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Abstract

Quantum repeaters are a solution to the problem of sending quantum information over long

distances. They take advantage of entanglement and using so-called swapping processes to

distribute entanglement. This thesis explores the effect of imperfections on quantum repeater

protocols. A particular imperfection this thesis focuses on exploring is the multi-photon error

arising from a photon source having a probability of emitting more than one photon. Imperfec-

tions greatly reduce the efficiency and accuracy of repeater protocols. To mitigate the effect of

imperfections more advanced repeater protocols can be thought of that are more robust e.g. the

two-click swapping schemes compared to the simpler one-click swapping scheme. Two protocols

are introduced. The Jiang protocol using the one-click entanglement generation, one type of

two-click swap for the first swapping and a second type of two-click swap for all subsequent

swaps. The second protocol is a modified version using one-click entanglement generation and

the first type of two-click swapping for all swaps. Comparing the two protocols the modified

version proved more robust towards imperfections. This was due to a higher fidelity of the final

state.
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1 Introduction

Quantum mechanics has always been one of the more counterintuitive fields in physics. It aims

to describe our world on atomic and subatomic levels, and its probabilistic nature seems very

different from the deterministic behaviours we can observe from large scale systems. Heisen-

berg’s uncertainty principle and entanglement are just some of the strange consequences that

arise from the axioms of quantum mechanics.

An effect of interest to this thesis is the no-cloning theorem1. Due to this effect, the classical

solution to allow for long-distance communication is not possible. When transmitting a signal

in fiber optic cables a big problem is loss of photons as they get absorbed in the fiber. To deal

with this classically repeater nodes are inserted in between the sender and receiver and thereby

divides the distance in smaller sections. These repeaters measure the incoming signal. Several

copies of the signal are then re-transmitted. Quantum repeaters also divide the distance in

smaller sections by inserting repeater nodes. Unfortunately, due to the no-cloning theorem an

unknown quantum state can not be copied. Instead quantum repeaters make use of entan-

glement and entanglement swapping which would theoretically allow transmission of quantum

information over long distances.

While repeaters work great theoretically, reality is that repeater protocols are challenged by a

number of different imperfections such as photon loss, detector efficiency and dark counts. If

the photon source used in the repeater protocol has a probability of emitting more than one

photon2 it also creates an increased risk of multi-photon errors. Of course multi-photon errors

would not be a problem for number resolving detectors if there were no other imperfections, but

this is not realistic. To have a more realistic representation of the performance of a quantum

repeater protocol the effect of imperfections must be included.

The focus of this thesis will be to explore the efficiency and accuracy of repeater protocols given

we can neglect or just suppress the term that has the ensembles emitting two photons. This is

motivated by the fact that it has been shown it is possible to create such a state [1]. For this

reason it is interesting to explore exactly the value of decreasing or completely removing this

particular multi-photon error. The ultimate goal is to explore how to get closer to a repeater

protocol which can actually be used in a real communication system.

This thesis will explore quantum repeater protocols. It will calculate how they work using simple

protocols with ideal states and without imperfections. Imperfections will then be introduced

and some more advanced protocols designed to mitigate the effects of imperfections will be

described. Simulations will be run to compare the performance of different repeater protocols

1See proof in chapter 3.1.1
2The probability of emitting more than two photons is however very small and can be disregarded. In this

paper we will only be concerned with the term that has the ensemble emitting two photons.
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under varying conditions. This will also illustrate the effect of different imperfections on the

protocols.

Lastly it has been shown that it is possible to create the photon-number entangled state

α(∆t) |00〉 + β(∆t) |11〉 by applying two pulses with time interval ∆t in between to a two-

level atom. This result is of great interest as it implies the possibility of removing the effect

of the particular multi-photon error caused by the emission of two or more photons from the

same photon source. For this reason a focus point for this thesis will be exploring the impact

this multi-photon error has on the performance of certain protocols.
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2 Quantum states and measurements

This thesis will be describing and carrying out calculations on many-particle systems. For this

reason it will be useful to adopt the occupation-number representation of second quantization.

This section will provide a brief overview of second quantization as well as the theoretical basis

of quantum mechanical measurements.

2.1 Many-body systems in first quantization

A problem when describing quantum many-body systems is the principle of indistinguishability

of identical particles. What this means is that opposed to classical mechanics where a particle

can be equipped with an identifying marker, in quantum mechanics it is impossible to distin-

guish between identical particles. If a group of identical particles are then brought to the same

region in space their wave functions will start to overlap making it impossible to tell which

particle is where.

Let ψ(r1, r2, ..., rN) be the wave function describing a system of N particles. From the indistin-

guishability of particles follows that if two coordinates are interchanged the resulting state can

at most differ by a prefactor λ. Change the same coordinates a second time and the resulting

wave function must be exactly the same as the first:

ψ(r1, ..., ri, ..., rj, ..., rN) = λψ(r1, ..., rj, ..., ri, ..., rN) = λ2ψ(r1, ..., ri, ..., rj, ..., rN) (2.1)

From equation (2.1) we get λ2 = 1 ⇒ λ = ±1. This leaves us with two distinct types of

particles, namely bosons and fermions:

ψ(r1, ..., ri, ..., rj, ..., rN) = +ψ(r1, ..., rj, ..., ri, ..., rN) (Bosons) (2.2)

ψ(r1, ..., ri, ..., rj, ..., rN) = −ψ(r1, ..., rj, ..., ri, ..., rN) (Fermions) (2.3)

These are the symmetries that any multi-particle state must obey. This means the Hartree

product of the single-particle basis states {ψν(r)} which is given by ΠN
i=1ψνi(ri) is not a valid

basis because it is not properly symmetrized.

What we need are linear superpositions of products of the single-particle states. Take for

instance the case where we have two particles in two different states. For the state of the

two-particle system to obey the symmetry of bosonic particles in equation (2.2) it would need

8



Theoretical optimizations of quantum repeaters based on atomic ensembles
C. B. Okkels

to be:

|ΨB〉 =
1√
2

(ψ1(r1)ψ2(r2) + ψ1(r2)ψ2(r1)) (2.4)

And for the state to obey the symmetry of fermion particles in equation (2.3) it would need to

be:

|ΨF 〉 =
1√
2

(ψ1(r1)ψ2(r2)− ψ1(r2)ψ2(r1)) (2.5)

An example of three particle states for bosons and fermions can be found in appendix A.

For a general system of N particles the state can be constructed using a permanent for bosons

and a Slater determinant for fermions.

Permanent:

∣∣∣∣∣∣∣∣∣∣
ψν1(r1) ψν1(r2) . . . ψν1(rN)

ψν2(r1) ψν2(r2) . . . ψν2(rN)
...

...
. . .

...

ψνN (r1) ψνN (r2) . . . ψνN (rN)

∣∣∣∣∣∣∣∣∣∣
+

=
∑
p∈SN

(
ΠN
i=1ψνi(rp(i))

)
(2.6)

Slater determinant:

∣∣∣∣∣∣∣∣∣∣
ψν1(r1) ψν1(r2) . . . ψν1(rN)

ψν2(r1) ψν2(r2) . . . ψν2(rN)
...

...
. . .

...

ψνN (r1) ψνN (r2) . . . ψνN (rN)

∣∣∣∣∣∣∣∣∣∣
−

=
∑
p∈SN

(
ΠN
i=1ψνi(rp(i))

)
sign(p)

(2.7)

With the sums being taken over all permutations p in the group of N! permutations denoted

SN and sign(p) in the determinant is the sign of the permutation3.

With the properly symmetrized and normalized states we have a basis for the Hilbert space of

N particles. [2]

2.2 Second quantization

Building on the principles discussed in the previous chapter it is clear that only the occupied

single-particle states are needed to describe the state of the many-body system. The occupation

3sign(p) = 1 for an even number of permutations and sign(p) = −1 for odd numbers of permutations
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number representation of second quantization takes advantage of that. Instead of listing each

particle and it’s position, only the number of particles in each of the basis states is listed. Let

nνi be the occupation number of ψνi . This means an N-particle system would have the basis

states:

|nν1 , nν2 , ..., nνN 〉 (2.8)

with
∑N

i=1 nνi = N and nνi =

0, 1, 2, ... (Bosons)

0, 1 (Fermions)

The restriction on fermions is due to the Pauli exclusion principle which states that a given

quantum state in a quantum system cannot be occupied by more than one of the same type of

fermion at any given point in time. This can be shown mathematically by considering equation

(2.5). Suppose we have ψ1 = ψ2, then |ΨF 〉 = 0.

Definition 2.1. [Fock space] Let F refer to the space spanned by the basis states of the

occupation number representation also called the Fock space. Let FN be the space spanned

by basis states in the occupation number representation with the same number of particles:

FN = span
{
|nν1 , nν2 , ..., nνN 〉

∣∣∑N
i=1 nνi = N

}
The Fock space F can then be defined as:

F = F0 ⊗F1 ⊗F2 ⊗ ... (2.9)

With a set of basis states spanning the Fock space any quantum state in the Fock space can

be constructed as a linear combination of the basis states.

We can define operators whose purpose is to raise or lower the number of particles in a given

state. The operator who raises (lowers) the occupation number will be referred to as a creation

(annihilation) operator and will be defined as follows: [2]

Definition 2.2. [Creation operator] Let b†νi be an operator whose action on a state∣∣nν1 , ..., nνi−1
, nνi , nνi+1

, ..., nνN
〉

will be defined as:

b†νi
∣∣nν1 , ..., nνi−1

, nνi , nνi+1
, ..., nνN

〉
=
√
nνi + 1

∣∣nν1 , ..., nνi−1
, nνi + 1, nνi+1

, ..., nνN
〉

(2.10)

Definition 2.3. [Annihilation operator] Let bνi be an operator whose action on a state∣∣nν1 , ..., nνi−1
, nνi , nνi+1

, ..., nνN
〉

will be defined as:

bνi
∣∣nν1 , ..., nνi−1

, nνi , nνi+1
, ..., nνN

〉
=
√
nνi
∣∣nν1 , ..., nνi−1

, nνi − 1, nνi+1
, ..., nνN

〉
(2.11)
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2.3 Measurements

Having introduced the notation used for quantum states we will now move on to establish the

framework of measurements.

For the purpose of this thesis we will adopt the definition of measurements posed in [3]. This

means for a measurement on a system in state |ψ〉 with outcomes {m} and corresponding

measurement operators {Mm} the probability to get outcome “m” will be given by Eq. (2.92)

in [3]:

pm = 〈ψ|M †
mMm |ψ〉 (2.12)

And the state after measurement given outcome “m” is given by Eq. (2.93) in [3]:

|ψ〉after =
Mm |ψ〉initial√

pm
(2.13)

Since this thesis will not exclusively use the state vector representation but also the density

matrix representation of quantum states, a definition of density matrices and their properties

will be provided.

Suppose a quantum system has probabilities {pi} to be in a number of different quantum states4

{|ψi〉}. The density matrix of such a quantum system will be defined as:

Definition 2.4. [Density matrix] Let a mixed quantum state be given by the ensemble:

{pi, |ψi〉} with i ∈ [1, N ]. We define the density matrix of that quantum state to be: [3]

ρ =
N∑
i=1

pi |ψi〉 〈ψi| (2.14)

The reason why this is a useful representation of a quantum state becomes clear once we describe

measurements in this notation.

First consider the probability to get an outcome “m”, assuming the system is in |ψi〉. From

Eq. (2.12) this gives:

p(m|i) = 〈ψi|M †
mMm |ψi〉 = Tr(M †

mMm |ψi〉 〈ψi|) (2.15)

4This is referred to as a mixed quantum state or an ensemble of quantum states.
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Given that “being in state i” is independent from the event “being in state j”, the total prob-

ability to get an outcome “m” must be given by:

pm =
N∑
i=1

p(m|i)pi =
N∑
i=1

piTr(M
†
mMm |ψi〉 〈ψi|) = Tr(M †

mMmρ) (2.16)

From Eq. (2.13) we can get the state after measurement given the system was initially in state

|ψi〉, and assuming an outcome “m”:

|ψmi 〉 =
Mm |ψi〉√
p(m|i)

(2.17)

This means the resulting state becomes an ensemble of states |ψmi 〉 with each of the quantum

states in the ensemble having the corresponding probability p(i|m).

This means the resulting ensemble must be described by the density matrix:

ρm =
N∑
i=1

p(i|m) |ψmi 〉 〈ψmi | =
N∑
i=1

p(i|m)
Mm |ψmi 〉 〈ψmi |M †

m

p(m|i)
(2.18)

Now from Bayes’ theorem we have:

p(A|B) =
p(B|A)p(A)

p(B)
(2.19)

⇒ p(i|m) =
p(m|i)pi
pm

(2.20)

Inserting this in Eq. (2.18) the density matrix of a quantum state after a measurement with

outcome “m” is therefore given by:

ρm =
MmρM

†
m

pm
(2.21)

With these tools we can begin exploring quantum repeater protocols.
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3 The problem of long-distance quantum communica-

tion

This section will motivate quantum repeaters in general as an alternative to direct transmission.

In addition it will discus the problems quantum repeaters face when errors and imperfections

are introduced and how these affect their performance. In doing so it will also introduce the

focus of this thesis which is to study the effect of the multi-photon error terms in the source

state.

3.1 Motivating repeaters

When sending light through fiber optic cables, there is an exponential loss related to the

distance. The probability that a photon sent trough a fiber optic cable of length L will emerge

at the other end is:

P = e−L/Latt (3.1)

Latt being the fiber attenuation length. In this thesis we will assume Latt = 22 km. This means

for L = 100 km we get P = 1.06 %. This is quite low, but with enough photons it might still

work. However, if L = 1000 km we get P = 1.82 · 10−20% which is too low to be able to work

with.

The problem of loss was solved classically using amplification. Repeater nodes were placed at

regular intervals, and at each node the signal was measured and then amplified before being

sent to the next node, until the signal had finally reached the receiver.

In quantum mechanics the no-cloning theorem prevents copying of an unknown quantum state.

This means amplification would not work for transmitting quantum information.

3.1.1 Proof of the no-cloning theorem

Suppose we have an arbitrary state |ψ〉 = a |0〉 + b |1〉 and want to clone it. Now let’s assume

we have a unitary operator U which can clone any arbitrary state such that:

U(|ψ〉 |x〉) = |ψ〉 |ψ〉 (3.2)

13
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This must also be true for some other arbitrary state |φ〉:

U(|φ〉 |x〉) = |φ〉 |φ〉 (3.3)

Where |x〉 in both cases is some state to be changed into a clone.

For the proof let’s consider:

〈ψ|φ〉 〈x|x〉 = 〈ψ| 〈x| |φ〉 |x〉 = 〈ψ| 〈x|U †U |φ〉 |x〉 (3.4)

Note in the last step it was used that U is unitary, so U †U = 1. Continuing we get:

〈ψ| 〈x|U †U |φ〉 |x〉 = 〈ψ| 〈ψ|φ〉 |φ〉 = 〈ψ|φ〉 〈ψ|φ〉 = |〈ψ|φ〉|2 (3.5)

But this means we have: 〈ψ|φ〉 〈x|x〉 = |〈ψ|φ〉|2. Assuming |x〉 is normalized, meaning 〈x|x〉 = 1

we have: |〈ψ|φ〉| = |〈ψ|φ〉|2. This can only be true if 〈ψ|φ〉 = 0 or 〈ψ|φ〉 = 1. This is not true

in general, and so by proof by contradiction quantum mechanics does not allow for cloning of

unknown states.

3.2 The challenges of quantum repeaters

Quantum repeaters work instead by taking advantage of quantum mechanical properties such as

entanglement. The purpose of a quantum repeater protocol is to create entanglement between

the sender and receiver.

While quantum repeaters work great in theory when not taking imperfections into account it

is not a realistic model of how it would work in practise. To get an accurate sense of how

efficient a quantum repeater would be compared to direct transmission in a more real setting

imperfections must be included.

One potential imperfection from the photon source are multi-photon errors. Suppose an atomic

ensemble is used to store information and as a photon source. Let |00〉 be the state where there

are no excitations in the ensemble, and no photons are emitted and let |11〉 be the state where

there is one excitation in the ensemble and one photon is emitted respectively. It is often

preferable if the state we get from our source only consists of these two terms. This is because

an extra photon emitted from an ensemble causes either an increase in the time-cost of the

protocol or a decrease in the fidelity of the resulting state. [4]

Interestingly it has been shown that it is possible to create a photon-number entangled state

[1]. The principle was using a two-level system with ground state |g〉 and excited state |e〉 and
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a spontaneous emission lifetime T1. A pulse excites the system to the excited state |e〉 and at

a time t > 0 the two-mode atom-photon system can be described as:

α(t) |e〉 |0〉+ β(t) |g〉 |1〉 (3.6)

With α(t) = e−t/2T1 and β =
√

1− α(t)2. Adjacent time bins early (e) and late (l) can be

defined. After a long time t >> T1 the photon mode can be expected to be in the single-photon

state |1〉. This state can be expressed in the time-bin notation as:

|1〉 = α(T ) |0〉e |1〉l + β(T ) |1〉e |0〉l (3.7)

Where T is the chosen threshold dividing the early and late time bins. An illustration of the

division of time into early and late bins can be seen in figure 1a.

Choosing the threshold T to be exactly the half-life of the source T1/2 = ln(2)T1 the single-

photon state becomes exactly the Bell-state: |ψ+〉 =
1√
2

(
|01〉+ |10〉

)
.

If a second pulse is then applied at time ∆t after the first one consider the two options:

• No photon was emitted in the early bin i.e. the state was |0〉e |1〉l. This would imply the

atom is still in the excited state |e〉 and has not yet emitted a photon at ∆t. By applying

a second pulse the atom is flipped back to the ground state |g〉 preventing the emission

of a photon at a later point.

• If a photon was emitted in the early bin i.e. the state was |1〉e |0〉l the atom is in the

ground state |g〉 at ∆t. The application of the second pulse would then re-excite the atom

causing the emission of another photon at a later point.

Consequently considering the state of the photon given by Eq. (3.7) at time T = ∆t the

single-photon state becomes:

α(∆t) |0〉e |0〉l + β(∆t) |1〉e |1〉l (3.8)

An illustration of the effect of applying a second pulse on the single-photon state can be found

in figure 1b.
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Figure 1: Generation of photon number Bell-states: a) The time is separated into two

bins: early (e) and late (l). The single-photon state can then be described in the time-bin

notation as the Bell-state |ψ+〉. b) A second pulse is applied at the half-life T1/2 = ln(2)T1.

This causes the single-photon state to then be flipped to the Bell-state |φ+〉. [1]

This is the motivation for the focus of this thesis which will be to calculate how effective certain

repeater protocols become if we can repress or even “turn off” the term |22〉.
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4 Building blocks of quantum repeaters

This section will discuss similarities between repeater protocols. It will describe how atomic

ensembles can be used as quantum memories and it will introduce how entanglement generation

and swapping work mathematically by exploring a simple quantum repeater scheme, where the

generation and swapping schemes are based on the detection of a single photon in a detector.

For now ideal conditions will be assumed5.

Repeater protocols can be constructed in a number of different ways, but in general a quantum

repeater always has these elements: [4]

• A photon source

• Quantum memories.

• A process to generate entanglement.

• A process to do entanglement swapping.

They work by having a number of repeater nodes in between the sender and receiver. Entangle-

ment is then created between the nodes. Once entanglement has been achieved between all the

nodes, entanglement swapping is used to finally create entanglement between the sender and

receiver node. It is important to note here the importance of being able to store entanglement.

Since entanglement needs to be created between all nodes, should the entanglement generation

fail between any of the nodes, the process has to be started all over again if the entanglement

cannot be stored in the ones that were successful. An illustration of the process can be found

in figure 2 below.

5This means no loss in the fibers, perfect detector efficiency and no dark counts or other imperfections.

Imperfections will be introduced in a later section
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Figure 2: An illustration of the process behind a quantum repeater. The yellow squares rep-

resent quantum memories, and the dotted lines with arrows represent entanglement between

links. a) First entanglement is created over the short distances between the links. b) Using

entanglement swapping, links at further distances are now connected by entanglement. c)

The last swap finally connects A and Z. [4]

The number of swappings needed to achieve entanglement over the full distance depends on

the number of repeater nodes. This is called the nesting level. Let L0 be the distance between

the repeater nodes and L being the total distance between the sender and the receiver. L0 is

related to the nesting level by:

L0 =
L

2n
(4.1)

4.1 Quantum memory and photon source

There are a number of ways to store quantum information and depending on what is studied

they might be more or less useful. One of the simpler ways to store quantum information is

choosing two states of a single atom to represent |0〉 and |1〉. In this way the atom can represent

a qubit and in many cases this is a very useful and efficient way to do it. Single atoms and single

photons couple very weakly though and in the repeater schemes which will be discussed in this

thesis photons will be used as carriers of quantum information. The solution is to not use a

single atom but to use an ensemble of atoms as quantum memories. This is more inefficient -

more atoms are used to store the same amount of information. In some cases it makes sense

however to get more interaction between the atoms and photons.

Suppose we have an ensemble with N atoms and they all start in the state |0〉. Let s† be an

operator that takes the state |0, 0, ..., 0, 0〉 into a symmetric superposition of states with one
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atom excited:

s† |0, 0, ..., 0, 0〉 =
1

N

N∑
m=1

|0, ..., 0, 1m, 0, ..., 0〉 (4.2)

|0, ..., 0, 1m, 0, ..., 0〉 represents the state where only the m’th atom is excited and all others are

in the state |0〉. These collective modes resemble the Fock states of a harmonic oscillator with

annihilation operator s and creation operator s†:

|n〉 =
(s†)n√
n!
|0〉 (4.3)

It is in these states quantum information can be stored.

There are different processes to store and retrieve information from the ensembles. This thesis

will not go into details about the storage and retrieval processes. It will however provide a brief

example of how these procedures might be done.

The process described in [4] uses an ensemble of atoms with two stable ground states |g1〉 and

|g2〉 and an excited state |e〉. All atoms in the ensemble will be assumed to initially be in |g1〉.

The process for storing quantum information will also be referred to as the write process. To

store quantum information a pulse is used to create collective excitations in the ensemble by

spontaneous Raman emission. The emitted photon will be referred to as a Stokes photon.

The process for reading out the excitation in the ensemble also uses a pulse to excite the g2− e
transition which is then followed by the emission of a photon on the e− g1 transition.

An illustration of the write- and read processes can be found in figure 3.
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Figure 3: An illustration of the write process (left) and read process (right) used to store

and retrieve quantum information from atomic ensembles. Write process: All atoms are

assumed to initially be in the |g1〉 state. A pulse off-resonantly drives the g1 − e transition

followed by the emission of a photon on the e− g2 transition. Read process: a pulse on the

g2− e transition is applied followed by the emission of a photon on the e− g1 transition. [4]

From Eq. (5) in the paper [4] the write process is shown to create the two-mode entangled

state:

(
1− 1

2
(χt)2

)
|00〉 − iχt |11〉 − (χt)2 |22〉+O((χt)3) (4.4)

Where the first mode is the state of the ensemble, i.e. the memory mode and the second mode

is the photon mode.

Dividing all terms by
(

1− 1

2
(χt)2

)
we get:

1 · |00〉 − iχt |11〉(
1− 1

2
(χt)2

) − (χt)2 |22〉(
1− 1

2
(χt)2

) (4.5)

Using the Taylor-expansion of
1

1− x
=
∑∞

n=0 x
n and taking it to first order we get

− iχt |11〉(
1− 1

2
(χt)2

) = −iχt 1

1− 1

2
(χt)2

|11〉 ≈ −i(χt) |11〉. In the same way from the second term

we get: − (χt)2 |22〉(
1− 1

2
(χt)2

) = −(χt)2
1

1− 1

2
(χt)2

|22〉 ≈ −(χt)2 |22〉.

This means if we assume the ensemble emits a photon with some small probability p = (χt)2,
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the un-normalized source state is:

|Ψ〉 = |00〉 − i√p |11〉 − p |22〉 (4.6)

Defining |11〉 as the result of some creation operator on |00〉: s†aa† |00〉 we can include the phase

−i in the definition of the creation operator.

|Ψ〉 = |00〉+
√
p |11〉+ p |22〉 (4.7)

This source state introduces multi-photon errors in the shape of |22〉. Ideally the photon source

would produce a source state
√

1− p |00〉 +
√
p |11〉 which only has a probability to emit no

photon or one photon.

Entanglement generation and entanglement swapping will be introduced assuming ideal condi-

tions. For this reason the source state used will be assumed to be
√

1− p |00〉 +
√
p |11〉. The

source state from Eq. (4.7) will be used with the introduction of imperfections.

4.2 One-click entanglement generation

One of the ways in which entanglement can be generated between the two ensembles is through

the detection of a single photon. Each ensemble can with some probability emit a photon which

will travel through a beamsplitter and then hit one of two detectors. The setup is illustrated

in figure 4.

Figure 4: The setup of an entanglement generation process based on the detection of a single

photon. A photon is emitted from either ensemble A or ensemble B and sent through a

beamsplitter. The detection of a photon in either d or d̃ then creates entanglement between

ensemble A and B. [4]

21



Theoretical optimizations of quantum repeaters based on atomic ensembles
C. B. Okkels

Let s†a (s†b) be a bosonic operator that raises the excitation number in ensemble A (B) as

described in Eq. (4.2). Let |0〉m,A be the state of the ensemble A where no atoms are excited

and |1〉m,A be the state where a single atom is excited. [4]

Similarly let a† (b†) be a bosonic creation operator that creates a photon coming from A (B).

Suppose a photon is emitted from the ensemble with some probability p. The state of ensemble

A can then be described as:

|Ψ〉A =
√

1− p |0〉m,A ⊗ |0〉ph,a +
√
p s†aa

† |0〉m,A ⊗ |0〉ph,a (4.8)

=
√

1− p |0〉m,A ⊗ |0〉ph,a +
√
p |1〉m,A ⊗ |1〉ph,a (4.9)

Here “m” and “ph” represent the memory modes and the photonic modes respectively in system

A.

The state of system B will be completely equivalent. Letting |AB〉 denote the tensor product

|A〉 ⊗ |B〉, the state of the combined system A and B then becomes:

|Ψ〉AB = (1− p) |00〉mA,mB
|00〉pha,phb +

√
(1− p)p (s†aa

† + s†bb
†) |00〉mA,mB

|00〉pha,phb (4.10)

+ ps†as
†
ba
†b† |00〉mA,mB

|00〉pha,phb
= (1− p) |00〉mA,mB

|00〉pha,phb +
√

(1− p)p (|10〉mA,mB
|10〉pha,phb (4.11)

+ |01〉mA,mB
|01〉pha,phb) + p |11〉mA,mB

|11〉pha,phb

The modes the photon can be detected in are: [4]

d+ =
1√
2

(a+ b), d− =
1√
2

(a− b) (4.12)

This means the measurement operators for one-click entanglement generation are given by:

M+ = |φ+〉 〈φ+| , |φ+〉 = d†+ |∅〉 =
1√
2

(
|10〉+ |01〉

)
(4.13)

M− = |φ−〉 〈φ−| , |φ−〉 = d†− |∅〉 =
1√
2

(
|10〉 − |01〉

)
(4.14)

From Eq. (2.12) we can calculate the probability to get outcome d+:
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〈Ψ|AB (1⊗ |φ+〉 〈φ+|φ+〉 〈φ+|) |Ψ〉AB = 〈Ψ|AB (1⊗ |φ+〉 〈φ+|) |Ψ〉AB (4.15)

=
(1− p)p

2
(〈10| 〈10|+ 〈01| 〈01|)(1⊗ |φ+〉 〈φ+|)(|10〉 |10〉+ |01〉 |01〉) (4.16)

=
(1− p)p

2
(〈10|10〉 〈10|10〉+ 〈01|01〉 〈01|01〉) = (1− p)p (4.17)

Then from Eq. (2.13) we can calculate the state after measurement given outcome d+:

|Ψ0〉 =
(1mA,mB

⊗ |φ+〉 〈φ+|pha,phb) |Ψ〉AB√
〈Ψ|φ+〉 〈φ+|φ+〉 〈φ+|Ψ〉

(4.18)

=

√
(1− p)p

(1− p)p · 2

(
|10〉mA,mB

|φ+〉 〈10|10〉pha,phb + |01〉mA,mB
|φ+〉 〈01|01〉pha,phb

)
(4.19)

=
1√
2

(
|10〉mA,mB

|φ+〉pha,phb + |01〉mA,mB
|φ+〉pha,phb

)
(4.20)

=
1√
2

(
|10〉mA,mB

+ |01〉mA,mB

)
⊗ |φ+〉 (4.21)

In density matrix notation:

|Ψ0〉 〈Ψ0| =
1

2
(|10〉+ |01〉)(〈10|+ 〈01|)⊗ |φ+〉 〈φ+| (4.22)

=
1

2
(|10〉 〈10|+ |10〉 〈01|+ |01〉 〈10|+ |01〉 〈01|)⊗ |φ+〉 〈φ+| (4.23)

What we can see is that we end up with a completely separable state with the photon being in

|φ+〉 and the two ensembles in a shared entangled state. Using the density matrix form of the

state from equation 4.22 and tracing out the photon modes gives:

|Ψ〉 〈Ψ|mA,mB
= Trph

(
|Ψ0〉 〈Ψ0|

)
(4.24)

=
1

2
(|10〉 〈10|+ |10〉 〈01|+ |01〉 〈10|+ |01〉 〈01|) · trace

(
|φ+〉 〈φ+|

)
(4.25)

=
1

2
(|10〉 〈10|+ |10〉 〈01|+ |01〉 〈10|+ |01〉 〈01|) (4.26)

⇒ |Ψ〉mA,mB
=

1√
2

(
|10〉+ |01〉

)
(4.27)

This is exactly the entangled state needed for the next step in the repeater protocol: entangle-

ment swapping.
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If the click was in d− the calculations would be very similar except instead of |φ+〉 they would

be carried out with |φ−〉 resulting in the final state being |Ψ〉mA,mB
=

1√
2

(
|10〉 − |01〉

)
. This

does not change anything however considering a gate can be applied to change the state to be

the same as the resulting state given a click in d+ from Eq. (4.27). This means under ideal

conditions it can be assumed that the entangled pairs will be in an entangled state like the one

in Eq. (4.27) for the subsequent entanglement swapping steps. [4]

4.3 One-click entanglement swapping

Once entanglement has been established between the repeater nodes, entanglement swapping

can be used to entangle nodes that are further apart. Repeating the swapping will then even-

tually lead to entanglement between the sender and receiver.

Figure 5: The setup of an entanglement swapping scheme based on the detection of a single

photon. Entangled pairs of ensembles A−B and C −D are prepared and ensembles B and

C are read out. If the ensembles have an excitation stored an anti-stokes photon will be

emitted and then combined on a beamsplitter. The detection of a single photon in either of

the two detectors then creates entanglement between ensembles A and D. [4]

Entanglement swapping can be achieved by measuring on ensembles B and C.

Suppose the ensembles A and B share the entangled state:

|Ψ〉AB =
1√
2

(
|10〉+ |01〉

)
(4.28)

Similarly, C and D share the entangled state:

|Ψ〉CD =
1√
2

(
|10〉+ |01〉

)
(4.29)
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The combined shared state between nodes A, B, C and D is then:

|Ψ〉ABCD = |Ψ〉AB ⊗ |Ψ〉CD =
1

2
(|1010〉+ |1001〉+ |0110〉+ |0101〉) (4.30)

Now let ensembles B and C be read-out so an anti-stokes photon is emitted, if the ensemble is

excited. Let b′† denote the creation operator of an anti-Stokes photon coming from ensemble

B.

The modes the photon can be detected in are: [4]

d+ =
1√
2

(b+ c), d− =
1√
2

(b− c) (4.31)

This means the measurement operators for one-click entanglement swapping are given by:

M+ = |φ+〉 〈φ+| , |φ+〉 = d†+ |∅〉 =
1√
2

(
|10〉+ |01〉

)
(4.32)

M− = |φ−〉 〈φ−| , |φ−〉 = d†− |∅〉 =
1√
2

(
|10〉 − |01〉

)
(4.33)

Calculating the probability of getting for example outcome d+ from Eq. (2.12) gives:

〈Ψ|ABCD (1⊗ |φ+〉 〈φ+|φ+〉 〈φ+|) |Ψ〉ABCD = 〈Ψ|ABCD (1⊗ |φ+〉 〈φ+|) |Ψ〉ABCD (4.34)

=
1

8
(〈1| 〈01| 〈0|+ 〈0| 〈10| 〈1|)(1⊗ |φ+〉 〈φ+| ⊗ 1)(|1〉 |01〉 |0〉+ |0〉 |10〉 |1〉) (4.35)

=
1

8
(〈1|1〉 〈01|01〉 〈0|0〉+ 〈0|0〉 〈10|10〉 〈1|1〉) =

1

4
(4.36)

And the state after measurement given outcome d+ from Eq. (2.13):

|Ψ1〉 =
(1AD ⊗ |φ+〉 〈φ+|) |Ψ〉ABCD√
〈Ψ|φ+〉 〈φ+|φ+〉 〈φ+|Ψ〉

(4.37)

=
1√

1

4
· 2 ·
√

2

(
|1〉 |φ+〉 〈01|01〉 |0〉 |0〉 |φ+〉 〈10|10〉 |1〉

)
(4.38)

=
1√
2

(
|1〉A |φ+〉BC |0〉D + |0〉A |φ+〉BC |1〉D

)
(4.39)

=
1√
2

(
|10〉AD + |01〉AD

)
⊗ |φ+〉 (4.40)
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Again the resulting state between A and D is a shared entangled state completely separable

from the state of B and C.

Once entanglement has been established between A and D, one could imagine a similar pair of

entangled ensembles E and H. Swapping again will then entangle ensembles A and H. This

process can be continued an arbitrary number of times to entangle the sender and receiver

nodes over an arbitrarily long distance. [4]

4.4 Performance

To compare the performance of different quantum repeater protocols under varying conditions

two important values were calculated; the fidelity of the final state and the total time the

protocol needs to run.

4.4.1 Fidelity and post-selection

Fidelity is a measure of how similar two quantum states are. It is the probability of being able

to distinguish the two by some quantum measurement.

We will define the fidelity as:

Definition 4.1. [Fidelity] Let ρ and σ be the density operators of two quantum states. The

fidelity F (ρ, σ) will be given as:

F (ρ, σ) =
(
Tr
(√√

σρ
√
σ
))2

(4.41)

Suppose one of the two density matrices is pure i.e. it can be represented as the outer product

of a state vector with itself: σ = |Ψσ〉 〈Ψσ|. The expression for the fidelity then reduces to:

F (ρ, σ) =
(
Tr
(√√

σρ
√
σ
))2

=
(
Tr
(√
|Ψσ〉 〈Ψσ| ρ |Ψσ〉 〈Ψσ|

))2
(4.42)

= 〈Ψσ| ρ |Ψσ〉
(
Tr
(√
|Ψσ〉 〈Ψσ|

))2
= 〈Ψσ| ρ |Ψσ〉 (4.43)

If both states are pure i.e. ρ = |Ψρ〉 〈Ψρ| and σ = |Ψσ〉 〈Ψσ| it follows from Eq. (4.43) that the

expression for the fidelity reduces further:

F (ρ, σ) = 〈Ψσ| ρ |Ψσ〉 = 〈Ψσ|Ψρ〉 〈Ψρ|Ψσ〉 = |〈Ψρ|Ψσ〉|2 (4.44)
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If ρ = σ from the definition 4.1 of the fidelity:

F (ρ, ρ) =
(
Tr
(√√

ρρ
√
ρ
))2

=
(
Tr(ρ)

)2
= 1 (4.45)

Consider a protocol under ideal conditions using the one-click entanglement generation and the

one-click swapping schemes discussed in chapters 4.2 and 4.3 to distribute entanglement across

some distance. As calculated in Eq. (4.40) the final state between ensembles A and Z can be

guaranteed to be in the entangled state |Ψ〉AZ =
1√
2

(
|10〉AZ + |01〉AZ

)
. The density matrix

must thereby be given as: ρAZ = |Ψ〉 〈Ψ|AZ . This is exactly the desired entangled state and so

the fidelity between the actual final state and the desired state can therefore be found to be:

F (ρAZ , ρAZ) = 1 (4.46)

This is not surprising as no imperfections have been introduced to cause a decrease in fidelity.

Suppose somehow the fidelity of the final state was not 1. This is where post-selection becomes

a useful tool.

Post-selection is a method to increase the fidelity of the final state. It works by reading out

the excitations stored in the ensembles after the quantum repeater protocol has been run. In

this way the probability of detecting and rejecting unwanted states become higher.

Suppose entanglement has been established between two pairs of ensembles across the desired

distance between the sender at position A and the receiver at position Z. This means there are

two entangled pairs A1 − Z1 and A2 − Z2. An illustration of the post-selection scheme setup

can be found in figure 6.

The excitations stored at each location are read out and the emitted anti-stokes photons are

then sent through beamsplitters. If and only if one photon is detected at each location A and

Z is the post-selection process accepted.

Figure 6: Setup of the post-selection scheme. Two pairs of entangled ensembles are prepared

and at each location A and Z the excitations in the ensembles are read out and the emitted

anti-stokes photons are sent through a beamsplitter.
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This means suppose there is vacuum at A1 and Z1 i.e. no excitations to be read out. This

would mean assuming nothing else went wrong only there would have to be excitations in both

A2 and Z2 for the post-selection to be successful. Of course imperfections might also influence

the post-selection, but it goes to show the probability of catching unwanted states increases

thereby improving the fidelity.

Of course adding a post-selection step may increase the fidelity but at the cost of time. If

only one-click generation and one-click swapping were used entanglement needs to be prepared

between both pairs of ensembles. In other words two independent events need to occur which

takes time. Furthermore there is a chance the post-selection is un-successful and the entire

repeater protocol needs to be started over.

4.4.2 Total time

While the fidelity is an important aspect of a repeater protocol, for it to be useful it also needs

to have a reasonable time scale. This means we need a formula to calculate the total time cost

of a repeater protocol. That is we need a formula to calculate the combined time for each step

in the protocol to be accepted including the final post-selection step.

Let {P0, P1, ..., Pn} be the probabilities that a step in the repeater protocol is accepted. P0

would for example be the probability to accept a click in the entanglement generation process.

Likewise P1 would be the probability to accept the first swap and so on.
L0

c
is the time it takes

for a signal to travel between the elementary links with L0 =
L

2n
. Finally let {f0, f1, ..., fn−1}

be the added factors when taking into account that not just one but two independent events

need to occur6. In other words we need to wait for the preparation of two pairs of entangled

ensembles when using the one-click entanglement swapping scheme. The total time without

post-selection is then given by: [4]

Ttot =
L0

c

f0f1...fn−1
P0P1...Pn

(4.47)

As calculated in Eq. (4.46) under ideal conditions post-selection is not really necessary as the

final state already has a fidelity of 1. When including imperfections however post-selection

begins to be very useful in increasing the fidelity of the final state. Let Pps be the probability

for the post-selection process to be accepted. Additionally another factor of f is needed since

the post-selection step requires another two pairs of entangled ensembles to be prepared. The

6The value of f was given in [4] to be
3

2
when two independent events need to occur. Note however that for

protocols using the two-click swapping methods, the first swap will need four independent events to occur. In

this case f =
25

12
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total time when including post-selection thereby becomes: [4]

Ttot =
L0

c

f0f1...fn
P0P1...PnPps

(4.48)

As an example consider the protocol under ideal conditions mentioned previously which uses

the one-click entanglement generation and one-click entanglement swapping schemes.

Suppose L = 1000 km and 3 swaps are performed which means L0 = 125 km. From Eq.

(4.17) the probability of getting a click in d+ in the entanglement generation step under ideal

conditions is (1 − p)p. Note the process is also accepted given a click in d− which has the

same probability. The overall probability to accept the entanglement generation step is thereby

P0 = 2p(1− p).

For the entanglement swapping step it was calculated in Eq. (4.36) that the probability to get a

click in d+ given that the ensembles A, B, C and D are in the entangled state in Eq. (4.30) was
1

4
. As argued it is a fair assumption that A, B, C and D share that particular entangled state

as the protocol can be constructed thereafter. Completely equivalently the swapping process

is accepted given a click in d− which happens with a probability of
1

4
as well. This means the

total probability of success for the swapping steps under ideal conditions is P1 = P2 = P3 =
1

2
.

Given ideal assumptions are assumed post-selection would not be beneficial and so the total

time can be calculated using Eq. (4.47):

Ttot =
125 km

2 · 105 km/s
·

(3

2

)2
2p(1− p) ·

(1

2

)3 =
5.62 · 10−3

p(1− p)
s (4.49)

The maximum value of p(1 − p) is at p = 0.5. The lowest possible time must be at this value

of p meaning Toptimal = 2.25 · 10−2 s.

This is fast distribution of quantum entanglement. Recall the probability of a photon reaching

the receiver by direct transmission for L = 1000 km was 1.93 · 10−20%. Of course we have yet

to take imperfections into account and this is where quantum repeater protocols begin to be

less efficient.
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5 Imperfections

It has now been shown that repeater protocols work in theory under ideal assumptions. This

is not a realistic representation of how a quantum repeater would work in practise however.

To have the theoretical description of the quantum repeater protocols resemble reality more

closely, we will in this section begin to describe various imperfections and how to include them

when calculating the efficiency of a repeater protocol.

This section will discuss the various imperfections that might affect the repeater protocols

discussed in this thesis and how they were taken into account in calculations.

5.1 Multi-photon errors

An important imperfection to take into account is the fact that an atomic ensemble has the

probability to emit more than one photon. The ideal state from Eq. (4.8) is no longer a good

representation seeing as |00〉 and |11〉 are no longer the only states the source can be found in.

A better representation of the source state is seen in Eq. (4.7)

When allowing for the possibility of the emission of two or more photons it results in a nonzero

chance of the detection of two photons. Assuming the detectors are number-resolving and no

other imperfections, this will not cause an accept of an unwanted state in itself. It does increase

the time cost as the process is restarted.

Another important consequence when allowing for the emission of multiple photons is in combi-

nation with other imperfections: photon loss and detector efficiency. Suppose two photons are

emitted but one of them is either lost to the environment in the fiber optic cables or simply not

detected. This causes an accept of an unwanted state. This means not only does the inclusion

of imperfections slow down repeater protocols, they also give a non-zero chance to end up with

a wrong state i.e. they decrease the fidelity of the final state.

5.2 Photon loss

Photon loss is the cause of the problem of long-distance quantum communication as discussed

in a previous section. Even though the loss is much less for smaller distances, it is not removed

entirely. The swapping schemes are local operations and so photon loss does not play a signif-

icant role. In the entanglement generation scheme however the distance between ensemble A

and B is L0. This means the distance between the ensembles and the detectors is L0/2. The
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transmission efficiency must thereby be given as:

ηt = exp
( −L0

2 · 22

)
= e−L0/44 (5.1)

To include photon loss in calculations consider the state in equation (4.7). It had memory modes

and photonic modes. If we include the environment we can add a term where the photon does

not appear in the photon modes, but in the environment. In other words the photon is lost

to the environment. The state of A can then be split up in an ideal part7 and a part that

contains the terms that accounts for photon loss. Let ηt be the probability that a photon is

transmitted through the cable. In other words it is the probability given in equation (3.1). The

un-normalized source state is then given by:

|Ψ〉 = |ψ〉ideal + |ψ〉loss (5.2)

⇒ |ψ〉ideal = |ψ〉m,ph,ideal ⊗ |0〉e (5.3)

= (|00〉m,ph +
√
p · ηt |11〉m,ph + p · ηt |22〉m,ph)⊗ |0〉e (5.4)

⇒ |ψ〉loss =
√
p(1− ηt) |10〉m,ph ⊗ |1〉e (5.5)

+ p
√
ηt(1− ηt) |21〉m,ph ⊗ |1

′〉e + p(1− ηt) |20〉m,ph ⊗ |2〉e (5.6)

Now consider the density matrix of the state in Eq. (5.2):

ρ = |Ψ〉 〈Ψ| = |ψ〉ideal 〈ψ|ideal + |ψ〉ideal 〈ψ|loss + |ψ〉loss 〈ψ|ideal + |ψ〉loss 〈ψ|loss (5.7)

Since we can’t control the environment during experiments we will need to trace out the environ-

ment before doing measurements on the quantum state. Consider a term such as |ψ〉ideal 〈ψ|ideal:

Tre
(
|ψ〉ideal 〈ψ|ideal

)
= Tre

(
|ψ〉 〈ψ|m,ph,ideal ⊗ |0〉 〈0|e

)
(5.8)

= |ψ〉 〈ψ|m,ph,ideal · Tr(|0〉 〈0|e) = |ψ〉 〈ψ|m,ph,ideal (5.9)

And consider another term |ψ〉ideal 〈ψ|loss:

Tre
(
|ψ〉ideal 〈ψ|loss

)
= Tre

(√
p(1− ηt) |ψ〉m,ph,ideal 〈10|m,ph ⊗ |0〉 〈1|e (5.10)

+ p
√
ηt(1− ηt) |ψ〉m,ph,ideal 〈21|m,ph ⊗ |0〉 〈1

′|e)
+ p(1− ηt) |ψ〉m,ph,ideal 〈20|m,ph ⊗ |0〉 〈2|e

)
= 0

7Ideal here is a bit misleading. It is ideal with respect to photon loss in that no photons are lost, but since

we include multi-photon emission terms it is not entirely ideal.
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In all of these terms in the environment modes the ‘ket’ state is different from the ‘bra’ state

in contrast to Eq. (5.8) where the environment modes were all the same i.e. |0〉. Therefore

we have that |ψ〉ideal 〈ψ|loss and |ψ〉loss 〈ψ|ideal do not give contributions in a measurement since

they are traced out.

Now consider |ψ〉loss 〈ψ|loss and what happens when we take trace over the environment. The

only terms where the ‘ket’ and ‘bra’ states of the environmental modes are the same must be:

p(1−ηt) |10〉 〈10|m,ph⊗|1〉 〈1|e , p2ηt(1−ηt) |21〉 〈21|m,ph⊗|1′〉 〈1′|e and p2(1−ηt)2 |20〉 〈20|m,ph⊗
|2〉 〈2|e

From this we can conclude that the only terms from the source state which give a non-zero

contribution with photon loss and multi-photon emission terms taken into account must be:

ρsource = |ψ〉 〈ψ|ideal + p(1− ηt) |10〉 〈10|m,ph (5.11)

+ p2ηt(1− ηt) |21〉 〈21|m,ph + p2(1− ηt)2 |20〉 〈20|m,ph

5.3 Efficiencies and dark counts

Detectors, as with much other equipment in physics in general, is unfortunately not perfect.

Two things can happen with detectors that need to be taken into account. First, even when

a photon reaches the detector, there is a chance it might not register. The probability that

a photon which has reached the detector will be registered will be referred to as the detec-

tor efficiency and will be denoted ηdet in calculations. Second, even if there is no photon in

the detector to trigger, it might still register a count. These are called dark counts and the

probability to get a dark count in a detector will be denoted pdark in calculations.

In addition to the imperfections related to the detectors there are inefficiencies relating to the

atomic ensembles. The read-write processes described earlier are not infallible. With a certain

probability ηwrite the ensemble will fail to store the excitation. Likewise with a probability ηread

when performing the entanglement swapping there is a probability that the excitation will not

be read out.

For the purpose of this thesis it will be assumed ηwrite = 1, however the effect of ηread will be

explored in more detail.
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6 First look at the effect of multi-photon errors

Since the main goal of this project is to explore the effect of the multi-photon errors in the source

state it might be interesting to begin by looking at the extreme case where it is disregarded

completely but other imperfections are included.

The case where the multi-photon error is disregarded will be referred to as having dim = 2 as

the memory modes of the ensembles can only be in a state of no atoms being excited or one

atom being excited. Likewise the photonic modes can only be occupied by no photons or one

photon. This means the basis vectors of the modes are 2-dimensional:

|0〉 =

(
1

0

)
, |1〉 =

(
0

1

)
In the same way the case where it is accounted for in full will be referred to as dim = 3 seeing

as now there is the possibility of two atoms being excited in the ensemble and to photons being

emitted. This means the basis vectors are now 3-dimensional:

|0〉 =

1

0

0

 , |1〉 =

0

1

0

 , |2〉 =

0

0

1


Simulating the standard Jiang protocol discussed in chapter 9 and plotting the fidelity as a

function of p for n = 3 and for fixed parameters L = 1000 km, ηdet = ηread = 0.9, pdark = 0 and

comparing dim = 2 with dim = 3 resulted in the plots found in figure 7

Figure 7: A plot of fidelity as a function of p. It compares dim = 2 with dim = 3 for the standard

Jiang protocol. The other parameters were fixed at L = 1000 km, n = 3, ηdet = ηread = 0.9 and

pdark = 0.
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Similarly plotting time as a function of p for the same protocol and the same parameters

produced the results found in figure 8.

Figure 8: A plot of time as a function of p. It compares dim = 2 with dim = 3 for the standard Jiang

protocol. The other parameters were fixed at L = 1000 km, n = 3, ηdet = ηread = 0.9 and pdark = 0.

Interestingly from figures 7 and 8 the time does not differ between dim = 2 and dim = 3 for

values of p where the fidelity is somewhat acceptable. The fidelity is significantly better for

dim = 2 however, which is to be expected when neglecting multi-photon errors.

Figure 9: A plot of the optimal time as a function of distance for n = 2, n = 3 and n = 4 for dim = 2.
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6.1 Newton-Raphson

Since for the most part the time seemed to go down as the value of p was increased8 we can

assume the best value of time can be found at the value of p where the fidelity is exactly at

some minimum tolerated fidelity. For this project the minimum fidelity that was accepted was

chosen to be 0.9.

To find the value of p in the point where the fidelity was 0.9 the Newton-Raphson root-finding

algorithm was used.

Take a real-valued and differentiable function f with a root at x∗. The Newton-Raphson

algorithm approximates the value x∗ by taking an initial guess x0 close to x∗ and then finding

a better guess by finding the root of the linear approximation in the point. This means the

improved guess x1 is found by:

f ′(x0) =
f(x)− 0

x0 − x1
⇒ x1 = x0 −

f(x0)

f ′(x0)
(6.1)

In general if the algorithm is run n times then the n’th approximation is found by:

xn = xn−1 −
f(xn−1)

f ′(xn−1)
(6.2)

There are issues related to this algorithm. The function must fulfill certain requirements and

the initial guess must be chosen in a way that the algorithm actually converges toward the

value of x∗.9 If the initial value is chosen sufficiently close to x∗ and the function satisfies the

requirements it should find the root given enough time.

8At a high enough value of p the time did start to increase, but at this point the fidelity was so low that it

was not in consideration regardless.
9Examples of what could go wrong include the algorithm getting stuck in a loop or finding the wrong root.
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Figure 10: Illustration of the Newton-Raphson root finding algorithm. Once the approxi-

mation xn has been found it is used as the input to find an improved approximation of the

root value.

A concern might arise when finding the optimal value of p in this way. Given good enough

conditions could it be that the optimal value of time was not found at the same value of p for

which the fidelity was 0.9? Maybe a better time is found at a value of p where the fidelity is

greater?

To explore this a simulation was run of the modified Jiang protocol with ηdet = 0.98 and

ηread = 0.98 and fixed parameters L = 1000 km, pdark = 0 and dim = 2.
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Figure 11: A plot of fidelity as a function of p for the modified Jiang protocol. Parameters L = 1000

km, ηdet = 0.98 and ηread = 0.98, pdark = 0 and dim = 2 were set to make conditions close to ideal.

The dotted lines represent the value of p for which the fidelity was 0.9 for a given n.

Figure 12: A plot of time as a function of p for the modified Jiang protocol. Parameters L = 1000

km, ηdet = 0.98 and ηread = 0.98, pdark = 0 and dim = 2 were set to make conditions close to ideal.

The dotted lines represent the value of p for which the fidelity was 0.9 for a given n.

Evidently from the figures 11 and 12 when using as high efficiency as 0.98 problems do start

to arise and one needs to be careful simply choosing the p for which the fidelity is 0.9 as the

optimal p when operating in this regime. Consider the vertical dashed blue line representing
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the value of p for which the fidelity was 0.9 for n = 2. It seems a slightly better time would

be found by choosing a lower value of p resulting in a fidelity greater than 0.9. For n = 3 and

n = 4 the value of p for which the fidelity was 0.9 does seem to find the lowest time.

That said an efficiency of 0.98 is far from a realistic representation of actual experimental

equipment. Therefore so long as the efficiencies used in simulations are kept at more reasonable

values the Newton-Raphson method should be effective at finding the shortest time for which

the fidelity is still at least 0.9.
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7 One-click entanglement generation and swapping with

imperfections

One-click entanglement generation and one-click swapping proved quite efficient under ideal

conditions, but the situation looks very different once imperfections are taken into account. This

chapter will explore the one-click generation and one-click swapping scheme with imperfections

included.

The motivation for using an entanglement swapping protocol where acceptance is conditioned

on two clicks lies in the decrease in the efficiency in the one-click swapping scheme once imper-

fections are taken into account.

7.1 One-click generation

While the detector modes for one-click entanglement generation and one-click swapping are the

same as in Eq. (4.12) and (4.31) with and without imperfections we can no longer treat the

measurement as a projective measurement. This is because for a measurement to be a projective

measurement the measurement operators Pm = M †
mMm (see chapter 2.3 for an explanation of

the operators Mm) must obey P 2
m = Pm. When imperfections are included there are too many

free variables that cannot be controlled during an experiment and the premise of a projective

measurement no longer holds true.

Events that were not acceptable before, now has a non-zero chance of being accepted. Some

examples are:

• No photon is emitted but there is a dark count causing the process to be accepted despite

the system being in a wrong state.

• A photon is emitted but is lost in the fiber or simply not detected. If there is no dark

count this causes the measurement outcome to be rejected and the process needs to be

started over.

• Two photons are emitted, either from the same ensemble or one from each. If one of them

is lost in transmission or simply not detected this causes the acceptance of an unwanted

state. If both photons are detected the process is started over.

This means the measurement is best described by a Positive Operator Valued Measurement

[POVM].
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Suppose n photons reach the d+ detector and m photons reach the d− detector. Without

imperfections only n = 1,m = 0 or n = 0,m = 1 were events that could result in an acceptance.

To take the effect of imperfections into account there must also be a certain probability α(n,m)

to accept other combinations of n and m10. Consider for example n = 0, m = 0. With pdark 6= 0

this has a chance pdark(1− pdark) of causing a click in d+ and being accepted. Likewise for d−.

In general the probability α(n,m) of accepting an event where there are n photons in d+ and

m photons in d− can be found. First all but one photon must be lost in order for the event to

be accepted. This has probability (1−ηdet)n+m−1. If there are n photons in the d+ detector the

probability that the remaining photon will be detected in d+ must be n ·ηdet(1−pdark). Another

possibility is the photon is lost but there is a dark count in d+ with probability (1− ηdet)pdark.
For the process to be accepted there must be no dark count in d− which has the probability

(1− pdark). The final expression for the probability α(n,m) to have a click in d+ must thereby

be given as:

α(n,m) = (1− ηdet)n+m−1(n · ηdet(1− pdark) + (1− ηdet)pdark)(1− pdark) (7.1)

With this we can begin constructing the POVM describing the measurement.

Let ρA = |Ψ〉 〈Ψ|A with |Ψ〉 being the state from Eq. (5.11) and the label A denoting it as the

state of ensemble A. Similarly ρB can be defined for ensemble B.

Define operators:

Πn,m
pha,phb

= |φ〉 〈φ|n,mpha,phb , |φ〉n,mpha,phb =
(d†+)n(d†−)m√

n!m!
|∅〉 (7.2)

The subscript pha, phb refers to the fact that the operators work on the photon modes of system

A and B.

The entanglement generation measurement is performed by making a POVM on the photon

modes of ρA ⊗ ρB. An identity matrix is applied on the memory modes to represent that the

measurement is not on that part of the system. The state after measurement given outcome

10Note n and m will be limited to at most have the value 2. We only consider the emission of at most two

photons from the same ensemble, so in principle three or even even four photons could reach one of the detectors

given a process with two ensembles. However to have n > 2 or m > 2 three or more photons in total would

have had to have been emitted. The probability of such events is so small that it will be disregarded for the

one-click schemes.
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d+ can be calculated using Eq. (2.21) giving the expression:

ρ′AB =
1

p+

2∑
n,m=0

α(n,m)(1mA,mB
⊗ Πn,m

pha,phb
)ρA ⊗ ρB(1mA,mB

⊗ Πn,m
pha,phb

) (7.3)

The state of A and B each have memory modes as well as photon modes. After measuring

on the photon modes we are mostly interested in the state of the memory modes of A and B.

Therefore we can take the partial trace over the photon modes to get the state of the memory

modes of A and B:

ρ′mA,mB
= Trpha,phb

( 1

p+

2∑
n,m=0

α(n,m)(1mA,mB
⊗ Πn,m

pha,phb
)ρA ⊗ ρB(1mA,mB

⊗ Πn,m
pha,phb

)
)

(7.4)

=
1

p+

2∑
n,m=0

α(n,m)Trpha,phb
(
(1mA,mB

⊗ Πn,m
pha,phb

)ρA ⊗ ρB(1mA,mB
⊗ Πn,m

pha,phb
)
)

(7.5)

=
1

p+

2∑
n,m=0

α(n,m)Trpha,phb
(
(ρA ⊗ ρB)Πn,m

pha,phb

)
(7.6)

=

∑2
n,m=0 α(n,m) 〈φ|n,mpha,phb ρA ⊗ ρB |φ〉

n,m
pha,phb

p+
(7.7)

Let cx be the factor of some matrix element cx |mAia〉 〈m′Aja| ⊗ |mBib〉 〈m′Bjb| in the density

matrix ρA ⊗ ρB. mA and m′A refer to the number of excitations in the ensemble and ia and ja

refer to the number of photons in the photon mode of system A. The contribution of this term

must from Eq. (7.7) be given by:

cx

2∑
n,m=0

α(n,m) 〈φ|n,mpha,phb |mAia〉 〈m′Aja| ⊗ |mBib〉 〈m′Bjb|φ〉
n,m
pha,phb

(7.8)

= cx |mAmB〉 〈m′Am′B|
2∑

n,m=0

α(n,m) 〈φ|n,mpha,phb |ia〉 〈ja| ⊗ |ib〉 〈jb|φ〉
n,m
pha,phb

(7.9)

From this it can be concluded that the state of the memory modes determine what the term

contributes to in the resulting state, but the photonic modes determine the factor i.e. the size

of the contribution. This means some factor dependent on ia, ja, ib and jb can be defined:
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M [ia, ja, ib, jb] =
2∑

n,m=0

α(n,m) 〈φ|n,mpha,phb |ia〉 〈ja| ⊗ |ib〉 〈jb|φ〉
n,m
pha,phb

(7.10)

=
2∑

n,m=0

α(n,m) 〈φ|n,mpha,phb |iaib〉 〈jajb|φ〉
n,m
pha,phb

(7.11)

Given the factor M [ia, ja, ib, jb] the state after a measurement with outcome d+ can be cal-

culated. Let ρ[mA,m
′
A, ia, ja] denote the matrix element at the position |mA〉 〈m′A| ⊗ |ia〉 〈ja|

in the density matrix of A. The matrix element ρ′[mA,m
′
A,mB,m

′
B] in the resulting density

matrix is then given by:

ρ′[mA,m
′
A,mB,m

′
B] =

2∑
ia,ja,ib,jb=0

ρ[mA,m
′
A, ia, ja] · ρ[mB,m

′
B, ib, jb] ·M [ia, ja, ib, jb] (7.12)

To expand a bit on the expression for M [ia, ja, ib, jb] consider the inner product 〈φ|n,mpha,phb |iaib〉.

Recall from Eq. (7.2) |φ〉n,mpha,phb =
(d†+)n(d†−)m√

n!m!
|∅〉. (d†+)n(d†−)m |∅〉 creates a polynomial with

terms
(a†)i(b†)j√

n!m!
|∅〉 =

√
i!j!√
n!m!

cn,mij |ij〉 where n + m = i + j and cn,mij is some coefficient. This

means 〈φ|n,mpha,phb |iaib〉 =

√
ia!ib!√
n!m!

cn,miaib . Define coeff[n,m, ia, ib] = 〈φ|n,mpha,phb |iaib〉 =

√
ia!ib!√
n!m!

cn,miaib .

The factor M [ia, ja, ib, jb] can then be found to be:

M [ia, ja, ib, jb] =
2∑

n,m=0

α(n,m) · coeff[n,m, ia, ib]coeff[n,m, ja, jb] (7.13)

As an example consider the term c0 |mA〉 〈m′A| ⊗ |0〉 〈0|pha ⊗ |mB〉 〈m′B| ⊗ |0〉 〈0|phb . From Eq.

(7.9) in the sum only n = 0, m = 0 give a non-zero contribution. The contribution of this term

must therefore be given by:

c0

2∑
n,m=0

α(n,m) 〈φ|n,mpha,phb |mA〉 〈m′A| ⊗ |0〉 〈0|pha ⊗ |mB〉 〈m′B| ⊗ |0〉 〈0|phb |φ〉
n,m
pha,phb

(7.14)

= c0 |mAmB〉 〈m′Am′B|
2∑

n,m=0

α(n,m) 〈φ|n,mpha,phb |0〉 〈0| ⊗ |0〉 〈0|φ〉
n,m
pha,phb

(7.15)

c0 · pdark(1− pdark) |mAmB〉 〈m′Am′B| (7.16)
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Doing this for each value of mA, m
′
A, mB, m

′
B between 0 and 2 the un-normalized density

matrix ρ′ of the resulting state can be calculated. Recall that from Eq. (7.7) we also needed

to divide by p+ to normalize the resulting density matrix to have trace 1. Recall p+ was the

probability to get outcome d+. From Eq. (2.16) we have:

p+ = Tr
( 2∑
n,m=0

α(n,m)(1⊗ Πn,m
pha,phb

)ρA ⊗ ρB(1⊗ Πn,m
pha,phb

)
)

(7.17)

But
∑2

n,m=0 α(n,m)(1⊗Πn,m
pha,phb

)ρA⊗ρB(1⊗Πn,m
pha,phb

) = ρ′ meaning we must have p+ = Tr(ρ′).

Thereby we have that the normalized density matrix of the resulting state given an outcome

d+ must be given by
ρ′

Tr(ρ′)
.

What we have found is that with imperfections included there is a higher rejection probability

as the probability of multi-photon errors become higher or photons can get lost or not detected

causing no clicks. In addition to a higher time-cost the one-click entanglement generation

scheme is burdened with a poorer fidelity of the final state, as now there is a probability

that the resulting state is found in an unwanted state. This probability of the entanglement

generation not producing the desired entanglement must be accounted for when looking at the

subsequent swapping schemes.

7.2 One-click swapping

Having looked at the effect of imperfections on the entanglement generation scheme now we

will look at the one-click swapping scheme. The first important difference is that going into

the swapping process it can no longer be assumed that ensembles A−B and C −D are in an

entangled state.

Recall that to perform entanglement swapping a measurement is carried out by reading out

the excitations in the ensembles. This means instead of α(n,m) only being dependent on a

detector efficiency ηdet the read-out efficiency ηread must also be included. Let η = ηdet · ηread
be the combined read-out and detector efficiency. α(n,m) is then given by:

α(n,m) = (1− η)n+m−1(n · η · (1− pdark) + (1− η)pdark)(1− pdark) (7.18)

In the same way as for the one-click generation scheme the resulting state of a one-click swapping

scheme can be calculated with imperfections taken into account. Suppose we have some density

matrix ρABCD for the combined system of ensembles A, B, C and D in a one-click entanglement

swapping scheme. In the same way we arrived at Eq. (7.3) but now with the measurement
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operators applied on B and C and an identity matrix on A and D as that part of the system

is not measured on:

ρ′ABCD =
1

p+

2∑
n,m=0

α(n,m)(1AD ⊗ Πn,m
BC )ρAB ⊗ ρCD(1AD ⊗ Πn,m

BC ) (7.19)

The state we are really interested in however is the state of A and D after measuring on B and

C. We can get this by taking the partial trace over B and C like we took the partial trace over

the photonic modes in the one-click entanglement generation scheme to arrive at Eq. (7.7):

ρ′AD = TrBC

( 1

p+

2∑
n,m=0

α(n,m)(1AD ⊗ Πn,m
BC )ρAB ⊗ ρCD(1AD ⊗ Πn,m

BC )
)

(7.20)

=

∑2
n,m=0 α(n,m) 〈φ|n,mBC ρAB ⊗ ρCD |φ〉

n,m
BC

p+
(7.21)

Like in Eq. (7.9) we can calculate the contribution of a term cx |mAmB〉 〈m′Am′B|⊗|mCmD〉 〈m′Cm′D|:

2∑
n,m=0

α(n,m) · cx 〈φ|n,mBC |mAmB〉 〈m′Am′B| ⊗ |mCmD〉 〈m′Cm′D|φ〉
n,m
BC (7.22)

= cx |mAmD〉 〈m′Am′D|
2∑

n,m=0

α(n,m) · 〈φ|n,mBC |mB〉 〈m′B| ⊗ |mC〉 〈m′C |φ〉
n,m
BC (7.23)

As before only the modes that are subjected to the measurement control the contribution factor.

This means again a factor, now only dependent on mB,m
′
B, mC and m′C can be defined:

M [mB,m
′
B,mC ,m

′
C ] =

2∑
n,m=0

α(n,m) · 〈φ|n,mBC |mB〉 〈m′B| ⊗ |mC〉 〈m′C |φ〉
n,m
BC (7.24)

=
2∑

n,m=0

α(n,m) · 〈φ|n,mBC |mBmC〉 〈m′Bm′C |φ〉
n,m
BC (7.25)

As before this expression can be expanded by considering the inner product 〈φ|n,mBC |mBmC〉.

We have |φ〉n,mBC =
(d†+)n(d†−)m√

n!m!
|∅〉 with (d†+)n(d†−)m |∅〉 creating a polynomial, now with terms

(b†)i(c†)j√
n!m!

|∅〉 =

√
i!j!√
n!m!

cn,mij |ij〉. As before n + m = i + j and cn,mij is some coefficient. This
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means 〈φ|n,mBC |mBmC〉 =

√
mB!mB!√
n!m!

cn,mmBmC
. Define coeff[n,m,mb,mC ] = 〈φ|n,mBC |mBmC〉 =

√
mB!mB!√
n!m!

cn,mmBmC
. The factor M [mB,m

′
B,mC ,m

′
C ] can then be found to be:

M [mB,m
′
B,mC ,m

′
C ] =

2∑
n,m=0

α(n,m) · coeff[n,m,mB,mC ]coeff[n,m,m′B,m
′
C ] (7.26)

Let ρ[mA,m
′
A,mB,m

′
B] denote the matrix element at the position |mA〉 〈m′A|⊗|mB〉 〈m′B| in the

density matrix ρAB. The matrix element ρ′[mA,m
′
A,mD,m

′
D] in the resulting density matrix is

then given by:

ρ′[mA,m
′
A,mD,m

′
D] =

2∑
mB ,m

′
B ,mC ,m

′
C=0

ρ[mA,m
′
A,mB,m

′
B] · ρ[mC ,m

′
C ,mD,m

′
D] (7.27)

·M [mB,m
′
B,mC ,m

′
C ] (7.28)

Again we can consider what happens in special cases. For example consider c0 |mA〉 〈m′A| ⊗
|0〉 〈0| ⊗ |0〉 〈0| ⊗ |mD〉 〈m′D|:

2∑
n,m=0

α(n,m) · c0 〈φ|n,mBC |mA〉 〈m′A| ⊗ |0〉 〈0| ⊗ |0〉 〈0| ⊗ |mD〉 〈m′D|φ〉
n,m
BC (7.29)

= c0 |mAmD〉 〈m′Am′D|
2∑

n,m=0

α(n,m) · cx 〈φ|n,mBC |0〉 〈0| ⊗ |0〉 〈0|φ〉
n,m
BC (7.30)

= c0 pdark(1− pdark) |mAmD〉 〈m′Am′D| (7.31)

The only real difference is the pre-factor c0 which will be different between one-click entangle-

ment generation and one-click entanglement swapping.

Doing this for each value of mB, m
′
B, mC , m

′
C between 0 and 2 the resulting un-normalized

state ρ′ can be calculated.

A similar argument to the one for the entanglement generation scheme can be made to arrive

at an expression for p+ for the swapping swapping scheme: p+ = Tr(ρ′). This means similarly

to before we have that the normalized resulting state of an entanglement swapping scheme with

outcome d+ is
ρ′

Tr(ρ′)
.

To quantify the effect of imperfections on the one-click entanglement swapping scheme consider

the possibilities of ending up with ensembles A and D being in the state |00〉 〈00|AD. There are

a number of ways this can happen:
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• Given no excitations in any of the four ensembles the swapping process could only be

accepted if there was a dark count.

• Given only one excitation in eitherB or C the emitted photon could either be detected or if

it is not detected there could be a dark count. It is worth noting that these events happen

with only one of the ensemble pairs in a wrong state after entanglement generation.

• Given excitations in B and C one of the photons could not be detected. Note in this case

none of the ensemble pairs are in a wrong state.

• ... and more

Imperfections clearly cause problems for the one-click swapping scheme, even if the entangle-

ment generation was successful. Furthermore the one-click scheme is not designed in a way

to catch these errors or at least to make them less likely. This means doing more swaps only

decreases the fidelity of the resulting state further.
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8 Two-click swapping

Due to imperfections there were many possibilities for the one-click swapping scheme to produce

a wrong state. The scheme was not designed in a way to negate certain imperfections or make

them less likely to cause an accept.

In this chapter more advanced swapping schemes which require clicks in two detectors will be

introduced motivated by the need to limit the effect of imperfections.

There are two different types of two-click swapping methods that will be discussed in this thesis.

This chapter will discuss both of them and then compare the two to find if one is to be preferred

over the other.

8.1 Type 1 two-click swapping

The first type two-click swapping scheme uses four pairs of entangled ensembles11: ρAhBh ⊗
ρChDh⊗ρAvBv⊗ρCvDv. Then ensembles Bh,Ch,Bv and Cv causing the emission of anti-stokes

photons. These are then taken trough beam-splitters, combined at a central station, sent trough

another pair of beam-splitters and lastly detected in modes: [4]

d± =
1

2
(bh + bv ± ch ∓ cv), d̃± =

1

2
(±bh ∓ bv + ch + cv) (8.1)

An illustration of the setup can be found in figure 13 below.

Figure 13: The setup of the first type of entanglement swapping conditioned on two clicks.

Four pairs of entangled ensembles are used, and one ensemble from each pair is then read

out. The emitted anti-stokes photons are then sent through polarizing beam-splitters and

combined at a central station. Acceptance is conditioned on a click in certain pairs of two

of the four detectors. [4]

11For the protocols discussed in this paper the entanglement will be created using one-click entanglement

generation
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To accept this entanglement swapping process there must be click in either d+ or d− and d̃+

or d̃−. Thereby there are only four combinations resulting in the process being accepted. Each

of which requires two clicks. An example of expanding an acceptable combination gives the

following expression:

d+d̃+ =
1

4
(2bhch + 2bvcv + b2h − b2v + c2h − c2v) (8.2)

From this we can determine what configurations cause an acceptable event provided there are

no other imperfections. An accept can be caused by the emission of a photon from Bh and Ch

or Bv and Cv. Another option is the emission of two photons from any of the four ensembles

provided they were emitted from the same one.

This means given ideal conditions the detection of a photon in d+ and d̃+ would project the

state of Ah,Dh,Av and Dv into the entangled state:

|ψ〉AhDhAvDv =
1√
2

(|11〉AhDh ⊗ |00〉AvDv + |00〉AhDh ⊗ |11〉AvDv) (8.3)

This was given the outcome d+d̃+. Similar observations can be made for d+d̃−, d−d̃+ and d−d̃−.

The measurement is made on Bh,Ch,Bv and Cv so we can assume some measurement operator

M = |φ〉 〈φ|BhChBvCv. Just as we arrived at Eq. (7.3) and (7.19) we get from Eq. (2.21) that

the resulting state is given by:

ρ′AhBhChDhAvBvCvDv =
1

p+

2∑
n1,n2
n3,n4

= 0

α(n1, n2, n3, n4) (8.4)

(
1AhDhAvDv⊗Πn1,n2,n3,n4

BhChBvCv

)ρAhBh ⊗ ρChDh ⊗ ρAvBv ⊗ ρCvDv
p+

(
1AhDhAvDv ⊗ Πn1,n2,n3,n4

BhChBvCv

)
Seeing as it is the state of Ah,Dh,Av and Dv we are interested in the partial trace is taken

over Bh,Ch,Bv and Cv like it was with the photon modes in Eq. (7.7) and with the memory

modes of B and C in (7.20)
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ρ′AhDhAvDv = TrBhChBvCv

( 2∑
n1,n2
n3,n4

=0

α(n1, n2, n3, n4)
(
1AhDhAvDv ⊗ Πn1,n2,n3,n4

BhChBvCv

)
(8.5)

ρAhBh ⊗ ρChDh ⊗ ρAvBv ⊗ ρCvDv
p+

(
1AhDhAvDv ⊗ Πn1,n2,n3,n4

BhChBvCv

))
=

1

p+

2∑
n1,n2
n3,n4

=0

α(n1, n2, n3, n4) (8.6)

〈φn1,n2,n3,n4|BhChBvCv ρAhBh ⊗ ρChDh ⊗ ρAvBv ⊗ ρCvDv |φ
n1,n2,n3,n4〉BhChBvCv

This leads to a very similar expression for the contribution of a term cn |mAhmBh〉 〈m′Ahm′Bh|⊗
|mChmDh〉 〈m′Chm′Dh| ⊗ |mAvmBv〉 〈m′Avm′Bv| ⊗ |mCvmDv〉 〈m′Cvm′Dv| as Eq. (7.9) and (7.23):

The differences begin when evaluating the contribution of specific terms. As an example take the

contribution of a term cx |mAhmBh〉 〈m′Ahm′Bh|⊗|mChmDh〉 〈m′Chm′Dh|⊗|mAvmBv〉 〈m′Avm′Bv|⊗
|mCvmDv〉 〈m′Cvm′Dv|:

2∑
n1,n2,n3,n4=0

α(n1, n2, n3, n4) · cx 〈φn1,n2,n3,n4|BhChBvCv |mAhmBh〉 〈m′Ahm′Bh| ⊗ (8.7)

|mChmDh〉 〈m′Chm′Dh| ⊗ |mAvmBv〉 〈m′Avm′Bv| ⊗ |mCvmDv〉 〈m′Cvm′Dv| |φn1,n2,n3,n4〉BhChBvCv

= cx |mAhmDhmAvmDv〉 〈m′Ahm′Dhm′Avm′Dv|
2∑

n1,n2,n3,n4=0

α(n1, n2, n3, n4) (8.8)

〈φn1,n2,n3,n4|BhChBvCv |mBh〉 〈m′Bh| ⊗ |mCh〉 〈m′Ch| ⊗ |mBv〉 〈m′Bv| ⊗ |mCv〉 〈m′Cv| |φn1,n2,n3,n4〉BhChBvCv

Again only the modes which are measured on influence the contribution factor. This means

we can as before consider a special case namely the term |mAh〉 〈m′Ah| ⊗ |0〉 〈0|Bh ⊗ |0〉 〈0|Ch ⊗
|mDh〉 〈m′Dh| ⊗ |mAv〉 〈m′Av| ⊗ |0〉 〈0|Bv ⊗ |0〉 〈0|Cv |mDv〉 〈m′Dv|.

Suppose n1 photons reach the d+ detector, n2 photons reach the d−, n3 photons reach the d̃+

detector and n4 photons reach the d̃− detector. There is only a contribution if |φ〉BhChBvCv =

|0000〉BhChBvCv meaning n1 = n2 = n3 = n4 = 0. The probability of accepting this event given

that in this swapping scheme acceptance is conditioned on two clicks is given by p2dark(1−pdark)2.
This means we have:
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2∑
n1,n2,n3,n4=0

α(n1, n2, n3, n4) · c0 〈φn1,n2,n3,n4 |BhChBvCv |mAh0〉 〈m′Ah0| ⊗ |0mDh〉 〈0m′Dh| ⊗ (8.9)

|mAv0〉 〈m′Av0| ⊗ |0mDv〉 〈0m′Dv| |φn1,n2,n3,n4〉BhChBvCv

= cx |mAhmDhmAvmDv〉 〈m′Ahm′Dhm′Avm′Dv|
2∑

n1,n2,n3,n4=0

α(n1, n2, n3, n4) (8.10)

〈φn1,n2,n3,n4|BhChBvCv |0〉 〈0| ⊗ |0〉 〈0| ⊗ |0〉 〈0| ⊗ |0〉 〈0| |φ
n1,n2,n3,n4〉BhChBvCv

= c0 p
2
dark(1− pdark)2 |mAhmDhmAvmDv〉 〈m′Ahm′Dhm′Avm′Dv| (8.11)

Taking another example consider the contribution of a term |mAh1〉 〈m′Ah1| ⊗ |1mDh〉 〈1m′Dh| ⊗
|mAv0〉 〈m′Av0| ⊗ |0mDv〉 〈0m′Dv|. There is only a contribution if for (d+)n1(d−)n2(d̃+)n3(d̃−)n4

we have:

n1 = n3 = 1, n2 = n4 = 0

n2 = n4 = 1, n1 = n3 = 0

n1 = 2, n2 = n3 = n4 = 0

n2 = 2, n1 = n3 = n4 = 0

n3 = 2, n1 = n2 = n4 = 0

n4 = 2, n1 = n2 = n3 = 0

Each of these must be calculated as in Eq. (8.9) and added together to get the total contribution.

Let α(n1, n2, n3, n4) be the probability of getting a click in the d+ and d̃+ detectors given the

situation (d+)n1(d−)n2(d̃+)n3(d̃−)n4 . It must be given by:

α(n1, n2, n3, n4) = (1− η)n1+n2+n3+n4−2(n1 · η · (1− pdark) + (1− η)pdark) (8.12)

· (n3 · η · (1− pdark) + (1− η)pdark)(1− pdark)2

Let cn1,n2,n3,n4

i1i2i3i4
be the coefficient of (bh)

i1(ch)
i2(bv)

i3(cv)
i4 from the polynomial (d+)n1(d−)n2(d̃+)n3(d̃−)n4

Define coeff[n1, n2, n3, n4, i1, i2, i3, i4] =

√
i1!i2!i3!i4!√
n1!n2!n3!n4!

cn1,n2,n3,n4

i1i2i3i4
.

The elementM [i1, j1, i2, j2, i3, j3, i4, j4] =
∑2

n1,n2,n3,n4=0 α(n1, n2, n3, n4) 〈φn1,n2,n3,n4|BhChBvCv |i1〉 〈j1|⊗
|i2〉 〈j2|⊗ |i3〉 〈j3|⊗ |i4〉 〈j4| |φn1,n2,n3,n4〉BhChBvCv in the measurement operator is then given by:
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M [i1, j1, i2, j2, i3, j3, i4, j4] =
2∑

n1,n2,n3,n4=0

α(n1, n2, n3, n4) (8.13)

· coeff[n1, n2, n3, n4, i1, i2, i3, i4] · coeff[n1, n2, n3, n4, j1, j2, j3, j4]

The matrix element ρ′[mAh,m
′
Ah,mDh,m

′
Dh,mAv,m

′
Av,mDv,m

′
Dv] at position

|mAhmDhmAvmDv〉 〈m′Ahm′Dhm′Avm′Dv| in the resulting density matrix can then be calculated

as:

ρ′[mAh,m
′
Ah,mDh,m

′
Dh,mAv,m

′
Av,mDv,m

′
Dv] (8.14)

=
2∑

mBh,m
′
Bh, mCh,m

′
Ch,

mBv ,m
′
Bv , mCv ,m

′
Cv

= 0

ρ[mAh,m
′
Ah,mBh,m

′
Bh] · ρ[mCh,m

′
Ch,mDh,m

′
Dh] (8.15)

· ρ[mAv,m
′
Av,mBv,m

′
Bv] · ρ[mCv,m

′
Cv,mDv,m

′
Dv]

·M [mBh,m
′
Bh,mCh,m

′
Ch,mBv,m

′
Bv,mCv,m

′
Cv]

In this way all the elements in the un-normalized density matrix of the resulting state can be

calculated. As for the one-click schemes the normalization factor p+ can be found as Tr(ρ′).

This means the resulting normalized state after a measurement with outcome d+d̃+ can be

found as
ρ′

Tr(ρ′)
.

8.2 Type 2 two-click swapping

The setup of type 2 two-click swapping is very similar to type 1. It also uses 4 pairs of entangled

ensembles and four detectors. Measurements are again conditioned on getting a click in two

detectors as well. The setup can be seen in figure 14 below.

Figure 14: The setup of the second type of entanglement swapping conditioned on two clicks.

Completely similar to the first type except the modes of the detectors are different. [4]
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Again an accept occurs only if a photon is detected in d+ or d− and d̃+ or d̃−. The only

difference between type 1 and type 2 two-click swapping are the detector modes which for type

2 are: [4]

d± =
1√
2

(bh ± cv), d̃± =
1√
2

(ch ± bv) (8.16)

An example of expanding an acceptable combination gives the following expression:

d+d̃+ =
1

2
(bhch + bvcv + bhbv + chcv) (8.17)

In contrast to type 1 which could get accepted if two photons were emitted from the same

ensemble, type 2 can get accepted if two photons are emitted from the same side but from

different ensembles i.e. Bh and Bv or Ch and Cv. Doing type 1 two-click swapping first

should ideally eliminate the possibility of getting two photons from the same side. However

due to imperfections it is still possible for this error to occur.

Given ideal conditions the detection of a photon in d+ and d̃+ would project the state of

Ah,Dh,Av and Dv into the entangled state:

|ψ〉AhDhAvDv =
1√
2

(|11〉AhDh ⊗ |00〉AvDv + |00〉AhDh ⊗ |11〉AvDv) (8.18)

This was given the outcome d+d̃+. Similar observations can be made for d+d̃−, d−d̃+ and d−d̃−.

Given only the detector modes differ between the two types of two-click swaps, it can be

concluded that equations (8.4) up to and including (8.8) are completely equivalent for type

1 and type 2 two-click swapping. The differences begin when calculating the inner products

〈φn1,n2,n3,n4|BhChBvCv |mBhmChmBvmCv〉 and 〈m′Bhm′Chm′Bvm′Cv| |φn1,n2,n3,n4〉BhChBvCv.

Consider the contribution of the term |mAh〉 〈m′Ah| ⊗ |1〉 〈1|Bh ⊗ |1〉 〈1|Ch ⊗ |mDh〉 〈m′Dh| ⊗
|mAv〉 〈m′Av| ⊗ |0〉 〈0|Bv⊗ |0〉 〈0|Cv |mDv〉 〈m′Dv|. With the modes as described in Eq. (8.16) this

term only gives a contribution if for (d+)n1(d−)n2(d̃+)n3(d̃−)n4 we have:

n1 = n3 = 1, n2 = n4 = 0

n2 = n4 = 1, n1 = n3 = 0

As before each of these must be calculated and added together to get the total contribution.

The probability α(n1, n2, n3, n4) of getting a click in d+ and d̃+ will still be given by Eq. (8.12).
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Let cn1,n2,n3,n4

i1i2i3i4
be the coefficient of (bh)

i1(ch)
i2(bv)

i3(cv)
i4 from the polynomial (d+)n1(d−)n2(d̃+)n3(d̃−)n4 .

Again define coeff[n1, n2, n3, n4, i1, i2, i3, i4] =

√
i1!i2!i3!i4!√
n1!n2!n3!n4!

cn1,n2,n3,n4

i1i2i3i4
.

The elementM [i1, j1, i2, j2, i3, j3, i4, j4] =
∑2

n1,n2,n3,n4=0 α(n1, n2, n3, n4) 〈φn1,n2,n3,n4|BhChBvCv |i1〉 〈j1|⊗
|i2〉 〈j2|⊗ |i3〉 〈j3|⊗ |i4〉 〈j4| |φn1,n2,n3,n4〉BhChBvCv in the measurement operator is then as in type

1 two-click swapping given by:

M [i1, j1, i2, j2, i3, j3, i4, j4] =
2∑

n1,n2,n3,n4=0

α(n1, n2, n3, n4) (8.19)

· coeff[n1, n2, n3, n4, i1, i2, i3, i4] · coeff[n1, n2, n3, n4, j1, j2, j3, j4]

Thereby the matrix element ρ′[mAh,m
′
Ah,mDh,m

′
Dh,mAv,m

′
Av,mDv,m

′
Dv] at position

|mAhmDhmAvmDv〉 〈m′Ahm′Dhm′Avm′Dv| in the resulting density matrix can then again be calcu-

lated as:

ρ′[mAh,m
′
Ah,mDh,m

′
Dh,mAv,m

′
Av,mDv,m

′
Dv] (8.20)

=
2∑

mBh,m
′
Bh, mCh,m

′
Ch,

mBv ,m
′
Bv , mCv ,m

′
Cv

= 0

ρ[mAh,m
′
Ah,mBh,m

′
Bh] · ρ[mCh,m

′
Ch,mDh,m

′
Dh] (8.21)

· ρ[mAv,m
′
Av,mBv,m

′
Bv] · ρ[mCv,m

′
Cv,mDv,m

′
Dv]

·M [mBh,m
′
Bh,mCh,m

′
Ch,mBv,m

′
Bv,mCv,m

′
Cv]

In this way all the elements in the un-normalized density matrix of the resulting state can be

calculated. As before with p+ = Tr(ρ′) the resulting normalized state after a measurement

with outcome d+d̃+ can be found as
ρ′

Tr(ρ′)
.

8.3 Comparison of type 1 and type 2

Comparing the expansions from Eq. (8.2) and (8.17) it can be concluded that the two types of

two-click swaps are vulnerable to different types of errors. Type 1 is vulnerable to the multi-

photon error arising when an ensemble emits two photons. Type 2 is vulnerable to the error

that arises when photons are emitted from the same side in the setup. As mentioned this thesis

explores the effect of the multi-photon error caused by the emission of two photons from the

same source. This is done by varying the probability the source has of this particular error.

For this reason the type 1 swap will be expected to outperform type 2 when the probability of

this particular multi-photon error is low.
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9 Protocols

The protocols that will be focused on in this thesis are the Jiang protocol as desccribed in [4]

and [5] and a version of the Jiang protocol where only the first type of two-click swap is used

for swappings - this version will be referred to as modified Jiang. The source state used in

the protocols will also be changed as part of the purpose of this thesis thesis is to explore the

effect the |22〉 term has on the performance of the protocols. A factor will be added to control

and vary the size of the |22〉 term. When the factor added is 0 it will be referred to as having

dim = 2. When the factor added is 1 it will be refer

9.1 Standard Jiang protocol

The standard Jiang protocol uses one-click entanglement generation, the two-click swap men-

tioned in section 8.1 for the first swap and the two-click swap mentioned in section 8.2 for all

subsequent swaps.

Plotting the fidelity of the resulting state of the standard Jiang protocol as a function of p for

various values of n and with parameters L = 1000, ηdet = ηread = 0.9, pdark = 0 and dim = 3

produced the graphs found in figure 15.

Figure 15: A plot of fidelity as a function of p for different values of n and with parameters L = 1000,

ηdet = ηread = 0.9, pdark = 0 and dim = 3. Fidelity decreases with higher p and more swaps.

The higher the probability p of emitting photons, the higher the probability of multi-photon

errors. If the ensembles have a high probability of emitting more than one photon chances are
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due to photon loss or other imperfections that a wrong state may be accepted. Thereby the

fidelity gets worse with higher values of p. Furthermore with more swaps there are more steps

where there are opportunities for errors to occur. For this reason it is also natural to see a

lower fidelity with higher nesting levels. These observations are exactly what can be found in

figure 15.

Likewise plotting time as a function of p for different values of n and the same parameters as

before produced the graphs found in figure 16.

Figure 16: A plot of time as a function of p for different values of n and with parameters L = 1000,

ηdet = ηread = 0.9, pdark = 0 and dim = 3. Time is shorter for higher p and more swaps.

With higher values of p it is faster to actually get an emission of a photon and thereby have

a chance to accept an entanglement generation step. Of course if the probability of emitting

more than one photon also increases for higher values of p. Because of this at a certain point

it is not better to increase the value of p considering the protocol has a greater chance of

being started over due to getting multiple clicks. It is also faster with higher nesting levels.

This is simply because the greatest risk of photon loss is during entanglement generation. By

making the elemental distance L0 between links smaller the risk of photon loss also gets smaller.

With a smaller probability of losing the photon the probability of accepting the entanglement

generation step increases. This is exactly what we see in figure 16.

In conclusion what we can gain from figure 15 and 16 is that there is a trade-off between fidelity

and time as p gets larger. The fidelity decreases, but in contrast the time gets shorter at least

up to a certain point. It is also worth noting that the time is better with more swaps, but the

fidelity is worse - again another trade-off.
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Using the Newton-Raphson optimization algorithm described in chapter 6.1 the value of p for

each n for which the fidelity is exactly 0.9 can be found. As argued this must be the optimal

value of p for the given parameters. That is it must the the value of p for which the time is

shortest. Calculating this for the parameters from before L = 1000, ηdet = ηread = 0.9, pdark = 0

and dim = 3 results in p = 1.3 · 10−2.

In figure 17 is a plot of the optimal time as a function of distance for n = 2, n = 3 and n = 4.

Figure 17: A plot of the optimal time as a function of distance for n = 2, n = 3 and n = 4 for dim = 3.

As seen from the graphs in figure 17 the optimal value of n changes with distance. For distances

under about 700 km n = 2 has the lowest time. For distances between 700 km and about 1300

km n = 3 is best and so on. The further the distance the more swaps are needed to have the

lowest possible time.

9.2 Modified Jiang

Another protocol worth considering is the modified Jiang protocol. The modified Jiang protocol

uses one-click entanglement generation and the two-click swap mentioned in section 8.1 for all

swaps.

9.2.1 Comparison with standard Jiang

As done for the standard Jiang protocol the fidelity and time can be plotted as a function of p for

various values of n and using the parameters from previously: L = 1000 km, ηdet = ηread = 0.9,
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pdark = 0 and dim = 3. Comparing the resulting graphs with the ones from the standard Jiang

protocol produces the plots found in figure 18 and 19.

Figure 18: Comparative plots of the fidelity as a function p. Different values of n were plotted for

fixed parameters L = 1000 km, ηdet = ηread = 0.9, pdark = 0 and dim = 3.

Figure 19: Comparative plots of the time as a function p. Different values of n were plotted for fixed

parameters L = 1000 km, ηdet = ηread = 0.9, pdark = 0 and dim = 3.

From the comparison of the standard Jiang and modified Jiang protocols seen in figures 18 and

19 it can be concluded that the modified Jiang protocol takes the shortest amount of time.
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This is due to the fact that the fidelity of the resulting final state is higher in the modified

Jiang protocol. Because a higher p can be chosen and still have a resulting state with fidelity

0.9, combined with the fact that time as a function of p is practically equivalent for the two

protocols up to a certain point means the modified Jiang Protocol is strictly better.

One might wonder why the modified Jiang protocol performs worse in figure 19 for higher p.

This is due to the fact that the modified Jiang protocol is better at catching the multi-photon

errors. Catching unwanted states results in the process being started over, but the fidelity of

the final state when the whole process is eventually accepted is higher.

The optimal value of time was found over all values of n for a number of different distances for

parameters L = 1000 km, ηdet = ηread = 0.9, pdark = 0. The optimal time was then plotted as

a function of distance for the standard and modified Jiang protocols for dim = 3 and dim = 2.

The resulting plot can be seen in figure 20.

Figure 20: Comparative plot of the optimal time as a function of distance for the standard

and modified Jiang protocols for dim = 2 and dim = 3.

From these graphs it is also clear that the modified Jiang protocol works best for both dim = 3

and dim = 2.

It is perhaps not obvious why there would be a difference between the standard and the modified

Jiang protocols for dim = 2 considering the term |22〉 is neglected in this case. There are

however other ways to have multi-photon errors than simply the emission of two photons from

a single ensemble. It may be that one photon is emitted from two ensembles or in the case of

the two-click swapping even three or four ensembles. This means there is still an advantage to
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using the modified Jiang protocol even when dim = 2.

For this reason the modified Jiang protocol will be the one used when exploring the effect of

imperfections on the performance of quantum repeater protocols.

9.3 Varying efficiencies and dark counts

The first imperfections to be varied were ηdet and ηread. A variable η = ηdet · ηread was used to

illustrate the effect on the performance of the modified Jiang protocol.

To begin fidelity and time were plotted as a function of p for different values of η. The param-

eters used were L = 1000 km, n = 3, pdark = 0 and dim = 3. The results can be seen in figure

21 and 22.

Figure 21: A plot of the fidelity as a function of p. Different values of η = ηdet · ηread were compared.

The other parameters were fixed to be L = 1000 km, n = 3, pdark = 0 and dim = 3.
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Figure 22: A plot of the time as a function of p. Different values of η = ηdet · ηread were compared.

The other parameters were fixed to be L = 1000 km, n = 3, pdark = 0 and dim = 3.

One can observe from the figures that not only does a decrease in efficiency make the protocol

slower, it also decreases the fidelity of the final state. The time is slower because not reading

out an excitation or a photon not being detected can cause no clicks being registered thereby

restarting the process. Another possibility is that there is more than one excitation but either

one is not read out or it is not detected. This causes the accept of an unwanted state decreasing

the fidelity of the resulting state.

The optimal time was calculated for different values of n with same L, pdark and dimension as

before. Plotting the optimal time as a function of η resulted in the plots in figure 23.
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Figure 23: Plot of the optimal time as a function of η for n = 2, n = 3 and n = 4. Other parameters

were fixed at L = 1000 km, pdark = 0 and dim = 3.

This plot shows that for low efficiencies less swaps is better. This makes sense considering more

swaps means lower fidelity, and the fidelity is already low on low efficiencies.

Though the modified Jiang protocol was shown to be better, it might be interesting to compare

the effect of varying the efficiencies on both the standard and modified Jiang protocols for

dim = 3 and dim = 2. The optimal time was plotted as a function of η for L = 1000 km,

n = 3, pdark = 0:
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Figure 24: A plot comparing the optimal time as a function of η = ηdet · ηread for the

standard Jiang and modified Jiang with dim = 2 and dim = 3.

We can see the modified Jiang protocol with dim = 3 and the standard Jiang protocol are prac-

tically equivalent for most values of η. For η around 0.85 they become barely distinguishable.

Then the value of pdark was changed to explore its effect on the modified Jiang protocol.

For L = 1000 km, n = 3, ηdet = ηread = 0.9 and dim = 3 the fidelity and time were plotted for

various values of pdark. The results can be found in figures 25 and 26.
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Figure 25: A plot of fidelity as a function of p for different values of pdark.

Figure 26: A plot of time as a function of p for different values of pdark.

While a very small probability of dark counts makes little difference the effect increases sig-

nificantly on both the fidelity and time. For pdark = 10−5 it even came to a point where the

fidelity never completely reached 0.9 though it came close.
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9.4 Suppressing multi-photon errors

A simulation was run where a factor of
√
x was added to terms where two photons are emitted.

As a consequence some terms were modified:

• p · ηt |22〉m,ph was changed to
√
x · p · ηt |22〉m,ph

• p2ηt(1− ηt) |21〉 〈21|m,ph was changed to x · p2ηt(1− ηt) |21〉 〈21|m,ph

• p2(1− ηt)2 |20〉 〈20|m,ph was changed to x · p2(1− ηt)2 |20〉 〈20|m,ph

Plotting time and fidelity as a function of p for different values of x with the same L, n, ηdet,

ηread and pdark = 0 produced the graphs in figure 27 and 28.

Figure 27: A plot of fidelity as a function of p for different values of x. x is a factor determining the

size of the multi-photon error caused by the emission of two photons from the same ensemble.
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Figure 28: A plot of time as a function of p for different values of x. x is a factor determining the size

of the multi-photon error caused by the emission of two photons from the same ensemble.

As one might expect suppressing the multi-photon error term causes an increase in fidelity.

Not as much as one may think however. The time remains somewhat the same up to a certain

point. After that there is a clear difference as multi-photon errors become more dominant

causing increase in time spent for the cases where it was less suppressed.

For different values of n the optimal time for which the fidelity was 0.9 was found for fixed

parameters L = 1000 km, ηdet = ηread = 0.9 and pdark = 0. Plotting the optimal time as a

function of x produced the graphs found in figure 29.
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Figure 29: Plot of the optimal time as a function of x for different values of n. x is a factor determining

the size of the multi-photon caused by the emission of two photons from the same ensemble.

What this plot illustrates is that regardless of the value of x n = 3 is the optimal number of

swaps. Note this plot was made for L = 1000 km and this might not be the case for other

distances. Consider the difference between the point at L = 5000 km on figure 9 and 17. For

dim = 2 n = 6 is very clearly better than n = 5. For dim = 3 it seems n = 5 and n = 6 cross

just before 5000 km. This means there must be certain points for which small values of x have

one preferred nesting level and for high values another nesting level is preferred.

9.5 The cost of quantum memories

Quantum memories are costly to make. This means it matters how many memories a repeater

protocol requires as the supply of available quantum memories to use is most likely limited.

Suppose 256 memories are available to make quantum repeaters. For a given n it requires 2n+2

memories to run the standard or modified Jiang protocol. In other words it would require 16

memories to make a repeater with n = 2, 32 to make a repeater with n = 3 or 64 to make a

repeater with n = 4. This means with 256 memories available it would be possible to make 16

repeaters with n = 2, 8 repeaters with n = 3 or 4 repeaters with n = 4. Suppose n = 3 is the

optimal nesting level. Depending on the distance L it could be that having 16 less optimized

repeaters has a higher probability of one of them being successful than the probability of one

out of 8 optimized protocols being successful.

For this reason when plotting the optimal time it should be divided by a factor
256

22+n
to account
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for the fact that for smaller values of n it is possible to make more repeaters.

Plotting the optimal time after it has been divided with the factor as a function of p for different

values of n and for L = 1000, ηdet = 0.9, ηread = 0.9, pdark = 0 and dim = 3 produced the

following plot:

Figure 30: A plot of the optimal time divided by a factor
( 256

22+n

)
as a function of distance for various

values of n.

Compared to figure 17 clearly it takes a longer distance for a higher nesting level to be preferable.

Plotting the optimal time over all n as a function of distance produced the following plot:
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Figure 31: A plot of the optimal time divided by a factor
( 256

22+n

)
as a function of distance.

Note ”New model” was made from data for a model by Anders and Yuxiang (under preparation).

In summary two options can improve the protocol. Removing the multi-photon error from the

source emitting two photons and using the modified Jiang protocol instead of the standard

Jiang protocol. To quantify the total gain by using both these options the ratio between the

standard Jiang protocol with dim = 3 and the modified Jiang protocol was calculated. At the

point where they were furthest the ratio was 0.379. The point where they were closest the ratio

was 0.456.
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10 Outlook

Now that we have compared the standard and modified Jiang protocols and looked at the effect

of various imperfections this chapter will discuss in greater detail the applications of quantum

repeaters.

10.1 What is next?

It could be interesting to explore what happens if the threshold for the accepted fidelity was

changed. The choice of a fidelity of 0.9 as the lowest accepted was completely arbitrary, so it

could be interesting to explore if requiring a fidelity of e.g. 0.95 would change any of the results

significantly.

It is also worth looking into how a repeater would work in an actual communication scheme.

To consider a quantum repeater in combination with a subsequent protocol for the actual

transmission of information.

10.2 What can quantum repeaters be used for?

Quantum repeaters are a solution to the aforementioned problem of long-distance quantum

communication. Repeaters are not yet efficient enough to be useful in an actual communication

setting. Either the fidelity of the final state is too poor or the protocol is too time-consuming.

A potential method for improving quantum repeater protocols is multiplexing. The standard

Jiang and modified Jiang protocols are well suited for multiplexing. It has been shown [1] that

multiplexing can improve the time-cost by as much as a factor of 1250.

However if repeaters can be made efficient enough in the future they open some interesting

technological opportunities. For example having a sufficiently efficient way to send information

across large distances is a necessary foundation for building a quantum internet.

With a quantum internet quantum cryptography could be implemented to establish secure lines

of online communication. It would allow the transfer of qubits which hold significantly more

information than the classical bit due to the possibility of superpositions.
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11 Conclusion

In summary what this thesis has shown is that quantum repeater protocols are good under ideal

conditions. A protocol based on one-click entanglement generation and one-click entanglement

swapping only took 2.25·10−2s for L = 1000 km and three swaps. In comparison the probability

of successful direct transmission for L = 1000 km was only 1.82 · 10−20 %.

When imperfections were introduced and included the one-click entanglement swapping scheme

turned out to be inefficient. It was burdened with a higher time-cost and a decrease in the

fidelity of the resulting state. To diminish the effect of imperfections two-click swapping schemes

were introduced. As expected the type 1 two-click swap outperformed the type 2 two-click swap

as the modified Jiang protocol outperformed the standard Jiang protocol.

Even using repeater protocols that took advantage of the two-click swapping schemes they

got slower as well as less accurate i.e. the fidelity of final state decreased. The effect varied

between the standard Jiang and the modified Jiang protocol with the modified version being

more robust to errors.

In general there was a trade-off in the protocols between fidelity and time. First with respect

to p for high values the fidelity was worse whereas the time was shorter. Secondly with respect

to swaps the fidelity got worse with more swaps in contrast to the time which got shorter.

To find the optimal time considering these trade-offs the Newton-Raphson algorithm was used.

The lowest accepted fidelity was chosen to be 0.9. The optimal time must then be the lowest

time still satisfying the fidelity being 0.9 or higher. It was then argued that the p for which the

fidelity was exactly 0.9 was also the value of p for which the time was optimal.

Another interesting thing to note was in regards to the optimal time as a function of distance.

For longer distances the optimal time was at a higher value of nesting level i.e. higher number

of swaps.

The focus of the thesis was exploring the effect of the multi-photon error originating from the

probability of a photon source emitting more than one photon. There was as expected an

improvement, but it was not as great as hoped. The ratio between the standard Jiang protocol

with dim = 3 and the modified Jiang protocol with dim = 2 was found to be 0.379 when they

were furthest and 0.456 when they were closest.

For low efficiencies the protocols not only got slower but the fidelity also decreased. For low

probabilities of dark counts the fidelity and the time was barely changed as a function of p.

With pdark = 10−5 however the fidelity got so low it never completely reached 0.9. The time

got significantly worse as well. When varying the effect of the multi-photon error the time

remained practically unchanged as a function of p but the fidelity decreased.
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Appendix

A Three-particle states

A.1 Three-particle system (bosons)

|ΨB〉 =
1√
2

(ψ1(r1)ψ2(r2)ψ3(r3) + ψ1(r1)ψ2(r3)ψ3(r2) + ψ1(r2)ψ2(r1)ψ3(r3) (A.1)

+ ψ1(r2)ψ2(r3)ψ3(r1) + ψ1(r3)ψ2(r2)ψ3(r1) + ψ1(r3)ψ2(r1)ψ3(r2)) (A.2)

A.2 Three-particle system (fermions)

|ΨF 〉 =
1√
2

(ψ1(r1)ψ2(r2)ψ3(r3)− ψ1(r1)ψ2(r3)ψ3(r2) + ψ1(r2)ψ2(r3)ψ3(r1) (A.3)

− ψ1(r2)ψ2(r1)ψ3(r3) + ψ1(r3)ψ2(r1)ψ3(r2)− ψ1(r3)ψ2(r2)ψ3(r1)) (A.4)

B Measurement factors for one-click schemes

B.1 One-click entanglement generation

Table 1: The resulting factors given by the measurement operator M [ia, ja, ib, jb] =
∑2

n,m=0 α(n,m) ·
〈φ|n,mpha,phb |ia〉 〈ja| ⊗ |ib〉 〈jb|φ〉

n,m
pha,phb

ordered according to the state of |ia〉 〈ja| ⊗ |ib〉 〈jb|.

|ia〉 〈ja| ⊗ |ib〉 〈jb| M[ia, ja, ib, jb]

|0〉 〈0| ⊗ |0〉 〈0| pdark(1− pdark)
|1〉 〈1| ⊗ |0〉 〈0| ηdet

2
(1− pdark)2 + (1− ηdet)pdark(1− pdark)

|0〉 〈0| ⊗ |1〉 〈1| ηdet
2

(1− pdark)2 + (1− ηdet)pdark(1− pdark)

|1〉 〈0| ⊗ |0〉 〈1| ηdet
2

(1− pdark)2

|0〉 〈1| ⊗ |1〉 〈0| ηdet
2

(1− pdark)2

|1〉 〈1| ⊗ |1〉 〈1| 1

2
(1− ηdet) · 2ηdet(1− pdark)2 + (1− ηdet)2pdark(1− pdark)

|2〉 〈2| ⊗ |0〉 〈0| (1− ηdet)(ηdet(1− pdark) + (1− ηdet)pdark)(1− pdark)
|0〉 〈0| ⊗ |2〉 〈2| (1− ηdet)(ηdet(1− pdark) + (1− ηdet)pdark)(1− pdark)
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B.2 One-click entanglement swapping

Table 2: The resulting factors given by the measurement operator M [mB,m
′
B,mC ,m

′
C ] =∑2

n,m=0 α(n,m) · 〈φ+|n,mBC |mB〉 〈m′B|⊗|mC〉 〈m′C |φ+〉
n,m
BC ordered according to the state of |mB〉 〈m′B|⊗

|mC〉 〈m′C |.

|mB〉 〈m′B| ⊗ |mC〉 〈m′C| M[mB,m
′
B,mC,m

′
C]

|0〉 〈0| ⊗ |0〉 〈0| pdark(1− pdark)
|1〉 〈1| ⊗ |0〉 〈0| η

2
(1− pdark)2 + (1− η) · pdark(1− pdark)

|0〉 〈0| ⊗ |1〉 〈1| η

2
(1− pdark)2 + (1− η) · pdark(1− pdark)

|1〉 〈0| ⊗ |0〉 〈1| η

2
(1− pdark)2

|0〉 〈1| ⊗ |1〉 〈0| η

2
(1− pdark)2

|1〉 〈1| ⊗ |1〉 〈1| 1

2
(1− η) · 2η · (1− pdark)2 + (1− η)2 · pdark(1− pdark)

|2〉 〈2| ⊗ |0〉 〈0| (1− η) · (η · (1− pdark) + (1− η)pdark) · (1− pdark)
|0〉 〈0| ⊗ |2〉 〈2| (1− η) · (η · (1− pdark) + (1− η)pdark) · (1− pdark)

C Extra plots

C.1 Fidelity and time vs. p for dim=2

Figure 32: A plot of fidelity as a function of p for different values of n and with parameters L = 1000,

ηdet = ηread = 0.9, pdark = 0 and dim = 2. Fidelity decreases with higher p and more swaps.

72



Theoretical optimizations of quantum repeaters based on atomic ensembles
C. B. Okkels

Figure 33: A plot of time as a function of p for different values of n and with parameters L = 1000,

ηdet = ηread = 0.9, pdark = 0 and dim = 2. Time is shorter for higher p and more swaps.

C.2 Time vs. p standard and modified Jiang normalized

Figure 34: Comparative plots of the time as a function p normalized with a factor dependent on n.

Different values of n were plotted for fixed parameters L = 1000 km, ηdet = ηread = 0.9, pdark = 0 and

dim = 3.
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C.3 Time vs. x comparison of standard vs. modified protocol

Figure 35: Plot of the optimal time as a function of x for n = 3 for the standard and modified

protocols.

C.4 Comparison of results with results from Sangouard

In the article [4] in figure 18 is a plot comparing different quantum repeater protocols. Curve

C represents the results for the standard Jiang protocol. Comparing these results found by

Sangouard with the results from this thesis for the standard Jiang protocol the following com-

parison was made:
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Figure 36: Comparison of the results from the paper by Sangouard et. al. with the results from this

thesis.

When the curves are closest the ratio is 0.988. When they are farthest the ratio is 0.960.

The optimal times found seemed to agree well, but the fidelity was found to be less than 0.9.

This was explained by the fact that fidelity could have been calculated differently.

The fidelity seemed to agree with the results from [5], but the times were off. This is explained

by the fact that the formula used to calculate the time was not well derived at that time.
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