±1

2
,±3

2
. And

write down all possible states and label them with numbers for the sake of
convenience: Ms
|nljmj〉 =

∑
|lml〉 |sms〉 = |number〉.

Ground states:
|101

2
1
2
〉 = |00〉 |1

2
1
2
〉 ≡ |7〉

|101
2
−1
2
〉 = |00〉 |1

2
−1
2
〉 ≡ |8〉

First excited states:
l = 0, j = 1/2
|201

2
1
2
〉 = |00〉 |1

2
1
2
〉 ≡ |9〉

|201
2
−1
2
〉 = |00〉 |1

2
−1
2
〉 ≡ |10〉

l = 1, j = 3/2
|213

2
3
2
〉 = |11〉 |1

2
−1
2
〉 ≡ |1〉

|213
2

1
2
〉 =

√
2
3
|10〉 |1

2
1
2
〉+

√
1
3
|11〉 |1

2
−1
2
〉 ≡ |2〉

|213
2
−1
2
〉 =

√
1
3
|1−1〉 |1

2
1
2
〉+

√
2
3
|10〉 |1

2
−1
2
〉 ≡ |3〉

|213
2
−3
2
〉 = |1−1〉 |1

2
−1
2
〉 ≡ |4〉

l = 1, j = 1/2

|211
2

1
2
〉 = −

√
1
3
|10〉 |1

2
1
2
〉+

√
2
3
|11〉 |1

2
−1
2
〉 ≡ |5〉

|213
2
−1
2
〉 = −

√
2
3
|1−1〉 |1

2
1
2
〉+

√
1
3
|10〉 |1

2
−1
2
〉 ≡ |6〉

In the case without an external magnetic field, states above with same n, l, j
are degenerate. With the external ~B, these states split into two with different
energy due to direction of spin.
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2.1.3 Case ~B ‖ ~z
In case an external magnetic field parallel to z direction is placed on the
atom, the Hamiltonian becomes:

~Hzm =
e

2mec
B0(Lz + 2Sz) (2.2)

The way to get the matrix form of this Hamiltonian is by calculating matrix
elements using 〈i|Hz |j〉, and choose the degenerate states in previous sub-
section as groups of basis. Also it is noted that these basis states are also
eigenbasis of Lz and Sz, so the Hamiltonian is already diagonal as shown
below.
For states with l = 0, j = 1/2:

H ′zm =

(
1 0
0 −1

)
µBB0

This Hamiltonian has basis either states |7〉 , |8〉 or |9〉 , |10〉
For states with l = 1, j = 1/2 (basis states |5〉 , |6〉):

H ′zm =

(
1/3 0
0 −1/3

)
µBB0

For states with l = 1, j = 3/2 (basis states |1〉 , |2〉 , |3〉 , |4〉):

H ′zm =


2 0 0 0
0 2/3 0 0
0 0 −2/3 0
0 0 0 −2

µBB0

where µB ≡ eh̄/(2mec) is the Bohr magneton. All three Hamiltonian above
are diagonal therefore these states are still good basis for the whole system.
This implies that electric dipole transitions in this case is also same as the
situation without the magnetic field, which we talk about in later section.

2.1.4 Case ~B ⊥ ~z
Now in case the external magnetic field is perpendicular to ẑ-axis, which is
to say, it is parallel to x̂ŷ plane.

~B = B0(cos θ~x+ sin θ~y)

Insert it into the Eq 2.1, the Hamiltonian becomes:

Hzm = MB0 [cos θLx + sin θLy + 2 (cos θSx + sin θSy)] (2.3)

where M ≡ e/(2mec). Now review that operators Lx, Ly, Sx and Sy can be
decomposed into combination of raising and lowering operators:
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Lx = 1/2(L+ + L−) and Ly = −i/2(L+ − L−)
Sx = 1/2(S+ + S−) and Sy = −i/2(S+ − S−)
then Eq 2.3 can be rewritten in terms of rasing and lowering operators:

Hzm = MB0

[
1/2(e−iθL+ + eiθL−) + e−iθS+ + eiθS−

]
(2.4)

Here before calculating the matrix elements 〈i|Hz |j〉 we review that:
L+Y

m
l = h̄

√
(l −m)(l +m+ 1)Y m+1

l

L−Y
m
l = h̄

√
(l +m)(l −m+ 1)Y m−1

l

S± |sm〉 = h̄
√
s(s+ 1)−m(m± 1) |s(m± 1)〉

Then the matrix form of Eq 2.3 can be calcualted using states in Sec 2.1.2
as basis:
For states with l = 0, j = 1/2:

Hzm = µBB0

(
0 e−iθ

eiθ 0

)
(2.5)

For states with l = 1, j = 1/2:

Hzm = µBB0

 0
1

3
e−iθ

1

3
eiθ 0

 (2.6)

For states with l = 1, j = 3/2:

Hzm = µBB0



0
2

3

√
3e−iθ 0 0

2

3

√
3e−iθ 0

4

3
e−iθ 0

0
4

3
eiθ 0

2

3

√
3e−iθ

0 0
2

3

√
3eiθ 0


(2.7)

Since these Hamiltonian are not diagonal, the basis states in Sec 2.1.2 are not
their eigenstates. But their eigenstates can be formed as linear combination
of these states according to degenerate perturbation theory. Then the next
step is to diagonalize these three matrices, and using their eigenvectors as
coefficients of the linear combination, then we find out the new appropriate
states for the whole system.

For both Matrix(2.5) and Matrix(2.6), eigenvectors are:e−
1

2
iθ

e

1

2
iθ

 ,
−e−

1

2
iθ

e

1

2
iθ

 (2.8)
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New states are: 
|5〉new = e

−
1

2
iθ
|5〉+ e

1

2
iθ
|6〉

|6〉new = −e
−

1

2
iθ
|5〉+ e

1

2
iθ
|6〉

(2.9)


|7〉new = e

−
1

2
iθ
|7〉+ e

1

2
iθ
|8〉

|8〉new = −e
−

1

2
iθ
|7〉+ e

1

2
iθ
|8〉

(2.10)


|9〉new = e

−
1

2
iθ
|9〉+ e

1

2
iθ
|10〉

|10〉new = −e
−

1

2
iθ
|9〉+ e

1

2
iθ
|10〉

(2.11)

For Matrix(2.7), eigenvectors are:



e
−

3

2
iθ

√
3e
−

1

2
iθ

√
3e

1

2
iθ

e

3

2
iθ


,



−e
−

3

2
iθ

√
3e
−

1

2
iθ

−
√

3e

1

2
iθ

e

3

2
iθ


,



−e
−

3

2
iθ

− 1√
3
e
−

1

2
iθ

1√
3
e

1

2
iθ

e

3

2
iθ


,



e
−

3

2
iθ

− 1√
3
e
−

1

2
iθ

− 1√
3
e

1

2
iθ

e

3

2
iθ


(2.12)

Corresponding new states are:

|1〉new = 1
2
√

2
(e
−

3

2
iθ
|1〉+

√
3e
−

1

2
iθ
|2〉+

√
3e

1

2
iθ
|3〉+ e

3

2
iθ
|4〉)

|2〉new = 1
2
√

2
(−e

−
3

2
iθ
|1〉+

√
3e
−

1

2
iθ
|2〉 −

√
3e

1

2
iθ
|3〉+ e

3

2
iθ
|4〉)

|3〉new = 1
2
√

2
(−e

−
3

2
iθ
|1〉 − 1√

3
e
−

1

2
iθ
|2〉+

1√
3
e

1

2
iθ
|3〉+ e

3

2
iθ
|4〉)

|4〉new = 1
2
√

2
(e
−

3

2
iθ
|1〉 − 1√

3
e
−

1

2
iθ
|2〉 − 1√

3
e

1

2
iθ
|3〉+ e

3

2
iθ
|4〉)

(2.13)

where 1
2
√

2
is normalization factor.
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2.2 Selection Rules

As we want to consider transitions between energy levels through either Emis-
sion or Absorption of photons propagating from all directions and polariza-
tions, the way is by calculating matrix elements of x,y,z components of elec-
tric dipole operator. Then we consider same transitions with an additional
magnetic field.

2.2.1 Matrix element of electric dipole transitions

Again, a model for coupling of two level atom with electromagnetic field is
what we want. Review for electric dipole approximation: when the field
wavelength is much larger than the atomic size, the vector potential ~A(~r0 +

~r, t) ' ~A(t)exp(ik · ~r). And the Hamiltonian that only describes interaction
between atom and field can be written as:

Hint = − e

m
~p · ~A(r0, t) (2.14)

where e andm are charge and mass of an electron. As we want to calculate
electric dipole transitions between two states, final state |f〉 and initial state
|i〉, then it follows that

〈f |Hint |i〉 = − e

m
~A(t) 〈f | ~p |i〉 (2.15)

Also with the commutation relation [r,H0] = (ih̄~p)/m, we can have

〈f | ~p |i〉 = imwfi 〈f |~r |i〉 (2.16)

where ~r = rsin(θ)cos(φ)~x+ rsin(θ)sin(φ)~y+ rcos(θ)~z. Now we have two
equivalent ways to calculate matrix element of the electric dipole transitions.
We calculate it for quantum dot using momentum ~p, but here for hydrogen
atom we use the one with position ~r. These matrix include the polarization
information of the photon that is emitted or absorbed by an atom during the
transition. This information is what we want for the selection rules.

2.2.2 selection rules with ~B ‖ ~z
Using states in Sec 2.1.2, and calculate 〈ψb|~r |ψa〉, where, ψb are ground
states and ψa are first excited states (states are characterized by |nljmj〉):

〈10
1

2
± 1

2
|~r |20

1

2
± 1

2
〉 = 0 〈10

1

2
± 1

2
|~r |20

1

2
∓ 1

2
〉 = 0 (2.17)
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〈10
1

2

1

2
|~r |21

1

2

1

2
〉 = −128

√
6

729
a

0
0
1

 〈10
1

2

−1

2
|~r |21

1

2

1

2
〉 =

128
√

6

729
a

−1
−i
0


(2.18)

〈10
1

2

1

2
|~r |21

1

2

−1

2
〉 = −128

√
6

729
a

 1
−i
0

 〈10
1

2

−1

2
|~r |21

1

2

−1

2
〉 =

128
√

6

729
a

0
0
1


(2.19)

〈10
1

2

1

2
|~r |21

3

2

1

2
〉 =

256
√

3

729
a

0
0
1

 〈10
1

2

−1

2
|~r |21

3

2

1

2
〉 =

128
√

3

729
a

−1
−i
0


(2.20)

〈10
1

2

1

2
|~r |21

3

2

−1

2
〉 =

128
√

3

729
a

 1
−i
0

 〈10
1

2

−1

2
|~r |21

3

2

−1

2
〉 =

256
√

3

729
a

0
0
1


(2.21)

〈10
1

2

1

2
|~r |21

3

2

3

2
〉 =

128

243
a

−1
−i
0

 〈10
1

2

−1

2
|~r |21

3

2

3

2
〉 = 0 (2.22)

〈10
1

2

1

2
|~r |21

3

2

−3

2
〉 = 0 〈10

1

2

−1

2
|~r |21

3

2

−3

2
〉 =

128

243
a

 1
−i
0

 (2.23)

where a is the Bohr radius. The vectors in above results are characterized
as polarized direction of photon. It is easy to see that above transitions are
satisfied with the general selection rules:

transitions are allowed when:{
∆l = ±1; ∆mj = 0 allowed for z- ploarized light

∆l = ±1; ∆mj = ±1 allowed for x- and y- ploarized light

where ∆l ≡ l of final state− l of initial state
∆mj ≡ mj of final state−mj of initial state

and transitions are banned when:{
∆l = 0 or

∆mj = ±2
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2.2.3 selection rules with ~B ⊥ ~z
Using states in (2.9), (2.10), (2.11) and (2.13), and calculate matrix element
of electric dipole moment: (the subscript words ’new’ is omitted)

〈7|~r |1〉 =
128

243
a

 i sin θ
−i cos θ

1

 〈7|~r |2〉 = 0

〈7|~r |3〉 =
256

729

√
3a

cos θ
sin θ

0

 〈7|~r |4〉 =
128

729

√
3a

 i sin θ
−i cos θ
−1


〈7|~r |5〉 =

256

729

√
3a

− cos θ
− sin θ

0

 〈7|~r |6〉 =
256

729
a

−i sin θ
i cos θ

1


And transitions between ground states (|7〉) and states |9〉 and |10〉 are al-
ready banned since their ∆l = 0.

From the result above, it can be found that polarisations are changing
with θ, where this theta coming from the external magnetic field is the ro-
tating degree aound z-axis. The selection rules are sensitive to rotation of
the field this is what we expect for atom.
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Chapter 3

Quantum Dots

In this chapter We start with a review of a simple model of a semiconductor
quantum dot with zincblende structure described in book [5]. we discuss
electron and hole states in a single particle model and then we calculate
electric dipole transitions under an transverse magnetic field.

3.1 A simple model of a quantum dot

3.1.1 band structure

band structure
In simplified electronic band structure of a quantum dot with zincblende

structure, the energy of valence band is lower than Fermi Energy and are
completely filled with electrons. And we can make a hole in v band by
removing an electron. The conduction band is empty and its energy is higher
than Fermi energy. Here we always consider cases at around the center of
Wigner-Seitz cell(Bloch wave vector k = 0) where energy difference of two
bands are smallest. Valence band consists of light-hole (lh) band, heavy-hole
(hh) band and spin-off band. Among the three sub-bands, the spin-off band
has the lowest energy, and the energy gap between it and conduction band is
too large for the inter-band transitions, so we exclude it from the discussion
following. At k = 0, lh and hh band shared same energy and have same
total angular momentum j = 3/2, but the presence of uniaxial strain gives
an energy splitting between them by ∆lh−hh.

Besides, two effects contribute to band structure should be mentioned.
The energy dispersion dependent on wave vector k is contributed by ef-

fective mass of crystal electron. Holes in lh band and hh band have different
effective masses, as the result, the parabolic energy dispersion of two sub-
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bands have different curvature. For inter-band transitions, it should not be
taken into account.

Spin-orbital interaction arises when an electron with charge moves in an
external electric field, its spin couples to an experienced effective magnetic
field resulting from relativistic effect. In crystal, the total angular momentum
J of the electron commutes with the Hamiltonian of isotropic spin-orbital in-
teraction, so it is good to use quantum number j to label the electron’s state.
Besides, in bulk crystal, small splitting contribute to spin-orbital interac-
tion by structure inversion asymmetry in the direction perpendicular to the
two-dimensional plane, and bulk inversion asymmetry of the crystal lattice,
namely Rashba effect and Dresselhaus effect, are neglected in this thesis.

3.1.2 Carrier configuration

In this chapter we review four optically active/bright electronic states de-
scribing by carrier configurations of quantum dot in S shell. For a Qdot,
when valence band is fully filled with electrons and conduction band is empty,
we call it the ground state. An exciton state is formed when there are a hole
in valence band and an electron in conduction band. When the electron
decay to the hole, this process is the recombination of electron and hole.
Recombination process only happens when spins of electron and hole are in
opposite direction, otherwise the optical process is ’dark’. Positive trion is
the electronic states that has two holes and one electron. Negative trion is in
opposite which has two electrons but one hole. According to the pauli exclu-
sion principle, here either electrons or holes with equal spins cannot occupy
in same state, so for both two electrons in conduction band and two holes in
valence band, their spin are in opposite directions. The last electronic states
is called biexciton, which has two electrons and two holes. In this thesis
we choose to calculate selection rules under electron-hole picture of negative
trion. After the recombination process, one eletron is left in the conduction
band.

3.1.3 states of a quantum dot

In quantum dot, states of confined electrons in band b with wave vector k
can be described using Bloch states ubk(r), a periodic wave function in crystal
potential

〈r|ψbk〉 = eik·rubk(r) (3.1)

Next, we only consider the case that wave vector k is almost zero, so
that we can relabel the states with the total angular momentum j and its
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projection jz instead of wave vector k and band b. Then by considering
orbital symmetry and spin of Bloch states, states of conduction band with
orbital s symmetry can be defined as

|u1/2
+1/2〉 = |s〉 |↑〉 ≡ |7〉 , |u1/2

−1/2〉 = |s〉 |↓〉 ≡ |8〉 (3.2)

where spin states |↑〉 and |↓〉 is defined along axis z.
The states in valence band have orbital p symmetry. According to the

Clebsch-Gordan theory, the states on heavy hole band with quantum numbers
l = 1, s = 1/2, j = 3/2, jz = ±3/2 are defined as

|u3/2
+3/2〉 = − 1√

2
|x+ iy〉 |↑〉 ≡ |1〉 (3.3)

|u3/2
−3/2〉 =

1√
2
|x− iy〉 |↓〉 ≡ |4〉 (3.4)

and states on light hole band with quantum numbers l = 1, s = 1/2,
j = 3/2, jz = ±1/2 are defined as

|u3/2
+1/2〉 = − 1√

6
(|x+ iy〉 |↓〉+ 2 |z〉) ≡ |2〉 (3.5)

|u3/2
−1/2〉 =

1√
6

(|x− iy〉 |↑〉+ 2 |2〉) ≡ |3〉 (3.6)

where |x+ iy〉 = |x〉 ± i |y〉, states |x〉, |y〉, |z〉 describe orbital shape of
the electron of three coordinates. Also note that states |1〉,|2〉,|3〉,|4〉 are
degenerate at k = 0.

3.1.4 bands splitting ∆lh−hh

Strain effect that acting on a quantum dot arises from experienced compres-
sion and extension while growing in a growth plane, for example, growing
CdTe on ZnTe[7]. By considering one attribution of strain effect which splits
energy degeneracy of hh and hl holes band with amount ∆lh−hh at k = 0, we
obtain the Hamiltonian to be

H∆ =


∆lh−hh 0 0 0

0 0 0 0
0 0 0 0
0 0 0 ∆lh−hh

 (3.7)

Mathematically, treating the Hamiltonian as a perturbation, as it is diagonal,
states in previous subsection can still form its eigenvectors but eigenenergies
change, but we still have states degenerate on hh band and lh band.
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3.2 Selection Rules

Consider Hamiltonian of QDt-field interaction

Hint = − q

m0

~A(r, t) · ~p− q

m0

~S · ~B(r, t) (3.8)

The secend term accounts for coupling of electron spin with magnetic part
of photon and it can be neglected in dipole approximation. And in the
following we use momentum ~p to only calculate matrix elements of electric
dipole transition between Bloch states in quantum dot as what is discussed
in Sec 2.2.1.

3.2.1 Interband transitions

In book [5], we can obtain matrix element of electric dipole transitions by
calculating eks · 〈ucjz | ~p |u

v
jz〉, where |ujz〉 are the Bloch states in c and v band

labeled by total angular momentum j and projection jz. eks is the unit po-
larization vector. The semiconductor QDt with zincblende structure behold
cubic symmetry, due to this property we have momentum matrix element
of interband transitions between c and v bands 〈s| ~p |α〉, for α = x, y, z, all
equals to a constant pcv, where states |s〉 and |α〉 are orbital part of states,
shown in Sec 3.1.2. With this result the matrix element of the electric dipole
transition between conduction band and valence band using Eq3.2-3.6 are
obtained:

〈u1/2
+1/2| ~p |u

3/2
+3/2〉 = − 1√

2

1
i
0

 pcv 〈u1/2
−1/2| ~p |u

3/2
−3/2〉 =

1√
2

 1
−i
0

 pcv (3.9)

〈u1/2
+1/2| ~p |u

3/2
−3/2〉 = 〈u1/2

−1/2| ~p |u
3/2
+3/2〉 = 0 (3.10)

〈u1/2
+1/2| ~p |u

3/2
−1/2〉 =

1√
6

 1
−i
0

 pcv 〈u1/2
−1/2| ~p |u

3/2
+1/2〉 = − 1√

6

1
i
0

 pcv (3.11)

〈u1/2
+1/2| ~p |u

3/2
+1/2〉 = − 2√

6

0
0
1

 pcv 〈u1/2
−1/2| ~p |u

3/2
−1/2〉 =

2√
6

0
0
1

 pcv (3.12)

Obviously, allowed optical transitions occurs between states with same
spin and same orbital symmetry. The vectors above provides information
about polarization of an emitted photon. Transitions in Eq 3.9 suggest cir-
cular polarized light, but transitions in Eq 3.12 suggest only z-axis polarized
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light can be detected. And the square of absolute value of these matrix el-
ement gives emission rate. Eq 3.10 are showing that transitions are blocked
of all directions.

3.2.2 adding ~B ‖ ~z
In case placing a QDt in a magnetic field that is parallel to z-axis, Hamil-
tonian of the weal Zeeman effect is diagonal, so the selection rules of this
situation are same as what are shown above.

3.2.3 adding ~B ⊥ ~z
In case the external magnetic field is perpendicular to z-axis, consider total
perturbation Hamiltonian as:

H ′ = µBB



∆̃lh−hh
2

3

√
3e−iθ 0 0

2

3

√
3e−iθ 0

4

3
e−iθ 0

0
4

3
eiθ 0

2

3

√
3e−iθ

0 0
2

3

√
3eiθ ∆̃lh−hh


(3.13)

∆̃lh−hh ≡ ∆/(µBB). Diagonal this H ′, it has eigen-energies:

λ1 = ∆ +
4

3

(µBB)2

∆
+

16

9

(µBB)3

∆2
λ2 =

4

3
µBB

λ3 = ∆ +
4

3

(µBB)2

∆
− 16

9

(µBB)3

∆2
λ4 =

4

3
µBB

Two eigen-energies split on high order.
In this case, transition dipole moments are:

〈7| ~p |1̃〉 = pcvα1i

 sin θ
− cos θ

0

 (1 +
c1√

3
) (3.14)

〈7| ~p |2̃〉 = pcvα2i

 sin θ
− cos θ

0

 (1− c2√
3

) (3.15)
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〈7| ~p |3̃〉 = pcvα3


cos θ
sin θ
2c3

c3 +
√

3

 (1 +
c3√

3
) (3.16)

〈7| ~p |4̃〉 = pcvα4


cos θ
sin θ
2c4

c4 +
√

3

 (1− c4√
3

) (3.17)

〈8| ~p |1̃〉 = pcvα1


cos θ
sin θ
−2c1

c1 +
√

3

 (1− c1√
3

) (3.18)

〈8| ~p |2̃〉 = pcvα2


cos θ
sin θ
−2c2

c2 +
√

3

 (1 +
c2√

3
) (3.19)

〈8| ~p |3̃〉 = pcvα3i

 sin θ
− cos θ

0

 (1− c3√
3

) (3.20)

〈8| ~p |4̃〉 = pcvα4i

 sin θ
− cos θ

0

 (1 +
c4√

3
) (3.21)

where ci, i = 1, 2, 3, 4 are coefficient coming from eigen-vectors:

c1 = µBB(4− 3∆̃ +
√

64− 24∆̃ + 9∆̃2)/(4
√

3)

c2 = µBB(−4 + 3∆̃ +
√

64− 24∆̃ + 9∆̃2)/(4
√

3)

c3 = µBB(−4− 3∆̃ +
√

64 + 24∆̃ + 9∆̃2)/(4
√

3)

c4 = µBB(4 + 3∆̃ +
√

64 + 24∆̃ + 9∆̃2)/(4
√

3)

and αi, i = 1, 2, 3, 4 are normalization factor defined as αi =
√

1/(2c2
i + 2).

In approximation if Zeeman effect is very weak and much smaller than
attribution of band splitting, mathematically by taking the limit that ∆ goes
to infinite, the value of c1 and c3 are close to zero, and therefore ẑ-component
of polarization vector of Eq3.18 and Eq3.16 will be zero.

And all of these transitions are still showing strong dependence on rotat-
ing degree of the magnetic field θ and selection rules are very similar to the
case of the hydrogen atom. For instance, Eq3.14, from θ = 0 to θ = π/2, po-
larisation of the photon are also rotating continuously from only x− polarized
light to y− polarized light.
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Chapter 4

Regimes with β

4.1 Effect of Strain anistropy β

In previous chapter, we have seen that under the simple model of the quantum
dot, the polarization of emitted photon caused by the atom-field interaction
is highly dependent with the rotation of the field. Obviously, this result
is not what we expected for, we need to consider an additional effect to
fix the model of the quantum dot. As zincblende semiconductor crystal is
compressed while growing in a plane[8], which gives rise to the effect of strain
anistropy that acting on the valence band[7]. A simple Hamiltonian for this
effect is defined as:

Hstr = β(|px〉 〈px| − |py〉 〈py|) (4.1)

Here β is a coefficient about strength of the effect. And |px〉 and |py〉 are
orbital states along x̂ and ŷ respectively. Using the states in (Eq3.3-3.6) as
basis, the matrix form of this Hamiltonian can be represented as:

Hstr =


0 0 1 0
0 0 0 1
1 0 0 0
0 1 0 0

 −β√3
(4.2)

where the Hamiltonian makes couplings between the states |1〉 and |3〉
and between the states |2〉 and |4〉. In the following of this chapter, we do a
theoretically analysis of the effect in three regimes. We use both degenerate
and non-degenerate perturbation theory to obtain energy and corresponding
states. Then we calculate matrix element for the electric dipole transitions.
Finally we analyze how the polarization of an absorbed photon is changing
in each case.
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4.2 Regime ∆ >> β

Now in this new model, the total strain effect include both effects of the
band splitting and the strain anistropy. In this first regime we assume that
effect of the band splitting ∆lh−hh is dominant, that is to say, we treat the
Hamiltonian of the band splitting H∆ as ’unperturbed’ part and treat Hstr

as a small perturbation. Since the Hamiltonian H∆ is diagonal, we can use
the states in Eq(3.3-3.6) as two groups of basis to get two matrix forms of
the Hstr, where the Hamiltonian makes couplings between the states |1〉 and
|3〉 and between the states |2〉 and |4〉. Therefore, we have to use the non-
degenerate perturbation theory to deal with. Then we may obtain the first
order perturbed states on the valence band of the following:

|1′〉 =
√

1/(1 +R2/3)(|1〉 − (R/
√

3) |3〉)

|3′〉 =
√

1/(1 +R2/3)(|3〉+ (R/
√

3) |1〉)

|2′〉 =
√

1/(1 +R2/3)(|2〉+ (R/
√

3) |4〉)

|4′〉 =
√

1/(1 +R2/3)(|4〉 − (R/
√

3) |2〉)

where the ratio R ≡ β/∆. Not surprisingly, both states |1′〉 and |4′〉 also
states |2′〉 and |3′〉 are still degenerate due to the preserved time-reversal
symmetry.

By adding a magnetic field ~B ‖ ~z, the matrix elements for the electric
dipole transitions among states on valence band and states on conduction
band that are unaffected by the strain are:

〈7| ~p |1′〉 = R′


−3−R

3
√

2

i

(
−3 +R

3
√

2

)
0

 pcv ≈ R′

1
i
0

 −1√
2
pcv (4.3)

〈7| ~p |2′〉 = R′

0
0
1

 −2√
6
pcv = 〈8| ~p |1′〉 (4.4)

〈7| ~p |3′〉 = R′


1−R√

6

−i
(

1 +R√
6

)
0

 pcv ≈ R′

 1
−i
0

 1√
6
pcv (4.5)
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〈7| ~p |4′〉 = R′

0
0
1

 2√
6
pcv = 〈8| ~p |3′〉 (4.6)

〈8| ~p |2′〉 = R′


−1 +R√

6

−i
(

1 +R√
6

)
0

 pcv ≈ R′

1
i
0

 −1√
6
pcv (4.7)

〈8| ~p |4′〉 = R′


3 +R

3
√

2

−i
(

3−R
3
√

2

)
0

 pcv ≈ R′

 1
−i
0

 1√
2
pcv (4.8)

where R′ ≡
√

1/(1 +R2/3) is just a coefficient. These results are showing
that when R is small, photon are circularly otherwise linearly polarized.

Now we add a magnetic field perpendicular to ẑ axis ( ~B ⊥ ~z), using the
degenerate perturbation theory with basis |1′〉 and |4′〉 to obtain perturbed
Hamiltonian of the Zeeman effect:

Hzee =
4R

9 + 3R2

(
0 Reiθ − 3e−iθ

Re−iθ − 3eiθ 0

)
(4.9)

The eigenvalues of the above Hamiltonian are:

∓ (4/
√

3)Re−iθ
√
−R + 3e2iθ +R2e2iθ/3−Re4iθµBB/

(
3 +R2

)
= (4R[(−2R cos 2θ)/3 + 1 +R2/9]1/2)µBB/(3 +R2)

Now we redo the same step with basis |2′〉 and |3′〉, we obtain:

Hzee =
4

3 +R2

(
0 e−iθ +Reiθ

eiθ +Re−iθ 0

)
(4.10)

And its eigenvalues are:

∓ 4e−iθ
√
R + e2iθ +R2e2iθ +Re4iθµBB/

(
3 +R2

)
= 4[2R cos 2θ + 1 +R2]1/2µBB/(3 +R2)

The plot of the g-factor, the eigenvalues above divided by µBB, are shown
in Fig4.1.

By diagonalizing Hamiltonian in Eq4.9 and Eq4.10, we also obtain their
eigenstates, that is, the wave function of electrons on valence band.
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
|1′zee〉 =

√
1/(|L1(θ)|2 + 1)(L1(θ) |1′〉+ |4′〉)

|2′zee〉 =
√

1/(|L1(θ)|2 + 1)(−L1(θ) |1′〉+ |4′〉)
|3′zee〉 =

√
1/(|L2(θ)|2 + 1)(L2(θ) |2′〉+ |3′〉)

|4′zee〉 =
√

1/(|L2(θ)|2 + 1)(−L2(θ) |2′〉+ |3′〉)

where L1(θ) =
√
−R + (3 +R2/3)e2iθ −Re4iθ/(−R/

√
3 +
√

3e2iθ) and

L2(θ) = −
√
R + (1 +R2)e2iθ +Re4iθ/(R + e2iθ)

And states on conduction band are:
|7zee〉 = (eiθ/2 |7〉+ e−iθ/2 |8〉)/

√
2 |8zee〉 = (−eiθ/2 |7〉+ e−iθ/2 |8〉)/

√
2

Again, we calculate the matrix elements for the electric dipole transitions:

〈7zee| ~p |1′zee〉 =
pcv√

2
R′

√
1

|L1 (θ)|2 + 1


3 +R

3
√

2

([
−L1 (θ) eiθ/2 + e−iθ/2

])
i

(
−3 +R

3
√

2

)[
L1 (θ) eiθ/2 + e−iθ/2

]
(
eiθ/2 − L1 (θ) e−iθ/2

) 2

3
√

2
R



〈7zee| ~p |2′zee〉 =
pcv√

2
R′

√
1

|L1 (θ)|2 + 1


3 +R

3
√

2

([
L1 (θ) eiθ/2 + e−iθ/2

])
i

(
−3 +R

3
√

2

)[
−L1 (θ) eiθ/2 + e−iθ/2

]
(
eiθ/2 + L1 (θ) e−iθ/2

) 2

3
√

2
R



〈7zee| ~p |3′zee〉 =
pcv√

2
R′

√
1

|L2 (θ)|2 + 1


1−R√

6

([
−L2 (θ) e−iθ/2 + eiθ/2

])
−i
(

1 +R√
6

)[
L2 (θ) e−iθ/2 + eiθ/2

]
(
e−iθ/2 − L2 (θ) eiθ/2

) 2√
6



〈7zee| ~p |4′zee〉 =
pcv√

2
R′

√
1

|L2 (θ)|2 + 1


1−R√

6

([
L2 (θ) e−iθ/2 + eiθ/2

])
−i
(

1 +R√
6

)[
−L2 (θ) e−iθ/2 + eiθ/2

]
(
e−iθ/2 + L2 (θ) eiθ/2

) 2√
6


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〈8zee| ~p |1′zee〉 =
pcv√

2
R′

√
1

|L1 (θ)|2 + 1


3 +R

3
√

2

([
L1 (θ) eiθ/2 + e−iθ/2

])
i

(
−3 +R

3
√

2

)[
−L1 (θ) eiθ/2 + e−iθ/2

]
−
(
eiθ/2 + L1 (θ) e−iθ/2

) 2

3
√

2
R



〈8zee| ~p |2′zee〉 =
pcv√

2
R′

√
1

|L1 (θ)|2 + 1


3 +R

3
√

2

([
−L1 (θ) eiθ/2 + e−iθ/2

])
i

(
−3 +R

3
√

2

)[
L1 (θ) eiθ/2 + e−iθ/2

]
−
(
eiθ/2 − L1 (θ) e−iθ/2

) 2

3
√

2
R



〈8zee| ~p |3′zee〉 =
pcv√

2
R′

√
1

|L2 (θ)|2 + 1


1−R√

6

([
−L2 (θ) e−iθ/2 − eiθ/2

])
−i
(

1 +R√
6

)[
L2 (θ) e−iθ/2 − eiθ/2

]
(
e−iθ/2 + L2 (θ) eiθ/2

) 2√
6



〈8zee| ~p |4′zee〉 =
pcv√

2
R′

√
1

|L2 (θ)|2 + 1


1−R√

6

([
L2 (θ) e−iθ/2 − eiθ/2

])
−i
(

1 +R√
6

)[
−L2 (θ) e−iθ/2 − eiθ/2

]
(
e−iθ/2 − L2 (θ) eiθ/2

) 2√
6


Now, for the sake of convenience, we define a function Γ.

Γ = | 〈f | ~p |i〉 x̂|2 (4.11)

and

Γxy = (1/2)| 〈f | ~p |i〉 (x̂+ ŷ)|2 (4.12)

where |f〉 and |i〉 are states on conduction band, and on valence band
respectively. Clearly, function Γ describes the rate of photon absorption with
polarization along x̂ axis. Also in order to simulate a 45 degree waveguide
on x̂ŷ plane, we defined Γxy. The plots of functions Γ and Γxy (fig.4.2)
, are showing variation of the polarization against rotation degree of the
field. Lines in graphs (a) and (b) are almost straight, which denotes very
weak dependence on rotation of the magnetic field. And x̂-polarized light for
transitions in (a) are blocked, but ŷ-polarized light are allowed. And in (b),
the situation is opposite, But for figure (c) and (d), we see that polarization
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are changing sinusoidally, compared to (a) and (b), these variations are much
more intensive. And we do not plot transitions with state |8〉, as we will see
the same plots due to the time reversal symmetry.

4.3 limit β >> ∆

Again, in this subsection we redo similar steps as before for the case effect
of strain anistropy is dominant, that is, the R is large. We start with states
of Eq(3.3-3.6) as two groups of coupled basis, and apply the degenerate
perturbation theory twice. We first treat Hstr as a small perturbation acting
on the states, then following by another small perturbation due to H∆. In
the end, we may obtain the perturbed states of the following:

|1′′〉 = (|2〉+ |4〉)/
√

2 |2′′〉 = (|1〉+ |3〉)/
√

2 (4.13)

|3′′〉 = (− |2〉+ |4〉)/
√

2 |4′′〉 = (− |1〉+ |3〉)/
√

2 (4.14)

Unlike the case in previous regime, these states are independent of R.
States |1′′〉 and |2′′〉 are degenerate with corresponding energy equals to
(1/2)∆− β/

√
3. Also states |3′′〉 and |4′′〉 are degenerate with corresponding

energy equals to (1/2)∆ + β/
√

3.
Then matrix element of electric dipole transitions with magnetic field

parallel to z-axis can be reached.

〈7| ~p |1′′〉 =
−1√

3

0
0
1

 pcv 〈8| ~p |1′′〉 =

√
3

6

 √
3− 1

−i(
√

3 + 1)
0

 pcv

〈7| ~p |2′′〉 =

√
3

6

 −√3 + 1

−i(
√

3 + 1)
0

 pcv 〈8| ~p |2′′〉 =
1√
3

0
0
1

 pcv

〈7| ~p |3′′〉 =
1√
3

0
0
1

 pcv 〈8| ~p |3′′〉 =

√
3

6

 √
3 + 1

i(−
√

3 + 1)
0

 pcv

〈7| ~p |4′′〉 =

√
3

6

 √3 + 1

i(
√

3− 1)
0

 pcv 〈8| ~p |4′′〉 =
1√
3

0
0
1

 pcv

The results above are noting fresh. Now we reconsider to add the mag-
netic field perpendicular to z-axis. consider coupling between states |1′′〉 and
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|2′′〉 are connected by the field.

Hzee =

 0
2

3

√
3eiθ +

2

3
e−iθ

2

3

√
3e−iθ +

2

3
eiθ 0

µBB (4.15)

its eigenvalues are

∓2

3
e−iθ

√
4e2iθ +

√
3e4iθ +

√
3µBB

And for the coupling between states |3′′〉 and |4′′〉

Hzee =

 0
2

3

√
3eiθ − 2

3
e−iθ

2

3

√
3e−iθ − 2

3
eiθ 0

µBB (4.16)

the eigenvalues are

∓2

3
e−iθ

√
4e2iθ −

√
3e4iθ −

√
3µBB

Now we can make a plot of g factor, namely, eigenvectors divided by µBB.
Fig(4.3) are showing that g factor is changing periodically against θ, which
behaving like a spin 1/2 particle.

The corresponding eigenstates are
|1′′zee〉 = (f1(θ) |1′′〉+ |2′′〉)/

√
|f1(θ)2|+ 1

|2′′zee〉 = (f2(θ) |1′′〉+ |2′′〉)/
√
|f2(θ)2|+ 1

|3′′zee〉 = (f3(θ) |3′′〉+ |4′′〉)/
√
|f3(θ)2|+ 1

|4′′zee〉 = (f4(θ) |3′′〉+ |4′′〉)/
√
|f4(θ)2|+ 1

where f1 = −f2 = −
√

4e2iθ +
√

3e4iθ +
√

3/(
√

3 + e2iθ)

f3 = −f4 = −
√

4e2iθ −
√

3e4iθ −
√

3/(
√

3− e2iθ)
Then again we calculate matrix element of dipole transitions

〈7zee| ~p |1′′zee〉 =
pcv√

6

1√
|f1(θ)2|+ 1

 (−
√

3 + 1)(eiθ/2 − e−iθ/2f1)/2

i((−
√

3− 1)(eiθ/2 + e−iθ/2f1)/2
e−iθ/2 − eiθ/2f1



〈7zee| ~p |2′′zee〉 =
pcv√

6

1√
|f2(θ)2|+ 1

 (−
√

3 + 1)(eiθ/2 − e−iθ/2f2)/2

i((−
√

3− 1)(eiθ/2 + e−iθ/2f2)/2
e−iθ/2 − eiθ/2f2


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〈7zee| ~p |3′′zee〉 =
pcv√

6

1√
|f3(θ)2|+ 1

 (
√

3 + 1)(eiθ/2 + e−iθ/2f3)/2

i((
√

3− 1)(eiθ/2 − e−iθ/2f3)/2
e−iθ/2 + eiθ/2f3


〈7zee| ~p |4′′zee〉 =

pcv√
6

1√
|f4(θ)2|+ 1

 (
√

3 + 1)(eiθ/2 + e−iθ/2f4)/2

i((
√

3− 1)(eiθ/2 − e−iθ/2f4)/2
e−iθ/2 + eiθ/2f4


〈8zee| ~p |1′′zee〉 =

pcv√
6

1√
|f1(θ)2|+ 1

 (
√

3− 1)(eiθ/2 + e−iθ/2f1)/2

i((−
√

3− 1)(−eiθ/2 + e−iθ/2f1)/2
e−iθ/2 + eiθ/2f1


〈8zee| ~p |2′′zee〉 =

pcv√
6

1√
|f2(θ)2|+ 1

 (
√

3− 1)(eiθ/2 + e−iθ/2f2)/2

i((−
√

3− 1)(−eiθ/2 + e−iθ/2f2)/2
e−iθ/2 + eiθ/2f2


〈8zee| ~p |3′′zee〉 =

pcv√
6

1√
|f3(θ)2|+ 1

(
√

3 + 1)(−eiθ/2 + e−iθ/2f3)/2

i((1−
√

3)(eiθ/2 + e−iθ/2f3)/2
e−iθ/2 − eiθ/2f3


〈8zee| ~p |4′′zee〉 =

pcv√
6

1√
|f4(θ)2|+ 1

(
√

3 + 1)(−eiθ/2 + e−iθ/2f4)/2

i((1−
√

3)(eiθ/2 + e−iθ/2f4)/2
e−iθ/2 − eiθ/2f4


The gamma functions are plotted in Fig4.4. In this regime, the variation

of polarization of the photon is very irregular compared to the regime of
small R. In the figure (a), x− polarized light is allowed but insensitive to the
rotation of the magnetic field, and polarization of y− direction is changing
much larger. There is one wired thing by looking at Γxy, from θ = 0.2π
to θ = 0.4π, it seems that polarization of x− and y− direction cancel each
other. Similar thing also happens in same region of θ of the figure (c). In
(b) and (d), we also observe irregular variation of Γxy. These phenomenon
are probably the result of dominant effect of strain anistropy. Besides, it is
easy to observe that x− polarized light is almost banned in transition (b),
and y− polarized light is almost banned in the transition (d).

4.4 overall regime

In this section we do approximation in overall regime that include both small
R and big R. We start by consider Hamiltonian

H =

(
∆ −β/3
−β/3 0

)
(4.17)
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acting on the states |1〉, |3〉
and

H =

(
0 −β/3
−β/3 ∆

)
(4.18)

acting on the states |2〉, |4〉
To diagonalize them we get eigenvalues (3∆ ±

√
3
√

3∆2 + 4β2)/6 and
new states 

|1∗〉 = (q1 |1〉+ |3〉)
√

1/(q2
1 + 1)

|2∗〉 = (q2 |1〉+ |3〉)
√

1/(q2
2 + 1)

|3∗〉 = (q3 |2〉+ |4〉)
√

1/(q2
3 + 1)

|4∗〉 = (q4 |2〉+ |4〉)
√

1/(q2
4 + 1)

where
q1 = (−

√
3∆ +

√
3∆2 + 4β2)/(2β) = (−

√
3 +
√

3 + 4R2)/(2R)

q2 = (−
√

3∆−
√

3∆2 + 4β2)/(2β) = (−
√

3−
√

3 + 4R2)/(2R)

q3 = (
√

3∆ +
√

3∆2 + 4β2)/(2β) = (
√

3 +
√

3 + 4R2)/(2R)

q4 = (
√

3∆−
√

3∆2 + 4β2)/(2β) = (
√

3−
√

3 + 4R2)/(2R)
are elements of the eigenvectors.
Still we have states |1〉 and |3〉 degenerate, also states |2〉 and |4〉 are

degenerate. By adding the magnetic field perpendicular to z-axis and using
the degenerate perturbation theory. we derive the states for the perturbed
system:
for the Hamiltonian of the Zeeman effect using |1〉 and |3〉 as basis, eigenvalues
are approximately: (only for θ from −0.5π to 0.5π)

∓ (1/(9R4))
√
R4/(48R2 + 64R4)× [(4608R5 + 1536

√
9 + 12R2R5

+ 6144R7 + 2048
√

9 + 12R2R7)× (2 cos(2θ) + 1/R) + 12288R6

+ 16384R8]1/2 × µBB/(48R2 + 64R4)

and the corresponded eigenstates are:{
|1∗zee〉 =

√
1/(|k1|2 + 1)(k1 |1∗〉+ |3∗〉)

|2∗zee〉 =
√

1/(|k2|2 + 1)(k2 |1∗〉+ |3∗〉)

where

k1 = −k2 = −[2R2(3R +
√

9 + 12R2R + (3 + 8R2 +
√
q + 12R2)e2iθ+

(3R +
√

9 + 12R2)e4iθ)]1/2/[R(
√

3 +
√

3 + 4R2 + 2
√

3Re2iθ)]

27



for the Hamiltonian of the Zeeman effect using |2〉 and |4〉 as basis, eigen-
values are approximately: (only for θ from −0.5π to 0.5π)

∓ (1/(9R4))
√
R4/(48R2 + 64R4)× [(4608R5 − 1536

√
9 + 12R2R5

+ 6144R7 − 2048
√

9 + 12R2R7)× (2 cos(2θ) + 1/R) + 12288R6

+ 16384R8]1/2 × µBB/(48R2 + 64R4)

and the corresponded states are:{
|3∗zee〉 =

√
1/(|k3|2 + 1)(k3 |2∗〉+ |4∗〉)

|4∗zee〉 =
√

1/(|k4|2 + 1)(k4 |2∗〉+ |4∗〉)

where

k3 = −k4 = −[−2R2(−3R+
√

9 + 12R2R+ (−3− 8R2 +
√
q + 12R2)e2iθ+

(−3R +
√

9 + 12R2)e4iθ)]1/2/[R(
√

3−
√

3 + 4R2 + 2
√

3Re2iθ)]

And the matrix element of the dipole transition in this overall regime are

〈7zee| ~p |X∗zee〉 = pcv
√

1/(2|kX |2 + 2) × kX
√

1/(|qY |2 + 1)eiθ/2(1/
√

3− qY ) +
√

1/(|qZ |2 + 1)e−iθ/2(1− qZ/
√

3)

i[kX
√

1/(|qY |2 + 1)eiθ/2(−1/
√

3− qY ) +
√

1/(|qZ |2 + 1)e−iθ/2(−1− qZ/
√

3)]

2[
√

1/(|qZ |2 + 1)eiθ/2(−qZ) + kX
√

1/(|qY |2 + 1)e−iθ/2]/
√

3


〈8zee| ~p |X∗zee〉 = pcv

√
1/(2|kX |2 + 2) × kX

√
1/(|qY |2 + 1)eiθ/2(qY − 1/

√
3) +

√
1/(|qZ |2 + 1)e−iθ/2(1− qZ/

√
3)

i[kX
√

1/(|qY |2 + 1)eiθ/2(1/
√

3 + qY ) +
√

1/(|qZ |2 + 1)e−iθ/2(−1− qZ/
√

3)]

2[
√

1/(|qZ |2 + 1)eiθ/2(qZ) + kX
√

1/(|qY |2 + 1)e−iθ/2]/
√

3


where |X∗zee〉 are states on valence band. Specifically, we compressed the

total eight transitions into above form.
X = 1;Y = 1, Z = 3

X = 2;Y = 1, Z = 3

X = 3;Y = 2, Z = 4

X = 4;Y = 2, Z = 4

And the total eight transitions can be reverted by replace X,Y,Z into
numbers as the cases above. And the plot of the gamma function are shown
in Fig4.6,4.7,4.8,4.9. Also the plot of the g-factor in this overall regime are
shown in Fig4.5. Generally, the Γ functions and g-factors in previous two
regime are in accordance with the result in this overall regime.
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Figure 4.1: plot g1 and g2 are plot of eigenvalues of Eq4.9 divided by µBB,
namely, the so called g factor. And g3 and g4 are g factor of Eq4.10. An
important fact is shown that when R is close to zero, g1, g2 are weakly
dependent on rotation of external magnetic field, which is unlike the case we
see for Hydrogen. But for g3 and g4, their dependence on θ are changing
more obviously sensitive to the variation of value of R.
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(a) (b)

(c) (d)

Figure 4.2: Plot of function Γ in regime of small R.
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Figure 4.3: g-factor in the regime of big R. g1 and g2 are eigenvalues of
Eq4.15 divided by µBB

, g3 and g4 are that of Eq4.16
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(a) (b)

(c) (d)

Figure 4.4: Plot of the gamma function in the regime of big R
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(a) (b)

(c) (d)

Figure 4.5: Plot of g-factor in overall regime. (a) corresponds to Fig4.1 g4
and Fig4.3 g1; (b) corresponds to Fig4.1 g3 and Fig4.3 g2; (c) corresponds
to Fig4.1 g2 and Fig4.3 g3; (a) corresponds to Fig4.1 g1 and Fig4.3 g4
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(a) (b)

(c) (d)

Figure 4.6: Plot of function Γx vs R in the overall regime.
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(a) (b)

(c) (d)

Figure 4.7: Plot of function Γxy vs R in the overall regime
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(a) (b)

(c) (d)

Figure 4.8: Plot of function Γx vs theta in the overall regime. (a) corresponds
to Fig4.2 (c) and Fig4.4 (a); (b) corresponds to Fig4.2 (d) and Fig4.4 (b);
(c) corresponds to Fig4.2 (a) and Fig4.4 (c); (d) corresponds to Fig4.2 (b)
and Fig4.4 (d)
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(a) (b)

(c) (d)

Figure 4.9: Plot of function Γxy vs theta in the overall regime. Figure (a)
corresponds to Fig4.2 (c) and Fig4.4 (a); (b) corresponds to Fig4.2 (d) and
Fig4.4 (b); (c) corresponds to Fig4.2 (a) and Fig4.4 (c); (d) corresponds to
Fig4.2 (b) and Fig4.4 (d)
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Chapter 5

Conclusion and Outlook

So far, we have shown a simple model of a quantum dot with the strain
effect of the band splitting and the strain anistropy. And we calculated ma-
trix element of electric dipole transitions. Then selection rules among these
transitions have been found. Compared with the Hygrogen atom, transitons
in quantum dot usually have lower transition rate, and polarization of the
photon are much insensitive to the magnetic field. Looking at the results in
overall regime, it is also has been shown a huge difference of selection rules
between the two regimes of the ratio R. Compared them with experiment
result in [1], result in the regime of small R is more close. However, this
model is still very naive compared to a ’natural’ QD, as we omitted some ef-
fects for the sake of calculation convenience, for example the magnetic dipole
transition. Also, the electronic states ,which in terms of the Bloch functions,
of the QD could be more precise.
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