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Abstract

This thesis was motivated by the desire to have a quantum simulator capable of addressing

open research questions in strongly correlated matter, such as the Cooper pairing mechanism

that leads to unconventional superconductivity. In the engineering of the simulator, we choose

nanostructures due to their intrinsic, hard wall confinement and the possibility to exploit their

low dimensionality and tune energy scales before introducing electrostatic gating schemes.

We will aim to prepare the simulator in a state that can be modelled with the simplest known

Hamiltonian in condensed matter physics that accounts for strong correlations - the Hubbard

Hamiltonian. Hence, we dub the simulator: ”a Hubbard lattice”. This model assumes that

all particles are in the lowest Bloch band, which from an experimental point of view, makes

disorder potentials generated by random impurities with energy fluctuations that match

band gap energies important. Thus, reducing impurity content remains a crucial goal in

these nanostructures and this requires significant insight into the material parameters that

define physical properties such as the scattering mechanisms and retained phase of conduction

particles. In this thesis, I present results related to these material parameters by studying

indium-arsenide nanostructures. To study scattering mechanisms in a particular density

regime, we develop a new method to extract a carrier density-dependent mobility from a two-

terminal field-effect transistor measurement and demonstrate an excellent match with the Hall

mobility. To study quantum effects arising from phase-coherent particles, I study universal

conductance fluctuations, specifically, the statistics in normal-superconducting nanowires,

which has not been done before. I show that it is possible to probe the symmetry-breaking

mechanism from the amplitude of these fluctuations in different regimes. Some of the obtained

results are in agreement with prediction from theory but other results disagreed strongly. We,

therefore, suggest future work to clarify these issues. Finally, I present preliminary tight-

binding calculations, on 2-dimensional square Hubbard lattices with dimensions matching

those of the most recent selective-area-growth synthesized lattices. I show that it is possible

to create localized orbitals in the junctions of the lattices which is an essential feature in

simulating the Hubbard lattice.
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Chapter 1 Introduction

A major goal in condensed matter physics is the realisation of a quantum simulator

capable of experimentally testing theories surrounding strongly correlated systems.

The physics of strongly correlated systems - i.e. systems where electron-electron interactions

can dominate the way electrons pass through a material - has been posited to explain high

temperature superconductivity in certain materials1,2. However, the computational difficulty

of solving even the most simple, easy-to-understand Hamiltonian when strong correlations

are turned on means researchers have long sought to build simulators, or even quantum

computers that could directly manifest the behaviour of strongly correlated systems in a

controllable way3,4. That is a comprehensive task that requires a significant insight into the

physical systems of interest. One crucial task towards making strongly correlated materials is

to minimize random disorder potentials arising from impurities and/or defects, introduced

during the growth/fabrication processes required to realise the nanoscale objects and systems

that will constitute the simulator/computer. Disorder can be charge impurities, point defects,

atomic vacancies, surface roughness, patterning imperfections etc.5 Learning which parameters

in the growth and/or fabrication process are the source of disorder is an absolute priority

if we are to eliminate them. A measurable parameter that quantifies the level of disorder is

the charge carrier mobility. The inherent difficulty in performing four-terminal Hall effect

measurements on nanostructures, including nanowires (NWs)6, means that the mobility is

often reported as a single number from field-effect transistor (FET) measurements. This

does not provide sufficient information about the underlying scattering mechanisms that

determine the mobility in a particular carrier density regime. Thus one of the subjects of this

thesis work has been to develop a method to accurately extract the gate voltage-dependent

mobility from two-terminal FET measurements similar to a Hall mobility. A study of coherent

electron transport allows for the observation of quantum interference (QI) effects that can

provide information on the presence of disorder. One manifestation of QI-effects originating

from randomly distributed disorder is universal conductance fluctuations (UCF). Contrary

to Fabry-Perot interference that can be observed in disorder free electron waveguides where

scattering only occur on the contacts, UCF are non-periodic reproducible fluctuations of

the conductance observed upon varying disorder, fermi-wavelength or magnetic field (see fig.

1.1). Aside from information about the presence of disorder, the amplitude of UCF holds

information about the phase coherence length - the typical distance that a conduction electron

retains phase information - and the fundamental symmetries that are present in the system.

Thus, in the view of the goal of minimizing disorder it is relevant to study and understand

the phenomena related to UCF in NWs and this has been one of the subjects studied in this
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thesis.

1.1 Thesis Outline

The work described in this thesis is 1) a discussion of the physics of NW lattices 2) Consider-

ations of the mobility and the physics of UCF in NWs. The first chapter will introduce the

theoretical background needed to appreciate the results and used subsequently to interpret

the experimental results. A considerable fraction of the time in this project has been spent on

experimentally fabricating nanowire electrical devices and measuring their properties at low

temperatures. These experimental techniques are described in section 3. Chapter 5 contains

Figure 1.1: Fabry-Perot Oscillation vs. UCF. a-b), show the regular chess-board
pattern of Fabry-Perot oscillations at two regions of Vg, indicating a disorder free
sample. The conductance as a function of gate voltage oscillates periodically with
a periodicity of ∆V FP

g . Adapted from ref.[7]. c, Example of UCF in a disordered
sample. The conductance fluctuates non-periodically as a function of gate voltage.
UCF are most pronounced at low temperatures in the phase-coherent regime.
Adapted from ref.[8].
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the main experimental results and analysis, and finally, considerations of NW lattices are

discussed in chapter 6 based on a tight-binding model which has also been developed during

the course of the project. In addition to this thesis, the mobility results were presented as a

contributed talk at NanoWireWeek in Chamonix-Mont-Blanc on the 28th of April 2022 (see

appendix A1). Also, two manuscripts are under preparation, one collecting the mobility work

and one discussing the role of electron-hole symmetry for UCF.

1.1. THESIS OUTLINE 8



Chapter 2 Theoretical Background

T his chapter introduces the physics of UCF and provides a discussion of the carrier

mobility with an overview of the currently used theoretical models for mobility

extraction from a two-terminal FET measurement of NWs. Finally, the motivation for a new

method to more accurately quantify scattering mechanisms in two-terminal nanostructures

will be discussed.

2.1 Conductance Fluctuations in Mesoscopic Samples

Studies of transport in mesoscopic wires with a size less than the inelastic scattering length

reveal a range of quantum phenomena9. UCF is one such phenomenon. While the theory

of UCF in semiconductors/metals was thoroughly supported experimentally during the

1980’s10–16, the same is not true for normal(N)-superconductor(S)-junctions. That motivates

the first part of the thesis. First a brief discussion is given on the well-established theory of

UCF in disordered semiconductor systems. Here a simplified explanation to the value of the

UCF-amplitude will be given. Then follows more convincing arguments of the UCF-amplitudes

based on random matrix theory (RMT) including further insight into the role of fundamental

symmetries of the system. The theory section of UCF ends with an introduction to UCF in

NS-devices in the light of RMT.

2.1.1 Quantum Diffusive Transport - Universal Conductance Fluctuations

In small semiconducting wires at low temperatures, the conductance fluctuates as a function

of the magnetic field or by changing the Fermi energy8. The fluctuations are different from

noise in the usual sense in that they are time-independent stochastic patterns, reproducible

in a given sample17,18. Remarkably, when the temperature is such that the phase coherence

length, lφ, is on the order of or larger than the sample size dimensions, the amplitude of

the fluctuations are on the order of e2

h
. In disordered samples, this amplitude is constant19

regardless of the degree of disorder and sample size, as long as the mean free path, lm is much

shorter than the length of the sample, L, hence the name ”universal conductance fluctuations”,

(UCF).

2.1. CONDUCTANCE FLUCTUATIONS IN MESOSCOPIC SAMPLES 9



In the ”diffusive transport” regime the elastic scattering of electrons takes place on length

scales that are small compared to the size of the sample21. In the classical-diffusive regime

a narrow wire can be divided into N = L
lm

independently fluctuating segments20. The

uncertainty on the mean conductance, 〈G〉, falls off as ( lm
L

)
1
2 , making the fluctuations in a

classical wire negligible for L
lm
� 1. For a channel in the quantum diffusive transport regime

the subdivided segments are quantum mechanically correlated on a length-scale determined by

lφ, the phase-coherence length determined by inelastic scattering by e.g. phonons. This length

can, at low temperatures be much longer than lm. On calculating probabilities of processes,

one then has to include quantum interference terms. When phase coherence is maintained

over the entire disordered sample, lφ ≥ L� lm, the theory of UCF predicts that δG≈ e2

h
at

T=022,23. Figure 2.2 is the starting point of the following argument for the UCF-amplitude.

In a disordered quantum wire containing source and drain contacts with a scattering region

in between at T=0 K, the Landauer equation takes the form20,24:

G =
e2

h

N∑
α,β=1

| tαβ |2 (2.1)

Where | tαβ |2 is the quantum mechanically transmission probability amplitude from the

incident channel, α, to the outgoing channel, β. N represents the number of transverse

modes, here each spin orientation counts as one mode. Given that L � lm, each mode

carries, on average, the same transmission probability. Using Drude theory25 with eq. 2.1,

S D
b

b

a

Figure 2.2: A disordered conductor. Yellow regions are souce and drain contacts.
The dotted area is the scattering region. The curly arrows are incoming channels,
α, and back scattered or transmitted channels β. Adapted with changes from ref.
[20]
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the transmission probability can be estimated to be:

〈| tαβ |2〉 =
πlm
2NL

(2.2)

The fluctuation amplitude around the conductance mean is given by the square root of

the variance: δG =
√
V ar(G) =

√
〈(G− 〈G〉)2〉. On evaluating δG, Lee18 argued that

the reflection probabilities, rather than the transmission probabilities, must be used. The

argument is that it is a good assumption that the reflection channels are uncorrelated,

since the reflection probabilities are dominated by few scattering events. On the contrary,

the transmission channels will have traversed a large number of scattering sites, which

increases the probability of the channels sharing scattering events. So from the relation,∑N
α,β=1 | tαβ |2= N −

∑N
α,β=1 | rαβ |2, it follows that:

δG =
e2

h

√√√√V ar(
N∑

α,β=1

| rαβ |2) =
e2

h
N
√
V ar(| rαβ |2) (2.3)

Where the right hand site is true under the assumption that the reflection probabilities are

uncorrelated and N � 1. The variance of the reflection probabilities, V ar(| rαβ |2) = 〈| rαβ |4

〉 − 〈| rαβ |2〉2, now needs evaluation. From eq. 2.2 it is recognized that:

〈| rαβ |2〉 = (
πlm
2L

+ 1)
1

N
≈ 1

N
, for L� lm (2.4)

The mean reflection probability is defined as a sum of the mean of different probability

amplitudes 〈| rαβ |2〉 =
∑

i,j〈AiA∗j〉. Where subscripts i and j are the ith and jth path

respectively. Using the random phase approximation, assuming that the phases of the different

paths are completely random, such that only terms where subscripts are equal to each other

will survive the averaging, leads to:

〈| rαβ |4〉 =
∑
i,j,k,l

〈AiA∗jAkA∗l 〉(δijδkl + δilδjk) = 2〈| rαβ |2〉2 ≈
2

N2
(2.5)

Finally, by combining eq. 2.4 and eq. 2.5 with eq. 2.3, we reach to the result of δG ≈ e2

h
.

2.1. CONDUCTANCE FLUCTUATIONS IN MESOSCOPIC SAMPLES 11



2.1.2 Random Matrix Theory of Mesoscopic Quantum Wires

A random matrix is a matrix whose elements are random variables. The eigenvalues (λ1....λi)

of the random matrices are themselves random and the job is to understand the distribution

of {λ1....λi} given the joint distribution of the entries. In mesoscopic systems, which are small

enough that one must utilize the rules of quantum mechanics to describe them but also large

enough that a statistical approach is natural26, RMT has proven to be very fruitful27. The

scattering matrix of a disordered wire, of which the the transmission matrix introduced in the

previous section is a submatrix, is an example of a matrix that is too complicated to study

and we can try to replace it with a random matrix and calculate statistical properties such

as UCF. The basic idea is that all disordered quantum systems fall into a few broad classes

that are distinguished by symmetries in the system28. In 1962 Freeman Dyson found that

in a finite dimensional Hilbert space, the Hamiltonian that commutes with all symmetries

must either be orthogonal, unitary or symplectic29, corresponding to being real symmetric,

complex Hermitian, or quaternionic self-dual, respectively. From these three symmetry classes

the statistical properties of the energy levels can be studied by constructing probability

distribution, P (H), from a Gaussian ensemble of N ×N , Hermitian matrices, H:

P (H) = c exp (−β TrV (H)) (2.6)

Where V (H) ∝ H2 and c is a normalization constant. The choice of a Gaussian ensemble

makes independent matrix elements. The parameter β, is the symmetry index that counts

the degrees of freedom in the matrix elements. It can take the values of 1,2 or 4, depending

on whether the elements are real, complex or quaternion numbers30. These three Gaussian

ensembles are called the Gaussian orthogonal, Gaussian unitary and Gaussian symplectic

ensemble (GOE, GUE and GSE), respecively. The GOE is invariant under orthogonal

conjugation meaning that OTHO = H, where O is an orthogonal matrix and models systems

with time reversal symmetry (TRS). The GUE is invariant under unitary conjugation and

models systems where TRS is broken. Finally, the GSE models systems with TRS but where

spin rotation symmetry (SRS) is broken.

The joint probability distribution of the eigenvalues, {λn} of eq. 2.6 is given as27:

P ({λn}) = c
∏
i<j

| λi − λj |β
∏
k

exp [−βV (λk)] (2.7)

2.1. CONDUCTANCE FLUCTUATIONS IN MESOSCOPIC SAMPLES 12



Figure 2.3: The probability density
of finding two adjacent levels in the dis-
tance s =| λi−λi+1 |. Here 50000 sample
matrices was drawn from a 8× 8 GOE.
The GOE was constructed by randomly
picking entries to the matrix, Hs, from
a normal distribution followed by the
symmetrization: Hs = (H+HT )0.5.

Interestingly, the first factor in eq. 2.7, which follows

by the Jacobian from matrix to eigenvalue space30,

makes the eigenvalues strongly correlated and shows

a repulsion between them. In fig. 2.3, a histogram of

the nearest neighbour eigenvalue spacing, s, is plotted

from an 8 × 8 GOE with nsamples = 50000 samples.

This illustrates the correlation between the eigenvalues.

The probability of finding two adjacent levels in the

distance s is small when s is small due to the Jacobian

factor, but is also small for large a spacing values due

to the exponential factor.

Using the RMT approach to study statistical properties

of disorded quantum wires is restricted to the quasi-

one dimensional wire (W � L) because only then, the

electron motion is ergodic in the transverse direction,

meaning that it has time to explore the complete phase space of the wire before it exits.

This assumption breaks down in higher dimensions and RMT becomes inapplicable26,31. The

statistics of the conductance of a quasi-one dimensional disordered wire with lφ ≥ L at T = 0,

can be studied by drawing a random matrix distribution from the circular ensembles (COE,

CUE or CSE for β = 1, 2, 4, respectively). In addition to the Gaussian ensembles the circular

ensembles have to respect the unitarity of the scattering matrix elements and circular refer

to the the eigenvalue distribution being constant on the unit circle in the complex plane29.

The joint distribution of eigenvalues, P ({τn}), for COE, CUE and CSE is given as30:

P ({τn}) ∝
∏
i<j

| τi − τj |β
∏
k

τ
−1+β

2
k (2.8)

Where {τn}, can take values between 0 and 1. The product between neighboring transmission

eigenvalues leads to a level repulsion similar to the repulsion of energy eigenvalues of the

random Hamiltonian H. A microscopic state of the ensemble is defined as ρ(τ) =
∑N

n δ(τ−τn).

The average of ρ(τ) is then defined as32:

〈ρ(τ)〉 =

∫ 1

0

δτ1...

∫ 1

0

δτNP ({τn})ρ(τ) (2.9)

2.1. CONDUCTANCE FLUCTUATIONS IN MESOSCOPIC SAMPLES 13



Figure 2.4: The average distribution
of transmission values drawn from eq.
2.8. The eigenvalues clusters towards
the limiting values and the fluctuations
are small due to their mutual repulsion

In the limit where the number of transverse channels,

N −→∞, it turns out that for a diffusive wire, the aver-

age distribution of transmission probabilities becomes

asymmetric and bimodal33:

〈ρ(τ)〉 ∝ Nlm
L

1

τ
√

1− τ
(2.10)

Equation 2.10 is sketched in fig. 2.4. The eigenvalues

are peaked near 0 and 1, corresponding to the channels

being mostly either open or closed. The origin of eq.

2.10 comes from the repulsion factor in eq. 2.8, which

has the effect of clustering the eigenvalues towards

their limiting values. The repulsion factor also suppresses the fluctuations of the eigenvalues,

since, as fig. 2.3 shows, the fluctuation of one eigenvalue is limited by the nearest neighbour

values. Since P (s) ∝ sβ · exp (−s2)27, the fluctuation depend only on the symmetry class,

making them universal. From RMT, δG was calculated to be30:

δGN = 0.73
e2

h

1√
β

(2.11)

2.2 Conductance Fluctuations in Quasi-1D Wires at Finite Tem-

perature

Equation 2.11 gives the amplitude of UCF in the case of T = 0 with lφ ≥ L and a product

of the spin-degeneracy and the valley degeneracy, gs · gv = 2. However, increasing the

temperature will reduce the amplitude by inducing inelastic electron-electron and electron-

phonon scattering. When the lφ becomes smaller than the length of the wire the conduction

channels can be viewed as uncorrelated segments of length lφ, which reduces the amplitude of

the UCF. A thermal averaging effect, expressed by the thermal length lT = ( h̄D
KBT

)0.5, similarly

reduce the amplitude. The table in fig. 2.5 summarizes the value of the UCF amplitude in

the regimes, lT , lφ � L, lφ � L, lT and lT � lφ � L20. In the intermediate regime lφ ≈ lT ,

2.2. CONDUCTANCE FLUCTUATIONS IN QUASI-1D WIRES AT FINITE
TEMPERATURE
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Figure 2.5: The amplitude of UCF for a given β in different regimes at zero and
finite temperature. Adapted from ref. [20]

.

Beenakker and van Houten20 proposed an interpolation formula given by:

δg =
gsgv

2

1√
β

√
12
e2

h

( lφ
L

) 3
2 ×

[
1 +

9

2π

( lφ
lT

)2]− 1
2

(2.12)

Finally, Zeeman splitting under applied magnetic field may lift the spin degeneracy and gs in

eq. 2.12 is replaced by
√
gs.

2.3 Conductance Fluctuations in NS-Junctions

The symmetry classes behind the large scale quantum interference effects of mesoscopic

materials turned the attention towards superconductors, where Altland and Zirnbauer found

it appropriate to expect that novel interference mechanisms arise when these two systems

are combined28,34,35. They found that NS-junctions are described by four different symmetry

classes based on the presence or absence of TRS and SRS, similar to the conventional

mesoscopic system. However, the unique feature that distinguishes the two systems is the

process of Andreev reflections (AR), which puts the NS-device in a new universality class. In

this section the effect of AR on UCF is summarized.

2.3. CONDUCTANCE FLUCTUATIONS IN NS-JUNCTIONS 15



2.3.1 Briefly on BCS Superconductivity

Figure 2.6: Feynman path of AR. An
electron incident on an NS-junction leads
to a non-zero Cooper-pair amplitude in
the diffusive N-region. Adapted from ref.
[35].

Superconductivity is a correlated phase of matter

emerging in certain some materials where below a cer-

tain critical temperature Tc, the electrical resistance is

zero and it shows perfect diamagnetism. The demon-

stration of the latter, known as the Meissner effect, is

the true definition of a superconductor36.

The microscopic behaviour leading to these observable

macroscopic phenomena are well explained for most

single-crystal superconductors, and many compound

superconductors, by BCS (Bardeen-Cooper-Schrieffer)

theory37. BCS theory posits that an attractive interac-

tion between conduction electrons can lead to a correlated, zero resistance state. Typically the

attractive force occurs between two electrons of opposite momentum and spin, mediated by

phonons. The idea is that positive ions are attracted to an electron because of the Coulomb

interaction. The dynamics of the ions are slow compared to the the dynamics of electrons,

due to a much larger mass of the ions. Once the electron moves away, another electron can

move into the positive charged region, before the ions have had time to relax back. Then

the attraction to the same point in space can lead to the Cooper pair formation, a bosonic

state, that will open a superconducting gap with an energy, ∆, around the Fermi-energy,

proportional to the Tc of the superconductor, above which the superconducting phase is

destroyed. Excitations, such as scattering, is forbidden if the associated energies are smaller

than the size of ∆. An external magnetic field will reduce Tc until it reaches a critical magnetic

field Bcrit, above which the Cooper pairs breaks up and the superconductor turns normal.

Since the electron-phonon attraction is local in space and retarded in time, it favors pairs of

opposite momenta. By fermion antisymmetry, it requires that the pair state is a spin singlet38.

2.3.2 The Proximity Effect and the Effect of Andreev Interference on UCF

The proximity effect is the generic name for the phenomena appearing at the NS-interface39.

In such junctions, the N-metal shows superconducting-like properties.The normal metal does

so through AR processes, where sub-gap energy electrons incident on the the superconductor

can not penetrate but is instead coherently reflected as holes upon injecting Cooper pairs.

As opposed to specular reflection, AR represents the process of retro-reflection, where the
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incident electron is reflected back along the same path, as a hole, upon acquiring a scattering

phase of π
2
−φ, where φ is the phase of the superconducting order parameter at the interface35.

The process of AR, illustrated in 2.6, creates a non-zero Cooper-pair amplitude inside the

normal region.

The energy is conserved in AR and an incident electron with the energy, ε, above EF is

scattered into a hole with energy,−ε. Thus, both particles have the same excitation energy,

ε. The superposition of a negatively charged filled state at EF + ε and a positively charged

empty state at EF − ε is called a Bogoliubov quasi-particle40. In the context of RMT, the

new constraint that must be put on the matrices describing the scattering processes of AR, is

particle-hole symmetry, coming from the ambiguity that a Bogoliubov quasi-particle can be

thougt of as a Cooper-pair either missing a particle or having an extra particle41. Considering

the NS-device seen in fig. 2.7, at T = 0 and lφ � L, Beenakker calculated the amplitudes of

the UCF30. The results are summarized in the following equations.

δGNS = 1.51
e2

h

1√
β
≈ 2δGN , for β = 1, 4 (2.13)

δGNS(no TRS,SRS) = 1.46
e2

h
≈
√

8δGN(no TRS,SRS) (2.14)

Equation 2.13, states that δG doubles in an NS-junction compared to a normal wire. The

enhancement by a factor of two is due to the transfer of two elementary charges in an Andreev

reflection28. Equation 2.14, is more subtle. In fact, it only holds in the absence of a reflection

Figure 2.7: The model considered by Beenakker30 on calculating the amplitude
of UCF in an NS-device. The shaded region between the two normal leads, N1 and
N2 is disorder. It is assumed that only AR scattering happens at the NS-interface
and that the interface is ideal. Adapted from ref. [30]
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symmetry in the normal part of the wire. That is, if the normal metal consists of two

segments in series with specularly reflected disorder potentials, such that the first segment

has a scattering matrix that is the mirror image of the second segment30,42. When that is not

the case, δGNS = 2δGN . If SRS is broken, eq. 2.14 is divided by 2. The aim is to test the

validity of eq. 2.13 and 2.14.

2.4 Charge Carrier Mobility in Nanowires

In this section we are concerned with scattering mechanisms that occur when the current

carriers are confined within a narrow region, like a quasi-1D quantum semiconducting wire,

quantified by the charge carrier mobility, µ. In this type of system µ is influenced by the

location of the carriers near the oxide-semiconductor interface that introduces additional

scattering mechanisms like Coulomb scattering from oxide charges and interface states, as

well as surface roughness scattering43. From Drude theory the mean free path, lm, is related

to µ by the equation: µ = elm
m∗vf

, where e, m∗ and vf is the elementary charge, the effective

mass and the Fermi velocity, respectively. A simple calculation, using bulk properties for

InAs, shows that a lm = 1 µm would require that µ = 23 m2/(Vs), far above the current best

mobilities in InAs nanostructures which are on the order of ≈ 1 m2/(Vs)44. This motivates

a better understanding of scattering mechanisms, in order to be able to increase the value

of µ and reach a ballistic transport regime over µm length scales that would enable devices

where the potential landscape is determined solely by researcher-defined electrostatic gating

schemes. Here follows a discussion of current state-of-art methods to extract µ from two

terminal measurements. While the most reliable method probably comes from doing a Hall

measurement45, using nanostructures comes at the cost of it being essentially impossible to do

four terminal measurements. The reliability of current ”two terminal” methods is therefore

reconsidered and the question ”do we need a new method?” is asked.

2.4.1 Traditional Two-Terminal FET Mobility Extraction

The operation of a FET is controlled by an externally applied electric field realized with a gate

electrode. The practical importance of µ in research level, nanoscale FETs stems from the fact

that it gives a rough measure of the amount of disorder, and in the case of a density-dependent

Hall mobility measurement, one can extract information about the scattering times/lengths

from specific impurity sources. For NWs, mobilities have commonly been extracted either by

taking the peak transconductance43 or by fitting FET pinch-off curves46. Both methods start
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from the Drude conductivity:

σ = neµ (2.15)

Where n is the carrier density and e is the elementary charge. In the following, a system

where all carriers are electrons and has a 2d carrier density n2d will be considered. The carrier

density is approximated by:

n2d(Vg) =
Ci · Vg
e
− n0 (2.16)

Where Ci is the capacitance pr. area, Vg is the gate voltage and n0 = Ci·Vth
e

is the critical

density at the defined threshold voltage (Vth). Important to notice is that below n0, the

carrier density becomes comparable to the effective charged impurity density from randomly

distributed charges in the 2d-transportation-layer, interfaces and the surrounding layers.

The system then becomes insulating due to a percolation transition driven by the failure of

screening leading to an inhomogeneous density landscape5. The following methods to extract

µ, are only valid above the percolation regime where there is a linear relationship between

n2d and σ. Further, they assume µ is carrier density independent and that Vg � VSD. The

latter to ensure a more uniform source-drain channel charge.

Inserting eq. 2.16 into eq. 2.15 and multiply through by W
L

, where W and L are the width

and length of the conducting channel, respectively, leads to an expression for conductance, G,

being:

G(Vg) =
µC

L2
(Vg − Vth) (2.17)

From this model the transconductance g = δG
δVg

can be taken and if C,L are known parameters

µFE is:

µFE =
gL2

C
(2.18)

Due to the assumption that the µFE is independent of Vg, the peak value of eq. 2.18, known

as the peak mobility is often reported from experiments. Albeit this is a very simple model,

it is seldom very feasible in experiments since it does not account for any contact resistance

or other resistances, Rs, that might be connected in series with the FET-wire. Thus, another

model was suggested to account for a Rs
46:

G2p,Rs(Vtg) =
(
Rs +

L2

µC(Vg − Vth)

)−1

(2.19)
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Equation 2.19 is used to fit to a measured G(Vg) and Rs, Vth and µ are the free fit parameters.

To avoid complications from including the percolation regime, the start-fit-index can be chosen

from an analysis of the numerical derivative of G(Vg) near the transition into the linear regime.

The threshold voltage in this model is defined as the intersection point with the x-axis and

is estimated from the fit by extrapolation from the start-fit-index down to G(Vg) = 0. At

high voltages the G(Vg) saturates to Rs. While the model in eq. 2.19 likely results in a more

accurate mobility estimation compared to the model in eq. 2.17, and has been employed

in recent studies46,47, the assumption of a constant mobility prevents one from obtaining

knowledge about which scattering processes may dominate at different carrier densities47–49.

This motivates a reconsideration of the method and we suggest a new model that will be

introduced in the results chapter.
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Chapter 3 The Experimental Platforms

T he experimental realization of the three different experiments takes fundamentally

different starting points. For the UCF-devices vapor-liquid solid growth (VLS) was

used, while the growth of the devices used for the mobility experiments and Hubbard lattices

was made with selective area growth (SAG).

3.1 Vapor-Liquid-Solid Growth of Superconductor/Semiconductor

Hybrids

To test the hypotheses about UCF in NS-devices, it is the goal to realize a device similar to the

one shown in 2.7. In particular, a quasi 1D (W � L) semiconducting wire, a nanowire(NW),

in the regime of lφ > L > lm proximitized by a superconductor with a clean NS-interface is

desirable.

3.1.1 Choice of Materials

Indium Arsenide

The high surface area to volume ratio in NWs, means that surface effects become important,

and even dominant, in their influence on electronic transport50. The material of choice for the

semiconducting part is indium arsenide (InAs). At the surface of InAs, where translational

symmetry is broken the dangling bonds will reconstruct to form new surface states51. The

surface states cause band bending such that the Fermi level is pinned above the conduction

band minimum (CBM), forming a 2D-quantum well for electrons52–54. The electron gas

formed at the surface is the reason for the absence of a Schottky barrier when a metal is

deposited onto InAs, which is highly desirable since AR requires a relatively transparent

interface30. However, since the electrons live at the surface, the quality of the NS-interface is

highly dependent on details of growth processes and/or fabrication.
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Aluminium

Photo resist

Silicon oxide

InAS (111)B

Pattern for exposure

( )

Optolithography

Siox etching/resist removal

InAs etching

x
y

z

InAs (111)B

Figure 3.8: The steps leading to cre-
ation of a trench for the NW to grow
from. First, a custom pattern of the
trench is made and exposed with optoli-
tography. Then the exposed SiOx and
the resist is removed. Finally, the InAs
substrate is ecthed to form the trench.

The material of choice for the superconducting part

is a thin half-shell epitaxial coating of aluminium (Al)

onto one end of the InAs-NW, which has shown the

needed high NS-interface transparency55,56.

3.1.2 Shadow Epitaxial in-situ Growth of
Al/InAs Nanowires

Traditional epitaxial approaches to the growth of

Al/InAs require post processing that chemically etches

away the Al. This comes with the risk of damaging

the wire. To eliminate the need of post processing,

the approach of shadow epitaxial in-situ growth was

used57.

The idea of the shadow-technique is to grow the InAs

nanowires in trenches. Subsequently, Al will be de-

posited from one side at an appropriate angle such

that at a given site, wall of the trench shadows the

bottom of the wire and only the top part will be half-

shell coated with Al. Rough sketches of the growth

process are illustrated in fig. 3.8 and 3.9, for more

details I refer to ref. [57]. The first step is to pattern

the trenches, where the nanowires will grow from, on

an InAs 〈111〉B-wafer capped with a mask of 100-150

nm SiOx. The wafer is covered in photoresist and

a desired pattern is defined and then exposed with

optolithography. The exposed SiOx is then removed

using wet etching techniques followed by removal of

the photoresist. Next the InAs is etched, with the

SiOx pattern acting as a mask. Once the trenches are

formed, droplets of gold particles are placed at the bottom using standard electron beam

lithography (EBL) and metal evaporation techniques. The nanowire VLS-growth takes place

in a Molecular Beam Epitaxy (MBE) system and consists of two steps. First, in an ultra high

vacuum chamber, effusion cells
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Figure 3.9: The growth steps of the NW. a), a
gold catalyst particle is deposited in the bottom of
the trench using standard EBL and metal evapora-
tion techniques. In the MBE chamber, incident In
and As atoms are absorbed by the Au droplet. At
saturation, an InAs crystal forms selectively below
the droplet. The substrate is then transferred to a
metal evaporation chamber under UHV, where Al
is deposited at an fixed angle and from one side,
coating 2 facets of the top part of the wire. b),
the NW after growth.

containing In and As are heated to the

point of sublimation and the cell shutters are

opened for the gaseous elements to condense

on the InAS (111)B-wafer. The gold droplets

act as catalysts for the crystal growth of InAs

NWs and the size of the droplets determines

the final thickness of the wire. In and As

adsorbs to the liquefied gold droplets until

the point of saturation where InAS starts

crystallizing underneath the droplets and the

NWs grows vertically.

On the (111)B-wafer, the NWs tend to grow

in a Wurtzite structure with 6 facets7. Under

the right conditions, a single atom layer-by-

layer growth can be achieved. The second

step of the growth, is radial overgrowth of

InAs which promotes flatter NW facets for

optimal deposition of Al57,58. The final step

is Al metal deposition. Under UHV the sub-

strate is transferred from the MBE chamber

to a metal evaporation chamber, with a freely

rotatable sample holder. Here Al is deposited

at a fixed angle directed from one side of the

chamber, coating 2 facets of the wires57.

3.2 Selective Area Growth of

Nanowires

The method of SAG uses lithographically

defined openings in a mask on a crystalline

substrate where structures, such as NWs or

arrays of NWs, can be grown directly on

the substrate59. This comes with a number of advantages, including control over shapes,

dimensions, positions and faceting60,61. Further, in contrast to the VLS-method, the structures

can be grown horizontally in plane of the substrate which simplifies device fabrication44.
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3.2.1 Nanowires in a Hall Bar Geometry

To test the applicability of eq. 5.28 in extracting µ from a two-terminal measurement, a NW

in a Hall bar geometry was used (see fig.3.10b). This way, a reference Hall mobility and

a two-terminal FET mobility could be extracted from the same NW and compared. The

SAG of the NW was done by Daria Beznasyuk et al. and details about the growth can

be found in ref. [44]. Figure 3.10a shows a schematic of the SAG steps. On an undoped

GaAs(001) substrate the NW geometry was controlled by defining windows in a 10 nm silicon

dioxide (SiO2) mask layer using EBL process (see chapter 4) followed by a plasma etching

technique that used excited ions of tetrafluoromethane and hydrogen to remove the SiO2

and reveal the pattern. Native oxide that formed on the surface of the exposed trenches was

removed. A challenge in this respect is to maintain a smooth surface after the oxide-removal.

The standard approach is thermal annealing where a constant flux of As is applied at high

temperatures to remove native oxide-layers. The disadvantage of this method is that it

removes the oxides by consuming GaAs. This degrades the surface and introduces interface

roughness that will lead to lower electronic performance of the NW. An alternative method is

atomic hydrogen (a-H) treatment. Here a hydrogenation of the surface removes the oxides and

Figure 3.10: SAG NW in a Hall bar geometry. a) The SAG steps. Step 0, the
growth pattern is defined in a 10 nm SiO2 mask layer. Step 1, the native oxide
is removed. Step 2, the growth of GaAs(Sb) buffer layer. Step 3, the growth of
InxGa1−xAs buffer layer. Step 4, InAs transport channel growth. Adapted from
ref. [44] b), a SEM image of the finished SAG NW in a Hall geometry before
fabrication of electrodes.
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Figure 3.11: AFM analysis showing the difference between two methods to remove
oxide. a), step 0, an AFM image of the surface (dark area) before oxide removal.
step 1: T, after oxide removal using thermal annealing clearly showing surface
degradation. step 1: a-H, after oxide removal using a-H treatment shows a much
more smooth surface. This is backed up by the AFM profile shown in b. The white
dashed lines in a)indicate the position of AFM profiles. Adapted from ref. [44].

creates only water as a bi-product without consuming GaAs. Figure 3.11) shows atomic force

microscopy (AFM) images comparing the two oxide removal methods. Two other challenges

of the SAG-method in the context of electronic transport performance, is 1) to limit the

material intermixing of InAs and GaAs and 2) to accommodate the lattice mismatch between

the insulating GaAs, and the conduction layer of InAs. This was addressed by introducing

buffer layers. First, a buffer layer of MBE-grown GaAs(Sb) - where Sb was used only as a

surfactant to enhance the quality of the GaAs -buried the surface impurities. Then In-rich,

yet still insulating InxGa1−xAs, was grown as an intermediate buffer layer to reduce the

lattice mismatch between GaAs and InAs. Finally, the InAs was grown on top of InxGa1−xAs,

resulting in an approximately triangular-shaped core-shell transport channel.
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Chapter 4 Fabrication and Setup

F abrication of new devices is a crucial part of experimental electron transport physics.

After growth, the devices needs to be contacted to electrodes and possibly gate electrodes

to enable control of the potential landscape in the conductor. A finished fabricated device

is ready to be connected to electronic measurement tools. An overview of the devices and

recipes of the fabrications can be found in appendix A2 and A3, respectively.

4.1 Fabrication of UCF-Devices

A scanning electron microscopy (SEM) image of a full fabricated device (CP1-0.70) is seen in

fig. 4.12. The devices consisted of two layers of electrodes separated by the dielectric HfO2.

The first (second) layer consisted of source/drain contacts and side gates (top gates). The

source/drain contacts and the gate electrodes were defined such that each nanowire consisted

of a NS-device and a reference N-device. The two devices were disconnected from each other

by a region that could be pinched off with a top gate (TG3) and had their own source/drain

contacts (S1/D1 and S2/D2). The scattering region for both N and NS devices were designed

to have approximately the same length and have their own source/drain contacts (S1/D1 and

S2/D2), to facilitate direct comparison and robustly test eqs. 2.13 and 2.14. The sidegates

S1-S6 were designed to tune the electron density and distribution in the relevant device

segments, while the topgates T1-T4 were used to control the tunneling barriers for incoming

and outgoing electrons. As shown in fig. 4.13, the devices were fabricated on a highly n-doped

Si substrate, insulated from the overlaying structures by SiOx, such that the substrate acted

as a global backgate. In total, six chips were used to fabricate devices during the thesis, with

the total number of devices = 16. The naming of each device holds the information of the

initials of the person who fabricated it, the chip number and the length of the scattering

region in microns, e.g. device CP1-0.70 was fabricated by the author on chip number 1 and

has a scattering region of 0.70 µm. A schematic overview of the fabrication steps can be seen

in fig. 4.13.
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Figure 4.12: a), False-color SEM image of device CP1-0.70. Green is InAs and
grey is Al. Yellow and dark yellow are both Ti/Au electrodes - the difference
in color is made for clear distinction between layer 1 (yellow) and layer 2 (dark
yellow) which are separated by a 15 nm thin layer of HfO2. Layer 1 consists
of source/drain contacts, side gates and the NW. Layer 2 consists of top gates.
Underneath the NW, a layer of dielectric SiOx separates the NW from a layer of
n-doped Si enabling a global back gate. The wire holds two devices, a NS-device
and a reference NN-device, disconnected from each other by a region that can be
electronically controlled with the top gate, TG3. The red circles show, what looks
like a short circuit from SG5 to D2 and S2 or it could be residual PMMA. b),
SEM-image of CP1-0.70 zoomed in on the NS-device.

Micromanipulation

This fabrication step requires a substrate with grown NWs and a clean ”blank chip”. These

are substrates that the NWs are transferred to in order to make devices. The blanks used for

the NS-devices are 4x4 mm chips made of n++-doped Si, capped with an insulating layer of

200-500 nm SiOx. On the surface are 48 pre-patterned gold-lines that can be used to connect

to the designed electrodes seen in fig. 4.12. The gold lines are later connected to big bond

pads outside the chip. The 48 lines limits the devices on each chip to maximally 3, since a

device has a total of 15 electrodes.
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1. Micromanipulation

Substrate

Chip

2. EBL - 1st layer

4. Lift off - 1st layer 5. ALD

6. EBL - 2nd layer + Metal deposition and lift off 2nd layer

3.  Metal deposition - 1st layer

n-doped Si
Si

ox

Hf
ox

Gold
PMMA A6

Figure 4.13: A schematic showing the fabrication steps. Step 1: The NW was
transferred from the substrate to the chip with a 0.1µm thick needle. Step 2: The
chip was covered in PMMA with a custom pattern defining sources/drains and side
gates areas, and exposed using EBL. Step 3: After exposure Ti/Au was deposited
on the chip. Step 4: Lift-off resulting in a well defined 1st-layer metal pattern.
Step 5: ALD of 15 nm dielectric HfO2. Step 6: The 2nd-layer metal pattern,
defining the top gates, was made following the same procedure as in step 2-4.
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The process of transferring NWs was done using a micromanipulator, sketched in fig. 4.13,

step 1. A 100 nm radius needle, controlled by an Eppendorf TransferMan, was used under an

OM. The NW attaches to the needle - and subsequently to the substrate - by van der Waals

forces. Once they were picked up and transferred to the chip a ”poking”-technique was used

to straighten them and align them all with each other. It was possible to identify the Al-part

under a high-quality OM (see fig. 4.14).

Electron Beam Lithography

The deposition of gates and contacts were enabled by a lithography process that use a thin,

patternable polymeric film known as ‘resist’. Figure 4.13 step 2 shows the basic principle;

small windows for a substrate to be deposited into is defined in a mask of resist on the chip

using lithography. The sizes of the windows can be down to the nanoscale.

First, a film of an organic polymer, Poly-methyl-methacrylate (PMMA 6%), dissolved in

anisole known as ”resist” was spin-cast onto the chip with a frequency of 4000 rpm to create

a uniform thin layer. After spin-cast, the chip was baked on a hot plate to evaporate the

solvent.

The patterned windows in the resist are custom designed with CAD software. PMMA is

a positive tone resist, meaning the exposed areas are soluble. For exposure, EBL with an

Elionix using acceleration voltages of up to 100kV was carried out. The structure of the

Elionix is that of an SEM and consists of a electron beam column, which is aligned with the

writefield such that the sample is in a constant position relative to the SEM aperture and

Al

InAs

Figure 4.14: Optical images of the chip after micromanipulation. Left, an
overview image of the chip, where a total of 8 wires were picked up. The 48 gold
lines are seen along the edges. Right, A close-up of the NW marked with a red
circle on the left figure. The Al and InAs are clearly distinguishable.
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the beam is deflected to trace out the custom-designed patterns and features down to a few

nanometers precision can be patterned. An area dose and a beam current is chosen to define

the time that a given area is being exposed. If the ratio between the dose and the current is

to high there is a risk of overexposing the resist. Using positive tone resist with EBL tends

to expose the underside of the resist outside the region defined by the beam due to some of

the primary electrons, which are penetrating deep into the resist, are generating secondary

electron from inelastic scattering processes. A proximity effect correction is activated in the

software which lowers the dose at beam sites with a lot of neighbouring beam sites to reduce

the unwanted effect from secondary electrons.

The chip was developed in methyl isobutyl ketone (MIBK) and IPA, with the ratio 1:3

MIBK:IPA, to dissolve the exposed areas and afterwards ashed with an oxygen plasma to

remove any residual organic material. Immersion in MIBK for too long might be the cause

of pattern broadening. Together with the the risk of overexposure and wire displacement a

safety distance of at least 100 nm between features in the same layer was used. Nevertheless,

as seen in fig.4.15 some samples suffered from one or more of those errors.

Argon Milling and Metal Deposition

To prevent insulating surface oxides before making contact, argon milling that toos place

inside an AJA evaporation chamber immediately before metal deposition was done in the

same UHV chamber. The milling process was used to remove loosely bound surface impurities

by bombarding the NWs with the noble gas argon. Afterwards, Ti was evaporated with an

Figure 4.15: SEM images of three examples of fabrication errors. a), device
CP1-0.50. The side gates should have sharp corners, but the roundness suggest
either overexposure or an overdeveloped sample. b), device CP2-0.85. This wire
has been slightly displaced to the right before exposure and the deposited metal is
misaligned. b), device CP2-0.35. Here it looks like the lift-off went wrong. This
was the sample with the smallest scattering region, meaning that a lot of features
were closely packed, making the fabrication more error prone.
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electron beam to fill up the vacuum chamber and deposit on the chip. Only a thin layer was

deposited on the chip to help a subsequent layer of evaporated Au stick to the surface of the

chip. The thickness of the deposited Au was chosen to be greater than the thickness of the

wire but smaller than the thickness of the resist. If the Au-layer is too thin it might not cover

the NW from all sides and if it is too thick it might cause problems during the step known as

”lift-off”. In this step the resist layer and the metal regions not in contact with the substrate

was removed with a solvent. For lift-off to be effective, the solvent must be able to access the

resist layer underneath the metal. A handy trick to successfully achieve access, is to cover the

edges of the chip in foil right before loading it into the AJA chamber to prevent the metal

from being deposited here.

Atomic layer deposition

To enable the patterning of top gates a 15 nm insulating layer of HfO2 was deposited by

atomic layer deposition. This process ensures a perfectly uniform layer of dielectric allowing

for ultimate thickness control. The choice of HfO2 as the insulator was based on considerations

about its relatively high dielectric constant compared to e.g. SiOx, that enables a thicker

layer while keeping the same capacitance and reducing the risk of leakage currents.
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4.2 Fabrication of Hall Bar/FET-devices

An advantage of the SAG method is that it excludes the necessity to transfer wires from

the growth substrate to a fabrication substrate. This means that fabrication of the Hall bar

devices for the mobility measurements, fabricated by Jung-Hyun Kang, followed the same

steps as in fig. 4.13 except for step 1. Details of the recipe is found in ref. [44]. In total, four

fabricated Hall bar devices were used in this thesis.

A post-fabrication SEM image is shown in fig. 4.16. The Hall bar geometry of the NW

allowed for easier contacting of the voltage probes, that are going to be used for measuring

the transverse and longitudinal voltage drop across the InAs channel. A top gate spanning

from source-drain and separated from the contacts and the NW by 15 nm of dielectric HfO2,

was used to control the carrier density.

Figure 4.16: False color SEM image of a fabricated SAG Hall bar. Three of the
four voltage probes (yellow) were used for transverse and longitudinal voltage drop
measurements. The top gate (orange) spanning from source-drain (yellow) was
used to control the carrier density. All electrodes consist of with Ti/Au.
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4.3 Measurement Methods

All electrical set-ups and experiments proceeded along the same basic lines. A source-drain

voltage difference Vsd was applied and a gate voltage, Vg, was used to modulate the current

Isd through the channel. Standard low frequency (≈ 200 Hz) lock-in techniques were used,

allowing for more accurate measurements of the differential conductance by measuring the

current response to a small voltage excitation. Whenever the magnetic properties was of

interest, a 6-1-1 T vector magnet was activated. The electron transport measurements were

conducted in an Oxford Triton dilution refrigerator with a base temperature ≈15 mK. In the

following, the tools that were used to perform coherent electron transport experiments and

the setup of the electronic circuits are discussed.

4.3.1 The Triton 200/400 Helium Dilution Refrigerator

One thing that all the experiments have in common is that the phenomena under investigation

are easiest observable if scattering events from phonon interactions are minimized or eliminated.

While the NS devices by their nature require a temperature, T < Tc ≈1-2 K to exist as

superconductors, the semiconductor devices require millikelvin temperatures for us to be able

to resolve UCF, elastic scattering mechanisms and strong correlations. The key word here is

”phase coherent waves”, which can be described by the wave nature of quantum particles.

The wavefunctions of all particles evolve according to the Schrödinger equation, which maps

all the possible histories of the quantum system. The probability for a particle to propagate

from one space-time to another can be described by summing up all the possible paths leading

to the final state. This idea is formulated in Richard Feynman’s path integrals62 and simplest

visualized by the double-slit experiment. For this idea to work; for QI to be observable, the

different branches of the possible paths must remain coherent, meaning their waves must

match in frequency, have the same shape and a constant offset between their peaks and troughs.

On the other hand, if decoherence occurs, the coherent phase relation is destroyed, causing

the loss of information about the relative phase and the ability to see interference patterns.

Decoherence happens when the particle picks up random phases along its way to the final state.

The length over which the waves remain coherent is inversely proportional to the temperature,

emphasizing the need to cool the samples before measurements. The Triton 200/400 Helium

Dilution Refrigerator63 (cryostat) exploits the properties of a 3He-4He mixture at cryogenic

temperatures to cool samples down to millikelvin. Figure 4.17a shows a 3He-4He phase

diagram. Below T= 2.2 K 4He Bose-Einstein condensates into a superfluid, while 3He remains
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in the fermionic state until much lower temperatures, that are not accessed with this system.

a)

b)

Figure 4.17: a, the phase diagram of 3He-4He
mixture. Adapted from ref. [64]. b, the Triton
200/400 helium dilution refrigerator shown with-
out the vacuum cans, thermal shields and magnet.
Adapted from ref. [63]

Following the lambda line, that separates

the normalfluid phase from the superfluid

phase, it is seen that adding an increasing

amount of 3He to the 4He results in a decreas-

ing critical temperature of the superfluid. At

a sufficient 3He-concentration, a continuous

temperature decrease will separate the mix-

ture in two phases, a normalfluid 3He-rich

(concentrated) phase and a superfluid 3He-

poor (diluted) phase, with the less dense con-

centrated phase floating on top. A stronger

binding energy between3He-4He atoms than

between 3He-3He atoms results in an energy

decrease by letting 3He atoms enter the di-

luted phase until an equilibrium is reached.

For T −→ 0, the equilibrium concentration of

the diluted phase approaches 6.6%.64. An

image of the inside of the cryostat is shown

in fig. 4.17b. The top plate at room temper-

ature, is used to attach the vacuum can (not

shown), separating the inside vacuum cham-

ber from the outside. The vacuum chamber

pressure is kept at 10−5 mbar to prevent ther-

mal exchange with the environment and also

contains several layers of radiation shielding.

Outside is a valve plate, connecting the mix-

ture tank to the condensing- and pre-cool

line. The cryostat is designed with several

cooling stages that initially cools the incoming mixture down below the triple point in the

phase diagram before a pumping system pulls 3He atoms across the phase boundary to obtain

further cooling.

Figure 4.18 shows a schematic of the logic of the cryostat. Before cooling with the mixture can

begin it is cooled down in a pre-cool loop (purple pipes) provided by a continuously running

pulse-tube cooler that uses 4He to cool the PT2 plate to ≈ 4 K. When the mixture is below

10 K it is redirected into the much thinner condensing lines (black pipes) for cooling to ’base’
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the center of the magnet

Turbo pump

Roughing pump

Pre-cool loop

Compressor

Figure 4.18: A simplified schematic of the Triton 200/400 Helium Dilution
Refrigerator. The parts are not drawn to scale.

temperature. Here, the mixture is forced past PT1 and PT2, where pumping on the mixture

on the other side lowers the temperature to 0.7 K, i.e. below the triple point where the

mixture separates into two phases. The volume of the mixture and the gas lines in the fridge

are chosen to ensure the phase boundary occurs in a small chamber, the mixing chamber, and

that the phase boundary between liquid and gas occurs in the still. Therefore, attaching a

plate to the MC ensures the sample can be brought into thermal contact with the mixture

phase boundary. Maintaining a constant mixture volume is important, thus the outgoing

mixture from the still must be returned via the condensing circuit, and PT1, PT2, etc. Since

PT2 is at T = 4 K - two orders of magnitude higher than 15 mK - heat exchangers are used at

the still and below so that the outgoing, cold mixture cools the incoming, warm mixture. The

intermediate anchoring plate (IAP) is attached where the mixture reaches approx 100 mK

to enable users to mount and thermalise electronics, etc. External and internal(not shown)

cold traps of activated charcoal immersed in a liquid nitrogen vacuum dewar, either freezes

contaminants on the cold surfaces or adsorb them to the charcoal. The ”puck” which contains

the sample is located underneath in thermal contact with the MC. Around the puck is the

magnet, which is in thermal contact with PT2, consisting of a superconducting coil with
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Tc ≈ 5 K.

4.3.2 Loading a Device

The type of cryostat used in this thesis enables unloading/loading devices without having to

warm up the cryostat first. The loading procedure of a room temperature puck into a cold

cryostat is as follows: First, all the mixture is collected in the mixture tank to avoid heating

of the mixture and possible overpressure when a new sample is loaded. Second, a new puck

containing a sample is mounted to a loading stick (see fig. 4.19). The sample chip has been

glued onto a daughterboard containing bond pads which has been electrically connected to

the bond pads on the sample chip with a thin Al thread. Then the daughterboard is screwed

onto one a motherboard inside the puck, with electrical connectors mounted to both the top

and bottom. While the connectors on the top connect to the wiring inside the cryostat, the

bottom ones enable electronic connection to the loading stick. A load lock system enables

attachment from the bottom of the cryostat followed by evacuation, using a turbopump. Once

the load lock has reached ultra high vacuum comparable to that inside the cryostat vacuum

can, a gate valve is opened and the puck inserted such that it mates with the cold finger

mounted beneath the MC plate.

4.3.3 The Measurement Setup

A total of 48 DC lines are connected from the sample to the top of the cryostat where they

connect to break-out-boxes (BoB) that are placed right next to the cryostat. From here, BNC

coaxial cables are used to insert suitable measurement tools into the electronic circuit. A

Figure 4.19: Left, a picture of the puck. Middle, a picture of the puck without
the shield. The daughterboard containing the sample is mounted onto the moth-
erboard, which has electrical connectors to both the bottom and the top of the
puck, ensuring electrical connection to both the wiring inside the cryostat and the
loading stick. Right, a picture of the loading stick with the puck mounted onto it.
The loading stick is grounded to minimize the risk of blowing up a device, while
attached to the puck.
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diagram of the circuit that was used as a basis for the two terminal measurements is shown

in fig. 4.20. In the case of the SAG Hall bar in fig. 4.16, voltmeters were added to measure

longitudinal and transverse voltage in a four terminal setup, but was otherwise identical to the

setup in fig. 4.20. A typical current through the devices is on the order of a nano ampere or

smaller and therefore even small noises will bury the signal. To maximize the signal-to-noise

(S/N)-ratio a SR830 lock-in amplifier, referred to as the ”lock-in” from now, was used65. The

lock-in first generates a sinusoidal excitation , VAC , with a fixed frequency, ω0. In general

the returning signal will contain ω0 plus noise at other frequencies so the lock-in uses phase

sensitive detection (PSD) by first amplifying and multiplying the returning signal with a

’reference’ copy of the output signal. The result of this is a sum of two AC signals, one with

the sum of ω0 and one with the difference of ω0. The multiplied waves are then passed through

a low-pass filter that effectively takes the average of the product of the waves that, according

to Fourier’s theorem, ensures that only signals with frequencies exactly equal to the reference

frequency survive. The averaging time constant can be set manually after considering the

trade-off between too long total measurement time and a higher S/N-ratio. The lock-in leaves

a DC component proportional to the voltage of the signal Vsig. If the reference and the signal

are in phase with each other, Vsig is given from this single component. If a capacitive or

inductive coupling is present in the circuitry and the phases are slightly mismatched, the

lock-in uses a second PSD that is 90 degrees out of phase from the first one, resulting in two

components called the X and Y. From taking the Pythagorean sum of X and Y, Vsig is given.

The efficient attenuation of noise signals provided by the lock-in enables to do more accurate

Figure 4.20: The setup of the circuit used for measuring the devices. A DC and
AC signal was generated by the D/A converter and lock-in, respectively, and added
together by a VD. LPF’s residing inside the cryostat, demarked by the red dashed
rectangle, filtered out high frequency noise. Sourcemeters were used to apply a
voltage to the gate electrodes and change the electronic potential landscape of the
device. A CTV was used to convert the current into a voltage and amplify the
input signal, that was then measured by the lock-in and the A/D converter.
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measurements of the differential conductance by measuring the current response to a small

voltage excitation. Since the lock-in measures a voltage, the current through the device has

to be converted into a voltage using an current-to-voltage converter (CTV). The CTV works

by creating a virtual ground at the node between Rin (the total resistance before the CTV)

and RCTV and then use the relation: Vout = −Vin · RCTVRin
= −Isd ·RCTV to output a voltage.

The measured output voltage enables extraction of the current by knowing the gain of the

CTV. The input voltage can in general be a combination of the AC-signal from the lock-in

and a DC-signal sourced by a digital-to-analog converter (D/A) - that is interfacing with the

computer software - if a bias voltage is wanted. The DC-signal is measured by the reverse

process of converting the signal from analog to digital (A/D). The small AC-signal is added to

the total input voltage by a voltage divider (VD) box, to be able resolve the electron energies

which at the base temperature of the cryostat are on the order of µV . High frequency noise,

e.g. warm electrons entering the cryostat from the BoB or background radiation, is impeded

by low-pass filters (LPF) connected in series to the device by letting it through a grounded

capacitor. Finally, sourcemeters that can simultaneously apply a voltage and measure a

current are connected to the gate electrodes on the device. Before any measurements start it is

important to test that currents are not leaking into a gate, since gates have only a capacitive

coupling to the device. Gate leakage can also be caused by electrostatic breakdown and it
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Figure 4.21: Testing gates on device CP1-0.50. a, A conductance measurement
as a function of a gate voltage providing information about the effectiveness of the
particular gate. This is always done for all the gates involved before beginning the
experiments. b, The gate current is measured while applying the voltage to check
for leakage currents. The measurement is watched in real time and by any sign
of exponential behavior the measurement is aborted immediately. Here no sign of
leakage is observed. c, Accidents happen, here a too large voltage was applied and
around −18V the device irreversibly stopped functioning, possibly due to a leakage
current that blew up the wire.
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is therefore important to carefully find a safe voltage range for the gate to function within.

The test of gate leakage is done by sweeping the gate voltage within an expected range and

measure the current. An example of gate testing for device CP1-0.50, is displayed in fig.

4.21a&b. The current measurement is observed in real time and by any sign of non-linear

behavior, the measurement is aborted and the particular gate voltage range can not be used.

Figure 4.21b shows no sign of leakage currents in this particular gate range. However, in fig.

4.21c a mistake was made such that the current was not measured while sweeping the gate.

It so happened that a too large voltage was accidentally applied to a side gate with the result

of a dead device.

Reducing the Signal-to-Noise Ratio

Noise is important because it can have undesirable effects on the measurements that obscures

the real signal from the device. For the UCF measurement we paid special attention to the

noise-level, since random noise could potentially hide the symmetry dependent differences in

δG. We used the lock-in technique to reduce noise - as already explained. However, since

we used a finite time constant of 100 ms, we had to consider other sources to reduce the

noise-effects i.e. chosen frequency and the excitation voltage.

The typical electron temperature at base temperature of the type of cryostat that we used is

≈ 30 mK and the broadening of the Fermi function is therefore, 3KBT = 8 µeV. Adding to

this that the device does not see the entire applied voltage but a value that is reduced by the

factor Rdevice
Rseries

, gives us information about which excitation voltage to use. To gain additional

information specifically targeting the UCF measurements, the conductance as a function a

gate voltage was measured for different values of the excitation voltage and is plotted fig.

Figure 4.22: Investigating S/N-ratio using different excitation voltages. At
excitation below 20 µV, the random noise adds significantly to the UCF. By
comparison of the trace (blue) and retrace (retrace) it is seen that the averaging
effect at higher excitation reduce the noise and the uncertainty saturates at 20 µV,
which was then chosen for the UCF-experiments.
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4.22. The data of the trace and retrace makes it possible to separate UCF from noise. By

calculating the standard deviation, σ, it is seen that for low excitation voltages the noise adds

significantly to the uncertainty and artificially inflates the UCF. As the excitation voltage is

increased, the noise is averaged out and around 20 µV the uncertainty saturates, meaning that

the UCF that is left is real and it is safe to choose this excitation voltage for the experiments.

To probe the effect of a chosen frequency on the noise level we measured the conductance

as a function of time for frequencies between 277 Hz - 283 Hz, as shown in fig. 4.23, left.

The standard deviation was plotted as a function of the frequencies (right). The frequency

with the lowest noise level was found to be 281.3 Hz. However, this value could change from

day-to-day, so the measurement was done frequently and the frequency changed accordingly.

Figure 4.23: Probing the noise level as a function of frequency. Left, conductance
was measured as a function of time at frequencies ranging from 277-283 Hz. Here the
mean conductance is subtracted. Right, The standard deviation of the conductance
as a function of frequency. The quietest region was 281.3 Hz.
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Chapter 5 Measurements and Results

E lectronic measurements carried out on devices are presented and the results are

analyzed in this chapter. The first section deals with the experiments on UCF-devices

while the second section discusses mobility-extraction of FET-devices.

5.1 Universal Conductance Fluctuations

Due to fabrication issues, out of a total of 16 UCF-devices that were fabricated during this

thesis, only 2 turned out to have the functionality required for the planned experiments as

presented in the following section. Various factors could be the reason for non-functioning

devices. Some of them are mentioned in a previous chapter, but a common factor is the

author’s lack of experience in making devices. Another reason is the extreme sensitivity of

the device to electrical discharge and unfortunately, the measurements started with blowing

up a device as shown in fig. 4.21c. A SEM+optical-image of the one device that was left is

shown in fig. 5.24. The data of this device is now presented.

Figure 5.24: Images of CP5-0.75. a), A SEM-image of the device. The numbers
indicate the BoB-lines. The reference wire from 5-7 was floated while measuring
the NS-device from 1-4. The inset shows a schematic of the NS-device defined
by the green box. b), An optical image of the naked wire on a blank chip before
fabrication. The Al is recognized as the bright region of the bottom part.
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5.1.1 Characterization of the NS-Device

Gates

We focus first on the effectiveness of the gates in the NS-device shown in the lower part of

fig. 5.24a and schematized in the inset next to it. This devices had four side gates, (3, 12,

2 and 50). Due to lack of time, only the side gates located on the N-part of the wire, 3

and 12, were used. Figure 5.25a shows the conductance vs VSg3 and VSg12. A schematic of

the device setup used for this measurement is shown in 5.25c. The red dashed line follows

approximately equipotential lines and the slope of this line can be used to find the relative

electrostatic coupling between the side gates. From this it was inferred that side gate 12

was more electrostatically coupled to the devices. This makes sense judged from the SEM

image in fig. 5.24a, since 12 is much closer to the wire than 3. The black vector shown in

fig. 5.24a, is approximately perpendicular to the red dashed line. We chose to sweep along

the direction of this vector to change the chemical potential of the device and measure the

UCF. An example of such a sweep, from ± 5 V on gate 3 through the origin in fig. 5.24a, is

shown in fig. 5.24b. Here the residual conductance, after subtracting a fit to a 4th degree

polynomial, is plotted. We see aperiodic fluctuations which are attributed to UCF.

Figure 5.25: The side gates of the NS-device. a, A gate-gate map of the
conductance for the side gate 12 and 3. The red dashed line indicates the relative
electrostatic coupling of the gates to the wire. The black arrow show the vector
that was chosen to be swept along for the UCF measurements. b, The residual
conductance of a gate trace along the direction black arrow in a. The residuals were
found by subtracting a 4th degree polynomial to the conductance. c, A schematic
of the device setup used to collect the data in a.

5.1. UNIVERSAL CONDUCTANCE FLUCTUATIONS 42



Next, the effects of the pincher gates 13 and 15 were tested. Gate 13 showed, for all practical

purposes, zero response which meant that we only had one pincher gate. This gate was used

to reduce the tunnel barrier at the NS interface to avoid charging effects. In fig. 5.26a, a

pinch-off-to-saturation curve of the conductance vs. gate no. 15 is shown. When all gates

were at 0 V the device was already far from pinch-off but it was possible to gain ≈ 25 %

in conductance, when increasing the pincher to 1.5 V. A saturation was reached at this

Figure 5.26: Bias spectroscopy vs gate 15 near pinch-off. a), The pinch-off curve
using the pincher gate no. 15. It was possible to decrease the tunnel barrier and
gain ≈ 25% of conductance by applying ≈1.5 V. The inset show the device setup
for this measurement b), bias spectroscopy in the near-pinch-off area. A clear
∆ is resolved with a value of ≈ 195 µeV. The low energy bound sub-gap states
are not considered in this thesis. c), line traces in b) along the colored arrows
used to estimate a bias offset of ≈ 0.05 mV. The inset illustrates the gate induced
tunnel barrier, preventing transmission of sub-gap energy electrons resulting in zero
conductance. d), Bias spectroscopy at larger gate voltages. The information of the
value of ∆ from b) was used to estimate a series resistance. e), When subtracting
the voltage that drops across the series resistance (≈ 11 kΩ) from the bias voltage,
the voltage drop across the devices is left and a constant ∆ is seen, indicating that
Rs is constant as a function of the pincher gate. f), same as in e) but with the
device conductance as the color scale.
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voltage, due to the series resistance. To investigate the induced superconductivity a DC bias

spectroscopy near pinch-off was carried out and is shown in 5.26b. Indeed, this shows the

presence of an induced superconducting gap with size ∆ = 195 µeV. In addition to the gap,

low energy bound sub-gap states is seen at several gate voltages. The cause of this effect

is beyond the scope of this thesis and will not be discussed further. Line traces were taken

along the Vbias at various gate voltage values indicated by the colored arrows in fig. 5.26b

and plotted in fig. 5.26c.

UCF is a zero bias phenomenon. To make sure that the measurements were conducted at zero

bias, a bias offset was found from the line traces in fig. 5.26c, to be -50 µV indicated by the

red vertical dashed line. This offset comes from the input-offset of the CTV and is subtracted

in the following measurements. The inset next to fig. 5.26c shows the mechanism behind the

zero bias conductance, that arises from the large pincher gate induced tunnel barrier.

In fig. 5.26d, bias spectroscopy at larger gate voltages is shown. As the voltage increases

an increase in conductance below the SC-gap is expected due to stronger coupling between

the N- and S-part of the wire. That is the probability of AR increases. This is consistent

with what is seen in fig. 5.26d. The voltage drop across the semiconducting device (Vdev) is

variable. From the size of ∆, together with the evolution of the conductance at higher gate

voltages to estimate the series resistance (Rs) by applying the voltage divider relation:

Vdevice = Rdevice ×
Vbias

Rs +Rdevice

(5.20)

and

Vdevice = Vbias −RsIdc (5.21)

Using eq. 5.20 at very low gate voltages where Rdevice � Rs, Vbias = Vdevice which at ∆
e
≈ 195

µV.

What appears to be a broadening of ∆
e

with increasing gate voltage, arises from when the

device resistance decreases relative to the series resistance and more bias is needed to get a

voltage drop across the device equal to ∆
e

. We can use this information to evaluate to the

variation in the conductance in a small area around the bias at the green points, V GP
bias , in fig.

5.26d, since here, the voltage drop of the device should be approximately 195 µV. This leads
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to the relation:

Rs =
V GP
bias

Idc
− ∆/e

Idc
(5.22)

From which a value of Rs ≈ 11 kΩ was estimated. When plotting eq. 5.21 in fig. 5.26e, a

constant ∆/e is seen indicating a constant series resistance as a function of the pincher gate.

In fig. 5.26f, Rs has been subtracted from Rdevice and the conductance of the device is plotted.

The final gate on the device is the back gate. But it was not used during this thesis, since it

showed very little response.

Figure 5.27: a, A bias spectroscopy vs angle of B-field showing the variations of ∆
as the azimuthal and polar angle of the B-field is rotated. b, From the information
i a, we could define three major axes of the B-field, B‖, B⊥ and B⊥/‖, each with
their own value of Bcrit.

5.1. UNIVERSAL CONDUCTANCE FLUCTUATIONS 45



Direction of B-field

To find how the device was placed on the chip relative to the axes of the magnet, we did bias

spectroscopy near pinch-off vs both the polar- and azimuthal angle, Θ and Φ, respectively as

shown in fig. 5.27a. These plots show variations of ∆ as the angle of the B-field is rotated.

Since Bcrit depends on the prospect area to the Al this was exploited to define three major

B-field axes as shown in fig. 5.27b. We define them as B‖, which was parallel to the wire.

( BΘ = 0 and BΦ = 0.84), then B⊥, which was perpendicular the wire ( BΘ = 1.57 and

BΦ = 2.48) and finally, then B⊥/‖, which was also perpendicular to the wire ( BΘ = 1.57 and

BΦ = 0.84) but with a different prospect area to the Al compared to B⊥.

5.1.2 Auto Correlation Functions

Figure 5.28 shows typical UCF that we will analyze. These fluctuations are aperiodic and were

reproducible. To quantify the length scales of the fluctuations the autocorrelation function

(ACF) was used. Energetically, the ACF is a measure for the typical scale we need to sweep

(gate voltage or B-field) to be uncorrelated. The ACF is defined as:

F (δx) = 〈(G(x)− 〈G(x)〉) · (G(x+ δx)− 〈G(x)〉)〉 (5.23)

where x represent either the magnetic field, B or the gate voltage, Vg. The half-maximum

of the function defines the correlation scale, xc, by F (xc) = 0.5F (0), where F (0) = the

variance. Measuring Bc (not to be confused with the critical field, Bcrit, of a superconductor),

provides information about the phase coherence length, lφ, which from a semiclassical approach

is obtained from the expression: lφ = γ Φ0

BcW
, where W and Φ0 is the width and half the

Figure 5.28: The residual G(Vgatevector). All gatevector traces presented in this
section were fitted to a 4th-degree polynomial and from the residual conductance
(black) a root-mean-square value was calculated giving the amplitude of the UCF,
δG. Here is an example of the δG at B= 0 T
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flux quantum, respectively. The constant, γ takes the value of 0.42, in a dirty sample at

low temperatures where lφ � LT
66. It is assumed that Bc is inversely proportional to the

maximum phase-coherently enclosed area8. For the quasi-one-dimensional system considered

here, with lφ � W this area is given by lφW . In fig. 5.29a, an example of the conductance as

a function of the perpendicular magnetic field is plotted after averaging out unwanted noise

with a Savitzky-Golay filter. As expected from a two-terminal measurement the conductance

trace is symmetric around zero field. By calculating the correlation function in fig. 5.29b&c,

for B < Bcrit (blue box) (≈ 2.1 T) and B > Bcrit (purple box) Bc, was extracted. From this,

the value of lφ, was found to be ≈ 300 nm, given that the width of the wire was measured to

be ≈ 100 nm. It is stressed that this single-measured value of lφ is encumbered with high

uncertainty, however, being smaller than the length of the normal part of the NS-wire, we

would expect a lφ-related decrease in the absolute value of the UCF-amplitude compared to

the theoretical value. It is noticed that Bc below the critical field is approximately half the

value of the value above the critical field. This is attributed to single electrons/holes with a

doubled lφ due to a maintained coherence from the superconductor.

Figure 5.29: ACF for the conductance vs. the parallel magnetic field. a),
Conductance vs B‖. The parallel critical field was ≈ 2.1 T. b, the ACF for
B < Bcrit, yielded a correlation field of ≈ 0.033T. c, the ACF B > Bcrit gave a
correlation field of ≈ 0.060T, corresponding to a phase coherence length of ≈ 300
nm.
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Figure 5.30: The correlation function investigated along the gatevector. With a
Vc up to 0.260 V and a sweeping range of 10 V, it is expected that each gate trace
gives 30-40 UCF-peaks.

Next, the doubly diminished correlator defining the shift in chemical potential Vc is calculated.

The ACF was calculated along the defined gatevector for different values of the B-field. In fig.

5.30 the correlator for three different traces a plotted and shows a Vc up to 0.26 V. Since the

sweeping range of the gatevector for these measurements was 10 V we expect around 30-40

UCF-peaks for each gate trace. The value of Vc is also used to shift the gatevector a sufficient

amount to uncorrelate the transport properties67.
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5.1.3 Bias Spectroscopy and Temperature

In fig. 5.31a, bias spectroscopy as a function of the applied gatevector is shown in a more

open tunnel barrier regime (pincher gate 15 at 1.5 V). Similar to what was shown in fig. 5.26

an increased pincher gate voltage increased both the subgap and above-gap conductance. The

conductance peaks, corresponding to enhanced quasi-particle transport when the peaks in

the DOS of the leads line-up at Vdev = ±∆/e ≈ 195 µV, are located at a fixed bias value

throughout the entire gate voltage range which indicates that neither the induced gap nor

the series resistance, depend on the gate voltage. In the inset of fig. 5.31a, the average

conductance vs Vdev is shown. A suppression of the transmission at zero bias is seen, I interpret

Figure 5.31: Bias spectroscopy along the gatevector. a), The conductance as a
function of bias and gate voltage at 0 T. A constant SC-gap indicates independence
on the gate voltage. The inset shows the average G(Vdev). The suppressed
transmission might be explained by having an ideal NS-interface causing the EWL-
effect b), The same as in a, but with a a finite field above Bcrit. c), shows the δG
as a function of the applied bias-voltage, with a dependence ∝ V −0.16

dev obtained
from the fit. d), The temperature dependence of the conductance and the δG
(inset). In both the normal (red) and SC (black) state dephasing causes a decrease
in the δG.
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this observation as a ”enhanced weak localization” (EWL). The theory of EWL is developed

for a transmission probability per mode of the potential barrier at the NS-interface, Γ, close

to 1. To explain this counter-intuitive property, it is convenient to replace the disordered

medium by a tunnel barrier inside the semiconductor and consider a periodic orbit consisting

of two normal reflections and two retro-reflections as shown in fig. 5.32. A periodic orbit

consists of two round-trips, one as an electron at Ef + ε, the other as a hole at Ef - ε. An

incoming electron acquires a phase, φ − π/2 upon AR, while the outgoing hole acquires a

phase, −φ− π/2 upon AR68. Thus, we see that a net phase increment of −π causing phase

coherent particles to interfere destructively. Since EWL requires the phase coherence to

remain on length scales larger than the scattering length it is destroyed not only by a magnetic

field but also by an applied voltage, which enables detection of EWL in the current-voltage

characteristic of an NS junction. It is the enhancement that is destroyed by an applied bias

voltage while the weak localization effect is destroyed by the applied B-field69. From the

width of the EWL dip the Thouless energy, EThouless = h̄πD
l2φ

can be roughly estimated70 and

from this, the diffusion coefficient, D, is determined to be on the order 102 cm2/s, resulting

in a thermal length on the order of a few microns. The EWL-effect is considered plausible

here, since when applying B⊥ > Bcrit seen in fig. 5.31b to the same measurement, only a

small dip in conductance of ≈ 0.2 e2/h at zero bias is seen, possibly due to the presence of a

Schottky barrier. Further, in the case of a non-ideal interface, Γ = 0.2-0.4, a conductance

Figure 5.32: The process of EWL. At B = 0 T and zero bias, the periodic orbit
consisting of two normal reflections and two retro reflections acquire a net phase
increment -π, causing destructive interference for electrons. Adapted from ref. [68].
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peak would be expected at zero bias due to the effect of ”reflectionless tunneling”70, where,

in contrast to EWL, the non-zero probability for single electron reflection at the NS interface,

gives repeatedly attempts to undergo AR. More data indicative of an EWL-effect will be

presented in the forthcoming figures.

The total zero-bias conductance of ≈ 12 e2/h is high for NWs, and we consider it reasonable

to compare it to the RMT of the large N >> 1, which gave the bimodal function defined

in eq. 2.10. In fig. 5.31c, δG of horizontal cuts in fig. 5.31a in a bias range of ± 0.2 V is

shown. From a fit to this, δG was found to have a ∝ V−0.16
dev dependence, which is far from

the theoretical value67 of ∝V−2
dev. I do not have an explanation to the discrepancy.

Figure 5.31d shows the temperature dependence of the conductance for the NW in the

SC-state and normal state, respectively. When in the SC-state the conductance increases up

until it reaches the critical temperature before decreasing to the normal state value. What

exactly causes the observed T -dependencies is not so clear but it could be related to the

T -dependency of EWL and needs further investigation. However, in both the normal and SC

state δG decreases with increasing temperature which is an expected dephasing effect.

5.1.4 Probing Symmetry Breaking with UCF

In this final section regarding UCF, the effect of symmetry breaking on the δG values is

presented and discussed. A summary of the results is schematized in fig. 5.38.

On the absolute value of δG - classifying the ensemble

In fig. 5.28, δG of the NS-conductance at B = 0 T was shown to be 0.34 e2/h. This value is

far from the theoretical value of 1.51 e2/h from a COE at zero temperature30. In the previous

section we showed data which could indicate that the NS-interface is approximately ideal and

therefore should be comparable to the theory that was introduced in chapter 2. So to explain

the discrepancy, it is instructive to first classify our ensemble by considering the measurements

of the reference N-device (5-7 in fig. 5.24). Unfortunately, this wire had only one functioning

side gate (no. 8). Consequently, it was only possible to change the potential in a 10 V range.

Also, only one pincher gate was working (no. 9) and was maximally opened. Figure 5.33a,

show a measurement of conductance as a function of side gate 8 and parallel magnetic field for

the reference device. From this data, the average conductance and δG as a function of B‖ was

extracted and are shown in fig. 5.33b and fig. 5.33c, respectively. The average conductance

shows a peak at zero field, which we attribute to a weak anti-localization (WAL) effect arising
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Figure 5.33: UCF measurements of the reference N-device. a), the gatevector
was swept from ± 5 V and the parallel B-field was stepped while measuring the
conductance. The series resistance was essentially unknown but here, 11 kΩ has
been subtracted as was measured for the NS-device. b), The average conductance
extracted from vertical cuts in a. We see a WAL-peak indicative of strong SOI.
This makes the system belong to the CSE (β = 4). The inset below shows a fit of
the shaded area to the WAL peak using the dirty metal limit. This estimates lφ
to be ≈200 nm. c), The extracted δG as a function of B‖, shows a single drop in
amplitude by a factor of 0.67 owing to the breaking of TRS.

from strong spin-orbit interaction (SOI). This is usually seen in InAs NWs71–74. This makes

the system belong to the CSE (β = 4), which leads to by a reduction of the theoretical δG by

a factor of 2 compared to COE. Since the SOI also lifts spin degeneracy (gs: 2 −→ 1), the δG

is reduced by an additional factor of
√

2. The theoretical value of δG in this NS device, at

T=0 K, is, therefore, ≈ 0.52 e2/h. However, if we instead use Beenakker and van Houten’s

interpolation formula eq. 2.12, for T > 0, inserting the correlation field measured value of

lφ, 300 nm (see section 5.1.2), and assuming a regime where lφ � LT , a value of the δG of

≈ 0.30 e2/h is obtained, in good agreement with the measured value. We emphasize that

there is some controversy on how to extract lφ and that the small discrepancy between the
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Figure 5.34: Conductance of the NS-device as a function of gate voltage and
the B-field for three different B-field directions. The crossover from the brighter
regions to the darker regions defines Bcrit (indicated with arrows) measured to be
≈ 2 T, 0.75 T and ≈ 0.25 T for the B‖, B⊥/ ‖ and B⊥ field, respectively.

theoretical- and measured value of δG might reflect a high uncertainty of the extracted phase

coherence length. This is further accentuated by the fact that the fit of the WAL-peak in the

inset of fig. 5.33 (using the dirty metal limit75), gives a phase coherence length of 200 nm -

approximately a 2/3 of the value obtained from measuring Bc. Another factor that might

add to the discrepancy is that the amount of UCF-peaks within a measurement (40-80 peaks)

borders low statistics. A coincidence of the effect of low statistics might be what we observe

as the relatively large oscillation in the amplitude of the δG in 5.33c.

It should be noted, that the absolute value of the δG in fig. 5.33c is not comparable to the

δG of the NS-device, since the series resistance was unknown in this device. However, the

trend seen in the plot caused by symmetry breaking is still useful. For example, the trace

of the δG as a function of the B-field shows a clear drop by a factor of 0.67 in amplitude

around B =0.1 T. This is close to the theoretical value of 1/
√

2 for breaking TRS and lifting

Kramer’s degeneracy. We see no further drop in amplitude at a larger field from Zeeman-effect

since spin degeneracy was already broken by SOI76.

The NS-device

Having accounted for the classification of the intrinsic ensemble, the attention is now turned

toward the NS-device. The B-field was stepped along the three major axes (See. fig. 5.27)

of the NW and the gatevector was swept while measuring the conductance as seen in fig.

5.34. To gather larger statistics, we managed to run the measurements twice with the
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Figure 5.35: The two gatevectors, green and
black arrows, that we swept along. Series resis-
tance not subtracted here.

gatevector of the first measurement shifted

along gate no. 12 by 2 V, relative to the

second measurement as seen in fig. 5.35. The

magnitude of the shift is much larger than Vc

and enables us to measure twice the amount

of different impurity configurations, thereby

doubling the amount of UCF-peak to around

70. The remaining figures in this section plot

an average of the measurements along the

shifted gatevectors. The three different B-

field axes all show a region at a low field of

higher conductance followed by a region of

lower conductance at a high field. A crossover

between the two is seen when the system

changes from NS-state to N-state at Bcrit.

The critical field magnitude is dependent on the direction of the field and is ≈ 0.25 T, 0.75 T

and 2.0 T, for B⊥, B⊥/‖ and B‖, respectively.

To investigate the B-field dependence of the conductance more closely, the average of vertical

cuts in fig. 5.34 were calculated and plotted vs the B-field in fig. 5.36. Here, especially the

decrease in conductance at zero field is interesting, since it is consistent with the theory of

EWL-effect and the zero-bias conductance dip that was seen in fig. 5.31a. This adds to the

hypothesis of a close-to-ideal NS-interface with a high AR probability. A theoretical treatment

of a system similar to ours by ref. [77], explains the mechanism of the zero-bias dip at zero

B-field. The dip in conductance at zero field is destroyed by TRS-breaking when exceeding

the correlation field and in the second row of fig. 5.36, a smaller B-field range is displayed

from which the magnetic field scale of the breaking of TRS in the three maps is observed to

be roughly of the same order as was previously measured with the ACF (Bc = 0.06 T, section

5.1.2).

Since the B-field was stepped across Bcrit in each direction it was possible to directly probe

the relation between δGNS(no TRS) and δGN(no TRS). Figure 5.37, shows the δG as a

function of the B-field in all three directions. From the data in fig. 5.37a-c, a few general

statements of δG can be made. First, the value peaks at B = 0 T. Then by increasing the

B-field we see first a large drop in δG, indicated by the red arrow, until it settles on a plateau.

The factor by which δG drops here, is on average 0.68 e2/h with a minimum of 0.63 e2/h
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Figure 5.36: The B-field dependence of the average conductance. Measuring along
all three major B-field axes, shows two main trends. First, a dip in conductance
around 0 T is observed, that might be explained by the EWL effect. The dip is
destroyed by TRS-breaking when exceeding the correlation field. At larger fields
B = Bcrit a drop in conductance is seen due to a transition of NS-state into N-state.

for the B⊥/‖ measurement and a maximum of 0.73 e2/h B‖ measurement. This factor is

close to the theoretical value followed by changing the ensemble from CSE to CUE. That

is, the fluctuation amplitude of the NS-device is sensitive to the breaking of TRS . When the

magnitude of the B-field crosses Bcrit, we observe another large drop with an average value of

0.57 e2/h to a new plateau. This drop is attributed to the breaking of particle-hole symmetry.

For B⊥ and B‖ the drop is 0.55 e2/h and 0.52 e2/h which is in good agreement with the

Figure 5.37: The evolution of UCF when a applying a B-field. a-c, The red arrows
indicate the two major drops in amplitude observed. d-e, A higher resolution of
the peak in a small range around 0 T. For B‖ and B⊥/‖, an additional plateau
appears, that we are not able to explain with the present amount of data.
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Figure 5.38: Summary of the results for the NS-device and the control device.
The NS-device and the control device are both transformed from a CSE into a
CUE when breaking TRS with a B-field and δG was reduced by ≈ 1/

√
2. When

the B-field was increased further, the particle-hole symmetry of the NS-device was
broken, an additional reduction of ≈ 1/

√
2 was observed

theoretical value of ≈ 0.5 e2/h. For B⊥/‖ the value is higher (0.64 e2/h). We do not know the

origin of this but this may be related to insufficient statistics.

Whether the normal region contains a reflection symmetry could not be verified from these

measurements since this would have required the theoretically predicted insensitivity to the

breaking of TRS of the NS-device, together with a fully functional control device with a

known series resistance.

In fig. 5.37d-f, a higher resolution (shaded area in fig. 5.37a-c) in a small B-field range shows

that for B⊥/‖ and B‖ the peaks around 0 T reach an extra small plateau, indicated by the

green arrows, before reaching the first large plateau seen in 5.37a&c. It is not seen for B⊥/

but this might just be due to a smaller resolution of this data set compared to fig. 5.37d&f. It

is hard to imagine extra hidden symmetries that can be broken by an applied B-field in this

region and may be related to insufficient statistics. Future measurements may shed further

light on this. In general, this might be the cause of the discrepancy between data and theory

and future work will aim toward building statistics of the UCF in similar devices.
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5.1.5 Summary

The work in this section revolved around UCF in NS-devices to gain insight into the QI-effects

in a disordered system with a long phase coherence length. A semiconductor-superconductor

hybrid nanowire consisting of a hexagonal cross-sectional InAs wire with half-shell coated

Al on two facets was used for this purpose57. One of the fabricated devices had a sufficient

number of working gates to control the electron wavefunction and density in the device, which

was used to gather statistics in various different symmetry regimes. From initial transport

characterization with tunnel spectroscopy and magnetoconductance measurements, we saw

signs of an EWL-effect indicating that we had an ideal NS-interface which was a condition

of the theoretical models concerning UCF30,68,70,77. We learned that the amplitude of the

UCF is controlled by the presence of fundamental symmetries. Even though the absolute

values of the amplitudes diverged slightly from the theoretically predicted values, it was

indeed possible to probe the breaking of TRS and particle-hole symmetry by analyzing the

amplitude of the UCF in a magnetic field and shifting chemical potentials. To the extent of

my knowledge this is the first time the particle-hole crossover has been studied experimentally

using UCF. We found that the change in amplitudes caused by breaking these symmetries

was not fully consistent with the theories presented in this thesis31,34,42,75. For example, the

fluctuation amplitude of the NS-device showed sensitivity to the breaking of TRS, which

was not predicted by theory42. Further, we measured a drop in δG that was related to the

breaking of particle-hole symmetry, however, whether the value of this drop contain a hidden

exchange of symmetries, e.g. reflection symmetry in the normal device, is not clear and needs

further investigation from more devices.
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5.2 FET-Mobility

Figure 5.39: Top: A schematic of the FET mea-
surement setup used to extract the mobility of
the SAG-NWs. Bottom: A schematic of the Hall
measurement setup used as a reference to the FET-
measured data.

For the measurements of mobility in SAG-

FET devices the two setups seen in fig. 5.39,

were used. The circuit diagram in fig. 4.20

was used with an applied AC-excitation of

100 µV, while the inner voltage probes were

either floated in the sample (FET) measure-

ment or connected to transverse and longi-

tudinal volt-meters for the reference (Hall)

measurement. As shown in Ref. [44], the

transport is confined to the outer InAs shell.

We consider first the results from operating

the device in the Hall configuration. The

voltage drop in the transverse and longitu-

dinal direction was measured as a function

of the top gate voltage (Vtg) and the perpen-

dicular magnetic field (B⊥). The resistances,

Rxy and Rxx were extracted and are plotted

for device Fg1HB4 in fig. 5.40. For the raw

measurements from which Rxy and Rxx is extracted see fig. S53. To reduce hysteresis, and

thereby simplify the determination of the threshold voltage (Vth), the voltage was limited to

range from the ≈ pinch-off point to the beginning of the fully open regime. As a consequence,

the gate traces in fig. 5.40a, show exemplary reproducibility, regardless of the sweep direction.

The increasing magnetoresistance shown in fig. 5.40d has been observed previously, and

attributed to geometrical factors[78].

Indeed, our sample deviates from the archetypal Hall bar geometry. Notably, the 2DEG is

confined to a triangular, not flat, surface, the voltage probes are offset due to the intrinsic

crystal symmetry of InAs grown on GaAs, and the probes also have a non-zero extension

along the channel. In order to ensure that the Hall measurements could function as accurate

reference measurements, electrostatic simulations were undertaken by Thierry Pomar using

the COMSOL software package, based on the geometry shown in fig. 5.40c. The best fits

from these simulations to the data are shown in fig. 5.40e, and suggest a geometrical factor of

≈ 0.90 to modify the carrier density in the NWs. This arises from the deviation from the

standard Hall geometry in that the channel has the shape of a pyramid and the voltage-probes
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Figure 5.40: Device Fg1HB4. a, trace and retrace of Rxx as a function of
Vtg for a perpendicular field of 0 T and 6 T , showing excellent reproducibility.
b, Rxy as a function of Vtg after subtraction of the Rxx-component caused by
misaligned voltage probes. At finite B-field the transverse resistance drops as the
transport channel widens. c, illustrates triangular shaped core-shell model with
misaligned probes (TRI MA) used for simulations. d, Rxx as a function of B⊥
average over a range 0.6 V to reduce universal conductance fluctuations. At low
field weak anti-localization is observed. The increasing magnetoresistance needs
further detailed analysis beyond the scope of this thesis. e, Rxy as a function of
B⊥, that was used to extract a density, at two different values of Vtg. The best fits
from simulations, accounting for both the special geometry of the NWs and the
misaligned voltage probes is plotted on top (dashed). f, The 2D carrier density as
a function of gate voltage. Orange, The fitted 2D carrier density, translating into
a constant capacitance/area of ≈ 5× 10−3 F

m2 . Blue, the Hall mobility showing a

clear dependence on the density, with a peak value of ≈ 5700 cm
2

V s .

are not strictly on the edge of the channel but probes the potential at the entire width of

the channel side-facet. Due to a slight misalignment of the transverse inner voltage probes

a component of Rxx adds to the measured Rxy. From the off-sets in the raw data of Rxy,

the magnitude of this component was estimated to be ≈ 0.125 ·Rxx. In fig. 5.40e, Rxy as a

function of B⊥ is shown, after the intrusive Rxx has been subtracted. On top of the data, best

fits extracted from the simulations, accounting for both the misalignment and the geometrical

factor as illustrated in 5.40c, are plotted. The carrier density for a given Vtg, is calculated by

fitting to: Rxy(B⊥;Vtg) = B⊥
n2de

. The electric field dependence of the carrier density is plotted

in fig. 5.40f. The linearity implies a constant capacitance pr. area, Ci = 5 × 10−3 F/m2.

Note, however, that below Vtg = 0.1 V, the linearity is lost, and the n2d drops rapidly to zero.

This occurs since the carrier density becomes comparable to the effective charged impurity
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density from randomly distributed charges in the 2d-transportation-layer, interfaces and the

surrounding layers. The system then becomes insulating due to a percolation transition driven

by the failure of screening leading to an inhomogeneous density landscape[79]. The methods

used in this thesis to extract mobilities are only valid above the percolation regime, where

there is a linear relationship between the conductivity and the carrier density. From the x-axis

intercept of the linear relationship between n2d and Vtg, we can extract the threshold voltage,

V H
th = −0.16 V, which is the Vtg for which n2d drops to zero.

With the reference data in place, I now turn the attention towards the FET-measurements.

From the reliable mobility, µHall[80], the validity of the FET-mobility extracted from eq. 2.18

and 2.19 is tested. For the sake of of the reader, let me just restate the two equations:

µFE =
gL2

C
(5.24)

and

G2p,Rs(Vtg) =
(
Rs +

L2

µC(Vg − Vth)

)−1

(5.25)

In fig. 5.41a, eq. 5.25 is used to fit the two-terminal measured conductivity of device Fg1HB4.

At first glance the fit seems to be rather good. However, by digging deeper and comparing

to the reference data in fig. 5.41b-d, we discover that the fit-parameters: Rs, Vth and µ are

all overestimated with values of ≈ 8.7 kΩ, ≈ 0.06 V and ≈ 8240 cm2

V s
, respectively. The

discrepancies of the device properties between the two methods is attributed mainly to the

erroneous assumption that µ is a constant material parameter as a function of gate voltage.

Only smaller discrepancies are attributed to the fact that the FET and the Hall measurements

do not exactly reflect properties from the same transport regions.

In fig. 5.41e, the field effect mobility defined by 5.24, is plotted using first the parameter

values from fitting with eq. 5.25, µFE(fit),. For reference µFE(4p) is plotted. This model has

the advantage that it is independent of Vth. Compared to µHall, the method show the same

tendency in Vtg. But it tends to overestimate the mobility at low voltages and vice versa,

since this model is not accounting for the electric field dependence of the mobility - thereby

neglecting a contribution from the extra term that would have appeared when applying the

product rule to the derivation of eq. 5.24.
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Figure 5.41: a, the conductivity of the FET device fitted with eq. 5.25, assuming
a constant mobility. b, the conductivity of the FET device after the Rs has
been subtracted (red). The conductivity of the four-terminal measurement (blue)
is plotted to emphasize the error on the fit model, leading to an overestimated
series resistance. c, the extracted constant mobility from the fit with eq. 5.25
(black) For comparison we plot µHall (blue) which shows a largely overestimation
of the fitted mobility. d, the final parameter from extracted from eq. 5.25, Vth,
enables to plot the density as a function of gate voltage. When referenced to
the Hall density it is clear that this parameter is overestimated as well. e, the
extracted mobilities using the field-effect mobility method defined by eq. 5.24 for
the two-terminal measurement, after the fitted Rs has been subtracted and the
four-terminal measurement.

5.2.1 A New Model

The comparison in fig. 5.41 shows that the two commonly accepted methods for extracting

FET mobility diverge strongly from the mobility extracted from Hall effect measurements.

This motivates development of a new method to ensure better comparability of these two

methods. I will now show that it is possible to extract a gate voltage dependent µ from

the two-terminal FET measurements and that it closely matches the Hall mobility. This

idea is motivated from the plots seen in fig. 5.42a-d. Here it becomes evident that a two-

terminal extracted gate voltage dependent mobility, which shows excellent similarity to the

Hall mobility, lives somewhere in a multidimensional space expanded in the value of Rs that

we subtract from the two-terminal conductance and the value of Vth that we choose. In other

words, finding the gate dependence of the mobility boils down to being able to estimate values

of Rs and Vth that are close to the true values.

If in the case where, δG
δVg
|Vsd 6= constant but the source-drain conductance, δIsd

δVsd
|Vg = constant,

an effective mobility, µeff , can be defined as:

µeff =
L2

C(Vg − Vth)
δIsd
δVsd

∣∣∣
Vg

(5.26)

In practice, eq. 5.26 is the two-terminal measurement equivalent to the Hall mobility, if
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a)

b)

c)

e)

d)

f )

g)

h)

Figure 5.42: a-d), µeff defined by eq. 5.26 is plotted, for fixed values of Vth
while varying the subtracted Rs (a-c) and then for a fixed value of Rs fixed while
varying Vth (d). Comparing to µHall, it displays that the a gate dependent µ close
to µHall is extractable from eq. 5.26, if we know Vth and Rs. e-f, shows µeff as a
function of the subtracted Rs and Vth, respectively, for various gate voltages. The
parameter, Vth, becomes increasingly important as the voltage decreases, while
Rs is more important at higher voltages. The information in panel a-f is useful
for putting a constraint on Vth in the new fit-model. g), fitting G2p with eq. 5.25
again, after inserting the gate dependent µmodel defined by eq. 5.27. We used the
same fit-range as for the original version of eq. 5.25, yielding a much better fit.
h), extracting µeff using the fit parameters from the fit in panel g for different
constraints on Vth shows great similarity to µHall.

the majority carriers are either electrons or holes43. The difference in applicability is that

the density here: C(Vg − Vth), is directly measured in a Hall measurement, removing the

capacitance and Vth as unknowns. Further, even if the threshold voltage and the capacitance

are known parameters, eq. 5.26 is only directly implementable in the case of zero series

resistances, which is practically impossible in a two-terminal measurement. Instead, the

approach is to modify eq. 5.25 to contain a non-constant µ. The following µ-function is

suggested:

µmodel =
1

2

(
µ1 + µ2 −

(
[µ1 − µ2]2 +M

) 1
2

)
(5.27)

This model of µ is based on qualitative features commonly observed for 2D InAs/InSb

systems47–49 above the percolation regime. Starting above percolation, in the intermediate

density regime, the mobility rises approximately linearly in Vg because of the dominant role

of the charged impurity scattering81. This is modelled as µ1 = αVg + β, for α ≥ 0. In the
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high density regime, where inter-subband scattering becomes dominating, µ decreases linearly

in Vg, modelled as µ2 = γVg + η, for γ ≤ 0. The smoothness of the transition between the

Coulomb scattering and inter-subband scattering, is believed to be partly determined by the

density of the 2D-short range scattering sites, and modelled with the single parameter, M .

By substituting µmodel into eq.5.25 the new fitting model will take the form:

G(Vg) =
(
Rs +

L2

µmodelC(Vg − Vth)

)−1

(5.28)

The new fit-model defined by eq. 5.28 enables us to find extract a gate-voltage dependent µ.

Before fitting, we are able to constrain both Rs and Vth. Rs must be greater than 7.2 kΩ,

the value of the resistors in the in-line filters. Upon introducing this constraint, one finds

that the fits only converge for Vth ≤ -0.12 V. This is valuable information since judged alone

from fig. 5.42a-d, values of Vth between -0.12 V and -0.08 V could not be excluded. However,

going above Vth =-0.08 V, µ increasingly diverges at the border between the percolation

regime and the start of the linear density regime around Vtg = 0.05 V as seen in 5.42d. This

divergence-effect from overestimating Vth, is explained by the failure to account for a residual

density at the start of the linear density regime. A better estimate of Vth can be inferred

from the plots shown in fig. 5.42f. By expecting that the mobility is zero when the density

is zero, these plots suggest a constrained value of Vth ≤ -0.1 V. Notice how, in the low gate

voltage regime, the mobility becomes really sensitive to the chosen value of Vth, while in the

high voltage regime it is most sensitive to the chosen value of Rs (see fig. 5.42e), since Rs

dominates over Rdevice in this regime.

In fig. 5.42g, a fit to the two terminal measured conductance of device Fg1HB4 is shown

using our new model with a fixed Vth = −0.16 V. Due to the large number of parameters

in the new model, it fits equally well when using a range of Vth between -0.12 V and -0.20

V. Thus, the information in fig. 5.42a-f has to be used to fix the value of Vth in the model.

However as shown in 5.42h , the mobility is quite robust to small variations in Vth once

narrowed down to a range that yields a density close to the true density. The three fits in

5.42h use three different constraints on Vth of -0.12 V, -0.16 V and -0.20 V which yields Rs

values of 7.2 kΩ, 7.4 kΩ and 7.5 kΩ, respectively. This is consistent with what we expect from

the interpretation of the data in fig. 5.42a-c. Further, they show an excellent match to the

mobility extracted from the reference Hall measurement. In appendix A4, conductance fits

and gate voltage dependent µ’s of two more devices using this new method can be found.
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5.2.2 Summary

In summary, we used a gate-tunable InAs SAG-NW device in a Hall bar geometry to evaluate

the efficacy of state-of-the-art methods for extraction of FET mobility in a two-terminal

configuration against the Hall effect mobility. We found both methods to extract FET mobility

fail to accurately capture the carrier density-dependent nature of µ, and severely overestimates

the value by a factor of two. We therefore suggested a new model of the conductance that

included a carrier density dependent mobility. From this we were able to extract an effective

mobility that showed great similarity to the Hall-mobility and conclude that the new method

can be used to extract more precise values of the mobility, but more importantly, be used to

gather invaluable information of scattering mechanism in a particular density regime that can

be used to optimize future devices.
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Chapter 6 Correlated Materials

W hen I was a second year undergraduate student, I took my first introductory course

in condensed matter physics. During this course, superconducting ”magic angle

graphene”82 was discovered. This sparked my interest in correlated materials. The theoretical

platform used to describe electron correlations goes beyond traditional band theory. Here

this platform will be introduced in the light of the Hubbard model with focus on the 2D

correlated lattices that we aim to successfully fabricate. The Hubbard model, is an extension

of band theory that takes into account the electron-electron interactions. From this very

simple, yet computationally intractable theory, electronic and magnetic properties that are

not predicted by simple band theory emerges to give, for example, a more diversified picture

of what a conductor is. The chapter ends with a status on the fabrication/growth process of

SAG 2D square lattices followed by band diagram calculations that will help the future effort

in preparing Hubbard Hamiltonian states, starting from the synthesis of the devices.

6.1 Beyond Band Theory

A simple treatment of band theory predicts that any system where the unit cell has a single

valence electron is a metal83. However, there are cases where this is not true84,85. The problem

is that band theory leaves out the effect of Coulomb-interaction between electrons86. We know

that this non-interacting electron picture at least fails to describe the effect of: magnetic

ordering (magnets or Mott-insulators), crystal field splitting and the Jahn-Teller distortion

(charge density waves and Peierls distortion in 2D and 1D, respectively)84,87. Common to all

these phenomena is the breaking of some symmetry that creates a new energetically favoured

ordered ground state. To give an example where simple band theory predicts a metal but

a more sophisticated treatment predicts a band gap, consider a 1D-chain of equally spaced

H-atoms, separated by the distance ’a’, each with a single 1s orbital and a single electron.

If each lattice point is label by an index, n = 0, 1, 2, 3.. and contain a basis function, Bloch

functions can be formed from25,88:

ψk =
1√
N

∑
n

eiknaχn (6.29)

For example, at k = 0 and k = ±π
a

eq. 6.29 becomes:
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Figure 6.43: A schematic illustrating the idea of a Peierls distortion. The figure
to the left shows the E-k diagram of a 1D H-atom chain equally spaced by ’a’.
The Fermi level is placed at the center of the band indicating a half filled first
Brillouin zone. This dispersion predicts a metal, however, at finite temperatures
it is unstable to symmetric electron-phonon coupling pairing that distorts the
chain and opens a band gap opening as shown by the black arrows. The Bloch
functions are schematized in the middle, where the blue and white circles have
opposite phases, meaning that there is a nodal point centered between them. The
low-to-high energy functions, k = 0 - k = ±π

a , are shown from bottom-to-top.
Without the Peierl’s distortion, all k-states are degenerate between k = 0 and
k = ±π

a . The symmetric pairing, indicated by the blue arrows, lifts the degeneracy
at k = ± π

2a and opens a band gap. The opening of the band gap is shown in the
right figure. The dimerization cause a doubling of the length of the unit cell such
that a’ = 2a.

ψ0 = χ0 + χ1 + χ2 + χ3 + ...

ψ±π
a

= χ0 − χ1 + χ2 − χ3 + ...

The solution to the Schrödinger equation, using eq. 6.29 as an ansatz, can be seen in fig.

6.43 left. In the central part of fig. 6.43, an illustration of the Bloch functions for k = 0,

k = π
2a

and k = π
a

are shown. Since every unit cell is filled with one valence electron, the

first Brillouin zone is half filled and with a E(k) = E(−k)-degeneracy. At first, no band

gap is present and the 1D-chain should be a metal. But at temperatures, T, on the order

of kBT ≈ EF exp(− 1
λel−ph

), where λel−ph is the electron-phonon coupling constant87, Peierls

instability states that: ”a 1D metal is always unstable to a structural distortion that opens a

band gap”89. If we imagine the symmetric pairing vibration as indicated by the arrows in

fig. 6.43 middle panel, it turns out that this electron-phonon coupling, distorts the lattice

such that it opens a band gap around the Fermi energy. The argument goes as follows: From
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symmetric pairing a dimerization process causes every even-odd numbered site to move closer

to each other and every odd-even numbered site moves further apart. Consider now the k = 0

state. Here, the energy gained in bonding energy by the electrons that moves closer, is lost

by those that moves further apart, so no stabilization happens here. The same would be true

for a possible k = π
a

state. However, at k = ± π
2a

the effect of the dimerizations is dramatic.

Here the E(k) = E(−k) degeneracy will be lifted, since for one of the k = ± π
2a

states both

the bonding and anti-bonding energy will decrease, while it will increase for the other. The

band gap opening is shown in fig. 6.43 right panel. A new periodicity is introduced, where

the unit cell now has the length a’=2a. Consequently, the first Brillouin zone is halved. The

new periodicity is defined by the ”nesting vector”, which in this example is a 1D vector

that connects − π
2a

to π
2a

. In general the nesting vector connects parallel lines of the Fermi

surface to define a new Brillouin zone. It therefore requires a highly symmetric Fermi surface.

Peierls instability is an example of the extreme importance of the concept of nesting to the

interaction effects.

6.2 The Hubbard Model

The tight binding approximation predicts that the 1D H-atom chain is a metal with energies

given by:

Ek = α + 2β cos kxa (6.30)

Here α is the on-site energy of an isolated H-atom and β is the interaction between two

adjacent H-atoms in the nearest neighbour approximation. Consider a thought experiment:

Ignoring the Peierls distortion, what happens if the lattice spacing is gradually increased?

- As the lattice spacing increases the interaction between adjacent atoms decrease an the

bandwidth narrows. The effective mass of the electrons will increase and make it a poorer

conductor due to a decrease in the curvature of the band. Nonetheless, band theory still

predicts that it is a metal, no matter how far apart the atoms are. This is nonphysical and

there must be a critical length where it abruptly transitions into an insulator. For example,

when the interaction energy of the atomic orbital becomes small compared to the energy

associated with electron-electron interactions. In that case we can instead use the Hubbard

model90–93. The Hamiltonian of the fermionic Hubbard model, referred to as the Hubbard

Hamiltonian (HH), is the tight binding Hamiltonian with an additional term describing the

repulsive Coulomb force between two electrons sharing a site. Using second quantization it
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can be written as94:

ĤHubbard = −t
∑
σ=↑,↓

∑
<ij>

(c†iσcjσ + c†jσciσ) + U
∑
i

(ni↑ + ni↓ − 1)2 − µ
∑
i

(ni↑ + ni↓) (6.31)

The lattice is indexed by sites i, j and the symbol < ij > in the sum refers to the fact that the

sum includes nearest neighbors only. The operator, c†iσ/cjσ, creates/annihilates an electron

of spin σ =↑, ↓ at site i. The operator, niσ = c†iσciσ, counts the number of spin up electrons

at site i. The first term is the usual ”hopping” energy known from the tight binding model.

The second term is the ”interaction” energy that will penalize double occupancy of a site

with the energy U . The final term is the chemical potential that controls the filling. An

illustration of the Hubbard model in the case of a 2D square lattice can be seen in fig. 6.44a.

It is instructive to look at the HH in the limits of U � t and t� U . In the limit of very large

U (t = 0), it is in particular interesting to consider the average site occupancy as a function of

the chemical potential (See fig. 6.44b). At small temperatures, this function will be step-like

with a plateau centered around µ = 0 at half filling. The width of the plateau is 2U at T = 0

and is known as the ”Mott insulating gap”. Inside this gap it is not possible to add or remove

t

U

ky

kx
p

0

0-p
-p

p

(p,p)
U=0

<
n

>

µ

T = 0.5

T = 1

T = 4

t=0, U = 5

t=0, U=5

1050-10
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Figure 6.44: a), illustration of the square lattice Fermi-Hubbard model at half
filling. In the limit of U � t, the fermions can lower their kinetic energy (t), by
making occasional jumps to the neighbouring site but it comes with a price of U
in potential energy. b), The average site occupancy as a function of the chemical
potential, µ, at half filling for t = 0 and U = 5 for different temperatures, T. A
Mott insulating gap arises at small temperatures, freezing the average occupancy
at < n >= 1 over a distance of ∆µ = 2U . A second order perturbation in t,
demonstrate antiferromagnetic order inside the Mott gap. As T increases, the Mott
gap smears out. c), In the opposite limit for U = 0, the square lattice HH reduce to
a tight binding Hamiltonian. Interestingly, at half filling the nesting (π, π)-vector
cause a lattice step translation equivalent to a spin flip order and the wave function
demonstrates antiferromagnetic order.
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electrons. Increasing the temperature will smear the step-like function and narrow the Mott

gap. Using second order perturbation theory in hopping, in the large U limit, it can be

shown that at half filling the 2D Hubbard model reduces to the Heisenberg model and prefer

antiferromagnetic ordering. Qualitatively, this can be understood from the particle-in-a-box

perspective where the electrons can lower the kinetic energy by making the box larger from

occasional visits to the neighbouring site. Due to Pauli principle, this is only possible if the

neighbour has opposite spin and consequently - when it is at the neighbouring site - it only

has the possibility to hop back to the empty site again. In the opposite limit of HH, U = 0,

the solution of the square lattice is similar to eq. 6.30 but with an additional ky dependent

cosine function, Ek = −2t(cos kx + cos ky). A contour plot of the E-k dispersion at different

fillings is shown in fig. 6.44c, for a lattice spacing of a = 1. Equivalent to the Peierls distortion

discussed earlier, the non-interacting square lattice has perfect nesting at half filling. The

(π, π) wave-vector maps a large portion of the Fermi surface onto itself. Interestingly, the wave

function demonstrates an antiferromagnetic order, a lattice step translation being equivalent

to a spin flip order at half filling and U = 0, as was the case in the opposite limit95. Thus if

nesting is achieved, the value of U is not so important in developing an ordered ground state.

Figure 6.45: Metal-insulator phase di-
agram with the three parameters of the
HH represented on the axes. The parent
Mott insulator is shown at half-filling
(µ = 0) above Uc. Adjacent to µ = 0 the
filling controls if the phase is metallic
(white regions) or strongly influenced by
the MIT (grey regions). Adapted from1.

6.3 A Closer Look at the Hubbard Pa-

rameters

In the previous section the extreme cases of the square

lattice HH was considered. Now we will consider the

ground state in the case where either t, µ and U are

necessarily zero. The energy difference between the

lowest and highest allowed state in a given band is

defined as the bandwidth. The bandwidth parameter,

W , is particularly important in partially filled bands,

because it quantifies the decrease in total kinetic energy

for all the electrons, if their atomic orbitals merge to

overlap in real space84. The closer the atomic orbitals

move, the more the band spread out. In the case of

the square lattice W = 8t. In a partially filled band,

for a given Hubbard-U , band theory is only a good

approximation as long as W > U . That is, if the decrease in energy from hopping is larger
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than the increase in energy from occupying the same atomic site. The transition, that a

half filled band undergoes from W > U to W < U , is called the bandwidth controlled (BC)

metal-insulator transition (MIT)96. The phase diagram of the MIT is shown in fig. 6.45. The

white regions are metallic and the shaded region is in principle metallic but under strong

influence of MIT1. Moving parallel to the y-axis is the route of the BC-MIT, quantified by

the ratio, U
t

with a finite value of U . Standing at half filling (µ = 0) and taking the BC-MIT

route (black fat arrow) drives the Mott insulator, where the metal-insulating phase is sharply

divided at a critical U = Uc, below which the partially filled band is always metallic. In the

situation where there is perfect nesting Uc = 0 as was discussed in the previous section. Above

Uc at non integer filling the phase is usually metallic. However, moving parallel to the x-axis

- the route of filling controlled (FC) MIT - to phases near µ = 0 are of particular interest.

Here, more exotic phases are found e.g., unconventional superconductivity, first discovered by

Bednorz and Müller in 198697, where the Mott insulator is driven towards a superconducting

phase. The Mott-superconductor (MS) phase transition gained a lot of interest after its

discovery since the mechanism leading to superconductivity could not be described by BCS

theory and some MS-materials showed extraordinary high critical temperatures (≈ 100 K).

6.4 Preparing a Hubbard Hamiltonian Simulator

The three parameters of the HH have a deceptive simplicity but the complexity of calculations

increases exponentially with the number of particles98 and makes it an insurmountable task for

a classical computer to simulate for more than a few particles. To overcome the mathematical

task of solving many-body problems, a quantum simulator was suggested by Feynman in

198299. With an analog Hubbard lattice quantum simulator the idea is to map the HH of

the system and then prepare the simulator in a state relevant for the physical problem of

interest3. In this section the formalism for calculations of band diagrams of experimentally

realisable square lattices is introduced. The calculations will aid the experimental effort of

tuning in on the right parameters that makes the HH a useful model to describe the physics

of the SAG Hubbard lattices (HL).

A crucial assumption of the HH is that the particles are all in the lowest Bloch band. That is,

when preparing a HL, it is desirable to have the Bloch waves localized on the lattice sites,

such that the eigenvalues are less dispersed. In fig. 6.46 left, a schematic of an idealized HL

is shown. The green consist of a metallic/semiconducting material (e.g. InAs or InGaAs)

and the blue consist of an insulating material (e.g. SiOx). Ideally, the electron orbitals are

localized in the junctions of the metallic/semiconducting material to define a lattice site. The
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Kronig-Penney (KP) model100 is a useful tool to help tuning in on the parameters that fulfills

the desirable conditions. Following the method in ref.[101], a 2D KP square lattice with the

most simple potential - the square potential - embedded in an infinite square well (ISW), will

now be considered. The model is illustrated in fig. 6.46. with the square lattice implying

that the lattice constants in both directions are ax = ay = a. A schematic of potential

in the unit cell normalized to a, is seen in fig. 6.46, right, and the normalized distances

P2,x − P1 = P2,y − P1. The strength of the square potential is V0.

It then follows that the Hamiltonian is:

H = H0 + V (x, y) (6.32)

Where H0 = − h̄2

2m0

δ2

δx2
+ Vinf(x, y) is the ISW Hamiltonian, with a ground state energy

EISW = h̄2π2

2m0a2
. The periodicity of the lattice implies that the wavefunction satisfies:

ψ(x+ ax, y) = ψ(x, y) (6.33)

ψ(x, y + ay) = ψ(x, y) (6.34)

Figure 6.46: The 2D square lattice Kronig-Penney model. Left, A model of the
square lattice with metallic regions in green and insulating regions in blue. Ideally,
the Bloch waves localizes in the junctions of metallic material. The unit cell is
indicated with lattice vectors (black arrows). Right, The unit cell in potential
energy vs real space. A simple square potential arising from the insulating material
is considered with parameters P1 and P2 defining the area of the square potential
and V0 the potential height.
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and has orthonormal plane-wave basis states:

ψ(0)
nxny

(
x, y
)

=
1

a
exp

(
i
2π

a
(nxx+ nyy)

)
(6.35)

Where n = .. − 2,−1, 0, 1, 2..., and the superscript (0) indicates the free electron eigen-

states/eigenvalues. The eigenvalues are:

E(0)
nxny = 4

[
n2
x + n2

y

]
EISW (6.36)

Turning on the potential, V (x, y), the matrix elements become:

Hnxny ,mxmy = 〈ψ(0)
nxny | H0 + V (x, y) | ψ(0)

mxmy〉

= δnxmxδnymyE
(0)
nxny +HV

nxny ,mxmy

(6.37)

Imposing Bloch’s theorem to eq. 6.33 and 6.34 modifies eq.6.36 and leads to the following

term on the diagonal of the matrix in dimensionless units:

E
(0)
nxny

EISW
=
[(

2nx +
Kxa

π

)2

+
(

2ny +
Kya

π

)2]
(6.38)

Where −π ≤Kx/ya ≤ π is satisfied. The embedding potential yields a contribution to the

diagonal elements and the off-diagonal elements. These terms are found from the solutions to

the integral of:

hVnxny ,mxmy = v0

∫ P2

P1

∫ P2

P1

δxδy exp
(
i2π(mx − nx)x

)
exp

(
i2π(my − ny)y

)
(6.39)

Where hVnxny ,mxmy is the dimensionless form of HV
nxny ,mxmy i.e. v0 is V0

EISW
and P1/P2 are just

points in k-space normalized to a. . This integral has an analytic solution:

hVnxny ,mxmy = v0

[
(P2 − P1)δnxmx + i

(ei2π(mx−nx)P1 − ei2π(mx−nx)P2)

2π(mx − nx)
(1− δnxmx)

]
×
[
(P2 − P1)δnymy + i

(ei2π(my−ny)P1 − ei2π(my−ny)P2)

2π(my − ny)
(1− δnymy)

] (6.40)

Notice that the contribution from the embedding potential to the diagonal elements is just

the volume of the square potential. From equations 6.38 and 6.40 a matrix can be constructed

using (nx, ny) = (0, 0), (0, 1), (0,−1), (1, 0), (−1, 0), (1, 1), (1,−1), (−1, 1), (−1,−1), (2, 0)... up
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to some value nmax in both x and y that secures a desired level of convergence. Then Kx and

Ky are swept while diagonalizing the matrix to construct the 2D E-K diagram.

6.5 Realizing Square Hubbard Lattices - Initial Phase

In the previous section, the formalism for calculating eigenvalues and eigenstates of a 2D

square lattice with a square potential was developed. In this section the KP-model is applied to

Figure 6.47: SEM images of 2D square lattices. a, A tilted SEM image showing
a lattice with only the buffer, GaAs(Sb) grown inside the SiOxmask-openings. The
lattice consists of 40x80 lattice point. b, a higher resolution of the red box in a.
The inset shows the highest resolution, where defects in the mask become visible.
c, a SEM image of a lattice with a thin layer of ≈ 2 nm InGaAs grown on top of
the buffer. This lattice had a pitch and width of 100 nm and 75 nm, respectively.
d, a higher resolution of the blue box in c.

6.5. REALIZING SQUARE HUBBARD LATTICES - INITIAL PHASE 73



construct band diagrams and ground state wavefunctions (WF), based on estimated parameter

values from the synthesized lattices shown fig. 6.47. A discussion of the results follows with a

focus on how to tune the parameters such that a regime close to the tight-binding regime is

reached. That is, 1) we want the orbitals to be localized on each lattice site 2) we want a

large band-gap from the lowest Bloch band to higher bands 3) we want a flat Fermi surface at

half-filling to be able to achieve nesting that allows for an ordered ground state (e.g. charge

density wave, antiferromagnetism, etc) regardless of a small Hubbard-U.

To set the stage, let us look at some of the grown HL. The initial phase required an effort in

optimizing the MBE and lithographic processes and was carried out by my colleagues Daria

Beznasyuk & Damon Carrad. Figure 6.47 summarizes the status of the square HL. It was

grown using a SAG method similar to that described in chapter 3 and shown fig. 3.10. In fig.

6.47a, a tilted SEM image of a HL is shown, where only the buffer GaAs(Sb) has been grown

in the mask-openings. The mask consists of SiOx. The lattice has 40x80 lattice sites with

a pitch (lattice spacing) of 500 nm. Figure 6.47b, is a higher resolution image of the same

lattice enclosed by the red box in fig. 6.47a. The inset figure shows the highest resolution,

where small defects in the mask become visible. These defects have not been included in the

preliminary calculations considered in this thesis but will be the subject of future work. In

fig. 6.47c, lattice with a pitch of 100 nm is shown. This lattice had a very thin layer of ≈2

nm InGaAs grown on top of a 10 nm GaAs(Sb) with a 10 nm tall SiOx layer. With this small

pitch, the defects take up more space of the square lattice unit cell as seen in fig. 6.47d. Thus,

a larger effect on the transport properties is expected which might undermine the quantitative

conclusions that can be drawn from the simple calculations shown in this section. However,

even though this simple model neglects the influence from defects and effects from edges

states due to a finite amount of lattice sites, the qualitative trends are still believed to be

useful for future optimization purposes.

The pitch and the effective mass of the metallic material determines bandwidth of the lowest

Bloch band, EISW . Based on the images in fig. 6.47c&d, pitches between 75-100 nm and

effective masses ranging from (0.023-0.050)·m0, where m0 is the electron mass, are used,

giving EISW between 0.75-2.91 meV. The height of the square potential, v0 is determined by

mismatch between the conduction band edges of the metallic and insulating material. This

value is unknown but the unnormalized value, V0 = v0 · EISW , is assumed to be on the order

of a few eV. The value of v0 is set, depending on EISW , to match a realistic scenario. The

last parameter defines the area of the square potential and is given as the ratio between the

area of the insulator, AI , and the area of the metallic region, AM in a unit cell. This ratio is

settled during synthesis by controlling the width and the pitch of the mask openings.
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6.5.1 Band Diagrams

Figure 6.48: The first Brillouin zone of a square
lattice. The high symmetry points are defined at
Γ = (0, 0), X ′ = (0, π) and M = (π, π). the Fermi
surface at half-filling is a square (blue). Tracing
out the eigenvalues of the KP-model along the
Fermi surface (purple arrow), in the tight-binding
limit is flat which indicates perfect nesting.

The first Brillouin zone of a square lattice

is shown in fig. 6.48. Eigenvalues of the

KP-model were traced out between high-

symmetry points in crystal momentum from

the Γ-point −→ X ′-point, X ′-point −→ M -

point and from M -point −→ Γ-point and are

shown in fig. 6.49 for two different area ratios
AI
AM

. All eigenvalues are normalized to EISW .

In the tight-binding limit at half-filling the

Fermi surface is a square rotated 45
◦

in the

first zone and takes up 1
2

of the total area.

To achieve nesting, the path along the Fermi

surface, indicated by the purple arrow in fig.

6.48, must be flat. The eigenvalues along this

path are plotted in the narrow band diagram

in fig. 6.49 and shows that as the insulator

takes up more space of the unit cell a tight

binding limit is approached with a flat Fermi surface. When the insulator takes up 25% of

the area of the unit cell (P1 = 0.25 and P2 = 0.75) i.e. when the width of the insulator equals

the width of the metallic grid-arms , the lattice is already set up for nesting. At this setting

the band gap from the lowest Bloch band is ≈ 2EISW , which then makes the effective mass

and the pitch important parameters for comparing the energy scale of the band gap to an

energy scale from effects such as impurities, temperature etc. From the view of the band gap,

these parameters must be minimized.

6.5.2 Ground State Wavefunctions

Figure 6.50 shows a matrix of calculated charge densities in real space, | ψ0(r) |2, at K=0

(Γ-point). The ratio between AI and AM is varied on the y-axis and V0 is varied on the x-axis.

The dark regions are nodes in the charge density. As the insulator takes up more space, the

Bloch WFs contract and accumulate in the junctions of the metallic material (bright regions).

This shows that it is possible to generate localised orbitals without the need to fabricate gates

that will act as tunnel barriers to “disconnect” neighbouring orbitals and is consistent with

6.5. REALIZING SQUARE HUBBARD LATTICES - INITIAL PHASE 75



Figure 6.49: Band diagrams of a 2D-square lattice. When the area of the insulator,
AI , in the unit cell is small, left plot, the band gap from the lowest Bloch band
(blue band) to higher ones is small compared to the band gap when AI is larger
as seen in the right plot. The dispersion along the path shown in fig. 6.48 at
half-filling (purple) is shown in the narrow band diagrams. The tight binding limit
is reached when AI is 25 % of the unit cell and at half-filling of the lowest bloch
band the Fermi surface is flat. In this situation the Fermi surface is nested.

what was inferred from the band diagrams that a width/pitch ratio ≤ 1 is desirable. However,

from the variation in V0, here shown by letting v0 take values from 10-104, it is noticed that a

larger v0 gives the most localized WFs which suggest that a larger pitch/effective mass or

smaller conduction band mismatch is desirable. The least complicated parameter to vary

from an experimental point of view would be the pitch. But there is a trade-off between

increasing the pitch to get more localized WFs and having a large band gap to higher Bloch

bands. To give an example of this dilemma, consider the HL in fig. 6.47d. The pitch is ≈100

nm and the width of the metallic arms ≈75 nm giving the ratio AI
AM

= 0.33 and a EISW ≈ 1.5

meV. Thus, the band gap from the lowest Bloch band to the closest higher band is ≈ 3.75

meV. If we assume a conduction band mismatch between the InGaAs and SiOx is at a fixed

values of a few eV, the representation of the orbitals can be placed somewhere between row 1

and 2, column 3 and 4 in fig. 6.50. In this case only a small reduction of the pitch down to

≈75 nm, would be beneficial to increase the band gap without risking to delocalize the WFs

and lose the nesting property. A further reduction of the pitch would require engineering of

local gates to increase to value of V0.
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6.5.3 Summary

In summary, we developed a simple model of the 2D square lattices using matrix mechanics

to find solutions to the KP-model. From these solutions we were able to to construct band

diagrams and calculate charge densities in real space, that - at least on a qualitative level

- gives us insight into the relevant parameters that we can control to prepare a lattice in a

state that can be described with the a simple HH. In the future we can elaborate on this

model, e.g., consider different periodic potentials and add impurities or edge states, to obtain

an even better and perhaps more quantitative understanding that can direct the synthesis

process of the devices.

Figure 6.50: The electron density in real space | ψ0(r) |2. As the insulator takes
up more space of the unit cell the density tends to accumulate in the junctions of
the HL. An increasing conduction band mismatch, V0, results in an increase of the
localization of the electron density.

6.5. REALIZING SQUARE HUBBARD LATTICES - INITIAL PHASE 77



Chapter 7 Conclusion & Outlook

In every branch of knowledge the progress is proportional to the amount of facts on which

to build, and therefore to the facility of obtaining data - James Clerk Maxwell

7.1 Conclusion

In conclusion, we did preliminary tight binding calculations on the 2-dimensional square

Hubbard lattices with dimensions matching those of the most recent selective-area-growth

synthesized lattices. We showed that it is possible to create localized orbitals in the junctions

of the lattices and that we can achieve nesting to develop an ordered ground state.

We developed a method to accurately extract the gate voltage-dependent mobility from a

two-terminal FET measurement that showed an excellent match with the Hall mobility. Our

approach further enables systematic investigation of the underlying scattering mechanisms

that determine the mobility in a particular carrier density regime.

We studied UCF, specifically, the statistics in normal-superconducting nanowires, which has

not been done before and showed that it is possible to probe the underlying symmetries in a

device from the amplitude of these fluctuations in different regimes.

7.2 Outlook

Universal Conductance fluctuations in Quasi-1D NS-Devices

The most immediate future work we will undertake is the repeat the experiments performed

here with further devices and increased gate range to improve the statistical certainty of the

claims made in chapter 5. For the next round of measurements, it would be interesting to have

devices with a wide variety of different lengths of the N-part of the wire, in a range around

the typical phase coherence lengths of these types of wires, to probe the lφ-dependence of δG

and test Beenakker and van Houten’s interpolation formula in eq. 2.12.An extended analysis

of control devices would also be desirable to assist determination of the UCF amplitude when

both particle-hole and time-reversal symmetry are broken.
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With the new model of the gate-dependent mobility, we aim to build up statistics from two

terminal measurements on similar systems. The collected statistics can be utilized to gain

insight about the physical meaning of the parameters of the model which, for now, remain

unknown. This will not only help us optimize the fit but also provide invaluable information

about scattering mechanism that together with information about synthesis of the devices

can help the optimization process towards less disordered materials.

Correlated Materials from SAG Hubbard Lattices

In the near future, we can test the quality of the developed KP-model from electron transport

measurements by probing the insulating/conducting behaviour of several devices, i.e. is

it possible to change the band gap or create localized/delocalized orbitals by tuning the

parameters the way the KP-model predicts?

To elaborate on the model we can construct a more realistic potential and also add small

random potentials in the unit-cell to probe the effect of impurities on the band structure. In

the far future, it would be interesting to add edge states. For this we have to model a finite

lattice.
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A1 NanoWireWeek Chamonix-Mont-Blanc April 2022

 

 

Carrier density-dependent mobility in semiconductor nanostructures 

Christian E. N. Petersen1, Damon J. Carrad1,2, Thierry D. Pomar2, Daria V. Beznasyuk1,3, Jung-Hyun 
Kang1,3, Gunjan Nagda1,3, Dennis Valbjørn Christensen2, Peter Krogstrup1,3 and Thomas S. Jespersen1,2  

1 Center for Quantum Devices, Niels Bohr Institute, University of Copenhagen, Denmark  
2 Department of Energy Conversion and Storage, Technical University of Denmark, Denmark 

3 Microsoft Quantum Materials Lab Copenhagen, Denmark 

Contact: lbc622@alumni.ku.dk 

Increasing material quality and carrier mobility of semiconductor nanostructures is crucial in many 
applications for coherent nanoelectronics and nanotechnology. A challenge in this respect is the 
inherent difficulty in performing four-terminal Hall effect measurements on nanostructures, including 
nanowires [1] and prompts efforts to extract mobility in other ways. In materials where mobility is 
independent of carrier density, field-effect measurements can be used [2]. However, this situation 
seldom occurs in nanostructures, where density-dependent scattering mechanisms give rise to a non-
constant – and in some cases non-monotonic – relationship between carrier mobility and density. In 
this study, we investigate the non-monotonous electron mobility in InAs nanowires in a Hall bar 
geometry made using selective area growth (Fig 1, left) [3,4]. We develop a method to accurately 
extract the gate voltage-dependent mobility from two-terminal field-effect transistor measurements 
and demonstrate an excellent match with the Hall mobility (Fig 1, right). Our method enables 
extracting similar information to a Hall effect measurement on two-terminal devices at zero magnetic 
field. Going beyond the conventional models which assume constant mobility – and significantly 
overestimate the true value – (Fig 1, right), our approach further enables systematic investigation of 
the underlying scattering mechanisms that determine the mobility in a particular carrier density 
regime. For example, Fig 1, right shows that our devices exhibited an initial rise in mobility with 
increasing gate voltage, followed by a fall beyond the peak around Vtg = 0.5 V. The two behaviours may 
be attributed to screening of charged impurities and inter-subband scattering, respectively [5]. 

 
Figure 1 Left: False-colour scanning electron microscope of a selective-area-growth nanowire in a Hall 

bar geometry with Ti/Au contacts (yellow) and top gate (orange).  Right: Mobility, µ, vs top gate 
voltage Vtg. Blue shows the Hall-mobility and black the gate-dependent effective mobility extracted 
from a two-terminal measurement. For comparison, we plot the constant mobility obtained from 

conventional field-effect techniques (green). 

[1] K. Storm, et al., Nat Nano 7, 718–722 (2012) 
[2] S. M. Sze, Physics of Semiconductor Devices, 3rd ed. Hoboken, N.J: Wiley-Interscience (2007) 
[3] F. Krizek et al., Phys. Rev. Materials 2, 093401 (2018) 
[4] D. V. Beznasyuk et al., arXiv:2103.15971 (2021) 
[5] S. Ahn et al., arXiv:2109.00007 (2021) 

Figure S51: The abstract that was accepted for a talk by the committee of the
NanoWireWeek.
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Figure S52: Me doing a talk about a new method to extract carrier density
dependent mobility from a two-terminal field-effect transistor measurement at
NanoWireWeek in Chamonix-Mont-Blanc. Date: 28th of April 2022.
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A2 Overview of Fabricated Devices

UCF Chips

Device Name: Comments:

CP1-1.00 Did conduct but had a side gate

shorted to the source contact at

the NS-device

CP1-0.70 Did not conduct

CP1-0.50 Did conduct at the NS-device.

The reference device did not con-

duct. Device was unfortunately

blown up with a side gate before

starting to show interesting results

CP2-1.25 Did not conduct

CP2-0.85 Did not conduct

CP2-0.35 Did not conduct

CP3-1.25 Fabrication failed. Leads were

misaligned to the wire

CP3-0.75 Fabrication failed. Leads were

misaligned to the wire

CP3-0.50 Fabrication failed. Leads were

misaligned to the wire
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UCF Chips

Device Name: Comments:

CP4-1.50 Fabrication failed. Leads were

misaligned to the wire

CP4-1.00 Fabrication failed. Leads were

misaligned to the wire

CP4-0.35 Fabrication failed. Leads were

misaligned to the wire

CP5-1.50 did not conduct

CP5-0.75 2nd layer was overexposed causing

different leads to overlap. Strip-

ping the resist and make a new

exposure worked and device con-

ducted beautifully. Results shown

in chapter 5

CP6-1.50 did not conduct. Might have been

blown up during bonding

CP6-0.75 did not conduct. Might have been

blown up during bonding
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Hall Bars

Device Name: Comments:

MQML22

Fg1HB4

results presented in appendixA4

fig. S54

MQML38

Fg1HB4

results presented in chapter 5

MQML38

Fe1HB4

Hooked up wrong

MQML38

Fg2HB5

results presented in appendix A4

fig. S54

A3 Fabrication Recipes

UCF chips

1. 1st Spinning of resist

• A single drop of MicroChem PMMA A6 from a 1.5 ml pipette

• Ramp up to 4000 rpm for 5 s and spin for 60 s.

• Wait 30 s for the resist to settle

• Clean the back of chip for resist with acetone

• Bake on hot plate at 185◦ C for 60 s.

2. 1st exposure on Elionix 100 kV

• Write-field size 300x300 (µm)2

• Area dose 950 µC
cm2

• Exposure time 0.475 µs
pixel

• Beam current of 500 pA

CONTENTS 84



Appendices

3. 1st Develop

• 60 s MIBK:IPA 1:3

• 30 s IPA

• Blow dry with nitrogen for 30 s

• 60 s ash

4. Argon Milling

• Struck a plasma 15 watts at pressure 18 Torr for 8 min.

5. 1st Titanium deposition 10 kV

• e-beam current 32 mA

• 5 nm thickness at a rate of ≈ 1 Å/s

6. 1st Gold deposition 10 kV

• e-beam current 32 mA

• 250 nm thickness at a rate of ≈ 1.5− 2.0 Å/s

7. 1st Lift-off

• 50 ◦C acetone for 1 hour, use pipette to swirl lift off the resist if necessary,

• Clean in IPA

• Blow dry with nitrogen

8. ALD

• Deposited a layer of 150 cycles pulse water → pump out, pulse precursor → purge at
110 ◦C to have a final layer of 15nm HfO2.
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9. 2nd Spinning of resist

• Same as step 1

10. 2nd exposure on Elionix 100 kV

• Same as step 2

11. 2nd Develop

• Same as step 3

12. 2nd Titanium deposition 10 kV

• Same as step 5

13. 2nd Gold deposition 10 kV

• e-beam current 32 mA

• 150 nm thickness at a rate of ≈ 1 Å/s

14. 2nd Lift-off

• Same as step 7

A4 Carrier Density-Dependent Mobility in Semiconductor Nanos-

tructures
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Figure S53: Raw data. The bottom row data was extracted from line traces
indicated by the arrows in the top row 2D colormaps.
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Figure S54: More fits to eq. 5.28. From the parameters extracted the effective
mobility, showing great similarity to the Hall mobility, is found.
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