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Abstract

Throughout this work, we present a novel technique to characterize drift-wave and interchange tur-
bulence in the limits of the last closed flux surface. This method is based on the study of the phase
relation between electrostatic potential and density as well as between radial velocity and density
using the cross power spectral density. 2D simulations, written using FELTOR, of an interchange
and the modified Hasegawa-Wakatani models are studied. Using these simulations we are able to
measure and provide the differences between drift-wave and interchange instability. When measuring
the phase shift between potential and density, we get a 0 rad difference for drift-wave turbulence and
π
2 rad for interchange. When comparing the phase difference between radial transport and density,
the results are the opposite, 0 rad for interchange and π

2 rad for drift-wave. Afterwards, a complete
model is proposed where plasma dynamic is studied in the regions around the last closed flux surface,
the edge and the scrape-off layer. From these simulations we measure a mixture of interchange and
drift-wave turbulence in the limits of the edge region, where the phase relation between radial velocity
and density becomes π

4 rad. This allow us to measure the contribution of both instabilities when they
co-exist. Furthermore, we find a change of regime when crossing the last closed flux surface, the phase
relation drops to 0 rad at the last closed flux surface, which can be used to measure the position of
it. Finally, this technique is applied to state-of-the-art experimental data from the EAST tokamak
reactor, where different phase relations are measured at the edge and at the scrape-off layer. The
phase relation between electron temperature and floating potential change from −π rad in the edge
to − 3π

4 rad in the scrape-off layer. This result could be used to locate the last closed flux surface,
reducing the cost of this process.
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Chapter 1

Introduction

In recent years, nuclear fusion has become a main interest as an energy source. Specially in a world
suffering from climate change, where the dependency towards fossil fuels, such as coal, petrol or gas;
is still increasing. Fossil energy sources are not only harmful for the environment but a main cause
of death in 2015 6.5 million deaths were linked just to air pollution [1]. Substituting highly emitting
sources by low carbon footprint ones is one of the main strategies to combat anthropogenic climate
change, as since industrialization CO2 emissions have been increasing continuously. Nowadays, re-
newable energies and nuclear fission energy are the best tools to reduce the CO2 emissions, as well as
the emissions of other green house effect gasses [2]. Specially since current renewable energies need
from other sources to maintain the continuity of the electric grid.

Furthermore, the increasing energy consumption will generate a shortage of the previously mention
energy sources [3]. In the case of fossil fuels, we should run out of oil and natural gas in about 50
years, while we should have coal for another 100 years. The uranium used in nuclear fission should
last for 80 years, indicated by the current known reservoirs. In the case of nuclear fission, the odds can
change greatly, as more efficient reactors are been created, IV Generation, and new ways of extracting
Uranium from seawater are been investigated [4]. The situation for renewable energies is also not
ideal neither, as the materials for construction are also limited.

In such scenario, nuclear fusion is presented as a solution to the most important challenges of
the future. Nuclear fusion is the inverse process of nuclear fission. Instead of breaking heavy atoms,
as Uranium, into lighter atoms releasing energy, light atoms, as hydrogen or helium, are collided
with the intention of generating heavier atoms and energy. For this reason, nuclear fusion has the
advantages of nuclear fission energy, as it does not produce any greenhouse emission, and solves the
disadvantages of it, as it does not generate highly radioactive nuclei.

Nuclear fusion aims to generate energy by using deuterium, D, and tritium, T, which are hydrogen
isotopes with one and two neutrons respectively [5]. This reaction emits an alpha particle, α, which
is a helium nuclei, and a neutron, n,

D + T→ α+ n + 17.6 MeV. (1.1)

In the further future, we expect to use D and helium-3, 3He, which releases more energy and a
proton, p, instead of a neutron,

D + 3He→ α+ p + 18.3 MeV. (1.2)

The most worrying generated particle from this reactions are the neutrons, which are expected to
be absorbed by the walls of the reactor. For this reason, the walls inside the reactor, the blankets,
are made of lithium, Li, which can be broken to breed T when it absorbs a neutron [5],

6Li + n→ α+ T + 4.8 MeV. (1.3)
7Li + n→ α+ T + n− 2.5 MeV. (1.4)

Currently, all the nuclear reactors work using only D, as we are still in the process of reaching
stable nuclear fusion. The abundance of D is about 2 billion years, as it can be easily extracted
from seawater. T is more difficult to obtain, as it is radioactive and it has a half-life of 12.2 years.
Therefore, the only way of getting it is from 6Li, from which we have enough supply for 20000 years [5].

5
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For 3He, we do not have any natural supply, it is produced by the β decay of T and it has only been
generated as part of the nuclear weapons program [6]. Although it is abundant in the moon, which
has reached there through solar wind [7].

Still, even if the use of nuclear fusion seems ideal, the complexity of nuclear fusion has become
a headache for physicist. Nuclear fusion is the process that make stars shine and generate energy.
Therefore, if we want to create efficient nuclear fusion reactions, we need to imitate the conditions
inside a star, by heating the nuclear fuel until it reaches the state of plasma. Plasma is often called
the fourth state of matter and at this state the atomic nuclei are completely separated from their
electrons and move fast enough to fusion when colliding with other nuclei. As we cannot imitate the
high pressure conditions inside stars, the plasma is heated to and much higher temperatures than the
ones seems in stars, with much lower density.

Since the first attempt of making a nuclear fusion reactor in 1938, there is still no reactor capable of
being self-sustainable. Which has ended up in the creation of several nuclear fusion type reactors [8],
creating 2 big groups: inertial confinement and magnetic confinement. In inertial confinement reac-
tors, lasers are used to heat up and compress a small pellet of fuel, such that it explodes generating
fusion. In magnetic confinement, gas of nuclear fuel is heated up using electromagnetic fields, until it
reaches temperatures of millions of Kelvins. At this temperature, the gas becomes plasma, an state
where nuclei moves fast enough to fusion when colliding with other nuclei. An example of both kind
of confinement can be seen in figure 1.1. Our study will be focused in this second group, magnetic
confinement.

(a) From http://iter.org/, view inside of a mag-
netic confinement nuclear reactor with and without
plasma.

(b) Credit: Lawrence Livermore National Labora-
tory. Implosion of a fuel pellet creating similar con-
ditions to sun inside an inertial confinement fusion
reactor.

Figure 1.1: Illustrations of a magnetic confinement and inertial confinement nuclear fusion reactors.

1.1 Magnetic confinement

Magnetic confinement is nowadays the most promising nuclear fusion confinement. Although most
of the magnetic confinement reactors use a torus shaped cavity for containing the plasma, 2 types
stand out: the stellarators and the tokamaks. The first stellarator was developed in the United
States in 1951 by Lyman Spitzer, Jr., and Martin Schwarzschild at Princeton University, this was the
figure-8 shaped Model A-1, that can be seen in figure 1.2a. Tokamaks were developed in the USSR in
1951, by Igor Tamm and Andrei Sakharov, where the first working tokamak was created in 1958 by
Natan Yavlinsky, this was the T-1, which can be seen in figure 1.2b. Nowadays, these reactors look
quite similar from outside, we still can see how the cavity inside stellarators are twisted, as seen in
figures 1.2c and 1.2d.

In both cases, a helical magnetic field is needed to control the plasma while heating it up. To
avoid the charge separation due to the ∇B drift, we need to twist the magnetic field. By using this
method, electrons, which follow the magnetic field lines, do not get trapped in one side of the reactor.
In case they did, they would generate a large electric field and a big plasma transport that would
end up hitting the walls and damaging the reactor. Here is where the main difference between them
can be seen [9]. Tokamaks maintain themselves symmetricals, creating a toroidal magnetic field with

http://iter.org/
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(a) From https://lynceans.org/, picture of one of
the last figure-8 stellarators, built in 1958.

(b) From http://iter.org/, picture of the first
tokamak reactor, T-1.

(c) From https://www-lhd.nifs.ac.jp/pub/LHD_

Project_en.html, picture from the inside of the
LHD stellarator, built in 1998 in Japan.

(d) From http://english.ipp.cas.cn/rh/east/,
picture from the inside of the EAST tokamak re-
actor, built in 2006 in China.

Figure 1.2: Pictures of one of the first stellerator and tokamak reactors on top and from the currently
in use reactors.

the symmetrical coils that wrap the cavities. While a polidal magnetic field is created due to the
plasma current, the same that heats the fuel, as seen in figure 1.3a. Stellarators in the other hand,
are non-axisymetrical, with a structure that is used to twist the magnetic field, as illustrated in 1.3b.
This makes tokamaks simpler to produce and more largely investigated, and the ones that will be
studied in this work. Although our work can be extrapolated to a stellarator.

While the project ITER [10] expects to reach stable and self-sustainable nuclear fusion by 2035,
with deuterium - tritium reactions, there is quite a lot of research that has to be done. Specially
in the area of plasma dynamics inside tokamak reactors. During this work, we shall present a novel
approach to characterize the turbulence in the region around the last closed flux surface (LCFS). The
LCFS is the region where the magnetic field lines pass from being closed inside the reactor to cross
the walls of it. This method will be capable of enlightening the path to stable and self-sustainable
nuclear fusion. The LCFS also separates the inner or edge region, the center of the reactor where we
expect to confine the plasma, where drift wave (DW) turbulence dominates; and the scrape-off layer
(SOL), the region after the LCFS, where interchange (IC) turbulence dominates the dynamics. A
scheme of this region is depicted in figure 1.4, where the edge or inner region refer to the are between
closed magnetic surfaces and the separatrix. While during drift wave turbulence we get an in-efficient
the transport of particles, interchange turbulence is a perfect transport mechanism. For this reason,
it is important to be able of studying how and when they are present inside plasma dynamics. This
approach will be done in 2D, due to its simplicity and time constrains. Further studies will need of
a more complex model and to scale the system to 3D.

https://lynceans.org/
http://iter.org/
https://www-lhd.nifs.ac.jp/pub/LHD_Project_en.html
https://www-lhd.nifs.ac.jp/pub/LHD_Project_en.html
http://english.ipp.cas.cn/rh/east/
https://www.iter.org/
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(a) From https://www.pppl.gov/, scheme of a Tokamak reactor and the magnetic field inside of it.

(b) From https://www.ipp.mpg.de/w7x Max-Planck Institut für Plasmaphysik, scheme of the Wendelstein
7-X stellerator in Germany.

Figure 1.3: Schemes of the Tokamak and Stellerator magnetic confinement nuclear reactors.

Figure 1.4: Source: EFDA-JET, sketch of the different regions inside a tokamak, based on the profile
of the magnetic field.

https://www.pppl.gov/
https://www.ipp.mpg.de/w7x


Chapter 2

Theory

Before discussing in detail the project developed throughout the thesis, an explanation of the basic
physics and mathematics must be done. For that propose, we need to explain the models used to
approximate the physical domain inside a magnetic confinement reactor, of the Tokamak type. This
is going to be done by explaining the collective motion of charged particles inside electromagnetic
fields and by simplifying the main equations that describe the motion of plasma. Furthermore, we
will explain the diagnostic done in EAST (the Experimental Advanced Superconducting Tokamak)
tokamak reactor in Hefei [11], [12] and how can we use the data obtained from it.

2.1 Collective motion in a plasma, vE×B, vD and vp

As it has been explained, magnetic confinement reactors use magnetic fields to confine the plasma
and control its dynamics. Therefore, it is important to generate a picture of the plasma’s motion
inside an electromagnetic field, where magnetic field will be generated by the coils surrounding the
reactor and the electric field will be a consequence of the charged particles. For that, we shall start
with the momentum conservation equation [13], where we introduce Lorentz force for charged fluid,
due to the electromagnetic fields; and the pressure gradient, due to the fluid behaviour,

mn
dv

dt
= qn(E + v× B)−∇p, (2.1)

where m is the mass of each particle, n is the density, v is the velocity, q is the charge of each
particle, E is the electric field, B is the magnetic field and p is the pressure. As a comment, in the
most general case, pressure is a tensor with an isotropic term filling the diagonal and an anisotropic
term in the off-diagonal. The anisotropic term generates a first order dissipation term, that will
be replaced by a hyperdiffusive term for numerical stability propose. For that reason, throughout
the work, we will be only interested in the isotropic term, independent of the direction. Therefore,
pressure will be taken as a scalar quantity.

The addition of forces to the system will generate drifts of the charged particles [5], [14]–[16]. For
the current situation, there are three drifts of great interest, the E × B, the diamagnetic and the
polarization drifts. The first one is caused by the addition of an electric field, in our case, due to the
ionization of the particles in the plasma. The second one is caused by a pressure gradient, caused by
the gradient of density inside the torus, the reactor confines the fuel in the center of it, this generates
a density reduction along the radial direction. The last one is caused due to a time variation of the
electric field, particles will try to follow the electric field.

The E × B and diamagnetic drifts will be studied together as they can be easily extracted from
equation 2.1. For the polarization drift, we need to add perturbation theory, which will be done
separately.

2.1.1 E× B and diamagnetic drifts

To obtain the E × B drift and the diamagnetic drift, let’s consider equation 2.1, where a charged
plasma is moving parallel to E and perpendicular to B, while we still have the pressure gradient, ∇p.
An scheme of the drift dynamics can be seen in figure 2.1, figure 2.1a for the E×B and figure 2.1b for
the diamagnetic drift. We are interested in the movement of the guiding center. Therefore, we can

9
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10 CHAPTER 2. THEORY

skip the reduction of the gyration of charge particles inside a magnetic field and solve equation 2.1
for a non varying velocity,

mn
dv

dt
= qn(E + v× B)−∇p = 0 (2.2)

(a) Axis representation of the E × B drift. (b) Axis representation of the diamagnetic drift.

Figure 2.1: Sketches of the E× B and diamagnetic drifts.

applying the cross product with B, we get

qn
(
B× E + B× (v× B)

)
− B×∇p = qn

(
B× E + vB2 − B(v · B)

)
− B×∇p = 0 (2.3)

which can be rewritten as

v =
E× B

B2 − ∇p× B

qnB2
. (2.4)

Thus, we get two separated motions, the E× B drift, vE×B,

vE×B =
E× B

B2 , (2.5)

and the diagmanetic drift, vD, which can be re-written by assuming an ideal gas with constant
temperature, T , to erase the pressure,

vD =
T

qnB2
B×∇n. (2.6)

It is important to highlight that temperature in nuclear fusion is written in electron volts, so that
we insert Boltzmann’s constant inside.

The vE×B shows that when a constant magnetic field and a constant electric field are applied over a
moving particle, a part from the well known gyration motion, we also get a drift of the guiding center,
in the direction perpendicular to the magnetic field and the electric field, completely independent of
the charge.

The vD is a consequence of the pressure gradient, this will push the fluid by moving the plasma
in the direction perpendicular to B and ∇p. This generates a rotation current around the plasma, as
the pressure gradient will always be pointing to the center of the reactor.

2.1.2 Polarization drift

The polarization drift is generated by a slowly time-varying electric field. To measure this, we will
use perturbation theory over equation 2.1. Let’s assume a velocity v = v(0) +v(1), where v(0) = vE×B,

such that the electric field varies slowly with time, but faster than v(1). Hence,
dv(0)

dt
� dv(1)

dt
. Thus,

m
dvE×B

dt
= qn

(
E + vE×B × B + v(1) × B

)
−∇p. (2.7)
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Notice that E + vE×B × B = 0, thus we can do the cross product with B, as we did earlier,

m
dE

dt
= qnv(1)B2 + ∇p× B. (2.8)

Therefore, we see that v(1) = vD + vp, where

vp = ± 1

ωcB

dE

dt
, (2.9)

being ωc the cyclotron frequency, ωc = qB
m . The ± sign refers to the charge of the particle, this

drift will also contribute to the separation of charges.
As we can see, when we add a time-varying electric field, in addition to the already calculated

E × B and diamagnetic drifts, we obtain perturbation that will move positively charged particles
following the electric lines, while negative charged particles will move in the opposite direction, as we
can see in figure 2.2. Hence, electrons and ions will move in opposite directions, separating from each
other, while they follow the electric field.

Figure 2.2: Sketch of the polarization drift.

2.2 Models, IC and HW and Phase relation

To study and characterize the turbulence at both sides of the last closed flux surface (LCFS), we will
start by structuring a naive approach to the plasma dynamics. So that we can study separately the
two main instabilities of interest, interchange (IC) [17] and Drift-Wave (DW) [18], [19]. Later, we
shall put these two models together to construct a complete model and study both types of turbulence
together [20].

The main reason to study these models is to verify the phase relation between potential and density.
As it will be probed [21], [22], the IC turbulence transports plasma perfectly as the radial velocity
gets in phase with the density, while in DW turbulence we have the contrary effect, radial velocity
and density become out of phase. This property will allow us to characterize these 2 instabilities, but
first we need to verify that our single models are able of probing this property.

For that propose, let’s start by presenting the equations that will describe the dynamics of the
system:

∂n

∂t
+ ∇ · (nv) = 0, (2.10)

∇ · J = 0, (2.11)

1

η

(
E +

1

nq
∇p

)
= J. (2.12)

These equations are the mass continuity, charge density continuity equations and the Ohm’s law
respectively [5], [14], [16]. Where the only new parameters are the current density, J, and the plasma
resistivity, η. Notice that, we are only solving the equations for deuterium ions and electrons, the
mass continuity equation is already simplified for a isothermal, quasi-neutral and cold ion plasma.
Also, due to quasi-neutrality the charge density continuity equation is missing the time derivative of
the density. The momentum conservation, equation 2.1, will be present, as we use it for deriving the
drifts.
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2.2.1 Interchange model

The first model we will derive is the Interchange model. This model will allow us to simulate the
dynamics in the scrape-off layer (SOL) region and get interchange instability. First, we might assume
some conditions, Ti � Te, Te ≈ constant, mi � me and ωt � ωc, where the e and i subindices refer
to electrons and ions respectively and ωt is the characteristic turbulence time variation. This allow
us to fix the ion dynamics to the plane perpendicular to B = B0ẑ, as the ion inertia will fix particles
in this direction and neglect thermal velocity of the ions. Hence, the transport of particles, for the
mass continuity equation 2.10, can be assumed to be dominated by the E×B and diamagnetic drifts,

v = vE×B + vD =
B×∇φ

B2
+

T

qnB2
B×∇n. (2.13)

Further, we will erase the diamagnetic drift from the mass continuity equation as its contribution
is neglectable for our case. Hence, the mass continuity equation becomes

∂n

∂t
+ ∇ · (nvE×B + nvD) =

∂n

∂t
+ ∇ ·

(
n

B×∇φ

B2
+

T

qB2
B×∇n

)
= 0. (2.14)

This equation can be expanded as

∂n

∂t
+ vE×B ·∇n+ n∇ · vE×B + ∇ · T

qB2
B×∇n = 0. (2.15)

This model is a fluctuation model, where instead of studying the whole density, we study the
fluctuation n1 over the background density n0. Hence, we can write n = n0(1 + n1), where n1 � 1.
Inside a reactor, the background density only varies with the radial direction [18], in our case the x
direction, thus it gets canceled in the diamagnetic drift but not in the advection. Applying this and
dividing by n0, we get

1

n0

(
∂

∂t
+ vE×B ·∇

)[
n0(1 + n1)

]
+ ∇ · vE×B + ∇ · T

qB2
0

B0 ×∇n0(1 + n1)

n0
= 0, (2.16)

which using the right transform and changing q by −e, the charge of the electron; we get(
∂

∂t
+ vE×B ·∇

)
(lnn0 + n1) + ∇ · vE×B −∇ · T

eB2
0

B0 ×∇n1 = 0. (2.17)

Before reducing this equation more, let’s take a look at the charge density equation. The current
density, J, must be composed of all the drifts that separate charges, the diamagnetic and polarization
drifts. Furthermore, we neglect parallel currents as the resistivity, η, in the parallel Ohm’s law is
supposed infinite, meaning that J must be perpendicular to B. Thus, the charge density equation is
expressed as

∇ · J = ∇ ·
(
nvD + nvp

)
= 0, (2.18)

where the polarization drift is defined like

vp =
m

qB2

(
∂

∂t
+ vE×B ·∇

)
E =

m

eB2

(
∂

∂t
+ vE×B ·∇

)
∇φ. (2.19)

Hence, the divergence of nvp becomes,

∇ · (nvp) = ∇ ·
[
nm

eB2

(
∂

∂t
+ vE×B ·∇

)
∇φ

]
. (2.20)

In this case, we can assume that, as in the reactor a/R0 � 1, the magnetic field is nearly constant
B ≈ B0, and neglect the change in density so n ≈ n0. Furthermore, due to quasi-neutrality, we can
neglect the divergence of E, as Gauss’s law gets

∇ · E = ρ/ε ≈ 0, (2.21)

where ρ is the charge density, ρ ≈ 0 in a quasi-neutral gas, and ε is the electric permitivity. This
allows us to move the divergence further in until ∇φ.
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Furthermore, we can define the vorticity density, ω, as

n0

B0
∇ ·∇φ =

n0

B0
∇2φ = ω. (2.22)

Notice, that the vorticity density can be demonstrated to be ω = n0∇ × vE×B, been a vector
parallel to B. This highlights the implication of this term and the physical relation of it.

Using the same steps we applied to get to equation 2.17, the current density equation, 2.11 is
expressed as,

∇ · J = ∇ · (nvp + nvD) =
m

eB0

(
∂

∂t
+ vE×B ·∇

)
ω −∇ · T

eB2
B×∇n1 = 0, (2.23)

which can be reduced to,(
∂

∂t
+ vE×B ·∇

)
ω − ωc

T

e
∇ · B

B2
×∇n1 = 0, (2.24)

notice that, again, we have changed q by −e, the charge of the electron.
Finally, in equations 2.17 and 2.24 we have some terms we want to reduce, let’s begin by solving

the background density, n0(x), which generally is assumed to have a locally constant gradient. To do
this, we shall assume n0 to be an exponentially decaying profile [18], so that n0(x) ≈ N0e

− x
Ln , being

Ln the characteristic length scale for the density gradient. Therefore,

∂ lnN(x)

∂x
= − 1

Ln
=⇒

(
∂

∂t
+ vvE×B

·∇
)

lnn0(x) =
1

LnB0

∂φ

∂y
(2.25)

Next, we need to take care of the cross products so that we can avoid having vectors in the
equations. This means, dealing with the expressions of type

∇ ·
(

B×∇γ

B2
0

)
, (2.26)

where γ is used to denote both, the density and the potential, which is in both equations.

The magnetic field, which inside a torus is approximated as B = B0

(
1 + a

R0
+ x

R0

)
[22], where

x is the distance to the center. Furthermore, knowing that the magnetic field is proportional to the
toroidal direction, we can write B/B = ẑ, the unitary vector perpendicular to our 2D system. Hence,
we get

∇ ·
(

B×∇γ

B2

)
=

(
1 +

a

R0
+

x

R0

)
∇ · (ẑ×∇γ) + (ẑ×∇γ) ·∇

(
1 +

a

R0
+

x

R0

)
(2.27)

which leads us to

∇ ·
(

B× γ
B2

)
= − 1

B0R0

∂γ

∂y
= − κ

B0

∂γ

∂y
, (2.28)

where κ is the curvature of the magnetic field. This parameter is a key element for interchange
turbulence, without it, we would get Euler’s equation.

As it has already been mentioned, we wish to assume no diamagnetic drift compression [17].
Which is acceptable as vE×B is dominant over vD, been the drift that handles the plasma transport.
Hence, the gradient of n1 from equation 2.17 will be erased. Although it will appear when we escalate
our model to a more complex one. For the vorticity equation, equation 2.24, this assumption is not
valid, as we need charge separation for generating interchange instability. Therefore, our equations
get simplified to,

n0

B0
∇2φ = ω, (2.29)(

∂

∂t
+ vE×B ·∇

)
n1

n0
+

(
1

LnB0
− κ

B0

)
∂

∂y
φ = −µ2∇4n1

n0
, (2.30)(

∂

∂t
+ vE×B ·∇

)
ω +

ωcT

eB0
κ
∂

∂y
n1 = −µ2∇4ω. (2.31)
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Notice that we have add a diffusion term, actually hyperdiffusion term, for numerical stability,
which is written as,

∇4 = ∇ ·
[
∇ (∇ ·∇γ)

]
=
∂4γ

∂x4
+

∂4γ

∂x2∂y2
+
∂4γ

∂y4
. (2.32)

This numerical term is added because turbulent flow generates eddies that tend to reduce into
tinier scales, until they get dissipated, due to diffusion [23]. If we do not add a diffusion term, this
swirls will continue decreasing into finer and tinier structures until infinity. This is only acceptable
in an ideal physical scheme, but as we have a computational mesh, we cannot let this structures get
lower than our grid size, meaning that we have to truncate them by adding numerical diffusion. In
this case, hyperdiffusion is chosen as it improves stability [18], [24].

2.2.2 Drift-Wave model

The Drift-Wave turbulence model is based in the Hasegawa - Wakatani, proposed by Akari Hasegawa
and Masahiro Wakatani for the first time in 1983 [25]. This model, allows us to study the Drift wave
instability inside a magnetically confined plasma in the inner region, in a simple way, as simple as
the Interchange model that we have already derived.

To make this model, we can do a really similar derivation as the one done for the interchange
model, but this time we will not assume an infinite resistivity for the parallel Ohm’s law. Hence, we
introduce a current density J in the parallel direction for the electrons,

J‖ = −env‖ =
1

η

(
1

en
∇‖p+ E‖

)
=

1

η

(
1

en

∂p

∂z
− ∂φ

∂z

)
(2.33)

where we can apply the ideal gas equation again, p = nTe, with Te being constant; and apply the
same approximations we have done earlier, n = n0(1 + n1), where n1/n0 � 1. Hence,

J‖ ≈
Te
eη

∂

∂z

(
n1 −

eφ

Te

)
. (2.34)

Now, the electron parallel current density will be introduced as the parallel velocity in both, the
mass continuity equation 2.10 and the charge density continuity equation 2.11. For the continuity
equation we do not need to add an ion parallel current, as we can assume that the ions are so heavy
compared to the electrons that their inertia will maintain them in the plane perpendicular to ẑ, similar
to what we did for the IC model. Therefore, our equations will look similar as for the IC model,

∂n

∂t
+ ∇ ·

(
nvE×B + nvD −

J‖

e
ẑ

)
= 0 (2.35)

∇ ·
(
nvD + nvp −

J‖

e
ẑ

)
= 0 (2.36)

Now, there is only 2 things that will differ from what we did earlier. First, the magnetic curvature
will be neglected, κ = 0. Inside the inner region of the reactor, the magnetic field can be assumed

constant, B = B0ẑ. Second, we have to deal with ∇J‖ẑ =
∂J‖
∂z . This will not create a big change, as

for the curvature is just erasing the terms and for the gradient of J‖ we get

∇ · J‖ẑ =
Te
ηe

∂2

∂z2

(
n1 −

eφ

Te

)
. (2.37)

Introducing this term in equations 2.35 and 2.36 and doing the same derivation, we get

(
∂

∂t
+ vE×B ·∇

)(
n1

n0

)
+

1

LnB0

∂φ

∂y
= − Te

ηe2n0

∂2

∂z2

(
eφ

Te
− n1

)
− µ2

B0
∇4ω. (2.38)(

∂

∂t
+ vE×B ·∇

)(
ω

ωc

)
= − Te

ηe2n0

∂2

∂z2

(
eφ

Te
− n1

)
− µ2

ωcB0
∇4ω. (2.39)

The only term not yet clear is the second derivative with respect to z for the potential and
the density. Based on the idea that particles should be constrained to move in the perpendicular
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plane, no variable, except from the magnetic and electric fields, should have any dependency with it.
Although, as we have discussed above, the Hasegawa - Wakatani model tries to simulate the dynamics
of a plasma where particles can move freely along the magnetic field lines. For that reason, we can
assume that n and φ will be locally described as plane wave in the z direction, this assumption is
acceptable as long as n and φ are small enough,

n1 = N1e
i(kz−ωtt) (2.40)

φ = φ0e
i(kz−ωtt), (2.41)

where N1 is the density amplitude, k and ωt are the characteristic wave length and frequency.
Doing this, we are forcing the modes to be unique, k. This will force zonal mode structures in the
potential [26]. Thus, we can expressed our set of equations as,

n0

B0
∇2φ = ω, (2.42)(

∂

∂t
+ vE×B ·∇

)(
n1

n0

)
+

1

LnB0

∂φ

∂y
=

Tek
2

ηe2n0

(
eφ

Te
− n1

)
− µ2

B0
∇4n1

n0
, (2.43)(

∂

∂t
+ vE×B ·∇

)(
ω

ωc

)
=

Tek
2

ηe2n0

(
eφ

Te
− n1

)
− µ2

ωcB0
∇4ω. (2.44)

The term
(
eφ
Te
− n1

)
, which will be converted into

(
φ̂− n̂

)
after normalization, is written in the

ordinary form. But we can rewrite this term to add zonal flow [19], [20], [26], by changing φ and n
so that we only study the perturbation over them,

φ̂ = φ̃+ 〈φ̂〉y (2.45)

n̂ = ñ+ 〈n̂〉y (2.46)

where φ̃ and ñ represent the perturbation over φ̂ and n̂ and 〈·〉y is the average over the poloidal

direction y. Thus, the term
(
φ̂− n̂

)
becomes

(
φ̃− ñ

)
=
[
φ̂− 〈φ̂〉y −

(
n̂− 〈n̂〉y

)]
.

2.2.3 Normalization

These equations are full of unknowns and parameters that we might not want to solve, as they could
depend on each other or other parameters. Furthermore, solving the equations for a certain Te or B0

might not be ideal as this would depend on the reactor we are studying. To solve this issue, we must
normalize our variables using Bohm normalization. There are different ways of doing this, depending
on the variables we have, for that reason we shall follow the recipe depicted in [18],

x̂ =
x

ρs
, ŷ =

y

ρs
, t̂ = tωc, φ̂ =

eφ

Te
, n̂ = n1, ω̂ =

ω

ωc
and B̂ =

B

B0
. (2.47)

where ρs is the Larmor radius, defined as

ρs =

√
Temi

eB0
=

√
Te

eB0ωc
. (2.48)

Notice that the only free parameters of our equations are the temperature Te and the magnetic
field B0.

Introducing this in the interchange model, equations 2.29, 2.30 and 2.31, we get,

∇̂
2
φ̂ = ω̂, (2.49)(

∂

∂t̂
+ v̂E×B · ∇̂

)
n̂ =

(
ρs
R0
− ρs
Ln

)
∂

∂ŷ
φ̂− µ2

ρ4
sωc

∇̂
4
n̂, (2.50)(

∂

∂t̂
+ v̂E×B · ∇̂

)
ω̂ = − ρs

R0

∂

∂ŷ
n̂− µ2

ρ4
sωc

∇̂
4
ω̂. (2.51)
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Now, we can re-define the different constants as,

g =
ρs
Ln

, κ̂ =
ρs
R0

= κρs and ν =
µ2

ρ4
sωc

. (2.52)

Also, we had our reasons for not modifying the advective term, we shall return to this later, but
by now, let’s simplify the equations by adding the Poisson brackets in the advective term,(

v̂E×B · ∇̂
)
γ =

∂φ

∂x

∂γ

∂y
− ∂φ

∂y

∂γ

∂x
= {φ, γ}, (2.53)

where, again, γ is just a random variable, either n nor ω.
Finally, we shall re-write the equation, getting rid of the hats,

∇2φ = ω, (2.54)

∂n

∂t
= (κ− g)

∂φ

∂y
+ {n, φ} − ν∇4n, (2.55)

∂ω

∂t
= −κ∂n

∂y
+ {ω, φ} − ν∇4ω. (2.56)

For the Hasegawa - Wakatani model, equations 2.42, 2.43 and 2.44, we get,

∇̂2φ̂ = ω̂, (2.57)(
∂

∂t̂
+ v̂E×B · ∇̂

)
n̂ = − ρs

Ln

∂φ̂

∂ŷ
+

Tek
2

ηe2n0ωc

(
φ̂− n̂

)
− µ2

ωcρ4
s

∇̂4n̂, (2.58)(
∂

∂t̂
+ v̂E×B · ∇̂

)
ω̂ =

Tek
2

ηe2n0ωc

(
φ̂− n̂

)
− µ2

ωcρ4
s

∇̂4ω̂. (2.59)

Again, rewriting our variables, we get

g =
ρs
Ln

, α =
Tek

2

ηe2n0ωc
and ν =

µ2

ρ4
sωc

. (2.60)

Hence, we can rewrite the ordinary Hasegawa - Wakatani in the same way we have already done
with the interchange model:

∇2φ = ω, (2.61)

∂n

∂t
= −g ∂φ

∂y
+ α (φ− n) + {n, φ} − ν∇4n, (2.62)

∂ω

∂t
= α (φ− n) + {ω, φ} − ν∇4ω, (2.63)

and the modified Hasegawa - Wakatani model gets,

∇2φ = ω, (2.64)

∂n

∂t
= −g ∂φ

∂y
+ α

(
φ̃− ñ

)
+ {n, φ} − ν∇4n, (2.65)

∂ω

∂t
= α

(
φ̃− ñ

)
+ {ω, φ} − ν∇4ω, (2.66)

where ñ and φ̃ are defined as,

φ̃ = φ− 〈φ〉y, (2.67)

ñ = n− 〈n〉y. (2.68)

In our normalized models, we have now some new parameters that deserve a physical explanation.
g is usually called the density profile and make particles move in the y direction. The term α is taken
as an adiabatic constant by some authors [19], while others call it the plasma conductivity [20], which
allows us to tune how strong the coupling between the potential and the density is.



2.2. MODELS, IC AND HW AND PHASE RELATION 17

2.2.4 Phase relation

Before continuing, as it has been already mentioned, we have to prove the phase relation between
density and potential [21], [22]. As this will be our main approach to characterize and differentiate
IC and DW instabilities. We can linearize the system by introducing the potential and density as
simple plane waves of the form

n = N0e
i(k·x−ωt) (2.69)

φ = φ0e
i(k·x−ωt) (2.70)

inside the equations. Where N0 and φ0 are the amplitudes of the waves and k and ω are the
characteristic wave number and frequency. Notice that ω = ω0 + iγ, where the system will be
unstable as far as γ > 0. This can only be done by assuming periodic boundaries in x and y. Hence,
time derivative and spatial derivatives can be rewritten as ∂

∂t → −iω, ∂
∂y → iky and ∇2 → −k2.

Then, we can introduce this in the interchange model, equations 2.54, 2.55 and 2.56, where as this
is an exact result we can erase the diffusion, getting,

−iωn = (κ− g) ikyφ, (2.71)

iωk2φ = −iκkyn. (2.72)

where the relation between φ and n is,

N0e
i(k·x−ωt) = ±k

√
κ− g
κ

φ0e
i(k·x−ωt). (2.73)

Here, we can extract the imaginary unit from the square root as κ = ρs
R0

, g = ρs
Ln

. Where we know
that R0 > Ln, κ < g, as the length scale of the density gradient is lower than the mayor radius of
the tokamak. Thus,

N0 = ±ik
√
g − κ
κ

φ0. (2.74)

Therefore, whenever the density is real, the potential must be purely imaginary and viceversa.
Therefore, the phase relation becomes ±π2 rad. This causes an in phase relation between the radial

velocity, vr = vE×Bx = ∂φ
∂y , and the density, generating a 0 rad phase and perfect transport. This

result is explained as interchange turbulence generates electric dipole moments.
It is important to notice that this result can only happen if the density equation dominates the

evolution. This would only happen if ωt ≈ iγ. This is, low frequencies, where the harmonic wave
would be decaying or growing. In case this does not happen, the vorticity equation would become
dominant. In this case, we see that ω and n become completely in phase, where φ and ω are in
counter phase by ±π. Thus, n and φ would also be in counter phase. In this case, we should see that
the phase relation is not fulfilled along the whole grid.

If we do the same for the HW model, equations 2.61, 2.62 and 2.63, we get

−iωn = −ikygφ+ α (φ− n) (2.75)

k2iωφ = α (φ− n) . (2.76)

where, if the plasma conductivity is high enough to dominate, which is expected for a saturated
state; the relation becomes

N0 = −k2φ0e
iθ. (2.77)

Hence, in a saturate drift-wave state, the potential and the density should be on phase by 0 rad.
One could argue that minus can be considered as e±iπ and say that n and φ should be out of phase by
∓π rad. Although this is not the case. If we imagine a case where α tends to infinity, we should see
that ∂n

∂t ≈ α (φ− n), enforcing not only an in phase relation, but equalizing φ and n, for our unitless
variables. Hence, we get inefficient plasma transport, as the phase between vr and n becomes ±π2 .
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2.2.5 Complete model

If we want to study the behaviour of the plasma at both sides of the LCFS, we would need to put
both, interchange and drift wave, models together. For that, we would like to use a more ”complete”
model, where we can study the inner part, were the drift wave turbulence is dominant, as well as the
Scrape-Off Layer (SOL), where interchange turbulence is dominant. Thus, we will replicate use the
model used by G. Decristoforo et. al. [20], with some changes,

∇2φ = ω, (2.78)

dn

dt
= −κ

(
∂n

∂y
− n∂φ

∂y

)
+ α(x)(φ̃− n1) + Sn(x, n)− σ(x)neΛ−φ − ν∇4n (2.79)

dω

dt
= −κ

n

∂n

∂y
+ α(x)(φ̃− n1) + σ(x)

(
1− eΛ−φ

)
+ Sω(x, n)− ν∇4ω (2.80)

It is important to notice that this is not a fluctuation model anymore, which means that we
look at the whole density, for that reason we have added a density source term Sn and variables are
multiplied or divided by n to maintain the integrity of the whole system. It is interesting to highlight
that we got rid of the density profile g, there is no background density, and we have recovered the
diamagnetic drift, which was neglected earlier. For the vorticity we added a sink Sω for stability
proposes and to emulate the wall. Furthermore, we have added a sheath term σ(x)eΛ−φ, where σ is
the sheath dissipation and Λ is the sheath potential.

The time derivatives are not partial derivative, this is because we define the total time derivative
as,

d

dt
=

∂

∂t
+ v ·∇ (2.81)

where the speed v is defined as vE×B, as it is the drift in charge of the transport. Later, the
curvature velocity will be added when solving the density equation, which means that vy = vE×By+κ.
This will be done as part of the numerical solving method, which will add stability to the system. A
further explanation will come in the next chapter.

As we have can see, some variables depend on x, the reason for this is the fact that the term that
goes with the conductivity α only acts on the inner region inside the LCFS, as it has been explained,
this term is made to approximate the particles that leave the 2D grid of the simulation by following
the magnetic field lines towards z. After the LCFS the particles that follow the magnetic field lines
will encounter the wall so this term does not have sense in the SOL. Furthermore, for this reason,
we introduce a sheath term in the SOL, which is used to simulate the effect of the particles that
get in the wall [27]. The source term is supposed to imitate the divertor and maintain the system
with nuclear fuel, as particles will leave the system when entering the SOL. The curvature will be
activated everywhere, meaning that we might find IC turbulence in the edge, in combination with
DW turbulence, creating a mix region.

Hence, we can define mathematically the new and old variables, from left to write in the grid, as
it is depicted in the schema of figure 2.3. First, we have the source term,

Sn(n, x) =

{
−n−nb

τ , if x ≤ xa
0, if x > xa

, (2.82)

where nb is constant density that we want to be kept in the inner part, generally 1; τ is the
relaxation time, how much does the source need to established any fluctuation; and xa is the limit
where the source is active, x ∈ [0, xa].

The vorticity sink as,

Sω(ω, x) =

{
0, if x ≤ xc
−ωτ , if x > xc

, (2.83)

where xc is the left boundary of the sink, which is active until lx, in case xc < lx.
The conductivity α is redefined as,

α =

{
α, if x ≤ xb
0, for x > xb

(2.84)
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Figure 2.3: Grid representation of the Complete model.

where xb is the location of the LCFS.
Finally, the sheath dissipation is written as,

σ =

{
0, if x ≤ xb
σ, for xb < x < lx

(2.85)

where lx is the length of the grid in the x direction.
It is important to clarify that in the implementation it is not used a Heaviside step function to

implement this behaviour, a hyperbolic tangent is used for this, tanh x−xi

w , where xi is one of the
three position, xa, xb and xc, and w is the width of the hyperbolic tangent. This allows us to overlap
both regions.

As it is seen in figure 2.3, a part from the spatial separation, we have also add some probes. The
probes are used to measure some of the variables calculated in the simulation, we will get further in
detail in the next chapter. In essence, these probes will allow us to characterize the turbulence inside
the domain, they will be also used in the IC and HW models.

2.3 EAST reactor

The Institute of Plasma Physics in China has been using the EAST tokamak reactor, located in
Heifei, to study the dynamics of the plasma by inserting probes [12]. The probe, as well as a scheme
of the EAST reactor can be seen in figure 2.4a and 2.4b. Thanks to these experiments, it is possible
to measure certain quantities of the plasma as density, plasma potential, radial velocity and temper-
ature. The probes are inserted using a rail that allow them to enter and leave. For that reason, the
measurements are done while the probe is moving. This also means that the probe measures when
entering and when leaving, although we are not interesting in the signals when leaving the reactor,
as they measure the perturbation created by the probe.

As seen in figure 2.4a, the probes have 3 tips to measure the floating potential, φ
(1)
f , φ

(2)
f and φ

(3)
f ;

a tip to measure the ion saturation current, Isat, and a biased tip regarding Isat, φ
+. These probes

are placed so that non of them are aligned through the same magnetic field lines, this is the poloidal
direction, as it is depicted in figure 2.5. For this reason, to get the floating potential in the same

poloidal direction as φ+ and Isat, we have to average the floating potentials to get φ
(12)
f and φ

(23)
f

signals,

φ
(ij)
f =

φ
(i)
f + φ

(j)
f

2
, (2.86)

where i and j refers to the pairs 1-2 and 2-3. Then, we can estimate the electron temperature by,

Te ≈ Ti ≈
φ+ − φ(12)

f

ln(2)
, (2.87)

http://english.ipp.cas.cn/
http://english.ipp.cas.cn/
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(a) From [12], image of a probe used in the EAST
experiments. The different tips are marked with the
corresponding name of the obtained signal. The val-
ues φ

(12)
f and φ

(23)
f are not measured but obtained

from averaging the signals from the corresponding
upper and lower tips.

(b) From [21], scheme of the EAST reactor and the
rails used to insert the probes inside of it.

Figure 2.4: Visualization of a probe used in the EAST experiments and the a scheme of the EAST
reactor with the rails for the probes.

Figure 2.5: Scheme of the magnetic fields along a probe.

which can be used to calculate the plasma potential,

φp = φ
(12)
f + 3Te, (2.88)

where 3Te is the sheath potential drop for deuterium plasma [12]. Then, we can calculate the
plasma density, n, from the ion saturation tip, by

Isat = enAeff

√
Te

2mi
, (2.89)

with Aeff being the effective receiving area of the tip. To make this calculation acceptable one
has to neglect electron temperature fluctuation effect, as Te is not calculated in the same poloidal
position as Isat. Furthermore, the way these quantities are calculated make the plasma potential and
the density dependant on the electron temperature. This is not ideal for our propose, but it is the
best we can do, as we will be working with state-of-the-art data.

http://english.ipp.cas.cn/
http://english.ipp.cas.cn/
http://english.ipp.cas.cn/
http://english.ipp.cas.cn/
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Figure 2.6: Radial position of the probe against time when inserted the probe. The the far SOL is
between r = 20 and 40 mm; the near SOL is between r = 0 and 20 mm; the near edge is between
r = −20 and 0 mm; and the inner edge is between r = −20 and −47.68 mm. The LCFS is at
r = 0 mm.

Finally, we can also suggest to calculate the radial velocity, vr, as

v(ij)
r ≈ φ(i)

f − φ
(j)
f , (2.90)

where similarly as in equation 2.86, the i and j parameters represent the floating potential pairs
2 and 1 and 2 and 3.

The rails allow to measure the plasma until the inner part of the reactor, a distance of more than
200 mm, until a distance of 47.68 mm pass the LCFS. For that reason, we need to choose which
part of the data shall be studied. For that, knowing that the LCFS is located at 0 and the negative
values are inside, we isolate the data in 4 different regions, as it is depicted in figure 2.6, the far SOL,
r ∈ [20, 40] mm; the near SOL, r ∈ [0, 20] mm; the near edge, r ∈ [−20, 0] mm; and the inner edge,
r ∈ [−20,−47.68] mm.
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Chapter 3

Methods

The theory of the models used to approximate the physical system inside a tokamak have already been
explained. Therefore, it is the moment to explain how are we going to solve the equations and study
the result. We shall explain briefly how does the C++ library FELTOR (Full-F ELectromagnetic
code in TORoidal geometry) [28] work and which analysis will be done to characterize the two main
instabilities of interest.

3.1 Using FELTOR

The FELTOR library is a scientific software focused on using discontinuous Galerkin (dG) [29] meth-
ods to solve partial differential equations. FELTOR is platform independent and it allows the user
to run the code in CPU and GPU without mayor changes than the compilation method. It also
allows the introduction of the message passing interface (MPI) in a simple way. It is important to
mention that as the FELTOR library is completely developed, the focus of these work has never been
to get into detail on this methods. For that reason, dG methods were not mentioned during the
theory. Although a brief explanation will be done here to satisfy the reader’s curiosity, as well as a
description of how FELTOR will be used to solve the models. This last part will be separated into
4 different sections, which time integration will be used, how will the program manage the advective
acceleration, boundary conditions and input and output files.

The main work with FELTOR during this thesis was to create the models based on a previous
work from [28], where the IC model was mostly implemented. The rest of the models were added
to the implementation, as part of the work, with some changes to introduce MPI and the probe
measurements. Nevertheless, the parallelization that MPI provides was not really used as the grid
was never big enough to make a big different. For that reason, to accelerate the simulations, the
code was migrated from the Marconi CPU cluster to the Marconi100 GPU cluster, without further
adjustments due to the compatibility of FELTOR. The use of Marconi100 GPU cluster gave us an
incredible computational power, although it limits to 24 h the maximum time a simulation can run.
Also, we added the customized Python functions for analysing and animating the results that were
completely developed from scratch, using the well known numpy, scipy and matplotlib libraries [30].

3.1.1 Discontinuous Galerkin methods

Galerkin methods are well known finite element methods to solve partial differential equations, dG
methods are one of them [29], [31]. Discontinuous Galerkin methods are distinguished from the classi-
cal methods by the fact that they do not impose continuity between adjacent cells, while classical ones
require continuity in the boundaries. Furthermore, dG methods can be used to solve elliptic equations
and they are proved to improve the convergence, being able of achieving superconvergence [32].

Discontinuous Galerkin methods use Legendre polynomials in each cell to approximate the solution
between the nodes. Legendre polynomials offer a wide variety of useful properties, specially for
derivation,

x2 − 1

n

dPn(x)

dx
= xPn(x) + Pn−1(x), (3.1)
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and integration, as we they are orthogonal in the [-1, 1] interval,∫ 1

−1

Pn(x)Pm(x)dx =
2

2n+ 1
δnm. (3.2)

Hence, to approximate the solution, one has to define as many points as the degree of the used
polynomial, between each node. These points can be placed randomly, but for convenience the
Gaussian-Legendre quadrature points are chosen to ensure an easy integration,∫ 1

−1

f(x)dx ≈
n∑
i=1

ωif(xi), (3.3)

where f is any given function, ωi is the quadrature weights, n is the number of points we have
and xi are the roots of a n-th degree Legendre polynomial. This solution is exact for any polynomial
of order 2n− 1.

Using these properties, the FELTOR library ensures an easy environment to solve the equations
of our models. First, a grid must be defined, which can have Cartesian or cylindrical geometry, in our
case Cartesian. The grid is done by defining the left and right boundaries, x0 and x1; lower and upper
boundaries, y0 and y1, order of the Legendre polynomial, n; number of nodes per size, Nx and Ny, and
the boundary conditions, bcx and bcy. This grid is then used to define the spatial derivative, and
other operators, as matrices. This facilitates the assembly of the system, as, for example, we can sum
all the terms, except from the time derivative, in equation 2.55 and then do the time integration to
solve the density. Furthermore, if one is using different boundary conditions for the different variables,
these can be specified when defining a matrix of a derivative operation.

3.1.2 Time integration

The time solver is really important as we need to maintain the code stable for as much as possible,
allowing our system to reach a turbulent state. While doing this, one has to take into consideration
the Courant–Friedrichs–Lewy (CFL) condition [33], or Courant condition, as breaking it would mean
breaking the simulation. The CFL condition states that the speed of the information, vinfo = ∆x/∆t,
has to be faster than the maximum speed in our system, vmax. Being ∆x is the size between the
nodes of our grid and ∆t is the time step size. One can notice that vinfo is the speed at which one
updates the system. This relation is expressed as,

C =
vmax∆t

∆x
=
vmax
vinfo

≤ Cmax < 1, (3.4)

where C is the Courant number and Cmax is the maximum allowed ratio. Intuitively, one can see
that if v > vinfo, then the algorithm will not be able of updating the grid on time, losing information
and making the simulation crash.

For the interchange and Hasegawa-Wakatani models, the karniadakis [34] time step was used,
which has proven to be a really stable time solver for hydrodynamical systems. Karniadakis time
integration is a 3rd order semi-implicit method used to integrate implicitly the viscosity term, to
ensure stability. This scheme uses the 3 previous time steps for integration, making it light in terms
of calculations, but heavy in terms of memory. For the complete model, 2 different solvers were used,
an explicit 3rd order total variation bound "TVB-3-3" [35] multistepper and an adaptive time stepper
"Bogacki-Shampine-4-2-3" [36]. The first method is a third order method, which uses the 3 latest
time position to explicitly extrapolate the next one, for a constant time step. The second one is a
third order Runge-Kutta embedded method, given a function an a time step, these methods gives
back the error of the time integration along with the solution. Hence, one can estimate a time step as
big as possible, so that the integration error is lower than a selected tolerance, avoiding breaking the
CFL condition. For that, a part from an initial time step, we need to give the tolerance. Although the
adaptive method allows us to optimize the time step, it does not do it for free. It needs to evaluate
the system as many times as possible until it fulfils the convergence criterion, while the multistepper
only evaluates the solution once. This change was made to ensure obtaining a turbulent state for
the complete model, as it needed significantly more time units to evolve from the initial condition.
In the complete model, the plasma velocity is slower, which allows to use a way bigger time step.
Hence, it was decided to use the adaptive time stepper until a certain time unit and then let the
instability grow with a fixed time step, so we could measure an evenly distributed time signal, which

https://feltor-dev.github.io/
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is necessary to study the evolution. As one might notice, this change makes the system more sensible
to the hyperdiffusion, as we are not solving it implicitly. However, total variation bound is more
stable than karniadais [35].

3.1.3 Advective derivative

It is important to highlight how does the code deal with the advective derivative. As it has been
stated, one can change the advection by a Poisson bracket. This can be seen in equation 2.53, which
is written again, (

v̂E×B · ∇̂
)
γ =

∂φ

∂x

∂γ

∂y
− ∂φ

∂y

∂γ

∂x
= {φ, γ}, (3.5)

where γ is any given function, in our case either the density, n; nor the vorticity ω.
In the beginning, for the IC and HW models, we used the Arakawa’s scheme for the Poisson

brackets, which is directly calculating the derivatives and multiplying them. For the complete model
this was changed, as during the process of this work, the FELTOR library was updated and the
upwind discretization for the advection operation [24], [37] was introduced. This works by directly
calculating the velocity first and multiplying it by the derivative, transforming equation 3.5 into,(

v̂ · ∇̂
)
γ = vx

∂γ

∂x
+ vy

∂γ

∂y
, (3.6)

where we have substitute the E×B velocity by any velocity, v̂, as we commented in section 2.2.5.
To the E × B velocity we will add the curvature in the density equations 2.55, 2.62, 2.65 and 2.79.
This is done because the curvature goes with the term ∂n

∂y . Hence, the velocity for each equation, the
density and vorticity equations, becomes

vn = vE×B + vκ = −∂φ
∂y

x̂ +

(
∂φ

∂x
+ κ

)
ŷ (3.7)

vω = vE×B = −∂φ
∂y

x̂ +
∂φ

∂x
ŷ, (3.8)

where the subscripts n and ω represent each equation.
The upwind scheme looks at the sign of the velocity vector on each point of the grid. Then, it

updates them using the nearest grid point from where the information comes from. This means, that
if the x velocity is positive in a point, as the plasma goes from left to right, the point gets updated
using only the value at the left.

At the end, this method was also use for the IC and HW models, as the radial velocity had to be
saved. This decision was taken for stability propose and standardization. Although the first results
were obtained using Arakawa’s scheme, this was not the case when the simulations were re-run to
include them in this report.

3.1.4 Boundary conditions

For the boundary conditions, in both cases, we will use periodic boundary conditions in the upper
and lower boundaries, y = 0 and y = ly. As we are looking at a tiny grid inside the reactor, we can
just assume that the poloidal direction is symmetrical and, hence, statistically equal. For the right
and left boundaries, x = 0 and x = lx, we use Dirichlet boundary conditions for all three variables in
the IC and HW models, n(0, y) = n(lx, y) = ω(0, y) = ω(lx, y) = φ(0, y) = φ(lx, y) = 0. This allows
us to confine the particles in the grid and not let them escape. Specially at the IC model, where due
to the perfect transport mechanism, plasma would leave the grid fast. Furthermore, using Neumann
boundary conditions at left and right boundaries makes the simulation unstable. For the complete
model, we use Dirichlet boundary conditions at the left boundary for all three variables. For ω and φ
we used ω(0, y) = φ(0, y) = 0, and for the density, due to the source, we use n(0, y) = nb. In the right
boundary, we used Dirichlet again for the potential, φ(lx, y) = 0 and Neumann boundary conditions

for ω and n so that ∂n
∂x

∣∣∣
(lx,y)

= ∂ω
∂x

∣∣∣
(lx,y)

= 0. As at the left boundary we have we have a source, we

can expect to have fixed values of density, potential and vorticity. In the right boundary, we can lose
density, then, the Neumann boundary conditions allows the density profile to evolve freely.
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3.1.5 Input and output files

The input is written in a json file, while the output is written in Network Common Data Form
version 4 (netCDF4). The json file makes it easy to introduce the initial conditions and define every
variable. The initial condition is always introduced as a blob. The blob is defined as a Gaussian
distribution for the density, and zero for φ and ω. A complete description and variable list can be
found in the documentation [30], which is an extension from the one already written in the FELTOR
library [28]. As a summary, the input file includes all the tunable variables of the code, spatial and
time dimensions, initial conditions, parameters of the equations, accuracy for the spatial and time
integration and the output grid. In the other size, the output file is separated in 2, as the program
saves 2 out put files, one for the general values, grid, time, invariant variables and field variables, and
another for the probes, where we save the positions of the probes and the values of the fields at those
positions. The first netCDF4 file allows us to visualize the evolution of the system, while the second
one allows us to make statistics.

One of the important properties of dG methods is that, a part from solving equation, it can also
be used for interpolation. A quality that is used to reduce the data volume. In the simulation one
uses the variables Nx, Ny and n to specify the grid size, nNx× nNy, during the simulation, and then the
variables Nx_out, Ny_out and n_out, to specify the output grid size, n_outNx_out× n_outNy_out.
Thus, before saving the field values, we interpolate into a less dense grid. Therefore, the fields are
saved at lower resolution, while we do not make this interpolation for the probes.

3.2 Cross Power Spectral Density

One of the main jobs done during this thesis was the creation of the Python class analysis [30] and the
many scripts to analyse and animate the output from the simulations. This can be seen in the Github
repository (along with the FELTOR programs used in this project) [30]. In this Github directory one
can find all the necessary code to run simulations and inspect, animate and analyse the results.

The key part of this code is the one focused on studying the phase difference between the density
and the potential. We have already proved in section 2.2.4, that during drift wave turbulence, the
potential and the density become on phase, 0 rad; and during interchange turbulence, they become
out of phase by π

2 rad. The question is, how can we study this? One could make time cross-correlation,
but this would only show the time that potential needs to catch up with density, and it is not that
reliable. Hence, we propose to use the cross power spectral density (CPSD) as it has already been
presented [22]. The CPSD is defined as the time cross correlation in the Fourier space [38]. Thus, if
we have 2 real discrete signals x(l) and y(k), we can define the CPSD as the multiplication of both
signals transformed,

CPSD(ω) =

∞∑
l=−∞

x(l)e−iωl
∞∑

k=−∞

y(k)e+iωk = X(ω)Y ∗(ω), (3.9)

where the higher case refers to the Fourier transform of the signals. This results in a complex
function that, given a frequency, returns a complex value. The amplitude of this value refers to
the contribution of that frequency and the complex value refers to the phase difference between the
signals at that frequency. As it has been mentioned, we expect to get higher contribution for low
frequencies with the already mentioned phase difference. The CPSD is implemented using the Scipy
function csd from the signal package [39], [40].

To simplify this explanation, let’s do a naive example. Considering 2 correlated signals, x and y.
Which are defined as x(t) = sin (ωt) and y(t) = sin (ωt+ ϕ), where ω is the angular frequency of both
waves, ω = 2π rad/s; and ϕ is the phase difference, ϕ = π

4 rad. The angular frequency ω if related to
a 1 Hz frequency. The signals are measured from 0 s to 5π s at a frequency of fs = 63.6 Hz, which can
be seen at the top of figure 3.1. From the CPSD of these 2 signals, we get the phase and amplitudes
at the bottom left and right corners of figure 3.1 respectively. As we can see, the peak of amplitude,
with a value of 1.48, is at f = 1 Hz. At that frequency, the phase difference is π

4 rad. This are the
values of ω and ϕ we give to the signals. This means that the frequency with higher contribution
is the frequency of both signals and the angle at that frequency is the phase relation between both
signals. The rest of frequencies, the amplitudes decays, except from the nearest to f = 1 Hz, with
values lower than 5 orders of magnitude lower. The rest of the frequencies do not contribute and are
neglectable, as they are non-zero just because of boundary effects, the signals are not infinite.
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Figure 3.1: CPSD of 2 signals, in form of sines with angular frequency ω = 2π rad/s and phase
difference ϕ = π

4 rad. At the top both signals are depicted, at bottom left the phase difference
obtained from the CPSD is plotted and at the bottom right the amplitude from the CPSD is placed.
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Figure 3.2: Removing trend from both simulations and EAST probes
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Similarly to this example, we will apply the CPSD to the output of the probes to calculate the
phase relation. For that, we will take the time evolution of the density, potential and radial velocity, at
the same spatial position and pre-process them. After the pre-processing, we will apply the CPSD to
the potential with the density and to the radial velocity with the density. From this we should obtain
the predicted phase relation between the variables, mainly for the low frequencies, which should have
high contribution. We will do the same for the experimental data obtained from EAST and compare
it.

For the pre-processing, first we need to isolate the signal at a quasi-stable state. Thus, we will
erase the growing from the initial condition to a saturated turbulence state. Then, we have to erase
any linear trend, or any higher order trend, from every probe. We want to focus on studying the
turbulence in the system. The signals from the simulation have a linear trend that will be erased by
making a linear regression and subtracting it from the signal, centering it around 0, as can be seen in
figure 3.2a. For the experimental data from EAST, as there is a third order polynomial trend, we will
use a polynomial fitting and subtract it from the signal, an example of this can be seen in figure 3.2b.
Afterwards, we will average the phase relation in every probe along the x axis. To do so we need to
do a weighted average with the contribution.
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Chapter 4

Results

To verify this novel approach to study and characterize the turbulence at the near borders of the
LCFS, three mayor experiments were conducted, one for each model, where it is expected to measure
the phase difference between density and potential at a saturated turbulence state, as well as the
phase relation for radial velocity and density. Furthermore, the same statistical measurements are
going to be performed over the data obtained from EAST, at different regions, at both sides of the
LCFS. First, we need to study the behaviour of turbulence at a saturate state. We need to verify that
our simulations, over the interchange and Hasegawa-Wakatani models, the theoretical prediction is
fulfilled and how. We will make both approaches equivalent by choosing similar parameters. Then,
we need to apply the same study over the complete model to see how does the instability develop
and how the result differs. Finally, we will do the same analysis with the data obtained from EAST.

Before starting, we must give account of the conversion of the time and spatial dimensions. For
that, we will assume that we are only using deuterium and, for convinience, we will choose the
Larmor radius, ρs, as 1 mm and the gyrofrequency as ωc = 33.3 rad MHz, meaning that 1 time unit
= 1 ω−1

c = 30 ns. Hence, the magnetic field results in B = 0.696 T, which is bit low, and the electron
temperatures becomes Te = 23.215 eV, which is the same as 269,402.24 K.

4.1 Verification experiments

For the verification experiments, we will choose similar variables for both models, the only 2 variables
that are not in common are the magnetic curvature, κ, and the plasma conductivity, α. For the spatial
and time dimension, we choose dt = 0.0025 ω−1

c ≈ 75 ps, lx = 64 ρs ≈ 64 mm, ly = 128 ρs ≈ 128 mm,
with the same lx : ly relation for Nx:Ny, Nx=128, Ny=256. The time step is the time separation between
measurements for the probes, this means that the measurement frequency will be f = 13.3 GHz. To
measure the potential, density, vorticity and radial velocity time evolution, we placed 100 probes
along the radial axis, x, at the center of the poloidal direction, y = 64 mm. The separation between
them will not be even, as the grid is not evenly distributed and we displayed 100 probes along
3 × 64 = 196 grid points. The density profile, g, and the viscosity, µ, are chosen g = 1.0 and
µ = 10−4. In table 4.1, we can see all the shared variables by both models, with a little description.
If one wants to reproduce these experiments, the input files, with these settings, can be found in the
folder /Feltor_2D_Master_Thesis/FELTOR-model/ in the Github repository [30]. The names of the
input files are input_IC.json, input_HW_mod.json and input_HW_ord.json, where one only needs
to choose κ or α, by changing the variables curvature or adiabatic, respectively.

4.1.1 Interchange model

Although, both experiments were done at the same time, we will start with the interchange model,
equations 2.55, 2.54 and 2.56, as it was the first one to be implemented. The only free parameter we
have left with is the curvature, κ. For that, we made three experiments with κ = {0.06, 0.015, 0.00375}.
A last moment error was made when performing these simulations, the time step was selected to
dt = 0.001 ω−1

c = 30 ps, and the grid dimensions were doubled in each axis. This does not change
the result in a significant way, the only change is in the measurement frequency, as it increases to
f = 33.3 GHz.
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Name Type Value Description
n integer 3 Gaussian nodes in x and y
Nx integer 128 grid points in x
Ny integer 256 grid points in y
dt integer 0.0025 time step in units of ω−1

c

n_out integer 3 Gaussian nodes in x and y in output
Nx_out integer 32 grid points in x in output fields
Ny_out integer 64 grid points in y in output fields
itstp integer 200 steps between outputs
eps_pol float 1e-5 accuracy of polarisation solver
eps_time float 1e-6 accuracy of implicit time-stepper
stages integer 3 of stages in the multigrid algorithm ( Nx and

Ny have to be divisable by 2**stages)
dens_prof float 1 Density profile g
nu_perp float 1e-4 pependicular viscosity ν
amplitude float 0.5 amplitude A of the blob
sigma float 1 blob radius σ
posX float 0.5 blob x-position in units of lx, i.e. X = pxlx
posY float 0.5 blob y-position in units of ly, i.e. Y = pyly
lx float 64 lx
ly float 128 ly
bc_x char ”DIR” boundary condition in x (one of PER, DIR,

NEU, DIR NEU or NEU DIR)
bc_y char ”PER” boundary condition in y (one of PER, DIR,

NEU, DIR NEU or NEU DIR)

Table 4.1: Common variables used for the interchange and Hasegawa-Wakatani model.

The main point of doing these three experiments was to show the relation of κ with the phase
relation, as higher the curvature higher the coupling between density and radial velocity. Instead of
that, we got an unexpected results. For the three values of κ we got similar results as the one seen in
figure 4.1, where from left to right we have the potential, density and vorticity shown for κ = 0.015 at
time t = 1800ω−1

c = 54 µs. Due to the Dirichlet boundary conditions, when the initial blob is ejected
to the right boundary, the plasma is reflected back generating two big convective cells, which can be
clearly seen in the potential, left graph from 4.1. It is important to mention that we can not see tiny
structures in the potential as it is a global variable, in contrast with density or vorticity which are
local variables. The big convective cells generate a dipole moment in the interface between them, as
they have opposite electric potential. This equipartition turbulent state is well known and has already
been studied [41]. The two big convective cells dominate the transport of the system and only allow
the plasma to be transported form left to right and vice versa by thin streams between the cells. This
equipartition turbulence is caused mainly due to a high Reynolds number, which is caused by the too
high viscosity, which could not be reduced due to stability. The streams between the vortexes can
be easily seem in the density snapshot, central image of figure 4.1. From the streams it is interesting
to notice that the lower one has negative density, and it is moving to the left, while the one in the
higher part has positive density, and it is moving to the right. The negative one is probably a hole,
which would explain why the density is negative and it moves backwards. As seen in the vorticity,
right image in figure 4.1, between both there is also really turbulent zones, which are the one we need
for our study. Still, this is a problem, we might not be able of measuring the turbulent zones with
the probes. The interface between vortexes might not be centered in the middle where we had our
probes, seen as the dots in the middle of every graph in figure 4.1. Not all the probes are plotted, as
we used 100, they would look just as a straight line, hence only 20 are depicted. Also, we shall not
forget that the density shows a growing gradient, from left to right, which is mainly generated from
the density gradient g.

To avoid the creation of this equipartition turbulence, studies with different lx : ly were also done,
which resulted in the union of both vortexes creating a periodic mode with transport mainly in the
poloidal direction [42]. In this regime, there is nor radial transport, reason why it was decided to not
include these results.
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Figure 4.1: Snapshot of the Rayleigh-Taylor instability in magnetically confined plasma obtained using
the interchange model, with κ = 0.015 at time 1800 ω−1

c =54 µs. From left to right, the potential,
density and vorticity are shown. At the center of each we can see 20 of the probes used.

To study the phase difference between the potential and the density, as well as between the radial
velocity and the potential, the simulations were run as long as possible, so that the system can reach
a quasi-stable state. From all of the signals we erase the last 5 % for the study, mainly because some
of the simulations crash as they broke the CFL condition. This mainly happened in the complete
model, but as an standardization method we did it for every simulation. From the remaining, we use
the last 12 µs for the statistics. This means that for the CPSD we use 160,000 points, 400,000 when
using dt = 0.001, of every probe signal ensuring the statistical robustness.

From each probe we see a signal similar to the ones seen at the top of figure 4.2, where we can see
the normalize density and normalize potential against time, in the top left corner; and the normalize
density and normalize radial velocity against time, in the top right corner. The normalization is
done by erasing the linear trend and dividing by the highest number of the signal, for the density
we used a lower value, to make it easier to visualize. In both cases the signal is taken in the central
position of the grid, x = 32.56 mm, for the last 0.9 µs of the simulation done with κ = 0.015. In the
signals, it is difficult to see the phase relation, density has a really high frequency, while the potential
and the radial velocity have much slower time evolution. However, when we look at the solution
from the CPSD, we can see that the lowest frequencies have the largest contribution, top right of
figure 4.2. Where from 0 MHz until 100 MHz, we have that the peaks of contribution decreases 1
order of magnitude, afterwards, the amplitudes become neglectable. At those frequencies, we obtain a
phase relation between φ and n, bottom left corner, that disagrees with the theoretical result, around
π
4 rad. This discrepancy is seen more ore less everywhere, and might be caused by the vortexes. For
the phase shift between vr and n, bottom right corner, we have the expected 0 rad relation. Thus,
when averaging the phase at every radial position, we expect to see nearly straight line for the radial
position at 0 rad and a varying curve for the potential.

In figure 4.3 it is depicted the average phase relation between the potential and the density, top;
and between the radial velocity and the density, bottom. The phase relation between potential and
density for κ = 0.00375 and 0.015 the phase seems to be generally 0 rad, disagreeing the theoretical
result, for the center of the grid, at the boundaries there are some changes. For κ = 0.06, we can
see that in the center the grid, between x = 15 to 45 mm, the phase oscillates around π

2 rad. This
suggests that, for kappa = 0.00375 and 0.015, the probes might be measuring the vortexes more
than the turbulence, while for κ = 0.06, it might be measuring the turbulence, at least part of it.
Another reason might be that the coupling is not that strong as κ is not high enough. However, it is
important to notice that the big convective cells rotate synchronized for all the variables, which means
that potential and density are in phase, in these regions. While the boundary effects are probably

https://docs.scipy.org/doc/scipy/reference/generated/scipy.signal.csd.html
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Figure 4.2: From the interchange model: normalized potential and density, top left; normalized radial
velocity and density, top right; phase relation between potential and density, bottom left; and between
radial velocity and density, bottom right.
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related to the fact that the streams that transport plasma radially, get thicker at the extremes. The
most interesting result is seen for the radial velocity, as there we can see that for all the values of κ,
we measure a 0 rad phase relation everywhere, except for κ = 0.00375 between x = 37 to 50 mm. The
reason for this change in the phase for κ = 0.00375 is unclear, after analysing the time evolution of
that simulation, we could suggest that it may be related to a perturbation of the system by a hole. As
it has been already mention, holes are places with low density that move backwards to the expected.
Still, we do not see any significant change when we look at the average phase between φ and n. Hence,
further investigation should be done, as this could be an interesting result. However, the fact that,
when analyzing the phase between the radial velocity and the density, we still get 0 rad, means that
even with equipartition turbulence, the transport is perfect for IC. Not measuring the theoretical
result for the potential is mostly related to the fact that this phase is related to the creation of dipole
moments. The two big vortexes create a big dipole moment. This big dipole moment might only
be measured at the interface of the convective cells, where turbulence dominate and the stream are
placed. Hence, when measuring inside a cell, plasma might not be perturbed by the dipole moment,
getting synchronized with the vortexes. Inside the vortexes the electric potential becomes really
high and due to periodic boundary conditions, this dipole moment might be cancelled. Also, it is
important to remind that the linearization we made to predict the phase shift was done assuming
periodic boundary conditions, while we use Dirichlet boundary conditions for these simulations. Thus,
these results match the expected.

4.1.2 Hasegawa - Wakatani model

In case of the Hasegawa-Wakatani model, we realized that the ordinary model fails in stability and
could not be used successfully for this project. Hence, from now on, only the modified HW model
will be used, equations 2.64, 2.65 and 2.63, even for the complete model. In this case, the only free
parameter is the plasma conductivity, α. We also performed 3 simulations, with α = [0.2, 0.05, 0.0125].
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Figure 4.4: Snapshot of the Drift-Wave instability in magnetically confined plasma obtained using
the modified Hasegawa Wakatani model, with α = 0.2 at time 1800 ω−1

c = 54 µs. At the center of
each we can see 20 of the probes used.

From these simulations, we obtained the expected drift-wave turbulence, which is seen in figure 4.4,
from left to right: the potential, density and vorticity. In this snapshot of the evolution of the system,
we can see the DW turbulence for a plasma conductivity α = 0.05 at time t = 1800 ω−1

c = 54 µs. For
the other values of α we get a similar result. As for the IC model, the dots in the center are the probes,
were we have only plotted a fifth of them, the rest are in the same poloidal position. In this case
the evolution is quite different, as DW is not a perfect transport mechanism, we do not see the blob
ejected to the right boundary. At the beginning of the simulation, the blob starts developing eddies
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that are propagated all around the grid until it generates the structures we can seen in figure 4.4.
As in the IC model, the potential does not represent the tiny eddies seen in the density or the tiny
vortexes seen in the vorticity. Still we can see zonal models on it, which are seen as columns, also
visible for the vorticity [26]. Also, we have again a growing gradient in the density, caused by g. As
the turbulence is propagated everywhere, we can be sure that we will measure it with the probes.
Hence, the results from the probes should agree with the theoretical results regardless the position of
the probe.
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Figure 4.5: From the modified Hasegawa-Wakatani model: normalized potential and density, top
left; normalized radial velocity and density, top right; phase relation between potential and density,
bottom left; and between radial velocity and density, bottom right.

To analyse the solution we do the same as we did for the IC model, erase the last 5 % of the signal
and use the last 12 µs. Similarly, as we did before, in figure 4.5, we can see an example of the signals
obtained from the probes and the solution from the CPSD. The signals, seen at the top of the figure,
are more clear than the ones seen in figure 4.2. If we inspect the graph in the top left corner, we can
see that the density and the potential are completely in phase, with some shifts for high frequency
peaks. The tendency of the signals, the low frequency oscillations, are completely in phase. This is
translated to 0 rad phase difference between density and potential, as seen at the bottom left corner,
for all the frequency spectrum. This is followed with high contribution of the low frequencies, as seen
in the graph in the bottom right corner, where the maximum is around 10−10 and then it decays
really fast, nearly two orders of magnitude lower at 10 MHz. For the radial velocity, at the lower
right corner, we can see that the overall peaks are always a bit shifted, they are not in phase. This
is translated with nearly a π

3 rad phase. In this case, the amplitude has the same tendency, the peak
is at nearly 10−9 and then it decreases, not as fast as for the potential. Again, we expect a similar
tendency for all the probe. For that, we will plot the average phase for each radial position, so we
can see the overall phase.

In figure 4.6 we can see the average phase between potential and density, top; and radial velocity
and density, bottom. The average phase between potential and density looks exactly as the prediction,
except for some boundary effects. The phase is basically 0 rad everywhere but the boundaries. This
means that, as we have seen in figure 4.5, the potential and the density are completely in phase,
independently of the conductivity. The phase relation between radial velocity and density, seems
more interesting. When we look at it, we can see that when we increase α the uncoupling is larger,

https://docs.scipy.org/doc/scipy/reference/generated/scipy.signal.csd.html
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for α = 0.2, we get a signal with an absolute value that oscillates getting values between π
3 and π

2 rad.
The change of sign is not significant, still, it is important to highlight, that it is created due to the
zonal modes. The zonal mode columns in the vorticity have opposite signs, which create this change
in sign. When we look at lower values of α, we see that for α = 0.05, this tendency is still remaining,
specially in the right side, but the oscillations are more frequent and the values are not that well
defined. The same happens with α = 0.0125, it is hard to decide if the average phase is worse or
better, in terms of the prediction. Zonal modes are not that well defined for these two cases, which
emphasizes these oscillations. However, the phase difference between potential and density fulfills
the prediction for all the simulations and we should expect that increasing α should fix the phase
difference between vr and n to the prediction. Which shows that the transport during DW instability
is inefficient.
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Figure 4.6: Phase relation between potential and density, top; and between radial velocity and density
for the modified Hasegawa Wakatani model.

4.2 Characterisation of turbulence in the Complete model

After probing our theoretical results using the separate models, IC and HW, it is the moment to
test the complete model, equations 2.78, 2.79 and 2.80. For that, as we did earlier, we will fix every
variable except from α, allowing us to show how this variable controls the phase relation between
potential and density in the edge. Higher α, higher the coupling and the nearer the phase to 0 rad.
The fixed variables are dt = 0.1 ω−1

c ≈ 3 ns, lx = 200 ρs = 200 mm, ly = 100 ρs = 100 mm,
with the same lx : ly relation for N_x:N_y, N_x=200, N_y=100. The time step is the time separation
between measurements for the probes, thus, the measurement frequency will be f = 333.3 MHz.
The curvature, κ; the viscosity, ν; the sheath dissipation, σ; and the sheath potential, Λ; are chosen
κ = 0.0015, ν = 2 · 10−5, σ = 5 · 10−5 and Λ = 0. The source term is activated in the region
between x = 0 mm and xa = 10 mm, with a characteristic time scale of τ = 50 ω−1

c = 1.5 µs. The
LCFS is at xb = 100 mm, separating the edge and the scrape-off layer. The vorticity is damped at
xc = 190 mm. The rest of the variables, can be seem in the table 4.2, there is also an input field, called
input_Complete.json, in the github repository, in the folder /Feltor_2D_Master_Thesis/FELTOR-
Complete/ [30], in case one wants to reproduce the result. The non-fixed variable, the conductivity,
will be defined as α = {0.01, 0.005, 0.001, 0.0005}. It is important to notice that α = 0.05, the center
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of the interval in the HW experiments, is not taken as it makes the simulation unstable, it is too
big and it breaks the CFL condition fast, which would force us to reduce the time step, with no
satisfactory result.

Name Type Value Description
Time_step char ”Mixed” Specifying the time integration (multistepper,

adaptive or mixed)
Time_change float 75000 Time for the change from adaptive to multistepper

in mixed Time_step

n integer 3 Gaussian nodes in x and y
Nx integer 128 grid points in x
Ny integer 256 grid points in y
dt integer 0.0025 time step in units of ω−1

c

n_out integer 3 Gaussian nodes in x and y in output
Nx_out integer 32 grid points in x in output fields
Ny_out integer 64 grid points in y in output fields
itstp integer 200 steps between outputs
eps_pol float 1e-5 accuracy of polarisation solver
eps_time float 1e-6 accuracy of implicit time-stepper
stages integer 3 of stages in the multigrid algorithm ( Nx and Ny

have to be divisable by 2**stages)
curvature float 0.015 Magnetic curvature κ
sheath_diss float 5e-5 Sheath disspation term σ(x)
sheath_pot float 0 Sheath potential Λ
tau float 50 Relaxation term τ for the source Sn
nb float 50 Constant term nb for the source Sn
nu_perp float 1e-4 pependicular viscosity ν
amplitude float 0.5 amplitude A of the blob
sigma float 1 blob radius σ
posX float 0.5 blob x-position in units of lx, i.e. X = pxlx
posY float 0.5 blob y-position in units of ly, i.e. Y = pyly
lx float 64 lx
ly float 128 ly
tanh_width float 0.001 thickness of the boundary between IC and HW
x_a float 1/3 xa: delimiter for the source term. It has to be a

float betwen 0 and 1, so that the actual value os
x a * lx

x_b float 2/3 xb: delimiter between IC and HW. It has to be a
float betwen 0 and 1, so that the actual value os
x b * lx

bc_x_n char ”DIR” boundary condition in x for the density (one of
PER, DIR, NEU, DIR NEU or NEU DIR)

bc_x_omega char ”DIR” boundary condition in x for the vorticity (one of
PER, DIR, NEU, DIR NEU or NEU DIR)

bc_x_phi char ”DIR” boundary condition in x for the potential (one of
PER, DIR, NEU, DIR NEU or NEU DIR)

bc_y_n char ”PER” boundary condition in y for the density (one of
PER, DIR, NEU, DIR NEU or NEU DIR)

bc_y_omega char ”PER” boundary condition in y for the vorticity (one of
PER, DIR, NEU, DIR NEU or NEU DIR)

bc_y_phi char ”PER” boundary condition in y for the potential (one of
PER, DIR, NEU, DIR NEU or NEU DIR)

Table 4.2: Variables used for the complete model.

There are three things to appreciate here. First, at the beginning of the experiment, the adaptive
time stepper is used until t = 75000 ω−1

c = 2.25 ms. In this interval the time step, dt, is not fixed,
afterwards it will become 3 ns. As it has been explained, this is done to increase the speed of evolution
and reach a turbulent quasi-stable state. Second, the number of points per space unit has decrease
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Figure 4.7: Snapshot of the plasma dynamics in magnetically confined plasma obtained using the
complete model, with α = 0.005 at time 89438.4 ω−1

c = 2.68 ms. At the center of each we can see 20
of the probes used.

to half the value, using the same relation as for the original models we could have had a grid of
1200× 600, this is computationally too expensive and unaffordable, the time a simulation can run in
Marconi100 is limited. Third, the viscosity, ν, is 5 times lower. Due to the stability of this simulation,
we were able of reducing the numerical diffusion.

As it happens with the IC and HW models, the view of the output does not change that much.
Thus, we can discuss the evolution of the system with just a snapshot in the quasi-stable state of one
simulation. In figure 4.7 we can see, from top to bottom, a picture of the potential, the logarithm of
the density and the vorticity, after 2.68 ms, from the simulation with α = 0.005. Instead of the n,
we plotted log n, as now n is positive define, and it makes the structures easier to see. The vertical
lines represent, from left to right, xa, xb and xc. The dots in the center are the probes, as we did
earlier, we only plotted 20 of the 100 used, all of them are in the same poloidal position. The vertical
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lines will also appear in every plot where the x axis is present. There are some interesting things to
notice from these plots. If we look at the potential, top, we can see that in the edge there are no
structures, although in some of the simulations we can see the zonal modes in the potential in the
form of vertical straight structures [26]. In this picture the zonal modes are not that clear, but the
high potential vertical column near the LCFS is a consequence of this. In the density, center, it is
interesting to notice that, although half the edge seems to be full of vortexes, as seen in the vorticity,
bottom; due to the n source, the turbulence is hided from x = 0 mm to x ≈ 75 mm. Afterwards,
between x = 75 mm and the LCFS, x = 100 mm, we can see really high instability, generated by
the interface of both models, where a big gradient of density is noticeable. Thus, we can see how the
region with close magnetic lines is able of confining the plasma with high density, while a low dense
part is emitted along the SOL. The plasma that is emitted, in our case, is just sent to the wall, were
we can see really clearly the IC turbulence, with the mushroom characteristic shape structures. The
vorticity, even if we do not use it for our analysis, becomes a clear way of visualizing how far is the
turbulence propagated, in this case, it is not propagated all over the grid, which is a topic highly
discussed in the bibliography [43], and could be a topic of interest for the future. Also, we can see
some columns before the LCFS, where we can see that maxima and minima of vorticity are separated,
these columns trouble up and down, as a consequence of zonal flow.
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Figure 4.8: From the complete model in the edge: normalized potential and density, top left; normal-
ized radial velocity and density, top right; phase relation between potential and density, bottom left;
and between radial velocity and density, bottom right.

To study the phase differences, we will first plot the signals obtained by the probes. As we have
already done before, we will only look at one probe, in the interval we use for the average phase
relation. In this case, as it has been mentioned, most the simulations with this model ended before
the expected as they broke the CFL condition, although we damped the vorticity to ensure stability.
For this reason, the treatment of the data will be done by erasing the last 5 % and taking the last
150 µs, 50000 measurements from each probe, of the remaining. In this case, we have 100 probes
placed along the center, as seen in figure 4.7, as evenly distributed as possible. Before looking the
average, we shall look at the signals, which will be done by first looking the signals in the edge, at
x = 50.50 mm, figure 4.8; and then in the SOL region, at x = 141.11 mm, figure 4.9. This will be
done for the simulation with α = 0.005. In both cases, we can see the whole analysed signal, as the
fluctuations are slower than for the IC and HW models.



4.2. CHARACTERISATION OF TURBULENCE IN THE COMPLETE MODEL 39

In figure 4.8 we can see the normalized potential and density, top left corner. Here, we can see that
the fluctuations for both variables are completely in phase for nearly the whole evolution. Although
some of the peaks are a bit shifted. For this reason, when we look at the phase difference, bottom left
corner, we can see that it is not exactly 0 rad, but it does not grow more than 0.15π rad, where the
contribution as already decay almost 2 orders of magnitude. The amplitude, bottom right corner, as
expected, has the maximum value for the lowest frequency, around 10−12 and it decays quite fast.
For the phase between radial velocity and density, we can see that the peaks are always shifted, the
density seems to be following the radial velocity, top left corner. This is reflected as an almost −π4 rad
phase between both, for the lowest frequencies, which are the ones with higher contribution. The
contribution is a bit different from the one between density and potential, the maxima are at the
lowest frequencies and it stays straight till 1.3 MHz and then it decays quite fast. Thus, along the
edge we might see the average phase relation variate.
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Figure 4.9: For the complete model in the scrape-off layer: normalized potential and density, top
left; normalized radial velocity and density, top right; phase relation between potential and density,
bottom left; and between radial velocity and density, bottom right.

In figure 4.9 it is shown that, contrary to the prediction, n and φ are out of phase by π rad, bottom
left corner, as when the density is positive the potential is negative and vice versa, top left corner.
The change from π rad to −π rad is meaningless, as both been out of phase π rad or −π rad is the
same. This result is still not really understood and it needs further work. Also, the π rad phase for
low frequencies is followed with a peak in amplitude, around 10−12, that decreases quite fast, as seen
in the amplitude graphic, bottom left corner. For the case of the radial velocity, we can see that both
signals are not always in phase, although the general trend seems to confirm an in phase relation, top
right corner. This generates a phase difference of 0 rad for all the frequencies, as seen in the phase
graph, bottom left corner. This result agrees with the prediction but it is still a bit confusing, one
would expect to see it clearer in the signals. when looking at the amplitude graphic, bottom right
corner; we see, as in the edge, that the amplitude is highest for the lowest frequencies and maintains
straight till 1.3 MHz, then it decays quite fast. This means, that similarly to the result in the edge,
figure 4.8, the 0 rad phase relation is fulfilled for the vr and n, while the relation for φ and n is not
really fulfilled. Now it is interesting to see how does the average phase look along the radial axis.

The average phase relation between φ and n are depicted at the top of figure 4.10. Here we can see
that in the edge region the higher α the nearer the phase is to 0 rad, the coupling becomes higher. It
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is interesting to notice that near the source for α = 0.05, there are some fluctuations, from x = 0 mm
to x = 26 mm. These fluctuations might be related to the fact that in this case the turbulence is not
propagated all along the full grid. As seen in figure 4.7, where the vorticity vanishes from x = 0 mm
to x=35 mm, more or less for κ = 0.005. In the case of the lowest α values, 0.001 and 0.0005,
we see some peaks between the end of the source, x = 10 mm, and the high turbulence region at,
x = 75 mm. These peaks are related to the vorticity columns, although they seem to become smaller
as α increases. At the current state of the thesis, there is no explanation, further research must be
done in this area. One could suggest that it is a consequence of small turbulence created in these
columns by some up and down transport. It is also important to remember that IC turbulence is also
present. In the region near the interface, between x = 75 and 100 mm, the phase relation becomes
between 0 rad and −π4 rad, due to the high turbulence and it decreases to −π2 rad at the LCFS, as
predicted by the theory for the IC turbulence. Still, at the SOL, we can see that the phase relation
goes to ±π for all the simulations. There is no explanation for this effect, although we can suggest
that it is generated from the reflection of the potential in the boundary or from some effect from the
edge. As we have already mentioned, φ is a global variable, which means that can be influenced from
other parts of the grid. We use Neumann boundary conditions, which do not allow flux to abandon
the grid and it might be reflected. Thus, we suspect that it is generated because the grid is not big
enough to neglect the action range of the electric potential.
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Figure 4.10: Phase relation between radial velocity and density, top; and between potential and
density for the Complete model.

In the case of the radial velocity, we can see the average phase difference with respect to the
density at the bottom of figure 4.10. In the inner region, we can see the same effects, more or less,
higher the conductivity better the uncoupling between vr and n, but we can see that between the
source and the interface, the transport seems to be quite efficient, with almost 0 rad phase difference.
The fact that the turbulence got much faster propagated with lower α give us reasons to think that
the conductivity was not high enough so that DW turbulence could be dominant over the IC, we
should highlight that the highest conductivity value used in this simulation is the lowest used for
the HW model in the previous section. Furthermore, we shall not forget that κ is not only active
at the SOL, hence IC turbulence acts in the edge. Still, we have to notice that near the LCFS, at
the interface, where the turbulence seems to be more clearly produced, the phase relation gets to
values between π

4 rad and almost π
2 rad and it decreases to 0 rad at the LCFS. This is an important
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point, as this result suggests that from x = 75 mm until the LCFS we have a mix between DW and
IC turbulence. This explains why a part from having a poloidal velocity in this range, we also have
radial transport. In the SOL, we can see that we have a phase relation of nearly 0 rad all over the
region, till the vorticity sink. This is a proof of the perfect transport in this region, the low amount
of plasma that crosses the LCFS is directly ejected to the wall.

From both phase characterizations, it is important to mention and highlight that, although there
are some questions to be answered, there seems to be a clear differentiation between the edge and
the SOL at the LFCS, a part from a mix of IC and DW turbulence at the edge.

4.3 EAST experiment

Finally, we shall apply this technique to an experimental case so we can probe the validity of it in a
real case. As we have already mentioned, we will use data obtained from probes inserted inside the
EAST reactor. We have to highlight that this data is not ideal for our propose, as it is not detected
in the same place, the prove measures while it is moving and the measurement frequency is much
lower compared to the prove frequency in the simulations, f = 1 MHz [12] against the 13.3 GHz from
the IC and HW models or 333.3 MHz with the complete model, and the way of relation between
parameters makes them somehow correlated.
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Figure 4.11: Signal comparison from the probes used in the EAST reactors. From left to right,

comparison of the normalized Isat and v
(23)
r and comparison of the normalized φ

(12)
f and Te. From

top to bottom we have the regions of the comparison, near edge and far SOL. The signals are just
a piece of the from each region, from r = −10 to -9.5 mm, for the near edge; and from r = 15.5
to 16 mm for the far SOL. The near edge signal is taking at the time range from t = 1.726615 to
1.726879 s and the far SOL is taking in the range from t = 1.713373 to 1.713639 s. Which is a bit
unclear in graphs.

The first thing we need to do is to decide which variables use, as there are more than 10 possible
variables, from section 2.3. One could argue that the best would be to apply the CPSD to compare
the density with the plasma potential, which is optimal as they are measured at different poloidal
position and they are related through the temperature, equations 2.88 and 2.89. Hence, the next
obvious couple of variables are the density and the radial velocity. We can approximate the density
as ion saturation, so that n ≈ Isat, which allows us to not rely on Te and calculate the radial velocity

http://english.ipp.cas.cn/
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at the same poloidal position, as v
(23)
r using equation 2.90. Also, we propose to use Te and the

floating potential φ
(12)
f , calculated with equation 2.86. Te and φ

(12)
f are linearly dependant through

equations 2.87 and 2.88, but they are the only couple of variables giving a reasonable solution, as we
will see.

In figure 4.11 we have plotted Isat and v
(23)
r versus time, in the left side; and φ

(12)
f and Te versus

time, in the right side. We have separated the plots in 2 regions, the near edge, at the top; and the far
SOL, at the bottom. We should expect to see similar graphs for the far edge and near SOL. The time
regions at the near edge are from t = 1.726615 to 1.726879 s, corresponding to r = −10 to -9.5 mm;
and at the far SOL from t = 1.713373 to 1.713639 s, corresponding to r = 15.5 to 16 mm. When

comparing Isat anf v
(23)
r at the near edge, top left corner, we can see that, even if there are some

places that the frequency of each signal is not the same or there are a bit out of phase, the general

trend indicates that Isat and v
(23)
r are in phase along the whole near edge. At the far SOL, we have

the same result, although the frequency of v
(23)
r is much lower, when v

(23)
r is maximum, also is Isat

and the other way around, when v
(23)
r is minimum, also Isat is minimum. Hence, we might not find a

way of distinguishing the SOL from the edge using these signals together. When looking at the φ
(12)
f

and Te signals at the near edge, top right corner, we can see that whenever one is maximum the other
is minimum, which makes sense as Te depends linearly on −φ(12), equation 2.87. Therefore, at the
edge we should expect a ±π rad phase difference. When looking at the SOL, bottom left corner, we
can see the same tendency, but some of the peaks are shifted, as Te also depends on φ+. This local
variations in the phase, will give us a phase relation different from ±π, which is our aim to be able
of measuring the LCFS using this technique.
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Figure 4.12: CPSD between radial velocity and ion saturation. Phase relation in the top and ampli-
tude, or contribution, in the bottom. Edge region in the left and SOL in the right.

The phase relation between Isat and v
(23)
r can be seen in figure 4.12. Here we can see that the

amplitude, depicted at the bottom of the figure, does not decay so fast as we have seen from the
simulations, basically because the lowest frequencies are the ones with higher contribution and the
frequencies that we study here are much lower. Still, from 0 to f = 105 Hz we can accept to have the
most important ones, as the amplitude decays 1 order of magnitude in that range. In this range, we
can see that the phase difference, depicted at the top of the image, is almost 0 rad at all the parts of
the reactor, although it is a bit lower at the SOL, around − π

10 rad, instead of 0 rad as in the edge.
This relation makes it really hard to actually distinguish both regions.
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Figure 4.13: CPSD between the electron temperature and the floating potential φ
(12)
f . Phase relation

in the top and amplitude, or contribution, in the bottom. Edge region in the left and SOL in the
right.

The phase relation between φ
(12)
f and Te can be seen in figure 4.13. Here we can see that the

amplitude, depicted at the bottom of the figure, decays more or less as it does for the other pair of
variables, as seen at the bottom of figure 4.12. Having the peak at the beginning and decaying 1
order of magnitude by f = 105 Hz. Looking again at the phases in these frequencies, we see that in
the edge, the phases rotate between π rad and −π rad, as we already predict, which is equivalent.
Hence, at the edge, the phase shift is π rad. When we look at the SOL, this is not the case, the
phase relations are almost − 3π

4 rad, higher the nearer we are to the LCFS, -0.6π rad in the near SOL.
Therefore, when looking at this pair of variables, we can characterize and separate these two regions,
giving an idea of the position of the LCFS.
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Chapter 5

Conclusions

From the experiments that have been performed during this project, we can get some conclusions
and propose further improvements for a better understanding and more accurate solution from the
simulations.

From the interchange model, we can see that the use of Dirichlet boundary conditions generates
equipartition turbulence. Which means that the linearization of the model using plane waves to study
the phase between variables, section 2.2.4, is not completely satisfactory. The big vortexes control
the transport and synchronize the potential with the density. However, in this regime, the radial
velocity and the density continue been in phase, the transport is perfect. For further studies of this
model, we suggest to reduce the Reynolds number, if we increase the viscosity or change the size
of the grid, we should be able of erasing this equipartition state [41]. Furthermore, one could use
Neumann boundary conditions at x = lx and add a source in the left boundary, same as we did for
the complete model. This would allow the plasma to escape the system while maintaining the system
stable. Therefore, the equipartition turbulence would not be created, allowing the study the phase
difference between φ and n without having to place the probes between the vortexes.

For the modified Hasegawa-Wakatani model, we can conclude that the obtained solution is satis-
factory. It fulfills the theoretical prediction, we found that φ and n evolve in phase, while vr and n
evolve out of phase, even if the difference is not strictly ±π2 rad. For further studies, the contribution
of zonal modes to the phase shift between radial transport and density could be investigated.

The complete model still needs to be studied in more detail, more simulations must be done.
Most of the simulations did not achieved a completely propagated turbulent state and the coupling
between φ and n might be influenced by the magnetic curvature. Higher values of α should be tried,
or lower of κ. For the modified HW model, alone, we used values from 0.0125 to 0.2, where only
α = 0.2 got the expected π

2 rad phase relation between vr and n, synchronized with the zonal modes.
While, for the complete model we used values from 0.0005 to 0.01, lower than the lowest used for
the HW model. Hence, increasing the evolution time as well as the conductivity, should help us to
understand were do the anomalies come from in the edge. If the peaks shown in figure 4.10 come
from the zonal modes, from the interchange dynamics or if there is any other process. In this regard,
we have to mention that G. Decristoforo et al [20] let the equations evolve for 2 · 106 time units.
In the process of this work, it was not possible to try this, as the limited time of simulation in the
Marconi100 cluster, 24h maximum, and the low stability of the simulations needed of further research
and changes in the code so we could experiment with larger periods. Therefore, we needed a way
of ensuring a stable simulation with higher α and a way of achieving a quasi stable state, where the
instability is completely propagated along the grid, regardless the time limitation of the simulation.
This could be possible by saving the grid and using it as initial condition every time the simulation
ends. However, the solution is still satisfactory, we can be positive, as there seems to be good reason
to believe that the phase relation could be used to calculate the position of the LCFS, as in figure 4.10
we can see that there is a change in the phase at both sides of the LCFS; and the phase relation at
the end of the edge suggest an interesting regime where both instabilities are present. Furthermore,
the obtained phase relation could be used to study how dominant is one instability over the other
and their relation with α and κ.

Regarding the data from EAST, if we want to calculate the LCFS inside a nuclear fusion reactor
with this method, we need further research. The diagnosis technique used to get the data is not ideal,
it is hard to find measures in the same poloidal position that are not correlated between themselves
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and can give a satisfactory phase relation. Furthermore, we could find an interesting solution for

the floating potential at the poloidal position as the biased probe, φ
(12)
f , compared to the electron

temperature. Variables that depend on each other. The rest of the variables that were tried did not
show any change in the phase difference between the edge and the scrape-off layer. Hence, we need a
measurement method that matches better our simulations, maybe by steady measurements, our data
was measured in movement, and probably at higher frequency. As we can see from figures 4.2, 4.5, 4.8
and 4.8, reducing the measurement frequency, in our simulations, for the cross-power spectral density
could affect our results. If one wants to try this in our simulations, one should keep one point every a

thousand. However, this should be studied. Nonetheless, the use of φ
(12)
f and Te is quite satisfactory

and indicates that we could actually use the CPSD to characterize the turbulence inside a tokamak
and measure the LCFS, which could reduce significantly the costs of this process.

In the future, we need to make our simulations and our experimental data more comparable.
For that reason, we should escalate this model to a 3D model and increase the complexity of it,
adding more variables. Even though, the results of the simulations speak for themselves, they do
not really match the experimental values. The only parameters from which we could find a suitable

characterization, for EAST, are Te and φ
(12)
f . Values that are not calculated in our simulations.

As a final remark, even if there is still space for improvement and there are open questions. We
have demonstrated the viability of the phase relation as a method to characterize turbulence and
study the regions around the LCFS through our simulations. This could have an important role in
the future of nuclear fusion energy, plasma dynamics and the study of turbulent states.
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