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Abstract

With the continuously growing interest in active galactic nuclei (AGN) and the propaga-

tion of their associated jets, the subject of energy extraction from rotating Kerr black holes

is still highly relevant today. By now, several general relativistic magnetohydrodynamic

simulations validate the Blandford-Znajek process which is a black hole energy extraction

mechanism first proposed by Blandford and Znajek in 1977 [1] that was greatly inspired by

the similar case of the pulsar magnetosphere. Unlike the example of a slowly rotating black

hole, which Blandford and Znajek considered, most observed AGN are found to spin at

rates close to extremality. This means that it is necessary to construct a new perturbative

approach for near-extreme and extreme black holes much like Menon and Dermer did in

the Kerr background [2]. This thesis reviews the near-horizon extreme Kerr (NHEK) limit

of rotating black holes. Consequently, an expansion of the field in orders of the scaling pa-

rameter λ is performed in order to construct a magnetically-dominated field strength from

the NHEK attractor solution found by Camilloni et al. [3]. Although this solution is null

everywhere, calculating the first two post-NHEK order corrections to the field allows one

to show that it is indeed possible to construct a magnetically-dominated magnetosphere, at

least in some regions. The near-NHEK limit of the Kerr solution, which is more astrophys-

ically correct than the NHEK limit, is also reviewed. Again, the field is expanded but now

in orders of λ and σ which measures the deviation from extremality (σ = 0). With a novel

expansion of the field variables, I find corrections to the near-NHEK attractor to the second

order in λ (and σ), and present the field variables that are determined along the way. I show

that the field strength is null in the first order in λ and present the general field strength

in the second order in λ with field variables that are left unfixed. Lastly, the novel general

expansion is compared with a known solution [4].
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Introduction

Several near-extreme Kerr black holes thought to be the centre of active galactic nuclei

(AGN) have been observed throughout the Universe. These possess rotations high enough to

drive the astrophysical jets that are likely candidates for sites of creation of highly energetic

particles such as high-energy neutrinos. The neutrinos have been observed by detectors such

as IceCube [5] located on the South Pole, and are ideal messengers carrying information

about the Universe which is otherwise not available to us. Generally, information is lost

along the way as it travels through various astrophysical objects before being observed by

detectors on Earth, thus making these neutrinos highly valuable to us. With the publication

of the first ever image taken of a black hole as late as in 2019 [6] it is evident that there

is still much to be studied. The image which in fact is not of the supermassive black

hole M87* itself but rather the surrounding accretion disc or emitted jet only fuels the

interest in investigating AGN and their central black holes even further. It is thus of

great interest to further understand the mechanics of near-extreme and extreme Kerr black

holes with mass M and angular momentum J (with J = M2 in the extreme limit) such

that we may better understand processes like the creation of the relativistic jet or the

emitted high-energy neutrinos, and the process of energy extraction from the highly spinning

black hole possibly through said jets [7]. Several models have been proposed in order

to describe the magnetosphere of the black hole. In order to construct a magnetosphere

which is astrophysically acceptable it must be magnetically-dominated. This means that

the field strength of the electromagnetic field Fµν surrounding the Kerr black hole must

be positive F 2 > 0, or equivalently B2 > E2 where Bi and Ei are the magnetic field

and the electric field, respectively. The approach which has proved to be best equipped to

describe this near-extreme and extreme Kerr background is the force-free (FF) limit of ideal

magnetohydrodymanics (MHD) governed by force-free electrodynamics (FFE) which is a

regime of Maxwell’s equations. It is a closed set of equations describing the electromagnetic
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field and the force-free plasma within the black hole magnetosphere [8]. The plasma is said

to be FF when its associated energy-momentum tensor is dominated by the electromagnetic

energy versus the matter energy such that the Lorentz force density in effect vanishes which

is where the term ”force-free” originates from. This was initially inspired by the discovery

of a FF plasma-filled pulsar magnetosphere in 1969 by Goldreich and Julian [9] allowing

for the energy extraction through the relativistic jets originating from the rotating neutron

star. In 1977 Blandford and Znajek applied this idea to the slowly rotating limit of a black

hole as they constructed the Blandford-Znajek (BZ) process. This is an electromagnetic

Penrose-like process describing the energy extraction from a rotating black hole immersed in

a magnetic field supported by the surrounding accretion disc. The presence of the accretion

disc gives rise to a force-free plasma in some parts of the magnetosphere, and consequently

the electromagnetic conversion of the black hole angular momentum into energy that as

mentioned may power the relativistic jet.

Due to the complexity of the non-linear equations produced by FFE in the Kerr back-

ground it is difficult to obtain a stationary and axisymmetric analytical solution for a

magnetically-dominated magnetosphere and in fact only one set of such solutions has been

found by Menon and Dermer [2, 10] and by Brennan et al. [11]. Both share the property of

being null everywhere (F 2 = 0). This motivates the reason to perturbatively move slightly

away from the horizon of the extreme Kerr black hole, a region governed by the near horizon

extreme Kerr (NHEK) geometry which possesses some mathematical qualities allowing for

the simplification of the problem such that an exact solution can be found.

In this thesis I will initially be introducing the general relativistic (GR) Einstein field

equations as well as the Schwarzschild and Kerr solutions before reviewing the FFE equa-

tions. I will then review existing literature in order to derive the NHEK attractor solution

recently found by Camilloni et al. [3] which is null. From this, a stationary and axisym-

metric solution in the Kerr background that is magnetically-dominated can be found using

perturbation theory by computing the n-post order corrections. I will only be presenting

the method with which the first and second post-NHEK order corrections are obtained as

it is not necessary to continue to higher orders in order to recover positive regions of F 2.

Subsequently, I will move on to the near-NHEK geometry as presented in [12] which is used

to study the region close to the horizon of a near-extreme Kerr black hole, i.e. a rotating

black hole that deviates slightly from extremality. I will derive the near-NHEK attractor

solution which is used as a base for perturbing away from the near-NHEK region, again

with the purpose of constructing a FF magnetosphere in the near-NHEK region. As in the
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NHEK limit of the Kerr metric I will only consider the first two post-near-NHEK corrections

and I will be presenting the various attempts that were made to procure the appropriate

solution. In this case I will also show that the perturbation which we found reduces to

the Menon-Dermer class of solutions and I will introduce the concept of light surfaces and

analyse whether these critical surfaces help find the desired outcome. Lastly I will compare

our result with another found by Pompili [4] in order to study the similarities.
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Chapter 1

Black holes

In this Chapter I will be introducing two exact known solutions to the Einstein field equations

Rµν −
1

2
Rgµν = 8πTµν (1.0.1)

which relate the curvature, or geometry, of spacetime through the Ricci tensor Rµν , and

subsequently the Ricci scalar R = gµνRµν , to matter via the energy-momentum tensor

Tµν . I will be fixing the geometric units G = c = 1 and follow the signature (−,+,+,+)

throughout the thesis for the metric gµν .

The first exact and most simple solution to Einstein’s equations is the Schwarzschild

solution which describes the spacetime surrounding a static and symmetrical black hole

with the following metric in spherical coordinates (t, r, θ, φ)

ds2 = −
(

1− r0

r

)
dt2 +

1

1− r0/r
dr2 + r2dθ2 + r2 sin2 θdφ2 (1.0.2)

where M is the mass of the black hole and r0 = 2M is known as the Schwarzschild radius.

The metric admits a timelike Killing vector field K = ∂t which is evident since the compo-

nents of the metric are time-independent. Killing vector fields (or just Killing vectors) are

four-vectors ξ which satisfy the condition known as the Killing equation

0 = Dµξν +Dνξµ, (1.0.3)

where Dµ is the covariant derivative, which means that ξ is a Killing vector if the Lie

derivative with respect to ξ of the metric vanishes1

(Lξg)µν = 0. (1.0.4)

1Recall that (LXg)µν = Xρ∂ρ(gµν) + (∂µXρ)gρν + (∂νXρ)gµρ for an arbitrary vector field X = Xµ∂µ.
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As mentioned, this is true for the vector field ∂t in the Schwarzschild solution. Killing vectors

are interesting since they are infinitesimal generators of the isometry of the metric, meaning

that they preserve the metric. This allows us to conclude that the metric is stationary and

invariant under time-translations, and due to the metric’s spherical symmetry there also

exists three non-commuting spacelike Killing fields

R = ∂φ, S = sinφ∂θ + cot θ cosφ∂φ, T = cosφ∂θ − cot θ sinφ∂φ. (1.0.5)

The metric is asymptotically flat at infinity which means that for r → ∞ or r0 → 0 the

Schwarzschild metric reduces to the metric describing flat space in spherical coordinates.

Since the existence of a Killing vector also implies the existence of a conserved quantity (the

metric is preserved), let us consider the physical meaning of the symmetries they also then

represent in flat spacetime, due to the metric being asymptotically flat. In flat spacetime,

invariance under time-translation results in the conservation of energy, while invariance

under spatial rotations results in the conservation of angular momentum. This means that

the Killing vector K is associated with the conservation of energy, and the Killing vector R

is associated with conservation of the magnitude of angular momentum [13]. This is true

even for the Schwarzschild metric and not only in flat spacetime.

Another important feature of the metric is the two singularities found at r = r0 and

r = 0, where the former becomes evident since the component gtt → 0 and grr → ∞
for r = r0, however, this turns out to be a coordinate singularity which can be removed

by the appropriate parametrisation. For example using Eddington-Finkelstein coordinates2

(v, r, θ, φ) in which the metric reduces to [14]

ds2 = −
(

1− r0

r

)
dv2 + 2dvdr + r2dΩ2, (1.0.6)

with the metric of a unit two-sphere dΩ = dθ2 + sin2 θdφ2. From Eq. (1.0.6) one can infer

that the singularity at r = 0 is a true singularity where the curvature of the spacetime

approaches infinity. However, the coordinate singularity at r = r0 is of no less physical

importance as it defines the surface known as the event horizon, marking the boundary (for

fixed t) at which not even light can escape the gravitational pull of the black hole. In fact, it

is the spacetime in the region r ≤ r0 that constitutes what we call the Schwarzschild black

hole itself whereas the metric in the region outside of the event horizon r > r0 is a solution

to the Einstein equations in vacuum Rµν = 0, since Tµν = 0 when no matter is present.

As a consequence hereof, the Schwarzschild solution is unique since it satisfies the following

properties [14]

2For ingoing coordinates v = t+ r∗ where r∗ = r + r0 log
(
r
r0
− 1

)
.
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• The metric is asymptotically flat.

• The metric is stationary.

• There exists an event horizon.

• Outside of the event horizon, the metric is a solution to the vacuum Einstein equations.

The Schwarzschild solution has historically been used to model slowly spinning objects such

as the Sun and the Earth [13] and also in 1977 when Blandford and Znajek proposed a

perturbative expansion method for finding approximate solutions for slowly rotating black

holes [1] which serves as the inspiration for the basis of this thesis. However, more recent

observational findings based on the analysis of the continuum spectrum of the accretion

disc surrounding AGN suggest that most astrophysical black holes rotate at a rate closer

to the extremal limit J = M2 [15]. This motivates the introduction of another solution to

the Einstein field equations, namely the Kerr solution which allows for the evaluation of the

NHEK and near-NHEK regions in later Chapters.

1.1 Kerr black holes

The Kerr metric is a solution to Einstein’s field equations which describes the spacetime of a

rotating (Kerr) black hole thought to be more astrophysically realistic than the non-rotating

Schwarzschild counterpart. It is generally believed that Kerr black holes are birthed through

the gravitational collapse of spinning massive stars, other compact objects or a collision of

binary systems, all of which posses non-zero angular momenta, resulting in a black hole with

mass M and angular momentum J . The Kerr metric in Boyer-Lindquist (BL) coordinates

(t, r, θ, φ) is

ds2 =−
(

1− r0r

Σ

)
dt2 − 2r0r

Σ
a sin2 θdtdφ

+
(r2 + a2)2 − a2∆ sin2 θ

Σ
sin2 θdφ2 +

Σ

∆
dr2 + Σdθ2, (1.1.1)

with the spin parameter a = J/M , Schwarzschild radius r0 = 2M , and parameters

Σ(r, θ) = r2 + a2 cos2 θ,

∆(r) = (r − r+)(r − r−). (1.1.2)

The metric contains a ring singularity at r = 0, θ = π/2 stemming from the divergence of

the metric at Σ = 0, and two singular surfaces which are evident since the component grr
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diverges at ∆ = 0, with ∆ vanishing at the radii r± [13]

r± =
r0

2

(
1±

√
1− 4a2

r2
0

)
. (1.1.3)

The two surfaces r± are, however, only coordinate singularities and can thus be removed fol-

lowing the appropriate parametrisation as we also saw with the Schwarzschild solution. The

two surfaces are null hypersurfaces that can be thought of as a collection of null geodesics

[13], where the innermost null surface is the inner event horizon located at r = r−, sur-

rounded by the outer event horizon at r = r+ denoting the point at which it is impossible

for massive and non-massive objects to escape the gravitational pull of the black hole. It

is common practise to refer to the surface at r = r+ as the event horizon, and I will be

following this convention in the remainder of the thesis as my main focus does not lie in the

spacetime within the event horizon but rather the region immediately outside of it.

From Eq. (1.1.1) it is evident that the Kerr metric is equipped with two Killing vector

fields since the metric coefficients are independent of the coordinates (t, φ). The Killing vec-

tors K = ∂t and R = ∂φ are generators of time-translation symmetry and axisymmetry [16],

respectively, revealing the Kerr metric to be stationary as well as axisymmetric and since

it is asymptotically flat for r → ∞, the Kerr solution is also unique. The two commuting

vectors generate the Kerr isometry group R × U(1) which I will return to when discussing

the NHEK region, and they combine to form the co-rotating vector field

χ = ∂t + ΩH∂φ, (1.1.4)

with ΩH being the angular velocity of the black hole, or more precisely the horizon

ΩH =
a

r2
+ + a2

. (1.1.5)

Furthermore, the Killing vectors will span a surface which is denoted as the toroidal surface,

while the surface orthogonal to this is the poloidal surface spanned by (r, θ). This allows

for the decomposition of the metric into a toroidal component gT and poloidal component

gP with the determinant of the metric being a product of the two [3]

gT = gttgφφ − g2
tφ = −∆ sin2 θ, gP = grrgθθ =

Σ2

∆
,

=⇒ g = gT · gP = −Σ2 sin2 θ. (1.1.6)

Another important feature of the Kerr black hole is the surface surrounding the event horizon

known as the ergosphere which intersects with r = r+ at the poles of the rotational axis
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(sin θ = 0) as seen in Figure 1.1. It is found at the surface where the norm of the timelike

Killing vector is null KµKµ = gtt = 0, i.e. Σ = r0r, leading to the equation

r2 − r0r + a2 cos2 θ = 0 (1.1.7)

with the following solutions

r =
r0

2
± r0

2

√
1− 4a2

r2
0

cos2 θ (1.1.8)

allowing us to define the boundary of the ergosphere r = rergo as

rergo =
r0

2
+
r0

2

√
1− 4a2

r2
0

cos2 θ. (1.1.9)

Inside this region, the ergoregion r+ < r < rergo, the Killing vector changes from being

time-like KµKµ < 0 to space-like KµKµ > 0 meaning that while it is still possible to escape

the gravitational pull of the black hole, you cannot stand still and must instead follow the

rotation of the black hole in the increasing φ-direction with the same angular velocity as

the horizon. This effect is known as frame-dragging as it results in the dragging of the local

inertial frame (the ergosphere) and it motivates the introduction of co-rotating coordinates

which I will present alongside the NHEK limit in a following CHapter. In order to see the

frame-dragging effect explicitly, let us consider a massless particle, i.e. a photon, that has

entered the ergosphere in the φ-direction at an arbitrary radius r in the equatorial plane

(θ = π/2) of the black hole. Since the photon is moving in the φ-direction its momentum

will not contain any components in the r- and θ-direction thus reducing the null trajectory

of the photon to

0 = ds2 = gttdt
2 + 2gtφdtdφ+ gφφdφ

2,

=
dφ2

dt2
+ 2

gtφ
gφφ

dφ

dt
+
gtt
gφφ

, (1.1.10)

which is solved for dφ/dt, yielding [14]

dφ

dt
:= Ω±(r, θ) = − gtφ

gφφ
±

√(
gtφ
gφφ

)2

− gtt
gφφ

=
−gtφ ± sin θ

√
∆

gφφ
. (1.1.11)

Inside the ergoregion gtt > 0, gtφ > 0, and gφφ > 0 such that Ω±(r, θ) > 0, meaning that

the photon is bounded by

Ω−(r, θ) ≤ dφ

dt
≤ Ω+(r, θ), (1.1.12)
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with dφ/dt being the angular velocity of the photon inside the ergoregion. For massive

particles, that necessarily move slower than the photon, the upper and lower limit is instead

Ω−(r, θ) <
dφ

dt
< Ω+(r, θ), (1.1.13)

and if we consider the limit r → r+ it becomes evident that the upper and lower limit

asymptote to the angular velocity of the horizon

Ω±(r+, θ) = − gtφ
gφφ

∣∣∣
r=r+

=
ar0r+

(a2 + r2
+)2

=
a

r0r+
, (1.1.14)

since 0 = ∆(r+) = r2
+ + a2 − r0r+. Thus we see that particles inside the ergosphere will

move with the horizon as the black hole rotates.

Figure 1.1: Illustration of a Kerr black hole with a ring singularity at r = 0,

θ = π/2 surrounded by the inner horizon at r = r− and outer horizon at

r = r+. The ergoregion (grey) which is bounded by the ergosphere and

outer event horizon marks the region in which everything must co-rotate

with the black hole. Modified Figure 6.7 from [13].

As I will be considering the extreme and near-extreme limit of a Kerr black hole it is

important to establish exactly when the Kerr black hole reaches extremality. The Kerr black

hole angular momentum is bounded by the condition a ≤ r0/2 with the black hole reaching

extremality at a = r0/2. This results in a maximal angular momentum of |J | = M2 and

r+ = r− = r0/2, as well as the angular velocity of the event horizon reducing to ΩH = r−1
0

[3]. The angular momentum of the black hole is limited by the cosmic censorship hypothesis

[13] which states that a naked singularity, i.e. a singularity not surrounded by an event

horizon, cannot be formed by gravitational collapse since we cannot allow the curvature
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singularity to affect the surrounding spacetime. If a > r0/2 then ∆ > 0 and no event

horizon would be present which is forbidden.

1.2 Black hole energy extraction

Before concretising what the extremal boundary of the Kerr black hole entails let us first

consider exactly how energy can be extracted from within the ergosphere of rotating black

holes. Perhaps the most well known method of extraction is the Penrose process which can

be visualised by considering a fairly straightforward example inspired in part by literature

by Carroll and Harmark [13, 14]. Consider a massive particle ”a” with mass ma travelling

from infinity, moving along a geodesic with positive energy since it is moving forward in

time. The energy of the particle will be

Ea = −Kµp
µ
a > 0 (1.2.1)

since we know that the conserved quantity of the Killing vector K is energy, with pµa =

ma dx
µ/dτ being the four-momentum. The minus sign in Ea is needed due to the timelike

nature of the Killing vector K at infinity to ensure that the energy is in fact positive. Inside

the ergoregion of the Kerr black hole, the Killing vector becomes spacelike meaning that it

is possible to imagine a particle for which

E = −Kµp
µ < 0, (1.2.2)

and thus returning to the example, we imagine that the particle ”a” enters the ergosphere

and splits into two particles ”b” and ”c” near the outer event horizon as seen in Figure 1.2.

Particle ”c” escapes the ergosphere while particle ”b” enters the event horizon; both are

assumed to follow geodesics such that energy and momentum conservation can be considered

Ea = Eb + Eb, pa = pb + pc. (1.2.3)

Since ”c” is outside the ergoregion it must necessarily have Ec > 0 but it is possible for

particle ”b” to have negative energy Eb < 0 if its angular momentum

Lb = Rµp
µ
b < 0 (1.2.4)

or, more precisely, if ”b” has the exact same angular momentum as the black hole but

with an opposite sign. This would mean that Ec > Ea which can be interpreted as having
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extracted rotational energy from the black hole by decreasing its angular momentum. To

see this explicitly, consider the momentum of particle ”b” crossing the event horizon

0 > pµbχµ = pµbKµ + ΩH p
µ
bRµ

= −Eb + ΩH Lb

=⇒ Lb <
Eb
ΩH

(1.2.5)

since Eb < 0 and ΩH is positive, having used the definition of χ from Eq. (1.1.4). Since we

know that δM = Eb and δJ = Lb due to energy-momentum conservation, this means

δJ <
δM

ΩH
, (1.2.6)

demonstrating that the angular momentum of the black hole has decreased.

Figure 1.2: Sketch of the Penrose process in which a massive particle ”a”

enters the ergoregion (top view) and splits into two; particle ”c” that es-

capes the ergosphere with positive energy and particle ”b” that enters the

event horizon with negative energy or negative angular momentum thus

extracting rotational energy from the black hole.

1.2.1 The Blandford-Znajek process

Another newer model is the Blandford-Znajek process which is widely regarded as the most

promising model for describing the driving force behind the energy extraction of rotating
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black holes through relativistic jets of astrophysical phenomena such as AGN (pictured in

Figure 1.3), gamma-ray bursts and so forth. General relativistic magnetohydrodynamic

(GRMHD) simulations have been done which support the force-free approximation and

specifically the BZ process [17] thus further confirming the validity of this model. Unlike

the Penrose process, which is mechanical, the BZ process is purely electromagnetic requir-

ing Ω < ΩH . The outgoing flow of electromagnetic wind (the electromagnetic field) in the

magnetosphere is analogous to the outgoing particle with positive energy3 in the Penrose

process, and likewise the ingoing flow of electromagnetic wind is analogous to the ingoing

particle with negative energy4 [18]. From the ”no-hair” theorem [19] we know that a black

hole itself cannot generate a magnetic field, which makes the presence of a magnetised accre-

tion disc consisting of ionised plasma necessary in order to account for the electromagnetic

field present in the black hole magnetosphere [1]. Inspired by the apparent advantages in

modelling the energy extraction inside pulsar magnetospheres using force-free electrody-

namics, Blandford and Znajek applied this concept to slowly rotating black holes. Provided

that the magnetic field and angular momentum is large enough, charged particles will be

accelerated along the magnetic field lines that are ”frozen-in” the plasma and are twisted

due to the frame-dragging effect. This will result in the radiation of curvature energy, ig-

niting a cascade-like continuous creation of electron-positron pairs, in turn leading to an

approximately force-free plasma near the horizon. Finally, this allows for energy extraction

along the magnetic field lines that are threading the black hole, through the relativistic jets

at the magnetic poles where the FF approximation breaks down.

The origin of the electromotive force driving the currents in the BZ process is not entirely

clear and has been suggested to be the event horizon by Thorne et al. [21] who used the

membrane paradigm to argue their case. In the membrane paradigm, the black hole horizon

is considered to be a spherical rotating conductor with finite resistivity from which the

magnetic field lines originate and transfer kinetic energy to an outward pointing Poynting

flux and matter flux [22]. However, this is not a very physically credible theory due to

the causal disconnection of the horizon from the black hole exterior. Instead it has been

found by GRMHD numerical simulations of the black hole magnetosphere by Komissarov

and Ruiz et al. [23, 24] that the ergosphere is the origin of the electromotive force, which

is also argued by Toma et al. [25] who find that the open magnetic field lines (lines that

leave the magnetosphere and extend towards infinity)5 crossing the ergosphere will have an

3At infinity.
4Also at infinity.
5I will return to the topology of the magnetic field lines in Sections 2.1 and 2.5.
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Figure 1.3: Artist’s illustration of an AGN enveloped by an accretion disc

of ionised plasma (as well as neutral matter) and with relativistic jets orig-

inating at the magnetic poles. Image taken from [20].

electric field perpendicular to the magnetic field with E2 > B2 thus driving the poloidal

currents across the magnetic field lines, giving rise to an electromotive force and an outward

pointing Poynting flux where Ω > 0. This allows for the extraction of energy from the black

hole.
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Chapter 2

Force-free electrodynamics

In this Chapter I will be presenting force-free electrodynamics which lay the foundation

for the framework wherein it should be possible to construct a magnetically-dominated,

FF magnetosphere surrounding both an extreme and near-extreme Kerr black hole. Before

turning to the black hole case though, let us first briefly consider the force-free approximation

of a pulsar magnetosphere in greater detail, which is what initially opened for the possibility

of the force-free approach to the rotating black hole magnetosphere.

2.1 The pulsar magnetosphere

In 1969 Goldreich and Julian (GJ) confirmed the existence of a force-free magnetosphere sur-

rounding a rotating neutron star, or pulsar, allowing for electromagnetic driven winds inside

the magnetosphere to extract rotational energy. They achieved this by initially considering

the more conceptually simple case of a pulsar surrounded by vacuum [9]. A pulsar rotating

with angular velocity Ω1 can be considered to be an approximately perfect conductor whose

rotation will induce an electric current given by Ohm’s law

E + (Ω× r)×B = 0. (2.1.1)

This allows one to calculate the Lorentz invariant quantity E ·B as

E ·B + ((Ω× r)×B) ·B = 0

=⇒ E ·B = 0, (2.1.2)

1Here and in the following bold text implies that the quantity is a spatial vector.
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however, while E = 0 inside of a perfect conductor, there will be an electric field present

E‖ that is perpendicular to the surface just outside the pulsar [26] and thus, since it can

be shown that the gravitational force on the charges is negligible compared to the Coulomb

forces exerted on them2, the vacuum will effectively be filled with plasma, breaking down

the vacuum approximation. The origin of the electromotive force and fluxes is the pulsar

itself, unlike in the black hole case where the horizon cannot take on this role due to the

issue of causality. In order to ensure that the plasma-filled magnetosphere, which we now

know must be present, is force-free with E ·B = 0, then the perpendicular electric field must

be ”screened” and this condition was found by GJ to be satisfied at the Goldreich-Julian

charge density

ρ = ∇ ·E ∝ −2Ω ·B, (2.1.3)

where the plasma co-rotates with the pulsar, which is necessary in order to ensure continuous

screening of the longitudinal electric field. This rotation is bounded by the speed of light,

leading to the surface known as the light cylinder with radius

RL =
1

Ω
, (2.1.4)

beyond which the magnetic field lines in the plasma no longer can co-rotate with the pulsar,

meaning that the magnetosphere does not stretch beyond r = RL. As we shall soon see

in Section 2.5, the magnetic field lines in the pulsar magnetosphere differ slightly from the

lines inside the black hole magnetosphere, as the pulsar lines are allowed to be both open

and closed without further restrictions. Closed magnetic field lines will intersect with the

surface of the rotating neutron star twice, while open lines (in theory) extend to infinity,

exiting the magnetosphere. This is illustrated in Figure 2.1. When the magnetosphere is

magnetically-dominated, the magnetic field lines will be ”frozen-in” the plasma and have to

move with the plasma as per Alfvén’s theorem [19]. This is also the case in the black hole

magnetosphere, where the effect allows for energy extraction along the open magnetic field

lines which follow the plasma out through the jets.

Now that we know that it is indeed possible to construct a force-free magnetosphere

surrounding a pulsar, and that the same idea has been used for rotating black holes by

e.g. Blandford and Znajek, I will continue to a more in-depth walk-through of force-free

electrodynamics and its usages regarding Kerr black holes.

2This means that the effects of GR are insignificant in the case of the pulsar magnetosphere.
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Figure 2.1: Illustration of a pulsar with allowed magnetic field line topology

accounting for both open and closed lines. The light cylinder serves as the

outer boundary of the magnetosphere’s reach. Image taken from [27].

2.2 Equations of FFE

Force-free electrodynamics is an regime of Maxwell’s equations which are

DµF
µν = jν , D[ρFµν] = 0, (2.2.1)

where the square brackets denote antisymmetry of the indices. The electromagnetic field

strength Fµν is composed of the gauge potential Aµ such that

Fµν = 2∂[µAν] (2.2.2)
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and jν is the four-current. The electromagnetic energy-momentum tensor

TµνEM = FµαF να −
1

4
gµνFαβFαβ , (2.2.3)

together with the contribution from the matter distribution constitutes the total energy-

momentum tensor

Tµν = TµνEM + Tµνmatter, (2.2.4)

and conservation of energy and momentum demands that the total energy-momentum tensor

is conserved [28]

0 = DµT
µν

= DµT
µν
EM +DµT

µν
matter

= −Fµνjν +DµT
µν
matter (2.2.5)

from which the force-free condition can be inferred

FµνDρF
ρν = Fµνj

ν = 0. (2.2.6)

This is the equivalent of the invariant E·B = 0 in the pulsar magnetosphere (flat spacetime),

and I will again highlight that this condition means that the magnetic field is so strong that

it greatly surpasses the energy contribution of the plasma. Consequently, the dynamics are

governed entirely by the magnetic field lines while the plasma just serves to realise the FF

condition by screening the electric field in the direction of the magnetic field [29]. Thus

the equations of FFE are Maxwell’s equations Eq. (2.2.1) combined with the FF condition

Eq. (2.2.6), and they can be used to describe plasma whose energy-momentum tensor is

dominated by the electromagnetic energy compared to the energy of the matter with

F 2 = FµνFµν =
1

2
(B2 − E2) > 0 (2.2.7)

or equivalently B2 > E2. To really emphasise this important feature, I will present the

nature of the Lorentz invariant quantity F 2 as follows

F 2 > 0 : magnetically dominated,

F 2 < 0 : electrically dominated,

F 2 = 0 : null.

In flat spacetime only the magnetically-dominated solution is stable, describing a FF plasma

in equilibrium. This is why we are solely interested in electromagnetic field strengths that

are magnetically-dominated.
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Since the force-free equations are non-linear, as shall soon become more evident, it

is difficult to find exact analytical solutions, and still today only a handful are known.

An example of a solution in the Schwarzschild spacetime is [30], in Kerr spacetime by

[2, 10, 11, 1], and in the NHEK limit of Kerr spacetime by for example [28, 31].

2.3 Determinism

It is now fitting to ask ourselves how we are certain that the FFE equations are able to

accurately determine the evolution of the field based only on initial data, and why we

should expect it to be a nice approximation to work with. As found by Gralla et al.

[29], the equations are deterministic provided that the field is magnetically-dominated with

F 2 = 1/2 (B2 − E2) > 0 which they demonstrate by making a 3+1 decomposition of the

flat spacetime such that the FF condition takes the form

E · j = 0, ρE + j×B = 0, (2.3.1)

again implying

E ·B = 0, (2.3.2)

as shown in the derivation of Eq. (2.1.2). By taking the cross product of the second equality

in Eq. (2.3.1) with B, one finds

ρE×B + j⊥B
2 = 0 =⇒

j⊥ = (∇ ·E)
E×B

|B|2
, (2.3.3)

since ρ = (∇ ·E). The component j‖ can be found using Maxwell’s time evolution equations

∂tE = ∇×B− j, (2.3.4a)

∂tB = −∇×E, (2.3.4b)

such that the time derivative of Eq. (2.3.2) yields

0 = ∂t(E ·B) = ∂t(E) ·B + E · ∂t(B)

= (∇×B) ·B− j ·B−E · (∇×E), (2.3.5)

meaning that

j⊥ =
(∇×B) ·B−E · (∇×E)

|B|2
·B. (2.3.6)
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This shows that if B = 0 then one cannot solve for the current j in terms of the fields

and their spatial derivatives, so one must have B 6= 0 which is true in the magnetically-

dominated case. From this one can infer that B is non-zero in all reference frames and that

E ·B = 0, and consequently Eq. (2.2.6), is preserved as time evolves. I should note that a

similar derivation should be possible in curved geometry with a 3+1 decomposition of the

spacetime (see the review by Gralla et al. [29] for reference).

Thus we know that the FFE equations are deterministic in flat spacetime given B2−E2 >

0, however, since neither the NHEK nor the near-NHEK geometry is asymptotically flat,

we cannot say for sure that the null solution F 2 = 0 or electrically-dominated solution

F 2 < 0 is unphysical in this regime. For now let us assume that the only physically relevant

solution in the near-NHEK and NHEK regime is magnetically-dominated, and continue to

the derivation of the stream equation which is important for understanding the physics of

the magnetosphere.

2.4 Field variables and Kerr field strength

Let us now consider the FFE equations for a field in the Kerr background. Since the Kerr

black hole is stationary and axisymmetric it is appropriate to assume that the same is true

for the electromagnetic field, with axisymmetry around the same axis of rotation as the

black hole, thus allowing for the gauge choice ∂tAµ = ∂φAµ = 0. In order to characterise

the field strength and in turn the magnetosphere, the magnetic flux ψ(r, θ) and poloidal

current I(r, θ) of the magnetic field lines are defined as follows

ψ = Aφ, I =
√
−gF rθ. (2.4.1)

Let us consider the toroidal components of Eq. (2.2.6), first µ = t

0 = Ftνj
ν = Ftrj

r + Ftθj
θ + Ftφj

φ

= (∂tAr − ∂rAt)jr + (∂tAθ − ∂θAt)jθ + (∂tAφ − ∂φAt)jφ

= −∂rAtjr − ∂θAtjθ (2.4.2)

which means that

−∂rAtjr = ∂θAtj
θ, (2.4.3)

and secondly for µ = φ

0 = Fφνj
ν = Fφtj

t + Fφrj
r + Fφθj

θ
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= (∂φAt − ∂tAφ)jt + (∂φAr − ∂rAφ)jr + (∂φAθ − ∂θAφ)jθ

= −∂rAφjr − ∂θAφjθ (2.4.4)

or

− ∂rAφjr = ∂θAφj
θ (2.4.5)

such that when you divide Eq. (2.4.3) by Eq. (2.4.5) and recall that Aφ = ψ you find the

following integrability condition

∂rAt∂θψ = ∂θAt∂rψ (2.4.6)

from which we infer that At = At(ψ). This allows one to define the angular velocity of the

magnetic field lines Ω(r, θ) as

Ω = −∂rAt
∂rψ

= −∂θAt
∂θψ

(2.4.7)

and in order to find an integrability condition concerning Ω I differentiate Eq. (2.4.7) as

follows

∂θ(∂rAt) = −∂θ(Ω)∂rψ − Ω∂θ(∂rψ), (2.4.8a)

∂r(∂θAt) = −(∂rΩ)∂θψ − Ω∂r(∂θψ) (2.4.8b)

which, since ∂2/(∂θ∂r) = ∂2/(∂r∂θ), yields the following when divided by each other

∂rΩ∂θψ = ∂θΩ∂rψ (2.4.9)

meaning that Ω = Ω(ψ). From the µ = φ component of Eq. (2.2.6) alone, that is −∂rψjr =

∂θψj
θ, it is possible to find an integrability condition for I using the definition of the poloidal

current Eq. (2.4.1) and jµ

−∂rψjr = −∂rψDµF
µr = −∂rψ(−∂θF rθ) = ∂rψ

1√
−g

∂θI

= ∂θψj
θ = ∂θψ

1√
−g

∂rI (2.4.10)

which reduces to

∂rI∂θψ = ∂θI∂rψ (2.4.11)

thus showing that also I = I(ψ). These field variables ψ, Ω, I can be shown to be connected

by the stream equation found from the µ = r, θ components of Eq. (2.2.6). For µ = r

0 = Frνj
ν = Frtj

t + Frθj
θ + Frφj

φ = ∂rAtj
t + Frθj

θ + ∂rψj
φ

= −Ω∂rψ
(
∂rF

tr + ∂θF
tθ
)

+ Frθ
1√
−g

∂rI + ∂r
(
∂rF

φr + ∂θF
φθ
)
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= ∂r
(√
−gFφr

)
+ ∂θ

(√
−gFφθ

)
− Ω∂r

(√
−gF tr

)
+ ∂θ

(√
−gF tθ

)
+ Frθ

∂rI

∂rψ

= ∂ρ
(√
−gFφρ

)
− Ω∂ρ

(√
−gF tρ

)
+ Frθ

∂rI

∂rψ
(2.4.12)

and likewise for µ = θ I find

0 = ∂ρ
(√
−gFφρ

)
− Ω∂ρ

(√
−gF tρ

)
+ Frθ

∂θI

∂θψ
. (2.4.13)

From Eq. (2.4.11) we know that these two equations, Eqs. (2.4.12)-(2.4.13), are consistent

such that the stream equation reads

∂ρ(
√
−gFφρ)− Ω∂ρ(

√
−gF tρ) + Fθr

dI

dψ
= 0, (2.4.14)

with the stationary and axisymmetric F in Kerr spacetime which one can always write in

the following form [3, 29]

F =
ΣI(ψ)

∆ sin θ
dr ∧ dθ + dψ ∧ (dφ− Ω(ψ)dt) (2.4.15)

using Eq. (1.1.6). Hereinafter F refers to the electromagnetic field strength as a two-form

F = Fµνdx
µ∧dxν , as it is convenient to present the results using differential forms to obtain

a more elegant and compact notation. Eq. (2.4.14) is difficult to solve given the integrability

conditions and the demand that the field strength is magnetically-dominated, however, from

Eq. (2.4.15) it is evident that we are able to construct the field strength, and thereby the

magnetosphere, by explicitly computing the field variables ψ, I, and Ω in the NHEK as well

as near-NHEK limit of the Kerr metric, which is thus one of the main goals of this thesis.

Before I move on to the perturbative expansion of the Kerr metric, however, it is impor-

tant to briefly consider the question of regularity regarding the field strength at the event

horizon.

2.5 The question of regularity

In order to ensure that the stationary, axisymmetric electromagnetic field strength F is a

physically acceptable solution, we must demand regularity of F at the future event horizon.

This is not needed for the past horizon as astrophysical black holes do not possess these

[32]. Since the aim of this thesis is to find purely physically acceptable solutions concerning

rotating black holes I will not consider the past event horizon. Thus whenever the event

horizon is mentioned it is to be understood as the future event horizon.
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The Znajek condition presented by Blandford and Znajek in 1977 is used to ensure

regularity at the horizon and relates the field variables in the following way [3](
IΣ− ΛΓ(r2 + a2)(Ω− ΩH)∂θψ

)
|r=r+ = 0, (2.5.1)

which when evaluated at r = r+ reduces the Znajek condition to

I0 =
Λ

r0
(r0Ω0 − 1)(∂θψ)0 (2.5.2)

in the extreme limit in which r+ = r0/2. Here, as well as in the remainder of the thesis,

(∂θψ)0, Ω0, and I0 indicates that the variables ψ, Ω, and I have been evaluated at the event

horizon. In the extremal case Eq. (2.5.2) cannot stand alone and a second condition is

necessary in order to ensure regularity of the field at the event horizon

(∂rI0) =
Λ

r0

[
(r0Ω0 − 1)(∂r∂θψ)0 +

(
r0(∂rΩ)0 − Λ2ΓΩ0 +

2

r0Γ

)
(∂θψ)0

]
. (2.5.3)

I will be referring to Eq. (2.5.2) as the first Znajek condition and Eq. (2.5.3) as the second

Znajek condition in this thesis.

In Section 1.1 I briefly mentioned the ”no-hair” theorem which can be paired with

the regularity condition to make some comments about the magnetic field lines in the

magnetosphere. Inside the magnetosphere we, as with the pulsar, distinguish between open

and closed field lines, where by closed lines we refer to the field lines that intersect the

horizon r = r+ twice. Unlike in the pulsar magnetosphere where both open and closed field

lines are freely allowed, the ”no-hair” theorem ensures that only closed lines which intersect

with non-force-free regions E · B 6= 0 such as an accretion disc, can exist. For closed field

lines in a force-free region we deduce from Eq. (2.5.1) that I = 0 and ΩH = Ω with allowed

lines illustrated in Figure 2.2.

As also mentioned in Section 1.1 it is possible to extract angular momentum and energy

from the rotating black hole by the BZ process with the negative inflow (which can thus be

considered an outflow) of flux across the event horizon given by [3]

dE

dt
= 2π

∫ π

0

dθ Ω+(ψ) (ΩH − Ω+(ψ)) (∂θψ+)2

√
gφφ
gθθ

∣∣∣∣∣
r=r+

, (2.5.4a)

dL

dt
= 2π

∫ π

0

dθ (ΩH − Ω+(ψ)) (∂θψ+)2

√
gφφ
gθθ

∣∣∣∣∣
r=r+

(2.5.4b)

where Ω+ = Ω(r+, θ), and similarly ψ+ = ψ(r+, θ). The expressions can be found by

integrating the energy-momentum tensor and implementing the condition (2.5.1), i.e. in-

tegrating TµνKµ in order to find the electromagnetic energy flux and TµνRµ in order to
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Figure 2.2: Illustration of allowed and forbidden closed magnetic field lines

in the force-free Kerr black hole magnetosphere marked by blue solid lines

and red dashed lines, respectively. Open field lines (blue solid, only inter-

secting the black hole once) are also allowed. The grey area is the accretion

disc. Taken from [29].

find the angular momentum flux [1]. From this we see that we must have Ω+ < 0 < ΩH to

ensure an outflow of energy, with the maximal energy extraction reached at

Ω+ =
ΩH
2
, (2.5.5)

as found by Blandford and Znajek [1] at the first order in their perturbation theory for small

α = a/M . In fact, in order to find an exact solution in the Schwarzschild metric which also

satisfied the first Znajek condition, Blandford and Znajek perturbatively expanded the field

in powers of α for slowly spinning black holes. However, as we know, this is not representative

of observed AGN with much lager angular momentum than Blandford and Znajek assumed.

Instead the rotation of the black holes approach near-extremality which is exactly why it is

relevant to consider new perturbative approaches that are valid around extremality.
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Chapter 3

The NHEK limit

Having studied the environment of FFE, we are now prepared to consider the region near

the horizon of an extreme Kerr black hole by exploring the NHEK geometry in order to

find the so-called NHEK attractor solution. This is the leading order of the expansion of

the field in λ (scaling parameter) which will then be supplemented by corrections up to the

second post order before we are ready to analyse the sign of the invariant F 2.

3.1 NHEK geometry

In order to study the region close to the horizon, a set of co-rotating coordinates must be

introduced as mentioned in Section 1.1, which take the angular velocity of the horizon into

account [3]

t′ = ΩHt, r′ =
r − r+

r+
, Φ = φ− ΩHt. (3.1.1)

This is not sufficient, however, as we also wish to zoom into the NHEK region at the same

time as one co-rotates with the horizon and thus, with the extreme condition for which

ΩH |a=r0/2 = r−1
0 , the scaling-coordinates (T,R, θ,Φ) are defined as [3]

T = λr′ =
λ

r0
t, R =

r′

λ
=

2r − r0

λr0
, Φ = φ− t

r0
= φ− T

λ
, (3.1.2)

that span T ∈ (−∞,+∞), R ∈ [0,∞), θ ∈ [0, π], and Φ ∼ Φ + 2π. Using the following

expansion in the scaling parameter λ

g =

∞∑
n=0

λng(n), (3.1.3)
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the NHEK geometry is obtained by substituting the coordinates t, r, φ with T,R,Φ in the

Kerr metric Eq. (1.1.1). The coordinates (T,R, θ,Φ) are then held fixed while taking the

limit λ→ 0 yielding to the leading order in λ

ds2 =
r2
0

2
Γ(θ)

[
−R2dT 2 +

dR2

R2
dθ2 + Λ(θ)(dΦ +RdT )2

]
(3.1.4)

with the defined functions Γ(θ) and Λ(θ) for simplicity

Γ(θ) :=
1 + cos2 θ

2
, Λ(θ) :=

2 sin θ

1 + cos2 θ
. (3.1.5)

The event horizon has been relocated to R = 0 as is evident from when the component

gTT = 0. Since the NHEK geometry is a non-singular scaling limit of the extreme Kerr

metric it will inherently solve the vacuum Einstein equations thus rendering it a spacetime

in its own right [16]. However, the spacetime is no longer asymptotically flat as the Kerr

solution is. The so-called NHEK ”throat”, which originates near the horizon, ends at R =∞
where the near-horizon geometry is exchanged for the asymptotically flat spacetime that is

”glued” on to the NHEK geometry [33].

3.1.1 Isometries

While enjoying the same symmetry as the Kerr metric with the Killing vectors K = ∂T

and R = ∂Φ generating the time-translation symmetry and axisymmetry, Eq. (3.1.4) is also

invariant under the rescaling

R→ cR, T → T

c
, (3.1.6)

for any constant c. This means that the metric is self-similar in the (near-horizon) extreme

Kerr limit. The Killing vector R is the generator of the U(1) rotational symmetry of the

metric, while K now is a part of an enhanced SO(2, 1) symmetry group [28]

H0 = T∂T −R∂R, (3.1.7a)

H+ =
√

2 ∂T , (3.1.7b)

H− =
√

2

[
1

2

(
T 2 +

1

R2

)
∂T − TR∂R −

1

R
∂Φ

]
, (3.1.7c)

with the following commutation relations

[H0, H±] = ∓H±, [H+, H−] = 2H0, (3.1.8a)

[R,H0] = [R,H±] = 0. (3.1.8b)
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This means that the isometry group of the NHEK metric is enhanced from the Kerr isometry

group R×U(1) to SO(2, 1)×U(1) allowing for the possibility of finding analytical solutions

within the regime of FFE, one of which is the NHEK attractor solution.

3.1.2 Particle orbits

Let us briefly consider the motion of particles in the extreme Kerr background. The following

is another example of why the NHEK spacetime is nice to work with if you want to consider

the BZ process and magnetosphere of a rotating black hole. A simple way of modelling

accretion onto the extreme Kerr black hole is by considering the accretion of matter in form

of particles following the prograde, circular geodesics at some radius r (in BL coordinates)

[16]

us = uµsχµ = uts(∂t + Ωs∂φ) (3.1.9)

with

uts =
r3/2 + aM1/2

√
r3 − 3Mr2 + 2aM1/2r3/2

, Ωs =
M1/2

r3/2 + aM1/2
. (3.1.10)

The particles will at some point reach the innermost stable circular orbit (ISCO) effectively

marking the end of the accretion disc, after which they will plunge into the black hole. To

the leading order in the extremal limit, the ISCO lies at

lim
a→ r0/2

rISCO = lim
a→ r0/2

r+, (3.1.11)

which is inconsistent since the trajectories on the event horizon are null geodesics while they

are timelike on the ISCO. This is a result of the Kerr metric failing to resolve the spacetime

of the NHEK region accurately, which is one of the motivating factors of working in the

NHEK limit instead. In the NHEK spacetime, the particles on the ISCO will co-rotate with

the black hole as we already know, with stable orbits extending down into the throat until

particles are perturbed from the ISCO geodesic and fall into the black hole.

3.2 The NHEK attractor solution

The Kerr field strength Eq. (2.4.15) which is stationary, axisymmetric and regular on the

event horizon, as well as the four-current are expanded in a similar fashion

F =

∞∑
n=−1

λnF (n), (3.2.1a)
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j = jµ∂µ =

∞∑
n=−1

λnj(n). (3.2.1b)

The leading orders F (−1) and j(−1) constitute the self-similar NHEK attractor solution

in the NHEK geometry Eq. (3.1.4). The field variables ψ, Ω(ψ), and I(ψ) will be Taylor

expanded as follows such that it is ensured that they will be regular near the horizon [3]

ψ(r, θ) =

∞∑
n=0

1

n!

(r0

2
λR
)n

(∂(n)
r ψ)0 = ψ0(θ) +

(r0

2
Rψ1(θ)

)
λ+O(λ2), (3.2.2a)

I(r, θ) =

∞∑
n=0

1

n!

(r0

2
λR
)n

(∂(n)
r I)0 = I0(θ) +

(r0

2
RI1(θ)

)
λ+O(λ2), (3.2.2b)

Ω(r, θ) =

∞∑
n=0

1

n!

(r0

2
λR
)n

(∂(n)
r Ω)0 = Ω0(θ) +

(r0

2
RΩ1(θ)

)
λ+O(λ2), (3.2.2c)

where ψn = ψn(θ) := (∂
(n)
r ψ)0 is the n-th radial derivative of ψ evaluated at the event

horizon of extreme Kerr spacetime. The variables In, ψn, Ωn with n > 0 are to be derived

later as functions of I0, ψ0, and Ω0. In the following I will use ”prime” to denote derivatives

with respect to θ, assuming ψ′0 6= 0 since otherwise the NHEK attractor solution would

vanish at the leading order in NHEK and the field would also be electrically-dominated

which is not the case that is being investigated in this thesis. The leading order F (−1) is

found by expansion in the limit λ→ 0 as

F (−1) =

[
r0I0
Λ

dR

R2
+ (r0Ω0 − 1)ψ′0 dT

]
∧ dθ (3.2.3a)

=
r0I0
Λ

d

(
T − 1

R

)
∧ dθ (3.2.3b)

with j(−1) found using

jν =
1√
−g

∂µ
(√
−gFµν

)
, (3.2.4)

yielding

j(−1) =
4

r3
0

1

Γ2Λ

[
∂θ

( Λ

r0
(r0Ω0 − 1)ψ′0

)(∂T
R2
− ∂Φ

R

)
− I ′0∂R

]
. (3.2.5)

Next, the Bianchi identity, FF condition, and F 2 are expanded in λ as follows

dF =

∞∑
n=−1

λn(dF )(n) = 0, (3.2.6a)

F · j =

∞∑
n=−2

λn(F · j)(n) = 0, (3.2.6b)

F 2 =

∞∑
n=−2

λn(F 2)(n) =

∞∑
n=−1

λn(F (n))2. (3.2.6c)
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Both the Binachi identity dF = 0 as well as the FF condition Eq. (2.2.6) are satisfied in the

leading order due to the first Znajek condition Eq. (2.5.2), with

(F · j)(−2) = F (−1) · j(−1) =
2

r2
0R

2

1

Λ2Γ2
∂θ

[
I2
0 −

Λ2

r2
0

(r0Ω0 − 1)2(ψ′0)2

]
dθ = 0. (3.2.7)

The first Znajek condition is also imposed to show that the field is null

(F (−1))2 = (F 2)(−2) =
8

r2
0R

2 Γ2Λ2

[
I2
0 −

Λ2

r2
0

(r0Ω0 − 1)2(ψ′0)2

]
= 0. (3.2.8)

Thus, we have found the self-similar, FF and null NHEK attractor solution which is the

starting point of our perturbation away from the horizon.

3.3 Post-NHEK order corrections

After having found the NHEK attractor solution it is possible to perturbatively move away

from it in order to reconstruct a FF field F in the extreme Kerr background by computing

post-NHEK order corrections to the FF field in the NHEK geometry. This is motivated by

the fact that despite the leading order being null (F 2)(−2) = 0, it should still be possible

to construct a magnetically-dominated FF field by going to higher orders in λ as shown

explicitly in [3]. As mentioned earlier, I will not be continuing beyond the second order

correction in this thesis.

3.3.1 1st order correction

The first post-NHEK order of the field strength with n = 0 is found to be

F (0) =
r2
0

2

I0
Λ

ψ1

ψ′0
dT ∧ dR+

r2
0

2

(
I0
Λ

ψ′1
ψ′0

+ ψ′0Ω1

)
RdT ∧ dθ

+
r0

2

(
2

Γ

I0
Λ

+ r0
I1
Λ

)
dR

R
∧ dθ + ψ′0 dθ ∧ dΦ. (3.3.1)

It is scale-invariant (self-similar) under the rescaling T → T/c, R → cR and contains

the unknown field variables ψ1, Ω1 and I1 that depend on ψ0 and Ω0, and in turn also the

current I0 = I0(ψ0,Ω0) as evident from the first Znajek condition Eq. (2.5.2). The unknown

variables can be found using the Bianchi identity and FF condition but before I turn to these

I will present the correction to the four-current j(0) which is composed as follows

j(0) = jT(0)

∂T
R

+ jR(0)R∂R + jθ(0)∂θ + jΦ
(0)∂Φ, (3.3.2)
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with the components given by

jT(0) =
2

r4
0

1

Γ2

I0
Λ

[
∂θ[(2 + r2

0Ω1)Λψ′0]

I0
+ 2r0ΛΓ2

(
1

Γ2Λ2

Γ′

Γ
− I ′0
I0

)
+ r2

0

ψ′1
ψ′0

(
I ′0
I0
− ψ′′0
ψ′0

+
ψ′′1
ψ′1

)]
,

(3.3.3a)

jR(0) =
2

r3
0

1

Γ2

(
2

Γ

I ′0
Λ
− r0

I ′1
Λ

)
, (3.3.3b)

jθ(0) =
2

r2
0

1

Γ2

I1
Λ
, (3.3.3c)

jΦ
(0) = −jT(0) +

2

r4
0

1

Γ2

I0
Λ

[
2

Λ

ψ′0
I0

(
ψ′′0
ψ′0
− Λ′

Λ

)
+ r0Γ2Λ2

(
Λ′

Λ
+

Γ′

Γ
+

1

2

I ′0
I0

)
− r2

0

ψ1

ψ′0

]
.

(3.3.3d)

Both of the Znajek conditions Eq. (2.5.2) and Eq. (2.5.3) inherently enforce the FF

condition on the field while ensuring that (F (0))2 = 0. However, it is still interesting to see

how the field variables I1, ψ1, Ω1 are found such that we may establish a general course of

action regarding later calculations. I will thus linger at this post-NHEK order before moving

on to the second post-NHEK order corrections. In order to determine the field variables we

need to consider the first order correction to the Bianchi identity as well as the FF condition

as mentioned. The Bianchi identity (dF )(0) = 0 yields

Ω1 =
ψ1

ψ′0
Ω′0, (3.3.4)

while the FF condition (F · j)(−1) = 0 yields

ψ1 =
I1
I ′0
ψ′0, (3.3.5a)

I1 =
Λ

r0

[
∂θ[(r0Ω0 − 1)ψ1]− Λ2Γ

r0

(
r0Ω0 −

2

Γ2Λ2

)
ψ′0

]
. (3.3.5b)

Eq. (3.3.5b) is recognised as the second Znajek condition which we recall is also needed

to ensure regularity at the event horizon at extremality. From Eq. (3.3.5) combined with

Eq. (3.3.4) it is possible to construct a first-order linear differential equation describing ψ1,

namely

ψ′1 −
(

Λ′

Λ
+
ψ′′0
ψ′0

)
ψ1 −

Λ2Γ

r0

ψ′0
r0Ω0 − 1

(
r0Ω0 −

2

Γ2Λ2

)
= 0 (3.3.6)

from which it is evident that indeed ψ1 = ψ1(ψ0,Ω0). The solution to the differential

equation yields a result which is presented using the function G defined as

G′ :=
ΛΓ

r0Ω0 − 1

(
r0Ω0 −

2

Λ2Γ2

)
, (3.3.7)
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such that the first post-NHEK order correction to the field variables reads

ψ1 =
ΛG
r0
ψ′0, (3.3.8a)

Ω1 =
ΛG
r0

Ω′0, (3.3.8b)

I1 =
ΛG
r0
I ′0. (3.3.8c)

The relations in Eq. (3.3.8) reduce the field strength to

F (0) =
r0

2
GI0dT ∧ dR+

r0

2
G
[
I0

(
G′

G
+

Λ′

Λ
+
ψ′′0
ψ′0

)
+ Λψ′0Ω′0

]
RdT ∧ dθ

r0

2

(
2I0
ΓΛ

+ GI ′0
)
dR

R
∧ dθ + ψ′0dθ ∧ dΦ. (3.3.9)

We have consequently seen that it is indeed possible to find the unknown field variables in

terms of ψ0, I0, and Ω0.

3.3.2 2nd order correction

The second post-NHEK order correction to the field strength with n = 1 is

F (1) =
r3
0

4

(
I0
Λ

ψ2

ψ′0
+ ψ1Ω1

)
RdT ∧ dR+

r3
0

8

(
I0
Λ

ψ2

ψ′0
+ ψ′0Ω2 + 2ψ′1Ω1

)
R2dT ∧ dθ

+
r0

8

(
4

Γ

I0 + r0I1
Λ

+ r2
0

I2
Λ

)
dR ∧ dθ +

r0

2
ψ1 dR ∧ dΦ +

r0

2
ψ′1Rdθ ∧ dΦ (3.3.10)

with the unknown variables ψ2, Ω2, and I2 that likewise must be found in terms of ψ0, I0

and Ω0, and also ψ1, Ω1, I1 given by Eq. (3.3.8). At this order, the four-current is quite

involved and of the form

j(1) = jT(1)∂T +R2jR(1)∂R +Rjθ(1)∂θ +RjΦ
(1)∂Φ (3.3.11)

with components that can be found in Appendix A.

From the Bianchi identity (dF )(1) = 0 the field variable Ω2 is found to be

Ω2 =
ψ2

ψ′0
Ω′0 +

ψ1

ψ′0
Ω′1 −

ψ′1
ψ′0

Ω1 =

[
ψ2

ψ′0
+
GΛ2

r2
0

(
Ω′′0
Ω′0
− ψ′′0
ψ′0

)]
Ω′0, (3.3.12)

while the FF condition (F · j)(0) = 0 yields the following expression for I2

I2 =
ψ2

ψ′0
I ′0 +

ψ1

ψ′0
I ′1 +

ψ′1
ψ′0
I1 =

[
ψ2

ψ′0
+
GΛ2

r2
0

(
I ′′0
I ′0
− ψ′′0
ψ′0

)]
I ′0 (3.3.13)

with G given by Eq. (3.3.7). From the FF condition it is also possible to construct a second-

order linear differential equation for ψ2 which is quite lengthy

ψ′′2 + a(θ)ψ′2 + b(θ)ψ2 + c(θ) = 0, (3.3.14)
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with coefficients a(θ), b(θ), and c(θ) given by

a(θ) = 2
I ′0
I0
− Λ′

Λ
− 2

ψ′′0
ψ′0
, (3.3.15a)

b(θ) = 2− Λ′′

Λ
− ψ

(3)
0

ψ′0
+ 2

(
ψ′′0
ψ′0

)2

−
(

2
I ′0
I0
− Λ′

Λ

)(
Λ′

Λ
+
ψ′′0
ψ′0

)
, (3.3.15b)

c(θ) = −Λ2ψ′0
r4
0

(
A(θ) + G(θ)B(θ) + G2(θ)C(θ)

)
, (3.3.15c)

where the functions A(θ), B(θ), and C(θ) are presented in Appendix A. The field strength

(F (1))2 can be written quite compactly as

(F (1))2 =
2

r4
0

(
ψ′0
ΓΛ

)2

(D(θ) + G(θ)E(θ)) (3.3.16)

using the functions D(θ) and E(θ) which are presented in Appendix A. Before I move

on to analysing whether the second order correction to the field strength is magnetically-

dominated or not, let us first consider the Menon-Dermer solution. Given that the expansion

of the field is consistent, it should be possible to recover one of the only known exact results

for the Kerr metric; the Menon-Dermer class of solutions.

3.4 Menon-Dermer solution from NHEK

As we by now know, one of the only known exact solutions that is stationary and axisymmet-

ric in the FFE Kerr background is the Menon-Dermer (MD) class of solutions, represented

by a set of field variables (ψMD(θ),ΩMD(θ), IMD(θ)) with no radial dependence. The angular

velocity is fixed as

r0ΩMD =
2

sin2 θ
, (3.4.1)

while IMD is given by the Znajek condition and ψMD is arbitrary. Since the current associated

with this solution flows along null geodesics, the solution itself is also null, F 2
MD = 0,

everywhere in the magnetosphere. It is possible to show that the MD class of solutions

follows from the NHEK order given that all (ψn, Ωn, In) ∀ n ≥ 1 vanish, i.e. it is found

by removing all of the post-NHEK orders in the expansion Eq. (3.2.2). In order to find the

field’s angular velocity we demand that the first order field variables in Eq. (3.3.8) are zero.

For this to be realised G must vanish, yielding

r0Ω0 =
2

Λ2Γ2
, (3.4.2)

where ΩMD = Ω0, which means that from the first Znajek condition I find IMD = I0

I0 =
Λ

r0
(r0Ω0 − 1)ψ′0 =

Λ

r0

(
2

Λ2Γ2
− 1

)
ψ′0
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=
2 sin θ

r0(1 + cos2 θ)

(
2

sin2 θ
− 1

)
ψ′0

=
2ψ′0

r0 sin θ

(
1

1 + cos2 θ
(2− sin2 θ)

)
=

2

r0

ψ′0
sin θ

=
2

r0

ψ′0
ΛΓ

, (3.4.3)

and ψMD = ψ0 is still arbitrary. Thus without the post-NHEK orders, the Kerr field strength

Eq. (2.4.15) is found using Eq. (3.4.2) and Eq. (3.4.3)

FMD = − ΣI0
∆ΓΛ

dθ ∧ dr + ∂αψ0dx
α ∧ (dφ− Ω0dt)

= − ΣI0
∆ΓΛ

dθ ∧ dr + ψ′0dθ ∧ (dφ− Ω0dt)

= − ΣI0
∆ΓΛ

dθ ∧ dr +
r0

2
I0ΓΛdθ ∧ (dφ− Ω0dt)

= − ΣI0
∆ΓΛ

dθ ∧ dr +
r0

2
I0ΓΛdθ ∧ dφ− I0

ΓΛ
dθ ∧ dt

= − I0
ΓΛ

dθ ∧
[
dt+

Σ

∆
dr

]
+
r0

2
I0ΓΛdθ ∧ dφ

= − I0
ΓΛ

dθ ∧
[
dt+

r2 + (r0/2)2(1 + Γ2Λ2)

∆
dr

]
+
r0

2
I0ΓΛdθ ∧ dφ

= − I0
ΓΛ

dθ ∧
[
dt+

r2 + (r0/2)2

∆
dr

]
+
r0

2
I0ΓΛdθ ∧ dφ− I0(r0/2)2ΓΛ

∆
dr ∧ dθ

= − I0
ΓΛ

dθ ∧
[
dt+

r2 + (r0/2)2

∆
dr

]
+
r0

2
I0ΓΛdθ ∧

(
dφ+

r0

2∆
dr
)
, (3.4.4)

which along with its associated current appear to be singular on the rotational axis but it

is possible to fix this issue by choosing the appropriate ψ0. The associated current can be

written as follows

jµMD =
I ′0

ΣΓΛ
nµ, (3.4.5)

where

n = nµ∂µ =

(
r2 + a2

∆
∂t − ∂r +

a

∆
∂φ

) ∣∣∣
a=r0/2

, (3.4.6)

and this current along with the MD field strength will reduce to the NHEK attractor solution

in the NHEK regime when all post-NHEK orders are ignored. This emphasises that one

always ends up with the null and self-similar NHEK attractor solution in the NHEK region

of an arbitrary stationary, axisymmetric and regular FF magnetosphere further cementing

the result found by Camilloni et al. [3].
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3.5 Sign of F 2

In order to solve Eq. (3.3.14) analytically (such that in turn (F (1))2 can be found analyt-

ically) you need an ansatz for ψ0. In [3], Camilloni et al. present the following educated

guess

ψ0(θ) = k0

∫
dθ (1− r0Ω0)−1Λ−3/2, ψ0(0) = 0 (3.5.1)

where k0 is an integration constant. This produces the general solution

ψ2(θ) =
1

(1− r0Ω0)

[
ψh2 (θ) + ψnh2 (θ)

]
(3.5.2)

with the non-homogeneous ψnh2 and homogeneous ψh2 solutions

ψh2 (θ) = c1 cos
(√

2θ
)

+ c2 sin
(√

2θ
)
, c1, c2 ∈ R, (3.5.3a)

ψnh2 (θ) = + cos
(√

2θ
)∫

dθ c(θ)(1− r0Ω0)Λ1/2 sin
(√

2θ
)

√
2

− sin
(√

2θ
)∫

dθ c(θ)(1− r0Ω0)Λ1/2 cos
(√

2θ
)

√
2

, (3.5.3b)

with c(θ) given by Eq. (3.3.15c). Since ψ2 = O(θ2) it is regular on the rotation axis. The

paper shows that it is indeed possible to construct a magnetically-dominated magnetosphere

with F 2 > 0 (at least in some regions of the magnetosphere), however, with the drawback

that the field strength is irregular on the rotation axis. In order to show this explicitly by

constructing novel perturbative solutions, the arbitrary angular velocity Ω0 is chosen to be

r0Ω0 = 1 +
β

2

(
1− 2

Γ2Λ2

)
, β ∈ R 6=0 (3.5.4)

which in turn from Eq. (3.3.7) yields

G(θ) = g −
(

1 +
2

β

)
cos θ (3.5.5)

with the integration constant g. The choice β = −2 returns the Menon-Dermer angular

velocity ΩMD while g = 0 results in (F (1))2 = 0, meaning that the NHEK radial corrections

to the MD solution are only taken into account for g 6= 0. In fact, selecting (β = −2, g = 0)

will result in ψnh2 and the first post-NHEK order vanishing while one can ensure that ψh2

and the second post-NHEK order vanishes by fixing the coefficients c1, c2 appropriately.

Due to the integral in the non-homogeneous part of ψ2 in Eq. (3.5.3b) it is difficult to

analytically determine the sign of (F (1))2 everywhere. In order to circumvent this problem

one can consider a Taylor expansion of the field around the rotation axis, i.e. θ, by inserting
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the ansatz for ψ0 as well as Eq. (3.5.2) into Eq. (3.3.16) before letting θ → 0

(F (1))2 = −2
√

2
k0

r2
0

c2
θ2

+ 2
k0

r2
0

[
2c1 − 5

k0

r2
0

(
7 +

10

β

)
g − k0

r2
0

(2 + β)(6 + 11β)

β2

]
1

θ

+
4
√

2

3

k0

r2
0

c2 +O(θ). (3.5.6)

It is evident from Eq. (3.5.6) that (F (0))2 diverges at the rotation axis so in order to ensure

regularity, the coefficients c1, c2 are fixed to be

c1 =
1

2

k0

r2
0

[
5g2 − 2

(
7 +

10

β

)
g +

(2 + β)(6 + 11β)

β2

]
, c2 = 0, (3.5.7)

which with the choice of k0 = 2, r0 = 1 yields for small polar angles

(F (1))2 = +

[
−8g2 +

32

3

g

β
+

16

3

(2 + β)(2 + 3β)

β2

]
θ

−
[

34

15
g2 +

(
4 +

40

9

1

β

)
g − 8

45

(2 + β)(11 + 12β)

β2

]
θ3

+

[
g2

21
− 8

105

43 + 25β

β
g +

8

105

(2 + β)(6 + β)

β2

]
θ5

+

[
349

1400
g2 − 3770 + 1767β

5670

g

β
− (2 + β)(187794 + 100163β)

1247400β2

]
θ7

+

[
203537

2494800
g2 +

3398 + 2348β

31185

g

β
− (2 + β)(187794 + 100163β)

1247400β2

]
θ9 +O(θ11).

(3.5.8)

Indeed it was found in [3] that it is possible to construct a magnetically-dominated magne-

tosphere given β = −2, 0.67 / g ≤ 1 as I have plotted in Figure 3.1.

The energy and momentum outflow presented in Eq. (2.5.4) are found at the leading

order in λ using the ansatz for ψ0, Eq. (3.5.1), and Eq. (3.5.4) for Ω0 yielding

1

2π

dE

dt
=

∫
dθΩ0

(
1

r0
− Ω0

)
(ψ′0)2Λ

=
k2

0

8βr2
0

[(6 + 7β)θ + β(8 cot θ + cos θ sin θ) + sin(2θ)], (3.5.9a)

1

2π

dJ

dt
=

∫
dθ

(
1

r0
− Ω0

)
(ψ′0)2Λ

=
k2

0

8βr0
[6θ + sin(2θ)]. (3.5.9b)

For θ → 0 then dE/dt→∞ while dL/dt→ 0 meaning that at the rotation axis, the energy

outflow diverges whereas the angular momentum outflow is finite and negative given β < 0.

The divergence of the energy outflow is probably due to the ansatz for ψ0 and Ω0 and could
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Figure 3.1: Plot showing the positive, i.e. magnetically-dominated regions

of (F (1))2 from Eq. (3.5.8) in the range g ∈ (−10,+10) and β ∈ (−20,+20)

with k0 = 2, r0 = 1 and coefficients c1, c2 given by Eq. (3.5.7).

perhaps be fixed given other ansatzes are used or if the critical surface known as the inner

light surface had been taken into account. Seeing as my thesis focuses more on the lesser

well-established near-NHEK limit I will not be investigating these features further but I will

briefly return to the subject of light surfaces in connection with the near-NHEK limit in

Chapter 5.

With the procedure of constructing a magnetically-dominated magnetosphere in place

in the NHEK region (that, however, isn’t entirely regular), it is now fitting to move on to

the near-NHEK limit. Here I will utilise the same method established in the NHEK limit

in order to find the near-NHEK attractor solution. This will in turn allow me determine

whether it is possible to find magnetically-dominated solutions for the field strength or not.
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Chapter 4

The near-NHEK limit

The extreme Kerr black hole and its NHEK region is a useful tool for understanding the

magnetosphere of a rotating black hole but it is in fact generally accepted that the black

hole angular momentum has an astrophysical upper limit lower than J/M2 = 1. In 1974,

Thorne released a paper [34] in which he concludes that while the accretion of matter onto

the black hole will spin it up to extremality, the radiation from the disc absorbed by the

horizon will limit the spin-up to J/M2 = 0.998. Thus it is natural to turn our attention

to the near-extreme Kerr black hole in order to, hopefully, find a more physically suitable

solution to the problem at hand.

In this Chapter I will be presenting the near-NHEK geometry in order to find the apper-

taining near-NHEK attractor solution which serves as a starting point for the perturbative

analysis of the near-NHEK limit of the Kerr metric. This will be followed by the attempts

at computing the first two post-near-NHEK order corrections and the struggles of finding a

consistent expansion that entailed.

4.1 Near-NHEK geometry

In order to realise the near-NHEK limit we once again zoom into the region near the Kerr

event horizon r = r+ using the following scaling coordinates [12]

a =
r0

2

√
1− σ2λ2, (4.1.1a)

T̃ = λ
t

r0
, R̃ =2

r − r+

λr0
, Φ̃ = φ− t

r0
= φ− T̃

λ
. (4.1.1b)
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The spin parameter a now depends on the scaling parameter λ as well as 0 < σ � 1 which

characterises the deviation from extremality (σ = 0). The spin parameter is expanded as

a = r0
2 −

(
r0
2 σλ

)2
+ O(λ3) meaning that the scaling limit λ → 0 is not a coordinate limit

unlike the NHEK limit, and the near-NHEK geometry is thus only valid for near-extreme

Kerr black holes [12]. As the Kerr black hole approaches extremality its near horizon region

will develop a throat governed by the NHEK spacetime and by the near-NHEK spacetime

as seen in Figure 4.1. The far region (extreme Kerr) metric fails to accurately portray the

Figure 4.1: Illustration of the geometry of a (near-)extreme Kerr black

hole with spin parameter a = r0
2

√
1− σ2λ2. The far region (extreme Kerr)

expands into the throat region consisting of the NHEK and near-NHEK

regions as the black hole approaches extremality for λ → 0. Modified

Figure 1 from [16].

throat region while the NHEK and near-NHEK metrics are not asymptotically flat and thus

cannot describe the far region.

The near-NHEK geometry is obtained by letting λ → 0. The coordinates T̃ , R̃, and σ

are held fixed as the radial component approaches the horizon and a approaches extremality

yielding

ds̃2 =
r0

2
Γ

[
−R̃(R̃+ 2σ)dT̃ 2 +

dR̃2

R̃(R̃+ 2σ)
+ dθ2 + Λ2

(
dΦ̃ + (R̃+ σ)dT̃

)2
]
, (4.1.2)
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with the event horizon located at R̃ = 0. The near-NHEK geometry is embedded with the

same isometry group as the NHEK geometry, i.e. SO(2, 1) × U(1), again allowing for the

possibility of constructing analytical solutions using the FFE approach. The near-NHEK

metric admits the following Killing vectors [16]

R = ∂Φ̃, H0 =
1

σ
∂T̃ , H± =

e∓σT̃√
R̃2 − σ2

[
R̃

σ
∂T̃ ± (R̃2 − σ2)∂R̃ − σ∂Φ̃

]
. (4.1.3)

In [16] it was found that there in fact is an infinite amount of physically distinct near-

horizon limits which describe the near-NHEK throat physics but at different scales for

a =
r0

2

√
1− σ2λ2, T̃ = λp

t

r0
, R̃ =

2r − r0

λpr0
, Φ̃ = φ− t

r0
, 0 ≤ p ≤ 1. (4.1.4)

The choice of p = 1 ensures that one zooms into the near-horizon region while simultaneously

letting the black hole spin approach extremality. Note that the above equations with p = 1

are almost equivalent to the choice of scaling coordinates in this thesis, apart from R̃ =

(2r − r0)/(λr0) compared to R̃ = 2(r − r0)/(λr0) in Eq. (4.1.1b).

4.1.1 The near-NHEK attractor solution

The leading order of the field strength in the near-NHEK limit is found using the same

expansion of F in λ as before Eq. (3.2.1a), imposed on the general Kerr field strength

Eq. (2.4.15) yielding

F̃ (−1) =
r0I0
Λ

d

[
T̃ − 1

2σ
log

(
1 +

2σ

R̃

)]
∧ dθ. (4.1.5)

This is the so-called near-NHEK attractor solution found by Camilloni et al. [12]. The

four-current associated with the field strength is found to be

j̃(−1) =
4

r3
0

1

Γ2Λ

[
∂θ

( Λ

r0
(r0Ω0 − 1)ψ′0

)∂T̃ − (R̃+ σ)∂Φ̃

R̃(R̃+ 2σ)
− I ′0∂R̃

]
, (4.1.6)

with which F̃ (−1) satisfies the equations of FFE, i.e. including the FF condition. It is also

self-similar under scalings T̃ → T̃ /c, R̃ → R̃c, σ → σc, and it is inherently axisymmetric

and stationary. Furthermore, the near-NHEK attractor solution is null, (F̃ (−1))2 = 0, as

can be seen from

(F̃ (−1))2 =
8

r2
0 Γ2Λ2

1

R̃(R̃+ 2σ)

[
Λ2

r2
0

(r0Ω0 − 1)2(ψ′0)2 − I2
0

]
=

R2

R̃(R̃+ 2σ)
(F (−1))2 (4.1.7)

due to the first Znajek condition.
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Conclusively, just as with the NHEK attractor solution in the NHEK limit, any mag-

netosphere which is regular, axisymmetric and stationary is governed by Eq. (4.1.5) in the

near-NHEK limit.

4.2 From near-NHEK to NHEK

By now it becomes increasingly evident that the NHEK and near-NHEK attractor solutions

are very similar in form which makes it interesting to compare the two. There are several

ways to recover the NHEK metric from the near-NHEK metric, and these consist of the

following [12]

• The most straightforward way to recover the NHEK metric is by setting σ = 0 in

Eq. (4.1.2) which is the same as letting the black hole reach extremality as seen by

Eq. (4.1.1a). In this case, the near-NHEK attractor solution reduces to

F̃ (−1) = F (−1) +O(σ). (4.2.1)

• By letting σ � R such that the near-NHEK metric becomes asymptotically NHEK.

This again illustrates how the spacetime of the near-extreme black hole can be consid-

ered to consist of the three different patches or regions; Kerr, NHEK, and near-NHEK

as illustrated in Figure 4.1. In this case, the near-NHEK attractor has the same

tensorial structure as the NHEK attractor

F̃ (−1) ∼ r0I0
Λ

d

(
T̃ − 1

R̃

)
∧ dθ. (4.2.2)

• Using the local diffeomorphism from near-NHEK coordinates (T̃ , R̃, θ, Φ̃) to NHEK

coordinates (T,R, θ,Φ) that is given by

T̃ = − 1

2σ
log

(
T 2 − 1

R2

)
, R̃ = −σ

(
T +

1

R

)
Φ̃ = Φ +

1

2
log

(
T + 1/R

T − 1/R

)
, (4.2.3)

the NHEK attractor solution is

F̃ (−1) = − 1

σ

(
T − 1

R

)−1

F (−1), (4.2.4)

with

j̃(−1) = − 1

σ

(
T − 1

R

)−1

j(−1), (4.2.5)

thus allowing for F̃ (−1) and F (−1) to be superposed to creative new FF solutions.
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4.3 Near-NHEK post order corrections

In order to find the near-NHEK post order corrections to see whether a magnetically-

dominated magnetosphere can be recovered in higher orders of λ, I will initially be fol-

lowing (what I dub) the ”naive approach”. I will assume that the expansion of the field

variables ψn, Ωn, and In for 0 < n ≤ 2 is identical to the expansion used in the NHEK

limit Eq. (3.2.2). However, as will soon become apparent, this expansion is insufficient in

recovering a physically acceptable non-zero field strength and thus other measures must be

sought out.

4.3.1 The naive approach

Using the same expansion of the metric, field, current and so forth in λ as for the NHEK

limit (Eq. (3.2.1) and Eq. (3.2.6)) and the same Taylor expansion of the field variables, the

first order correction to the near-NHEK field strength is found to be

F̃ (0) =
r2
0

2

I0
Λ

ψ1

ψ′0
dT̃ ∧ dR̃+

r2
0

2
(R̃+ σ)

(
I0
Λ

ψ′1
ψ′0

+ ψ′0Ω1

)
dT̃ ∧ dθ

+
r0

2

R̃+ σ

R̃(R̃+ 2σ)

(
2

Γ

I0
Λ

+ r0
I1
Λ

)
dR̃ ∧ dθ + ψ′0 dθ ∧ dΦ̃, (4.3.1)

and the four-current is of the form

j̃(0) =
1

r4
0Γ4Λ2R̃(R̃+ 2σ)ψ′0

[
j̃T̃(0)∂T̃ +

1

Λ
j̃Φ̃
(0)∂Φ̃

]
+ j̃R̃(0)∂R̃ + j̃θ(0)∂θ (4.3.2)

with the following components

j̃T̃(0) = 2(R̃+ σ)
(
r0I0(Λ(2Γ′ψ′0 − 4Γψ′′0 + r0Γ2ψ′′1 ) + r0Γ2Λ′ψ′1)

+ ΓΛψ′0

(
Λ′ψ′0(Γ(r2

0Ω1 + 4r0Ω0 − 2)− 4r0Ω0 + 4) + Λ
(
r0(Ω′0(4(Γ− 1)ψ′0 + r0Γψ′1)

+ r0Γψ′0Ω′1) + Γψ′′0 (r2
0Ω1 + 4r0Ω0 − 2)

)))
, (4.3.3a)

j̃R̃(0) = −2(R̃+ σ) (r0ΓI ′1 − 2I ′0)

r3
0Γ3Λ

, (4.3.3b)

j̃θ(0) =
2I1

r2
0Γ2Λ

, (4.3.3c)

j̃Φ̃
(0) = Γψ′0

((
r0Γ3ψ′0Ω′0Λ5 + 8r0ψ

′
0Ω′0Λ3

− 2Γ(r0(r0ψ
′
1Ω′0 + ψ′0(4Ω′0 + r0Ω′1))Λ3 + (Λ2(Ω1r

2
0 + 4Ω0r0 − 2)− 2)ψ′′0 Λ

+ ((Ω1r
2
0 + 4Ω0r0 − 2)Λ2 + 2)Λ′ψ′0)

)
R̃2 + 2σ

(
r0Γ3ψ′0Ω′0Λ5 + 8r0ψ

′
0Ω′0Λ3

− 2Γ
(
r0(r0ψ

′
1Ω′0 + ψ′0(4Ω′0 + r0Ω′1))Λ3 + (Λ2(Ω1r

2
0 + 4Ω0r0 − 2)− 2)ψ′′0 Λ
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+ ((Ω1r
2
0 + 4Ω0r0 − 2)Λ2 + 2)Λ′ψ′0

))
R̃− 2σ2Λ2

(
(−4r0Ω0 + Γ(Ω1r

2
0 + 3Ω0r0 − 1) + 4)Λ′ψ′0

+ Λ
(
r0ψ
′
0((3Γ− 4)Ω′0 + r0ΓΩ′1) + Γ(ψ′1Ω′0r

2
0 + (Ω1r

2
0 + 3Ω0r0 − 1)ψ′′0 )

)))
+ r0ΛI0

(
− 2
(
r0Λ′ψ′1Γ2 + Λ(r0ψ

′′
1 Γ2 − 4ψ′′0 Γ + 2Γ′ψ′0)

)
σ2 + 2R̃(Λ2(3Λ′ψ′0 + Λψ′′0 )Γ4

+ 2Λ3Γ′ψ′0Γ3 − 2r0(Λ′ψ′1 + Λ(ψ1 + ψ′′1 ))Γ2 + 8(Λ′ψ′0 + Λψ′′0 )Γ− 4ΛΓ′ψ′0)σ

+ R̃2
(

Λ2(3Λ′ψ′0 + Λψ′′0 )Γ4 + 2Λ3Γ′ψ′0Γ3 − 2r0(Λ′ψ′1 + Λ(ψ1 + ψ′′1 ))Γ2

+ 8(Λ′ψ′0 + Λψ′′0 )Γ− 4ΛΓ′ψ′0

))
. (4.3.3d)

The correction to the Bianchi identity (dF̃ )(0) = 0 produces an equation from which Ω1 is

found to be identical to Eq. (3.3.4), and again, similarly to what was found in the NHEK

limit, the correction to the FF condition (F̃ · j̃)(−1) = 0 yields ψ1 equal to Eq. (3.3.5a)

with I1 given by the second Znajek condition. Together with ψ1 this allows one to rewrite

ψ1, I1, and Ω1 with the exact same structure as for the first post-NHEK corrections, i.e.

Eq. (3.3.8). The correction to (F̃ (0))2 is found to be

(F̃ (0))2 =− 8(R̃+ σ)

r4
0 Γ3Λ2 R̃(R̃+ 2σ)

(
r3
0 Γ I0I1 − Λ2ψ′0(r0Ω0 − 1)

)
×
(
ψ′0
(
r2
0 Γ Ω1 + 2r0(Γ− 1)Ω0 + 2

)
+ r0 Γψ′1(r0Ω0 − 1)

)
(4.3.4)

which is null when the two Znajek conditions are implemented. Thus, so far no problems

regarding the results or method have surfaced, and we can safely move on to the next order

of corrections.

The second order correction to the field strength is found as

F̃ (1) =
r3
0(R̃+ σ)

4

(
ψ2

ψ′0

I0
Λ

+ ψ1Ω1

)
dT̃ ∧ dR̃

+
r3
0(R̃+ σ)2

8

(
Ω2ψ

′
0 + 2Ω1ψ

′
1 +

I0
Λ

ψ′2
ψ′0

)
dT̃ ∧ dθ

+
r0

(
4I0(R̃(R̃+ 2σ)− 2σ2(Γ− 1)) + r0(R̃+ σ)2 (4I1 + r0I2Γ)

)
8R̃ (R̃+ 2σ) Γ Λ

dR̃ ∧ dθ

+
r0

3
ψ1 dR̃ ∧ dΦ̃ +

r0

2
(R̃+ σ)ψ′1 dθ ∧ dΦ̃, (4.3.5)

with a rather lengthy current

j̃(1) =
1

2r4
0Γ5ΛR̃(R̃+ 2σ)

[
∂T̃ −

1

Λ3ψ′0
∂Φ̃

]
+ j̃R̃(1)∂R̃ + j̃θ(1)∂θ, (4.3.6)

where the components can be found in Appendix B. The Bianchi identity (dF̃ )(1) = 0 yields

Ω2 identical to Eq. (3.3.12), while the FF condition (F̃ · j̃)(0) = 0 produces a set of equations
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that must be reduced to zero. All but one, are solved by the first Znajek condition, the

first order corrections to the field variables as well as I2 which is found to be identical to

Eq. (3.3.13). The remaining equation which is yet to be reduced to zero is used to find a

second-order linear differential equation for ψ2 of the same form as Eq. (3.3.14), i.e.

ψ′′2 + ã(θ)ψ′2 + b̃(θ)ψ2 + c̃(θ) = 0, (4.3.7)

where ã(θ), b̃(θ), and c̃(θ) are constants of similar form to a(θ), b(θ), and c(θ). In fact

ã(θ) = a(θ), while the constant b̃(θ) is evidently dependent on R̃

b̃(θ) =
1

Λ2(R̃+ σ)2ψ′0(r0Ω0 − 1)

[
2σR̃

(
Λ
(
ψ′0(Λ′′ − r0(2Λ′Ω′0 + Ω0Λ′′))− 3Λ′ψ′′0 (r0Ω0 − 1)

)
+ Λ′2ψ′0(1− r0Ω0) + Λ2(−2r0ψ

′′
0 Ω′0 + 2ψ′0(r0Ω0 − 1) + ψ0

(3)(1− r0Ω0))
)

+ R̃2
(

Λ(ψ′0(Λ′′ − r0(2Λ′Ω′0 + Ω0Λ′′))− 3Λ′ψ′′0 (r0Ω0 − 1)) + Λ′2ψ′0(1− r0Ω0)

+ Λ2
(
− 2r0ψ

′′
0 Ω′0 + 2ψ′0(r0Ω0 − 1) + ψ0

(3)(1− r0Ω0)
))

+ σ2
(

ΛΛ′(−2r0ψ
′
0Ω′0

− 3ψ′′0 (r0Ω0 − 1)) + Λ
(

Λ′′ψ′0(1− r0Ω0) + Λ(ψ0
(3)(1− r0Ω0)− 2r0ψ

′′
0 Ω′0)

)
+ Λ′2ψ′0(1− r0Ω0)

)]
. (4.3.8)

The constant c̃(θ) is very lengthy and can be found in Appendix B. From the Taylor expan-

sion of the field variables Eq. (3.2.2) as well as the MD class of solutions, we know that all

field variables ψn, Ωn, In ∀ n ≥ 0 can only depend on the variable θ and must not contain

a radial dependence in order to ensure regularity at the horizon. However, from the differ-

ential equation for ψ2 in the near-NHEK limit, specifically Eq. (4.3.8), it becomes evident

that the only way to ensure that all radial dependence is eliminated is by demanding that

σ = 0, which would result in a return to where we started; the NHEK limit. This is not the

desired outcome as we stand to learn nothing about the behaviour of the magnetosphere

in the near-NHEK limit, and it can therefore be concluded that the ”naive approach” is

inadequate. As a consequence thereof, it is rather pointless to calculate (F̃ (1))2 as we now

know that the above method is wrong. This leaves us in a bit of a pickle as alternative

methods for producing a magnetically-dominated magnetosphere in the near-NHEK limit

of the Kerr metric must be found.

4.3.2 A brief history of a failed attempt

On the path to singling out an appropriate expansion which allows for the construction of

a FF, stationary and axisymmetric magnetically-dominated magnetosphere I had to work
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through different suggestions through trial and error. In this Section I will present another

attempt which was unsuccessful in recovering a physically acceptable solution as it is equally

important to delve into the failed attempts as the successful ones, since they provide us with

hints about how to proceed and assist us in the process of learning.

My first attempt aside from the ”naive approach” was made using the following sugges-

tion. Similarly to the NHEK limit expansion it is assumed that the field variables follow

this expansion around the horizon

ψ(r, θ) =

∞∑
n=0

1

n!

∂nψ

∂rn
(r − r+)n, (4.3.9)

however, with

r − r+ = λR̃r+

=
r0

2
λR̃

(
1 +

√
1− 4a2

r2
0

)
(4.3.10)

such that for a = (r0/2)
√

1− σ2λ2 I find

r − r+ =
r0

2
λR̃(1 + σλ) (4.3.11)

resulting in the following expansion written explicitly

ψ(r, θ) =

∞∑
n=0

1

n!

∂nψ

∂rn

(r0

2
λR̃
)n

(1 + σλ)n (4.3.12a)

= ψ0 +
(r0

2
R̃ψ1

)
λ+

r0

8
R̃
(

4σψ1 + r0R̃ψ2

)
λ2 +O(λ3), (4.3.12b)

i.e. an extra σλ-term compared to the NHEK limit Taylor expansion and a ”mixing” of field

variables at the second order post-near-NHEK correction. The Taylor expansion Eq. (4.3.12)

successfully recovers the near-NHEK attractor solution presented in Section 4.1.1 that is FF,

self-similar, axisymmetric and stationary. When looking at the first post-near-NHEK order

corrections I find the following field strength

F̃ (0) =
r0

2
ψ1(r0Ω0 − 1)dT̃ ∧ dR̃+ dθ ∧

[
ψ′1dΦ̃− r0

2
R̃ (r0Ω1ψ

′
0 + ψ′1(r0Ω0 − 1)) dT̃

−
r0

(
2I0(−σR̃(Γ− 3) + R̃2 + 2σ2) + r0ΓI1R̃(R̃+ 2σ)

)
2ΓΛR̃(R̃+ 2σ)2

dR̃

]
(4.3.13)

and current

j̃(0) =
1

r4
0R̃(R̃+ 2σ)2Γ4Λ

[
2j̃T̃(0)∂T̃ −

1

Λ2
j̃Φ̃
(0)∂Φ̃

]
+ j̃R̃(0)∂R̃ + j̃θ(0)∂θ, (4.3.14)
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where the components are rather messy and given by

j̃T̃(0) = Λ
(

2(R̃+ σ)(R̃+ 2σ)Γ′ψ′0(r0Ω0 − 1) + Γ
(

2σR̃(Γ(r2
0ψ
′
1Ω′0 + r0ψ

′′
1 (r0Ω0 − 1)

+ ψ′′0 (r2
0Ω1 + 4r0Ω0 − 1))− 6ψ′′0 (r0Ω0 − 1)) + r0ψ

′
0

(
r0R̃Γ(R̃+ 2σ)Ω′1

+ 4(R̃+ σ)Ω′0(R̃(Γ− 1) + σ(Γ− 2))
)

+ R̃2(Γ
(
r2
0ψ
′
1Ω′0 + r0ψ

′′
1 (r0Ω0 − 1)

+ ψ′′0 (r2
0Ω1 + 4r0Ω0 − 2)

)
− 4ψ′′0 (r0Ω0 − 1)) + 4σ2ψ′′0 (r0(Γ− 2)Ω0 + 2)

))
+ ΓΛ′

(
ψ′0

(
r2
0R̃ΓΩ1(R̃+ 2σ) + 2(R̃+ σ)

(
R̃(−Γ + 2r0(Γ− 1)Ω0 + 2) + 2σ(r0(Γ− 2)Ω0 + 2)

))
+ r0R̃Γ(R̃+ 2σ)ψ′1(r0Ω0 − 1)

)
, (4.3.15)

j̃R̃(0) =
4I ′0(R̃+ σΓ + σ)− 2r0R̃ΓI ′1

r3
0Γ3Λ

, (4.3.16)

j̃θ(0) =
2I1

r2
0Γ2Λ

, (4.3.17)

j̃Φ̃
(0) = 4Λ2

(
Γ(Γ + r0(Γ− 4)Ω0 + 4)Λ′ψ′0 + Λ(ψ′0(2(r0Ω0 − 1)Γ′ + r0(Γ− 4)ΓΩ′0)

+ Γ(Γ + r0(Γ− 4)Ω0 + 4)ψ′′0 )
)
σ3 + 2R̃

(
− 4Γ3(r0Ω0 − 1)Γ′ψ′0Λ5

− 2Γ4
(

3(r0Ω0 − 1)Λ′ψ′0 + Λ(r0ψ
′
0Ω′0 + (r0Ω0 − 1)ψ′′0 )

)
Λ4 + 10(r0Ω0 − 1)Γ′ψ′0Λ3

− 20Γ((r0Ω0 − 1)Λ′ψ′0 + Λ(r0ψ
′
0Ω′0 + (r0Ω0 − 1)ψ′′0 ))Λ2 + Γ2

(
8Λ′ψ′0

+ Λ
((

4r0ψ1(r0Ω0 − 1)− 5ψ′′0 + r0

(
2r0ψ

′
1Ω′0 + ψ′0(15Ω′0 + 2r0Ω′1) + (15Ω0 + 2r0Ω1)ψ′′0

+ 2(r0Ω0 − 1)ψ′′1

))
Λ2 + Λ′((2Ω1r

2
0 + 15Ω0r0 − 5)ψ′0 + 2r0(r0Ω0 − 1)ψ′1)Λ− 8ψ′′0

)))
σ2

+ 2R̃2
(
− 4Γ3(r0Ω0 − 1)Γ′ψ′0Λ5 − 2Γ4(3(r0Ω0 − 1)Λ′ψ′0 + Λ(r0ψ

′
0Ω′0 + (r0Ω0 − 1)ψ′′0 ))Λ4

+ 8(r0Ω0 − 1)Γ′ψ′0Λ3 − 16Γ((r0Ω0 − 1)Λ′ψ′0 + Λ(r0ψ
′
0Ω′0 + (r0Ω0 − 1)ψ′′0 ))Λ2

+ Γ2
(

8Λ′ψ′0 + Λ((4r0ψ1(r0Ω0 − 1)− 6ψ′′0 + r0(3r0ψ
′
1Ω′0 + ψ′0(14Ω′0 + 3r0Ω′1)

+ (14Ω0 + 3r0Ω1)ψ′′0 + 3(r0Ω0 − 1)ψ′′1 ))Λ2 + Λ′((3Ω1r
2
0 + 14Ω0r0 − 6)ψ′0

+ 3r0(r0Ω0 − 1)ψ′1)Λ− 8ψ′′0 )
))
σ + R̃3

(
− 2Γ3(r0Ω0 − 1)Γ′ψ′0Λ5 − Γ4

(
3(r0Ω0 − 1)Λ′ψ′0

+ Λ(r0ψ
′
0Ω′0 + (r0Ω0 − 1)ψ′′0 )

)
Λ4 + 4(r0Ω0 − 1)Γ′ψ′0Λ3 − 8Γ

(
(r0Ω0 − 1)Λ′ψ′0

+ Λ(r0ψ
′
0Ω′0 + (r0Ω0 − 1)ψ′′0 )

)
Λ2 + 2Γ2

(
2Λ′ψ′0 + Λ

(
(r0ψ1(r0Ω0 − 1)− 2ψ′′0

+ r0(r0ψ
′
1Ω′0 + ψ′0(4Ω′0 + r0Ω′1) + (4Ω0 + r0Ω1)ψ′′0 + (r0Ω0 − 1)ψ′′1 ))Λ2

+ Λ′((Ω1r
2
0 + 4Ω0r0 − 2)ψ′0 + r0(r0Ω0 − 1)ψ′1)Λ− 2ψ′′0

)))
. (4.3.18)

The Bianchi identity (dF̃ )(0) = 0 yields the same Ω1 as in the NHEK limit, while ψ1 found

from the FF condition (F̃ · j̃)(−1) = 0 is also identical to the first post-NHEK order variable.
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However, the second Znajek condition fails to reduce one of the equations produced by the

FF condition to null and instead the following field variable I1 is found

I1 =
1

r3
0I0R̃(R̃+ 2σ)

[
2I2

0r
2
0σ(R̃+ σ) +

Λ2

Γ
(r0Ω0 − 1)ψ′0

((
2(R̃+ σ)

(
R̃+ r0R̃(Γ + 1)Ω0

+ σ(2 + Γ + r0(Γ− 2)Ω0)
)

+ r2
0R̃(R̃+ 2σ)ΓΩ1

)
ψ′0 + r0R̃(R̃+ 2σ)Γ(r0Ω0 − 1)ψ′1

)]
.

(4.3.19)

Already we notice a problem since we only allow I1 = I1(θ) while Eq. (4.3.19) clearly also

contains a radial dependence. The expansion is thus inconsistent at the first post order cor-

rection and, therefore, cannot be used to recover a magnetically-dominated magnetosphere

in the near-NHEK limit. I must yet again turn my attention towards other options.
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Chapter 5

Novel general expansion

In this Chapter I will be presenting an expansion of the field variables with respect to

not only the scaling parameter λ but also the parameter κ (or σ) which is introduced in

order to present the most general Taylor expansion of the field variables. I will examine

the regularity condition using said expansion and confirm whether it is possible to recover

the Menon-Dermer class of solutions given the exclusion of the purely radial near-NHEK

contributions before presenting the leading order of the near-NHEK limit of the Kerr metric

as well as the post-near-NHEK order corrections up to the second order in λ.

5.1 Expansion of the field variables

Consider the spin parameter parametrised by κ

a =
1

2

√
1− κ2, (5.1.1)

and coordinates

T̂ =
t

r0
, R̂ = 2

r − r+

r0
, Φ = φ− t

r0
. (5.1.2)

In the near-NHEK limit the field variables are expanded for small R̂ = λR̃ and κ = λσ

yielding the following

ψ(R̂, θ, κ) = ψ|R̂=κ=0 + λ
(
σ∂κψ|R̂=κ=0 + R̃∂R̂ψ|R̂=κ=0

)
+

1

2
λ2
(
σ2∂2

κψ|R̂=κ=0 + 2R̃σ∂κ∂R̂ψ|R̂=κ=0 + R̂2∂2
R̂
ψ|R̂=κ=0

)
+O(λ3). (5.1.3)
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In order to make the above expression more digestible and present it in a similar way to

earlier Taylor expansions of the field variables at the horizon, I define

ψ|R̂=κ=0 := ψ00, ∂κψ|R̂=κ=0 := ψ01, ∂R̂ψ|R̂=κ=0 := ψ10,

∂2
κψ|R̂=κ=0 := ψ02, ∂κ∂R̂ψ|R̂=κ=0 := ψ11, ∂2

R̂
ψ|R̂=κ=0 := ψ20,

with the subscript ”00” pertaining to the leading order, ”01” and ”10” to the first order

post-near-NHEK correction, and ”02”, ”20”, and ”11” to the second order post-near-NHEK

correction. The θ dependence is omitted explicitly but is implied as we know from the MD

class of solutions that the field variables cannot contain a radial dependence.

Thus in Boyer-Lindquist coordinates Eq. (5.1.3) reads

ψ(r, θ) = ψ00 + κψ01 + 2
r − r+

r0
(ψ10 + κψ11) +

1

2

((
2
r − r+

r0

)2

ψ20 + κ2ψ02

)
, (5.1.4a)

I(r, θ) = I00 + κI01 + 2
r − r+

r0
(I10 + κI11) +

1

2

((
2
r − r+

r0

)2

I20 + κ2I02

)
, (5.1.4b)

Ω(r, θ) = Ω00 + κΩ01 + 2
r − r+

r0
(Ω10 + κΩ11) +

1

2

((
2
r − r+

r0

)2

Ω20 + κ2Ω02

)
, (5.1.4c)

where I have included the expressions for I and Ω for completeness.

5.2 Expansion of the Znajek condition

Before I move on to the explicit perturbation of the field it is fitting to consider the Znajek

condition at near-extremality with the expansion of field variables presented in the previous

Section. The Znajek condition on the event horizon is, as before, given by Eq. (2.5.1). The

scaling coordinates Eq. (4.1.1b) as well as Eq. (5.1.4) are implemented in the condition while

letting λ→ 0, yielding to the leading order the first Znajek condition1

I00 =
Λ

r0
(r0Ω00 − 1)ψ′00 (5.2.1)

as expected. Expanding the left-hand-side of Eq. (2.5.1) to the first order in λ I find

r0I00(R̃+ σ) + Γ
[
r0σI01 + r0R̃I10 − Λ

(
r0σψ

′
00(Ω00 + Ω01)

+ σ(r0Ω00 − 1)ψ′01 + R̃
(
(r0(Ω00 + Ω10)− 1)ψ′00 + (r0Ω00 − 1)ψ′10

))]
(5.2.2)

1Note how this is equivalent to the first Znajek condition, just written using the new convention.
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which when evaluated at R̃ = 0, i.e. r = r+ yields the following correction to the Znajek

condition

I01 =
Λ

r0Γ
((1 + r0(Γ− 1)Ω00 + r0ΓΩ01)ψ′00 + Γ(r0Ω00 − 1)ψ′01) , (5.2.3)

while the Znajek condition at the second order in λ is found to be

I02 =
1

r0Γ

[
− 2r0I01 + Λ

((
2− 2r0Ω00 + Γ(2r0Ω00 − 1 + 2r0Ω01 + r0Ω02)

)
ψ′00

+ Γ
(

2r0Ω01ψ
′
01 − ψ′02 + r0Ω00(2ψ′01 + ψ′02)

))]
. (5.2.4)

Note how the corrections to the Znajek condition only produce equations pertaining to the

κ-derivatives of the field variables, that is I01, I02, and so forth. This is because the Znajek

condition is evaluated at R̃ = 0 where the R̃-derivatives, naturally, are zero. However, the

second Znajek condition Eq. (2.5.3) is still valid for κ = 0, i.e. for I10.

While we are on the subject of regularity I find it fitting to introduce the concept of light

surfaces which, if physically relevant, can impose further regularity upon the solution.

5.3 Light surfaces

In this Section I will be considering two critical surfaces which I have not yet properly

introduced. The two surfaces appearing in the Kerr metric are known as light surfaces and

I will presently investigate their relevance to the main objective of this thesis.

It is customary to consider the light surfaces when looking at the field strength in the

NHEK and near-NHEK limit since these critical surfaces are singular points of the stream

equation and they can thus have an impact on the final result. However, before I delve

into how the light surfaces affect, or if they affect, the magnetosphere in the near-NHEK

limit of the Kerr metric, it is appropriate to explore the surfaces in greater detail. The Kerr

background actually contains four critical surfaces one of which is the event horizon and the

second is the asymptotic region at infinity. The remaining two surfaces are found using the

velocity vector χ from Eq. (1.1.4), or more precisely by looking at the surfaces where χ of

an observer co-rotating with the magnetosphere becomes null

χµχµ = gtt + 2Ωgtφ + Ω2gφφ = 0. (5.3.1)

This allows one to solve for rLS(θ) which reveals the position of the light surfaces. On these

surfaces one would have to move with the speed of light to follow the plasma on the magnetic
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field lines. The two solutions will correspond to the inner light surface (ILS) at r = rILS(θ)

and the outer light surface (OLS) at r = rOLS(θ), where the OLS can be considered the

analogue of the pulsar light cylinder while the ILS is a purely GR occurrence. By considering

small but constant Ω it is possible to see that the the radius is of the order 1/Ω, i.e.

cylindrical similar to the pulsar light cylinder. By instead setting Ω = 0, corresponding to

gtt = 0, one can infer the existence of the ILS from the existence of the ergosphere [35].

The ILS will lie inside of the ergosphere where the Killing vector χ is spacelike, while χ is

timelike for rILS(θ) < r < rOLS(θ) and again spacelike for rOLS(θ) < r. The location of the

light surfaces of a Kerr black hole is illustrated in Figure 5.1.

In order to consider the norm of χ we need to make an ansatz for how R̃ scales with λ,

since we are solving for R̃ while also expanding in powers of λ. I found that for

R̃ =

2∑
n=0

λnR̃LS,n (5.3.2)

the leading order is not consistent, so instead the following expansion was used

R̃ =

1∑
n=−1

λnR̃LS,n. (5.3.3)

The leading order is now consistent but it is evident that since R̃LS,−1 scales as λ−1 then

the ILS will approach infinity as λ→ 0. Thus just as how the ergoregion is pushed towards

infinity as we zoom into the near-NHEK region, the ILS is also pushed towards infinity. This

means that we cannot gain any information by looking at the field lines crossing the ILS as

this will not happen in the near-NHEK region of the Kerr black hole. In fact, the ILS will

only extend into the near-NHEK region at the magnetic poles. The ILS will presumably

appear in orders higher than λ2 which is outside the scope of this thesis.

5.4 Recovering the Menon-Dermer solution

In order to check the validity of the expansion Eq. (5.1.3) let us consider whether it is possible

to show that the Menon-Dermer class of solutions follows from the near-NHEK order. If

not then we know that the direction in which we are heading is wrong. By removing all

terms proportional to R̃ in the expansion Eq. (5.1.3) it should be possible to recover the

Menon-Dermer solution since we know that this class of solutions purely depends on θ and

not R̃. This results in the following expansion to the second order in λ (contained in κ)

ψ(r, θ) = ψ00 + κψ01 +
1

2
κ2ψ02 +O(κ3), (5.4.1a)
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Figure 5.1: Sketch of a Kerr black hole with the inner light surface (dashed

line) within the ergosphere (solid thin line), and outer light surface (dashed

line) to the right of the black hole.

I(r, θ) = I00 + κI01 +
1

2
κ2I02 +O(κ3), (5.4.1b)

Ω(r, θ) = Ω00 + κΩ01 +
1

2
κ2Ω02 +O(κ3), (5.4.1c)

which recovers the near-NHEK attractor solution in the leading order as expected. When

expanded to the first post-near-NHEK order the following correction to the field strength

is found

F̃
(0)
MD =

[
σ (r0Ω01ψ

′
00 + (r0Ω00 − 1)ψ′01) dT̃ + r0

I00(R̃+ σ) + σI01Γ

R̃(R̃+ 2σ)ΓΛ
dR̃+ ψ′00 dΦ̃

]
∧ dθ,

(5.4.2)

with the four-current j̃
(0)
MD of the form

j̃
(0)
MD = j̃T̃(0)∂T̃ + j̃R̃(0)∂R̃ + j̃Φ̃

(0)∂Φ̃ (5.4.3)
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and components

j̃T̃(0) =
1

r4
0R̃(r̃ + 2σ)(Γ− 1)Γ4

[
2Γ′
{(

(R̃+ σ)(6− 6Γ + Γ2 − 2r0(Γ− 3)(Γ− 1)Ω00)

− r0σ(Γ− 2)ΓΩ01

)
ψ′00 − σ(Γ− 2)Γ(r0Ω00 − 1)ψ′01

}
+ 4(Γ− 1)Γ

{
r0ψ
′′
00(2(R̃+ σ)(Γ− 1)Ω′00 + σΓΩ′01)− 2(R̃+ σ)(r0Ω00 − 1)ψ′′00

+ Γ
(
r0σψ

′
01Ω′00 + ((R̃+ σ)(2r0Ω00 − 1) + r0σΩ01)ψ′′00 + σ(r0Ω00 − 1)ψ′′01

)}]
,

(5.4.4a)

j̃R̃(0) =
2
√

2
(

(R̃+ σ)I ′00 − σΓI ′01

)
r3
0

√
1− Γ Γ2

, (5.4.4b)

j̃Φ̃
(0) =

1

r4
0R̃(r̃ + 2σ)(Γ− 1)2Γ4

[
Γ′
{(
R̃2(12− 12r0Ω00 − (Γ− 2)Γ(−11 + r0(13 + (Γ− 2)Γ)Ω00))

+ σ2(Γ− 1)(12(r0Ω00 − 1) + Γ(10− 14r0Ω00 + Γ(3r0Ω00 − 1) + 2r0(Γ− 2)Ω01))

+ 2σR̃(12− 12r0Ω00 − (Γ− 2)Γ(−11 + r0(13 + (Γ− 2)Γ)Ω00 − r0(Γ− 1)Ω01))
)
ψ′00

+ 2σ(R̃+ σ)(Γ− 2)(Γ− 1)Γ(r0Ω00 − 1)ψ′01

}
− 2(Γ− 1)Γ

(
r0(Γ− 1)ψ′00((−4(R̃+ σ)2

+ 3(R̃+ σ)2Γ + R̃(R̃+ 2σ)Γ2)Ω′002σ(R̃+ σ)ΓΩ′01) + r0R̃(R̃+ 2σ)Γ3Ω00ψ
′′
00

+ 4(R̃+ σ)2(r0Ω00 − 1)ψ′′00 − (R̃+ σ)Γ(2r0σψ
′
01Ω′00 + ((R̃+ σ)(7r0Ω00 − 5) + 2r0σΩ01)ψ′′00

+ 2σ(r0Ω00 − 1)ψ′′01) + Γ2(2r0σ(R̃+ σ)ψ′01Ω′00

+ (−σ2 + r0(3σ2 + 2R̃(R̃+ 2σ))Ω00 + 2r0σ(R̃+ σ)Ω01)ψ′′00 + 2σ(R̃+ σ)(r0Ω00 − 1)ψ′′01)
)]
.

(5.4.4c)

Here Λ has been substituted by

Λ =

√
2− 2Γ

Γ
(5.4.5)

for simplicity2. The Bianchi identity is automatically satisfied meaning that I cannot learn

anything about Ω01 from it, and the FF condition only produces one equation which is of

the form

0 = R̃(. . .) + σ(. . .), (5.4.6)

meaning that the component proportional to R̃ and the component proportional to σ must

be set equal to zero independently. The σ-term is reduced to zero given the modified first

Znajek condition Eq. (5.2.1) for I00 and the Znajek condition Eq. (5.2.3) for I01 while the

R̃-term is solved for

Ω00 =
2

r0Γ2Λ2
(5.4.7)

2It is easy to verify this expression by substituting Γ and Λ by Eq. (3.1.5).
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which is recognised as the leading term of the MD angular velocity ΩMD. This allows one

to show that

ψ01 = c1 +
r0

2

∫
dθ I01ΓΛ, (5.4.8)

where c1 is an arbitrary integration constant and this is exactly the Menon-Dermer ψMD

with a = r0/2, i.e. at extreme Kerr, when c1 = 0. Using Eq. (5.4.7) and the Znajek

condition for I00 and I01 it is now also possible to show that the field strength (F̃
(0)
MD)2 is

null.

Continuing to the second post-near-NHEK order I find the field strength to be

F̃
(1)
MD =

[
1

2
σ2 (r0Ω02ψ

′
00 + 2r0Ω01ψ

′
01 + (r0Ω00 − 1)ψ′02) dT̃

+
r0

(
I00

(
2σR̃+ R̃2 − 2σ2(Γ− 1)

)
+ σ

(
2I01(R̃+ σ) + σI02Γ

))
2R̃(R̃+ 2σ)ΓΛ

dR̃− σψ′00 dΦ̃

]
∧ dθ,

(5.4.9)

with j̃
(1)
MD of the following form (and components in Appendix B)

j̃
(1)
MD =

1

r4
0(Γ− 1)Γ5R̃(R̃+ 2σ)

[
j̃T̃(1)∂T̃ +

1

Γ− 1
j̃Φ̃
(1)

]
− 1

r3
0

√
1− Γ Γ3

j̃R̃(1). (5.4.10)

The Bianchi identity is again automatically satisfied and the FF condition is solved using

the Znajek conditions for I00, I01, and I02 as well as Eq. (5.4.7) yielding

Ω01 = 0 (5.4.11)

which in fact is the first order correction to ΩMD since

ΩMD =
2

r0Γ2Λ2
+

1

2

2

r0Γ2Λ2
σ2λ2 +O(λ3). (5.4.12)

As expected, the field strength (F̃
(1)
MD)2 is found to be null when implementing the Znajek

conditions and the expressions found for Ω00 and Ω01 which is consistent with the MD

solution. Knowing that it is indeed possible to recover the MD class of solutions from the

expansion it is finally time to consider the near-NHEK limit such that it can be determined

if a magnetically-dominated magnetosphere can be constructed.

5.5 The near-NHEK limit

In this Section I will present a general perturbation of the Kerr metric in the near-NHEK

limit in which the variables ψ00, Ω00 are left arbitrary and ψ01 and Ω01 will be kept uncon-

strained for the sake of generality.
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The expansion Eq. (5.1.3), or Eq. (5.1.4), successfully recovers the near-NHEK geometry

ds̃2 =
r0

2
Γ

[
−R̃(R̃+ 2σ)dT̃ 2 +

dR̃2

R̃(R̃+ 2σ)
+ dθ2 + Λ2

(
dΦ̃ + (R̃+ σ)dT̃

)2
]

(5.5.1)

as well as the near-NHEK attractor

F̃ (−1) =
r0I0
Λ

d

[
T̃ − 1

2σ
log

(
1 +

2σ

R̃

)]
∧ dθ, (5.5.2)

which as known is null, FF and self-similar. The interesting part, however, is the post-near-

NHEK corrections and I will thus quickly move on to these.

The first order correction to the near-NHEK metric is somewhat cumbersome to look at

and is found to be, explicitly

(ds̃2)(1) =
r2
0

2

[
1

2
(R̃+ σ)

(
2R̃(R̃+ 2σ)(2Γ− 1) + 2(−(R̃+ σ)2 + (σ2 + 2R̃(R̃+ 2σ))Γ)Λ2

− R̃(R̃+ 2σ)Γ3Λ4
)
dT̃ 2 +

Λ2

4

(
− R̃Γ3Λ2(R̃+ 2σ) + 2Γ(2R̃+ σ)(2R̃+ 3σ)

− 4(R̃+ σ)2
)
dT̃dΦ̃ +

(R̃+ σ)

R̃(R̃+ 2σ)
dR̃2 + (R̃+ σ) dθ2 + (R̃+ σ)(2Γ− 1)Λ2 dΦ̃2

]
,

(5.5.3)

while the correction to the field strength is found to be

F̃ (0) = dθ ∧

[
ψ′00 dΦ̃−

(
r0σΩ01ψ

′
00 + σ(r0Ω00 − 1)ψ′01

+ R̃ (r0Ω10ψ
′
00 + (r0Ω00 − 1)ψ′10)

)
dT̃ − r0(I00(R̃+ σ) + (σI0 + I10R̃)Γ)

R̃(R̃+ 2σ)ΓΛ
dR̃

]
+ ψ10(r0Ω00 − 1) dT̃ ∧ dR̃. (5.5.4)

The current j̃(0) is quite lengthy

j̃(0) =
1

r4
0R̃(R̃+ 2σ)Γ4Λ

[
4 j̃T̃(0)∂T̃ +

1

Λ2
j̃Φ̃
(0)∂Φ̃

]
+ j̃R̃(0)∂R̃ + j̃θ(0)∂θ (5.5.5)

with components

j̃T̃(0) = ΓΛ′
({
σ(2− 2r0Ω00 + Γ(−1 + 2r0Ω00 + r0Ω01))

+ R̃(2− 2r0Ω00 + Γ(−1 + 2r0Ω00 + r0Ω10))
)
ψ′00 + Γ(r0Ω00 − 1)(σψ′01R̃ψ

′
10)
}

+ Λ
{

(R̃+ σ)(r0Ω00 − 1)Γ′ψ′00 + Γ
(
r0ψ
′
00

(
(R̃+ σ)(Γ− 1)Ω′00 + Γ(σΩ′01 + R̃Ω′10)

)
− 2(R̃+ σ)(r0Ω00 − 1)ψ′′00 + Γ

(
r0σψ

′
01Ω′00 + σ(−1 + r0Ω00 + r0Ω01)ψ′′00
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+ σ(r0Ω00 − 1)ψ′′01 + R̃
(
r0ψ
′
10Ω′00 + (−1 + 2r0Ω00 + r0Ω10)ψ′′00 + (r0Ω00 − 1)ψ′′00

)))}
,

(5.5.6a)

j̃R̃(0) =
4(R̃+ σ)I ′00 − 4Γ(σI ′01 + R̃I ′10)

r3
0Γ3Λ

, (5.5.6b)

j̃θ(0) =
4I00

r0Γ2Λ
, (5.5.6c)

j̃Φ̃
(0) =

r0ΛI00

ψ′00

{
2σR̃

(
2Γ3Λ3Γ′ψ′00 − 4ΛΓ′ψ′00 + Γ4Λ2(3Λ′ψ′00 + Λψ′′00) + 8Γ(Λ′ψ′00 + Λψ′′00)

− 2Γ2(Λ′(ψ′01 + ψ′10) + 2Λψ10)
)

+ R̃2
(

2Γ3Λ3Γ′ψ′00 − 4ΛΓ′ψ′00 + Γ4Λ2(3Λ′ψ′00 + Λψ′′00)

+ 8Γ(Λ′ψ′00 + Λψ′′00)− 4Γ2(Λ′ψ′10 + Λψ10)
)
− 4σ2(Λ(Γ′ψ′00 − 2Γψ′′00 + Γ2ψ′′01) + Γ2Λ′ψ′01)

}
+ Γ

{
2σR̃

(
− 2Γ

(
− 2Λψ′′00 + Λ′ψ′00(Λ2(r0(4Ω00 + Ω01 + Ω10)− 2) + 2)

+ Λ3
(
− 2ψ′′00 − ψ′′01 − ψ′′10 + r0

(
Ω00(4ψ′′00 + ψ′′01 + ψ′′10) + ψ′00(4Ω′00 + Ω′01 + Ω′10) + ψ′′00(Ω01 + Ω10)

+ Ω′00(ψ′01 + ψ′10)
)))

+ r0Γ3Λ5ψ′00Ω′00 + 8r0Λ3ψ′00Ω′00

)
+ R̃2

(
− 4Γ

(
− Λψ′′00 + Λ′ψ′00(Λ2(2r0Ω00 + r0Ω10 − 1) + 1)

+ Λ3
(
r0ψ
′
00(2Ω′00 + Ω′10) + ψ′′00(2r0Ω00 + r0Ω10 − 1) + r0ψ

′
10Ω′00 + ψ′′10(r0Ω00 − 1)

))
+ r0Γ3Λ5ψ′00Ω′00 + 8r0Λ3ψ′00Ω′00

)
− 2σ2Λ2

(
Λ′ψ′00(Γ(3r0Ω00 + 2r0Ω01 − 1)− 4r0Ω00 + 4)

+ Λ
(

Γ(ψ′′00(3r0Ω00 + 2r0Ω01 − 1) + 2r0ψ
′
01Ω′00) + r0ψ

′
00((3Γ− 4)Ω′00 + 2ΓΩ′01)

))}
.

(5.5.6d)

The Bianchi identity (dF̃ )(0) = 0 yields the same Ω10 as in the NHEK limit (corresponding

to Ω1)

Ω10 =
ψ10Ω00′

ψ′00

, (5.5.7)

and the FF condition (F̃ · j̃)(−1) = 0 also yields ψ10 similar to what was found in the NHEK

limit

ψ10 =
I10ψ

′
00

I ′00

. (5.5.8)

The second Znajek condition is valid when κ = 0, i.e. for I10 and this paired with the

Znajek condition for I01 Eq. (5.2.3), satisfies the remaining equation obtained from the FF

condition. It is possible to show that the NHEK solution found at the first order solves the

first order correction in the near-NHEK limit. Using the NHEK result Eqs. (3.3.7)-(3.3.8)

as well as the Znajek conditions for I01 and I00 one ensures that the field is FF and that

the field strength (F̃ (0))2

(F̃ (0)2 =
1

r4
0R̃Γ3Λ2(R̃+ 2σ)

[
16Λ2ψ′00(r0Ω00 − 1)(ψ′00(R̃(r0(Γ− 1)Ω00 + r0ΓΩ10 + 1)
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+ r0σΓ(Ω00 + Ω01)− r0σΩ00 + σ) + Γ(r0Ω00 − 1)(R̃ψ′10 + σψ′01))

− 16r2
0ΓI00(R̃I10 + σI01)

]
(5.5.9)

is null, i.e. (F̃ (−1))2 = 0.

The field strength at the second order is quite messy but I will present it for good measure

F̃ (1) =
(
R̃(r0ψ10Ω10 + ψ20(r0Ω00 − 1)) + r0σψ10Ω01 + σψ11(r0Ω00 − 1)

)
dR̃ ∧ dT̃

+

[{1

2

(
2σR̃

(
r0(Ω11ψ

′
00 + Ω10ψ

′
01 + Ω01ψ

′
10) + ψ′11(r0Ω00 − 1)

)
+ R̃2

(
r0Ω20ψ

′
00 + 2r0Ω10ψ

′
10 + ψ′20(r0Ω00 − 1)

)
+ r0σ

2Ω02ψ
′
00

+ σ2(2r0Ω01ψ
′
01 + ψ′02(r0Ω00 − 1))

)}
dT̃

+
{ 1

2R̃ΓΛ(R̃+ 2σ)

(
r0(I00(2σR̃+ R̃2 − 2σ2(Γ− 1)) + 2(R̃+ σ)(R̃I10 + σI01)

+ Γ(R̃(R̃I20 + 2σI11) + σ2I02))
)}

dR̃+
(
σψ′01 + R̃ψ′10

)
dΦ̃

]
∧ dθ + ψ10 dR̃ ∧ dΦ̃,

(5.5.10)

and the four-current j̃(1) is even worse to look at. As it is very lengthy I will only present

its form while omitting the components that can be found in Appendix B

j̃(1) =
1

r4
0Γ5ΛR̃(R̃+ 2σ)

[
j̃T̃(1)∂T̃ + r0ΓR̃(R̃+ 2σ) j̃R̃(1)∂R̃

+ r0Γ2R̃(R̃+ 2σ) j̃θ(1)∂θ +
1

Λ2
j̃Φ̃
(1)∂Φ̃

]
. (5.5.11)

The Bianchi identity (dF̃ )(1) = 0 contains a term proportional to R̃ and one proportional

to σ which must be set equal to zero independently, allowing me to solve for Ω20 and Ω11,

yielding the following expressions

Ω20 =
G2Λ2 (ψ′00Ω′′00 − ψ′′00Ω′00) + 4ψ20Ω′00

4ψ′00

, (5.5.12a)

Ω11 =
1

2

(
Ω′00 (2ψ11 − GΛψ′01)

ψ′00

+ GΛΩ′01

)
(5.5.12b)

where G is defined in Eq. (3.3.7). From the FF condition (F̃ ·j̃)(0) = 0, which produces several

equations, I again find one equation with a term proportional to R̃ and one proportional to

σ that are solved independently yielding

I20 =
G2Λ2 (ψ′00I

′′
00 − ψ′′00I

′
00) + 4ψ20I

′
00

4ψ′00

, (5.5.13a)

ψ11 =
1

2I ′00

[
2I11ψ

′
00 −

1

r0Γ2

{
GΛ
(

Γ(Λ′ψ′00(ψ′00(r0(Γ− 1)Ω00 + r0ΓΩ01 + 1)
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+ Γψ′01(r0Ω00 − 1))− r0Γψ′01I
′
00) + Λψ′00

(
Γ′ψ′00(r0Ω00 − 1)

+ Γ
(
ψ′′00 + r0ψ

′
00((Γ− 1)Ω′00 + ΓΩ′01) + r0ψ

′′
00((Γ− 1)Ω00 + ΓΩ01)

+ r0Γψ′01Ω′00 + Γψ′′01(r0Ω00 − 1)
)))}]

. (5.5.13b)

The other equation that I obtained from the FF condition proved to be much more com-

plicated while also being rather long. However, it should still be somewhat similar to the

equation from which I found the second-order linear differential equation for ψ2 in the NHEK

limit, just with some additional terms proportional to σ. While the equation also contains

terms proportional to σ2 these are easily eliminated by imposing the Znajek conditions for

I02 and I00. Thus, the equation should be of the form

ψ′′20 + a(θ)ψ′20 + b(θ)ψ20 + c(θ) + σ(. . .) = 0, (5.5.14)

and in fact when σ → 0 I find that a(θ) and b(θ) are identical to the constants in the NHEK

limit presented in Eqs. (3.3.15a)-(3.3.15b), while the constant c(θ) differs slightly from the

one found in Eq. (3.3.15c). This discrepancy is likely due to the difference of a factor of 2 in

the definitions of the NHEK and near-NHEK expansions concerning the terms containing

ψn0, Ωn0, and In0
3. Since the constant c(θ) that I have found in the near-NHEK limit does

not contain R̃ it should not be a problem and I will just leave the constant as it is. The term

proportional to σ also contains the variable ψ20 such that it should be possible to integrate

the associated coefficient into the constant b(θ). The residual with no ψ20-dependence can

be used to redefine the NHEK c(θ) in order to recover the following differential equation for

ψ20

ψ′′20 + a(θ)ψ′20 + b∗(θ)ψ20 + c∗(θ) = 0, (5.5.15)

where b∗(θ) and c∗(θ) are the revised constants containing σ. The constant b∗(θ) now reads

b∗(θ) = b(θ) + σ
4Γ4ΛI2

00r
3
0

ψ′00

(5.5.16)

while the constant c∗(θ) is of the form

c∗(θ) = (. . .) + σ(. . .), (5.5.17)

and can be found in Appendix B as it is extremely long.

The variables ψ00, Ω00 are still left arbitrary, while six others remain unfixed. These

are Ω01, ψ01, Ω02, I11, ψ02, and of course ψ20, allowing for quite some room to play around

3Here n = [0, 2].
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with. Since this result is very general it is difficult to analyse the sign of the invariant (F̃ (1))2

which can be found in Appendix B due to its length. Thus in order to make some concrete

comments about the field strength, I will compare the novel general expansion to a known

result.
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Chapter 6

Special case of novel

near-NHEK expansion

In 2020 Pompili presented in his Master’s thesis1 [4] an expansion of the field variables

in the near-NHEK limit with which it was possible to recover not only the near-NHEK

attractor solution but also the NHEK second order differential equation in the second post-

near-NHEK order. I will presently argue that the expansion which was found is a special

case of our general near-NHEK expansion Eq. (5.1.4), and that it is possible to recreate

their results using Eq. (5.1.4) and the scaling coordinates Eq. (4.1.1b) with the appropriate

conversion. Let us therefore consider the expansion and relevant results found in [4].

The following expansion of the field variables ψ, Ω, and I was used (written using the

same convention as in Chapter 5)

ψ(r, θ) = ψ00 + λ

(
r − rp
λ

+
r0

2
σ + σ2λs1(θ)

)
ψ10P + λ2ψ2R̃(R̃)ψ20P +O(λ3), (6.0.1a)

Ω(r, θ) = Ω00 + λ

(
r − rp
λ

+
r0

2
σ + σ2λω1(θ)

)
Ω10P + λ2Ω2R̃(R̃)Ω20P +O(λ3), (6.0.1b)

I(r, θ) = I00 + λ

(
r − rp
λ

+
r0

2
σ + σ2λi1(θ)

)
I10P + λ2I2R̃(R̃)I20P +O(λ3), (6.0.1c)

where I have added a ”P” to the name of the first and second order field variables in order

to distinguish them from the ones in our general near-NHEK expansion. The functions s1,

i1, and ω1 are used to ensure that the second order linear differential equation for ψ20 is

consistent, with all of the field variables only depending on θ and not R̃. It is, furthermore,

1The thesis is available at: https://www.dropbox.com/sh/ap4co4v4qd91d6z/AADl7xn4mTfmA5wJ108otQ_

na?dl=0.
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found that the second order field variables ψ20, Ω20, and I20 are consistent when the following

expressions for ψ2R̃, Ω2R̃, and I2R̃ are chosen

ψ2R̃ =
1

2

(r0

2

)2

(R̃(R̃+ 2σ)), (6.0.2a)

Ω2R̃ =
1

2

(r0

2

)2

(R̃(R̃+ 2σ)), (6.0.2b)

I2R̃ =
1

2

(r0

2

)2

(R̃(R̃+ 2σ)). (6.0.2c)

Our coordinate transformation from r to R̃ is slightly different from the one used in [4],

which is

R̃ =
2r − r+

λr0
, (6.0.3)

compared to our R̃ = 2(r− r+)/(λr0). However, as will soon become evident, I am still able

to recover the same solution using our expansion and scaling coordinates. Let us consider

the expansion Eq. (6.0.1) using our scaling coordinates while letting λ→ 0 up to the second

order in λ

ψ(r, θ) = ψ00 +
1

2
λr0ψ10P (R̃+ σ) + λ2

(
1

8
r2
0ψ20P R̃(R̃+ 2σ) + σ2ψ10P s1

)
, (6.0.4a)

Ω(r, θ) = Ω00 +
1

2
λr0Ω10P (R̃+ σ) + λ2

(
1

8
r2
0Ω20P R̃(R̃+ 2σ) + σ2Ω10Pω1

)
, (6.0.4b)

I(r, θ) = I00 +
1

2
λr0I10P (R̃+ σ) + λ2

(
1

8
r2
0I20P R̃(R̃+ 2σ) + σ2I10P i1

)
, (6.0.4c)

and compare it with the expansion of Eq. (5.1.4) using the same scaling coordinates

ψ(r, θ) = ψ00 + λ(R̃ψ10 + σψ01) +
1

2
λ2
(
R̃2ψ20 + σ2ψ02 + 2σR̃ψ11

)
, (6.0.5a)

Ω(r, θ) = Ω00 + λ(R̃Ω10 + σΩ01) +
1

2
λ2
(
R̃2Ω20 + σ2Ω02 + 2σR̃Ω11

)
, (6.0.5b)

I(r, θ) = I00 + λ(R̃I10 + σI01) +
1

2
λ2
(
R̃2I20 + σ2I02 + 2σR̃I11

)
. (6.0.5c)

From this it is possible to infer that the expansions are identical given

ψ10 = ψ01 =
r0

2
ψ10P , ψ02 = 2s1ψ10P , ψ11 = ψ20 =

(r0

2

)2

ψ20P , (6.0.6a)

Ω10 = Ω01 =
r0

2
Ω10P , Ω02 = 2ω1Ω10P , Ω11 = Ω20 =

(r0

2

)2

Ω20P , (6.0.6b)

I10 = I01 =
r0

2
I10P , I02 = 2i1I10P , I11 = I20 =

(r0

2

)2

I20P . (6.0.6c)

Using the expansion Eq. (5.1.4) and scaling coordinates Eq. (4.1.1b) with Eq. (6.0.6) it is

possible to show that the first order corrections to the field variables are identical to the

NHEK variables (now omitting the subscript ”P”)

ψ10 =
ΛG
r0
ψ′00, Ω10 =

ΛG
r0

Ω′00, I10 =
ΛG
r0
I ′00, (6.0.7)
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with

G′ :=
ΛΓ

r0Ω00 − 1

(
r0Ω00 −

2

Λ2Γ2

)
(6.0.8)

just as in [4]. This of course means that the field strength is null, FF, and self-similar at

this order. At the second order in the near-NHEK limit the expansion yields

Ω20 =

[
ψ20

ψ′00

+
GΛ2

r2
0

(
Ω′′00

Ω′00

− ψ′′00

ψ′00

)]
Ω′00, I20 =

[
ψ20

ψ′00

+
GΛ2

r2
0

(
I ′′00

I ′00

− ψ′′00

ψ′00

)]
I ′00, (6.0.9)

i.e. the same as the second order corrections to Ω and I in the NHEK limit and the same

as was found in [4]. This allows one to write the second order differential equation for ψ20

in the near-NHEK limit as

ψ′′20 + a(θ)ψ′20 + b(θ)ψ20 + c(R̃, θ) = 0 (6.0.10)

with a(θ), b(θ) given by Eqs. (3.3.15a)-(3.3.15b), while the radial dependence of c(R̃, θ) is

removed by setting

i1 = s1 +
r0

2

[
r0

(
Ω00 +

GΛΩ′00

2

)
− 1

Γ

]
, (6.0.11a)

ω1 = s1 − s′1
r0Ω00 − 1

r0Ω′00

+ 2s1
r0Ω00(Γ− 1) + 1

r0GΓΛΩ′00

− 1

GΓΛΩ′00

− 3r0

4Γ

+
1

r0Ω00 − 1

[
G r

2
0

4
ΛΩ′00 +

r0

4
(3r0Ω00 + 2) +

3r0Ω00 − 1

2GΛΩ′00

]
, (6.0.11b)

where the function s1 can remain arbitrary while still ensuring that c(R̃, θ) is reduced to

c(θ) given by Eq. (3.3.15c). This is again in agreement with the results found by [4]. The

field strength F̃ (1) will be different from its NHEK counterpart since it depends explicitly

on σ and the function s1 but at second order in λ, (F̃ (1))2 is identical to (F (1))2.

Hence, I have successfully shown that the result found in the thesis [4] is a special case

of the more general expansion Eq. (5.1.4) evaluated in the scaling coordinates Eq. (4.1.1b)

up to the second order in λ.
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Chapter 7

Discussion

In this Chapter I will return to certain points from throughout the thesis which demand

further discussion.

Although the validity of the BZ process by now is quite clear there is still much left to be

investigated about the transport of energy from the rotating black hole. The earlier setbacks

of the theory have been attributed to the lack of understanding of the physical processes

behind the mechanism. However, as mentioned, many numerical GRMHD simulations sug-

gest that the BZ process is a good candidate for describing the energy extraction of Kerr

black holes, and that the presence of an ergosphere is an important factor in the mechanism.

Thus, I accepted the general consensus that this process is in fact the driving factor behind

the energy extraction of rotating black holes, such that I was able to start my analysis of

the magnetically-dominated magnetosphere. Since the main goal of my thesis was to per-

turbatively move away from the near-horizon spacetime towards the far region, I did not

spend more time familiarising myself with the BZ process and its possible shortcomings.

Throughout the thesis and the articles reviewed within this project, primarily [3, 12], it

was assumed that since the only stable and physically acceptable solution in flat spacetime

had to be magnetically-dominated with F 2 > 0, then this also had to be true in the NHEK

and near-NHEK limit of the Kerr solution. However, neither the NHEK nor the near-NHEK

spacetimes are asymptotically flat, and it is thus not entirely clear whether the electrically-

dominated solution, F 2 < 0, or null solution, F 2 = 0, could have any physical meaning

in this regime, instead of the sought out magnetically-dominated solution. As mentioned

in [32], electrically-dominated solutions are unstable with regard to acceleration of charged

particles in flat spacetime where it is possible for the magnetic field to locally vanish. This
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would allow for an infinite acceleration of particles. The instability could possibly be resolved

due to the strong gravitational fields in the NHEK and near-NHEK region but as far as I

can tell at this date, not much (if any) work concerning this has been published.

The magnetically-dominated NHEK solution had the disadvantage of lacking a regular

energy outflow (or negative infall) at the rotation axis, sin θ = 0, as well as F itself being

irregular at the rotational axis. The latter problem was countered by performing a small

angle expansion around θ = 0. In [3] it is postulated that this might be due to the choice

of ansatz for ψ0 used to solve the second order linear differential equation for ψ2. A choice

which was made specifically with the intention of finding an exact solution such that the

sign of F 2 could be investigated. It is, therefore, natural to search for other ansatzes which

could ensure regularity, however, this was not the main goal of my thesis, and I did not have

the time necessary to consider other possibilities.

Finding a novel perturbation which allowed for a consistent expansion of the near-NHEK

attractor proved to be somewhat tricky. I quickly realised that using the same Taylor ex-

pansion of the field variables which led to the NHEK attractor solution as well as the

magnetically-dominated second post-NHEK order failed to satisfy the condition of consis-

tency in the near-NHEK limit. I dubbed this the ”naive approach” since it did not take the

deviation from extremality characterised by σ into account and in turn ignored the contri-

bution from the near-NHEK terms. In an attempt to correct this, my next course of action

was to introduce a σλ-term in the expansion which resulted in a mixing of the field variables

ψ1 and ψ2 at the second order in λ. This, however, also resulted in an inconsistent expansion

of the field variables, specifically yielding a radially dependent polar current which of course

was not permitted. The expansion which I settled on did not only permit an expansion

of one variable, λ, but in fact an expansion of two variables, i.e. λ and the introduced

quantity κ = λσ to the second order in both λ and κ (or σ). This meant that the purely

NHEK terms ψn0 and near-NHEK terms ψ0n were introduced at both the first and second

post-near-NHEK order corrections, while also taking the possibility of mixed terms ψnn into

account1. Without much loss of generality this expansion made it possible to find that the

first order correction to the near-NHEK limit was solved by the same equations and field

variables found at the first order in NHEK. I also found that it was possible to construct

a consistent second order correction to near-NHEK limit. While perhaps being both the

weakness of the expansion as well as the benefit of having constructed such a general pertur-

bation, the transition from having only one of each field variable at each post-near-NHEK

1Here 1 ≤ n ≤ 2.
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order to work with, to having ψ10 and ψ01 at the first order in λ and ψ20, ψ02, and ψ11 at

the second order in λ, allows one to play around with, or tweak, the solution much more.

The setback of this is that we are left with more variables than equations which means that

one has to get creative in order to explicitly determine the unknown variables that of course

must be known in terms of ψ00, I00, and Ω00. Only then will it be possible to determine

the sign of F̃ 2 which, hopefully, is found to be positive given the appropriate ansatz for ψ00

and Ω00. Another, arguably less prominent, setback of the expansion in Section 5.1 is that

due to the many field variables, some of the first order corrections are rather lengthy and

perhaps overwhelming to look at, while the corrections at second order in λ are even worse.

Especially concerning the second order differential equation for ψ20 where the constant c∗(θ)

from Eq. (5.5.17) is huge, a problem which should be possible to alleviate by using parts

of the constant to define some functions that would allow one to write c∗(θ) much more

compactly. I did not have enough time available to perform this algebraic manipulation,

but it would definitely help make the results more digestible to the reader.

Ideally the presence of the light surfaces in the black hole magnetosphere should also be

taken into account in the NHEK region as the ILS, possibly, will lie within the ergosphere.

In [3] they were able to perturbatively construct a magnetically-dominated magnetosphere

in the second order of λ without considering the ILS and since the goal was to review the

paper, finding the location of the ILS in the NHEK limit was outside the scope of this

thesis. However, it could still be interesting to locate the ILS in order to see if this, like

in the near-NHEK case, is pushed towards infinity or if it actually contributes to the field

strength found in the magnetosphere.

In Section 5.5 I argue that it should be possible to manipulate one of the two equations

(the one which did not yield I20 and ψ11) obtained from the FF condition at second order in

λ. The goal is to write it of the same form as the NHEK second order differential equation

for ψ2 plus some new σ-dependent terms that constitute the deviation from NHEK, i.e.

the near-NHEK terms. While I do find that it is indeed possible to recover a differential

equation for ψ20 with a(θ) identical to the NHEK constant, b∗(θ) that is also the same as

in the NHEK case plus some small σ deviation, I did not recover a constant c∗(θ) that was

entirely equal to the NHEK c(θ) plus an additional σ-term. As mentioned, the divergence

from the desired result is likely to have arisen due to the discrepancy in the Taylor expansion

of the field variables used in the NHEK limit versus the near-NHEK limit. Of course it would

be ideal to discover the exact transformation which renders c∗(θ) = c(θ) +σ(. . .) but at this

point I was running out of the time required to perform the necessary calculation. Since
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the constant did not contain a radial dependence I concluded that the overall result would

not differ greatly from if I had indeed succeeded in showing that c∗(θ) is the same as the

NHEK constant with an additional σ-proportional term. Therefore, I accepted that while

not ideal, this would probably not affect my calculations.
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Chapter 8

Conclusion

In this thesis I have reached the conclusion that the FFE equations are deterministic in

the magnetically-dominated magnetosphere. They are thus useful tool for describing the

energy extraction from the rotating black hole ergosphere which is governed by the BZ

process. I determined that the extreme Kerr background is not able to correctly resolve

the near-horizon spacetime which instead is governed by the near-horizon extreme Kerr

geometry. The geometry was found to be a spacetime in its own right with co-rotating

coordinates (T, R, θ, Φ). I found that the enhanced symmetry of the NHEK regime allows

for the possibility of solving the non-linear FFE equations, specifically the stream equation

Eq. (2.4.14) by constructing the field strength using the field variables (ψ(θ), I(θ), Ω(θ)). I

was able to derive the NHEK geometry Eq. (3.1.4) by considering the scaling coordinates

Eq. (3.1.2) and by performing an expansion in λ. Starting from the NHEK geometry it

is possible to recover the null (given the Znajek condition of regularity) and self-similar

NHEK attractor solution Eq. (3.2.3b) at leading order in λ for λ → 0. This is in fact the

solution that one finds at leading order for all stationary, axisymmetric field strengths F in

the NHEK limit of the Kerr metric. In the first post-NHEK order I recreated the results

found in [3] where I found the field variables to be given by Eq. (3.3.8) with the function

G given by Eq. (3.3.7), while the second post-NHEK order field variables Ω2 and I2 were

found to be Eqs. (3.3.12)-(3.3.13). The magnetic flux ψ2 was a bit more tricky and had to be

determined by the second order linear differential equation Eq. (3.3.14). With appropriate

ansatzes for ψ0 and Ω0 the general solution Eq. (3.5.2), which consisted of a homogeneous

and a non-homogeneous term, was found. This allowed for the expansion of F 2 around

θ = 0 such that an explicit equation for the field strength Eq. (3.5.8) could be used to create
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Figure 3.1. This illutrates the positive regions of F 2 in the range β = −2, 0.67 / g ≤ 1. I

concluded that while the extraction of angular momentum L is finite (and negative) at the

rotation axis, the extraction of energy E was irregular for θ → 0, Eq. (3.5.9). Lastly in the

NHEK limit I found that you recover the MD class of solutions Eq. (3.4.4) from the NHEK

order as long as the post-NHEK orders vanish.

I concluded that while the NHEK limit of the Kerr solution is a nice introduction to the

the near-horizon geometry, observational evidence suggests that black holes are more likely

to rotate at a near-extremal rate rather than at extremality with J = M2. Consequently,

the near-NHEK limit of the Kerr solution is probably more astrophysically realistic and

was introduced. I found the near-NHEK geometry using a new set of scaling coordinates

(T̃ , R̃, θ, Φ̃) and an expansion in the deviation of extremality σ given by Eq. (4.1.1b). I

find that the near-NHEK spacetime co-exists with the NHEK spacetime, and far region

(the extreme Kerr limit). It was concluded that the far region does not resolve the throat

region (see Figure 4.1) while neither the near-NHEK spacetime nor the NHEK spacetime are

asymptotically flat and thus cannot resolve the far region. From the near-NHEK geometry,

the near-NHEK attractor solution was found Eq. (4.1.5) which, just as the NHEK attractor

solution, is null and self similar. It is also the solution one ends up with for any stationary,

axisymmetric Kerr field strength in the near-NHEK limit. I concluded that the NHEK

attractor and near-NHEK attractor solutions are very similar and that it is indeed possible to

recover the NHEK attractor solution from the near-NHEK attractor solution in three ways;

i) by setting σ = 0 in Eq. (4.1.2), ii) by considering the limit σ � R̃, and lastly iii) by using

the local diffeomorphism from near-NHEK coordinates to NHEK coordinates Eq. (4.2.3).

This also showed that one can superpose F̃ (−1) and F (−1) to create new FF solutions.

In my attempts to find a consistent post-near-NHEK expansion, where the field variables

only depend on the quantity θ as dictated by the MD case of solutions, I concluded that

what I dubbed the ”naive approach” failed to produce a consistent second order differential

equation for the second order field variable ψ2. I, furthermore, found that the expansion

Eq. (4.3.9) presented in Section 4.3.2 with the extra σλ-term also could not be used to find

consistent field variables, failing at the first order in λ. I concluded that the expansion

which is consistent in all post-near-NHEK orders was not only an expansion in λ but in σ

too, Eq. (5.1.3). Using this expansion, the Znajek condition of regularity at the horizon now

yields conditions for I01, and I02 Eqs. (5.2.3)-(5.2.4) while the second Znajek condition was

still valid for κ = 0, i.e. I10. I found that the critical surface, the ILS, is pushed towards

infinity in the near-NHEK limit, like the ergoregion, as seen by Eq. (5.3.3). Thus we cannot
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use this surface to say anything about the field strength inside the magnetosphere. Instead

I demonstrated that by removing all radially dependent terms from the novel near-NHEK

expansion, you recover the MD class of solutions with corrections to the field strength F̃ 2
MD

in both the first and second post-near-NHEK order. Both orders of corrections to the field

strength are null and self-similar. This is a necessary condition that must be satisfied since

the MD solution is one of the only known analytical solutions in the Kerr spacetime. I then

found that the first post-near-NHEK order (now including radial dependent terms) is solved

by the NHEK field variables1 found at the first order in λ.2 Hence, the field strength is null

and self-similar at this order. At the second order in λ I was able to determine the variables

Ω20, Ω11 found in Eq. (5.5.12), and variables I20, I11 found in Eq. (5.5.13). I also constructed

a second order differential equation for ψ20, Eq. (5.5.15), which approximately contained the

NHEK differential equation for ψ20 (with σ = 0) plus some extra σ-proportional near-NHEK

terms that were ”packed” into the constants b∗(θ) and c∗(θ) given by Eqs. (5.5.16)-(5.5.17).

This leaves you with the following eight unknown variables: ψ00, Ω00, ψ01, Ω01, Ω02, ψ02,

ψ11, and lastly ψ20. I conclude that it is difficult to analytically examine the sign of F̃ 2 due

to the many unknowns. Finally, I concluded that the expansion and results found by Pompili

[4] is a special case of our novel near-NHEK perturbation with the conversion between our

and their field variables found to be given by Eq. (6.0.6).

Despite the fact that the NHEK limit of the Kerr solution is less physical than the near-

NHEK limit, it still is interesting to explore the possibility of making the energy outflow

inside the magnetosphere regular. There is ample opportunity to play around with the

ansatz for ψ0 (or Ω0), which could be the key to ensuring regularity at the rotation axis.

Perhaps it would be interesting to consider the ILS to this purpose since this could produce

a regularity condition which could be relevant in the NHEK regime.

The novel near-NHEK expansion and the eight unknown field variables that have yet

to be explicitly determined allow for plenty to be discovered. Given that one is creative

in terms of finding equations that open for the potential of determining the field variables,

it should be possible to make some concrete statements about the positive, or negative,

regions of the field strength F̃ 2 at second order in λ. Furthermore, it would be interesting

to investigate the possibility that the electrically-dominated solution has physical meaning

in the near-NHEK region which isn’t asymptotically flat, as I already touched upon in

1Of course one has to rewrite the variables such that they follow the convention ψ0 = ψ00 and so forth.
2The expansion is also technically in σ but I have not written this explicitly since it disrupts the flow of

the text.
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Chapter 7. Lastly it could be interesting to study the perturbative approach numerically

in order to reach higher orders in λ than λ2 and investigate whether this helps to recover

a magnetically-dominated field strength or reveal other fascinating features which can be

explored.
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Appendix A

Post-NHEK expressions

The 2nd post-NHEK order correction to the four current is [3]

j(1) = jT(1)∂T +R2jR(1)∂R +Rjθ(1)∂θ +RjΦ
(1)∂Φ, (A.0.1)

with the following components

jT(1) = ∂θ

[
Γ(2 + r2

0Ω1)− 4(1− Γ)(r0Ω0 − 1)

Γ3
ψ′1 −

4(1− Γ)r0ψ
′
0

r3
0Γ3

Ω1

]
+

Γ(2 + r0Ω1)− 2(1− 2Γ)(r0Ω0 − 1)

r3
0Γ3

(
ψ1 + 2

Γ′ψ′1
Γ

)
+

8ψ′0
r4
0Γ2

(
Λ′

Λ
+
ψ′′0
ψ′0

+
r0I
′
0

Λψ′0
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1− 1

Γ
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+
∂θ(Λψ

′
0Ω2)

2r0Γ2Λ

+
ψ′1
r2
0Γ2

[
(2 + r2

0Ω1)Λ′

r0Λ
− 2I0

ΓΛψ′0

(
3

Γ′

Γ
+ 2(1− Γ)

Λ′

Λ

)]
− 12

r3
0Γ3Λ

∂θ

[
I0

(
1− 1

Γ

)]
− 2Ω1ψ

′
0

r2
0Γ3

[
2(1− Γ)

Λ′

Λ
+ (5− 4Γ)

Γ′

Γ

]
+

I0
2r0Γ2Λψ′0

[
ψ′′2 + ψ′1

(
I ′0
I0
− ψ′′0
ψ′0

)
+ 2ψ2

]
− 2I0Λ

r3
0

(
Λ′

Λ
+

I ′0
2I0

+
Γ′

Γ

)
+

Λ2ψ′0
r4
0

(
ψ′′0
ψ′0

+ 3
Λ′

Λ

)
− 2Γ′ψ′0

r4
0Γ4

(3 + Γ3Λ2 − 5r0Ω0),

(A.0.2a)

jR(1) =
r0Γ(4I ′1 − r0ΓI ′2)− 4(2− Γ)I ′0

2r3
0Γ4Λ

, (A.0.2b)

jθ(1) =
r0I2Γ− 2I1
r2
0Γ3Λ

, (A.0.2c)

jΦ
(1) = −jT(1) +

ψ′0
2r4

0Γ3Λ2

{
− 8

Γ′

Γ
+ 2Γ2Λ3

[
(2 + r2

0Ω1)Γ′Λ− 2r0
I ′0
ψ′0

]
+ Γ3Λ3

[
r0
I ′0
ψ′0

(
r0
ψ′1
ψ′0
− 2

)
+ r2

0ΛΩ′1 + Λ

(
3

Λ′

Λ
+
ψ′′0
ψ′0
− 2r0

Γ2Λ2

ψ1

ψ′0

)
(2 + r2

0Ω1)

]
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+ 4Γ

[
2r0Γ

I ′0
ψ′0

+
Λ′

Λ

(
4− r0

ψ′1
ψ′0

)
+

(
2r0

ψ1

ψ′0
− 4

ψ′′0
ψ′0

+ r0
ψ′′1
ψ′0

)]
+ 2r0

I0
ψ′0

Γ3Λ3

[
2

(2 + Γ)

Γ

Λ′

Λ
+

(3 + 2Γ)

Γ

Γ′

Γ

]
− r2

0I0
ψ′1
ψ′20

Γ3Λ3
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ψ′′0
ψ′0
− 2

Λ′

Λ
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Γ′

Γ
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ψ′1

)
+ 2r0I0

ψ1

ψ′20
Γ2Λ3

(
1 +

2

Γ
− r0

Γ2Λ2

ψ2

ψ1

)}
. (A.0.2d)

The functions in the c(θ) coefficient of the second-order linear differential equation for

ψ2 are [3]

A(θ) = 8

(
ψ′0
I0

)2(
4Λ2 − 1

Λ2

Λ′

Λ
+

4Λ2 + 1

Λ2

ψ′′0
ψ′0
− I ′0
I0

)
+ 2r0ΛΓ2ψ

′
0

I0

[
4

(
1 +

1

Γ3Λ2

)
Γ′

Γ
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Λ′
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ψ′′0
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I ′0
I0
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Γ
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Λ′

Λ
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1
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+
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+
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1

2
− 1

Γ
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I ′0
I0

+
Λ2

2
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Λ′

Λ
+
ψ′′0
ψ′0

)]
, (A.0.3a)

B(θ) = −4r0
ψ′0
I0

[
Λ′

Λ

(
2

Λ′

Λ
+ 3

Λ′′

Λ′
+ 7

ψ′′0
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)
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(
ψ′′0
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)2

+ 3
ψ

(3)
0

ψ0
+
I ′0
ı0

(
ψ′′0
ψ′0
− I ′′0
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0ΛΓ
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1
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Γ
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+
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ψ
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0
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C(θ) = r2
0

{
Λ′′

Λ

(
Λ(3)

Λ′′
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ψ′′0
ψ′0

)
+

Λ′

Λ
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Λ′
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ψ′′0
ψ′0

)
− 5
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ψ′0
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ψ
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0

ψ′0

]

+

[
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− 3
ψ

(3)
0
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](
Λ′

Λ
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ψ′0
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I0
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− I ′0
I0

ψ
(3)
0

ψ′0
+
ψ

(4)
0

ψ′0

}
. (A.0.3c)

The coefficients of Eq. (3.3.16) are given by

D(θ) = 4(1− Λ2) + 2r0(Γ + 4)ΓΛ3 I0
ψ′0

+ r0

(
− 12

Γ2
+

20

Γ
+ Γ2Λ2 − 8

)(
I0
ψ′0
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0

ψ2

ψ′0
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Λ′

Λ
+
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ψ′0
− ψ′2
ψ2

)(
I0
ψ′0

)2

, (A.0.4a)

E(θ) = r0Λ2 I0
ψ′0

{
− 4

(
Λ′

Λ
+
ψ′′0
ψ′0

+
I ′0
I0

+ 2
G′

G

)
+ 2r0G′

I0
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[
Λ′
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ΓΛ
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Λ′

Λ
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Λ′
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ψ′′0
ψ′0

)2

+
ψ

(3)
0

ψ′0

]}
. (A.0.4b)
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Appendix B

Post-near-NHEK expressions

The components of the second order correction to the four-current j̃(1) in Section 4.3.1 are

j̃T̃(1) =
(

ΓΛ′(Γ2(
I0ψ
′
2

Λψ′0
+ Ω2ψ

′
0 + 2Ω1ψ

′
1)r3
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2 + 6I0(Λ′ψ′0 + Λψ′′0 ))Γ− 12Λ2I0Γ′ψ′0

))
σ

+ R̃2
(
r3
0Λ(ψ′0

(
Ω′2ψ

′
0 + ψ′2Ω′0 + 2ψ′1Ω′1 + Ω2ψ

′′
0 + 2Ω1(2ψ1 + ψ′′1 )

)
Λ2 + (Λ′ψ′0(Ω2ψ

′
0 + 2Ω1ψ

′
1)

+ I0(4ψ2 + ψ′′2 ))Λ + I0Λ′ψ′2)Γ3 + 4ψ′0

((
Λ(−2Γ3Λ4 − 3Λ2 + 2)Γ′ + Γ(−3Γ3Λ4 + 2(Γ + 3)Λ2 − 4Γ)Λ′

)
ψ′0
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+ ΓΛ(−Γ3Λ4 + 2(Γ + 3)Λ2 + 4Γ)ψ′′0

)
Γ− r2

0Λ
(

Λ2
(
ψ′0(ψ′1Ω′0 + ψ′0Ω′1 + Ω1ψ

′′
0 )Λ2

+ (3Ω1Λ′ψ′0
2 + I0(2ψ1 + ψ′′1 ))Λ + 3I0Λ′ψ′1

)
Γ4 + 2Λ3Γ′(ΛΩ1ψ

′
0
2 + I0ψ

′
1)Γ3

− 8Λψ′0

(
Λ′(Ω1ψ

′
0 + Ω0ψ

′
1) + Λ

(
ψ′1Ω′0 + ψ′0Ω′1 + Ω1ψ

′′
0 + Ω0(2ψ1 + ψ′′1 )

))
Γ2

+ 4(2ψ′0(ψ′1Ω′0 + ψ′0Ω′1 + Ω1ψ
′′
0 )Λ2 + (2Ω1Λ′ψ′0

2 + I0(3ψ1 + 2ψ′′1 ))Λ + 2I0Λ′ψ′1)Γ

− 4ΛΓ′(ΛΩ1ψ
′
0
2 + I0ψ

′
1)
)

Γ + 2r0

(
2Λ3(Λ2Ω′0ψ

′
0
2 + I0(3Λ′ψ′0 + Λψ′′0 ))Γ4 + ψ′0(3I0Γ′Λ4

− 2(2ψ1 − 2ψ′0Ω′0 − 2Ω0ψ
′′
0 + ψ′′1 )Λ3 + 2Λ′(2Ω0ψ

′
0 − ψ′1)Λ2 − 2(2ψ1 + ψ′′1 )Λ + 2Λ′ψ′1)Γ3

− 20Λ2ψ′0(ψ′0(Ω0Λ′ + ΛΩ′0) + ΛΩ0ψ
′′
0 )Γ2 + 2Λ(Λ2(5Ω0Γ′ + 6Ω′0)ψ′0

2 + 6I0(Λ′ψ′0 + Λψ′′0 ))Γ

− 12Λ2I0Γ′ψ′0

))]
. (B.0.1d)

The coefficients of the second order linear differential equation for ψ2 in Section 4.3.1

are

ã(θ) = a(θ), (B.0.2a)

b̃(θ) =
1

Λ2(R̃+ σ)2ψ′0(r0Ω0 − 1)

[
2σR̃

(
Λ
(
ψ′0(Λ′′ − r0(2Λ′Ω′0 + Ω0Λ′′))− 3Λ′ψ′′0 (r0Ω0 − 1)

)
+ Λ′2ψ′0(1− r0Ω0) + Λ2(−2r0ψ

′′
0 Ω′0 + 2ψ′0(r0Ω0 − 1) + ψ0

(3)(1− r0Ω0))
)

+ R̃2
(

Λ(ψ′0(Λ′′ − r0(2Λ′Ω′0 + Ω0Λ′′))− 3Λ′ψ′′0 (r0Ω0 − 1)) + Λ′2ψ′0(1− r0Ω0)

+ Λ2
(
− 2r0ψ

′′
0 Ω′0 + 2ψ′0(r0Ω0 − 1) + ψ0

(3)(1− r0Ω0)
))

+ σ2
(

ΛΛ′(−2r0ψ
′
0Ω′0

− 3ψ′′0 (r0Ω0 − 1)) + Λ
(

Λ′′ψ′0(1− r0Ω0) + Λ(ψ0
(3)(1− r0Ω0)− 2r0ψ

′′
0 Ω′0)

)
+ Λ′2ψ′0(1− r0Ω0)

)]
, (B.0.2b)

with a(θ) which can be found in Eq. (3.3.15a). The expression for c̃(θ) is very long and I

have thus imported it directly from Mathematica below. The function G(θ) is to be read as

G from Eq. (3.3.7).
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The components of the second order correction to the MD four-current in Section 5.4

are

j̃T̃(1) = 2(Γ− 1)Γ
(

Γ2
(
− 2σR̃ψ′′01 + 6r0σR̃Ω00ψ

′′
00 + 4r0σR̃Ω01ψ

′′
00

+ 2r0σψ
′
01(2(R̃+ σ)Ω′00 + σΩ′01) + 4r0σR̃Ω00ψ

′′
01 + 3r0R̃

2Ω00ψ
′′
00 − 3σ2ψ′′00 − 2σ2ψ′′01

− σ2ψ′′02 + 6r0σ
2Ω00ψ

′′
00 + 4r0σ

2Ω01ψ
′′
00 + r0σ

2Ω02ψ
′′
00 + 4r0σ

2Ω00ψ
′′
01 + 2r0σ

2Ω01ψ
′′
01

+ r0σ
2ψ′02Ω′00 + r0σ

2Ω00ψ
′′
02

)
− 2Γ

(
ψ′′00

(
2σR̃(5r0Ω00 + r0Ω01 − 3) + R̃2(5r0Ω00 − 3)

+ 2σ2(3r0Ω00 + r0Ω01 − 2)
)

+ 2r0σ(R̃+ σ)ψ′01Ω′00 + 2σ(R̃+ σ)ψ′′01(r0Ω00 − 1)
)

+ r0ψ
′
00

(
(Γ− 1)Ω′00(2σR̃(Γ2 + 4Γ− 6) + R̃2(Γ2 + 4Γ− 6) + 6σ2(Γ− 1))

+ σΓ(4(Γ− 1)(R̃+ σ)Ω′01 + σΓΩ′02)
)

+ r0R̃Γ3Ω00(R̃+ 2σ)ψ′′00 + 6(R̃+ σ)2ψ′′00(r0Ω00 − 1)
)

− Γ′
(
ψ′00

(
− 2σR̃(Γ− 1)

(
− 2r0Γ2(Ω00 + Ω01) + 6Γ(4r0Ω00 + r0Ω01 − 2) + r0Γ3Ω00

− 24r0Ω00 + 24
)
− R̃2(Γ− 1)(r0Γ3Ω00 − 2r0Γ2Ω00 + 12Γ(2r0Ω00 − 1)− 24r0Ω00 + 24)

+ σ2(Γ3(6r0Ω00 + 4r0Ω01 + r0Ω02 − 3)− 2Γ2(18r0Ω00 + 8r0Ω01 + r0Ω02 − 11)

+ 6Γ(9r0Ω00 + 2r0Ω01 − 7)− 24r0Ω00 + 24)
)

+ σΓ(2ψ′01

(
R̃(Γ2(2r0Ω00 − 1) + Γ(6− 8r0Ω00)

+ 6r0Ω00 − 6) + σ(Γ2(2r0Ω00 + r0Ω01 − 1)− 2Γ(4r0Ω00 + r0Ω01 − 3) + 6r0Ω00 − 6)
)

+ σ(Γ− 2)Γψ′02(r0Ω00 − 1))
)
, (B.0.3)

j̃R̃(1) =
√

2
(
I ′00(−2σR̃(Γ− 2)− R̃2(Γ− 2) + 2σ2(Γ2 − Γ + 1)) + σΓ(σΓI ′02 − 2(R̃+ σ)I ′01)

)
,

(B.0.4)

j̃Φ̃
(1) = Γ′

((
(Γ− 1)((5r0Ω00 + 3r0Ω01 + r0Ω02 − 3)Γ3 − 2(15r0Ω00 + 7r0Ω01 + r0Ω02 − 9)Γ2

+ 12(4r0Ω00 + r0Ω01 − 3)Γ− 24r0Ω00 + 24)σ3 + R̃
(
− 2r0Ω01Γ5 + (9r0Ω00 + 8r0Ω01

+ r0Ω02 − 3)Γ4 − (75r0Ω00 + 34r0Ω01 + 3r0Ω02 − 29)Γ3 + 2(99r0Ω00 + 26r0Ω01 + r0Ω02

− 63)Γ2 − 12(17r0Ω00 + 2r0Ω01 − 14)Γ + 72(r0Ω00 − 1)
)
σ2 + R̃2

(
− r0Ω01Γ5 + (6r0Ω00

+ 4r0Ω01)Γ4 + (−60r0Ω00 − 17r0Ω01 + 12)Γ3 + 2(90r0Ω00 + 13r0Ω01 − 54)Γ2 − 6(33r0Ω00

+ 2r0Ω01 − 27)Γ + 72(r0Ω00 − 1)
)
σ + 2R̃3

(
r0Ω00Γ4 + (2− 10r0Ω00)Γ3 + 6(5r0Ω00 − 3)Γ2

+ (27− 33r0Ω00)Γ + 12(r0Ω00 − 1)
))
ψ′00 + σΓ

((
(Γ− 1)((3r0Ω00 + 2r0Ω01 − 1)Γ2

− 2(7r0Ω00 + 2r0Ω01 − 5)Γ + 12(r0Ω00 − 1))σ2 + 2R̃(−r0Ω00Γ4 + r0(4Ω00 + Ω01)Γ3

+ (−17r0Ω00 − 3r0Ω01 + 11)Γ2 + 2(13r0Ω00 + r0Ω01 − 11)Γ− 12r0Ω00 + 12)σ

+ R̃2(−r0Ω00Γ4 + 4r0Ω00Γ3 + (11− 17r0Ω00)Γ2 + (26r0Ω00 − 22)Γ− 12r0Ω00 + 12)
)
ψ′01
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+ σ(σ + R̃)Γ(Γ2 − 3Γ + 2)(r0Ω00 − 1)ψ′02

))
− 2(Γ− 1)Γ

(
r0σR̃(2σ + R̃)(ψ′01Ω′00 + Ω01ψ

′′
00

+ Ω00ψ
′′
01)Γ4 + σ

(
5r0Ω00ψ

′′
00σ

2 + 3r0Ω01ψ
′′
00σ

2 + r0Ω02ψ
′′
00σ

2 − 3ψ′′00σ
2 + 3r0Ω00ψ

′′
01σ

2

+ 2r0Ω01ψ
′′
01σ

2 − ψ′′01σ
2 + r0Ω00ψ

′′
02σ

2 − ψ′′02σ
2 + r0(σ + R̃)ψ′02Ω′00σ − 3R̃ψ′′00σ

+ 5r0R̃Ω00ψ
′′
00σ + 4r0R̃Ω01ψ

′′
00σ + r0R̃Ω02ψ

′′
00σ + 4r0R̃Ω00ψ

′′
01σ + 2r0R̃Ω01ψ

′′
01σ − R̃ψ′′02σ

+ r0R̃Ω00ψ
′′
02σ + r0ψ

′
01((3σ2 + 4R̃σ + 2R̃2)Ω′00 + 2σ(σ + R̃)Ω′01) + 2r0R̃

2Ω01ψ
′′
00 + 2r0R̃

2Ω00ψ
′′
01

)
Γ3

− (σ + R̃)(r0ψ
′
02Ω′00σ

2 + 15r0Ω00ψ
′′
00σ

2 + 7r0Ω01ψ
′′
00σ

2 + r0Ω02ψ
′′
00σ

2 − 9ψ′′00σ
2 + 7r0Ω00ψ

′′
01σ

2

+ 2r0Ω01ψ
′′
01σ

2 − 5ψ′′01σ
2 + r0Ω00ψ

′′
02σ

2 − ψ′′02σ
2 + r0ψ

′
01(7(σ + R̃)Ω′00 + 2σΩ′01)σ − 4R̃ψ′′00σ

+ 16r0R̃Ω00ψ
′′
00σ + 7r0R̃Ω01ψ

′′
00σ − 5R̃ψ′′01σ + 7r0R̃Ω00ψ

′′
01σ − 2R̃2ψ′′00 + 8r0R̃

2Ω00ψ
′′
00)Γ2

+ 2(σ + R̃)(2r0σ(σ + R̃)ψ′01Ω′00 + (2(4r0Ω00 + r0Ω01 − 3)σ2

+ 2R̃(7r0Ω00 + r0Ω01 − 5)σ + R̃2(7r0Ω00 − 5))ψ′′00 + 2σ(σ + R̃)(r0Ω00 − 1)ψ′′01)Γ

+ r0(Γ− 1)ψ′00

(
(σ + R̃)((5Γ2 − 10Γ + 6)σ2 − 4R̃(4Γ− 3)σ + R̃2(6− 8Γ))Ω′00 + σΓ(((3Γ− 4)σ2

+ 2R̃(Γ2 + 3Γ− 4)σ + R̃2(Γ2 + 3Γ− 4))Ω′01 + σ(σ + R̃)ΓΩ′02)
)
− 6(σ + R̃)3(r0Ω00 − 1)ψ′′00

)
.

(B.0.5)

The components of the second order correction to the four-current j̃(1) in Section 5.5 are

j̃T̃(1) = 2
(

ΓΛ′
((

6r0Ω00 + Γ(−12r0Ω00 − 4r0Ω01 + Γ(r0(6Ω00 + 4Ω01 + Ω02)− 3) + 8)− 6
)
ψ′00

+ Γ
(

2(−2r0Ω00 + Γ(2r0Ω00 + r0Ω01 − 1) + 2)ψ′01 + Γ(r0Ω00 − 1)ψ′02

))
+ Λ

(
2Γ′((−3r0Ω00

+ Γ(3r0Ω00 + r0Ω01 − 2) + 3)ψ′00 + Γ(r0Ω00 − 1)ψ′01) + Γ
((
− 3ψ′′00 − 2ψ′′01 − ψ′′02

+ r0

(
ψ′02Ω′00 + 2ψ′01(2Ω′00 + Ω′01) + (4Ω01 + Ω02)ψ′′00 + 2Ω01ψ

′′
01 + Ω00(6ψ′′00 + 4ψ′′01 + ψ′′02)

))
Γ2

− 4(r0ψ
′
01Ω′00 + (3r0Ω00 + r0Ω01 − 2)ψ′′00 + (r0Ω00 − 1)ψ′′01)Γ + r0ψ

′
00(6Ω′00(Γ− 1)2

+ Γ(4(Γ− 1)Ω′01 + ΓΩ′02)) + 6(r0Ω00 − 1)ψ′′00

)))
σ2 + 2R̃

(
− r0Λ2

(
ψ′00(3Ω00Λ′ + ΛΩ′00)

+ ΛΩ00ψ
′′
00

)
Γ5 − 2r0Λ3Ω00Γ′ψ′00Γ4 + 2

(
Λ′
(
− ψ′01 − ψ′10 − ψ′11 + r0

(
(2Ω10 + Ω11)ψ′00

+ Ω10ψ
′
01 + Ω01(2ψ′00 + ψ′10) + Ω00(4ψ′00 + 2(ψ′01 + ψ′10) + ψ′11)

))
+ Λ

(
2ψ20(r0Ω00 − 1)

+ 2ψ10(2r0Ω00 + r0Ω10 − 1)− ψ′′01 − ψ′′10 − ψ′′11 + r0

(
(2ψ′10 + ψ′11)Ω′00 + ψ′10Ω′01 + ψ′01(2Ω′00 + Ω′10)

+ ψ′00(4Ω′00 + 2(Ω′01 + Ω′10) + Ω′11) + (2Ω10 + Ω11)ψ′′00 + Ω10ψ
′′
01 + Ω01(2ψ′′00 + ψ′′10)

+ Ω00(4ψ′′00 + 2(ψ′′01 + ψ′′10) + ψ′′11)
)))

Γ3 − 4
(

Λ′((r0(5Ω00 + Ω01 + Ω10)− 3)ψ′00

+ (r0Ω00 − 1)(ψ′01 + ψ′10)) + Λ
(
ψ10(r0Ω00 − 1)− 3ψ′′00 − ψ′′01 − ψ′′10 + r0

(
(ψ′01 + ψ′10)Ω′00
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+ ψ′00(5Ω′00 + Ω′01 + Ω′10) + (Ω01 + Ω10)ψ′′00 + Ω00(5ψ′′00 + ψ′′01 + ψ′′10)
)))

Γ2

+ 2
(

6(r0Ω00 − 1)Λ′ψ′00 + Λ(Γ′((r0(5Ω00 + Ω01 + Ω10)− 3)ψ′00 + (r0Ω00 − 1)(ψ′01 + ψ′10))

+ 6r0ψ
′
00Ω′00 + 6(r0Ω00 − 1)ψ′′00)

)
Γ− 12Λ(r0Ω00 − 1)Γ′ψ′00

)
σ + R̃2

(
− r0Λ2(ψ′00(3Ω00Λ′

+ ΛΩ′00) + ΛΩ00ψ
′′
00)Γ5 − 2r0Λ3Ω00Γ′ψ′00Γ4 + 2

(
Λ′
(
r0(4Ω10 + Ω20)ψ′00 + 2r0Ω10ψ

′
10

− 2ψ′10 − ψ′20 + r0Ω00(4(ψ′00 + ψ′10) + ψ′20)
)

+ Λ
(

2ψ10(2r0Ω00 + r0Ω10 − 1)− 2(ψ20 + ψ′′10)

− ψ′′20 + r0

(
2ψ20Ω00 + (4(ψ′′00 + ψ′′10) + ψ′′20)Ω00 + (4ψ′10 + ψ′20)Ω′00 + 2ψ′10Ω′10

+ ψ′00(4(Ω′00 + Ω′10) + Ω′20) + (4Ω10 + Ω20)ψ′′00 + 2Ω10ψ
′′
10

)))
Γ3 − 4

(
Λ′((5r0Ω00

+ 2r0Ω10 − 3)ψ′00 + 2(r0Ω00 − 1)ψ′10) + Λ
(
ψ10(r0Ω00 − 1)− 3ψ′′00 − 2ψ′′10 + r0((5ψ′00

+ 2ψ′10)Ω′00 + 2ψ′00Ω′10 + (5Ω00 + 2Ω10)ψ′′00 + 2Ω00ψ
′′
10)
))

Γ2 + 2
(

6(r0Ω00 − 1)Λ′ψ′00

+ Λ(Γ′((5r0Ω00 + 2r0Ω10 − 3)ψ′00 + 2(r0Ω00 − 1)ψ′10) + 6r0ψ
′
00Ω′00 + 6(r0Ω00 − 1)ψ′′00)

)
Γ

− 12Λ(r0Ω00 − 1)Γ′ψ′00

)
, (B.0.6a)

j̃R̃(1) = I ′0

(
4σR̃(Γ− 2) + 2R̃2(Γ− 2)− 4σ2((Γ− 1)Γ + 1)

)
− 2Γ

(
Γ(2σR̃I ′11 + R̃2I ′20 + σ2I ′02)

− 2σ(R̃+ σ)I ′1 − 2R̃(R̃+ σ)I ′1

)
(B.0.6b)

j̃θ(1) = 4Γ(R̃I20 + σI11)− 4I1(R̃+ σ). (B.0.6c)

The Φ̃-component of the four-current was imported directly from Mathematica due to its

length and is presented below.
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The part of the constant c∗(θ) in Section 5.5 with no σ-dependence is given by

c∗ =
1

4r3
0Γ2ΛI3

00ψ
′
00

[
− 4GI00ψ

′
00

(
Γ2ψ′200(Λ

(
− 2r0(ψ′00 + ψ

(3)
00 )Ω2

00 + 2(ψ′00 − r0Ω′00ψ
′′
00

+ ψ
(3)
00 )Ω00 + 3Ω′00ψ

′′
00 + ψ′00Ω′′00

)
− 2(r0Ω00 − 2)Λ′ψ′00Ω′00)Λ3 − 2r0I00Γψ′00

(
ΓΩ00(ψ′00Λ′2

+ 3Λψ′′00Λ′ + Λψ′00Λ′′)− ΛΩ′00(Λ′ψ′00 + Λψ′′00)
)

Λ + r0I
2
00

(
Γ
(

(ψ′00 + 2ψ
(3)
00 )Λ2 + 2(ψ′00Λ′′

+ 3Λ′ψ′′00)Λ + 2Λ′2ψ′00

)
− ΛΓ′(Λ′ψ′00 + Λψ′′00)

))
r2
0 + G2I2

00Γ2Λ
(
ψ′00(2r0Ω′00ψ

′2
00

+ ((1− r0Ω00)ψ
(4)
00 − 2r0Ω′00ψ

(3)
00 )ψ′00 + 2r0Ω′00ψ

′′2
00 )Λ3 + r0(−2Ω′00Λ′′ψ′300 − 2Λ′Ω′00ψ

′′
00ψ
′2
00

+ I00ψ
′′
00ψ

(3)
00 )Λ2 − r0I00(Λ(3)ψ′200 + (3Λ′′ψ′′00 + 5Λ′ψ

(3)
00 )ψ′00 − 3Λ′ψ′′200 )Λ

− 3r0I00Λ′ψ′00(ψ′00Λ′′ + Λ′ψ′′00)
)
r2
0 − 2ψ′00

(
4Γ2ψ′300(2r3

0ψ
′′
00Ω3

00 + r2
0(r0ψ

′
00Ω′00 − 2ψ′′00)Ω2

00

+ r0(ψ′′00 − 2r0ψ
′
00Ω′00)Ω00 − ψ′′00)Λ4 + r2

0I
2
00ψ
′
00(3Λ(r0Ω00 + 1)Λ′ψ′00Γ4 − 4(r0ψ

′
00Ω′00

+ (3r0Ω00 + 1)ψ′′00)Γ + 2(r0Ω00 + 1)Γ′ψ′00)Λ2 + 4r3
0I

3
00(Λ′ψ′00 + Λψ′′00)

+ r0I00Γψ′200

(
2Γ2(r2

0Ω2
00 − 1)Γ′ψ′00Λ5 + Γ3(Ω00ψ

′
00Ω′00r

2
0 + Ω2

00ψ
′′
00r

2
0 − ψ′′00)Λ5

+ 4(−3r2
0Ω2

00 + 2r0Ω00 + 1)Λ′ψ′00Λ2 + 4Γ((Λ2(2r2
0Ω2

00 + 1)− 1)Λ′ψ′00 + Λψ′′00)
))]

,

(B.0.7)

while the part of the constant c∗(θ) with a σ-dependence is extremely lengthy and can thus be

found in a drop box that I have created: https://www.dropbox.com/sh/ap4co4v4qd91d6z/

AADl7xn4mTfmA5wJ108otQ_na?dl=0. Again the function G(θ) is equal to G, Eq. (3.3.7), and

the variables ψ00, ψ10 are to be read as ψ00, ψ10 and so forth.

The second order correction to the field strength in Section 5.5 is

(F̃ (1))2 =
2

r4
0R̃(2σ + R̃)Γ4Λ2

[
R̃2Γ4ψ′200Λ4 + 2σR̃Γ4ψ′200Λ4 − r2

0R̃
2Γ4Ω2

00ψ
′2
00Λ4

− 2r2
0σR̃Γ4Ω2

00ψ
′2
00Λ4 + 4R̃2Γ2ψ2

10Λ2 + 8σR̃Γ2ψ2
10Λ2 + 4r2

0R̃
2Γ2ψ2

10Ω2
00Λ2

+ 8r2
0σR̃Γ2ψ2

10Ω2
00Λ2 + 12σ2ψ′200Λ2 + 12R̃2ψ′200Λ2 + 4σ2Γ2ψ′200Λ2 − 4R̃2Γ2ψ′200Λ2

− 8σR̃Γ2ψ′200Λ2 + 12r2
0σ

2Ω2
00ψ
′2
00Λ2 + 12r2

0R̃
2Ω2

00ψ
′2
00Λ2 + 12r2

0σ
2Γ2Ω2

00ψ
′2
00Λ2

+ 8r2
0R̃

2Γ2Ω2
00ψ
′2
00Λ2 + 16r2

0σR̃Γ2Ω2
00ψ
′2
00Λ2 + 24r2

0σR̃Ω2
00ψ
′2
00Λ2 − 24r2

0σ
2ΓΩ2

00ψ
′2
00Λ2

− 20r2
0R̃

2ΓΩ2
00ψ
′2
00Λ2 − 40r2

0σR̃ΓΩ2
00ψ
′2
00Λ2 + 4r2

0σ
2Γ2Ω2

01ψ
′2
00Λ2 + 4r2

0R̃
2Γ2Ω2

10ψ
′2
00Λ2

+ 24σR̃ψ′200Λ2 − 8σ2Γψ′200Λ2 − 4R̃2Γψ′200Λ2 − 8σR̃Γψ′200Λ2 − 24r0σ
2Ω00ψ

′2
00Λ2

− 24r0R̃
2Ω00ψ

′2
00Λ2 − 12r0σ

2Γ2Ω00ψ
′2
00Λ2 − 48r0σR̃Ω00ψ

′2
00Λ2 + 32r0σ

2ΓΩ00ψ
′2
00Λ2

+ 24r0R̃
2ΓΩ00ψ

′2
00Λ2 + 48r0σR̃ΓΩ00ψ

′2
00Λ2 − 8r0σ

2Γ2Ω01ψ
′2
00Λ2 − 8r0σR̃Γ2Ω01ψ

′2
00Λ2

+ 16r0σ
2ΓΩ01ψ

′2
00Λ2 + 16r0σR̃ΓΩ01ψ

′2
00Λ2 + 16r2

0σ
2Γ2Ω00Ω01ψ

′2
00Λ2 + 16r2

0σR̃Γ2Ω00Ω01ψ
′2
00Λ2
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− 16r2
0σ

2ΓΩ00Ω01ψ
′2
00Λ2 − 16r2

0σR̃ΓΩ00Ω01ψ
′2
00Λ2 − 4r0σ

2Γ2Ω02ψ
′2
00Λ2 + 4r2

0σ
2Γ2Ω00Ω02ψ

′2
00Λ2

− 8r0R̃
2Γ2Ω10ψ

′2
00Λ2 − 8r0σR̃Γ2Ω10ψ

′2
00Λ2 + 16r0R̃

2ΓΩ10ψ
′2
00Λ2 + 16r0σR̃ΓΩ10ψ

′2
00Λ2

+ 16r2
0R̃

2Γ2Ω00Ω10ψ
′2
00Λ2 + 16r2

0σR̃Γ2Ω00Ω10ψ
′2
00Λ2 − 16r2

0R̃
2ΓΩ00Ω10ψ

′2
00Λ2

− 16r2
0σR̃ΓΩ00Ω10ψ

′2
00Λ2 + 8r2

0σR̃Γ2Ω01Ω10ψ
′2
00Λ2 − 8r0σR̃Γ2Ω11ψ

′2
00Λ2 + 8r2

0σR̃Γ2Ω00Ω11ψ
′2
00Λ2

− 4r0R̃
2Γ2Ω20ψ

′2
00Λ2 + 4r2

0R̃
2Γ2Ω00Ω20ψ

′2
00Λ2 + 4σ2Γ2ψ′201Λ2 + 4r2

0σ
2Γ2Ω2

00ψ
′2
01Λ2

− 8r0σ
2Γ2Ω00ψ

′2
01Λ2 + 4R̃2Γ2ψ′210Λ2 + 4r2

0R̃
2Γ2Ω2

00ψ
′2
10Λ2 − 8r0R̃

2Γ2Ω00ψ
′2
10Λ2

− 8r0R̃
2Γ2ψ2

10Ω00Λ2 − 16r0σR̃Γ2ψ2
10Ω00Λ2 + 16r2

0σ
2Γ2Ω2

00ψ
′
00ψ
′
01Λ2 + 16r2

0σR̃Γ2Ω2
00ψ
′
00ψ
′
01Λ2

− 16r2
0σ

2ΓΩ2
00ψ
′
00ψ
′
01Λ2 − 16r2

0σR̃ΓΩ2
00ψ
′
00ψ
′
01Λ2 − 16σ2Γψ′00ψ

′
01Λ2

− 16σR̃Γψ′00ψ
′
01Λ2 − 16r0σ

2Γ2Ω00ψ
′
00ψ
′
01Λ2 − 16r0σR̃Γ2Ω00ψ

′
00ψ
′
01Λ2

+ 32r0σ
2ΓΩ00ψ

′
00ψ
′
01Λ2 + 32r0σR̃ΓΩ00ψ

′
00ψ
′
01Λ2 − 16r0σ

2Γ2Ω01ψ
′
00ψ
′
01Λ2

+ 16r2
0σ

2Γ2Ω00Ω01ψ
′
00ψ
′
01Λ2 − 16r0σR̃Γ2Ω10ψ

′
00ψ
′
01Λ2 + 16r2

0σR̃Γ2Ω00Ω10ψ
′
00ψ
′
01Λ2

+ 4σ2Γ2ψ′00ψ
′
02Λ2 + 4r2

0σ
2Γ2Ω2

00ψ
′
00ψ
′
02Λ2 − 8r0σ

2Γ2Ω00ψ
′
00ψ
′
02Λ2 + 16r2

0R̃
2Γ2Ω2

00ψ
′
00ψ
′
10Λ2

+ 16r2
0σR̃Γ2Ω2

00ψ
′
00ψ
′
10Λ2 − 16r2

0R̃
2ΓΩ2

00ψ
′
00ψ
′
10Λ2 − 16r2

0σR̃ΓΩ2
00ψ
′
00ψ
′
10Λ2 − 16R̃2Γψ′00ψ

′
10Λ2

− 16σR̃Γψ′00ψ
′
10Λ2 − 16r0R̃

2Γ2Ω00ψ
′
00ψ
′
10Λ2 − 16r0σR̃Γ2Ω00ψ

′
00ψ
′
10Λ2

+ 32r0R̃
2ΓΩ00ψ

′
00ψ
′
10Λ2 + 32r0σR̃ΓΩ00ψ

′
00ψ
′
10Λ2 − 16r0σR̃Γ2Ω01ψ

′
00ψ
′
10Λ2

+ 16r2
0σR̃Γ2Ω00Ω01ψ

′
00ψ
′
10Λ2 − 16r0R̃

2Γ2Ω10ψ
′
00ψ
′
10Λ2 + 16r2

0R̃
2Γ2Ω00Ω10ψ

′
00ψ
′
10Λ2

+ 8σR̃Γ2ψ′01ψ
′
10Λ2 + 8r2

0σR̃Γ2Ω2
00ψ
′
01ψ
′
10Λ2 − 16r0σR̃Γ2Ω00ψ

′
01ψ
′
10Λ2

+ 8σR̃Γ2ψ′00ψ
′
11Λ2 + 8r2

0σR̃Γ2Ω2
00ψ
′
00ψ
′
11Λ2 − 16r0σR̃Γ2Ω00ψ

′
00ψ
′
11Λ2

+ 4R̃2Γ2(r0Ω00 − 1)2ψ′00ψ
′
20Λ2 − 4r2

0σ
2I2

01Γ2 − 4r2
0I

2
10R̃

2Γ2 − 8r2
0σI01I10R̃Γ2

− 4r2
0I00(I02σ

2 + 2I11R̃σ + I20R̃
2)Γ2 − 4R̃2Γ2ψ′200 − 8σR̃Γ2ψ′200

]
. (B.0.8)
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