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Abstract

In this thesis we study the S-QD-S junction when a harmonic drive is applied on
the dot. We are going to perform the numerical calculations using the Floquet-Green’s
functions technique and interpret the results using the Floquet formalism. We find that
the current-phase relation of a junction with an ac magnetic field is proportional to the
one at equilibrium, where the propotionality factor can be tuned with the parameters
of the drive. The current-magnetic field relation can also be tuned with the parameters
of the drive, and in particular we found a 0 — 7 transition for an applied ac gate voltage
and a non-trivial region of vanishing current for an applied ac magnetic field. When
we add a harmonic drive to the voltage-biased junction the MAR characteristics of the
current-voltage relation are lost and the current gains a complex phase-dependence.
For an applied magnetic field we find resonant tunneling and for an ac gate voltage
and a phase bias of 7 we observe suppression of the sub-gap current. In the infinite
gap limit we the current vanishes for an applied ac magnetic field due to the transport
being non-local in the extended space and for an ac gate voltage, in the high frequency
limit the junction behaves effectively as a ¢—junction in equilibrium where the ¢ phase
can be tuned with the phase of the drive.
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Chapter 1

Introduction

The formalism used to study periodically driven systems was formulated a long time
ago [1, 2]. The most interesting result about periodically driven systems in d dimensions
is that they can be mapped to an extended Hilbert space in d+ 1 dimensions governed
by a time-independent Hamiltonian where the interactions on the new dimension are
given by the time-dependent part of the Hamiltonian. This equivalence allows one to
explore the physics of the system in d + 1 dimensions with engineered Hamiltonians.
And quite interestingly, one can obtain a time-independent effective Hamiltonian for
the system in d dimension which governs the long-time dynamics of the system that
can also be engineered [3-5].

This last fact has been the reason periodically driven systems have attracted a
lot of attention in the last decade. Recent technological advances have opened the
door to accurately engineer effective Hamiltonians with all kinds of interesting physics
found in equilibrium. Some examples of this are artificial gauge fields [6, 7], topological
properties [8, 9] or spin-orbit coupling [10] .

Another reason periodical drives are interesting is because, since one has full control
of the drive, it is possible to adiabatically tune parameters of the effective Hamiltonian
that are either impossible to modify in equilibrium, because they are intrinsic properties
of the system, or very difficult to modify because of experimental limitations. Because
of this, periodical drives are a promising technology for control of quantum circuits.

In view of this, in this thesis we are going to focus on the Josephson junction,
composed of an insulator sandwiched between two superconductors, which is an es-
sential part of many quantum circuits, like SQUIDS or superconducting qubits [11].
For simplicity we are going to consider the case where instead of an insulator we have
a quantum dot, and we are going to study how adding a periodical drive on the dot
affects the dynamics of the junction.

The thesis is organized as follows. In chapter 2 we will first describe the formalism
of periodically driven systems used to obtain and interpret the numerical results and
then, as an example, the periodically driven quantum dot contacted by metallic leads
with a voltage bias will be studied. In chapter 3 we will focus on the superconducting
junction, where first we will describe the formalism extends to the superconducting
junction and the transport through the junction under different circumstances will be
analyzed. Finally, in chapter 4 we will summarized the results obtained in this thesis
and we will discuss briefly several ways this work could be extended.
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Chapter 2

Theoretical formalism

In this chapter we will develop the formalism employed throughout the thesis, and
as undergraduate classical mechanics students studying the tilted plane, we are going
to illustrate it along the way with the simplest example of driven phenomena, the
harmonically driven resonant level.

There are two main techniques used in the literature to solve time-periodic prob-
lems. Using the Floquet formalism one can obtain a time-independent Hamiltonian
describing the dynamics of the system which can be diagonalized to obtained all the
necessary information to solve the system [2-4, 12]. We will start this chapter by
describing this formalism, and although we are not going to use it to perform the
numerical calculations, it will prove very useful when interpreting the results obtained.

The second technique widely used in the literature is the non-equilibrium Green’s
functions technique [13, 14], and in particular for time-periodic systems, the Floquet-
Green’s function technique [15-18], which is the one we will use to perform the numer-
ical calculations. We will describe this technique in the second section of this chapter
and explain how it relates to the Floquet formalism.

Finally, in the third section of this chapter we will present results for a harmonically
driven resonant level between two metallic leads with a voltage-bias. This system
has been studied using the technique described here [15, 16] and it will serve use to
understand how the quantum dot responds to the harmonic drive, which we will use
next chapter.

2.1 Floquet formalism and the extended space

In the non-relativistic limit the time evolution of any quantum state |¢)(¢)) is given by
the time-dependent Schrodinger equation

0y [ (t)) = H(t) [¢(1)) - (2.1)
Where we have set h = 1. The time evolution operator, defined as
(1) = Ut 1) [¢(t)) (2.2)

also fulfills the time-dependent Schrodinger equation and its formal solution is given
by
U(t,t) = Te v Hn), (2.3)

3



4 CHAPTER 2. THEORETICAL FORMALISM

where 7 is the time-ordering operator, defined as
T{A®)B{")} =0(t —t")A@)B{') £ 0(t' —t)B(t')A(t), (2.4)

where =+ refers to the bosonic or fermionic nature of the operators. We are going to
consider for a moment the case of a time-independent Hamiltonian. The time-evolution
operator is then given by

Ut t') = e HE), (2.5)

The problem can be solved by diagonalizing the Hamiltonian, and its eigenstates and
eigenenergies fulfill the time-independent Schrodinger equation

H i) = By [¢y) . (2.6)

Since the Hamiltonian and the time-evolution operator trivially commute, the eigen-
states of the Hamiltonian are also eigenstates of the time-evolution operator. We can
find their time-dependence easily as

[0 (1) = Ut ¢) [ () = e B (1) (2.7)

and the time-evolution operator can be expressed as
Ult,t) = D7 e 1 [ (1) (1) (2.8)

Consider now the case of a time-periodic Hamiltonian with period T" defined on a
Hilbert space H,
H(t+T)=H(t). (2.9)

In this case the Hamiltonian doesn’t in general commute with the time-evolution op-
erator anymore, but it does so with the time-evolution operator over one period

Ut + T, HOU(t+T, ) =H(t +T)
=H(t). (2.10)
As in the time-independent case, the eigenstates of the Hamiltonian will be also eigen-

states of the time-evolution operator over one period (see Appendix B), and we can
easily calculate their stroboscopic time evolution over any multiple of periods as

[, (t +nT)) =U(t +nT,t) |1, (1))
=e =T o, (1)) (2.11)
The quantity ¢, dictaminates the stroboscopic time-evolution and as an analogue with
the time-independent case (2.7) we are going to call it quasienergy. Using that fact

and the fact that the time-evolution operator is itself periodic for translations of 7" in
both time variables

Ut + Tt +T) =T e i dn Ht)
:7-6—7;];, dty H(t1—T)
:Te—if;, dt; H(ty)

—U(t,t), (2.12)
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the Floquet theorem (see Appendix B) ensures that the time-dependence of the eigen-
states of a time-periodic Hamiltonian takes the form

[¥u(1)) = e [u (1)) , (2.13)

where the state |u,(t)) is periodic in time with period T, |u,(t + T)) = |u,(t)). This
solution will remind the reader of Bloch’s theorem for spatially periodic Hamiltonians.
As an analogue, we call these states Floquet state and we will refer to the states |u(t))
as periodic Floquet state. If we substitute this solution into the Schrodinger equation
(2.1) we find that the periodic Floquet states fulfill the eigenvalue equation

Q1) [uy (1)) = &y |uw (1)) - (2.14)

where the quasienergy operator, Q(t) = H(t) — i0;, is well defined, periodic in T
and Hermitian, since (8, [1(t)))T = (1(t)] (—E) We have found a time-independent

Schrodinger equation with the periodic quasienergy operator, and the periodic states
defined by the Floquet states (2.13) and the time-independent quasienergy (2.11). Since
all time-dependent objects in the eigenvalue equation are periodic in T one would think
that Fourier transforming it will help in finding a solution. By Fourier transforming
their periodic part, the Floquet states can be decomposed in any basis {|a)} of the
Hilbert space H we are working in as

|¢V _ —ient Zu 7znwt7 (215)

where the coefficients are defined as u”(«) = (a|u”) and they are the n’th Fourier
component of u,(a,t) = (o|u,(t)). If we substitute this expression into the eigenvalue
equation for the quasienergy operator (2.14) and project on the left by % [*°_dt e (a|
we obtain

_/ dt emwt Oé| _ Zat Zu —zmwt

1 .
— d nwt . m —zmwt7 )
5| arentiale ;mjuy (8)18) ¢ (2.16)

which reduces to an eigenvalue equation in matrix form involving the elements of the
Quasienergy operator in the basis |«) of the Hilbert space and the Fourier coefficients
uyy (@)

> Qi (8) = sup(a), (2.17)

m,3

where the elements of the quasienergy operator are

and H"™™ is the n — m’th Fourier component of the Hamiltonian. The components
ul(av) resemble a wavefunction with an additional quantum number n obeying a Hamil-

tonian given by the elements Q7 ;™.
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This equivalence is properly defined by mapping the problem in d dimensions
with a time-periodic Hamiltonian on the Hilbert space H to a problem with a time-
independent unbounded Hamiltonian on the Hilbert space Hg = H® 7T, of d+1 dimen-
sions [2, 3]. The extended space Hp is spanned by basis states {|a,n)) = |a) ® |n)},
where {|a)} is any basis of the original Hilbert space H and the basis of T, is labeled
with the integer n and is orthonormal. We define a mapping between the original space
and the extended space 7(t) : Hg — H as

At) = e ™1 (n|. (2.19)

Operators acting on the extended space Hg will be written with a hat and states in
the extended space are noted by a double bracket. Any state in the extended space
|1)(t)) can now be mapped into the original Hilbert space as

() = 0(6)[ (L)) (2.20)

Since the map is only defined one way, we have to define the states |¢(¢))) somehow.
We do this by assuming that any state in the extended space [¢)(t))) can be obtained
by time-evolving the state [1(0))) = |¢(0)) ® |0) with a time-independent Hamiltonian
following a Schrodinger equation

() = H [w (D), (2.21)
where HF is the Floquet Hamiltonian, given by
H" = H —hw=>_ H""|n) (m| - fw, (2.22)

nm

where n =) n1® |n)(n| . The elements of the Floquet Hamiltonian are related to
those of the quasienergy operator as

HE, om = Qr ", (2.23)

an,Bm

where Hf 5 = (an|HE|Bm)).
We prove now that the assumption is correct, and the time-evolved state [¢)(t)))
obtained by this procedure gives the correct time-evolved state |1 (t)) with the given

map.

0, 16(8)) = 0D (O) + 7O HF () (2.24)

By using that the time-derivative of the map is i0;7)(t) = 7)(t)nw, we obtain
i0: [ () =A)H" + aw][ (1) (2.25)
=i(t)H[¢(t)). (2.26)

We need now the commutator between an operator acting on the extended space and
the map,

a6 H =Y H™™ Y e ™ {nn) (m)|

nm

_ 2 :anmefl(nfm)wtefzmwt <m’
nm

—H(t)i(t). (2.27)
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Applying this result to (2.25) we finally obtain that the states mapped back after
time-evolving them in the extended space with the Floquet Hamiltonian follow the
Schrodinger equation

iy [(t)) =H (D)o (1))
=H(t) [1:(1)) . (2.28)

This means that we can map any time-periodic problem into the extended space Hpg,
where the time-evolution is given by the time independent Hamiltonian as

Ut) = e ", (2.29)

and then map back to the original space H to obtain the time-evolved solution.
The time evolution of the eigenstates of the Floquet Hamiltonian is given by

[un (£)) = €= (1)) (2.30)

By mapping them to the original space H one obtains that the resulting states have
the same time-evolution as the Floquet states and therefore they must be the same,

[0 (8)) =(8)]uw (¢ )>>
—Z T ()| (t))

-3 e o, ), (2.31)

where the eigenstates of the Floquet Hamiltonian at zero time can be identified with
the Fourier components of the periodic Floquet states,

|uy) = (1] uy(0)). (2.32)

There is one last particularity of Floquet systems we haven’t discussed yet. Looking
at the way we defined the quasienergy (2.11) it becomes clear that this definition is not
unique, shifting the quasienergy by nw results in a different quasienergy for the same
eigenstate. We fix this ambiguity in the definition of the quasienergy by restricting
it to the interval ¢, € [—w/2,w/2), akin to the first Brillouin zone for Bloch states.
Therefore the periodic Floquet state |u,)) associated with unbounded quasienergy ¢,
spans the set of periodic Floquet states |u, ,)) with associated quasienergy €, —nw where
g, lies in the first Brillouin zone. The time-evolved Floquet state can be decomposed
as well as

|1, (t) Z o) ((oon|uy, e~ T (2.33)

and therefore the periodic Floquet states in different zones are related by
{onfuym) = (a,n —mluw,). (2.34)
Finally we have the eigenvalue equation in the extended space

H ) = (e, — nw)|uyn ). (2.35)
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As an example, to develop some intuition about the dynamics in the extended space
we can briefly consider a harmonically driven resonant level. The basis of the Hilbert
space is given by {|1),|})} , and the Hamiltonian by

H(t) =Y &(t)]o) (o], (2.36)

o="T,

where the energy of each state is being driven harmonically as &, (t) = €,,0+A, cos(wt + ¢ ).
In the extended space, the basis is given by {|T n), || n)), ¥n € Z}. The elements of
the Floquet Hamiltonian are

. A, |
((0n|HF|a'm>> = Opo [(50,0 — W) O + 7(6_’%5”_%1 + ez¢”6n_m7_1) ) (2.37)

This Hamiltonian is equivalent to that of a tight-binding model, with the different
sites being labeled with the index n at on-site energies €, — nw, tunneling between
neighboring sites with amplitude A,/2 and an additional phase going to a site with
higher on-site energy of ¢,. After we define the Green’s function method used for the
calculations, we will go back to solve this model and show results that support this
interpretation.

t |o,-2>>
T pele)
Hd [0,-1>>
<‘|0,0>> ) Hdl
( T
|o,1>>> t
(|0,2>>)

Figure 2.1: Schematic of the transport for a harmonically driven quantum dot between two
metallic leads with a voltage bias in the extended space, where it resembles a tight-binding
problem with nearest-neighbors hopping.

2.2 Floquet Green’s functions technique

The Green’s functions are a well known method of solving inhomogeneous differential
equations. For a given inhomogeneous differential equation

Lu(z) = f(2) (2.38)
the Green’s function is defined as the function that solves the differential equation

LG(x,s) =0(z — s), (2.39)
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from which the solution to the differential equation can be found as

() = / ds G(z, 5) f(s). (2.40)
In quantum mechanics the Green’s function is defined as the function that solves
(10y — H)G(z,2") = 6(x — o). (2.41)

In many-body physics the Green’s function can be defined in a different manner, and
turns out they are not just a powerful tool to calculate the solutions to the Schrodinger
equation, but provide a great knowledge about the correlations in the system by them-
selves. The contour-ordered Green’s function is defined as

Ge(t.1') = —i (Te{d()d (1)) (2.42)

where 7¢ is the contour-ordered operator which orders operators on the Keldysh con-
tour C' [13], shown in Fig. 2.2.

C, ¢ C=C.UC

PN >
=00 t ‘ t\ < tl/ = o0
t
< t\_/t' t'j t[

Figure 2.2: Keldysh contour composed of two branches, C; going from —oo to oo, and C_
going backwards. Depending on where the two times variables t,¢' of a function are, the
result is the time-ordered function, the lesser or the greater one.

In equilibrium one would make use of the continuous time-translation invariance and
find that the Green’s function depends only in one time-variable, the time difference.
Since now the system is out of equilibrium, the Green’s function and related objects
depend on the two time variables.

Using the fact that the time-evolution operator is periodic for discrete time-translations
in both its variables (2.12) and that

U0t +T) = U0, T)U(T,t +T) = U0, T)U(0,1), (2.43)

we show that the Green’s function is also periodic for discrete translations of both time
variables

Gt+T,t'+T)=—i(Te{dt+T)d'(t' +T) })

= —i(Tc{U(0 t+T) (O)U(t+T,0)U(0,t' +T)d (0)U(' +T,0) })
= —i (Te{U(0,T)U(0,t)d(0)U(t,0)U(0,¢)d (0)U (¢',0)U(T,0) })
z<T{U 0 T)d ) d'(t)U(T,0) })

(Tef

N} =Gt t), (2.44)

—1
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where in the last step we used the fact that we are doing the expectation value over
the ground state, which is an eigenstate of the time evolution operator over one period
as well (2.11).

We can use the fact that the Green’s function is periodic to optimize the numerical
calculations by obtaining its Fourier components first and calculating the two-time
Green’s function after truncating the Fourier sum. The Fourier transform of the two-
time objects is not unique, and two different conventions are usually found on the
literature. In one, a Wigner transformation is performed, a change of variables to the
center of mass time 7" = (¢ + t')/2 and the time difference 7 = ¢t — t' is made before
performing a continuous Fourier transform on 7 and a discrete one on 7T. This is
particularly useful for systems which are periodic in a fast timescale with an adiabatic
modulation [4]. In our case this is irrelevant because we calculate steady states. And
because it makes the connection with the Floquet formalism more clear as we will see
later, we choose the other convention where first a continuous Fourier transform is
performed integrating ¢,

G(t,e) = / dt'e= =G (t, 1), (2.45)

—00
after which the transformed object is periodic in its time variable, ¢, and a discrete
Fourier transform can be performed

= G"(e)e ™", (2.46)

Piecing together both Fourier transformations the two-time Green function can be
decomposed as

Gtt) =Y / e e—iet=t)=inat g o) (2.47)

To make the connection with the Floquet formalism remember that the Floquet states
are defined in the first Brillouin zone. We now decompose the Green function in a way
where its energy variable is also defined in a Brillouin zone

w/24+mw ‘ .
G(t,t/) _ Z/ de efzs(tft )f'mthn<€>

n,m —w/2+mw
w/2 ' o
_ Z/ de 671(5+mw)(t7t )71nthn(€ + mw)7 (248)

where we restrict ourselves to the first Brillouin zone by introducing a new Fourier
index. It seems now natural to define the Floquet Green’s function as

Gum(e) = G" (e + mw). (2.49)

Using this representation the two-time Green function and the correspondent Floquet
matrix can be found in terms of one another as

w/2 ' ' )
G(t, t/) _ Z/ , de efz(s+nw)t+z(s+mw)t Gnm(g)

T/2
/ dt' / dt eilEn@)tiEtmat Gy ¢, (2.50)

T/2
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This two-index representation of the Green’s functions has a very useful property
property that simplifies greatly the analytical expressions and optimizes the numerical
calculations. Consider a time convolution between any two two-time functions

C(t,t') = /Oo dty A(t, t1)B(ty,t'). (2.51)

e}

By decomposing the functions A and B into their correspondent Floquet matrices we
obtain

C(t,t) :/ dty A(t,t1)B(ty,t)
w/2 A .
T3 ) e s ) B
ij=1,2 n; Y ~w/2
> /dtl eit1(€1+m1w7527n2w)

w/2 ' .
_ ( H Z/ dé“j) e—zt(al—mw)ezt (82+m2)An1m1(€l)Bn2m2 (62)

ij=12 n; 7 w/2
X (5(51 — &9 + MW — TLQCL)). (252)

Since the energies ¢’s are defined in the first Brillouin Zone, we have §(gq — ey + (my —
n2)w) = (€1 — €2)0m, m, and the expression reduces to

w/2 N
O 1) =3 [ dec 0t S g @) (253)

Finally, for the correspondent Floquet matrix of C'(¢,t'), the time-convolution is trans-
formed into simple matrix multiplications

Coum(€) = Anny (€) Boym(2). (2.54)

This result can be easily generalized to the time convolution of any number of two-
time functions. As it will be needed later, we give the result for the time-averaged any
convolution C(t,1),

1 /7 ¢
- /O Clt.ty=Y_ /_ » de Apn, (€) By ()

n,m,ni

:TI"F

/w/Q de A(e)B(e)] , (2.55)

—w/2

where Trp is the trace over the Floquet indices and A represents a Floquet matrix.
The other reason for this two-index representation is that the nm component of the
Floquet Green’s functions between any two states |a) and |/5) of a basis of H turns out
to be equivalent to the Green’s function between the states |an)) and |fm)) of the basis
of the extended space Hg. We prove this equivalence only for the retarded Green’s
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function, but throughout the thesis we will see results that support this equivalence.
Consider the retarded Green’s function

wp(t:t) =—i0(t — 1) {a(t)[B()) (2.56)
=—i0(t—t) (o Ut t)]|5). (2.57)

To obtain expressions for the Green’s functions we will make use of the equation of
motion technique, where we take the derivative of the Green’s function with respect
to time and then we Fourier transform to obtain a set of coupled differential equations
with Green’s functions that we can solve. Taking the time derivative of the Green
function gives

i0,Gl 5(t,1) = 8(t — t')005 — i0(t — ') (a| iQ,U (1) |B)
= 0(t = t")0ap —10(t — ') (| HO)U(L, 1) |B)
=0(t —t')0ap —i6( ’ZHM (v UL, 1) 8)
= 0(t = t)0ap + > Han(t)G} 4(t, 1), (2.58)

where H, g(t) = (o] H(t) |f) . By transforming the two-time Green’s function into its
Floquet matrix (2.50), we obtain

w/2 . . ’
Z / , de (e 4 nw 4 i0+) e iEtmw)ttiletmw)t ofm (€)

w/2
_ Z / de e i(e+nw)tt+i(e+nw)t’) 5nm5a 5

wm Y —w/2

P ML) / de e IR G (@), (259)

where we have used that the delta function can be decomposed in Brillouin zones as
S(t—t)y =3, ffﬁQ emietnw)itilstma)t' s We can identify term by term in (2.59) and
obtain that the retarded Floquet Green’s functions fulfill the set of coupled equations

(£ 40" 4+ 1W)Gr g o () = Snmbas +ZH” FGT g (). (2.60)

Lets consider now the same system in the extended space. As we mentioned be-
fore, in the extended space the dynamics are given by the time independent Floquet
Hamiltonian H¥ (2.22). The retarded Green’s function between the states of the basis
of Hg, |a,n) and |B,n)) is

angm(t — 1) = —i0(t = ') {an(t)|Bm(t')))
= — 0t — ") (an|Ut —t')|fm). (2.61)

where the Green’s function and the time-evolution operator depend only in the time-
difference since the Floquet Hamiltonian is time-independent. By performing the time
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derivative of the Green’s function one obtains

10,Gly gy (t =) = 8(t = ') 0anm — 10(t — t') (an| i0,U(t — t') | Bm)
5(t—t')5wﬂm—w(t— ) (an| HYU(t — ') |Bm)
5

(t - t/)éanﬂm - , Z an,vk /yk| (j(t - t,) |Bm>

=§(t—t) an5m+z kGl amE—1). (2.62)

And Fourier transforming in the time difference we finally obtain that the time-ordered
Green’s functions in the extended space fulfill the set of coupled equations

(6 + Z0+) an Bm( - 50677« ,Bm + Z an,vk Wk ,Bm ) (263)

Since anpm = Oa,80nm and HE = HI-F — nwénpda, we see that the equations for
the Green’s functions in the extended space and the Floquet Green’s functions in the
original space (2.60) are the same, and therefore both objects are equivalent. This
equivalence gives a nice interpretation of the Floquet Green’s functions that will help
later to understand the results obtained.

Now that we know how to work with the Floquet Green’s functions and we have
some intuition for them we are in a position to calculate expressions for the observables
we want to study, the density of states and the current, for any system. The first object
one encounters is the Green’s function of a quadratic Hamiltonian. As an example,

lets consider again the resonant level with a general driving, given by the many-body

Hamiltonian
H(t)= > die,(t)d, (2.64)
o=",{

The contour-ordered Green’s function of the resonant level evaluated in the Keldysh
contour is given by

9o(t,t') = (Te {do()d}(¥) }) (2.65)

Using the Heisenberg equation, we can obtain the time dependence of the annihilation
operator as

D at) = i[H,d,)(1)

ot °
ZGZfO dty H(t1) Zd o (t)dyr, dyle —i [¥dty H(t1)
_ _,Lez fO dtq H(t1 dO—EO—(t)e_Z fO dtq H(tl)
= —ig,(t)d,(1). (2.66)
Applying now the equation of motion to the bare Green’s function we obtain

i0,92(t,1) = oot — ') + (Te {idd, ()5 })
=dc(t —1t') + e, (t)gs(t,t), (2.67)
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where
S(t—t) tteC,
do(t—t)=¢=0(t—-t) t,t'eC_, (2.68)
0 otherwise

where C'y, C'_ are the two branches of the Keldysh contour as shown in fig 2.2. We can
rewrite the equation of motion for the Green’s function, showing that it is in fact the
Green’s function for the Schrédinger equation (2.41)

(i — 20 (D)5 (8. ) = S (t — ). (2.60)

Using the Langreth rules from Appendix B we obtain now the retarded and advanced
Green’s functions as

(1(0y £10T) + e, (1)) gh(t, ') = 6(t — 1), (2.70)

and we can easily find a solution for the Green’s function as one would do with a
time-independent Hamiltonian by Fourier transforming the equation, in this case twice

(1(0y = 0+) ekt k Z / de e~ HEtnw)tHiltma)t! ol ?zm(g)
k‘
w/ , . /
_ Z/ efz(eJrnw)tJrl(Eerw)t ) (271>
nm —w/2

We can identify term by term and obtain a result for the elements of the Floquet
Green’s function as

Z [( £i0" + nw)dpn, — el ™ ] gos () = 1. (2.72)

ni

We reach a very important result. We found an analytical expression for the inverse
of the retarded and advanced Floquet Green’s function of any quadratic time-periodic
Hamiltonian as

gl (©) = (e £4i0" + nw)dpm — el ™, (2.73)

g

We also identify (2.72) as the Schrodinger equation (2.41) of the extended space with
the Floquet Hamiltonian. Finding now the Floquet Green’s function and with that
the two time Green’s function sums up to simply inverting a matrix. We can do this
by first finding the unitary transformation that diagonalizes the Green’s function in
Floquet space

Do (8) =D AL ()55 ()Mo () (2.74)

ning
Assuming that this is a Green’s function in the extended space, diagonalizing the
Green’s function sums up to writing it in the basis of the eigenstates of the Floquet
Hamiltonian, the Floquet states. First note that since the Hamiltonian is quadratic
the Floquet states are the time-evolved states |o(t)) with quasienergy £°

Ut +T,1) |o(t)) = e KTtz |5(4)) = == |5 (1)) . (2.75)
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The equivalent Green’s function in the extended space, expanded in the basis of the
eigenstates of the Floquet Hamiltonian, is then given by

Gt — 1) = =ib(t =) (on|U(t = t')|om)
= D (onlup ) (=if(t — ) (up [T = )t )) {tpnalom)

ViL,n1n2

=D {onlusu ) (=it =) (ugm |0t = )tgn ) (o, lom), (2.76)

ni

where we can identify the diagonalized Green’s function as
bt = 1) = =i0(t =) (o | U(t = ') |tgn), (2.77)
and the A matrix as

Aonm = <<‘7n’ua m)
(ol

ol [t g (o)

o .0
_ <O" ?/‘ dt ez(nfm)wtezsdt ’O'(t))
0

1 (7 :
_ = / dt 6i(n—m)wt€i€2te—if0 dtyeq(t)
0

T

T
_ % / dt ei(n—m)wte—i fot dt1 (Ed(tl)_ag)’ (278)
0

where we used the relation for Floquet states in different Brillouin zones (2.34). This
same result for the A matrix and the decomposition of the Green’s function in terms
of the diagonalized one can be found in [19] with a much more complicated derivation,
which comes to show how powerful the Floquet formalism is. These matrices are in
fact unitary

ZAUWH vm = _/ dt e—i(n—n1)wt fzfo dta (e (t1)— 500)7{

ni

T
/ dtlei(nl—m)wtl ei fotl dt2(es(t1)—€0,0)

:/ / Z i(nz—my)—ing (z—y) —ff;dz(ea(t)—ag,o)

_ i(n—m)z _ 92
/_7r 7.° Snm- (2.79)
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Applying them to the nw term we obtain

E Ao- TmlnlwAanlm

/ / Z i(nz—my)—iny (x— y)nl(,Ue i fr dz(e0 (2/w)—€0,0)
— /_7r 2—1: / dy el(nx—my)iw[%(S(m — y)]e*; fy dz(e0(2/w)—€0.0)

el / / dy 5 — y)[nw — e0(2)w) + £00))

% ei(nr—my e—; fy dz(eo(z/w)—¢€0,0)
=[nw + €5.00n.m — Eon—m- (2.80)
And we can find the diagonalized inverse Floquet Green’s function as

ralle) = e £i0" + nw — &2, (2.81)

o,nn

which in fact coincides with the inverse Green’s function of the state |u,,) in the
extended space. )
ne e = e 210" — (g H g ). (2.82)

Uo,n,Uo,n
The inverse Floquet Green’s function can be written in matrix form in Floquet space
as
90" M e) = 4, QT (e) AL, (2.83)

and using the fact that the matrices A are unitary the Floquet Green’s function can
be obtained as

gu(e) =[A, Q" ()AL
=4,Q"(e) AL (2.84)

Lets consider again a harmonic drive for the resonant level given by e,(t) = €2 +
A, cos(wt + ¢,). The unitary matrices that diagonalize the Floquet Green’s functions
in the Floquet space are

e .
AU nm — T / dt ei(n—m)wte—ifo dt’ (eo (t)—€5)
) T .

1 [T .
T / dt et (n—mwt o—i [y dt' Ag cos(wi+¢o)
T

T
_ % / dt ei(n—m)wte—i%’ sin(wt—l—qbg)ei% sin(gba)' (285)
0

Using the identity e i@sin@ien) = 32 e=tkéne=ikwl J, (o), the elements of A, reduce
to

- 1 , A,
Aanm _ e'LL sin(ds) / dt Zel n—m—ni wtefmlqﬁgjnl (?)

Ay
— ez— sin(¢s) —1(n md’cJ (_) , (286)
w
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and using this result we get a final expression for the Floquet Green’s function,

A J. (&)J B (Aa)
r,a _ _—i(n—m)¢s § : n—ni1\ ", /Ym—n1 \ 7,
ga,nm(g) =€ c + niw j: ZOJF — 88 . (287)

With this result we can already calculate one of the observables we are interested in,
the spectral function, for the case of the isolated resonant level, defined as

Ay (t, ') = =2Im{g.(t,t")} . (2.88)

For a time-independent Hamiltonian, the Fourier transform of the spectral function
on the time difference is interpreted as the spectral weight of electron o at an energy
¢ given by the Fourier variable, and tracing over it one obtains the density of states
(DOS). To simplify things, throughout the thesis we will only look at the time-averaged
spectral function

1 T o) ) ,
Ale) = = / dt / e = AL (1, 1)
T 0 —00
= —2Im { g/ o(¢) } - (2.89)

Note that the density of states is defined for e € (—o0,00) but our Floquet Green
function are only defined on the first Brillouin zone, ¢ € [—w/2,w/2) . In order to
calculate the full energy range of the density of states we make use of the relation
(2.49), which relates the Floquet Green’s functions in different zones as

gnm(5 +mw) = In+ny,m+nq (5)7 (2'90)

and we obtain the time-averaged spectral function by piecing together all diagonal
components of the retarded Floquet Green’s function

A = —2Im {Z gj;m(a)} = Ag(e), (2.91)

which can be interpreted as the sum of the spectral weights of the states |on)) in the
extended space. Substituting the expression we obtained for the time-ordered level
Floquet Green’s function (2.87) we finally obtain a result for the time-averaged density
of states of the driven dot, which is shown in Fig. 2.3,

AY(e) = Z In <%) §(e +nw —&9), (2.92)

which we can understand as one electron being spread into the different Floquet states
at energies € — nw with spectral weight Jn(%)2, as the Bessel functions of the first
kind obey the sum rule > J,(z)*=1.

Since the Floquet Hamiltonian is not bounded one might ask what happens to the
occupation of the states |o, n)), given by the lesser Green’s function g5, (¢) . Consider
the time periodic Hamiltonian of a metal

H(t) =Y exl(t)cler. (2.93)
k
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Figure 2.3: Time-averaged density of states of a driven isolated dot with frequency w = 1,
driving amplitude A, = V; and time-averaged energy 62 = 0, with the bound states broaden
from the coupling to a metallic lead with I', = 0.2w. There is a bound state at zero energy
as in equilibrium and Floquet bands appear at energies nw.

We consider that the bath was at equilibrium at some point in the past and the driving
has been turned on adiabatically. The lesser Green’s function is the given by

g (t, 1) =i <C£(t')0k(t)>
— <c£(t)ck(t)> e~y den(t)
inp () ) 290

where we assumed that the period of the drive is much smaller than the time it takes
the bath to equilibrate and therefore it follows the Fermi equilibrium distribution ng(¢)
[14]. In the specific case of an harmonic drive, after doing the integral and transforming
we finally obtain

: A A
Genm(€) =1 Z - (Uk) iy — (f) ne(ed)d(e + niw —eY), (2.95)

ni

Which does not follow a simple Fermi distribution, but rather, each band can be
considered to follow a Fermi distribution. That means that the low energy Floquet
modes |kn)) of a high energy state |k) are not occupied as long as Ay << w. Looking
at the result we see that it could also obtained as we did for the retarded and advanced
functions

Ginm () = (AL Q5 (2) AL L. (2.96)

The diagonalized lesser Green’s function can then be calculated as

Qknn(€) = —1p(E)(Qpin () — Qi in(€))
= inp(e)d(e + nw — €}), (2.97)
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where we see that it does follow the usual Fermi distribution at equilibrium. The next
step in studying our model of the driven resonant level is considering what happens if
we add tunneling into the resonant level, i.e. non-quadratic terms to the Hamiltonian.
Consider a harmonically driven resonant level contacted by two metallic leads that
might also be driven. The Hamiltonian of the system is given by

H(t) = Hp(t) + Hy(t) + H, (2.98)

where H,,(t) describes the metallic leads, Hy(t) the resonant level and H; the tunneling
between them, which we consider time-independent. To simplify the model we are going
to consider only the case of symmetric coupling, independent of spin or momentum,
and a driving that respects spin symmetry. We will therefore drop the spin indices
because the spins will be degenerate. The Hamiltonians for each part of the system
are given by

Hy(t) = Z (Eak — :ua(t))cjmkcak

a=L,R;k

Hy = eq(t)dld

Ht)= > [tcgkd+t*chak , (2.99)
a=L,R;k,

where the drivings are given by e4(t) = €5+ Agcos(wt) and 4 (t) = pd + A, cos(wt).
First we want to calculate the full contour-ordered Green’s function on the Keldysh
contour, defined again as

Gat, ") = —i(Te {d(t)d'(t")}). (2.100)

To do so we will employ again the equation of motion technique. The Heisenberg
equation for the annihilation operator is

yd(t)

i[H(t), d](t)
= ifea(t)d'd + Y t*dl co, d)(t)

—ieq(t)d(t) — i > t*car(t), (2.101)

and with that result we can calculate the derivative of the full time-ordered Green’s
function of the level as

0G4t 1) = —id(t —t') — i (Te {iod(t)d (') })

= —idc(t —t') —1i <Tc { <5d(t)d(t) + Zt*cak(t)) d*(t’)}>

= —ibc(t — ') + ea(t)GG4(t ) + 17> Gyt t), (2.102)
ak

where the mixed Green’s function is defined as

cralt,t) = —i (Te {car)d'(t') }). (2.103)
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By grouping both terms with the level Green’s functions in (2.102) we can identify the
term in front as the inverse of the bare Green’s function (2.69) , multiplying on the left
by it we obtain

Z,d(t’ t/) = gtci,d(tv t/) + / dtl Z gé,d(tv tl) ¢ ng,d(tlv t,)' (2'104)
¢ ak

In order to solve for the full level Green’s function we need the mixed Green’s function.
The Heisenberg equation for the annihilation operator of the lead « is

atcak (t) = Z[H<t>7 d] (t)
i) (o = s (8)) el Cans + Y telpud, carl (D)

o'k o'k’
= —i(Eak — Ha)Car(t) — itd(t) (2.105)

and we can use to calculate the time derivative of the mixed Green’s function

10,Gopa(t,t) = —i(Te {i0icar(t) (t)d'(t t)})
= —1 <7Z'{ 5ak_,ua>cak’( ) ( ))dT( )}>
= 1G5t ) + Y (ak — o) Gl at, ). (2.106)

ak

By identifying again the bare lead Green’s function and multiplying on the left by it we
find an expression for the mixed Green’s function in terms of the level Green’s function

Glialt:t) = [ s gl (1. 1)G (110, (2:107)
C

Substituting this expression for the mixed Green’s function into the expression for the
level Green’s function (2.104) we obtain

caltt) = g54t,1) /dtl/ dtQngd (t,t1)t" gearks, kit 1)t G 4 (22, t'). (2.108)

By defining the contour-ordered self-energy as
¢ (¢, 1) Zt gCu(t ) (2.109)
the equation for the full level Green’s function can be rewritten into

Lt ) =gt )+ [ dn [ da gt S )Gk ). (2010)
C C

a self consistent equation for the full contour-ordered level Green’s function known as
the Dyson equation. Using the Langreth rules we can obtain the Dyson equation for
the retarded and advanced Green’s functions

GQ”‘;(t,t) = g94(t, t') / dtl/ dta gy (t, 1 Zo;g(tl,tQ)Gg;‘jl(tz,t’). (2.111)
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Using the fact that we can transform the time convolutions into matrix products in
Floquet space (2.51) the elements of the full retarded and advanced Floquet Green’s
functions take the form

Gl (€) = Gien (&) + > g (€ ZEQ ()G (e). (2.112)

ni,n2

By grouping the full Floquet Green’s function we find the explicit expression

1
GT’anm €)= r,a ra gr,a € :|
o) = | T gy, w9
B 1
PrIEE ST
_ | ! (2.113)
e 0N I p+nw—ea— >, X04e) ], '
where in the last part we introduced the Floquet matrices [I g|nm = Onm 5 [7]nm = 170nm
and [g4]nm = €] ™. We see again the power of the Floquet representation, solving

the self-consistent time-dependent Dyson equation turns again into a simple matrix
inversion. Since the Hamiltonian of the leads is quadratic we can use the expressions

obtained for the level Green’s function of the isolated resonant level (2.87), resulting
in

e +i0t) + nw — (eqr — 1)

r,a Jn*nl h Jm*nl &
ga’k,nm(€)=Z< () ) : (2.114)

Substituting this result into the expression for the self-energy (2.109) we can calculate
the retarded and advanced self-energies

S0 (€) = D100 (2)
k

A A
=1t T, [ 22) T, (22
(DY () e ()
> Pak
déa : :
X/_oo 5k(»sj:@OJ“)—I—l{;lw—fa,rcj:@n

A, A
=4 iﬂpa|t|22 Jn—ny <7> Im—n (7)

ni

L'y
=i (2.115)

where p,r is the density of states of the metal, and we have defined the coupling
constant I', = 27rpa]t|2 and in the last step we used the completeness property of
Bessel functions. To perform the integral we take the wide band limit where we assume
that the density of states is constant through the band, which is infinitely wide. Note
that with this approximation the retarded and advanced self-energies are diagonal in
Floquet space, and therefore the information about the driving of the leads is lost in
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the full level Floquet Green’s function. As we will need it later, we calculate as well
the lesser self energy of the lead

Zznm( ) Z |t|29§knm(€)

e (B ()

X / A€ok Parnr(e +niw)d(e + niw — Eqp)

=ipart]? Z‘]” n (-) S (%) np(e + nw)
_Z—ZJH - (-) S (%) np(e +nw). (2.116)

Using the expression for the self-energy the retarded and advanced full level Floquet
Green’s functions are given by

Gdnm(€) = (2.117)

1
[(5 +i0H)Ip+nw—eqFi)y_, Fa/QIFLm

We can group both terms that are diagonal in Floquet space and identify the solution
as the bare level Floquet Green’s function with the Fourier variable ¢ shifted by the self-
energy. The expression for the retarded and advanced level Floquet Green’s functions
then reduces to

Ginm (&) =G F i Z La/2)

n n d Jm n ﬂ
_Z 1 w) () (2.118)
e+nmw—eyFid>  Ta/2

With this result we can calculate the density of states for the whole system, which will
be the same as for the isolated dot (2.92) with the peaks at the quasienergies being
broaden by the self-energy, just as it happens in the equilibrium case.

The next observable we are interested in is the current that goes through the reso-
nant level when contacted by two metallic leads with a finite voltage bias. We obtain
the time-dependent current going out of a lead by calculating the expectation value of
the time derivative of the number operator of the lead

Ju(t) = —2 <Na(t)>
— 2 ([H(t), Na (1)), (2.119)

where the number operator of lead o is N, =), chcak, the factor 2 accounts for the
spin and we have set e = 1 . Since N, commutes with H,, and H; we find

Tty =203 [t {ehy () — 1 (' (t)eas(n))] (2.120)
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The expectation values are the lesser mixed Green’s functions and its hermitian con-
jugate, so we can rewrite the current function as

Jo(t) = 4Re {tZGdak } (2.121)

We already calculated the full time-ordered mixed Green’s function (2.107), to calculate
the lesser we perform the analytical continuation prescribed by the Keldysh formalism
discussed in Appendix B [13]. Applying the Langreth rules to the time-ordered mixed
Green’s function we obtain

Giakz(t? t,) = /dtl [G2d<t7 tl)t*gék (tla t,) + G;d(t’ tl)t*gZa(tlv t/)] : (2'122)

The lesser full level Green’s functions can be obtained by applying the Langreth rules
to the Dyson equation

) =030+ [ an [ g 020 0)Ga 1)
" /_ " /_ "ty gt 1) S5 (b, 1) G, )
" /_ " /_ "t g5 (1, 1) S, 1) Gt V), (2.123)
which in the case of steady state systems switched on adiabatically reduces to
G;d(t,t/) = /OO dtq /OO dts G2d<t,t1>zj(t1,t2)ng(t2,t/). (2.124)

With this result we can calculate the Floquet lesser Green’s function as

do,nm Z Gdd nn1 dnlnz (6) Zd,an(€)7 (2125)

ni,n2

for which a very complicated analytical expression can be found that is not worth
showing here. Using the result for the lesser mixed Green’s function (2.123) on the
expression for the current (2.121) we arrive at the Landauer formula

Ta(t) = 4Re{ / dty [GT(t, )5 (t, 1) +G§d(t,t1)zg(t1,t)1}. (2.126)

Transforming the Green’s functions and self-energies into their corresponding Floquet
matrices and Fourier transforming the current we obtain

w/2 27T

w/2 de
J = 4Re{ Z €Zth/ [ngnl( )Zz,nln—m< >+Gdnn1( )Egnln m(g)]}

n,m,ni

(2.127)
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In general, the time dependent current and even its Fourier components give a very
complicated result we will not be able to understand, but the expression for the time-
averaged current,

% de < <
| o (Gl O mnl) + G €180

w/2 -
Re{ / E Gy Z5 ) + G§<a>zz<e>1}] , (2.128)

is equivalent to the current of a tight-binding model with the Floquet indices labeling
the sites. Therefore, the results we obtain for the time-averaged current can be also
interpreted very easily in terms of the Floquet Hamiltonian in the extended space.

Before we go to the numerical calculation for the harmonically driven resonant level
contacted by metallic leads we can do a little summary of what we have learned so
far. First of all, a time-periodic system in d dimensions is equivalent to a system
in d + 1 dimensions governed by a time-independent Hamiltonian called the Floquet
Hamiltonian. In particular for the case of a driven resonant level we have found that
it is equivalent to a 1 dimensional system labeled by the Floquet indices, and the
expressions both the time-averaged density of states and the time-averaged current
are then equivalent to those of a tight-binding model. We have also learned how to
easily calculate the Floquet Green’s function of any quadratic Hamiltonian and given
a self-energy, we have obtained an expression for the full Floquet Green’s function of
any Hamiltonian with one-body interactions.

2.3 Numerical calculation with the Floquet GGreen’s
function technique

Now that we have explicit expressions to numerically calculate the Green’s functions,
the density of states and the current, we are in a good position to study more in
detail the model for the driven resonant level contacted by metallic leads. Seeing the
numerical results for this model will confirm that we have a good intuition for the
time-averaged dynamics of the system but at the same time it will illustrate that even
for the simplest model of driven phenomena, the time-dependent dynamics are highly
non-trivial.

The results from this section are obtained by utilizing the expression for the inverse
bare level Floquet Green’s function (2.73) and the Floquet Self-energies (2.115) to
calculate the inverse of the full level retarded and advanced Floquet Green’s function
(2.117), which are built truncating the high n Floquet states, |e, — nw| >> T, A,.
The full retarded and advanced Green’s function is then build by numerically inverting
the matrix in Floquet space. Using that result, the lesser Floquet Green’s function is
obtained and finally the time-averaged current can be calculated.

For the sake of simplicity and for computational reasons we are going to study the
dynamics of few Floquet states, so that the matrix obtained after truncating the high
n states is small. The Floquet state |1, ) is at an energy |2 — nw| < |(n 4+ 1)w], and
the maximum number of relevant Floquet states can be guessed as a rule of thumb by
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n = (A+4T)/w, where A is the amplitude of the drive and I' the coupling constant, since
it wouldn’t make physical sense for the system to have states in the extended space at
energies the state in H does not reach at any time. Because of computational limita-
tions the calculations shown throughout the thesis are done by truncating the Green'’s
function in Floquet space to be larger than n but of the same order of magnitude.
The accuracy of the results might be improved, but we made sure that all the relevant
features arising from the driving that we discuss in this thesis are qualitatively correct,
and they are sill present when we include more Floquet modes in the truncation.

There is another issue point regarding the truncation. The models we discuss can be
also solved by diagonalizing the Floquet Hamiltonian and obtaining the quasienergies
and Floquet states, as we discussed before. But, if we consider that we have to perform
a truncation of the Hamiltonian before numerically diagonalizing it, the truncation will
result in the energy of the different Floquet bands no longer being separated by w. This
is a problem that does not appear in the Floquet Green’s function technique, as this
relation between the energies of the different Floquet bands is built in on each Floquet
element (2.117). One would think that this feature is preserved at the expense of a less
accurate quasienergy ¢, or amplitude of the Floquet modes, given by the A matrices,
but it is more desirable because it makes more clear what Floquet bands are related
to the same Floquet state, and this fact will make more clear the results of the next
chapter.

We proceed to discuss the results obtained numerically. For simplicity we consider
only a constant voltage-bias. First, lets take a look at the time-averaged spectral
density in Fig.2.4. As we argued before, it consists of a series of delta peaks broaden
by the metallic leads, at energies €Y + nw. Also note that these peaks have different
weights. The time-dependent spectral function is not an observable, a discussion on

60
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Figure 2.4: Density of states of a dot harmonically driven with w = 1, A, = 2w contacted by
metallic leads with I',,, = 0.2w. Note that, as discussed, the density of states is independent
of the voltage-bias. (a) Time-averaged density of states of the dot showing the bound states
and the Floquet bands. (b) Time-dependent density of states of the dot showing pockets
with negative values indicating that it cannot be interpreted as a probability, but rather as
a quasiprobability distribution.

this issue can be found in [20]. The result for the time-dependent spectral function in
Fig. 2.4 in fact shows pockets with negative weight, meaning that it can no longer be
interpreted as a probability.
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This might remind the reader of the Wigner function and its interpretation as a
quasiprobability distribution. In spatially periodic systems a quasiprobability distri-
bution can be obtained in terms of position and momentum variables as

W(e,p) = / T W ey 20— g)2), (2.129)

oo 2T

where the Wigner function is periodic on x. The interpretation of probability is re-
gained again by taking into account the uncertainty principle

0.0k > (2.130)

N | —

where o0, are the standard deviations in position and momentum, and defining a
transformed Wigner function which is defined positive,

1 z2 k2

e 23 2% > (), (2.131)

W(ac,k:)—/ / daydley W (zy, ky)

2T 0,0y,

We see that in fact our time-dependent spectral function is an analogue of the Wigner
function for the time and space variables, and we can use this fact to obtain a new
time-dependent DOS as

_(e=ep)?  (t—t7)?

g e (2.132)

e 20%2

A<t70't,8,0'€):/ d€1/ dtlA(t1,€1)

MO0

which is positive defined as long as the uncertainty principle between time and energy,

1
010: 2 3, (2.133)

is met. When measuring the time-dependent DOS in an experimental setup, the object
we should compare the results with is the transformed time-dependent DOS, where
oy and o, will depend on the specifics of the measurement. In Fig. 2.5 we show the
transformed time-dependent spectral function in two limiting cases. We see that in fact
the negative pockets disappeared in both cases. In the case of a good energy resolution,
oy > 0. we observe very little time-dependence and we observe the Floquet peaks. In
the opposite case, with a good time resolution the time periodicity is recovered, but
one cannot make out the Floquet features. For any case in between there is a mixture
of time-dependent and Floquet features.

Note that the time-averaged DOS is equal to the transformed DOS with 0. — oo,
which ensures that the time-averaged DOS can be interpret as a probability distribu-
tion.

Now that we understand our results for the density of states we show the results
for the time-averaged current and conductance at different voltages and their time-
dependence in Fig.2.6. As we argued when we calculated the expression for the time-
averaged current (2.128), it can be understood as the current through a tight-binding
model with the Floquet states [¢),,)) representing the states at site n with energy
g% + nw. As expected, the time-averaged current is a step-wise function that has a
jump when the voltage reaches the energy of each Floquet state. The time-dependent
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Figure 2.5: Transformed time-dependent dot density of states incorporating the uncertainty
principle which can be interpreted as a probability for a driven dot with w = 1,V = 2w
coupled to metallic leads with I' = 0.2w . (a) Case with a good time resolution, o, =
0.1,0. = 5 where we can see the dot oscillating in energy. (b) Case with a good energy
resolution o, = 5,0, = 0.1 where we can observe the Floquet features. (¢) Case in between,
with oy = 0. = 1/4/2, where we still see the oscillation in energy and Floquet features start
to appear.

current and conductance allow us to see both the Floquet and periodicity features. We
see that for higher voltages more Fourier components are relevant, since more Floquet
modes are involved, but besides that the results are highly non-trivial. To illustrate
this, we observe an interesting feature in the time-dependent conductance. If we look
at the point where the leads reach the first Floquet mode, we observe that at the times
where the energy oscillation of the resonant level reaches the minimum and maximum
the conductance is zero. This feature appears in systems symmetric with a low coupling
with the metallic leads compared with the amplitude of the drive, which results in sharp
peaks in the density of states. The same feature appears in the current in one specific
case shown in Fig.2.7. Since the current is given by the integral of the conductance
over the voltage, if we take the case where the amplitude of the zeroth Floquet mode
vanishes, i.e. when Jo(%) = 0, the first contribution to the current will be from the
first Floquet mode, and therefore, the zeros of the conductance at this point will appear
as zeros in the current as well. This means that for this set of parameters, when the
oscillation of the energy of the resonant level reaches its maximum or minimum the



28 CHAPTER 2. THEORETICAL FORMALISM

0.1 , : : : 0.7 :
(a) 06F (b) -
0.08} ]
0.5}
0.06] ] 04l
B <)
0.3}
0.041

021

N

0 0.5 1 15 2 25 0 0.5 1 15 2 2.5

0.02

0.05

0 0.5 1 1.5 2 25
V/2

Figure 2.6: Current and conductance for the harmonically driven dot with A, = 2w, w =1
contacted by metallic leads with a coupling constant I' = 0.2w and a voltage bias V across
the junction. (a) Voltage-bias dependence of the time-averaged current showing the step-like
response one expects from a multidot system. (b) Voltage-bias dependence of the time-
averaged conductance which reproduces the time-averaged density of states of the dot. (c)
time and voltage-bias dependence of the current showing that for higher voltages more Floquet
bands are involved and the time-dependence of the current becomes more complex. (d) Time
and voltage-bias dependence of the conductance. The conductance at the voltage bias when
the leads reach the first Floquet band at the time where the dot is at maximum or minimum
energy vanishes.

current for a voltage bias just above the resonance or just below the resonance is in
both cases zero, which is a highly non trivial behavior.

2.4 Discussion

In this chapter we have described the Floquet formalism in which a periodically driven
system in d dimensions can be mapped into a system in an extended space, Hg, with
d 4+ 1 dimensions with the dynamics given by a time-independent Hamiltonian. In
particular, for the system studied here, a periodically driven quantum dot can be
mapped into a tight-binding model with on-site energy equispaced by w and hoping
between the sites given by the Fourier components of the Hamiltonian.

We have also described the non-equilibrium Green’s function technique, and in
particular the Floquet-Green’s functions technique used in the literature to solve peri-
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Figure 2.7: Time-averaged density of states and time-dependent current for a harmonically
driven dot with w = 1,4, = 2.405w, so that the amplitude of the zeroth Floquet band
vanishes, Jy(V/w) = 0, coupled to metallic leads with coupling constant I';, = 0.2w and a
voltage-bias across the junction of V' = 2w. (a) Time-averaged density of states showing that
the zeroth Floquet band indeed vanishes. (b) As a consequence the current where the dot is
at maximum or minimum energy at t/w = 0, 7, 27 vanishes.

odically driven systems. We have showed that there is a clear connection between the
Floquet-Green’s functions and the Green’s functions in the extended space. Finally, we
have solved the problem of a non-interacting quantum dot being driven harmonically
contacted by normal leads with a voltage-bias, for which we have found that, in fact,
the time-averaged density of states and current resemble those of a tight-binding model
and can be easily explained in terms of the Floquet formalism.
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Chapter 3

Driven S-QD-S junction

In this chapter we will discuss the non-equilibrium dynamics of the S-QD-S junction,
a quantum dot contacted by two superconducting leads. We are going to start by
describing the Nambu Green’s functions technique used to obtain the numerical results.
Then we will derive the observables we are interested in for the most general case and
finally we will analyze the results for the junction with different setups.

We are going to start by studying the system at equilibrium, with only a phase bias
between the superconducting leads. This system has been studied extensively and it
is known to host Andreev Bound States which can carry a supercurrent when a phase
gradient is present across the junction [21, 22]. Once we understand the behavior of
the junction at equilibrium we are going to drive the system out of equilibrium with
two different methods.

First we will study the junction when we drive the dot harmonically like in last
chapter. This system is similar to the junction under microwave radiation, which has
been studied using the Floquet-Green’s function, where some interesting features were
found on the current-phase relation [17, 23, 24]. In this section we will give a more
detailed and systematic description of the behavior of the junction under the driving
using the Floquet formalism.

Then we will consider a voltage-biased junction, which has also been studied ex-
tensively [17, 18, 21, 25, 26]. We will describe the well known behavior of the system
but also provide an interpretation using the Floquet formalism which will be useful for
the last section.

Finally we will consider the case with both drives. The voltage-biased junction has
also been studied under the influence of microwave radiation [27], but here we will
present a more extensive study of the driven junction which will provide some new and
interesting results.

3.1 Nambu-Green’s function technique

Consider a non-interacting quantum dot with only one orbital, represented as a res-
onant level, coupled to two superconducting leads. In this section we will solve the
model for the most general case, with a phase and constant voltage bias between the
superconductors and a harmonically driven level. In later sections we will discuss each

31
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Figure 3.1: Schematic of the S-QD-S junction in the most general case, with a phase bias,
¢sc, and a voltage bias, V', across the junction, with the dot being driven either with an ac
gate voltage Vj(t) or an ac magnetic field B(t).

driving case. The most general Hamiltonian of the system reads

H(t) = Y (Ho— pa(t)Na) + Hy(t) + H, (3.1)

where H, is the mean-field BCS Hamiltonian of the superconducting leads, p, is the
chemical potential of the leads, Hy(t) the Hamiltonian for the driven quantum dot
and H; the time-independent tunneling Hamiltonian between leads and dot. Each
Hamiltonian is given by

HL + HR = Z €akCLkUCakg + Z(AZCQkTCQ,]Q + AQCL_kJ’CLkT) (32)
ako ak
Hg = Z €a.0(t)dld, (3.3)
Ht) =Y (tc;,wda + tdj,ca;m> , (3.4)
a,k,o

where A, = Aei®= is the superconducting parameter, which absolute value we consider
the same for both leads and independent of momentum, and the superconducting
phase ¢s. = ¢ — ¢r is originated by applying a flux between the superconductors.
The tunneling constant ¢ is also considered lead, spin and momentum independent as
well as real. As for the time-dependent dot on-site energy, to keep it simple we are
going to consider a dot at zero energy, with an applied ac gate voltage as well as a
dc and ac magnetic field, €4, (t) = V, cos(wt + ¢q) + 0(By/2 + B cos(wt + ¢4)), where
o = 1,—1 for 1T and | respectively. As it will become obvious later, to describe the
voltage-biased junction with the Floquet formalism it is necessary to symmetrize the
chemical potentials, jo, = p + Vo, Vi g = £V/2. To simplify the calculations a bit we
can get rid of the voltage bias in the lead Hamiltonian so we can calculate the bare
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lead Green’s functions in equilibrium. We do this by time-evolving the Hamiltonian
with the chemical potential term

U(t70) — ei(NLV/Z—NRV/Q)t7 (35)
Note that the mean field superconducting Hamiltonian doesn’t conserve particle num-
ber and therefore it doesn’t commute with the chemical potential term. This is an ar-
tificial result that we avoid by simply imposing this commutation. After time-evolving

the Hamiltonian with (3.5) the chemical potential appears as a time-dependent phase
on the tunneling constant t. We can also make a gauge transformation

Cako — Cakcrewa/za (36)

which moves the superconducting phase dependence from the superconducting param-
eter into the tunneling constant. Finally, the transformed Hamiltonian takes the form

H(t) = Hy — uN, + Hg — uNp + Hp(t) + Hr(t), (3.7)

where each term is given by

H; + Hp = Z €akCLkgcaka + Z(Acamca,m + ACL—kiclkT) (38)
ako ak
Hi= Y cao()did, (3.9
Hy(t) = 3 (talt)chodo + (1)) ot ) (3.10)
a,k,o

where the tunneling constant is now t,(t) = te’®*® with the time-dependent phase
¢r.r(t) = (¢r,r £Vt)/2. In order to simplify the equations when working with super-
conductors it is usual to work with Nambu spinors instead of the electron operators.
Different conventions can be found in the literature, the one we are going to use in this
thesis is defined by the Nambu 4-spinors

Cakt
Ul = ( ijkfv ijk:w Ca—kly —Ca—kt ) v Vak = z?kik (3.11)
i
and
dy
w:(ﬁ,@,m,ﬂhy ¢ = % . (3.12)
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In order to write the equations in a compact form we will also use the matrices

1 000 00 — O
01 00 00 0 —2
0_ 0 0 _ 2 _ 2 0 _
m =0 QT = 00 10 , MT=0"QQT7T = i 0 0 0 ,
00 01 0 ¢« 0 O
0010 1 0 0 0
1_ 1 0_ 0001 3 3 0 _ 01 0 0
m =0 7 = 1000,m—0®7— 00 -1 0 ,
0100 00 0 -1
0O 0 0 -1
4 2 2 0O 01 O
-1 0 0 O
and
0100 0 — 0 O
1 000 : 0 0 O
z __ 0 1 _ y _ -0 2 __
m- =0 Ko = 000 1 , m =0 ®o° = 00 0 —i |
0010 0O 0 2 O
1 0 0 O
0 -1 0 O
z 0 3 _
mr=o@o=1 . 4 1 9 | (3.14)
0 0 0 -1

defined in terms of the Pauli-matrices {0",0',0% 6%} = {I3,0,,0,,0.}. Note that
with this definition the matrices {m°® m!' m? m3} have the same properties as the
Pauli matrices. These Nambu spinors satisfy the anticommutation relations

{wakna wllk/n/} = 5040/51616’7”70777/7 {@/ngzm @DS’)M»,]/} = 5aa’6—kk’min/
{6, 01} =mly, {6, 6V} =mi, (3.15)

where the m%n, in the last anticommutator reflects the redundancy in the spinor no-
tation. To differentiate them with labels of states and Floquet indeces we will always
label the Nambu components of an object with 7. Using the Nambu spinor notation
the Hamiltonian (3.8) reduces to

1
Hy, = pNp + H = pNg = 5 Y Wl M3 Vo (3.16)
ak,mm’
1
Hy(t) = ) Z Q%Md(t)nn’%’ (3.17)
nmm’
Hy(t) = Y ol ML, (0, (3.18)

ak,nn’
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where we have introduced the matrices

M2 = &ym® — Am? (3.19)
M;fn, (t) = V, cos(wt + dq)m> + (By/2 + B cos(wt + ¢q)) m* (3.20)
M (1) = % [t (£) (m +m®) + €2, () (m® — m®)] (3.21)

= tmBeim*da(®) (3.22)

where &, = €4x — pt- Note that although it might not seem like it at first glance due to
the redundancy of the Nambu spinors, the tunneling Hamiltonian (3.16) is hermitian.

We are going to use Nambu Green’s functions which are defined as usual for the
Nambu spinors, for which we will use the notation

(08 = =i (T {60 (000l (8)} ). (3.23)

The first step is to calculate the bare Green’s functions for the dot and the leads. The
contour-ordered Green’s function for the dot in Nambu basis is

G (t.8) = =i (Te {nOh () . (3.24)

Hy(t)

where the expectation value is performed over the dot Hamiltonian. Using the expres-
sion derived last chapter for the inverse of Green’s function of a quadratic Hamiltonian
(2.73) we obtain for the inverse of the retarded and advanced bare dot Floquet Green’s
functions in Nambu basis

Gapman(€) = (£ + 1w + 20 )m 8 — My
= [((g + nw + £i0")Ym" — Bym®*)8,m
_Vge—i(n—m)qﬁd(dnim’l _{_(5n7m771)m3

_Befi(nfm)qﬁd (5nim71 + 5n7m’71)mz] (3'25)

nm

Using the fact that we can calculate the bare Green’s function of the lead in equilibrium
the retarded and advanced bare lead Nambu Green’s function are

92t = #) = Tt F ) ({Yarn(0), 80 () })
= Fib(xt 7)Y e ME ) (o). 6L, 0] )

m

= Fib (£t F ') Z[eiiMSE(titl)]mn/mgm
m
. —i SC (4__ 4
= Fif(£t F t')[e”Mar =] (3.26)

Since the bare lead Green’s function only depends on the time difference we can simply
Fourier transform and obtain

okan(€) = (& £ 10T )m” — MITT (3.27)
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We can find the inverse of a vector of Identity and Pauli matrices as

m® = (agm® + @ - m) - (bgm® + b - 1) = agbom® + agh - 11 + bod - 7 + (@ - 1) - (b - )
= aghom® + agb - 11 + bod - 17 + (@ - bYm® +i(@ X b) - 1
= (agbo + (@ - b))m® + (agh + bo@ +i(@ X b)) - . (3.28)

Noting that the identity and the Pauli matrices are linearly independent we can solve
and find

0_ 7.7
bom® + 5. )L = o= o (3.29)

2
B — |b

which applied to the inverse Green’s function (3.27) gives

e ) (e £i0M)ym® + MSE (e £i0T)m° + Lupm® — Am! (3.30)
ok \=) = (e £i07)2 + det(MSC) — (e £i0%)2 — B2, '

where in the last step we used det(MSY) = —E2?, = —(&2, + AZ,), where E,;, are the
eigenenergies of the superconducting Hamiltonian, which can be obtained by diagonal-
izing it with the Bogoliubov transformation. We also need to calculate the lesser lead
Green’s functions for which the fluctuation-dissipation theorem can be used. We can
rewrite the retarded and advanced Green’s functions as

o 1 . 1 1,
) = -m
ok c— B +i0 e+ Eyti0r) 2

N 1 B 1 1 1O
e— B +i0t e+ E, +i0t ) 2B, °*
d o
:/ﬂ“’f—(gl) (3.31)

2m e — e £i0T

where we can identify the spectral function of the lead Hamiltonian as

G (8) =27[0(c — Eog) + (e + Eak)]%mo

1
+21[6(e — Eax) — 0(c + Eak)]mM&g,f : (3.32)

and with that result we can calculate the lesser lead Green’s function as

9ar(€) = iaak(e)np(€)
= 2imnp(e) [((5(5 — Eor) +0(e + Eak))%mo

1
+(0(e — Egr) — (e + Eak))me,f . (3.33)

Note that we calculated the Fourier transform of both lead bare Green’s functions
which are defined on the real axis ¢ € (—o00,00). To incorporate them later on the
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calculations we need the equivalent Floquet matrix of a Fourier function. Any function
of the time difference can be decomposed as

gt — ) = / de =) g )
w/24+nw

= Z/ de e g ()

n J—w/2+nw

w/2 ' )
_ Z/ de efz(ernw)(tft )g<€ + nw)
n J—w/2

w/2 A A )
=>. / de T g 0 o), (3.:34)

n J—w/2

where the correspondent Floquet matrix, defined in the first Brillouin zone is
Gnm(€) = g(e + nw)dpm. (3.35)
The lead Floquet Green’s functions are therefore

(e + nw £+ i07)m° + Eem® — Am!

r.a _ 5nm .
1
Iakmm(&) = 2imnp(e) | (0(e + nw — Eqr) + 0(e + nw + Eak))§m0
1
+(0(e + nw — Egx) — 6(6—|—mu+Eak))2E MEE S (3.37)
ak

With that result we can now calculate the full lead retarded and advanced Green’s
functions. The derivation might seem more complicated than the one from last chapter
because of the Nambu structure, but it is structurally the same. We start by calculating
the time-evolution of the creation and annihilation operators

atwakzn(t) - '[H ¢akn] ( )
=—1 Z Mgy, nn1¢akn1 t) — ZM:;*W( )& (1) (3.38)

and

OBl (1) = 1 | H. 0L |
_Zz¢/kfn1 ()M + 100 ()M (1), (3.39)

then, with that result, we can obtain the time derivative of the contour-ordered lead
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Green’s function

0, Gly o (8:1) =00t = #) ({Watn (0, Wiy (0} ) = i (Te {01t (0L (#) )
=0 (t — ') O aar O My

— i <Tc { [Z My ety () + Mg (8) (¢ )] Yl /(t’)}>

i
:50 (t — t/)daa/ 5kk/m2n,

+Y M Gl e (B8 + ML ()G i (8, 1). (3.40)

We can again group the full lead Green’s functions

Z [i0m, — M5 1 G i (8, 1) =

m

Sc(t = t")0aar Oy, + ML (8)GG g (8 1), (3.41)

where we identify the term in front of the full lead Green’s function as the inverse of
the bare lead Green’s function

Z[Zatmnm Mo | Gay (8, 1) = 6 (t —t')my), . (3.42)

m

Multiplying on the left by it one obtains the Dyson equation for the contour-ordered
full lead Green’s function

ng’n,a’k’n’ (t7 t/) _gék o’ (t t/>5o¢o¢’5kk/

+y / dty g ()M (1) GG (b, 1) (3.43)

n,m2

We then need the mixed contour-ordered Green’s function

00 Gty (1) = =1 (Te {60(0), 000l (1) })

= Z Gy (VM 4+ G g ()M (E), (3.44)

which can be rewritten, grouping the two terms with the mixed Green’s function as
Z Gtci’r],cx’k’m (tv t,) [ngmn - Mci?k’,mn’] = fln,dn (t t )M; n'n’' ( ,) (345)
it

The term on the right of the mixed Green’s function can again be identify as the bare
lead Green’s function and by multiplying by it on the right the expression for the
contour-ordered mixed Green’s function reduces to

Zn,akn’ (t7 t,) = Z /C dtl G?ln,dm (ta t1>M£z*171171( 1>gzcxk,mn’ (tlu t,) (346>
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We can now calculate the last contour-ordered full Green’s function we need, the one
of the dot, defined as

G (1) = =i (Te {0, (00} (0 } ). (3.47)
First we obtain the time-evolution of the creation operator
00}, () = ~[H. 0} ](¢ '>
== Z by (M (8) = D gy My (1), (3.48)

ak,m

and with that we can calculate the time-derivative of the contour-ordered full dot
Green’s function

10y Gy gy (1) = — S (t — '), <Tc {abn( )idy o)y (t/)}>

= — 50 t— t')m
< ¢77 [ T 77177 Z ¢0€k M amn )] }>
ak,m
=—dc(t —t")m)
ZGdW dTll t t MT;INY / Z Gdn akm t t/ M(i mn’ (t/> (349)

ak,m

We can again group the full dot Green’s functions, identify the term in front of it as
the inverse of the bare dot Green’s function, and by multiplying by it on the right we
obtain

Eln,dn’ (t7 t,) = gg,m}’ (t’ t/) + Z / dtl dn akny (ta tl)Mék,an (tl)gg,ngn’ (tla t/) (350)
ak,nin2

Using the expression for the mixed Green’s function (3.46) in last equation we obtain
we obtain

277 dn’ (t t,) = gccl nn’ (t t/)

+ Z / dtl Z/ dt? dndng t tZ)M(i*ngng( )g;k,ngm(t27tl)]M(ik:,mm(tl)gccl,mn’(tlvt/)'

ak,m

(3.51)

By defining the contour-ordered self-energy as

Zg ,nn’ ( ,) Z Mctx*'rm( )ggk,m]’<t7 13 )M; n'n’ ( ,) (352)
k

we finally find the Dyson equation for the contour-ordered full dot Green’s function
dndn t t) _gdnn (t t)

+y° / dt, / dty GG gy (£40) Y 56 (F1,£2) 95y (2, ). (3.53)

nin2
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Seeing as the expression for the two-time full contour-ordered dot Green’s function has
the same form as the one obtained last chapter (2.110), we can obtain the retarded and
advanced Floquet matrix the same way, by applying the property of time-convolutions
and isolating the Floquet Green’s function, which takes the form

Gre ! (3.54)

€)= ma )
aeanl®) = | e

where g™*~!(g) and X7 are matrices in Floquet and Nambu space. The two-time
self-energies can be decomposed as

v t t * inwt 715 (t—t') fzmwt’
Eann( t') = ZMﬂmn Z/ dggaknn Z 'y m€
o T x znwt
Z M€

i(e+niw)(t—t') fimwt/
X E / de Gogey (€ + Maw)e™ E annm

k,ni

_E / —z (e+niw—nw)t z(s+n1w mw)t’
—w/2

1 * t
X M a,mm,n Z gak,m?/ €+ n1W)Ma7n/n/7m

w/2
— Z/ dee™ i(et+nw)t+i(e+mw)t’
nm Y —w/2
t* t
X Z Ma N, — ngak,m] nlnl( )Man 'n' m1—m> (355)
ni,k

where we can identify the Floquet matrix for the v = r, a, < self-energy as

Ey,nn nm(g) Z Métm,nl —n Z gak nn’ n1n1 a n n',ni—m- (356>

ni

Performing the momentum sum of the Floquet Nambu Green’s functions (3.36) gives

ggz?m nm(g) = g;;cl,nn nm(6>
k
o0 5—|—nwi20+m o+ Lk, Am
[ ! i+ Gy Sy
o (e +nw+ 20+) &, —

=2pal(e + nw £i07)m° — Am'],, 6m

X /oo d¢, !
o (e +nw £1i0%)2 — A?] — €2,
(€ +nw£i0F)ym) , — Am],
V(e + nw)? — A?]
X [0(A — |e + nw|) F isign(e + nw)b(le + nw| — A)]dnm, (3.57)

:—ﬂ'pa
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and
g;nn’,nm (6) = Z gik,nn’,nm<€)
k

=2imnp(e + nw)dpm

o0 d o
X / Sak pa [(8( + nw — Eog) + 6(e + nw + Eak))Eakmgn,

o 2Ek “
+(0(e + nw — Eu) — 0(e + nw + Eak))(fakmgn, — Am}m,)]
. 0 dE .
=2imnp(e + nw)dpmpPa m [5(5 + nw — Eak)(Eakmgn, — Aakm}m,)

+d(e + nw + Eak)(Eakm?m, + Am}m/)}
=2imnp (e + nw)dpmpad(|e + nw| — A)

(e +nw)my) , — Am,

X sign(e + nw 3.58
e e o
We need to calculate also the Fourier components of the tunneling matrix
T/2
Mgn :tm361m3¢>a/21 / dt ei(m3Va+nw)t
’ —T/2
:tm3e"m3¢“/25nya/w. (3.59)

We can use those results in the expression of the Floquet self-energy and we obtain for
its matrix in Nambu space

0 3 0 3
y —im?3 m-+m m-—m
Eoz,nm(g) =t’m’e”" ba/2 Z[5n1,n_va/w 9 + 5n1,n+Va/w 9 ]
ni
0 3 0 3
. g m”+m mo—m
X gg,nml (g)mgelm ¢a/2[5n1,m—Va/w 9 + 5n1,m+Va/w 9 ]
0 3 0 3
2 3 —imBen/2 |V T M m’+m
= ?mBe M Pa/ [ng,nva/w,nva/w(g)‘smmT
m® +m? mo — m3
+Tga,nf\/a/w,nf\/a/w<€>5n—m72va/wT
m® —m3 y m°® 4+ m3
+Tga,n+va/w,n+va/w(8)6N—m7_2va/wT
0 3 0 3
m’ —m m’ —m 3 im3de /2
+ng,n+va/w,n+va/w(5)6nymT mPem v/ (3.60)
By decomposing the momentum summed Green’s functions as g = Y, g,sm’ the
Nambu matrix of the Floquet self-energy can be written as
Yenm(€) =
Fa g(l;’m(),n_vioé n—Ya (6)5717771 _gg mln—Ya Vo (8)ez¢a5n—m72v—o‘ ®
_ w w o ’ I; w w w 0-0
2m _gr’;,ml,n+n—a,n+%(€)e waén—m:—?% ga,mo,n+‘%,n+%(g)5nm

(3.61)
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With that result we have all the components we need to calculate the retarded and
advanced full Green’s functions of the dot (3.54). The lesser one follows from applying
the Langreth rules on the Dyson equation (3.53) and transforming the time-convolution
into a matrix product in Floquet space, resulting in

G;d 'y nm Z Gdd N1 ,nN ) Z Ez,nlng,nlnz (8) Zd,ngn’,nzm‘ (362)

711M2,1112 a

Now that we have explicit expressions to calculate numerically all the Green’s functions
we need, we proceed to calculate the current, given by

Jo(t) = =i ([H(t), No(t)]) . (3.63)

First note that we encounter the same issue we had when we transforming our Hamil-
tonian with (3.5), the number operator does not commute with the mean field super-
conducting Hamiltonian, but we set again this commutator to zero, so that

To(t) = =), Nt} = =13 (Hes e am 8)
- —zme< O bnl(t) + [Ho ) (i)

=1 Z mm?M; o (£) <¢akn > Z mnnMZv*vm (b <t)¢/Lkn(t)>
kn

_2Re{zmm7 N (e S (3 t)} (3.64)

Using the expression we have for the lesser mixed Green’s function (3.46) and the
self-energies (3.61) the expression for the current reduces to

‘] ( ) - QRG{ Z T]?’]/dtl Gdndn (t tl)zann(tlﬁ )+ Gdr] dn’ (t tl)zinn<t1’t)]}
ksn.n’

(3.65)
which is equivalent to that obtained last chapter (2.127). The current can be Fourier
transformed and expressed in terms of the Floquet matrices as

QRQ{Z e Z Wl/d6 dTI dn’ ,nny )Zgnnrnn m(g)

kn.n’
+G§T]7d77/,nn1( )Einn’m n— m(E)]} ) (366)

and the time-averaged current can be written as a product of matrices

J? = 2Re{Tr {m?’/ds[ na(E) XS (e) + do(s))?’z’(s)]] } (3.67)

where G,(e) and X7 are the dot Green’s function and lead self energy matrices in
Floquet and Nambu space and where the trace now is performed over the Floquet and
Nambu spaces.
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Now that we have expressions to calculate everything in the most general case, we
can study one by one the different setups mentioned at the beginning of the chapter.
All the numerical calculations in the next sections are performed in the same way
as discussed in section 2.3, with only one peculiarity. As we will see later, when we
calculate the time-averaged density of states, bound states will appear inside the gap.
This states would be broaden, as in the case of the metallic leads, by the imaginary
part of the diagonal of the self-energy. As we can see in (3.61), for a junction without
a voltage bias, inside the gap the self-energy is real and therefore the bound states
will appear as delta peaks. When performing numerical calculations this is an issue
because the resolution we use in energy is finite and we have to artificially broaden the
bound states in order to perform the numerical calculations. We do this by introducing
a metallic lead with a low coupling constant I',,. There is going to be a compromise
between the resolution we have to use on the energy variable, or the computational
power needed, and the strength of the coupling to the metallic lead, which introduces
artificial results we are not interested in.

3.2 Phase biased junction at equilibrium

We are going to start by studying the behavior of the junction at equilibrium. Since
the system is at equilibrium, we can forget about the Floquet formalism and work as
usual by Fourier transforming. We can obtain the Fourier functions from a Floquet
matrix by dropping the Floquet indeces, since they are diagonal in Floquet space, and
considering them defined in the real axis, ¢ € (—00,00). The lead Green’s functions
(3.36) are obtained as

(e £i0")m) , — Am,,,

g% (&) = —7pa S O ) F ()0 — )] (368
_ . em? , — Am}
G n(€) = 2imn (€)pabe] — A)sign(e) —H=C0t (3.69
and the self-energy reduces to
Lo Glmw(e) =gy a(e)e
v _ @ a,m ) am ) ]
=52 (gl b ) e 310
The spectral function of the lead is obtained as
AO&JI’]' (5) =Im {g(g,rm’ (5)}
em? , — Am}
= — TPq—2 T jsign(e)0(|e] — A). (3.71)

EEN
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Figure 3.2: Momentum summed spectral function of an isolated superconductor described
with the mean-field BCS Hamiltonian with the normal-state density of states p = 1/2A,
a phase bias ¢s. = m/2 and superconducting parameter A = 1. (a) Diagonal component,
proportional to the density of states, showing the characteristic gap equal to A in the DOS and
a peak just outside the gap.(b) Off-diagonal Nambu component with negative contributions
at positive energy, implying that it cannot be interpreted as a probability distribution.

The diagonal and off-diagonal Nambu components of the momentum summed spec-
tral function can be seen in Fig. 3.2. The diagonal components are all equal and
therefore proportional to the density of states, which presents a gap equal to the su-
perconducting parameter A and a peak just outside the gap, as it is well known for
superconductors. The off-diagonal components can be negative and therefore they are
not to be interpreted as a probability distribution.

The inverse of the retarded and advanced dot Green’s functions reduces to

gg’;;l(e) = (e £i0%)my, — Bo/2m;, . (3.72)

Using those results, the retarded and advanced full dot Green’s functions can be ob-
tained as

Gt =gy =D X0 (3.73)

We will later calculate the Green’s function numerically by obtaining the inverse
Green’s function first and then inverting the matrix numerically, but we can show
here that in fact, the proximized dot has a pair of bound states, known as Andreev
Bound States (ABS) at energies inside the gap. For simplicity lets consider the case
without a magnetic field, By = 0. The determinant of the inverse of the Green’s
function is given by

2
Det[Gr-1(2)] = (5 N _F(i — i0+)2>
[2A2
2 /AT (e1i07)?
By setting the determinant to zero we can obtain the energies of the bound states,
I L — R

VA —hpe + F)2<

(1 + cos(dr — 1)). (3.74)

e4pg = A2< 1 — sin®( ), (3.75)
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Figure 3.3: Dot density of states and current-phase relation for a S-QD-S junction with a
phase bias ¢g., coupling constant I' = A and a superconducting parameter A = 1. The dot
is coupled to a metallic lead with coupling constant I',, to broaden the bound states. (a) Dot
density of states calculated with ¢5. = 7/2,T,, = 0.02A. As in the SC DOS it presents a gap
of A above which there are continuum states. The peak in the DOS from the SC has become
smoother and two Andreev Bound States appear inside the gap. (b) Phase dependence of the
dot DOS obtained with I';;, = 0.2A in order to see better the bound states. The range of the
plot has been cut to show the phase-dependence of the continuum. The position of the gap
is phase-independent but the height of the DOS peak in the continuum oscillates with the
phase. The energies of the bound states oscillate with the phase but their amplitude remains
constant. (¢) Current-phase relation of the junction showing a sinusoidal dependence with
the phase bias and a sign change at ¢z, = .

where we see that in order for the energies of the bound states to be real, they have
to be inside the gap |eaps| < A. In the infinite gap the energies of the bound states
are

eaps = £I cos(%%%), (3.76)

which shows that the system has a pair of bound states at mirrored energies that
oscillate with the phase difference between the superconductors.
The breaking of gauge-symmetry on the superconductor generates a correspondent

supercurrent
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where F' is the Free energy, defined as

F=-TlnYy e /T (3.78)

v

where I; are the eigenenergies of the system. At zero temperature only the many-body
ground state contributes and the current reduces to

Jsc = 2¢ Ep. (3.79)

Since we saw that the energy of the ABS depend on the phase-bias of the supercon-
ductor, they will contribute to the supercurrent, together with the continuum. We
will always calculate the current using the Green’s function technique unless stated
otherwise, but we are going to use this expression in order to interpret the results. The
density of states of the dot and the current-phase relation showing this features are
shown in Fig. 3.3.

Most of the properties we are going to study in this thesis arise from the dynamics
of the ABS due to the driving. For the sake of simplicity, for most of this chapter we
are going to consider the infinite gap limit, where the continuum is not present and all
properties of the junction arise from the ABS. By integrating out the leads degrees of
freedom [28] an effective Hamiltonian for the dot can be found as

Hyer=Hy—» 1556 (3.80)

a,nn’

so that the bare dot Green’s function calculated with this Hamiltonian is equal to the
full dot Green’s function calculated with the original Hamiltonian in the infinite gap
limit. In this limit the Nambu matrix of the self-energy reduces to

0 —Teita
Yo = (—Fe‘i% 0 ) ® oy, (3.81)
and by symmetrizing the phases ¢ = —¢r = ¢s./2, the effective dot Hamiltonian
takes the form
Hd,eff = Z gb;f] [BO/2mZ - T COS(QbSC/Q)mle, ¢77’7 (382)
'’

which comparing with (3.16) can be identified as a superconducting Hamiltonian with
the superconducting parameter being I' cos(¢s./2). The energy of the bound states can
be obtained now by diagonalizing the Hamiltonian with the Bogoliubov transformation
defined by the unitary Nambu matrix

1

Upy = E

(m° +im?),,, (3.83)

which results in

Hyer = > V3(Bo/2m” + T cos(¢ue/2)m® )y (3.84)

'
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Figure 3.4: phase dependence of the dot DOS an current-phase relation for a S-QD-S junction
in the infinite gap limit, A — oo with I' = 1 contacted with a metallic lead with coupling
constant I', in order to broaden the bound states. (a) Phase dependence of the dot density
of states calculated with a coupling to a metallic lead with coupling ', = 0.2I" in order to
show better the bound state. The energies of the bound states depend on the phase-bias
as a cosine. The bound states cross at ¢ = m. (b) Current-phase relation calculated with
I',, = 0.02I for better accuracy. The current follows the same relation as in the gapped case,
but the amplitude is doubled, meaning that the contribution from the continuum has to be
lower than the one from the bound states.

where v, = > Ut

sy @ny 18 the annihilation operator that destruct quasiparticles in the
ABS |+, o) with eigenenergies

€105 =0By/2 £T cos(pse/2)). (3.85)

In the infinite gap limit the only state contributing to the current is the one at
negative energy because it is the only one occupied. At zero magnetic field the two
spins of the ABS are degenerate and the current can then be obtained as

Jsc = —20p,.(e40(—€4) +e-0(—¢c_)) (3.86)
= 20 sin(¢se/2)(0(T — hsc) — O(¢sc — 7). (3.87)
The current can also be obtained with the density of states as
1 0
T=o /_ eI, (3.88)

where J(g) = fi deq 0p,, Aa(e1) is the current density. We show the current-phase
relation and the dot density of states in the infinite gap limit at zero magnetic field
in Fig. 3.4. Since only one bound state carries current the current-phase relation is
sinusoidal, with a change of sign in ¢,. = 7 due to the fact that the two bound states
cross zero energy and the positive ABS, which carries negative current, is now the only
one occupied. The width of the jump is proportional to the artificial broadening of the
bound states.

The magnetic field dependence of the current density and the total current at
¢se = m/2 is shown in Fig.3.5. The only effect the magnetic field has on the ABS is to
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Figure 3.5: Dependence on magnetic field of the current density and total current for a phase-
biased S-QD-S junction with ¢s. = 7/2 and coupling constant I' = 1. A vertical line has
been added at the critical magnetic field B. = v/2 for clarity. (a) Current density showing
the current carried by each bound state. Calculated for a junction with the dot coupled to
a metallic lead with coupling constant I';,, = 0.2" needed to broaden the bound states. The
magnetic field splits the energy of the ABS. (b) Current-magnetic field relation calculated
with I'y, = 0.02I" for more accuracy with two clearly distinct regions with constant positive
and vanishing current separated by the critical magnetic field B. = 2T cos(¢s.) characterized
by a change in the occupation of the ABS.

split the energy of the two spin components of the ABS with a linear dependence on
the magnetic field. The dependence on the phase-bias, and therefore the current these
states carry is the same.

We plotted the current density in order to see clearly which bound state carries
which sign of current. We had trouble calculating the current density numerically
because small numerical errors in the density of states are enhanced by the phase
derivative and posterior integral, specially in the points were bound states cross, making
the current density not vanish outside the bound states. We avoided this problem by
calculating the current density for each bound state at zero magnetic field and then,
using that it is the same for any magnetic field and that the dependence of the energy
is linear, we extrapolated for finite magnetic field. All the plots of current density in
this thesis were obtained this way.

In the current-magnetic field plot we see two different regions. The first region is
characterized by an occupation of the states |—,1) and |—,]), which carry the same
current, resulting in a positive and constant current throughout the region. At a critical
point given by B, = 2T cos(¢s./2) the states |—,1) and |+, ]) cross at zero energy, and
for any magnetic field above this point the occupied bound states contributing to the
total current are |—, ) and |+, }), which carry opposite current and therefore the total
current vanishes.
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3.3 Phase biased junction with a driven dot

The same kind of response to a magnetic field is found in multidot junctions, but with
a much richer dependence [28]. One would think that if the time-average dynamics of
a harmonically driven resonant level are similar to those of a multilevel system as the
Floquet formalism says, we will find a richer magnetic field dependence of the current
when we turn on the drive on our dot as well. This is the main focus of this section.
We will work again in the infinite gap limit A — co with the effective Hamiltonian of
the proximitized dot.

We will consider again the cases of an applied ac gate voltage and dc and ac magnetic
fields. The on-site energy of the dot is therefore

€4,0(t) = Vycos(wt) + o(By/2 + B cos(wt)), (3.89)

where we drop the phase of the drive because it is irrelevant for this section, since
it equates to a shift in the time variable and we are only interested in time-averaged
observables. The effective Hamiltonian can then be written as

Hyen(t) = Z ¢j7 [V, cos(wt)m® + (Bo/2 + B cos(wt))m* — T cos(¢se/2)m' ]

'’

/ ¢T]/'

(3.90)
In order to explain the results we are going to make use of the Floquet formalism. The
Floquet Hamiltonian (2.22) is given by the elements

Hc}li‘eﬁ,nm - Z Qﬂy [‘/g/z(dn—m,l + 5n—m,—1>m3 (391)

'

+(Bo/20nm + B/2(0p—m1 + Op—m,—1))m* —T COS(¢SC/2)5nmml}nn, Gy + NWy,.

As we learned in the last chapter, as a result from the periodic drive, the ABS will span
two sets of bound states. The Floquet states |u,,) at energies ¢, — nw and different
spectral weights A,,. In order to simplify the interpretation of the results we will
use the following nomenclature and notation. The Floquet state |u,,)) adiabatically
connected to the state |+0) when we turn down the drive will be referred to as the
zeroth Floquet band of the Floquet Andreev Bound State (FABS) |+o)) with energy
£, and will be denoted by |£o,0), i.e. limg,oci,(A) = €aps+o, Where A is the
amplitude of the drive. The rest of the states at energies €1, — nw will be referred as
the n’th Floquet band of the FABS |+0)) and will be denoted by |+o,n)) # |+o) ®|n),
not to confuse the label n with the basis of the Hilbert space 7. In Fig. 3.8 we labeled
some of the bound states in order to illustrate the notation we are going to use.

Last section we found that in the infinite gap limit and zero temperature the current
going trough the junction can be obtained as

J= 0.5 (3.92)

e, <0

nm

Since we found last chapter that the time-averaged dynamics of the periodically driven
dot are similar to those of a multidot system, we are going to make the assumption
here that the time-averaged current takes the form

I'= Y Ands,. (e, — nw). (3.93)

ev—nw<0
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Electron-hole symmetry ensures that Oy, (c15 — nw) = —0y,.(6_; — Mw) = —j and
therefore the expression for the time-averaged current becomes

J=—j Z A, sign(e,)

ev—nw<0

_ / de (—jA°(¢)sign(c))

—00

- / i de J°(e), (3.94)

—00

where J°(¢) is the time-averaged current density. Note that in order to use this ex-
pression one has to obtain the spectral weight of the Floquet bands of the FABS and
their energies separately in order to do the phase derivative. We had trouble doing this
numerically when different bound states overlapped because of numerical errors. There
is one case where one does not need to calculate them separately, when the spectral
weight of the Floquet bands does not depend on the phase. In that case the current
density can be obtained as in equilibrium,

J(e):/_ de10y,, A (g1). (3.95)

There is no formal proof this expression for the time-averaged current is correct,
but throughout this chapter we are going to see results that can be explained with
this expressions, supporting that it is correct, and later we will see one case where we
could calculate the time-averaged current with this expression and we obtained the
same result as the one obtained via the Green’s functions technique.

Lets look first at the case with only a magnetic field, V;, = 0. The elements of the
Floquet effective dot Hamiltonian are given by

Hy orm = > &b [(Bo/20mm + B/2(0n—m1 + 6pm,—1))m* (3.96)

'

-I cos(¢sc/2)6nmml} oy Gy + NWp,.

We can use the Bogoliubov transformation (3.83) to obtain the Hamiltonian in terms
of the creation and annihilation operators of ABS,

Hzf,eff,nm = Z '7:7 [(Bo/20nm + B/Q((sn—ml + 5n—m,—1))mz (3.97)
n
+T co8(Pse/2)bpmm’] T+ nwo ym- (3.98)

Since the Hamiltonian is diagonal now in Nambu space, the two types of ABS, |£0o), do
not interact with each other. And the Floquet structure is the same one we had for an
isolated level being driven with an ac magnetic field and on-site energy +I" cos(¢ps./2).
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Figure 3.7: Dependence of the time-averaged density of states and current with the amplitude
of an ac magnetic field, V, = 0, for a phase-biased S-QD-S junction in the infinite gap limit,
A — oo, with parameters w = I', ¢5. = m/2 and a coupling to a metallic lead to broaden
the bound states with coupling constant I',,, = 0.02I". (a) Time-averaged density of states of
the dot. The two ABS do not interact through the drive, resulting in a DOS composed of
two copies of the DOS of an isolated level. (d) Amplitude dependence of the time-averaged
current. Apart from a small numerical error the current is proportional to the Bessel function
|Jo(B/w)|? because only the zeroth Floquet band contributes.
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Figure 3.6: Phase dependence of the time-averaged density of states and current for a phase-
biased S-QD-S junction in the infinite gap limit, A — oo, being driven with an ac magnetic
field B=T/2,w =T, =1 and coupled to a metallic lead to broaden the bound states with
a coupling constant I'y,, = 0.02I". (a) The Floquet bands of the ABS do not interact with each
other through the drive and the time-averaged density of states is that of equilibrium for each
Floquet band. (b) Time-averaged current. Only the zeroth Floquet band |+0,0)) contributes
to the current and hence it is equal to the equilibrium relation weighted by |Jo(B/w)|?. The
two small bumps at ¢s. ~ 2,4 are due to numerical errors coming from the crossing of different
Floquet bands seen in the plot of the density of states.

From last chapter we now that the resulting eigenstates |0, n)) have energies 4, —
nw where £, is the energy of the ABS in equilibrium, and spectral weight |J,, (B/w)|>.
As we can see in Fig. 3.7, the dependence of the time-averaged density of states
with the amplitude of the drive B is in fact the result for two driven levels. Since the
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Figure 3.8: Dependence of the time-averaged density of states and current with the amplitude
of ac gate voltage for a phase-biased S-QD-S junction in the infinite gap limit, A — oo, with
parameters w = I', ¢s. = 7/2 and a coupling to a metallic lead to broaden the bound states
with coupling constant I';, = 0.02I". (a) Time-averaged density of states of the dot. The drive
induces interactions between neighboring Floquet bands of the different ABS |+) and results
in avoided crossings. (b) The time-averaged current decreases because the transport through
the Floquet bands is off resonance. Apart from a numerical error the current vanishes at the
point of the avoided crossing.

energy of the FABS is the same as in equilibrium, the phase dependence of the density
of states, shown in Fig.3.6, results also in the solution at equilibrium for each Floquet
bands. For the parameters used in Fig. 3.6 the first Floquet band of the two FABS have
negative energies and the total current carried by these states cancels. Only the zeroth
Floquet band contributes to the current. As a result, the current-phase relation is the
same as in equilibrium, with an overall proportionality factor given by the spectral
weight of the zeroth band (2.92), |Jo(B/w)|>.

Lets take now the case of an ac gate voltage, B = 0. The elements of the Floquet
effective dot Hamiltonian are

ngff,nm - Z ¢I] [‘/9/2(571—771,1 + 6n—m,—1)m3

s

+By/20pmm* —T cos(qﬁsc/2)5nmm1}nn, Gy + NWyy. (3.99)

Applying again the Bogoliubov transformation we can express the effective Hamiltonian
in the basis of the equilibrium ABS as

Hy oitnm = > Vb [Boumm® + T co8(¢sc/2)Smm® (3.100)
nn’
+V4 /201 + 5nfm,,1)m1}m, Yoy + MW (3.101)

In contrast to the ac magnetic field, the ac gate voltage appears as an off-diagonal term
coupling neighboring Floquet bands of the two different ABS. As a result we observe in
Fig. 3.8 that the dependence of the time-averaged density of states with the amplitude
of the drive, V; is more complex than in the case with the ac magnetic field. At low
drive amplitude the zeroth Floquet band of the negative ABS starts interacting with
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the first Floquet band of the positive ABS. As the amplitude of the drives increases the
avoided crossing between these two states makes the resulting FABS separate from each
other. When the amplitude is high enough the zeroth Floquet band of the negative
ABS will start interacting with the second Floquet band of the positive ABS and as a
result the zeroth Floquet band of the negative FABS will increase in energy. The same
thing will happen to the first Floquet band of the negative ABS for higher amplitudes
and as a result we observe an oscillatory behavior of the energies of the FABS.
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Figure 3.9: Phase dependence of the time-averaged density of states and current for a phase-
biased S-QD-S junction in the infinite gap limit, A — oo, driven with an ac gate-voltage,
B =0, and coupled to a metallic lead with coupling constant I',,, = 0.02I". (a) Time-averaged
density of states for the junction driven with V, = I';w = 2I". The interaction between the
two ABS in different Floquet bands makes the energies of the FABS constant for small phase-
bias. (b) Time-averaged current for the junction with driving parameters V; = I';w = 2T".
The constant energy of the bound states at small phase-bias is reflected in a vanishing current
for small phase bias. (c) Time-averaged density of states for the junction with being driven
with V, =T'/2,w =T'. The avoided crossings here make the energies of the FABS oscillate
around nw. (d) Time-averaged current of the junction with parameters V, = I'/2,w = T
The avoided crossings make the current vanish again, but here in a unique point around

sc = 2. The bumps around ¢, ~ 1 are again due to the fact that the fist Floquet band of
the positive FABS crosses zero energy.

The phase dependence of the time-averaged density of states, shown in 3.9, can be
understood in the same manner in terms of avoided crossings. In the current-phase



54 CHAPTER 3. DRIVEN S-QD-S JUNCTION

relation we observe a novel feature arising from the driving that is similar to what was
found on [24], at the point of the avoided crossing the derivative of the energies of the
FABS with respect to the phase is necessarily zero and therefore the current vanishes
at that point.

This result also supports that the assumed expression for the current is correct.
Another expression for the time-averaged current that we thought might be correct is

J=0, Y Auale, —nw). (3.102)

ey —nw<0

At the point of the avoided crossing one would have
J' = 04(A_pe_ + Al 1(ey —w)). (3.103)

Since we have A_ g = A} 1,04A_0 = —0sA+1 and 0y, .- = —0,,, (4 —w), the current
can be obtained as

JO=e 0,A_ o+ A_g0sc_ + Ay 104(ey —w) + (54 — w)DpA4 4
=e_0pA_o+A_00pe_ — A_00pe— — (4 —w)0sA_p
= (e —ey+w)0_p
= (2e_ +w)0,A_ o, (3.104)

and the current would not vanish at the point of the avoided crossing, which disagrees
with the result obtained using the Green’s function technique, and therefore it is not
correct.

Now that we understand how the driving affects the bound states we can go on
to study the effect on an applied dc magnetic field. The dc magnetic field appears
as a diagonal term in both Floquet and Nambu spaces. As in equilibrium, the only
effect of an applied constant magnetic field on the dot is to split the bound states,
€+ on = 0By/2 + €1, and therefore we expect to see a behavior similar to the one
discussed in the last section for the junction in equilibrium.

Since the magnetic field only splits the FABS. All the Floquet bands of the positive
(negative) FABS carry negative (positive) current, weighted by their spectral weight.
With the results at equilibrium in mind we can expect to have the same amount of
transitions between different regions of constant current with the dc magnetic field as
Floquet bands with significative spectral weight we have.

Very different current-magnetic field relations can be obtained depending on the
order in energy of the different Floquet bands of the FABS and their spectral weight.
To simplify the results we consider only the case with 3 significative Floquet bands
and we discuss the most interesting case, when w ~ I' and the first Floquet band of
the positive FABS, |40, 1)) crosses in energy the zeroth Floquet band of the negative
FABS, |—0,0)). Since the magnetic field does not add interactions between the bound
states the total current-magnetic field relation is the sum of the current-magnetic field
relation for each bound state, which follows the equilibrium one.

Take the case of an applied ac gate voltage, shown in Fig. 3.10, the current in the
first region is given by the sum of the current carried by the states |+, 1)),|]—,0)) and
|—, 1) . Since the spectral weight of the state |—, 0)) is higher than the one from |+, 1)),
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Figure 3.10: Magnetic dependence of the time-averaged current density and total current
for a phase-biased junction with ¢s. = 7/2,I' = 1 with the dot being driven with an ac
gate-voltage with parameters V, = I',w = 2I', contacted with a metallic lead with coupling
constant I';;, = 0.02T" in order to broaden the bound states. (a) Time-averaged current density
showing that all Floquet bands of a state carry current with the same sign. (b) Time-averaged
total current. Different regions are obtained with positive, negative and vanishing current
depending on which Floquet bands of the FABS are occupied. The negative current region
is obtained because in this region the current is dominated by the contribution of the first
Floquet band of the positive FABS.
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Figure 3.11: Dependence of the time-averaged current density and total current with a dc
magnetic field applied on the dot for a phase-biased junction with ¢s. = 7/2,T' = 1 and a
dot being driven with an ac gate-voltage B = I',w = 2I" and contacted by a metallic lead
to broaden the bound states with coupling constant I',, = 0.02I". (a) Time-averaged current
density. The constant magnetic field splits the bound states and their Floquet bands. (b)
Time-averaged current. Different regions are obtained with positive and vanishing current
depending on the bound states occupied. The vanishing current in the second region appears
because the first Floquet band has crossed the opposite bound state and in the second region
both occupied states carry opposite current. The continuous line is calculated with the
Green’s function technique while the dotted line is the result obtained integrating the current
density.

it results in a positive current. In the second region the current carried by the state
|—,0)) vanishes, and since the amplitude of |4, 1)) is higher than the amplitude from
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Figure 3.12: Time-averaged current for a S-QD-S junction with a voltage-bias V', coupling
constant I' = A and superconducting parameter A = 1. For voltage-bias lower than the gap
the current is characterized by peaks in the conductance at voltages V,, = 2A/n with odd n
arising from Multiple Andreev Reflection (MAR) processes.

|—, 1)), the current becomes negative. We have therefore a 0 — 7 transition with the
applied dc magnetic field. In the third region we only have the current carried by the
state |—, 1)), which is positive, and finally the current vanishes in the fourth region
because all the FABS with significative spectral weight have crossed zero energy.

The case of an ac magnetic field with the same parameters, shown in Fig. 3.11,
follows the same logic. But as we saw in Fig. 3.7, in this case the Floquet states
lv,n)) and |v,—n)) have the same spectral weight and therefore in the second region
the current vanishes. In this case, since the spectral weight of the Floquet bands does
not depend on the phase-bias we can calculate the current with (3.95), which is also
shown in Fig.3.11 in a dotted line. We see that it gives the same result as the one
obtained with the Green’s function method.

3.4 Voltage-biased junction

In this section we are going to study the voltage-biased junction with a non-driven
dot. The voltage-biased superconducting junction has been studied extensively, both
as a tunneling junction, in the quantum point contact limit, [17] and contacted by a
quantum dot [18, 25], using the Floquet Green’s function method described in this
thesis. Here we will explain how this system behaves and more importantly, give a
microscopic picture of how voltage-bias affects the tunneling in terms of the Floquet
Hamiltonian in the extended space which will help us understand the results of next
section.

The time-averaged current going through the S-QD-S junction with a finite voltage
bias is shown in Fig. 3.12. There exists sub-gap transport, for V' < 2A, that is
characterized by peaks in the conductance at voltages V,, = 2A/n with integer odd
n. This current-voltage relation has been understood in terms of Multiple Andreev
Reflections (MAR).

An Andreev reflection is a process that appears at interfaces between normal and su-
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Figure 3.13: (a) Andreev reflection in an interface between normal and a superconductor. An
electron with spin up (down) is reflected as a hole with spin down (up) and a Cooper pair is
created in the superconductor. (b) Multiple Andreev reflections in a junction with a normal
region between two superconductors with a voltage bias. An electron from the continuum
of the left lead tunnels to the right lead, where it reflects back as a hole creating a Cooper
pair in the right lead. The hole tunnels to the left lead and is reflected back as an electron,
destroying a Cooper pair from the left lead and so on. The incident particle and the reflected
one have opposite energy in the frame of reference of the superconductor.

perconducting materials. When an electron tunnels into the superconductor, a Cooper
pair might be created on the superconductor and the electron is reflected back as a
hole with opposite spin. This process transfers 2e charge to the superconductor.

MAR happens when the interface is between two superconductors with a voltage-
bias. An electron from the continuum of the left superconductors can tunnel into the
right superconductor, where a Cooper pair is created and the incident electron reflects
back to the left superconductor as a hole. The hole destructs a Cooper pair in the
left superconductor and is reflected back into the right superconductor as an electron
and so on. The MAR process is only possible with even n reflections at voltages
2A/(n+1) <V <2A/(n —1). Each point V,, = 2A/n, for odd n, with a peak in the
conductance reflects a transition from a MAR process with n + 1 reflections to a MAR
process with n — 1 reflections.

In order to understand the MAR processes in terms of the Floquet formalism we
are going to first study the effect of the voltage-bias in the infinite gap limit A — oco.
The Floquet self-energy in this limit reduces to

e 0 o2t 3.105
anm ~ _F(Sn_m,_QVA 0 ® 00, ( : )

where we dropped the superconducting phase ¢,. because it acts only as a shift in
the time variable and we are only interested in time-averaged observables. With the
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Floquet self-energy we can obtain the elements of the Floquet effective dot Hamiltonian,
given by

Hy itnm = > Oh =T Onm1 + Gnm,—1) 10 |y Sy + 108 (3.106)
'

The off-diagonal term in Nambu space related to the creation and annihilation of
Cooper pairs in the dot is also off-diagonal in Floquet space. One of the main effects
of the voltage bias is that the two electrons of a Cooper pair cannot tunnel to the
same Floquet band anymore. Cooper pairs can only be created and destroyed in the
quantum dot in different and neighboring Floquet bands.

If we apply the Bogoliubov transformation to the effective Hamiltonian we obtain

Hi‘eff,nm = Z %Jg [F<5n—m,1 + 5n—m,—1)m3]nn”%7’, (3107)
nn’

which is the Hamiltonian for a level being driven with an ac gate voltage. This explains
the bound states that appear in the time-averaged density of states of the dot, showed
in Fig. (3.14). The other feature observed in the time-averaged density of states arising
from the voltage bias is the appearance of Floquet bands of the continuum states as
well.

It is interesting to note that although we observe features associated with a drive
with frequency w = V, the frequency of the current ends up being the well known
Josephson frequency w; = 2V, as can be seen in Fig. 3.14.

4 5 6

3
t/w

Figure 3.14: Time-averaged density of states of the dot and time-dependent current of a
junction with a voltage-bias with parameters I' = w, A = 3w,V = w = 1. (a) Time-averaged
density of states of the dot showing bound states at energies nw and contributions from the
continuum also inside the gap. (b) Time-dependent current showing that although in the
time-averaged density of states we see Floquet features associated with a frequency w the
total current has frequency 2w.
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Figure 3.15: Multiple Andreev Reflection processes. Red (blue) lines represent tunneling of
spin up (down) electrons. Electrons from a Cooper pair can only tunnel into two different
and neighboring Floquet bands of the level. (a) Process with 2 reflections where one Cooper
pair is transported from left to right lead with the help of the transport of one continuum
electron. (b) Process with 4 reflections where two Cooper pairs are transported from left
to right lead with the help of the transport of one continuum electron. Note that since the
electrons in a Cooper pair have opposite energy in the reference frame of the superconductor,
two of the electrons involved in the process must tunnel far from resonance.

With the Floquet formalism a MAR process can be understood as Cooper pairs
tunneling through the different Floquet bands of the dot with the help of electrons
from the continuum. A schematic of the MAR processes with 2 and 4 reflections is
shown in Fig. 3.15. Lets take the case with 2 reflections. The Floquet state |, 0)) of
the dot is inside the gap of both superconductors, and the state |o, —1) ( |o,1)) ) is
inside the gap of the left (right) superconductor and the continuum of the right (left)
superconductor. A Cooper pair can tunnel from the left lead to the states |0, 0)) and
|o, 1)) while a electron from the continuum of the left lead tunnels to the state |o, —1)).
Then, the electron that came from the continuum and the one in |o,0)) tunnel into the
right lead as a Cooper pair and the electron on |o, 1)) tunnels to the continuum of the
right lead.

Therefore, the MAR process with n reflections is understood as the tunneling of
n/2 Cooper pairs and one electron from the continuum, needed for energy conservation
since the energy of the Cooper pairs is lowered when tunneling. Note that the MAR
process with n reflections is only allowed when there are n — 1 Floquet bands inside
the gap of both superconductors.

3.5 Voltage-biased and phase-biased junction with
a driven dot.

From what we learned last section, a natural extension of the problem of a S-QD-S
junction with a voltage bias would be to consider what happens if we get rid of energy
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conservation, allowing also tunneling of electrons between different Floquet bands in
the dot by applying a harmonic drive. Systems with a similar behavior have been
studied before, like a junction under microwave radiation [17], or a junction with a
vibrating molecule [26].

The first difference we encounter arising from the dot drive is that by shifting the
time in the Hamiltonian we see that the tunneling parameter has a phase ¢z — 2¢4
which cannot be neglected.

S sy

O— . ) & <
N D

—_— —

4 L4

Figure 3.16: Example of two transport processes involving transport of Cooper pairs due to
the voltage-bias and tunneling between Floquet bands due to the harmonic drive of the dot.
Red (blue) lines represent electrons with spin up (down)(a) The 2 reflection MAR process is
now allowed at any voltage due to the tunneling between Floquet bands of the dot. (b) New
processes arise due to the drive where Cooper pairs can tunnel to the continuum. Note that
the case where spin up and down are switched, the electron with spin down hopes only one
Floquet band, and in the case of an applied ac magnetic field this results in an additional 7
phase and this process vanishes.

Some examples of the new processes arising from the dot drive are depicted in
3.16 and the time-averaged current for different parameters is shown in Fig. 3.17. By
looking at the time-averaged current without a phase bias, ¢s. —2¢4 = 0, the first thing
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Figure 3.17: Voltage dependence of the time-averaged current for a junction with parameters
¢sc = 0,I' = A with a dot being driven with w = V, ¢4 = 0 for different drive amplitudes.
Vertical lines have been added at V,, = 2A/n, where the MAR conductance peaks appear
without the drive. (a) Junction being driven with an ac gate voltage, B = 0. The conductance
peaks arising from MAR are lost as we increase the drive amplitude. The current increases
with the drive amplitude for small amplitude and starts decreasing at some point around
Vy = 2A, when electrons start tunneling also to the continuum of the left lead. (b) Junction
being driven with an ac magnetic field, V; = 0. Due to destructive interference the current
starts decreasing more rapidly with the drive amplitude, at around B = A. Peaks in the
current appear at high drive amplitudes at voltages V,,, when the Floquet bands reach the
peak in the DOS of the superconductors.

we notice for low amplitude of the drive is that the current increases and the MAR
characteristics in the current disappear. This happens because the MAR process with
n reflections that was only possible at voltages 2A/(n+1) <V < 2A/(n — 1) without
a dot drive now happens at any voltage. An example of this is shown in Fig. 3.16(a) .

The second feature we observe without a phase-bias is that when the amplitude of
the drive is higher than the gap, A, and the coupling constant, I', peaks in the current
appear at the voltages where we had the MAR conductance peaks, V,, = 2A/n. This
peaks appear very clear with an applied ac magnetic field. For the ac gate voltage,
although one can discern this peaks, they are very broaden.

As we discussed last section, at the voltages V,, the Floquet bands are in resonance
with the DOS peak of the superconductor, and this peaks in the current can be inter-
preted as resonant transport where electrons tunnel from continuum to continuum by
tunneling between the Floquet bands of the dot, or tunneling of a Cooper pair to the
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Figure 3.18: Phase-dependence of the time-averaged current for a junction with a voltage-bias
with parameters V,I' = A with a dot being harmonically drive with frequency w = V and
amplitude A = A for the blue curve and A = 2.4A for the red curve. There is a non-trivial
phase dependence. (a) Junction harmonically driven with a gate-voltage, B = 0, with a
voltage-bias of V' = 2A/3. (b) Junction harmonically driven with an ac gate-voltage, B = 0,
with a voltage-bias of V' = 0.8A. (c¢) Junction harmonically driven with a ac magnetic field,
Vy = 0, with a voltage-bias of V' = 2A/3. (d) Junction harmonically driven with an ac
magnetic field, V, = 0, with a voltage-bias of V' = 0.8A.

continuum, as shown in Fig. 3.16(b,c). The reason this peaks appear very broaden in
the case of the ac gate voltage is not understood.

The phase dependence of the transport is very complex and not understood. The
phase dependence of the time-averaged current for different parameters is shown in
Fig. 3.18 and the time-averaged current for ¢s. — 2¢4 = 7 is shown in Fig. 3.17(c,d).
The overall behavior is that there is a destructive interference in the case of an ac gate
voltage and a constructive interference with the ac magnetic field. Quite interestingly
the result for the ac magnetic field resembles the result for the ac gate voltage with
Osc — 2¢4 = 0. For the ac gate voltage the result seems more complex. The features
at V,, are completely lost, and there is a suppression of the sub-gap current for low
amplitude of the drive.

Another type of tunneling process arising from the dot is the one depicted in
Fig.3.16(d), where a Cooper pair tunnels from one lead to the other without involving
continuum electrons. This process resembles the transport happening at the junction
in equilibrium with a phase bias, and we are going to see now that it is somewhat
equivalent, which is going to land some interesting results.

Since this process is the only one happening where continuum electrons are not
involved we can study it better in the infinite gap limit, A — oo, where the dynamics
of the system are given again by the Floquet effective dot Hamiltonian, given by the
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elements

Htfeff,nm = Z ¢I; |:(‘/gm3 + Bmz)(e_i(bd(sn—m,l + eewd 5n—m,—1)
nn’
_P(eiﬁsscé’n_m’l + €—i¢sc6n_m’_1)m1:| 7777/ gbn/ —|— nw(snm (3108)

We can, again, apply the Bogoliubov transformation, and we obtain

Hjeff,nm = Z 7;; [(%ml + Bmz)(e_i¢d5n—m,l + eei‘f’d 5n—m,—1)
'
+T (€55, iy + e_id’“én_m,_l)mﬂ o T+ NwWpm.- (3.109)

Lets look first at what happens with an ac magnetic field, V;, = 0. The phase
dependence of the density of states in this case with ¢4 = 0 is shown in Fig. 3.19.
The DOS does not depend on the phase bias and therefore the current will vanish. By
looking at the Floquet effective Hamiltonian in the ABS basis (3.109) we see that for
Vy, = 0 the Hamiltonian is diagonal in Nambu basis. As a result each ABS will be
driven independently from the other one and we already know that the energies of the
resulting FABS will be ., = 0 and independent of any parameter.
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Figure 3.19: Phase dependence of the time-averaged density of states for a S-QD-S junction
with a voltage bias V = I' and driven with an ac magnetic field with B = I';w = I". The
two ABS do not interact with each other and as a result the energies of the FABS are phase-
independent, which makes the current vanish.

There is another way we can understand why the current vanish. There are in
fact two different processes competing, as shown in Fig. 3.20. The electrons from the
Cooper pair have to tunnel to neighboring Floquet bands. After that, there are two
possibilities. Either the electron in the higher band tunnels two times to be in the
lower Floquet band or both electrons tunnel one Floquet band. For the case of the ac
magnetic field the tunneling of a spin down electron between two Floquet bands has a
7 phase. As a result this two processes have an overall ¢ phase difference and therefore
they cancel.



64 CHAPTER 3. DRIVEN S-QD-S JUNCTION

(a) (b)

| — — | —
e ==y
__F _ S

Figure 3.20: Transport processes happening in a S-QD-S junction with a voltage and phase
bias and a harmonically driven dot in the infinite gap limit. Red (blue) lines represent
electrons with spin up (down), and dotted lines indicate the chemical potential of the leads.
The two process cancel in the case of an applied ac magnetic field because there is a m phase
difference between them.

Lets look now at the case of an applied ac gate voltage. The Hamiltonian with
I' = 0 is the Hamiltonian of a level being driven, which we know can be diagonalized
in Floquet space with unitary matrices with elements Ay, = Joom(Vym? /w)

Hy i = Y Al Hy (T = 0)Apym = N0 (3.110)

d.eff nm nny eff,ning
ning

Performing the transformation on the off-diagonal term we obtain
HE o =Y Jnyen(VI? Jw) T ym oy (Vi Jw), (3.111)
ni,n2

where T, = T(€9¢8, 1 + €796, 1). We can rewrite the Nambu structure as

TF 0 In1—n(V/W) iy Iy~ (=V /W)
Hin =2 (JM(—V/w)rW Tur-m(V/) )

ni,n2

& a?.
(3.112)

Lets look at one of the terms,

ZJnl,n(V/w)meJm,m(—V/w)

ning

=I (@iqﬁsc Z Jn—m (V)Jm—m—l(_v) + 6_i¢sc Z Jn_nl (V)Jnl—m-i-l(_v))
ni ni

=1} +T (3.113)

nm?

where

07, =T " Jon (V) Jny—mo (V) (3.114)

is the coupling between different Floquet bands of the bound states obtained from
harmonically driving the dot.
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Figure 3.21: S-QD-S junction with a voltage bias V = w and phase bias ¢s. = 7/2, with
coupling I' = w and an ac gate voltage with frequency w = 1 and amplitude V. (a) Time-
averaged DOS of the dot. The dot drive splits the bound states in an oscillatory manner. (b)
Due to the oscillatory behavior of the bound state energies with the gate voltage the current
oscillates around zero as well. (c¢) Coupling constant of the interaction between the same
Floquet band of a bound state obtained for an isolated dot.

The dependence with the amplitude of the gate voltage of the time-averaged density
of state and current are shown in Fig. 3.23. For the parameters we are interested in it
seems that the most important interaction term is the one between the two states at
the same Floquet band, f‘fm, which was also plotted there.

The interaction between the same Floquet band of different bound states oscillates
around zero with the amplitude of the drive, and as a result the energies of the final
FABS also oscillate with the amplitude of the drive, which results in also an oscillatory
behavior of the current. The points where the gap between the same Floquet band
of the two bound states closes follows the vanishing of the coupling term I'?, | with a
small discrepancy due to the interaction with the rest of the bands.

Since I'! = —TI'>1 the coupling constant will depend sinusoidally with the phase
bias. That dependence together with the fact that the zeroth Floquet band around
zero energy is the most significant one results in a behavior which resembles quite a
lot the junction at equilibrium with ¢, = m. We have obtained a m-junction. The
fact that the current is not symmetric is due to the coupling with a metallic lead to
artificially broaden the bound states in order to perform the numerical calculations.

If we increase the amplitude we reach a point where the most significant bound
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Figure 3.22: Phase dependence of the S-QD-S junction with coupling I' = w, with voltage bias
V = w and phase bias ¢s., with a dot being driven with an ac gate voltage with amplitude
Vy = w and frequency w = 1 and coupled to a metallic lead at V;, = 0 with coupling
I';, = 0.02I" to broaden the bound states. (a) Time-averaged DOS of the dot. The bound
states split sinusoidally with the phase bias. For low amplitude the zeroth Floquet band is
the most significant. (b) Since the zeroth band dominates the transport, the current-phase
relation is that of a junction in equilibrium with a 7 shift, a #—junction. There is a small
asymmetry in the current because of the coupling to the metallic lead.

state is the First Floquet band of the state that gains energy in the avoided crossing.
As a result we obtain a normal current-phase relation again. If we keep increasing the
amplitude the most significant mode will be the First Floquet band of the state that
lowers its energy in the avoided crossing, leading to a m-junction again, and so on.
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Figure 3.23: Phase dependence of the S-QD-S junction with coupling I' = w, with voltage bias
V = w and phase bias ¢s., with a dot being driven with an ac gate voltage with amplitude
Vy = 2w and frequency w = 1 and coupled to a metallic lead at V;,, = 0 with coupling
I';, = 0.02I" to broaden the bound states. (a) Time-averaged DOS of the dot. The bound
states split sinusoidally with the phase bias. (b) Since the most significant Floquet band
gains energy with the interaction we obtain a positive current for ¢s. € [0,7). There is a
small asymmetry in the current because of the coupling to the metallic lead.

Another way we can show the equivalence between the behavior observed for a low
amplitude of the drive and that of a junction in equilibrium is by obtaining the time-
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independent effective Hamiltonian using a high frequency approximation that describes
the long-time dynamics of the system, as mentioned at the beginning of the chapter.
A short derivation on how to obtain the first order can be found in Appendix C, and
a extensive discussion on this can be found in [3-5, 29].

The zeroth order of the effective Hamiltonian is given by the time-average of the
Hamiltonian, which for this case, vanishes. The first order in 1/w is given by

Hjg=> [H"H™], (3.115)
m>0
where H™ = Zm m ¢T oy ny @ra 18 the m’th Fourier component of the Hamiltonian. We
can perform the commutator as
[H™ H™™ = Y (¢} hr o 8 holm by] (3.116)
M127374
Z hﬂmlnz h7732714 m {¢7727 qbi}s qb774} {qu’ q25774} qb772)
11727374

_ m - T 0 Tt 04 T 0
o Z hmnz hnsm (¢n1 ¢774m?72,773 + qu ¢W3mn2774 - ¢773¢772m?71?74 ¢774¢772 771773) :

n1"M27M31M4

By using that the Nambu matrices h™, m® and m* are symmetric, that qﬁ;f? = Em qumfm/,

4

and that m*m'm* = —m!, we can write the commutator in terms of matrix products

as
[H™ H™™] =¢"h™h™™¢ 4+ 'h™m*h""m* ¢ — ¢'h"™"m°h" ¢ — ¢'m*h""m*h"¢
=—¢'[h™ h™"]o (3.117)

For the case of a voltage-biased junction with a harmonically driven dot we only have
h*! and the effective Hamiltonian is given by

1 . . . . . .
Hc%,eﬂ = — E Z ¢I}[%e—z¢dm3 + Be—@¢dmz . Fezqf)scml’ ‘/geld)dm3 + Bez¢dmz . F6_2¢Scm1
v, .
=D b sin(ue/2 + 6a) Ly by (3.118)
'

The effective Hamiltonian is that of a junction in equilibrium with a coupling con-
stant given by I' = iV,I"/w cos((¢sc + 7)/2 — ¢q). Even though it is only the first order
approximation in 1/w this Hamiltonian reproduces the three most interesting features
of the system. First, it shows that for ¢, = 0 we have a m—junction. It also shows
that we can obtain a p—junction by tuning the phase of the drive. And finally, for the
case of an ac magnetic field, with V, = 0, the effective coupling constant vanishes, and
therefore there is no current through the junction.

]n’¢n’
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3.6 Discussion

In this chapter we have studied the main focus of this thesis, the S-QD-S junction out of
equilibrium. First we have defined the Nambu spinors and the Nambu Green’s functions
and then we have used the non-equilibrium Floquet-Green’s functions technique to
solved the problem in the most general case.

The junction in equilibrium is characterized by the appearance of two Andreev
Bound States below the gap which can carry current for a fixed phase bias and dominate
the behavior of the current in the infinite gap limit.

When an ac magnetic field is applied on the dot the ABS are driven as isolated levels
and the phase dependence of the energies of the FABS is the same as for the ABS in
equilibrium. For w > I', when the first Floquet band of the positive FABS crosses
zero, only the zeroth Floquet band contributes to the current and is proportional to
the Bessel junction |Jy(B/w)|>.

An applied ac gate voltage introduces interactions between Floquet bands of the
two ABS and results in more complex behavior. For w > I', when the first Floquet band
of the positive FABS is lower in energy than the zeroth Floquet band of the negative
FABS a 0 — m—transition is obtained with the application of a constant magnetic field.

For the voltage-biased junction we described the MAR processes characterizing the
sub-gap transport. We also found that in the voltage-biased junction electrons from a
Cooper pair can only tunnel into the dot to different and neighboring Floquet bands.

Adding a harmonic drive to the voltage-biased junction resulted first in a loss of the
MAR features due to the fact that they are not restricted to a voltage range anymore.
In the case of an applied ac magnetic field with high amplitude of the drive, B > 2A we
found peaks in the current associated to resonant tunneling, but it is not understood
why they not appear for an ac gate voltage. We found that the current-voltage relation
has a complex phase dependence. In particular for ¢, and an ac gate voltage there is
suppression of the sub-gap transport.

In the infinite gap limit we found that the junction in the high frequency limit
behaves like a junction in equilibrium, with an effective coupling constant that depends
on the parameters of the drive, I' = iV,T'/w cos((dse + 7)/2 — $4). The junction for
¢q = 0is a m—junction, and can be turned into a p—junction by tuning the phase of the
drive, ¢4. This last result is quite remarkable since all proposals to build ¢p—junctions
with quantum dots rely to some extent in the magnetic properties of the system or
spin-orbit coupling [30].



Chapter 4

Conclusions

In this thesis we have made a detailed and systematic study of the S-QD-S junction
with a harmonically driven dot.

For a phase-biased junction we have found that the time-averaged current can be
tuned with the parameters of the drive. In particular, for an applied ac magnetic field
a current-phase relation can be obtained for the time-averaged current which is equal
to the one in equilibrium, with a proportionality factor |J(B/w)|.

We have also found that we can modify the magnetic field dependence of the time-
averaged current with the parameters of the drive, and found that is possible to obtain
a 0 — 7 transition for an applied ac gate voltage, and a non-trivial region of vanishing
current for an ac magnetic field.

For a voltage-biased driven junction we have found peaks in the time-averaged
current-voltage relation for an applied ac magnetic field due to resonant tunneling. In
the case of an applied ac gate voltage, destructive interference leads to a suppression
of the sub-gap current when a phase-bias is applied.

Finally we have found that in the infinite gap limit the voltage-biased junction with
an ac gate voltage and a phase-bias has a non-vanishing current which oscillates around
0 with the amplitude of the drive. In the high frequency limit we have found that the
junction behaves like a m—junction in equilibrium.

Quite remarkable the junction can be turned into a ¢—junction by only tuning
the phase of the bias, in contrast to all the existing proposals for p—junctions using
quantum dots, which involve spin-orbit and magnetic fields.

The work done in this thesis can be extended in different ways. First of all it would
be interesting to study more in depth the phase dependence of the voltage-biased
driven junction, to understand why the case with an ac gate voltage does not present
resonant tunneling and why is the sub-gap current suppressed. More realistic models
including more than one orbital on the dot and Coulomb interaction could be studied.
It could also be interesting to add a drive on the leads and see if one can find similar
behaviors to those of multiterminal Josephson junctions. One could also introduce new
interactions in Floquet space by using different and more complex driving protocols
that might lead to new physics. And finally, in a recent article a laser was built by
placing a voltage-biased Josephson junction inside a cavity [30]. It would be interesting
to study the interplay between the photons on the cavity and the drive.
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Appendix A

Keldysh analytical continuation

Here we describe how to perform calculations in the Keldysh contour [13] following the
derivations in [14]. Consider the expectation value of an operator O , defined as

_Tr{Op(t)}
Tr{p(t)}

1
T {(U)(—00, ) OU(t, —00) p(—00)}, (A1)

where we assume that we know the initial density matrix p(—oco) . We have a time
contour where we start at ¢ = —oo, where we know the density matrix, we evolve
forward to t, where we calculate the operator O, and we go backwards to t = —oo .
Consider a system in equilibrium and at zero temperature. We use the fact that the
states at t = —oo and t = oo have to the same up to a constant phase to write the
expectation value

(O@))

(O(t)) = (0] U(c0, )OU(t, —00) |0) /e, (A.2)

and the curved contour reduces to the real axis with the downside that now we have
to calculate the denominator, which accounts for the disconnected diagrams. In the
non-equilibrium case we also consider the state at ¢t = —oo, and neglecting transient
states in doing so, but we cannot make this transformation anymore since the states
at t = —oo and t = oo no longer have to be related. The curved contour therefore can
not be avoided, but it is still useful to extend the contour to ¢t = oo

1

Ot) = =———=Tr{U(—o0, 00)U (o0, t)OU(t, —0c0)p(—00) }, A3
(O = s pomsayy T (o, 0o (00 00UE —00)p(=c0)} . (A3)
The Keldysh contour therefore is composed of two branches, one goes forward in time
from t = —o0 to t = oo, and the second one goes backwards again to t = —oo. The

contour-ordered Green’s function is defined in this contour as
e (1) = —i <7'C [ca(t)c;(t’)}> (A.4)
where the contour-ordering operator orders the operators according to a time contour.

The contour-ordering operator reduces to the time-ordering operator when the contour
considered is the real axis. The contour-ordered Green’s function contains the four

71



72 APPENDIX A. KELDYSH ANALYTICAL CONTINUATION

types of Green’s function considered at equilibrium depending on its times variables.

fx,ﬁ(ta t/) {tv t/} € C’:I:
Zﬂ(t,t’) = Gzﬁ(t,t') teC,,t'eC_ (A.5)
Goatt) teC ' eCy

Consider a time-convolution on the Keldysh contour C of the form
Clt 1) = / dt AL 1) B ). (A.6)
c

Consider the lesser part of C(t¢,t'), so that ¢ is on the first branch of the Keldysh
contour and ¢’ on the second one. Deforming the contour by adding two more branches
on the real axis as shown in (add figure) allows us to split the lesser function into two
integrals in the two branches C and C} as

C<(t,t’):/ dtlA(t,tl)B<(t1,t’)+/ dt, A< (t,t1)B(t1,t'). (A7)
Cl CZ

The first integral can be obtained as

—00

t —00
/ dtlA(t,tl)B<(t1,t’):/ dt1A>(t,t1)B<(t1,t’)+/ dty A<(t,t)B<(t1,t")
Ch t

= /Oo A" (t,t1)B=(t1,1), (A.8)

o0

where we used the definition of the retarded function as G"(t,t') = 0(t —t') (G~ (t,t') —
G<(t,t")) . The second term of the lesser function C< can be obtain in a similar manner
as

t —00
/ dt, A<(t,t1)B(t1,t’):/ dt, A<(t,t1)B<(t1,t’)+/ dty A<(t,t1) B~ (t1, 1)
Co —00 t/
_ / dt, A<(t, 1) B (11, 1), (A.9)

where G*(t,t') = 0(t' — t)(G=(t,t') — G=(t,t')) is the advanced function. Finally, we
obtain an expression for the lesser function C'<(¢,t') known as the Langreth rule

C<(t,t') = /oo dty [A"(t,t1)B=(t1,t') + AS(t, t1) B (t1,1')], (A.10)

which can be generalized easily to any number of time-convolutions by applying it
recursively. As it is needed in the thesis, the lesser function of a two-time convolution
1s

D<(t,t/) :/ dtl/ dtz [Ar<t,tl)Br(tl,t2>C<(t2,t/)+

VAT, 4) B (t1, ) O ko, ) + AS(E 1) B, 1) C%ta, )] . (AL11)
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The same relations can be derived for the greater function G~ (¢,t') by changing < to
> in the Langreth expression and with those results the retarded function C"(¢,t") can
be obtained as

O7(t,t) =0(t — t') / by AT (0 (B (10, F) — B<(1, 1)

—00

+(A”(t, 1) — A<(t,t1))B*(t1,t)]

—0(t — 1) / i (A (8, £) — AS(t,1))(B> (11, t') — B<(t1, 1))

—00

—(A7(t, 1) — AS(t,40))(B=(t1, 1) — B”(t1,1))]
_ / dty A7(t, 1) B (11, 1). (A.12)

—00

A similar result is obtained for the advanced function,

Ct,t') = /oo dty A%(t,t1)B(t1,t"). (A.13)

—0o0
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Appendix B

Proof of the Floquet theorem

Since the Hamiltonian is periodic in time with period 7', it commutes with the time-
evolution operator over one period U(t + T,t). The eigenstates of the Hamiltonian are
therefore also eigenstates of the time-evolution operator over one period. Since it is a
unitary operator, its eigenvalues are of the form,

U(t+T,1) [(#) = ™D o (1)) (B.1)
The eigensystem equation at a different time can be written as
U+ T YU, t) [0(1)) = DU 1) [0(t)) - (B.2)

And we obtain that the factor u(¢,T’) is in fact time-independent,
D = ()| Ut + T, 1) [(t))
(,

=WV OUE + T, U 1) [$(1)
il T) (B.3)

The time-evolution operator itself is periodic for time-translations in both variables,

U +T,t+T) =Te S5 dn o)

:Te—i ftt, dt1 H(t1—T)
=U(t',t). (B.4)
Now by exploiting the linearity of the time-evolution operator and its periodicity,

Ut +T,¢+T)=U(,1),
erutmtnat) — < (t)\ Ut +mT +noT,1) [(1))
= ( ( WU+ noT, )U(t 4+ T, t) [1(t))

— eiulmT) giu(naT) (B.5)

we find that w(7T") = ¢,T", where we call £, the quasienergy of state [1(t)) .
As a result, going back to the eigenvalue equation for the time-evolution operator
over one period, we have

Ut +T,t) [p(t) = =" [(1)) (B.6)
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and the eigenstates of the Hamiltonian can be expressed as
[9(t)) = e~ =e = T0U(E + T, 1) [(2))
= e fuy(t)) (B.7)
where the state |u,(t)) is periodic,
lug(t +nT)) = e =Tt 40T + T, t + nT) [p(t + nT))

— == =0T7 (¢ 4 T, #)e =T |4)(¢))



Appendix C

High frequency approximation

The Floquet Hamiltonian acting on the extended space Hg = H ® T, is given by

H" =Y "H"""|n) (m| — fw. (C.1)

nm

The Floquet Hamiltonian can be diagonalized in Floquet space as

[—A[}; = eiG[:IFe*iGA, (C.2)
The diagonal Floquet Hamiltonian can be expressed as

HE = Hppl — fw, (C.3)

where The Floquet diagonal Hamiltonian, Hpp, is a time-independent Hamiltonian
acting on H.
The time-evolution operator in H can be expressed as

Ut,t") = Ut )e HroW=i (1), (C.4)

meaning that the long-time dynamics are given by the Floquet Diagonal Hamiltonian.
In general obtaining the Floquet diagonal Hamiltonian analytically is not possible
and one can only aspire to obtain it perturbatively in 1/w, i.e. by doing a high frequency
approximation, where we expand the operators as H = Y, H', where H" is of order
1/w'.
We can expand the Floquet diagonal Hamiltonian as

A

il = 711G, ) - 2616 )+ (©5)

DN | —

and by expanding the operators we obtain

Hppl =Y H""™|n) (m| +i[G", iw]

FIGY ST o) Gml] 461G, ] — 56 (G ]

nm

+ O(1/w?), (C.6)
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where the first line is the zeroth order and the second line is the first order in 1/w .
The zeroth order of the Floquet Diagonal Hamiltonian is then given by

H% p=H 0, (C.7)
And with this result we can calculate the commutator as

i[GY, hw —ZZG" ™ n) (m|, 7] = —szG" i —m) |n) (m]. (C.8)

nm

and obtain G as

—iw Y G (n—m) n) (m| ==Y H"™[n) (m], (C.9)

n#m

and we identify
A 1
e ——H"™ : C.10
G =3 T ) (C.10)

n#m

The first order of the Floquet Diagonal Hamiltonian is then

Hpp = {0[i[G", Y H" " [n) (ml] |0)

nm

. 1 n—m ryn’—m/’ 1 /
= (0] Z#;/m/ mlf H [[n) {ml, [n") (m'[] |0)

. 1 n—m ryn’'—m/ ! /
= (0| %mé;m/ WH H" 7™ (In) (m| dpm — |0') (M Grir) |0)

. 1 n—m ryn’—m/’
=1 m&;/m/ m[‘[ H (5n,05m/05n'm - 5n/05m05nm/)
1 _ 1 _
S D e LA
mw mw
m70 m70
1
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