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Abstract

The spectra of an optical frequency combs consist of a series of equally spaced
lines covering a wide area of frequencies which makes it useful for a variety of
applications. Each of the lines in such a comb can be used as a reference source
for measuring absolute optical frequencies. Chip-based microresonators have paved
the way for a new innovative way of generating frequency combs based on nonlinear
processes on a compact scale.

In this in work we measure the dispersion and characterise the behaviour of
a Si3N4 microring resonator for the purpose of frequency comb generation. For
the characterisation of the device, we propose a setup using a free-space cavity
allowing for a near dispersion-free reference. The device was shown to have an
FSR of 100.2882 ± 0.0001 GHz with the anomalous dispersion needed for comb
generation.

The formation of solitons is observed through the soliton trace signal. We
investigate the dynamics and formation of optical solitons in the aforementioned
microresonator by looking at how the trace signal depends on parameters such as
the resonance frequency and on-chip power. Finally, frequency comb generation is
demonstrated under the different conditions and their performance is compared.
We found a strong correlation between on-chip power and the total soliton step
length. The best results were obtained when pumping the microresonator around
1550 nm. Here, we observed the longest total soliton step lengths and generated
the widest frequency combs.
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Chapter 1

Introduction

1.1 Optical Frequency Combs

Back in 2005 John L. Hall and Theodor W. Hänsch aroused interest in scientists
world over when their work within optical frequency combs (OFC) was awarded
half a Nobel Prize. Since then, the importance and applicability of OFCs has been
recognised by many who now work to achieve a better understanding of how they
work and how to approve their performances even further.

The term frequency comb is used to describe a spectrum consisting of equidis-
tant lines in the frequency domain which in the time domain translates into a
periodic train of pulses with a repetition rate of fr. This repetition rate corre-
sponds to the spacing between the comb lines in the frequency domain. Due to the
equidistant spacing of the comb lines the frequency comb can be used as an optical
ruler to measure the unknown frequencies by measuring the beat note between the
two sources. This of course implies that the frequency of each comb line is well
known.

In an ideal scenario the pulse train would be perfectly periodic, however, in the
real world, the spectrum will often be shifted from zero by an offset in frequency,
called the carrier-envelope offset, fceo. In the time domain, this corresponds to an
evolution in the phase of the carrier-envelope [17]:

fceo = fr
∆φ

2π
, (1.1)

where ∆φ = φ2 − φ1 is the difference in the carrier envelope phase between two
consecutive pulses. The frequency of each comb line can be defined according to
the repetition rate and the carrier-envelope offset with respect to the mode number:

fn = nfr + fceo. (1.2)

There are several methods to achieve a frequency comb structure and they can be
divided into three classes based on the experimental techniques used for generation.
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1.1. OPTICAL FREQUENCY COMBS

Figure 1.1: Representation of a frequency comb in the time and frequency domain: (top)
pictures a pulse train with a repetition rate of 1/fr and a phase-shift ∆φ. (bottom) The
fourier transform of the of the pulse train leads to the comb structure in the frequency
domain. The frequency comb consists of several equidistant lines with a spacing equal to
fr.

The first frequency combs that were developed were based on mode-locked lasers
(MLL). Today, it still remains the most commonly used method of frequency comb
generation. A mode-locked laser utilises a broad gain medium that, when put in
a laser cavity, can be used to excite several cavity modes. If the cavity modes
are phase-locked they will appear as short pulse circulating inside the cavity. The
repetition rate of the pulses corresponds to the length of the optical path of such
laser cavity. Typically, the repetition rate of an MLL comb is between 100 MHz
and a couple of GHz [6] [4].

Frequency combs can also be generated through electro-optic modulation of a
continuous wave (CW) laser by modulation of either the amplitude or the phase.
The modulation creates sidebands on each side of the CW laser. Compared to
MLL generated frequency combs, higher repetition rates can be achieved using
EO modulation. The repetition rate can reach up to 10 GHz but the number of
comb lines obtained is much lower [5].

Lastly, there is frequency comb generation using microresonators. The progress
within development of nano-structure have paved the road for chip-based frequency
combs. These combs have the advantage that they can be integrated onto platforms
making them compact in size and cheaper to produce compared to the other types
of frequency combs.

1.1.1 Frequency Comb Generation in Microresonators

The topic of this thesis is microresonator based frequency comb, commonly referred
to as a micro-comb. These combs are generated through the nonlinear optical

3



CHAPTER 1. INTRODUCTION

process known as four wave mixing (FWM).
Microresonators come in several shapes and can be made of a variety of different

nonlinear materials. Figure 1.2 shows different examples of device shapes.

Figure 1.2: Microresonators with different types of geometry. From the left; cylindrical,
spherical, toroidal, and ring. The image is adapted from [19].

The cylindrical, spherical, and toroidal shape microresonators are based on the
are typically referred to as whispering-gallery mode (WGM) resonators, whereas
the ring shaped microresonator (microring resonator) is an integrated monolithic
device based on total internal reflection [19].

The purpose of this thesis is to demonstrate and investigate frequency comb
generation in a silicon nitride (SiN) microring resonator (MRR) through experi-
ments carried out in the laboratory, as well as providing the reader with a general
understanding of the fundamental theory and dynamics of frequency comb gener-
ation in microresonators.

Overview

Chapter 2 goes through the basic theory of wave propagation in waveguides by
first deriving the nonlinear Schrödinger equation for a straight waveguide, and
thereafter adapting it to apply to a ring-shaped resonator.

Chapter 3 describes the different dynamics involved in the generation of a fre-
quency comb in a MRR and how they are related. A brief description is given
on the fabrication process of MRR and lastly we present the device we have been
working on.

In Chapter 4 we present our results for the characterisation of the dispersion of
the SiN MRR device, and we discuss different characterisation techniques.

Chapter 5 is about the formation of optical soliton in MRRs and how frequency
combs are generated in such devices. We investigate the dependencies of the total
soliton step length and present and compare the experimentally generated fre-
quency combs in the SiN device using two different lasers.

Chapter 6 investigates the frequency stability of the experimentally generated
combs.

4



Chapter 2

Propagation of Light in Optical
Waveguides

2.1 Pulse Propagation

The propagation of electromagnetic waves in dielectric isotropic materials can be
described through Maxwell’s equations1:

∇×E(r, t) = −∂B(r, t)

∂t
, (2.1a)

∇×H(r, t) =
∂D(r, t)

∂t
, (2.1b)

∇ ·B(r, t) = 0, (2.1c)

∇ ·D(r, t) = 0. (2.1d)

For nonmagnetic materials the constitutive relations are given by the displacement
vector field D(r, t) = ε0E(r, t) +P(r, t) and the magnetic field B(r, t) = µ0H(r, t).
Taking the curl of ∇× E and inserting the expression for H(r, t) and D(r, t) the
equation becomes

∇×∇×E(r, t) = −
(

1

c2
ε0
∂2E(r, t)

∂t2
+ µ0

∂2P(r, t)

∂t2

)
. (2.2)

Following the approach of [2] and [23] the polarisation can be rewritten in order to
include the nonlinear interactions between light and matter in the materials. This
is done using a perturbation series, P(r, t) =

∑∞
k=1 P(k)(r, t) that is inserted into

Eqn. (7.2) which then becomes the nonlinear wave equation in the time domain,

∇×∇×E(r, t)+
1

c2

∂2

∂t2

ˆ ∞
−∞

(
1 + χ(1)

)
E(r, ω)e−iωtdω = −µ0

∂2

∂t2
P(NL)(r, t). (2.3)

1A more detailed derivation can be found in Appendix A
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CHAPTER 2. PROPAGATION OF LIGHT IN OPTICAL WAVEGUIDES

P(NL)(r, t) =
∑∞

k=2 P(k)(r, t) is the nonlinear induced polarization and χ(1) is the
first order susceptibility which is related to the polarisation and the electric field
through P = εχE. In the frequency domain Eqn. (7.3) translates into,

−∇2E(r, ω) =
ω2

c2
E(r, ω) + µ0ω

2P(r, ω), (2.4)

where we have used the vector identity ∇ × ∇ × E = −∇2E assuming that the
material is homogeneous.

In the time domain, the field of quasi-monochromatic waves consists of one or more
carrier waves multiplied with a slowly varying envelope (see Figure 2.1),

E(r, t) =
1

2

(
E0
ωσ(r, t)e−iωσt + c.c

)
. (2.5)

Figure 2.1: Illustration of a quasi-
monochromatic wave.

Figure 2.2: Waveguide with propa-
gation in the z-direction. The cross
section defined by the coordinates
x, y.

The nonlinear wave equation can be derived for a field propagating in a homoge-
neous waveguide by assuming that the amplitude of the field can be separated into
an envelope A(ω − ωσ) and a radial distribution R(x, y),

Eω0(r, ω − ω0) = A(ω − ω0)R(x, y)eiβ0z. (2.6)

Writing the linear and nonlinear induced polarization as separate fields in a similar
form as the electric field in Eqn. (7.5) and only considering the positive frequencies,
the nonlinear wave equation becomes:

(
∇2 +

ω2

c2

(
1 + χ(1)

))
E0
ω0

(r, ω − ω0) = −µ0ω
2(P 0

ω0
)NL(r, ω − ω0). (2.7)

The induced polarisation can be written as an effective linear polarisation,
(
P 0
ω0

)NL
(r, ω−

ω0) = ε0Kχ
(3)Eω1Eω2Eω3 = ε0χ̃

(1)E0
ω0

, where χ̃(1) is an effective first order sus-
ceptibility. Eqn. (7.7) can then be rewritten using the electric field from Eqn.
(7.5):

[
−∇2

⊥R(x, y) +
ω2

c2
(1 + χ(1) + χ̃(1))R(x, y)

]
1

R(x, y)
=

1

Aeiβ0z
∇2
z(Aeiβ0z). (2.8)

6



2.1. PULSE PROPAGATION

By separating the radial and longitudinal dependencies the RHS now only
depends on the cartesian coordinates r = (x, y) and the LHS only depends on
z. By setting both sides equal to a constant β̃2 the two equations can be solved.
Considering a waveguide with a perturbation can show that a perturbation in the
relative permittivity will lead to a change in the propagation constant when solving
for the radial part:

∆β =
k2

0

2β0

´
A χ̃

(1)|R(x, y)|2da´
A |R(x, y)|2da

, (2.9)

where the integral is performed over the cross sectional area of the waveguide. For
a wave propagating in the z-direction, the propagation equation can be written as a
complex-valued slowly-varying envelope function of the electric field. Applying the
slowly varying wave approximation the propagation equation in the time domain
can be written as:

∂A

∂z
+ β1

∂A

∂t
+ i

1

2
β2
∂2A

∂t2
− i∆βA = 0, (2.10)

where β1 is the inverse group velocity v−1
g , β2 is the group velocity dispersion

(GVD) and ∆β is the change in the propagation constant.

Light that is propagating through a waveguide will be subject to dispersion through
the intensity dependent refractive index (Kerr refractive index). This is accounted
for by writing the change in the propagation constant as:

∆β =
ωnI2
c

P

Aeff
, (2.11)

with nI2 being the intensity dependent refractive index, P the power, and Aeff the
effective cross sectional area. This allows for the last term on the LHS in Eqn.
(2.10) to be rewritten as:

i∆βA = iγ|A|2A, (2.12)

where P = |A|2 and γ = 2πn2/λAeff . Lastly, introducing a coordinate system
that moves with the group velocity such that β1 = 1/vg Eqn. (2.10) reduces to:

∂A

∂z
+ i

1

2
β2
∂2A

∂t2
− iγ|A|2A = 0. (2.13)

This equation is known as the Nonlinear Schrödinger Equation (NLSE). The
second term on the RHS is responsible for the group velocity dispersion (GVD)
and the last term on the RHS is the term responsible for the nonlinearity (the Kerr
effect).

In a lossy waveguide the intrinsic loss, α, can be accounted for by adding an extra
term. The term can be included in ∆β by substituting:

∆n = n2|E|2 → ∆n = n2|E|2 +
i

2k0
α, (2.14)

7



CHAPTER 2. PROPAGATION OF LIGHT IN OPTICAL WAVEGUIDES

which then arises in the expression for ∆β as:

∆β =
ω

c

(
nI2

P

Aeff
+ iα

)
(2.15)

Including this extra term in the NLSE the equation then becomes:

∂A

∂z
+
i

2
β2
∂2A

∂t2
− iγ|A|2A+

α

2
= 0. (2.16)

The NLSE is a fundamental equation for studying the nonlinear effects in
waveguides. It is especially useful for the study of optical solitons and their be-
haviour in optical waveguides. The two versions of the equation presented in Eqn.
(2.13) and Eqn. (7.38) are the most simplest forms of the equation used to describe
third order nonlinear effects. They can however be modified to include other non-
linear effects, such as the Raman effect or self-steepening, as well as higher order
terms.

2.2 Optical Fields in a Ring Resonator

Optical microring resonators (MRRs), like the one that we have used for our ex-
periments, are waveguides closed to form a loop usually in the shape of a ring or
a racetrack. These MRRs act as travelling wave resonators. Light is coupled in
and out of the MRR via a straight bus waveguide through a phenomenon known
as evanescent coupling. In order for the light to couple from the bus waveguide
and into the MRR it must match a resonance of the MRR. The light that then
propagates inside of the ring-shaped waveguide will interfere with itself after each
roundtrip which can lead to a large intensity build-up inside the MRR.

Figure 2.3: A typical all-pass type MRR consisting of a circular microring and a straight
bus waveguide.

There are two types of configurations that are commonly used for the coupling
of light into the MRR: (1) add-drop and (2) all-pass. An illustration of an all-pass
type MRR (coupled to a single bus waveguide) is shown in Figure 2.3. This type of
MRR is what we used for our experiments. A typical all-pass microring resonator
consists of a bus waveguide and a ring shaped wave-guide of length L acting as a
ring resonator as depicted in Fig. (2.4). The close placement of the ring-shaped

8



2.2. OPTICAL FIELDS IN A RING RESONATOR

waveguide and the straight bus waveguide allows for evanescent coupling between
the two when the input electric fields matches a cavity resonance.

Figure 2.4: Optical fields in an all-pass microring resonator.

Following a similar approach as the one in [? ], the relations between the input
field Ein, the transmitted field Et, and the circulating fields Er and E

′
r can be

derived by combining the relations of the coupling and transmission coefficient.
Mathematically, the transmission and coupling of an all-pass microring resonator
is described through the matrix2:[

Et
Er

]
=

[
τ κ
−κ∗ τ∗

] [
Ein
E

′
r

]
, (2.17)

where κ is the coupling coefficient describing the coupling strength and τ is the
transmission coefficient describing transmission between the bus waveguide and the
ring resonator. Both κ and τ are complex numbers. We assume that |τ |2 +|κ|2 = β
where the case of β = 1 corresponds to a lossless coupling to the resonator. From
Eqn. (2.17) we get the two relations:

Et = τEin + κE
′
r,

Er = τ∗E
′
r − κ∗Ein.

(2.18)

The light entering into the cavity, Er, can be related to the light measured at the
coupling point after a roundtrip by:

E
′
r = aeiθEr, (2.19)

where a is a real number describing the internal loss and θ is the roundtrip phase.
When a = 1 there are no internal losses in the resonator. Combining Eqn. (2.18)
and Eqn. (2.19) results in:

E
′
r = Ein

(
−κ∗a

−aτ∗ + e−iθ

)
, (2.20)

2Note that the τ in this section has been chosen to conform with other literature on the subject
but it is not the same τ used in other parts of this project.
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Et = Ein

(
−aβ + τe−iθ

−aτ∗ + e−iθ

)
, (2.21)

where E
′
r is the field circulating inside the resonator at the coupling point and Et

is the transmitted field at the output port. The power transmission of the output
port is given by:

T =
|Et|2

|Ein|2
=
β2a2 + |τ |2 − 2aβ|τ |cos(θ + φτ )

1 + a2|τ |2 − 2a|τ |cos(θ + φτ )
, (2.22)

where τ = |τ |eiφτ . At resonance θ + φτ = 2πm, with m = 1, 2, ..., n, the transmis-
sion through the MRR follows the relation:

T =
(aβ − |τ |)2

(1− a|τ |)2
. (2.23)

The transmission function T for an all-pass MRR can be seen in Figure 2.5 for
the parameters τ = 0.75, β = 1 and varying losses a as a function of normalised
detuning φ:

T =
a2 + |τ |2 − 2a|τ |cos(φ)

1 + a2|τ |2 − 2a|τ |cos(φ)
. (2.24)

Critical coupling occurs when equals τ = a which can be seen by the function
dropping to zero at φ = 0. This is the special case where the losses of the microres-
onator is precisely balanced by the light that is coupled into the microresonator.
The microresonator is said to be undercoupled when the losses are greater than the
coupling which corresponds in the figure to a > 0.75. Overcoupling happens when
there is more light coupling into the microresonator than is lost. In the special
case a = 1, corresponding to a perfect lossless case, all light is transmitted.

10



2.2. OPTICAL FIELDS IN A RING RESONATOR

3 2 1 0 1 2 3
Detuning [rad]

0.0

0.2

0.4

0.6

0.8

1.0
Tr

an
sm

is
si

on

a = 1.00
a = 0.99
a = 0.90
a = 0.75
a = 0.50
a = 0.25
a = 0.00

Figure 2.5: The transmission function T as a function of cavity detuning φ for different
losses a and τ = 0.75.

A ring resonator is typically characterized using four parameters, two of which
can be derived from the other: free spectral range (FSR), finesse F , full width half
maximum (FWHM), and quality factor (also referred to as Q-value) Q.

Free Spectral Range: The FSR is defined as the distance between two peaks
of resonance. The resonances appear at those frequencies at which constructive
interference is present after one roundtrip inside the cavity. In a classic Fabry-
Pérot interferometer (free space cavity) the FSR is typically expressed in terms of
frequency as:

∆νFSR =
c

2nL
, (2.25)

with n being the refractive index and L the length of the cavity. In the case of a
ring resonator the FSR can be obtained from the propagation constant β [21]:

∆λFSR =
2π

L

∣∣∣∣∂β∂λ
∣∣∣∣−1

, (2.26)

or, similarly:

∆νFSR =
2π

L

∣∣∣∣∂β∂ν
∣∣∣∣−1

. (2.27)

From the resonant condition for β = 2πneff/λ the FSR becomes:

∆λFSR =
λ2

neffL
. (2.28)
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Taking the chromatic dispersion of a waveguide into account would lead to a more
precise expression. By introducing the group refractive index ng:

∆β/∆λ = −kng, ng = neff − λ
∂neff
∂λ

, (2.29)

will then lead to the final expression with the dispersion of the resonator taken
into account:

FSR = ∆λ =
λ2

ngL
. (2.30)

FWHM: The FWHM is defined as the full spectral width of the resonance at
half the maximum. In the case of an all-pass type ring resonator the FWHM is
sometimes instead defined as the full width at half depth (FWHD) [? ]:

FWHM ≈ λ2κ2

4π2ngR
, (2.31)

κ is the optical resonance coupling frequency and R is the radius of the ring
resonator.

Finesse The ratio between the FSR and the FWHD defines the finesse of the
resonator:

F =
FSR

FWHD
≈ 2π

κ2
. (2.32)

Q-Value The last parameter, the Q-value, describes the dampening of a resonator.
It represents how sharp a resonance appears. It is defined as the ratio between the
wavelength and the FWHD:

Q =
λ

FWHD
≈ 2πngL

λκ2
=
ngL

λ
F . (2.33)

2.2.1 The NLSE in Ring Resonators

As mentioned earlier, the NLSE derived in section 2.1 can be modified and ex-
panded. By modifying the NLSE to include further constraints it can be used to
describe the temporal evolution of the intracavity field in a fiber ring resonator.
A general model of the evolution of the intracavity field can be derived using an
infinite-dimensional Ikeda map. This map is derived by combining the ordinary
NLSE in Eqn. (2.13) together with boundary conditions that relates the fields be-
tween each round-trip inside fiber cavity. Assuming a slowly-varying field envelope
the field at each round-trip m can be described as:

E(m+1)(0, τ) = TEin +RE(m)(L, τ)eiφ0 , (2.34)

12
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∂E(m)(z, τ)

∂z
= −α

2
E(m)(z, τ)− i

2
β
∂2

∂τ2
E(m)(z, τ) + iγ|E(m)(z, τ)|2E(m)(z, τ).

(2.35)
The term E(m)(z, τ) describes the intracavity fields during the roundtrip m, z is the
longitudinal direction in the resonator and τ is a time (here, within the reference
frame moving at the group velocity). L is the length of the resonator, θ describes
the power transmission at the coupling point. The parameter φ0 is a linear phase
accumulated by the intracavity field during one roundtrip in the resonator with
respect to the external pump field.

Low-Loss Structures: Mean-Field Theory

In a structure that exhibits low loss the relative change in the intracavity field
over a single round trip is negligible. In this case the external pump field and
the coupling loss can be averaged out over the full length of the cavity and the
problem can be described using the mean-field theory. This essentially means that
Eqn. (2.34) and Eqn. (2.35) can be averaged into a single driven and damped
NLSE similar to that of Eqn. (2.13). Following the approach in [14] we start out
with the NLSE that we found in 2.13 where we now note that the field is dependent
on the round trip number such that:

∂Em
∂z

= − i
2
β2
∂2Em
∂τ2

+ iγ|Em|2Em. (2.36)

By performing an integration of Eqn. (2.36) at each round trip following the
initial boundary condition provided by the Ikeda map. For the evolution of a pulse
envelope travelling inside of a ring resonator the Ikeda map takes the form:

E(m+1)(0, τ) = tEin(τ) + rE(m)(0, τ)e−iφ0GL, m = 0, 1, 2, ... (2.37)

This equation is very similar to the one presented in Eqn. (2.34). We have the
transmission and reflection coefficient t and r where |t|2 + |r|2 = 1. φ0 is the
cavity phase detuning at the pump frequency ω0 and finally, GL is an operator
that accounts for the nonlinear propagation of the pulse over a round trip in the
resonator of length L. The input field Ein(τ) does not depend on the round trip
number m. The term GLE

(3)(0, τ) is determined by the previous round trip. At
m = 0, the term equals zero. Since we have restricted this analysis to low loss
structures the temporal evolution of the intracavity field is considered slow in
comparison to the round trip time tR. Due to this slow evolution of the field inside
the cavity we can introduce a new slow time scale t to describe the change in the
intracavity field at each round trip at the point z = 0. This new slow time scale
can replace the round trip number m such that we are able to define:

E(t, τ) = Em(0, τ). (2.38)
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where the slow time t is defined as an integer number of the round trip time,
t = ntR. We also introduce the derivative of Eqn. (2.38):

tR
∂E(t, τ)

∂t
= Em+1(0, τ)− Em(0, τ). (2.39)

Both cavity detuning φ0 and the nonlinear phase change γL|E|2 are assumed to
be much smaller than one. Furthermore, we assume that the length of the loop is
much smaller than the length of the pulses that are formed inside of the resonator.
Doing this allows us to average the RHS of Eqn. (2.36) over the resonator length
L and thereby obtain:

GLEm(0, τ) = −iβ2

2
L
∂2Em(0, τ)

∂τ2
+ iγL|Em(0, τ)|2Em(0, τ). (2.40)

If we also consider the initial phase detuning φ0 and the cavity loss α (and neglect
all higher order terms):

Em+1(0, τ) = TEin(t) +Em(0, τ)− iφ0Em(0, τ)− α

2
Em(0, τ) + i

β2

2
L
∂2Em(0, τ)

∂τ2

+ iγL|Em(0, τ)|2Em(0, τ). (2.41)

Introducing the expression from Eqn. (2.38) and Eqn. (2.39) we finally arrive at:

tR
∂E(t, τ)

∂t
= TEin︸ ︷︷ ︸

Cavity
transmission

+

[
−iβ2

2
L

(
∂2

∂τ2

)
︸ ︷︷ ︸

GVD

+ iγ|E(t, τ)|2︸ ︷︷ ︸
Kerr

nonlinearity

− iφ0︸︷︷︸
Phase

detuning

− α

2︸︷︷︸
Cavity
losses

]
E(t, τ).

(2.42)
Comparing to the NLSE we derived for a straight waveguide, Eqn. (7.38), the
two equations are very similar. The NLSE for a microring resonator has the exact
same terms as the NLSE for the waveguide but contains two extra terms related
to the cavity. Besides the GVD, the Kerr nonlinearity and the cavity loss terms it
also includes a cavity transmission term and a term containing the phase detuning
that is needed in order to couple in light to the cavity.

2.3 The Si3N4 Platform

Dielectric waveguides consist of a core of refractive index n embedded in another
dielectric layer called the cladding. The cladding has a lower refractive index which
allows for the light to be confined inside of the waveguide due to total internal
reflection (TIR).
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2.3. THE SI3N4 PLATFORM

Figure 2.6: Snell’s law of refraction. The total internal reflection happens at the critical
angle θc.

Light travelling from one medium to another may change its direction of prop-
agation when there is a change in the refractive index. The condition for TIR
are found from Snell’s law which describes the relation between the direction of
propagation in two medium:

n1sinθ1 = n2sinθ2, (2.43)

where θ1, θ2 are the incident and output angles and n1,n2 in our case are the
refractive indices of the core and the cladding, respectively. TIR can only occur in
the case where light is travelling from a high index medium to a lower index one.
The critical angle can be found from the relation:

θc = sin−1

(
n1

n2

)
. (2.44)

This means that as long as θ2 > θc light will propagate inside the core of the
waveguide. An example of Snell’s law including the critical angle is illustrated in
Figure 2.6.

The extent of the confinement relates to the disparity in refractive index. A
larger index contrast between the refractive index of the core and the cladding will
lead to a increase in the degree of confinement. The index contrast is mathemati-
cally described as:

∆n =
n2

1 − n2
2

2n2
1

, (2.45)

where n1 and n2 are the refractive indices of the core and the cladding, respectively
[26].

Chip-based structures are created using a wafer-scale technology and are of-
ten referred to as photonic integrated circuits (PICs). The waveguide structures
are fabricated onto support substrates (often referred to as the chip). These sub-
strates are typically made of materials like silicon or silica but can also be made
of nonlinear crystal materials such as lithium niobate (LiNbO3).
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Figure 2.7: Example of process flow chart for a PIC. (a) The raw chip with a core layer on
top of a substrate coated with a layer of resist, (b) exposure pattern after being subject
to EBL, (c) the pattern from the EBL is transferred to the core layer through an etching
process, and (d) the remaining resist is removed and a cladding layer is deposited on top.

The fabrication process can vary depending on the device and there exists
several methods that are used for the fabrication of integrated circuits but that is
out of the scope of this thesis. A typical (simplified) fabrication process flow using
electron beam lithography (EBL) is illustrated in Figure 2.7.

The EBL is a technique that uses a focused electron beam to create a pattern in
the top layer, the resist), that causes a molecular change in the material changing
its solubility. After the EBL exposure, depending on the type of resist which can
be positive or negative, the exposed (positive) or the unexposed (negative) will
be removed by the developer. This leaves the core layer exposed on which the
pattern can be transferred using a technique called etching leaving the waveguide
structures behind. The etching is a process in which a layer can be removed from
the surface of a wafer/chip. There exist two methods of etching: (1) Dry etching
that uses a plasma or vapor to remove the material or (2) wet etching in which
liquid chemicals are used.

The chip we have been using in our experiments is designated as Wafer 266-
BSS1-I0p5. The device is a Si3N4 platform with a diameter of 217 µm provided
to us by the Department of Microtechnology and Nanoscience (MC2) at Chalmers
University of Technology. Silicon Nitride or Si3N4 is a dielectric material with a
refractive index of around n = 2. The cladding used for this device is LPCVD3

SiO2 with a refractive index of around n = 1.4. Figure 2.8 shows a similar Si3N4

3Low pressure chemical vapor
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waveguide structure fabricated at Chalmers.

Figure 2.8: An image of a Si3N4 waveguide structure designed by Chalmers. The golden
bands are integrated heater elements. This structure is similar to the one we have used
for our experiments. The figure is adapted from [27].
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Chapter 3

Dynamics of Frequency Comb
Generation

The focus of this project has been on the generation of frequency combs based on
MRRs also known as micro-combs or Kerr frequency combs. One of the advantages
of micro-combs is that they are integratable on chip-scale. This means that they
can be produced at a low cost on a integrated platform which also makes them a
compact solution compared to traditional commercially available frequency combs.
Another advantages is the freedom in the design of the dispersion. The geometry
of the design can be used for dispersion engineering which means that we are not
bound by the material dispersion.

The materials used for the fabrication of MRR typically exhibits strong second
or third order nonlinear effects. The choice of material plays a crucial role in
frequency comb generation. A comb in an MRR is generated through the nonlinear
process of parametric frequency conversion using a continuous wave (CW) laser.
In the MRR, light gets trapped and confined which then allows it to acts as a
parametric oscillator where pump photons can be converted into signal-idler pairs
[10]. This is illustrated in Figure 3.1 for the case known as four wave mixing
(FWM).

Figure 3.1: Illustration of FWM in a nonlinear material. The red arrows are pump photons
and the blue (idler) and green (signal) arrows corresponds to the signal-idler pair.

18



3.1. FOUR WAVE MIXING

3.1 Four Wave Mixing

FWM is a third order parametric process that involves nonlinear interaction be-
tween four optical waves. The effect occurs when two pump photons annihilates
and creates two photons of new frequencies - a so called signal-idler pair. The
process can be viewed as one photon gaining energy and the other one loosing
energy conserving the total energy of system.

The parametric processes are most commonly divided into second-order χ(2) or
third-order χ(3) processes depending on what order susceptibility is responsible.
The nonlinear response of a material is expressed in terms of the induced polari-
sation which can be expressed in terms of a power series:

P = ε0χ
(1)E + ε0χ

(2)E2 + ε0χ
(3)E3, (3.1)

where E is the electric field, ε0 is the vacuum permittivity, and χn is the nth order
susceptibility which is expressed as a tensor of rank n + 1. As an example, the
third-order nonlinear polarisation is written:

PNL = ε0χ
(3)EEE. (3.2)

Isotropic materials such as Si3N4 exhibits spatial inversion symmetry which means
that all even-ordered contributions in Eqn. (3.1) such as the second-order suscep-
tibility χ(2) will cancel out of the equation and only the odd-numbered terms will
contribute.

FWM can be either degenerate or non-degenerate. In the non-degenerate case the
two pump photons are not of the same frequency hence:

ωp1 + ωp2 = ωs + ωi, ωp1 6= ωp2 . (3.3)

In the degenerate case the two initial photons are of identical frequency and there-
fore only three frequencies are considered. In order to maintain the conservation
of energy it is required that:

2ωp = ωs + ωi, (3.4)

in which ωp is the pump frequency and ωs and ωi is the signal-idler pair. In a
microresonator pumped with a CW laser the initial FWM will be degenerate since
the pump only consists of a single frequency: ω1 = ω2.

3.1.1 FWM and Comb Generation

To initiate the generation of sidebands in the MRR the parametric gain must
exceed the losses of the cavity. The parametric gain:

g =
√

(γPp)2 − (∆kNL/2), (3.5)
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is dependent on the pump power Pp, the nonlinear coefficient γ, and lastly also a
nonlinear phase mismatch ∆kNL between the propagation constants of the signal,
idler and pump waves. The phase mismatch is due to chromatic dispersion k =
nω/c, resulting in waves propagating at different wavelengths experiencing different
refractive indices. It leads to a shift of the resonator modes causing a change of
the spacing between the resonator modes with respect to the optical frequency.
In order to achieve cascaded FWM at a level at which a comb can be generated
the phase mismatch has to approach zero. For this to be true the phase-matching
condition must be fulfilled.

However, due to a combination of self- (SPM) and cross-phase modulation
(XPM) from the Kerr effect arising at higher intensities there will be a nonlinear
phase-mismatch between the wave vectors:

∆kNL = ks + ki − 2kp + 2γPp, (3.6)

where ks, ki, and kp are the signal, idler and pump waves, respectively [1]. The
nonlinear coefficient γ is related to the properties of the waveguide:

γ =
n2ωp
cnAeff

, (3.7)

with Aeff being the effective mode area and n2 the nonlinear refractive index. For
a given polarisation n2 can be related to the third order nonlinearities through

n2 = 3
8χ

(3)
eff , where χ

(3)
eff is the effective third order susceptibility.

The last term in Eqn. (3.6) can never assume negative values. This means that in
order to fulfill the phase-matching condition the sum of ks + ki− 2kp have to have
a negative value.

As stated earlier, the refractive index n is frequency dependent and this will
lead to a shift of the resonator modes resulting in a change of the spacing between
the resonator modes with respect to the optical frequency. This effect is divided
into two regimes: the normal and anomalous dispersion regime. In the normal
dispersion regime the modes will moves closer together as the mode frequency
increases leading to ks+ki−2kp > 0. Whereas, in the anomalous dispersion regime
the mode spacing will increase as the mode frequency increases, ks+ki−2kp < 0. It
then becomes obvious that only in the anomalous dispersion regime can we obtain
a zero-phase mismatch.

3.1.2 FWM in MRRs

The MRR entails some constraints regarding the cavity modes. For the wave
vectors it leads to the resonance condition:

k =
2πm

L
with m = 1, 2, ..., (3.8)

where m is the cavity mode number and L the effective length of the MRR. Based
on the work presented in [1] by Agha et. al done, if the signal-idler pair are
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assumed to be symmetrically placed around the pump at a distance of ±n orders
away, according to their mode number m, then ∆k = 0 on resonance. Assuming a
strong pump the cavity modes can be expressed as:

ωp =
2πmc

(neff + n2Ip)L
, (3.9)

and

ωi,s =
2π(m± n)c

(neff + 2n2Ip)L
, (3.10)

where Ip is the intensity of the intracavity pump, neff is the effective refractive
index, and n2 is the nonlinear refractive index. To satisfy the energy preservation
and the phase-matching condition:

ωp = ωs + n∆ω = ωi − n∆ω, (3.11)

with n∆ω corresponding the pump and the signal-idler being on resonance with
cavity modes with the consideration of refractive index of the cavity modes.

3.2 Group Velocity Dispersion

The nonlinear effects necessary in the generation of a MRR based frequency comb
strongly depends on the group velocity dispersion (GVD). The group velocity is
what characterises the velocity at which a pulse propagates through a medium.
If that said medium is made up of a material that exhibits dispersion, then the
group velocity will be dependent on the wavelength and that dependency is known
as the GVD.

As with the chromatic dispersion, the GVD can be either normal or anomalous
depending on the sign of the parameter and that will affects the pulse by pulse
compression, either creating positive or negative chirp, respectively. Normal dis-
persion refers to the case in which the group velocity decreases when the optical
frequency increases causing lower frequency components to travel faster than high
frequency components and vice versa for anomalous dispersion [18].

The dispersion in a MRR can be described through the Taylor expansion series
around µ = 0:

ωµ = ω0 +D1µ+
1

2
D2µ

2 +
1

6
D3µ

3 + ..., (3.12)

where ωµ is the resonance frequency with a given mode number µ with respect to
the pump laser (denoted µ = 0). The parameter D1 is the first order dispersion
describing the free spectral range (FSR) of the resonator, D2 is the second order
dispersion related to the GVD, and lastly D3 is the third order dispersion. The
second order dispersion D2 is related to the the GVD through the relation:

D2 = − c
n
D2

1β2. (3.13)
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A positive D2 indicates anomalous dispersion with β2 < 0. The majority of gener-
ated combs are achieved in a regime where the MRR exhibits anomalous dispersion
(β2 < 0).
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Chapter 4

Dispersion Measurements

The dispersion of the MRR device can be determined by measuring the spectral
distance between adjacent resonator modes over a wide area (∼ 100 nm). The
more linear the scan is the better and the more precise the measurement is going
to be since there will be no variation in distance between data points. A linear scan
is characterised by having a constant scan speed throughout the full measurement.
However, this is rarely the case. Most lasers will vary somewhat in scan speed over
a distance which means that they typically will start to accelerate and then slow
down again repeatedly over the full distance. Therefore, it is necessary to come up
with another way of linearising the scan. Typically, this is done by calibrating the
laser scan to a reference cavity. An ideal cavity has perfectly equidistantly spaced
resonances. In theory this should mean that the more points provided by the
reference source the more precisely the laser scan can be calibrated. If, however,
the cavity is subject to dispersion the cavity resonances will no longer be evenly
spaced.

The most commonly used source of reference is a fibre interferometer due to the
wide availability and compact size. Like with any other type of interferometer, the
fringe spacing of a fibre interferometer can be adjusted depending on the length
of the interferometer making it possible to create an arbitrary amount of reference
points. The disadvantage of this method of reference, however, is that the fibre
will be subject to dispersion which will affect the measurements. Nevertheless, the
effect can be accounted for by either adding another reference to the setup or by
characterising the interferometer beforehand.

For our dispersion measurements conducted on the SiN resonator we decided
to build a free space cavity to use as reference. The free space cavity makes it
possible to create a relatively dispersion-free reference compared to a typical fibre
interferometer. Comparing the two, the change in refractive index from 1530 nm
to 1630 nm for air is on the order of ∆n = 1 ·10−7. A typical fibre made from fused
silica (SiO2) is on the order of ∆n = 1 · 10−3. The change in effective refractive
index of the MRR is around ∆n = 3 · 10−3 1 making it significantly larger than

1Calculated for a Si3N4 layer of thickness 750 nm.
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that of the free space cavity [13] [20].

The cavity consists of two concave high-reflectance mirrors placed at each end
of a 1480 mm long aluminum profile. The mirrors have a radius of curvature (ROC)
of 2 metres and a reflectance of 99.7 %. This results in a FSR of 101.3 MHz which
should provide roughly 103 reference points between the adjacent resonator modes
of the MRR.

A schematic overview of the setup can be seen in Figure 4.1. A continuously
tunable laser from Toptica (Toptica DLC pro) is used to scan the wavelength from
1520 nm to 1630 nm. The laser uses a frequency selective grating element to
control the frequency of the output emission. The grating is designed to reflect the
first order diffraction back into the laser diode as feedback while the zeroth-order
diffraction is reflected as the output [25] [7]. The lasing frequency depends on the
angle between the beam coming from the laser diode and the grating (commonly
referred to as the Littrow angle). So, by changing the angle the lasing frequency
can be changed. A typical Littrow ECDL configuration is shown in Figure 4.2.

Figure 4.1: Schematic overview of the dispersion setup. The laser output is divided into
two using a 3 dB coupler. One path goes through the MRR and the other goes through
a free space cavity. The free space cavity is used as a reference to calibrate the frequency
axis of the MRR transmission data. EOM: Electro-optical modulator, PC: Polarisation
controller, PD: Photo detector.

Figure 4.2: A typical Littrow ECDL configuration. The angle of the grating is used to
change the lasing frequency.
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The output of the laser is split in two using a 3 dB fibre coupler. One part of
the light is sent through the MRR and the other part goes through the free space
reference cavity. The light going to the free space cavity is first sent through a
fibre EOM. The EOM is only used to measure the FSR of the free space cavity
after which it is removed. The light is then coupled into free space and the output
beam is collimated using a plano-convex lens. The cavity transmission signal is
detected by a photo detector (PD) and recorded on an oscilloscope. The second
part is sent through a polarisation controller (PC) and coupled into the MRR
using tapered lensed fibres 2. The tapered fibres couples the light into the bus
waveguide of the MRR. The transmission signal from the MRR is detected on
another photo detector and recorded on the same oscilloscope as the free space
cavity transmission signal.

The transmission signals of the free space cavity and the MRR are shown in
Figures ?? and 4.3. The FSR of the free space cavity is measured using the EOM
to be 96.9 MHz. The transmission of the MRR approaches zero on the resonance
which shows a good coupling between the bus waveguide and the MRR.
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Figure 4.3: Transmission spectrum of the Wafer 266-BSS1-I0p5-R227 from 1520 nm to
1630 nm plotted against the calibrated axis.

Calibration of the Laser Scan

In order to calibrate from a scan speed to a linear frequency axis we use the
transmission peaks of the free space cavity. We assume the cavity to be dispersion-
free which means that every distance between two neighbouring resonances must
equal one FSR of 96.9 MHz.

2The fibres have a focal length of 14 µm and a 2.5 µm spot size.
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Figure 4.4: Scan time in seconds plotted against the calibrated frequency axis.

First of, we locate every resonance peak in the data set between two points in
time marking the start and the end of the scan. The peak values in time are then
gathered in an array and the first index is set to 0 Hz. From here, the number
of points between to adjacent indices are equally distributed such that the total
distance between each peak equals 96.9 MHz. The result is a new array of length
(n − 1) · 96.9 MHz, with n being the number of peaks. This array constitutes
the calibrated array in which we assume the scan speed to be linear between each
resonance peak.
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Figure 4.5: Comparison of the un-calibrated vs. the calibrated laser scan. (Left): un-
calibrated, (right): calibrated.

When comparing the raw time axis with the calibrated frequency axis, the
change in scan speed of the laser is most visible in the beginning and the end of
the scan as it is possible to see from figure 4.4. A comparison of the un-calibrated
vs. the calibrated scan in the beginning of the scan is shown in Figure 4.5. Here
the same tendency seen in Figure 4.4 is observed. We see how the distance between
transmission peaks varies in the un-calibrated scan whereas in calibrated scan they
are evenly spaced.
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4.1. CHARACTERISATION OF THE MRR

4.1 Characterisation of the MRR

Once the laser scan has been calibrated the MRR can be characterised by looking
at the quality factor Q and dispersion of that device. To find the Q-values, each
of the MRR resonances are fitted to a Lorentzian function:

T (x) = A · 1

1 +
[

(x0−x)
γ/2

]2 +B, (4.1)

where A is the amplitude, B is an offset, x0 is the frequency of the peak, and γ is
the width at FWHM.

The Q-value is obtained by dividing the peak position x0 with the width γ of
the resonance acquired from the fit. The calculated Q-value we obtain from the
fit is the total transmitted Q-value, Qt. Qt (or alternatively Qtot or Qloaded) is a
measure of the combined system including the losses. It is not a complete measure
of the quality of the MRR device. This means that it does not distinguish, in this
case, between material (intrinsic) losses Qi and coupling losses Qc related to the
coupling between the bus waveguide and the MRR.

Typically, the intrinsic Q is noticeably larger than Qt because it takes all losses
into account - both material and coupling losses - and are able to distinguish
between them. At low powers Qc can be found by the expression [3]:

Qc =
2Qt

(1 +
√
Tmin)

, (4.2)

where Tmin is the the minimum of the normalised transmission, i.e. the peak value
of the transmission peak. The Q of most interest when characterising the MRR is
the intrinsic Q, Qi and once Qc is known, Qi is easily found through the relation:

1

Qt
=

1

Qc
+

1

Qi
. (4.3)

The results obtained from our fitting routine of the MRR resonances are shown
in Figure 4.6.
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Figure 4.6: Characteristic of Qtot of Wafer 266-BSS1-I0p5. (a) A representative resonance
with a FWHM of 47.70 MHz. (b) Histogram of the obtained linewidths from the MRR.
(c) Qtot calculated from the parameters estimated by the Lorentzian fit shown in (a).

Figure 4.6(a) shows a single MRR resonance with a linewidth of γ = 48.06
MHz and a peak value x0 = 1569.93 nm. To show the distribution of the resonance
linewidths a histogram of all the obtained linewidths are plotted in Figure 4.6(b).
The Qtot is plotted as a function of wavelength in Figure 4.6(c). The outlier at
1586.5 nm is due to a strong mode crossing in the device. Sometimes higher order
modes can exist in the resonator and if so they will interact with the fundamental
mode which will lead to avoided mode crossings.

To characterise the dispersion of the device the D1, D2, and D3 are estimated
from fitting the variation in frequency to Eqn. (3.12):

ωµ = ω0 +D1µ+
1

2
D2µ

2 +
1

6
D3µ

3 + ...,

where β2 is found from the relation in Eqn. (3.13):

D2 = − c
n
D2

1β2.

The dispersion of the device is highly dominated by the FSR so in order to form
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an idea of the behaviour of the higher order dispersion the dispersion profile is
plotted as a function of the integrated dispersion in Figure 4.7. The integrated
dispersion is often a useful measure when describing the dispersion since it is used
to describe how much a given resonance deviates from a grid in which the spacing
between each resonance is equidistant [11]:

Dint(µ) = ωµ − (ω0 −D1µ). (4.4)

The belonging residuals in Figure 4.8. We obtain a relatively high value for
the standard deviation of the residuals compared to when we look at the fit in
Figure 4.7. This is due to the outliers which stems from mode crossings. The
values found from the fit are D1/2π ≈ 100.2882 GHz, D2/2π ≈ 0.619 MHz, and
D3/2π ≈ −0.0003 MHz. Compared to the two other values the effect of D3/2π
is negligible. The converted β2-value is found from Eqn. (3.13). At 1570 nm the
refractive index for Si3N4 is 1.9957 according to [20] which leads to β2 ≈ −65.2
ps2/km.
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Figure 4.7: Dispersion characterisation
of the MRR. Six avoided mode crossings
can be seen.
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Figure 4.8: Plot of the residuals of the
dispersion curve from Figure 4.7.

Six avoided mode crossings can be observed at 1526 nm, 1566 nm, 1574 nm,
1586 nm, 1607 nm, and 1628 nm of which the one at 1586 nm is the most prominent.
The rest of the mode crossings are considered fairly weak. The feature stemming
from the mode crossings becomes even clearer when looking at the residuals of the
four methods in Figure 4.7. The reason why mode crossings are of interest is that
they can have an effect on the creation of a soliton comb if the comb is pumped
at a wavelength that is too close to a strong mode crossing. At a point of mode
crossing the frequencies (and also the decay rate) will change and that shift in
frequency will affect the phase matching condition for FWM [19].

4.2 Characterisation of MRR using Higher Order Modes

By adjusting an iris inside of the free space cavity we are able to control how
many modes should be excited inside the free space cavity. This gives us the
possibility of increasing the number of reference points further by allowing higher
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order transverse modes (HOMs) to exist without having to increase the length of
the cavity. The use of the HOMs would lead to a finer calibration which could
be quite useful in the determination of the Q-value, since it is especially sensitive
the local nonlinearities of the laser scan speed. In order to identify the different
modes the iris is tightly closed such that the only mode allowed in the cavity is the
TEM00. This mode is the easiest to identify due to the shape of its spatial mode
profile. It has a Gaussian beam profile with the highest intensity at the center
which means that by closing the iris all other modes can be eliminated. From this
point the iris is then slowly opened up allowing HOMs to be excited. The TEM00

and the HOMs can be seen in Figure 4.9.
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Figure 4.9: Segment of the full transmission signal of the free space reference cavity. The
tallest of the modes are the TEM00 and the rest are various higher order modes (in this
thesis referred to as 1st, 2nd, and 3rd order).

The light entering the free space cavity through the input mirror will travel
around inside the cavity. In this time it will be subject to constructive or destruc-
tive interference. Constructive interference will occur when the resonator length
L is equal to an integer multiple of half the wavelength such that:

L = q
λ

2
, q = 1, 2, 3, .... (4.5)

Wavelengths that does not meet this condition cannot be supported by the cavity
and as a result they will destructively interfere. The frequencies that are supported
in the cavity can be found from the expression [24]:

νqmn =
c

2L

[
q +

1

π
(m+ n+ 1)cos−1√g1g2

]
, (4.6)

where:

g1g2 =

(
1− L

R1

)(
1− L

R2

)
, (4.7)
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where R1,2 represent the ROCs of the two cavity mirrors. In the case of equal
mirrors the expression becomes:

g1g2 =

(
1− L

R1,2

)2

. (4.8)

The parameter q is associated with the longitudinal mode and describes the
node pattern created by constructive interference along the length of the cavity.
The integer numbers n and m specify the transverse mode order, i.e. the mode field
shape transverse to the propagation direction. The fundamental mode is given by
n,m = 0. Higher order modes are characterised by having n,m > 0 or at least one
of the two > 0. For concave mirrors like the ones used in this setup R1,2 > 0.

Figure 4.10: Illustration of resonance frequencies in a cavity showing the longitudinal and
transverse modes. The distance between two peaks in the same mode family is always
equal one FSR.

For the purpose of this setup there is no distinction between the configura-
tions n,m = 0, 1, n,m = 1, 0, etc. since they will result in the same resonance
frequencies found from Eqn. (4.6). The different modes are illustrated in Figure
4.10. Depending on the length of the cavity it is possible for the HOMs for q = 1
to be placed more than a FSR away from the νq+100 mode although the distance
between two resonances of the same mode family is always one FSR, ex.:

νFSR = νq00 − νq+100 =
c

2L
. (4.9)

To find the distance from the fundamental mode to the different HOMs, we take:

νq00→qmn = FSR− νq+100 + νqmn, (4.10)

which gives the relative shift in frequency compared to the fundamental mode with
the same q. The theoretical and measured values of the different mode configu-
rations are shown in Table 4.1. The theoretical values are calculated using the
measured FSR of 96.9 MHz. The distance between the different mode families are
measured using a fibre EOM.
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CHAPTER 4. DISPERSION MEASUREMENTS

qmn 100 110 111 121

|νq00→qmn|
Theoretical [MHz] 0.0 56.7 16.5 23.7

Measured [MHz] 0.0 56.1 15.0 26.0

Table 4.1: The theoretical and measured distances from the fundamental mode to a HOM
with configuration qmn. The first column with qmn = 100 corresponds to the fundamental
mode. For m + n > 1 the configuration is subordinate but the sum must corresponds to
m+ n = 1, 2, 3, ..., respectively.

The distance from the fundamental mode TEM00 to the HOMs are measured
using the sidebands generated on each side of the fundamental mode by the EOM.
By tuning the frequency of the sidebands such that they overlap with the resonance
of one of the HOMs, the distance in frequency between the two modes can be
measured. For simplicity the modes are referred to as: 0th, 1st, 2nd, and 3rd order
in this thesis (the 0th order mode being the TEM00 mode) because we are not able
to distinguish between the different m,n configurations. The reason for this is that
we do not have any knowledge on their spatial distribution and therefore we are
unable to tell them apart since they will overlap when looking at the transverse
modes. Therefore, we are limited to the knowledge regarding the sum of m + n.
The transmission of the free space cavity showing the distinct excited cavity modes
can be seen in Figure (4.11). Note that the transmission here is plotted against
time so the image is mirrored compared to Figure 4.10.
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Figure 4.11: Transmission signal for a scan of the input laser frequency showing the HOMs.
The distances between the modes are measured to be: 0-3: 26.0 MHz, 3-1: 14.8 MHz, 1-2:
41 MHz, 2-0: 15.0 MHz.

We wanted to to investigate if there was any further improvements or further
information to gain by including HOMs in our dispersion analysis compared to
only using the 0th order. Using the same data set, we did this by characterising
the MRR using four different mode configurations of the free space cavity in order

32
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to calibrate the laser scan. The four different configurations are:

1. All HOMs (0th, 1st, 2nd, and 3rd order),

2. 0th, 1st, and 2nd order,

3. 0th and 1st order,

4. 0th order.

The resulting dispersion curves and fit parameters can be found in Figure 4.12 (a)-
(d). Figure 4.12 (e) shows the dispersion curves plotted on top of each other, and
in (f) the residuals for the four different methods are shown. The values found from
the fits are D1/2π ≈ 100.2882 GHz, D2/2π ≈ 0.619 MHz, and D3/2π ≈ −0.0003
MHz which is similar to the values we got from using only the 0th order mode. The
converted β2-value at 1570 nm is β2 ≈ −65.2 ps2/km for all four configurations.

Figure 4.12: Dispersion characterisation of Wafer 266-BSS1-I0p5. (a)-(d) shows the dis-
persion obtained from each of four methods (all HOMs, only 0th, 0th and 1st, and 0th, 1st
and 2nd.). A total of six avoided mode crossing can be observed. In (e) all the dispersion
curves are and top of each other and (f) shows the residuals of the four curves from (e).
The β2 value are the same for all four methods.

In order to check the reproducibility of our results we took a total of five
measurements. Figure 4.13 shows the standard deviation of the residuals obtained
for the four different methods for each of the five data sets. It appears that the
measurement itself has a larger influence than the method does. Nonetheless, the
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GVD parameter β2 is within the same uncertainty for all five measurements. In
most cases β2 = −65.2 ± 0.4 ps2/km but in a few of the scans β2 = −65.3 ± 0.4
ps2/km for some of the methods. In both cases the uncertainty in β2 was highly
dominated by the uncertainty of D2 - representing the curvature of the dispersion.
The uncertainty on D2 is on the order of seven magnitudes larger than that of D1.
In theory, we should be able to decrease the uncertainty on D2 by scanning over a
larger area which should be easy given that the free space cavity used for reference
can be considered dispersion free over the entire range.
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Figure 4.13: Standard deviation of residuals for five different measurements shown for the
four methods.

4.3 Linearity of the Laser Scan

From the results presented in Figures 4.6-4.13 it appears that the choice of cali-
bration method does not affect the final results. Without the higher order modes,
as mentioned earlier, the number of cavity reference points between two adjacent
MRR resonances are roughly 103. This implies that the reference cavity does not
necessarily have to be as long as it currently is in this setup. A shorter reference
cavity would be preferable for more than one reason. Not only would it increase
the mobility of the cavity such that it would be easier to move around but it would
also make it much easier to align. By artificially removing cavity reference points
in our data set we can investigate if a limit exist for which we can no longer assume
the laser scan to be linear. If such a limit can be identified it will provide good
estimate for how short the reference cavity can be built.

N 1 2 3 4 5 6 7 8 9 10 11 12

Cavity length [cm] : 154.7 77.3 51.6 38.7 30.9 25.8 22.1 19.3 17.2 15.5 14.1 12.9

Table 4.2: Estimated cavity length for each N th 0th order mode removed

Taking every N th (N = 1, 2, ..., 12) 0th mode makes it possible to replicate a
situation in which we have a cavity of higher FSR. Knowing the FSR we can use
Eqn. (4.9) to estimate the length of the reference cavity based on the measured
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values. Table 4.23 shows the estimated cavity lengths for each N . Figure 4.14
shows the dispersion curve and residuals for N = 1, 3, 6, 12.
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Figure 4.14: Dispersion curves and residuals for every N th = 1, 3, 6, 12 0th order mode
removed. The corresponding cavity lengths are 154.7 cm, 51.6 cm, 25.8, 12.9 cm, respec-
tively.

3A table containing all fit parameters can be found in Appendix B.
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As N is increased and more points are removed the uncertainties of the values
obtained from the fit increases as well. Even though the uncertainties increase the
values from N = 3 and N = 6 are both still within the uncertainty of N = 1.
On the other hand, as N is increased it quickly becomes difficult to identify the
weaker mode crossings at 1526 nm, 1566 nm, 1574 nm, 1607 nm, and 1628 nm.
This is not an issue when characterising the dispersion of the device but it could
pose a problem when measuring the Q-value or if the device is pump near a strong
mode crossing when using it for comb generation. As mentioned earlier, pumping
the comb close to a mode crossing is not desirable since we want to avoid the shift
in frequency.
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Figure 4.15: FSR (light blue) and D2 (dark blue) as a function of N shown with errors.
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Figure 4.16: β2 as a function of N shown with errors.

Figure 4.15 shows the FSR and D2 as a function of N and Figure 4.16 shows
β2 as a function of N . From these two figures we see that even though we only use
every 12th 0th order mode we still cannot identify a point were the linearity of the
laser breaks. This concludes that a shorter cavity can be a possible replacement
compared to the longer one that is present in the current setup. Even though some
information regarding the weaker mode crossings are lost, there there is still the
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4.3. LINEARITY OF THE LASER SCAN

possibility to use the HOMs as additional calibration markers if a higher resolution
should be desired, e.g. for better identification of the weaker mode crossings that
are not visible otherwise.
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Chapter 5

Generation of Frequency
Combs
Frequency combs generated in MRRs, also known as microcombs, are typically
referred to as Kerr soliton combs. Fundamentally, a soliton is a pulse envelope of
coherent light that does not change in shape as it propagates through a dispersive
medium. They can be described as steady state solutions to the NLSE described in
section 2.2.1. Solitons occur in the MRR as a results of a double balance between
the dispersion and the nonlinearities described in Chapter 2 combined with the
FWM and cavity losses [11] [9]. In systems where parametric gain is present, such
as a microresonator, solitons known as optical dissipative Kerr solitons (DKS),
sometimes called bright solitons, can occur. These solitons provide the opportunity
to generate broadband coherent frequency combs consisting of ultra-short mode-
locked pulse trains [16].

Figure 5.1: An example of a soliton trace signal where the different intracavity soliton
configuration are shown. Here the configurations corresponds to (from left to right) (1)
formation of primary comb lines, (2) modulation instability (MI), (3) multi-soliton state,
and lastly (4) a single soliton state. The figure is adapted from [11].
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5.1 Soliton formation in MRRs

The formation of stable solitons can be observed in the trace signal as a series of
discrete steps, where each step is correlated to the solitons travelling inside of the
cavity. Taking a step down corresponds to the annihilation of individual solitons
and at the last step the single soliton step is reached.

The formation of solitons only occurs at the red-detuned side of the MRR
cavity resonance where the intracavity field is in a bi-stable regime (i.e. the case
where two steady state solutions exists for NLSE presented in section 2.2.1)[15].
Tuning the laser frequency from the blue-detuned side of the resonance towards the
red-detuned side will result in (1) generation of primary combs which then in turn
will generate subcomb formation, (2) chaotic MI state, and lastly (3) formation of
stable DKS. The formation of stable solitons is observed in the trace signal of the
converted intracavity power as a series of discrete steps as illustrated in Figure 5.1.
Each step is tied to solitons inside the cavity and a step down corresponds to the
annihilation of individual solitons. At the last step a single soliton state is reached
which means that only a single soliton exists inside the MRR.

5.1.1 Dissipative Soliton States

A specific soliton state is used to describes the number solitons existing inside
the MRR. Different soliton states will lead to different patterns on the observable
optical spectrum of the frequency comb.

Figure 5.2: Illustration of different soliton states and the corresponding optical spectra of
the frequency comb for (a) Single soliton state, (b) multi-soliton state, and (c) two FSR
comb (special case of the multi-soliton state).

When we have only one soliton existing within the MRR the state is called
a single soliton state. This state produces a coherent frequency comb known as
a single soliton comb which will have a characteristically sech2 shape that other
soliton states do not exhibit. Any other state with more than one soliton circulating
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inside the MRR is known as a multi soliton state. Multi-soliton states can result in
many different comb spectra depending on the number of solitons and their angular
distribution within the MRR. In multi-soliton states there will be interference
between the different comb lines which will result in characteristic patterns in the
optical spectrum of the frequency comb [12]. Figure 5.2 depicts three different
soliton states (a) single soliton state, (b) multi-soliton state, and (c) multi-soliton
state with evenly spaced solitons.

5.2 Experimental Setup

Comb generation in MRRs are highly dependent on, not only the MRR properties
such as dispersion and Q-values, but also the pump parameters, i.e. pump power
and frequency detuning (i.e. the relative shift in pump frequency compared to
the cavity resonance of the MRR). When generating a comb on the other hand,
high pump powers are needed in order to initiate the cascaded FWM necessary to
create the comb lines.

Figure 5.3: Schematic overview of the fibre coupled frequency comb generation setup. The
setup uses two lasers at different times: (1) Toptica DLC pro and (2) NKT Koheras BASIK
(is not sent through the EDFA and pump filter). The laser output is coupled to the MRR
using tapered fibres. The output of the MRR is divided into two using a 3 dB coupler.
One part is used to create the soliton trace signal by filtering out [high/low] frequencies.
The other output is connected to an OSA and shows the generated comb. All the fibres in
the setup are single-mode fibres. EDFA: Erbium-doped fibre amplifier, PC: Polarisation
controller, PD: Photodetector, OSA: Optical spectrum analyser.
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To initiate the formation of solitons and the generation of a frequency comb the
MRR must be pumped using a CW laser. In our experiments we have tested the
outcome using the different CW pump lasers: (1) Toptica DLC pro and (2) NKT
Koheras BASIK. The Toptica has a lower output power and the output is therefore
sent through an EDFA in order to amplify the signal. After the EDFA a filter is
inserted to filter out (block) the pump light for the EDFA. The output power of the
Toptica after it has been amplified is controlled using an attenuator. The EDFA
and filter are not necessary when using the NKT since it has an output power of
80 mW which is sufficient to initiate the formation of solitons.

For the majority of our measurements the NKT was directly connected to the
−20 dB coupler. It was however, for comparison reasons, connected in the same
manner as the Toptica for some of the measurements. A schematic overview of the
setup we used to create soliton signal and for the generation of frequency combs
can be found in Figure 5.3. The whole setup is fibre coupled using single mode
fibres.

The laser (amplifier) output is connected to a −20 dB splitter. The −20 dB
output of the splitter serves as a monitor for the input power sent to the chip. The
main output is sent through a polarisation controller to the MRR chip. From here
it is coupled into the MRR, in the same way as for the dispersion measurements,
using tapered lensed fibres. The light coupled of the chip after the MRR is first
connected to a −20 dB coupler in order to read out the output power and hereafter
it is split in two using a −3 dB coupler. The one half of the signal is passed
through a low-pass filter is used to filter out the pump signal in order to create the
soliton trace signal which is detected on a photo detector which is connected to an
oscilloscope. The other path is connected to an optical spectrum analyser (OSA)
which measures the optical frequency spectrum of the generated frequency comb.

5.2.1 The Heater Signal

In order to create a soliton comb it is necessary to be able to effectively ”catch” a
soliton. The SiN platform used for this experiment has integrated heater elements
that allows for thermally tuning of the resonance of the MRR as compared to
tuning of the laser frequency. The heater is connected to a function generator
provided with a heater signal. This signal is used to generate a soliton comb by
thermally red-shifting the resonance. By changing the heater power we can change
the temperature of the MRR making it expand (or contract) which will lead to a
change in the cavity resonance frequency. By creating a red-shift we can make sure
that we are on the right side of the resonance. When the power increases inside
of the MRR the temperature will also increase. This will create a change in the
refractive index and result in a shift in all the resonances inside of the cavity.

In order to achieve a linear scan of the temperature in time, the power to the
heater should change linearly in time, neglecting for the moment the heating due
to dissipated optical power and assuming that the temperature of the resonator
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follows the heater power directly. Using the Joule heating of a resistor:

P = U · I = R · I2, (5.1)

the control voltage to the heater is chosen to have a parabolic shape for a linear
ramp.

The implemented heating signal can be seen in Figure 5.4 (left). This arbitrary
wave function creates an instant heating of the chip indicated by the first vertical
line to the left in the plot. The heating is then stopped and the chip is slowly
cooled down according to the quadratic function in Eqn. 5.1. The small kick-
back step Vback at the end of the heating signal is used to stop the thermal tuning
in order to stabilise the soliton comb. The kick-back is created by increasing the
voltage by a small amount which allows us to tune back onto a soliton step without
scanning over it by stopping the cooling process. The size of the kick-back is an
important parameter. It largely determines whether or not we will catch a soliton.
An illustration can be found in Figure 5.4 (right).
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Figure 5.4: (Left): Heating signal as a function of time. The parameter Vback controls
the ”kick-back” signal that is used to stabilise the soliton state. (Right): A soliton trace
signal generated using the 266-BSS1-I0p5 device that is used for comb generation.

If Vback is set to a too high of a value, scenario (2) in Figure 5.4 (right), we are
most likely to be pushed back into the MI state. This will create a chaotic comb
state whereas a smaller Vback allows for a better opportunity to be pushed back
onto a soliton step. Although a small Vback is desired it can also be set too low.
As a minimum Vback has to correspond to the length of a soliton step in order to
push the system back into a soliton state. With a Vback corresponding to a shift
in the trace signal along the x-axis that is smaller than the length of a soliton
step, corresponding to (1) in the figure, it may not be possible to stop the thermal
cooling of the chip in time and we will end up scanning over the resonance and the
system will become thermally unstable.

The converted power trace used for comb generation is shown together with the
heating signal in Figure 5.5. In (a) and (b) a zoom-in of the soliton trace signal
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in the beginning and the end of the step formation are plotted, and in (c) the
full soliton trace signal is shown together with the heater signal from the function
generator. Here, it is clearly demonstrated how the heating signal allows us to stay
on soliton step for a long period of time.

Figure 5.5: Converted power trace used for comb generation. (a)+(b) shows a zoom-in of
the soliton steps and (c) shows the full trace along with the heater signal used to generate
the soliton comb.

5.3 Soliton Step Length Dependencies

As mentioned earlier, the generation of frequency combs is among other dependent
on the pump power. We decided to investigate this dependency by looking at the
soliton step length as well as the resulting generated combs by using two different
lasers with different linewidths to do so by way of comparison. The first laser used
is the same laser that was used in the dispersion measurement setup, namely the
Toptica DLC DL pro. It is an external cavity diode laser (ECDL) with a tunable
range of approximately 100 nm and a linewidth of around 100 kHz. The other
laser is a single frequency1 Koheras BASIK E15 from NKT with a linewidth of
< 0.1 kHz operating at 1542 nm with an output power of roughly 80 mW.

5.3.1 On-Chip Power

Based on the Toptica being a tunable laser it seemed evident to conduct mea-
surements on more than one resonance in order to gain more information on how

1It has a tunable range of approximately 800 pm
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the system behaves at different wavelengths. We chose the following resonances:
1541.8 nm, 1542.6 nm, 1554.7 nm, and 1559.5 nm. The soliton trace signal at
different on-chip powers for two different resonances, 1541.8 nm and 1559.5 nm,
can be found in Figure 5.6.
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Figure 5.6: Single soliton trace signals at the resonances 1541.8 nm and 1559.5 nm shown
for eight different on-chip powers. All the trace signals are obtained using the Toptica
laser.

Comparing the two resonances in the figure the difference in both soliton step
and power level length is very obvious. Where we in the traces for 1559.5 nm
see a relation between input power P and the measured power level as well as
distinct individual soliton steps, we do not observe the same behaviour at 1541.8
nm. At 1541.8 nm the individual steps are harder to distinguish and not all steps
are visible for all of the input powers in the same way as there were at 1559.5 nm.
We also do not see the same relation between input power and power measured
on the oscilloscope when looking only at the step formation. As an example the
longest total step length for the 1541.8 nm resonance is observed at P = 16.99
dBm.

In the same manner the different resonances is compared for the same on-chip
power in Figure 5.7 for measurements from both the Toptica and the NKT lasers.
For this specific measurement, the NKT traces are not amplified using the EDFA.
The reasoning for this was to investigate the possibility of generating a comb at
low input power using the NKT laser without amplifying the output signal.
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Figure 5.7: Comparison of the different resonances including traces from both the Toptica
and the NKT laser at the same on-chip power (13.8 dBm).

We found the total soliton step length to vary with on-chip power, as is most
apparent for 1554.7 and 1559.5 nm (shown in figure). In general the trace signal,
as would be expected, increased as the on-chip power increased but so did also the
individual soliton step lengths. In the trace shown for the 1559.5 nm resonance
five distinct steps can be identified for all of the different on-chip power levels,
except for the lowest one at P = 13.79 dBm. It is much more difficult to identify
the same steps for the 1541.8 nm resonance (with the same applying to the 1542.6
nm resonance). In general, the converted power on the y-axis has a much lower
value than that of the 1559.5 nm resonance.

This is most likely due to absorption in the MRR at those wavelengths. So
even though we pump the MRR with more power, the output will not increase
because of the material absorption which in general poses a problem when wanting
to generate a DKS comb since the soliton step lengths decreases by a significant
amount making it more difficult to reach a single soliton state.

Statistics

The soliton trace signal has a tendency to ”flicker” (i.e. it rapidly moves back
and forth). This means that we cannot form a complete idea of the total soliton
step length by just looking at a single trace. The definition of the total soliton
is the distance from tstart to tend as seen in Figure 5.8. The total step length is
determined using a running variance, i.e. the variance between neighbouring data
points.

Between each scan the point of tstart and tend will both randomly move back
and forth but the biggest change is seen in the position of tend. Looking at Figure
5.8 this could mean that at one scan tend was located at 83 µs but at the next scan
it could have moved to 82.5 µs. The typical total step length was around 0.5−1µs.
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Figure 5.8: A single soliton trace signal showing the steps. The total soliton step length
is defined as the part between tstart and tend. The total step length observed using this
device is on the order of a few µs.

Therefore, we saved a total of 100 consecutive scans of each of the traces for
the different input powers in order to gain some statistics on the total step length
and how it varies. In figures 5.9 and 5.10 the histograms of the total soliton step
length are shown for the 1541.8 nm and the 1559.5 nm resonances at four different
on-chip powers: highest, lowest, and two intermediate on-chip powers. The same
histograms were made for the two other resonances at 1542.6 nm and 1554.7 nm.

Figure 5.9: Histograms of the total soliton step length at 1541.8 nm for four different
on-chip powers: 14.1 dBm, 18.7 dBm, 21.7 dBm, and 22.6 dBm.
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Figure 5.10: Histograms of the total soliton step length at 1559.5 nm for four different
on-chip powers: 13.7 dBm, 18.7 dBm, 21.7 dBm, and 22.6 dBm.

For the 1541.8 nm resonances in Figure 5.9 we see that for the lowest input
power there is a large variance (of around 0.12 µs) for the total step length com-
pared to the two highest input powers which is on the order of 10−3 µs. In general,
we do not detect an overall change in the mean value when applying higher on-chip
powers. Looking at the same results for the 1559.5 nm resonance there seem to
be less variance at the two lower on-chip powers. Compared to the same on-chip
powers at 1541.8 nm they are on the order of a magnitude smaller. Also, at 1559.5
nm we see how the mean value of the total step length increases as the on-chip
power is increased with the exception of the highest on-chip power (22.6 dBm)
where there was a significant decrease in the mean total step length.

The 100 trace scans were used to calculate the average mean and variance of
the total length of the soliton steps as a function of all the different on-chip powers
at the different resonances for both the Toptica and the NKT. The results are
shown in Figure 5.11.

Looking at the mean value of the two groups (i.e. 1540 nm and 1550 nm reso-
nances) the same features found in Figure 5.6 of the soliton trace signal regarding
the visibility of the soliton steps also become very prominent here. We achieve
a much longer total soliton step length for the 1550 nm resonances which could
imply that the individual step length increase. Although, from the traces in Figure
5.6 it appears as though the change mostly applies to the last soliton step, which
means that it becomes easier to reach a single soliton state in comb generation.
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Figure 5.11: The averaged (100 scans) mean and variance of the total length of the soliton
steps as a function of on-chip powers at different resonances.

The most noteworthy observation is that there seem to be an optimal on-chip
power at which the total soliton step length is at the longest. For the two 1550
nm resonances this point appears around 21 dBm. For the 1540 nm resonances
it is not as prominent but they all seem to have the feature at a slightly higher
value, approximately around 21.5 dBm. Also, the fact that we do not see a rise
in the mean values for the 1540 nm resonances in the same way as we do for the
1550 nm resonances supports the suspicion we had of material absorptions at those
wavelength.

Comparing the obtained variances, there is a noticeable difference in the vari-
ance at lower input powers comparing the two 1540 nm with the two 1550 nm
resonances. The difference seem to become insignificant at powers above 18 dBm.
The most distinct difference when looking at the variance is that for the 1540 nm
resonances it decreases as the on-chip power is increased whereas for the 1550 nm
it is more or less constant over the full range of on-chip powers.

Lastly, comparing the results obtained at the same resonance using the Toptica
and the NKT it is not apparent that the linewidth of the laser makes a difference
for our results. The variance of the NKT is slightly lower at 15 dBm but since we
do not have a measurement at 14 dBm with the NKT it is difficult to conclude
whether or not a more narrow linewidth is preferable at lower on-chip powers.
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5.3.2 Polarisation

The geometry of the device we have been working on is designed to support the
TE polarisation. By this is meant that only light polarised in the TE direction
will be highly confined whereas the other polarisation, TM, will have light leaking
out of the MRR. So, besides the soliton step length being dependent on the input
power it will also depend on the light coupled into the MRR having the correct
polarisation. This is adjusted using the PC in the setup by suppressing the TM
polarisation and thereby enhancing the correct polarisation of the light coupling
into the MRR.

Although it is possible to generate a signal very similar to the soliton traces
shown in Figure 5.6 using the wrong polarisation, it will not show the same char-
acteristic soliton steps and for the same reason it cannot be used to generate a
frequency comb. The soliton trace signal is shown in Figure 5.12 for the 1559.5
nm resonance at three different on-chip powers using the wrong polarisation.
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Figure 5.12: Soliton trace signals at the 1559.5 nm resonance for the TM (”wrong”)
polarisation shown for three different on-chip powers.

5.4 Experimentally Generated Combs in the SiN Mi-
croresonator

In this section we present the combs that have been generated in the SiN microres-
onator using the soliton trace signal presented in the previous section. Even though
the heater signal can be used to ”catch” the solitons by thermal tuning, the rapid
flickering of the soliton trace signal makes it impossible for us to control on which
step we land. This means, especially for low on-chip powers, that we rarely land
on the single soliton step in the first try. At resonances with a prominent lower
step, like the two 1550 nm resonances, the chances increases as it becomes easier
to control using the Vback. We do not necessarily always know which step we are
currently on, it should always be possible to tune the comb from a multi-soliton
state into a single soliton step. By slowly tuning the laser frequency further to the
red-detuned (increasing the wavelength of the pump laser) side we can move the
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system to a ”lower” soliton state until the single soliton state is reached.

For each of the combs we calculate the conversion efficiency. This figure of
merit is used to describe how much of the pump power is converted into the comb.
The conversion efficiency becomes especially important if the application of the
generated comb is within the field of telecommunication in which single comb lines
are used as carriers to process signals. But in general it the conversion efficiency is
used to describe the performance of the MRR. It is calculated by taking the total
comb power (without the pump) and dividing that with the on-chip power:

η = Pcomb/Pin. (5.2)

5.4.1 Comb Generation using the Toptica

In this section we present a selection of the combs generated with the Toptica
at the same four resonances as was presented in section 4.2. Overall the combs
generated at the two 1540 nm resonances was observed to exhibit similar behaviour
and the same is true for the two 1550 nm resonances.
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Figure 5.13: A multi-soliton comb generated at 1541.8 nm using the Toptica DLC pro
with on-chip power of 17.1 dBm. The figure shows the initial (multi-soliton) comb and
the three subsequently states that was reached by tuning the pump laser.

Figure 5.13 shows the typical generation of a frequency comb at 1541.8 nm for
an on-chip power of 17.1 dBm. The comb structure and tune behaviour shown
in this plot is representative for both of the 1540 nm resonances but the comb
shown for the third tune (tune #3) represents the closest we came to a single
soliton comb at the 1540 nm resonances. Both these resonances had very similar
behaviour and we did not succeed with any comb generation in neither of the 1540
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nm resonances above an on-chip threshold of around 18 dBm nor did we succeed
in generating a single soliton frequency comb. The explanation is probably once
again to find in the material absorptions as we also observed in Figure 5.11. Even
with higher pump powers we did not see any increase in neither the output power
of the transmission nor the length of the individual soliton steps.

Looking at the soliton trace signals in Figure 5.6 for the 1541 nm resonance, we
clearly see that the step corresponding to the single soliton state is hardly present
for on-chip powers below 18 dBm. This can help us explain why we cannot seem
to generate combs at lower on-chip powers at these resonances. At low on-chip
powers it can be more challenging because the thermal tuning is likely to be larger
than the tuning of the laser frequency. So, when we tune the laser frequency we
end up tuning over the resonance which will cause the whole system to become
unstable. In general, when we tuned the laser frequency it was done at as small
steps as possible (∼ 1− 10µm) and, especially at lower on-chip powers, after each
tune the system was allowed some time to thermally stabilise before further tuning.

40

20

0

20

Po
w

er
 [d

B
m

]

Conversion eff.: 
 4.22 %

IC

Conversion eff.: 
 3.17 %

#1

1500 1525 1550 1575 1600 1625
Wavelength [nm]

40

20

0

20

Po
w

er
 [d

B
m

]

Conversion eff.: 
 2.17 %

#2

1500 1525 1550 1575 1600 1625
Wavelength [nm]

Conversion eff.: 
 1.10 %

a:    41.2 +/- 0.9 
b: -1558.3 +/- 0.1 
c:   -48.0 +/- 1.0 
d:   -68.6 +/- 0.9

tune #3

Toptica: 1554.7 nm, on-chip power: 17.0 dBm

Figure 5.14: The initial multiple soliton comb that was tuned into a single soliton state.
The bottom right plot shows a single soliton comb generated at 1554.7 nm using the
Toptica DCL pro. On-chip power is 17.0 dB IC: Initial comb.

With the two 1550 nm resonances single soliton comb generation was observed
frequently and even at lower on-chip powers it was possible to tune the combs
from a multi-soliton state into a single soliton. This is also supported by the
soliton trace signals shown in Figure 5.6. Here, the 1559.5 nm resonance exhibits
the most distinct steps, even at the lowest of the on-chip powers, compared to.
In Figure 5.14 it is illustrated how the initial comb generated at 1554.7 nm was
tuned into a single soliton comb. The on-chip power is 17.0 dBm which is the same
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on-chip power that was used to generated the comb shown in Figure 5.13. The
single soliton comb is fitted to a sech2 using the function:

F (x) = a · sech2

(
x+ peak

width

)
+ b, (5.3)

where the parameter P is used to describe the peak value of the curve, W is related
to the width, and the height of the curve is the sum of the parameters a and b.

Although both of the 1550 nm resonances perform much better than the two
1540 nm resonances, comparing the two resonances, we did observe that in general
the best results were obtained when pumping the device at 1559.5 nm even though
the soliton trace signals are very similar for the two. At 1559.5 nm, there was easy
access to what appears to be single soliton states and slightly broader combs could
be realised as is shown in Figure 5.15.
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Figure 5.15: (Above) single soliton comb generated at 1554.7 nm spanning from approx-
imately 1490 nm to 1635 nm. The on-chip power is 19.7 dBm. (Below) using the same
on-chip power, a single soliton comb generated at 1559.5 nm spanning from approximately
1490 nm to 1665 nm.
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Figure 5.16: Comb spectra showing all the different on-chip powers at which a single
soliton state was reached using the 1559.5 nm resonance.

For both of the 1550 nm resonances it applies that single soliton combs could
only be generated at on-chip powers of 16 dBm and up. But, the same trend that
was observed in Figure 5.11 is also observable in the generation of combs where
there seem to be an optimal on-chip power. Above that threshold power the step
size begins to decrease. When generating the combs it is also present and can be
seen as a narrowing of the span of the spectrum as shown in Figure 5.16.

Raman Effect

Another distinct feature that can be observed from the plot in Figure 5.16 is a
red shift of the center value of the sech2 shape of the spectra from the pump
frequency. This feature is the result of the Raman effect caused by a vibrational
material response of the third order nonlinearity in the MRR. Like the other effects,
it can be accounted for in the NLSE by including an extra term:

∂A

∂z
− i

2
β2
∂2A

∂t2
− α

2
− iγ

(
|A|2A− TRA

∂|A|2

∂T

)
= 0, (5.4)

where the parameter TR describes the slope of the Raman gain spectrum which
occurs due to the stimulated Raman scattering in the medium. This term that
have now been introduced in Eqn. 5.4 is the term responsible for the self-frequency
shift [2].

The Raman effect causes a continuous shift of the soliton as it propagates inside
the MRR leading to a global shift of the whole spectrum. Karpov et al. found in
[8] that the spectral red-shift increased as the pump laser was tuned from the blue
side to the red over the entire range in which the soliton exists, i.e. the soliton
step. This effects can also be observed in Figure 5.16. We see how the spectrum
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shifts further to the red side compared to the pump at the pump power is increased
which is also where the longest single soliton steps are found (Figure 5.6). This is
due to the thermal heating of the ring caused by the higher intensities.
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Figure 5.17: The shift in peak power of the sech2 spectrum as a function of the same
on-chip powers shown in Figure 5.16.

Figure 5.17 shows the peak values obtained from fitting the spectra shown in
Figure 5.16 to the sech2 function in Eqn. (5.3). It shows how the peak moves from
around 1564 nm for the 16 dBm on-chip power and goes all the way up to 1576
nm for 20.7 dBm. After 20.7 dBm the value decreases again in correspondence to
the decrease we also saw when looking at the soliton step lengths.

5.4.2 Comb Generation using the NKT

The NKT laser operates in a narrow wavelength span around 1542 nm which
already has been illustrated to be a tricky area due to the absorption in the MRR2.
But even though we did not successfully generate any single soliton combs using the
Toptica laser we still wanted to see if the narrower linewidth of the NKT would
make a difference in the generation of combs. In order to increase the output
power of the NKT, in the same way we were able to do it with the Toptica, it was
connected to the EDFA.

2At best we are able to reach two different resonances, corresponding to the 1541.8 nm and
1542.6 nm using the NKT, by tuning the laser frequency. In theory we could also increase/decrease
the temperature of the ring which also should allow us to reach other resonances but this was not
done in this experiment.
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Figure 5.18: A multi-soliton comb generated at 1542.8 nm using the NKT Koheras BASIK
with on-chip power of 16.9 dBm. The figure shows the initial (multi-soliton) comb and
the three subsequently states that was reached by tuning the pump laser.

Comparing the two different combs that we generated at this specific on-chip
power using the two lasers we do not see any significant improvement when using
a laser with a more narrow linewidth at the 1542 nm wavelengths. Actually, it
would rather appear that when just comparing these two results that the Toptica
performed better. But, the results in Figure 5.13 were the best results we obtained
at this wavelength and it cannot be excluded that similar results could be produced
using the NKT. The system is very sensitive at this wavelength and in general we
had to be very careful when tuning the laser frequency due to the very narrow
steps.
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Figure 5.19: Multi-soliton combs generated at the same on-chip power using two different
lasers. The red spectra shows the Toptica at 17.1 dBm and the blue shows the NKT at
16.9 dBm.
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CHAPTER 5. GENERATION OF FREQUENCY COMBS

In Figure 5.18 we compare two combs generated at the same on-chip power
for the same resonance using the NKT and Toptica lasers. The red spectrum is
generated at 1542.6 nm using the Toptica laser and the dark blue spectrum is the
same as shown bottom right in Figure 5.18 for the NKT at 1542.6 nm.

Here, we do see a large difference when we compare the NKT results with
the comb generated at 1542.6 nm using the Toptica (corresponding to the same
resonance). Comparing these two spectra, the converison efficiency is twice as high
for the Toptica which means that less of the pump light is converted into the comb.
But it is hard to conclude much from these results since we cannot be certain that
it is not possible to obtain better results for the Toptica using this resonance.
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Figure 5.20: A multi-soliton comb generated at 1542.8 nm using the NKT Koheras BASIK
with on-chip power of 21.5 dBm.

One noticeable difference between the lasers was that we were able to go to
much higher on-chip powers when using the NKT. With the NKT laser we managed
to generate combs at all of the tested on-chip powers with the highest being 22.7
dBm. The higher on-chip powers did not enable us to generate single soliton combs
but from the results obtained from the soliton trace signals in Figure 4.13 we did
expect that either. A comb generated at 21.5 dBm using the NKT laser can be
seen in Figure 5.20.
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Chapter 6

Frequency Stability Analysis

It can be difficult to tell, at first glance, whether or not a comb generated using
one laser is in anyways performing better than a comb generated using a different
laser as they can appear very similar. There are many factors that can introduce
different types of noise to the system and we cannot measure these directly from
just the comb spectra alone.

What can be done, is measuring the stability of the two lasers used for comb
generation in order to compare with the stability of the generated combs. This can
give an idea of what types of noise are affecting the system at different frequency
scales. Also, by comparing different stability measurements the hope is that we
are able to form an idea of the origins of noise.

The stability of any frequency source can be assessed by looking at how the
source fluctuates in frequency over a period of time. This will then tell to what
degree the source is stable in a given window of time.

Figure 6.1: Sigma-tau diagram adapted from [22].

A common way of presenting the frequency stability in the time domain is by
a sigma-tau plot (log-log plot) which measures the stability as a function of aver-
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CHAPTER 6. FREQUENCY STABILITY ANALYSIS

aging times over which the stability has been measured (see Figure 6.1. Presented
this way, in a sigma-tau plot, different types of noises can be identified due to
their characteristic slope. As an example, if we have a system that is completely
dominated by white noise (or any other uncorrelated measurement), then we can
decrease the uncertainty by taking more measurements. This corresponds to a
negative slope proportional to τ−1/2.

6.1 Allan Variance

We measure the frequency stability by applying a two-sample variance method
known as the Allan variance σ2

y(τ). It is worth noting that the results typically
would be expressed in terms of the Allan deviation which is the square root σy(τ).
Mathematically, it is defined as:

σ2
y(τ) =

1

2(M − 1)

M−1∑
i=1

[yi+1 − yi]2 , (6.1)

where yi describes the ith element of M measurements each of which are the
averaged frequency over a time (measurement) interval τ , that spans over a total
measurement time, T . Several version of the Allan variance exists here among the
overlapped and the modified Allan variance [22].

Figure 6.2: Illustration of the difference between a non-overlapping and an overlapping
sampling.

The overlapping Allan variance (AVAR) is one of the most commonly used
methods of frequency stability. Instead of averaging individually over larger sam-
pling sizes, AVAR is used to create overlapping rolling sample for each averaging
time τ using all possible configurations as shown in Figure 6.2. For a data set con-
taining M measurements for an averaging time of τ = mτ0 the frequency stability
is given by the expression:

σ2
y(τ) =

1

2m2(M − 2m+ 1)

M−2m+1∑
j=1

j+m−1∑
i=j

(yi+m − yi)

2

(6.2)

The modified Allan variance (MVAR) is sometimes used instead of the AVAR
due to its ability to distinguish between white PM noise and flicker PM1 noise.

1Phase modulation
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6.2. EXPERIMENTAL RESULTS

The expression for MVAR is:

Modσ2
y(τ) =

1

2m4(M − 3m+ 1)

M−3m+2∑
j=1

j+m−1∑
i=j

{
i+m−1∑
k=i

(yk+m − yk)

}2

(6.3)

6.2 Experimental Results

As mentioned the frequency stability is estimated from measuring the beat note
of two frequency samples, which is equal to the difference in frequency between
the two. This means that we have to make sure that the samples overlap. A 3
dB coupler is used to combine the two frequency samples into a single output port
that can be connected to a spectrum analyser. When beating one of the comblines
in the frequency comb with a laser, a filter is used to filter out all other frequencies
than the one corresponding to the output of the laser. It can be convenient to start
by adjusting the overlap of the samples on the optical spectrum analyser (OSA),
used to measure the spectra of the frequency combs, but in order to get a clear
view of the actual beat note we use an electrical spectrum analyser (ESA). The
ESA shows the radio freqency (RF) spectrum of the combined output.
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Figure 6.3: The RF spectrum of a beat note between a Toptica combline and the 1531
nm NKT laser. The Toptica comb is generated at 1559 nm using an on-chip power of 17.1
dBm.

The blue signal corresponds to the background signal, i.e. the signal of the full
comb spectra when we turn off the NKT laser. The red signal shows the beat note
between a Toptica combline at 1531 nm (filtered out) and the 1531 nm NKT laser.
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CHAPTER 6. FREQUENCY STABILITY ANALYSIS

To measure the beat note the output was connected to a a Pendulum CNT-90
frequency counter with an averaging time of 10 µs. We measured the beat note of
the two NKT lasers with and without the EDFA. The NKT lasers are more stable
than that Toptica, so these measurements were used as a standard of comparison
to our other frequency stability measurements with the Toptica. The direct output
of the Toptica was beat with both of the NKT at their respective output power
and lastly we also measured the frequency stability of a combline generated using
the Toptica compared to the 1531 nm NKT laser (Figure 6.3).

10 5 10 4 10 3 10 2 10 1 100

Averaging time [s] 

104

105

106

M
od

. A
lla

n 
de

vi
at

io
n 

[H
z]

1531 NKT vs. NKT combline
1531 NKT vs. Toptica
1542 NKT vs. Toptica

1531 NKT vs. Toptica combline
1531 NKT vs. NKT (EDFA) combline

Figure 6.4: A modified Allan deviation comparing the frequency stability of the Toptica
and NKT lasers used for frequency comb generation.

The Allan deviation is calculated using the allantools package in Python.
The results are shown Figure 6.4 and from the results we see a trend in the mea-
surements on the Toptica laser and they all overlap especially at averaging times
below τ = 10−2. As expected, we also observe the NKT lasers to be more stable
at shorter averaging times. From this we can also conclude that the instabilities
we observe in our system is dominated by that of the Toptica and not the NKT.
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Chapter 7

Conclusion

The work presented in this thesis has focused on the characterisation as well as the
possibilities within frequency comb generation using a SiN integrated platform.

First and foremost, we have investigated the dispersion of the Wafer-266-BSS1-
I0p5 device as well as characterised the device according to its Q-value and avoided
mode-crossings. Six avoided mode-crossing was identified and the device was found
to have an FSR of 100.2882± 0.0001 GHz and a β2-value of −62.5± 0.4 ps2/km.
The average intrinsic Q of the device was found to be around 12 · 106. All of our
results are in accordance with the results obtained by Ye et. al in [27]. For a
similar MRR they report an FSR of 100 GHz, a β2 of −67 ± 1 ps2/km and an
average intrinsic Q of 12.5 · 106.

For these measurements we have proposed a method of characterisation which
allows for the use of a simple, dispersion free, source of reference using a free space
cavity. We found that HOMs in the free space cavity can be used as additional
reference points, artificially creating an even longer cavity. From this we can
conclude that the free space cavity we used for our experiments could easily be
replaced by a shorter cavity without loosing significant information regarding the
dispersion measurements.

Secondly, we investigated the frequency comb generation in a MRR based on
the intracavity formation of optical solitons. The formation of solitons is observed
through the soliton trace signal in which each soliton step represents a different
comb state. We found the soliton step lengths to vary at the different resonances
but the total step length was also found to have a strong correlation with the
on-chip power. The total soliton step length increases with the on-chip power up
until it reaches an optimal on-chip power which was found to be around 21 dBm.
After this point, there is a sharp decrease in the total step length.

Of the four resonances investigated, the two at 1554.7 and 1559.5 nm yielded
the best results. Due to absorption around 1540 nm, the resonances at 1541.8 nm
and 1542.6 nm, did not exhibit the same behaviour as we saw around 1550 nm.
Even though the variance decreased at higher on-chip powers, for the 1540 nm, we
did not observe a noticeable difference in the mean value of the total step length
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neither for the Toptica laser nor the narrow linewidth NKT laser.
The same tendencies apply for the experimentally generated combs. Here, we

only achieved a single soliton state pumping the MRR around 1550 nm. We were,
however, able to generate what appears to be single soliton frequency combs at on-
chip powers down to 16.0 dBm by tuning the laser frequency in order to reach lower
steps in the trace signal. We also found that even though we could not distinguish
between the Toptica and NKT in the results obtained from the measurements on
the soliton trace signal we did see a difference when generating combs. Using the
Toptica we were not able to generate combs above 18 dBm on-chip power but with
the NKT laser we did not have that limitation. This could be related to what
we found in the frequency stability analysis. Here, we concluded that it is the
noise coming from the Toptica that is inherent for the system. Especially at lower
averaging times the NKT had a MDEV that was an order of a magnitude smaller
than the Toptica which means that the NKT has a more stable frequency output
than the Toptica.

7.1 Outlook

The work presented in this thesis has been focusing primarily on the characteri-
sation and analysis of the properties of the Wafer-266-BSS1-I0p5 device with the
purpose of using it for efficient frequency comb generation. For the measurements
we have showed here, no work was put into stabilising the system which means
that we have no immediate control over the life span of a generated comb. The
combs generated at the 1550 nm resonances typically has a life span of anywhere
between 10 min and an hour. This was of course more than sufficient for our mea-
surements but if the comb is to be used as a reference source in another setup it
would be preferable to have longer life spans. This can be achieved by stabilising
the system in which the frequency comb is generated.

One way could be by building a stabilisation scheme for stabilising the pump
laser. In this scheme the laser frequency is controlled by a feedback loop that
creates an error signal by measuring the output frequency compared to a reference.
The error signal is used as the feedback for laser source in order to correct any
drift in frequency.

Another way is to thermally stabilise the MRR by controlling the heater output
such that any drift in the resonance frequency could be detected and counteracted
by either increasing or decreasing the temperature. By stabilising the system in
some way, regardless of the method, it becomes possible to stay in a single soliton
state for a longer period of time which automatically leads to a longer life span of
the frequency comb.
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7.1. OUTLOOK

It could be interesting to setup up a simulation using the parameters from our
setup such that we can compare the experimental result with the theory. This
would maybe help us increase our understanding of system as an entity. We have
already derived the equations needed for such a simulation but there are existing
scripts that can be found online as well.
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Appendix

Appendix A: Wave Propagation in Waveguides

The propagation of electromagnetic waves in dielectric isotropic materials can be
described through Maxwell’s equations

∇×E(r, t) = −∂B(r, t)

∂t
, (7.1a)

∇×H(r, t) =
∂D(r, t)

∂t
, (7.1b)

∇ ·B(r, t) = 0, (7.1c)

∇ ·D(r, t) = 0. (7.1d)

For nonmagnetic materials the constitutive relations are given by the displacement
vector field D(r, t) = ε0E(r, t) +P(r, t) and the magnetic field B(r, t) = µ0H(r, t).
Taking the curl of ∇× E and inserting the expression for H(r, t) and D(r, t) the
equation becomes

∇×∇×E(r, t) = −
(

1

c2
ε0
∂2E(r, t)

∂t2
+ µ0

∂2P(r, t)

∂t2

)
. (7.2)

The polarisation can be rewritten in order to include the nonlinear interactions
between light and matter in the materials. This is done using a perturbation
series, P(r, t) =

∑∞
k=1 P(k)(r, t) which can be inserted into Eqn. (7.2) which then

becomes the nonlinear wave equation in the time domain,

∇×∇×E(r, t)+
1

c2

∂2

∂t2

ˆ ∞
−∞

(
1 + χ(1)

)
E(r, ω)e−iωtdω = −µ0

∂2

∂t2
P(NL)(r, t). (7.3)

P(NL)(r, t) =
∑∞

k=2 P(k)(r, t) is the nonlinear induced polarization. [...] In the
frequency domain Eqn. (7.3) translates into

∇×∇×E(r, ω) =
ω2

c2
E(r, ω) + µ0ω

2P(r, ω). (7.4)
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APPENDIX

In the time domain, the field of quasi-monochromatic waves consists of one or more
carrier waves multiplied with a slowly varying envelope. [rewrite...?]

E(r, ω) =
1

2

(
E0
ω0
e−iω0t + c.c

)
. (7.5)

The linear and nonlinear polarisation can be written as separate fields in a similar
form as the electric field. If we only consider positive frequencies the nonlinear
wave equation in the frequency domain becomes

∇×∇×E0
ω0

(r, ω−ω0) =
ω2

c2
E0
ω0

(r, ω−ω0)+µ0ω
2
[
(P 0

ω0
)L(r, ω − ω0) + (P 0

ω0
)NL(r, ω − ω0)

]
.

(7.6)

Assuming that the material is homogeneous allows us to write ∇×∇×E = −∇2E
and Eqn. (7.6) then becomes:

(
∇2 +

ω2

c2

(
1 + χ(1)

))
E0
ω0

(r, ω − ω0) = −µ0ω
2(P 0

ω0
)NL(r, ω − ω0), (7.7)

where the linear part of the polarisation have been rewritten using ε0µ0 = 1/c2.
The nonlinear polarisation can in many cases, such as the optical Kerr effect and
four wave mixing, be written as an effective linear polarisation:

(P 0
ω0

)NL(r, ω − ω0) = ε0Kχ
(3)E0

ω1
E0
ω2
E0
ω0

= ε0χ̃
(1)E0

ω0
, (7.8)

where χ̃(1) is the effective first-order nonlinearity. Using this, Eqn. (7.7) becomes:(
∇2 +

ω2

c2

(
1 + χ(1) + χ̃(1)

))
E0
ω0

(r, ω − ω0) = 0. (7.9)

The nonlinear wave equation can be derived for a field propagating in a homoge-
neous waveguide by assuming that the amplitude of the field can be separated into
an envelope A(ω − ωσ) and a radial distribution R(r),

Eω0(r, ω − ω0) = A(ω − ω0)R(r)eiβ0z. (7.10)

Inserting the electric field in Eqn. (7.10) into Eqn. (7.9):(
∇2 +

ω2

c2

(
1 + χ(1) + χ̃(1)

))
A(ω − ω0)R(r)eiβ0z = 0. (7.11)

In order to solve Eqn. (7.11) we apply seperation of variable in order to separate
the radial and longitudinal dependencies:[

−∇2
⊥R(r) +

ω2

c2
(1 + χ(1) + χ̃(1))R(r)

]
1

R(r)
=

1

Aeiβ0z
∇2
z(Aeiβ0z). (7.12)
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The RHS now only depends on r whereas the LHS only depends on z. This
means we can set both of them equal to some constant β̃2 such that we obtain two
equations: [

−∇2
⊥R(r) +

ω2

c2
(1 + χ(1) + χ̃(1))R(r)

]
1

R(r)
= β̃2, (7.13)

1

Aeiβ0z
∇2
z(Aeiβ0z) = β̃2. (7.14)

From Eqn. (7.13) the transverse mode can be defined through a solution of:[
−∇2

⊥R(r) +
ω2

c2
(1 + χ(1) + χ̃(1))R(r)

]
− β̃2R(r) = 0, (7.15)

in which we will neglect χ̃(1) assuming that the nonlinearity does not affect the
mode R(r). The mode problem can be solved in order to find R(r) and β(ω) by

considering the Laplacian operator in cylindrical coordinates ∂2

∂r2
+ 1

r
∂
∂r + 1

r2
∂2

∂θ2

and letting the solutions be separable in radial and azimuthal dependence:

φ(r, θ) = R(r)

{
cos(mθ)
sin(mθ)

}
. (7.16)

In a step index fiber with homogeneous layers the problem will take the form
∇2
⊥φ+ (k2n2

i − β2)φ = 0, where ni (i = 0, 1) is the refractive in the cladding and
core, respectively. Inserting Eqn. (7.16) into the wave equation along with the
expression for the Laplacian operator we obtain:

∂2R

∂r2
+

1

r

∂R

∂r
− 1

r2
m2R+ (k2n2 − β2)R = 0, (7.17)

which is a Bessel differential equation when β < kn and a modified Bessel differen-
tial equation when β > kn. Applying boundary conditions at r− > ∞ and r = 0
the modes can be found as solutions from:

u
Jl+1(u)

Jl(u)
= v

Kl+1(v)

Kl(v)
, (7.18)

where Jl and Kl are the Bessel and modified Bessel, respectively.

We consider a simple unperturbed waveguide structure in which the eigenmode
shape R and corresponding propagation constant β are known. A perturbation to
such a structure can be expressed in terms of a change on the relative dielectric
constant ∆εr replacing εr with εr + ∆εr where ∆εr is the uniform perturbation
along z (∆εr = χ̃(1)). In the same manner as we introduced εr → εr + ∆εr we will
also have to introduce R+ ∆R and β + ∆β.

Beginning with Eqn. (7.13), neglecting the higher-order perturbation terms:

∇2
⊥(R+ ∆R) + [(εr + ∆εr)k

2 − (β −∆β)2](R+ ∆R) = 0, (7.19)
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∇2∆R+ εrk
2∆R+ ∆εrk

2R− β2∆R− 2β∆βR = 0. (7.20)

We then multiply with the complex conjugate of the transverse mode R:

∇2∆RR∗ + εrk
2∆RR∗ + ∆εrk

2|R|2 − β2∆RR∗ − 2β∆β|R|2 = 0, (7.21)

and integrate over the entire waveguide cross section:

2β∆β

ˆ
A
|R|2da =

ˆ
A

∆εrk
2|R|2da+

ˆ
A

[
(∇2
⊥∆R)R∗ + εrk

2∆RR∗ − β2∆RR∗
]
da.

(7.22)
If we multiply the complex conjugate of the transverse wave equation by ∆R,
∆R(∇2

⊥R
∗ + [ε∗rk

2 − β∗2]R) = 0 and put it back into Eqn. (7.22):

2β∆β

ˆ
A
|R|2da =

ˆ
A

∆εrk
2|R|2da

+

ˆ
A

[
(∇2
⊥∆R)R∗ −∆R(∇2

⊥R
∗) + ∆Rk2(εr − ε∗r)R∗ −∆R(β2 − β∗2)R∗

]
da,

(7.23)
where we have subtracted the complex conjugate of the wave equation multiplied
with ∆R in order to show:

1. ∆R∇2
⊥R
∗ + ∆Rε∗rk

2R∗ −∆Rβ∗2R∗ = 0

2. (∇2
⊥∆R)R∗ −∆R∇2

⊥R
∗ + ∆R(εr − ε∗r)R∗ −∆R(β2 − β∗2)R∗

Now, since εr and β are purely real it reduces to:

2β∆β

ˆ
A
|R|2da =

ˆ
A

[
(∇2
⊥∆R)R∗ − (∇2

⊥R
∗)∆R

]
da+

ˆ
A

∆εrk
2|R|2da. (7.24)

According to Green’s theorem the first term on the RHS equals 0 which leaves us
with:

2β∆β

ˆ
A
|R|2da =

ˆ
A

∆εrk
2|R|2da, (7.25)

from which we find:

∆β =
k2

2β

´
A ∆εr|R|2da´
A |R|2da

, (7.26)

with k = ω/c and β = kneff . From Eqn. (7.25) we see that a small change in ∆R
has no effect on the propagation constant since assuming a purely real permittivity
(hence a real propagation constant) the change in propagation constant is solely
determined by ∆εr. This implies that Eqn. (7.14) describes the propagation in
the waveguide. Writing out the the equation results in:

∂2A

∂z2
+ 2iβ0

∂A

∂z
− β2

0A+ β̃2A = 0. (7.27)

70



APPENDIX

A pulse propagating in the z-direction can be written as a complex-valued
slowly-varying envelope function Aωσ(z, t) of the electric field. A slowly-varying
envelope function changes very little over lengths comparable to the wavelength
satisfying: ∣∣∣∣∂2Aωσ

∂z2

∣∣∣∣� ∣∣∣∣kσ ∂Aωσ∂z

∣∣∣∣ . (7.28)

Applying the slowly-varying envelope approximation (SVEA):

β̃ = β(ω) + ∆β ≈ β0 + β1(ω − ω0) +
1

2
β2(ω − ω0)2 + ∆β, (7.29)

with ∆β as defined in Eqn. (7.26) where χ̃(1) = ∆εr and β0 = β(ω0), β1 = ∂β
∂ω

∣∣∣∣
ω0

and β2 = ∂2β
∂ω2

∣∣∣∣
ω0

. Using the approximation:

β2
0 − β̃2 ≈ 2β0(β0β̃), (7.30)

we get the expression:

i
∂A

∂z
+

(
β1(ω − ω0) +

1

2
β2(ω − ω0)2 + ∆β

)
A = 0. (7.31)

Using the Fourier transform ωnF (ω) ↔ in ∂n

∂tn the Eqn. (7.31) is translated into
the time domain:

∂A

∂z
+ β1

∂A

∂t
+
i

2
β2
∂2A

∂t2
− i∆βA = 0, (7.32)

where β1 is the inverse group velocity, β2 the group velocity dispersion and ∆β is
the change in the propagation constant.

A pulse propagating through a waveguide will be subject to dispersion through
the intensity dependent refractive index. This can be accounted for by writing the
change in the propagation constant as:

∆β =
ωnI2
c

P

Aeff
, (7.33)

with nI2 being the intensity dependent refractive index, P the power and Aeff the
effective area. This last rewriting allows us to rewrite the last term in the LHS in
Eqn. (7.32):

i∆βA = iγ|A|2A, (7.34)

where P = |A|2 and γ = 2πn2/λAeff . Finally, introducing a coordinate system
moving with the group velocity reduces Eqn. (7.32) to:

∂A

∂z
− i

2
β2
∂2A

∂t2
− iγ|A|2A = 0. (7.35)
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This equation is known os the Nonlinear Schrödinger Equation (NLSE). The sec-
ond term on the RHS is responsible for the group velocity dispersion (GVD) and
the last term on the RHS is the term responsible for the nonlinearity (the Kerr
effect).

In a lossy fibre the intrinsic loss, α, can be accounted for by adding an extra term.
The term can be included in ∆β by substituting:

∆n = n2|E|2 → ∆n = n2|E|2 +
i

2k0
α, (7.36)

which then would show up in the expression for ∆β as:

∆β =
ω

c

(
nI2

P

Aeff
+ iα

)
(7.37)

Including this extra term in the NLSE the equation then becomes:

∂A

∂z
− i

2
β2
∂2A

∂t2
− iγ|A|2A− α

2
= 0. (7.38)
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Appendix B: Fit Parameters for all N

N FSR [GHz] D2 [MHz] β2 [ps2/km] σres Estimated cavity length [cm]

1 100.2882± 0.0001 0.619± 0.003 −65.2± 0.4 24.0015 154.7

2 100.2882± 0.0001 0.619± 0.003 −65.2± 0.4 24.1045 77.3

3 100.2882± 0.0001 0.618± 0.004 −65.1± 0.4 24.5946 51.6

4 100.2882± 0.0001 0.617± 0.004 −65.0± 0.4 25.4800 38.7

5 100.2882± 0.0001 0.618± 0.004 −65.2± 0.4 26.7465 30.9

6 100.2882± 0.0002 0.616± 0.004 −64.9± 0.4 28.5150 25.8

7 100.2882± 0.0002 0.615± 0.004 −64.8± 0.5 31.4760 22.1

8 100.2882± 0.0002 0.613± 0.004 −64.6± 0.5 31.7724 19.3

9 100.2882± 0.0002 0.613± 0.005 −64.6± 0.5 34.5573 17.2

10 100.2883± 0.0002 0.618± 0.005 −65.1± 0.5 34.1549 15.5

11 100.2883± 0.0002 0.614± 0.005 −64.7± 0.5 33.9904 14.1

12 100.2884± 0.0002 0.612± 0.005 −64.7± 0.5 32.8462 12.9
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